
#%2=0 .nr#0

Advanced features

The previous section of this manual demonstrated the basics of csd, including how to set
tracepoints and evaluate variables. This section describes the advanced uses of the same features,
plus more powerful capabilities, such as tracing expressions and function calls from within the
evaluation window.

Compiling for debugging
The examples in this section use a program called factor. This program, which is included on your
csd distribution disk, calculates the prime factors of an integer. factor consists of two source
modules, factor.c and atod.c, and was compiled for use with csd by using the command:

cc -f -VCSD factor.c atod.c -lm

When csd displays source code built from more than one source module, it displays the modules in
the order in which they were entered with the compile command. Every source module that you
wish to debug must be compiled with the Let’s C compiler, using the -VCSD option to the cc
command. If you are linking existing object modules into a .exe file, you must also use the -VCSD
option: this tells the linker to include special object files from libc that are necessary for csd.

You may link in objects that are not compiled with -VCSD. In the evaluation window, the global
variables of these objects may be used just as the variables of your source, but csd will have no
knowledge of the internal variables of objects not compiled with -VCSD.

The -lm at the end of the command line tells cc to link the mathematics library into this program.

You can also use csd to debug large model programs. To invoke the large model debugger, type

lcsd <filename>

You can find more information on compiling for debugging and large and small model csd in section
6, Commands reference.

The source code for the sample program, factor, is included on your csd distribution disk.

The source code for the module factor.c is as follows:

/*
* Factor prints out the prime factorization of numbers.
* If there are arguments, it factors them.
* If there are no arguments, it reads stdin until
* either EOF or the number zero or a non-numeric
* non-white-space character. Since factor does all of
* its calculations in double format, the largest number
* which can be handled is quite large.
*/

#include <stdio.h>
#include <math.h>
#include <ctype.h>

#define NUL ’\0’
#define ERROR 0x10 /* largest input base */
#define MAXNUM 200 /*max number of chars in number */

27

28 Advanced features

main(argc, argv)
int argc;
register char *argv[];
{

register char *chp;
double n;
double atod();
char *getnum();

if (argc != 1)
while ((chp=*++argv) != NULL &&

(n=atod(chp)) != 0)
factor(n);

else
while ((chp=getnum()) != NULL &&

(n=atod(chp)) != 0)
factor(n);

return (0);
}

/*
* Print a fatal error message.
*/

die(str)
char *str;
{

fprintf(stderr, "%r\n", &str);
exit(1);

}
usage()
{

die("Usage: factor [number number ...]");
}

/*
* Input a number from the keyboard.
*/

char *
getnum()
{

register char *chp,
ch;

static char res[MAXNUM+1];

csd C source debugger

Advanced features 29

do {
ch = getchar();

} while (isascii(ch) && isspace(ch));
if (!isascii(ch) || todigit(ch) == ERROR)

return (NULL);
for (chp=res; isascii(ch) && !isspace(ch);

ch=getchar())
if (chp < &res[MAXNUM])

*chp++ = ch;
if (chp >= &res[MAXNUM])

die("number too big");
*chp++ = NUL;
return (res);

}

/*
* Factor is the routine that actually
* factors the double ’n’.
* It writes the prime factors to standard output.
*/

factor(n)
double n;
{

double temp,
limit,
try;

while (n > 1 && modf(n/2, &temp) == 0) {
printf("2 ");
n = temp;

}
limit = sqrt(n);
for (try=3; try <= limit; try += 2) {

if (modf(n/try, &temp) != 0)
continue;

do {
printf("%.0f ", try);
n = temp;

} while (modf(n/try, &temp) == 0);
limit = sqrt(n);

}
if (n > 1)

printf("%.0f", n);
putchar(’\n’);

}

The source code of atod.c is as follows:

#include <ctype.h>
#define ERROR 0x10 /* largest input base */

csd C source debugger

30 Advanced features

/*
* atod() converts the string ’num’ to a double and returns
* its value. If there is a non-digit in the string,
* or if there is an overflow, then atod() exits with an
* appropriate error message. atod() accepts leading zero
* for octal and leading 0x for hexidecimal; in the latter
* case, ’a’-’f’ and ’A’-’F’ are accepted as digits.
*/

double
atod(num)
char *num;
{

register char *str;
register int i;
double res = 0,

base = 10;

str = num;
i = *str++;
if (i == ’0’)

if ((i = *str++) == ’x’) {
i = *str++;
base = 0x10;

} else
base = 010;

for (; i != ’ ’; i = *str++) {
i = todigit(i);
if (i >= base)

die("bad number ’%s’", num);
res = res * base + i;
if (res+1 == res)

die("number too big ’%s’", num);
}
return (res);

