Page 100 Machine Language Linkage

;MOVER MOVES B BYTES FROM THE ADDRESS IN HL TO
s THE ADDRESS IN DE

FC30 78 MOVER: MOV A,B

FC31 BT ORA A ;IS LENGTH ZERO?

FC32 C8 RZ ;YES - RETURN TO XYBASIC
FC33 TE MOVES: MOV A,M ;FETCH SOURCE BYTE

FC34 12 STAX D sSTORE IT

FC35 23 INX H ; INCREMENT SOURCE POINTER
FC36 13 INX D ; INCREMENT DEST POINTER
FC37 05 DCR B sDECREMENT BYTE COUNTER
FC38 C233FC JNZ MOVES ;s KEEP MOVING

FC3B C9 RET ;RETURN TO XYBASIC
;GETIP GETS AN INTEGER PARAMETER TO DE.
sJUMPS TO ERROR IF PARAMETER IS NOT
;A SIMPLE INTEGER VARIABLE.

FC3C CD0301 GETIP: CALL GTPAR ;GET A PARAMETER

FC3F FEO1 CPI 1 s INTEGER?

FC41 C26801 JNZ ERROR yNO - TAKE ERROR EXIT

FC44 79 MOV A,C s EXPECTING SIMPLE VARIABLE
FC45 BT ORA A s ARRAY PASSED?

FC46 C26801 JNZ ERROR ;s YES - TAKE ERROR EXIT
FC49 S5E MOV E,M ;LOW BYTE OF VALUE

FC4A 23 INX H s POINT TO HIGH BYTE

FCU4B 56 MOV D,M ;sHIGH BYTE

FC4C C9 RET ;s RETURN TO CALLER

With these routines resident in memory, it is a simple matter to save the
contents of a string variable in nonvolatile memory (say, at address
0CO00H). The string variable DATE$ could be saved as follows:

NVM%Z = #C000: CALL #FCO0, NVM%, DATES

It could be recalled at power-up time by:
NVM%Z = #C000: DATES = " ": CALL #FC1A, NVM%, DATES

Note that a string of blanks is assigned to DATE$ before the call to
RCLVAR. This is an absolutely necessary formality, because storage space
for string variables is allocated dynamically by XYBASIC. This allows the
length of a string variable's value to vary dynamically without wasting
memory space. If a string variable contains the null string (as it does if
it has not been previously defined), no storage space has been allocated
for it. Thus a string variable must be assigned a string of length at
least as great as the length of the string to be recalled before the CALL
to RCLVAR. This extra step is necessary only for string variables,

Another example using GTPAR is included in Section 3 of Chapter II, in the
paragraph Saving and Loading Under Operating Systems,

SCALL

The SCALL (Short CALL) command is similar to CALL, except that parameter
values are passed to and from your assembly language routine directly
(through registers) rather than with GTPAR. This makes linking to an
assembly language routine faster and easier, However, the parameters which
are passed must be integers; you must use CALL rather than SCALL to pass




