
#%2=0 .nr#0

Commands reference

Every source file that you wish to debug must be compiled with the Let’s C compiler, using the -
VCSD option to the cc command.

You may link in objects that are not compiled with -VCSD. In the evaluation window, the global
variables defined in these objects will be visible, but csd will have no knowledge of the internal
variables of objects not compiled with -VCSD.

Invoking csd
To start csd, type csd followed by the name of the program you want to debug. If you invoke csd on
a program and receive the error message:

out of space

while reading source, you need to use the large model source debugger, lcsd. lcsd is the version of
the debugger that has a large data segment. To invoke the large model debugger, type lcsd followed
by the name of the program you want to debug.

For Tandy 2000 users, type tcsd to invoke the debugger. For any other Tandy PC compatible,
invoke the debugger with the csd command.

To debug the program infl, type:

csd infl

When you invoke the debugger, it will print in the history window:

C Source Language Debugger Version 1.1
Copyright 1984-1988 by Mark Williams Co., Lake Bluff, IL
Reading tables...
Adding source: infl.c
Loading infl...

The line

Reading tables...

shows that csd is reading the debug information for the program, and

Loading infl...

means that it is loading the .exe program file. The line

Adding source: infl.c

means that csd is adding the source file used to build the program. Adding source: followed by a
file name appears once for each source file csd adds.

Typing csd at the prompt without arguments produces the following reminder:

usage: CSD -G -D -O[L][M] -Hhelppath -Ssourcepath -T file[.exe] args

The information following ‘‘CSD’’ refers to command line options, which are discussed below. file is
the name of a .exe file you wish to debug. The .exe suffix is optional. args is the remainder of the
command line to be supplied to your program (as if it were running without csd). For example,
when you type

57

58 Commands reference

csd factor 234

the number 234 is the argument passed to the program factor.

The csd options must precede the file name, so that they are not confused with the arguments to
your program. The csd options may be entered in any order.

Options
The following describes the options to the csd command.

-O[L][M]
User program is:

-O small model object module format
-L large model object module format
-M small model Mark Williams format

Ordinarily, csd determines the format of the .exe file you are using by the number of
relocations to be done at load time (this is part of the .exe header).

0 relocations means MWC format
1 relocation means small OMF
>1 relocations means large OMF

If a small model program contains a .s file with absolute segment references (the @
operator), these references must be relocated, causing the above rule to be violated. Note
that the Mark Williams format was produced by Let’s C in versions earlier than 4.0. It is no
longer used by Let’s C. These options allow debugging of such .exe files.

-Dnnn Change data segment size. If you are using a version of csd.exe called lcsd that has a large
data segment, the -D option lets you specify the size of csd’s workspace. nnn is a decimal
number of kilobytes; the default is 128. This workspace holds disk buffers, user
expressions, and the history. It is allocated in addition to the fixed memory used to hold
your program’s symbol table. If this option does not appear in the usage reminder, you are
using a csd.exe with a small data segment; if this is the case, the data segment is 64
kilobytes, the maximum possible.

-H Set the help path. This option tells csd where to find its help files. By default, csd looks for
help files in the current directory, then in the directories named by the environmental
variables PATH and LIBPATH.

The help path must be a complete MS-DOS directory specification. It should terminate in a
back slash (\), the only exception being a drive specification (e.g., C:).

-G The graphics option. Use this when running csd on a color system that is not in 80x25
character mode.

-Inn The reset interrupt option. csd ordinarily uses MS-DOS interrupt 3 to set tracepoints in
your program. However, if the program you are debugging already uses interrupt 3, you
may want csd to set tracepoints using a different interrupt. The -I option tells csd to use
interrupt nn, where nn is a decimal number.

-S source path

-T source path
These options tell csd where to find your C source files.

When you compile a C source file with the -VCSD option, the file name that you type (which

csd C source debugger

Commands reference 59

may include a directory specification) is saved within the object modules and the executable
file. For example, if you typed

cc -VCSD \source\example.c

the executable program would remember the name of its source file not as example.c, but
as \source\example.c. This name will be displayed in the reverse-video line between the
source and evaluation windows.

