Error messages

The following are the error messages printed by csd. All Messages are displayed in the history
window. All Fatal error messages are displayed in the history window. Fatal errors force the
history window to be displayed, and ask that you exit from csd.

usage: CSD -G -D -O[L][M] -Hhelppath -Ssourcepath -T file[.exe] args

Fatal error. You have specified improper arguments to esd. This message tells you the
form of the esd command. If the source file is to be found other than on the current disk or
directory, you need to specify the -S option to tell csd where to find it. If the esd disk is not
in the current disk drive or directory, you need to tell esd where it is with the -H option so
that it can find the help files. The -G option is used when running esd on a color system
which is not in 80 x 25 character mode. The file is the name of the program that you are
debugging. Finally, [args] is the list of arguments to your program. For a complete listing
of the compile command arguments and their uses, see section 6, esd Command reference.

Reading tables...
Message. This means that the tables containing debugging information are being read in.

Loading filename...
Message. filename is the name of the program being debugged. This message is printed the
first time the program is loaded.

Reloading filename...
Message. This message is printed when the program is reloaded after <Run><End>,
<Run><Begin>, a machine fault or after the program exits under its own control.

Adding source: sourcefile
After the "Reading tables..." message, you will see one of these for each source file found in
the tables.

Jfile .exe : cannot open
Fatal error. The file that you have specified in the esd command cannot be found.

insufficient memory for csd to run
Fatal error. Not enough memory is available for esd to load the symbol table and allocate
the number of kilobytes specified with the -D option. Reduce the number of bytes specified.

insufficient memory to load program
Fatal error. Not enough memory is left after loading the symbol table and the sources to
run the program. Reduce the number of bytes specified with the -D option.

this source file is more recent than the program
Message. This message reports that the program probably needs to be recompiled to bring
it up to date with the source.

blocks nested too deeply
Fatal error. The program has nested compound statement blocks deeper than esd can keep
track of.

valid breakpoint traps are O, 3,...12, and 15
Fatal error. This reports that the -Itrap# option has an invalid value. The default value is
12.

81



82 Error Messages

csd stack overflow
Message. This message appears when csd overflows its own stack.

junk in high byte of program counter: addr
Message. This reports that the traced program has a program counter with non-zero value
in the high 8 bits. These bits are not used by the 68000 processor, but it’s unusual for
them to be set.

no room in vblqueue for break key handler
Message. This means that the break key will not be active. This should not appear in most
circumstances because there are seven free slots available.

Can't read file.prg read file.prg’>=29
Fatal error. csd has encountered a read error trying to read your program.

No source!
Fatal error. No source files were compiled with the -VCSD option. You must use this
option when compiling programs for debugging if you want to use them with csd.

out of memory
Fatal error. There is not enough room to hold the program’s debug tables. Try using the -D
option to increase the size of esd’s workspace. Otherwise, debug smaller portions of your
program.

execute failed: filename
This means that the program cannot be executed.

sourcefile.c: cannot open
One of the source files used to compile your program cannot be found. The names of the
source files are kept in the executable .exe file, so if you have moved them, esd cannot find
them. Use the -T or -S command line option to tell esd where to find them.

Cannot Open
This means that the file name specified as the program to be debugged cannot be opened to
read the debug tables.

file has a corrupted image, should be recompiled
Fatal error. In order to start tracing your program, csd must write a breakpoint instruction
into the program file. When tracing begins, the program file is rewritten to its original
value. This message means that something went wrong, and csd left the breakpoint in the
program file. The program cannot be traced as it is, and you will have to relink from object
files or recompile.

try Help
You have pressed a key that is not acceptable at this time. For example, if you are at the
beginning of the source file and type <t >, you will get this message.

at outermost frame
In exploring the stack, you have typed the <> key, but your caller, if it exists, is not visible
to csd.

at innermost frame
In exploring the stack, you have pressed the <> key, but you are already positioned at the
innermost frame; that is, you have undone all of the <~ >’s.

not executable statement
You are trying to set a trace on a statement that is not executable. Declarations, comments,
braces {}, and ‘# statements are not executable. In addition, code for some statements is
combined during optimization, so that statements such as break, continue and do may not
have any executable code.

csd C source debugger



Error Messages 83

not traceable expression
The expression you are trying to trace cannot be traced because it has no value. This is
true of functions that are of void type.

out of space
Remove some of the expressions, or delete some of the history window.

helpfile.hlp: cannot open
csd cannot find helpfile.hlp in the current path(s). You can use the -H option to correct
this.

more space required
There is not enough room to add expressions to the evaluation window. Remove some
expressions from the evaluation window and try again.

Can’t move boundary any further move boundary any further’>=29
You are trying to move the cursor so it is positioned before the beginning or after the end of
the expression, history, source or evaluation windows. csd requires that the source window
be at least three lines long, and that the evaluation window be at least two lines long.

exit status nnn
Message. this message reports the value returned by the program when it terminated.

Evaluation window error messages
The following messages refer to expressions in the evaluation window. They describe errors
in entering expressions, and are self explanatory:

integer type required

integer or pointer type required
nurmeric type required

numeric or pointer type required
expressi on required

literal or variable in current scope required
struct or union nenber required
| val ue required

poi nter required

| val ue or type required

terminal or prefix op required
function required

array or pointer required
pointer to struct or union required
struct or union required

infix operator required

matching '?' and ':’ required
pointer to same type required
mat chi ng types required

")’ required

"] required

Machine fault names

The following lists named machine faults.

bus error
Access to an address which does not exist, or which the hardware forbids in user mode.

Address error
Access to an odd address for a long or word operand.

csd C source debugger



84 Error Messages

Nlegal instruction
Execution of an instruction which is not supported by the processor.

Divide by zero
The divide instruction was given a zero as a divisor.

Bounds trap
The 68000 chk instruction trapped.

Overflow trap
The 68000 trapv instruction trapped.

csd C source debugger



