
#%2=0 .nr#0

A sample debugging session

This section of the manual contains exercises that let you use csd on a program with bugs. An
error-filled version of the program infl named inflbug will be used to demonstrate some common C
language bugs and how to find them with csd. inflbug.c is included on your csd distribution disk.

To begin, compile inflbug.c using the following command line:

cc -f -A -VCSD inflbug.c

Note the -VCSD option, which tells the compiler to include the information needed to run your
program under csd. Note also the -A option. This option automatically calls the MicroEMACS
screen editor when the compiler encounters an error during compilation. The errors are displayed
in one window, and the source code file in the other, with the cursor set to the line number
indicated by the first error message. Typing <ctrl-X>> moves to the next error, and <ctrl-X><
moves to the previous error. To recompile, close the edited file with <ctrl-Z>. Compilation will
continue either until the program compiles without an error, or until you exit the editor by typing
<ctrl-U> followed by <ctrl-X><ctrl-C>.

inflbug.c will compile without an error message.

Where to start
As you know from section 2, the program infl computes three different rates of inflation over a span
of ten years. inflbug is supposed to do exactly that, but fails. To set up this example, the errors in
inflbug.c have been created so that the program will compile but not execute.

Type

inflbug

at the MS-DOS prompt. inflbug runs, but instead of producing a chart of inflated values as the
program infl did in section 2, it does nothing. If you had written this program, you would have
planned for the program to compute the inflated values ten times, and print the results in a chart to
your screen. Since the program compiled without an error message, you can now use csd on the
program to find just where the program fails.

Type

csd inflbug

The source window will appear, with the beginning of the program displayed in the source window.
Your screen will appear as follows:

43

44 A sample debugging session

[#include <stdio.h>
main ()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " ";

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++); { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

inflbug.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

To begin debugging, single-step through the program. Type <F4> followed by <return> to execute
one line of inflbug. The screen will look as follows:

csd C source debugger

A sample debugging session 45

#include <stdio.h>
main ()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " ";

[i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++); { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

inflbug.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Notice that the cursor is positioned at the first executable line of code. Continue single-stepping
through the program by typing <F4> followed by <return>. After each step, type <F7> to change
from the source window to the program window after executing each line to see what output, if any,
the program has produced. Return to the source window by typing <F8>. As the program executes
each line, the cursor will move to that line of code.

As you watch inflbug execute each line, you will notice that you must type <F4>, then return ten
times after you reach the ‘for’ loop before the cursor moves on to the statements following the for
statement. It then proceeds through the rest of the loop, stopping once before each statement.
Then the program exits, leaving the cursor positioned at the upper left corner of the source window.

Switch to the program window by typing <F7>. The program window looks like this:

csd C source debugger

46 A sample debugging session

C>inflbug

C> csd inflbug
C Source Language Debugger Version 1.1
Copyright (c) 1984-1988 by Mark Williams Co., Lake Bluff, IL
Reading source...
Loading...

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
HMM<

The program should execute the entire for loop; instead, it proceeds only with the for statement,
incrementing the variable i. It does not perform the operations in the rest of the loop until after it
has executed the for statement ten times. It seems as if the for statement is isolated from the rest
of the loop. Type <F8> to return to the source window.

To isolate the problem further, set a tracepoint on the printf statement. Use the <↓> key or <crtl-
N> to position the cursor at the printf statement, then type <F3>. The printf function is the last
executable statement of the for loop. By stopping program execution here, you can see the value of
the program’s variables after one pass through the loop. Now, run the program to the traced point
by typing <F4> then <F3>. This causes the debugger to execute the program for what should be one
pass through the for loop. Your screen looks like this:

csd C source debugger

A sample debugging session 47

#include <stdio.h>
main ()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " ";

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++); { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00[printf (msg, i, w1, w2, w3);

inflbug.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Check the value of i: move to the evaluation window by typing <F9>. Type i and <return>. The line
in the evaluation window shows

csd C source debugger

48 A sample debugging session

#include <stdio.h>
main ()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " ";

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++); { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00printf (msg, i, w1, w2, w3);

inflbug.c

i :: 11
[

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

i is a variable that is incremented to set a test-condition for execution of the for loop. Each time the
loop is executed, the value of i increases by one. Since the variable has a value of 11, you know that
the for statement has been executed ten times before it reached the traced printf at the end of the
loop. Now, check the value of w1 to see if it has been affected by the statement

w1*=1.07;

The operator ‘*=’ should multiply the variable w1 (which has a declared value of one), by 1.07, then
assign the product as the new value for w1. Type

w1

in the evaluation window, then <return>. The results will be:

csd C source debugger

A sample debugging session 49

#include <stdio.h>
main ()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " ";

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++); { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00[printf (msg, i, w1, w2, w3);

inflbug.c

i :: 11
w1 :: 1.07

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

This means that the variable w1 has been multiplied by the inflation rate once, even though the for
statement has made ten iterations. From this information, you can conclude that even though the
for loop has been incrementing, the steps within the loop have not been executed. Somehow the
test-condition statement is separated from the rest of the instructions in the loop.

Take a closer look at the for statement:

for (i = 1; i <=10; i++);

The loop test says that while i is less than or equal to 10, increment it by one; but it ends there, and
does not continue with the rest of the loop because of the semi-colon ‘;’ at the end of the line. So,
csd runs the for statement instructions the designated number of times and goes on to the
statements which apply the inflation rate. It proceeds to the printf statement, then exits.