The -S option tells csd to look for C source files in the named source path. csd will prepend
the given directory path to each source file name in the symbol table. -S is useful if you
compiled the program using the file names with no directory specification, and you want to
use the debugger from another directory without recompiling. For example, if you compiled
the program with

cc -vcsd program.c

and invoked csd with the command

csd -Sutility\program

csd will look for the source file utility\program.c.

The -T option also tells csd to look for C source files in the named source path, and it strips
the existing directory information from the saved source file names. csd will strip any
directory path names from the source file names it finds in the symbol table, then prepend
the given path before reading in the files. -T is useful if you compiled the program giving
path names that are no longer relevant and should be disregarded. For example, if you
compiled the program using the command line

cc -vcsd \src\program.c

and invoked csd with

csd -T\utility\program

csd will look for a source file called \utility\program.c and ignore the leading directory
name it found in the symbol table.

This feature is helpful in situations where you would rather not rebuild an executable file or
change directories. For simplicity’s sake, it is suggested that you run csd from the same
directory where you compiled the program being debugged, or specify complete pathnames
for the source files given to the cc command.

Exiting csd
To exit the debugger once you have started debugging, press the <Shift-F1> key. If you are
currently typing a line in the evaluation window, type <ctrl-U> before exiting.

Getting help
Whenever the debugger is waiting for your input, you can type the <F6> key and the debugger will
display the master help screen. This help information describes all the major functions of the
debugger and the key that invokes each function. From this screen, you can choose other help
screens that describe individual functions in detail.

After you have read the help screen, type <F6> again to return to the debugger.

The following help screens are provided:

csd C source debugger

60 Commands reference

Cursor movement
General
Trace
Run
Evaluation
Find
History
Insert/Delete
Select

The help screens are detailed enough so that many users do not need to refer to this manual once
they get started. Section 6, Help screens, contains a copy of every help screen.

Windows
csd uses four windows: the source window, the evaluation window, the program window, and the
history window.

The source window displays your program’s source code. By moving the cursor within this window,
you can tell csd which portion of code to evaluate, where to set tracepoints, and which stack frame
to use.

The evaluation window is where csd accepts C expressions and variables that you type on the
keyboard. When an expression is typed into this window, csd evaluates it and prints the result
back in the evaluation window.

The program window is the area in memory where a program normally writes its output.

The history window is where csd records the events of your debugging session. Each time csd stops
your program at a tracepoint, the traced statement or expression is written onto the history window.
This is csd’s way of logging statements that it encounters during a debugging session.

Program window

To see the program window, type <F7>. csd normally jumps to the program window while your
program is running, so you can see the output that your program has generated. This screen
appears just as it would if your program were executed without csd.

You can choose to display a screen or window other than the program window while your program
is running. To do so, use the <F2> key. Keep in mind that the program’s output will go to the
selected screen when you run the program. To erase the output, press <F7>, followed by the key for
the selected screen or window.

Source window

The source window contains the source code of the program you are debugging. The cursor appears
in this window when you first invoke csd. To return to this window from another screen or window,
type the <F8> key.

If your program is more than one screen long (about 19 lines), not all of your program can be
displayed at one time. To scroll through your program one line at a time, use the <↑> and <↓>
arrow keys. The <PgDn> and <PgUp> keys move through your source program one page (or screen
full of text) at a time. Finally, the <Home> and <End> keys jump to the beginning or the end,
respectively, of your entire source file.

If you want to look at a line that contains a specific string, use the <F1> key. This provides a
powerful search feature with which you can find a specific string and locate the next statement to be
traced. The <F1> key is discussed in more detail later in this section.

csd C source debugger

Commands reference 61

To execute your program, press the <F4> key, then one of the following:

<F3> Execute to the next tracepoint.

<return> Execute one line of code.

<↓> Same as <return>, but function calls are
treated as one statement.

<←> Execute to the end of the current function.

<Home> Reload and initialize program.

<End> Execute to the end of the program;
do not stop at tracepoints.

If you have been moving through your source window and have lost track of what the next
executable statement is, press the <Shift-F8> key. This will automatically position the cursor at the
next executable statement.

When csd stops at a tracepoint in your source program, the cursor is positioned at the beginning of
the traced source line, which is the next line to be executed.

csd displays both the source window and the evaluation window at the same time. The boundary
between them is a reverse-video line that names the source file being displayed. If your program
uses more than one source file, the name will change as you scroll from one file to another. csd
displays the source files in the order in which you entered them on the cc command line.

You can change the relative sizes of the evaluation and source windows with the <F2> key, which
will be described later in this section.

Evaluation window

The evaluation window is beneath the source window, under the reverse-video line. To jump to the
evaluation window, press the <F9> key. This window is where you can type expressions that you
want csd to evaluate. For example, if the variable index is an int that is in the current scope of the
program and has the value ‘1’, you can display its value by typing

index

into the evaluation window. csd will evaluate index and print the following:

index :: 1

Values are displayed in their natural format except for structs and unions, which are displayed as a
list of hexadecimal bytes. For large structures, csd will display as much as will fit on the current
line. For purposes of tracing, large structures are, of course, evaluated in their entirety. Strings are
printed within quotation marks, and characters are enclosed within apostrophes.

You can type any legal C expression into the evaluation window. csd will check the legality of the
expression as you type it. If you make an error in syntax or if a variable name is typed incorrectly,
csd will give you an error message. To delete a character that is mistyped, use the backspace key.
Typing <ctrl-U> deletes an entire line of text.

csd can evaluate expressions that use the following elements:

operators
constants (except ‘#’ defined constants)
variables (in the current scope)
functions

In addition, the following special casts allow you to display information in a useful form:

csd C source debugger

62 Commands reference

oct octal
hex hexadecimal
str character strings

For example, if you issue the command

csd factor 12 22 32

then execute one statement by typing <F4> and <return>. Now you can enter the evaluation
window, and type the following statements:

argv[1]
(str)argv[1]
(oct)argv[1]

csd will fill the evaluation window as follows:

argv[1] :: 0x5321
(str)argv[1] :: "12"
(oct)argv[1] :: 051441

Note that pointers are automatically displayed in hexadecimal. Keep in mind that argv[1] contains a
pointer allocated by the run-time startup library routine and might have a different value for your
system.

csd cannot evaluate expressions that contain C keywords, braces, labels, or semicolons. One
exception to this rule is the keyword sizeof: it can be used in the evaluation window. Also,
preprocessor information is not available in the evaluation window: csd does not recognize ‘#’
defined symbols.

Expressions are evaluated as soon as they are typed in, and also whenever your program encounters
a tracepoint, provided they are in the current scope.

Another powerful feature of csd is its ability to set tracepoints on expressions entered in the
evaluation window. This causes csd to halt execution of your program if the value of the traced
expression changes. To do this, csd enters single-step mode to evaluate all of the expressions in the
evaluation window before each line of source code is executed.

To set a tracepoint on an expression in the evaluation window, switch to the evaluation window;
then type the expression to be evaluated, but instead of typing <return>, type <F3>. The expression
will shift into high-intensity characters to show that it is being traced. From now on, when you run
the program in trace mode, execution will stop whenever the value of the traced expression changes.

When you type in expressions that contain variables, the variables must be in the current scope.
This means that the variables that you are entering must be either external or declared by the
function within which the cursor is positioned. Expressions that refer to several different scopes
can appear in the evaluation window at the same time; however, csd cannot evaluate all of them at
the same time. csd stops execution when it encounters a tracepoint and checks the expressions
within the evaluation window; it evaluates only the expressions that are within the current scope.

Note that evaluation window expressions that produce side effects, such as assignments or printf
statements, should be used with caution and deleted after use. Remember, too, that if you are
tracing an expression, each expression in the window is evaluated after each statement in the
program. Because the debugger needs to halt the program after each line to evaluate any traced
expressions, execution is slowed considerably.