Editing your program
Once you have tracked down the bug in this program, you need to edit out the extra semi-colon and
recompile the program. Exit from csd by typing <Shift-F1>. Use MicroEMACS to edit your
program. The source code for inflbug is in the file inflbug.c. To open the file, type

me inflbug.c

The screen clears, and in a moment the source code appears. Type <ctrl-N> to move the cursor to
the for statement, then type <ctrl-F> until the cursor is positioned just to the right of the extra
semi-colon at the end of the for statement. Type the delete key to remove the semi-colon.
Now save the text and exit MicroEMACS by typing <ctrl-Z>. For more information on how to use
the editor, see the MicroEMACS tutorial in the manual for Let’s C.

Recompiling your program
If you change your source file, as you have in this tutorial, you must recompile the program with the
-VCSD option on the compile command line. After you have returned to the prompt, type this
compile command line:

csd C source debugger

50 A sample debugging session

cc -f -A -VCSD inflbug.c

As discussed at the beginning of this section, the -A option on the command line tells the compiler
program to invoke MicroEMACS whenever it encounters an error message. If you have made any
errors while editing the source code text, you will be returned to MicroEMACS to correct the
program. Exiting from MicroEMACS automatically recompiles the program. This compile-edit-
compile cycle will continue until your program is error free, or until you exit by typing <ctrl-U>,
followed by <ctrl-X><ctrl-C>.

When you have finished compiling, try running your program again. At the system prompt, type

inflbug

Another bug
The program still produces no output. Invoke csd on the program again. Type

csd inflbug

and <return>.

Using the cursor movement keys, position the cursor at the printf call, and type <F3> to set a trace
point.

Press <F4> followed by <F3>, and the program will execute to the traced line. Now, enter the
evaluation window by typing <F9>. Type

i
w1

csd will return the following values in the evaluation window:

csd C source debugger

A sample debugging session 51

#include <stdio.h>
main ()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " ";

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00[printf (msg, i, w1, w2, w3);

inflbug.c

i :: 1
w1 :: 1.07

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Now run the program through again by typing <F4> followed by <F3>. The program will run once
through the loop. Type <F4> then <F3> repeatedly, and watch the value of the variables you typed
in the evaluation window change. When you have run inflbug to its end, your screen will appear as
follows:

csd C source debugger

52 A sample debugging session

[#include <stdio.h>
main ()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " ";

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00printf (msg, i, w1, w2, w3);

inflbug.c

i :: 10
w1 :: 1.967150

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

By checking the value of i and w1 with each iteration of the for loop, you can see that the program
is operating upon the variables and executing the loop properly. The variable i has been
incremented for the test-condition of the for loop, and the variable w1 has been operated on with
the appropriate results. However, none of the computed values are being printed to the program
window; therefore, the problem must be in the printf call.

Since printf is a format conversion function, it should contain instructions to format a line for
printing the variables. This format has conversion specifications which take the value of i as the
first number on the output line (the line number). The inflated variables are the rest of its
arguments. msg is the pointer to a string which should contain the conversion specifications.
Evaluate the string msg using the string cast (str). Move the cursor so that it is inside main.
Return to the evaluation window and type:

(str)msg

in the evaluation window. The result is:

(str)msg :: ""

The pointer has not been initialized to hold the printf conversion specifications, so it picks up a
random value in memory. The pointer is intended to contain the address of a string, but no address
has been assigned to it. The string therefore contains whatever was at that location on the stack
when the program was run. msg does not point to a valid format, and printf does nothing.

Calling functions in the evaluation window
Calling functions from the evaluation window is a powerful debugging tool. In this sample
debugging session, you can use this tool to test a modified printf call.

Type the following line in the evaluation window:

printf(" %2d %f %f %f\n", i, w1, w2, w3)

Now, restart the program by typing <F4> followed by <Home> . Run the program to its end: type
<F4> then <End> . Check the program window; you will see the effect of calling this routine in the

csd C source debugger

A sample debugging session 53

evaluation window. All of the for loop operations have been displayed in the format called for in the
new printf statement; in addition, the printf statement already in the program prints its output
with each iteration of the loop.

By calling a new printf routine, you can see that while your variables are being incremented as you
planned, there is something wrong with the printf statement: it does not have a format string.

Exit, edit, and recompile
Exit csd by typing <Shift-F1>. Then invoke MicroEMACS on the file inflbug.c. Type

me inflbug.c

With <ctrl-N>, move the cursor to the line

char *msg = " ";

Type <ctrl-K> to remove that line. The cursor will be positioned at the beginning of the line. Type a
<Tab>, then:

char *msg = " %2d %f %f %f\n";

Now save your changes and exit MicroEMACS by typing <ctrl-Z>. Recompile as before, using the
following command line:

cc -f -A -VCSD inflbug.c

If you run the program inflbug by typing

inflbug

you should get the results you expected, as follows:

csd C source debugger

54 A sample debugging session

C>inflbug
1 1.070000 1.080000 1.100000
2 1.144900 1.166400 1.210000
3 1.225043 1.259712 1.331000
4 1.310796 1.360489 1.464100
5 1.402551 1.469328 1.610510
6 1.500730 1.586874 1.771560
7 1.605781 1.713824 1.948716
8 1.718186 1.850930 2.143588
9 1.838458 1.999004 2.357946
10 1.967150 2.158924 2.593741
C>

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
HMM<

Where to go from here
This section used the program inflbug to demonstrate the use of csd on a program with bugs.
Special attention was paid to the use of the -VCSD option in the command line, as well as the -A
option to call MicroEMACS from the compile command line. Practical examples of single-stepping,
setting tracepoints, and calling functions in the evaluation window were shown.

Sections 6 through 9 will give detailed references for csd commands, as well as copies of the csd
help screens, an explanation of error messages, and some commonly asked questions. You have
seen the use of csd on some programs; with the Commands reference section and the csd on-line
help screens as guides, you will be able to use csd to debug your own C programs.

csd C source debugger