You can manipulate the evaluation window by using the following keys:

csd C source debugger

Commands reference 63

Up <↑> Move up to previous expression
Down <↓> Move down to next expression
Page Up <PgUp> Move to previous page of expressions
Page Down <PgDn> Move to next page of expressions
Begin <Home> Move to beginning of evaluation window
End <End> Move to end of evaluation window
Find <F1> Move to pattern specified
Delete Delete portions of the evaluation window
Insert <Ins> Add expression at cursor

Please note the following:

1. Preprocessor information is not available in csd.

2. Literal strings may be used only as function arguments; you may only reference objects in
your own data space. You can affect one assignment, as follows:

cp=strcpy(malloc(4), "cat")

3. Structure initializors, for example {0, NULL, 135}, are not expressions. Structures must be
initialized one member at a time.

History screen

The history window is called by striking the <F10> key. This screen displays a log of events that
occur while debugging, including every line of code or expression that was executed or traced while
it had a tracepoint set.

You can manipulate the history window using the same keys as above, except Insert.

Up <↑> Move up to previous line
Down <↓> Move down to next line
Page Up <PgUp> Move to previous page of lines
Page Down <PgDn> Move to the next page of lines
Begin <Home> Move to beginning of history window
End <End> Move to end of history window
Find <F1> Move to pattern specified
Delete Delete portions of history window

Because the history window and the other I/O activity done by csd share the same buffers in
memory, the contents of the history window are deleted automatically by csd as memory gets full.

You can redirect history window entries to a printer by using the <F2> command with the ‘L’ option.
Keep in mind that a program with many traced statements and expressions will generate large
amounts of output.

Command keys
csd supports a number of different keystrokes for any given command. The following table lists
each csd function and cursor movement command and the corresponding keys to invoke the
command. The following sections describe the cursor movement commands.

csd C source debugger

64 Commands reference

FUNCTION DESCRIPTION COMMAND

Find Find a string of text <F1> or <esc>1 or
<ctrl-S> or <esc>S or
<ctrl-R> or <esc>R

Select Select an option <F2> or <esc>2
Trace Trace an expression <F3> or <esc>3
Run Run the program <F4> or <esc>4
Cancel Cancel the last command <F5> or <esc>5

or <F5>
Help Display a help screen <F6> or <esc>6

or <F6>
Program Display program window <F7> or <esc>7
Source Display source window <F8> or <esc>8
Evaluation Enter evaluation window <F9> or <esc>9
History Display history window <F10> or <esc>0
Up Move cursor up <↑> or <ctrl-P>
Down Move cursor down <↓> or <ctrl-N>
Out Move to calling function <←> or <ctrl-B>
In Undo an Out <→> or <ctrl-F>
Exit Exit csd <Shift-F1> or <ctrl-X> <ctrl-C>
Current Return to current line <Shift-F8> or <ctrl-X>X
Page Up Move cursor up a page <PgUp> or <esc>V
Page Down Move cursor down a page <PgDn> or <ctrl-V>
Delete Delete a line or <ctrl-K>
Insert Insert a line <Ins> or <ctrl-O>
Beginning Beginning of source <Home> or <esc><
End End of source <End> or <esc>>

Begin <Home>

The <Home> key can be used by itself to move the cursor or with another key to modify that key’s
action.

<Home>
Move the cursor to the beginning of the source, evaluation, or history windows. This
command positions the cursor on the first line of the material in the screen or window.

 <Home>
In the evaluation window or history window, remove all material from the beginning to the
current cursor position.

<F1> <Home>
In the source window, the evaluation window, or the history window, search for a pattern
from the current cursor location back toward the beginning of the window. In the case of
the source window, all source files are searched.

<F4> <Home>
Reload and reinitialize the target program.

End <End>

The <End> key can be used by itself to move the cursor, or with another key to modify that key’s
action.

csd C source debugger

Commands reference 65

<End> Move the cursor to the last line of the source window, the evaluation window, or the history
window.

 <End>
Erase all lines from the current cursor position to the end of the window or screen. This
works in the evaluation and history windows only.

<F1> <End>
In the source window, the evaluation window, or the history window, search for a pattern
from the current cursor location through the end of the window. In the case of the source
window, all source files are searched.

<F4> <End>
Execute the target program to the end, without stopping at tracepoints. All tracepoints,
however, are logged into the history window.

Up <↑>

The <↑> key can be used by itself to move the cursor, or with another key to modify that key’s
action.

<↑> Move the cursor to the previous line in the source window, the evaluation window, or the
history window.

 <↑>
Erase the current line and move the cursor to the previous line. This works in the
evaluation and history windows only.

<F1> <↑>
In the source, evaluation, or history windows, search for a pattern from the current cursor
location through the beginning of the window. In the case of the source window, only the
current source file is searched, beginning at the current cursor position and moving toward
the first line of the current source module.

<F2> <↑>
In the source or evaluation window, increase the size of the evaluation window by one line
and decrease the size of the source window by one line.

Down <↓>

The <↓> key can be used either by itself to move the cursor, or with another key to modify that key’s
action.

<↓> Move to the next line in the source window, the evaluation window, or the history window.

<↓>
In the evaluation window or the history window, remove the current line and move the
cursor to the next line.

<F1> <↓>
In the source window, the evaluation window, or the history window, search for a pattern
from the current cursor location through the end of the window. In the source window,
search only the current source file.

<F2> <↓>
In the source or evaluation windows, decrease the size of the evaluation window by one line
and increase the size of the source window by one line.

<F4> <↓>
Execute one line of code. A function call is treated as one single line of code. This is in
contrast to the sequence <F4> <return>, which executes a single statement, even if the next

csd C source debugger

66 Commands reference

statement is within a called function.

Out <←>

The <←> key is used in the source window to change the current scope of a variable. When your
program stops at a tracepoint, the active scope is that of the function being executed. Using the
<←> key activates the scope of the function that called the current function. Then you can examine
or change variables defined in the scope of the calling routine as well. When the scope is changed,
the cursor is moved to the line of code that called the current function. Repeatedly pressing the
<←> key will bring you to the outermost stack frame.

In <→>

When used in the source window, the <→> key undoes the effect of the <←> key. If you have not
typed the <←> key since the last tracepoint, the <→> key has no effect.

Page Up <PgUp>

When used in the source window, the evaluation window, or the history window, the <PgUp> key
scrolls the current window one page (or screen full of text) toward the beginning. If the current page
of the source window is less than one page from the beginning of the file, the cursor will be moved to
the beginning of the file.

If the cursor is positioned in the source window near the beginning of a source file, the <PgUp> key
will move the cursor into the previous file, should there be one.

Page Down <PgDn>

In the source window, the evaluation window, or the history window, pressing the <PgDn> key
moves the cursor one page toward the end. If the cursor is less than one page from the end, it will
be moved to the end of the file.

If the cursor is in the source window and positioned near the end of a source file, the <PgDn> key
will move the cursor into the next file, if there is one.

Find <F1>

The <F1> key searches for a specific pattern. For this reason, it is also called the find key.

The action of the <F1> key can be modified by a number of different keys, as follows.

<F1> <F3>
In the source and evaluation windows, find the next statement that has a tracepoint set on
it.

<F1> <Home>
In the evaluation window and the history window, search toward the beginning. In the
source window, search toward the beginning of the window and examine all files.

<F1> <↑>
In the evaluation window and the history window, search toward the beginning. In the
source window, search toward the beginning but search only the current source file.

<F1> <End>
In the evaluation window and the history window, search toward the end. In the source
window, search toward the end and examine all files.

<F1> <↓>
In the evaluation window and the history window, search toward the end. In the source
window, search toward the end, but search only the current source file.

csd C source debugger

Commands reference 67

The string that <F1> seeks is a pattern of characters. These characters can be ordinary
alphanumeric characters, or a mixture of alphanumeric characters with wildcard characters that
modify how the search is conducted.

The simplest pattern is a set of non-special characters, which is matched literally.

The following special characters can be used to specify powerful patterns:

^ Match only the beginning of a line
$ Match only the end of a line
? Match any one character
* Match any number of characters
\ Escape character: use it to search

for a wildcard literally
[abc] Match any one of a, b or c
[a-m] Match any of the letters a through m

To match a line in the source, evaluation, or history windows that ends in a ‘;’, type the sequence

<F1>;$<return>

This says to find a pattern that has a semicolon followed by the end of a line.

Keep in mind that <F1> will search for the strings exactly as they appear on the screen. For
example, to find the line

a :: 11

where 11 is the value supplied by csd, type:

<F1>1$<return>

If you want to search for any of the special characters of the patterns, precede that character by a
backslash ‘\’. For example, to find the line

c = a*b;

type:

a*b

Note that if you do not type a pattern after the <F1> key, csd will search for the last pattern used, if
there is one.

If you start an <F1> command and wish to abandon it or restart it, press the <F5> key. Typing
<ctrl-U> restarts the find pattern.

Insert <Ins>

The <Ins> command is used only in the evaluation window. It opens a blank line so you can enter a
new expression above the one entered in the current line.

Delete

The key can be used in the evaluation window or the history window to remove or ‘‘kill’’ text.
Its action can be modified by other keys, as follows:

 <↑>
Kill the current line of text, and reposition the cursor on the previous line.

 <↓>
Kill the current line of text, and reposition the cursor on the following line.

csd C source debugger

68 Commands reference

 <Home>
Kill all text from the beginning of the file to the cursor.

 <End>
Kill all text from the cursor to the end of the file.

To cancel a kill command before it is executed, type <F5>.

You should periodically use to purge the history window of information you no longer need. If
you do not, it will take up space that could be used to hold source lines in memory, and slow down
csd.

Run <F4>

The <F4> key, which can be used in any window, tells csd to execute your program. Its operation is
modified by the following keys.

<F4> <F3>
Execute the program up to the next tracepoint. The tracepoint can be either in the source
window, in which case execution stops just before execution of the traced line, or in the
evaluation window, in which case csd stops if the value of the traced expression changes.
The cursor is moved to the statement or expression that bears the tracepoint, unless it is in
a different window.

<F4> <return>
Execute one line of code. If that line is a function call, execution stops on the first line of
that function.

<F4> <↓>
Execute one line of code, as with the <return> modifier discussed above, but treat function
calls as a single line of code.

<F4> <→>
Execute to the end of the current function.

<F4> <Home>
Reload and restart the program being debugged.

<F4> <End>
Execute the program to its end, without stopping at any traced statements or expressions.
Traced statements and expressions will be logged onto the history screen.

To cancel <F4>, press the <F5> key.

Trace <F3>

The <F3> sets a tracepoint on the line on which the cursor is currently positioned. Traced lines are
written in high-intensity characters. To turn a tracepoint off, simply move the cursor back to the
line being traced and press <F3> again. Tracepoints can be set either in the source window or in
the evaluation window.

When a tracepoint is set on a line of code in the source window, execution stops immediately before
that line of code. Only executable lines of code can be traced; statements such as comments and
declarations cannot be traced. Note, too, that because the compiler optimizes unused and some
common code out of existence, some things that appear to be executable actually cannot be
executed. If you try to set a tracepoint on a line that has no executable code, the debugger will give
you the error message:

not executable statement

csd C source debugger

Commands reference 69

When a tracepoint is set on an expression in the evaluation window, execution of the program stops
when the value of the traced expression changes.

Tracing an evaluated expression causes csd to single-step through the entire program. This is done
so csd can recognize the change in the variable as soon as possible. Thus, tracing an expression in
the evaluation window noticeably slows the execution of the program being debugged. The
execution will also be noticeably slower if a large number of statements are executed if you Run to
the next line, or Run to the end of the function.

Select <F2>

The <F2>, or ‘‘select’’, key controls the way csd presents its screens. How it functions is controlled
by a number of modifying keys, as follows.

<F2> <↑>
Move the boundary between the source and evaluation windows up by one line.

<F2> <↓>
Move the boundary between the source and evaluation windows down by one line.

<F2> <F7>
Display the program’s output on the program window. This is the default.

<F2> <F8>
Display the program’s output in the source window. The source window will shift to display
the code currently being executed. Note that if no tracepoints are set, execution may be too
fast to follow.

<F2> <F9>
Display the program’s output in the evaluation window. The variables in the evaluation
window will change as the program executes. Note that if no tracepoints are set, execution
may be too fast to follow.

<F2> <F10>
Display the program’s output on the history window.

<F2> L Redirect to the printer all material normally logged onto the history window. Pressing this
combination of keys again turns off this feature.

To cancel an <F2> command, press the <F5> key.

csd C source debugger

70 Commands reference

csd C source debugger