}

/*
* todigit() converts character ’ch’ to an integer equivalent,
* assuming that ’ch’ is a digit or ’a’-’f’ or ’A’-’F’.
* If this is not true, then it returns ERROR.
*/

todigit(ch)
register int ch;
{

if (!isascii(ch))
return (ERROR);

if (isdigit(ch))
return (ch - ’0’ + 0);

if (isupper(ch))
ch = tolower(ch);

if (’a’ <= ch && ch <= ’f’)
return (ch - ’a’ + 0xA);

return (ERROR);
}

Running without csd

csd C source debugger

Advanced features 31

When you compile a program with the -VCSD option, you can run it just like any other program. To
illustrate how factor works, type the following line:

factor 12

After a moment, it prints the result:

2 2 3

This result means that the number 12 is produced by multiplying the prime numbers two, two, and
three.

Evaluation window
As described in the previous section, you can ask csd to print the values of variables or expressions
by typing them into the evaluation window. An evaluated expression may not use keywords (such
as if or for), labels, braces ‘{’ ‘}’, or semi-colons ‘;’. Additionally, csd reserves the types (oct), (hex),
and (str) for use as casts to display values in base 8, base 16, and as character strings, respectively.
You may redeclare these identifiers locally or globally, but you will lose the ability to cast
expressions to hexadecimal, octal, or character array display.

csd evaluates the expressions you enter in the evaluation window when you first type them in and
press <return>. It also evaluates the expressions you have typed in the window whenever the
program stops executing--that is, when it reaches the end of the program, reaches a tracepoint, or
when you single-step through the program.

To illustrate the use of the evaluation window in detail, invoke csd with the sample program factor
by typing:

csd factor 234

or by using the Mark Williams shell, MWS, as described above. In a moment, csd will draw the
source window on the screen, where you work interactively with csd.

Now press the find key, <F1>, to invoke csd’s find command. When the prompt appears, type main.
csd will find the beginning of the main function and move the cursor there. The screen will appear
as follows:

csd C source debugger

32 Advanced features

[main(argc, argv)
int argc;
register char *argv[];
{

register char *chp;
double n;
double atod();
char *getnum();

if (argc != 1)
while ((chp=*++argv) != NULL &&

(n=atod(chp)) != 0)
factor(n);

else
while ((chp=getnum()) != NULL &&

(n=atod(chp)) != 0)

factor.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Press the cursor-movement key <↓> or <ctrl-N>, until the cursor is at the line

if (argc != 1)

Now, set a tracepoint on that line by typing <F3>. Remember that tracepoints can be set only on
executable statements. If you try to set a tracepoint on a non-executable statement, csd gives you
the error message:

not executable statement

The screen now appears as follows:

csd C source debugger

Advanced features 33

main(argc, argv)
int argc;
register char *argv[];
{

register char *chp;
double n;
double atod();
char *getnum();

00[if (argc != 1)
while ((chp=*++argv) != NULL &&

(n=atod(chp)) != 0)
factor(n);

else
while ((chp=getnum()) != NULL &&

(n=atod(chp)) != 0)
factor(n);

factor.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

To run the program to this tracepoint, type <F4>. The following prompt will appear at the bottom of
the screen:

Run: Trace F3 Return D <Home> <End> <F5> <F6>

This tells you that you can run a program to a number of different points within the program. For
example, Run followed by Trace tells csd to run to the next tracepoint. Run followed by return is
the command to step through the program a line at a time. A complete description of each of these
keys can be found in section 6, Commands reference. You can find the keys for each of these points
on the bank of function keys or on the numeric keypad.

For the current example, type <F3>. csd will now execute your program from its beginning until it
reaches the tracepoint you set a moment ago. csd briefly displays the program window (which is
where your program prints its normal output); then it restores the source window with the cursor
positioned at the line causing the trace stop.

Now, press <F9>. This moves the cursor into the evaluation window, which is where you can type
an expression for csd to evaluate. csd lets you evaluate any variable that is either global or local to
the function within which the cursor was positioned in the source window. In this instance, you
can now examine any variable that is global or local to main. Remember that if you enter an invalid
variable name or an incorrect expression into the evaluation window, you must erase the characters
using the backspace key, or <ctrl-U> to erase the entire line.

To see how you can evaluate a variable in the evaluation window, type:

argc

csd will respond by printing the value of argc in the evaluation window. The screen now appears as
follows:

csd C source debugger

34 Advanced features

main(argc, argv)
int argc;
register char *argv[];
{

register char *chp;
double n;
double atod();
char *getnum();

00if (argc != 1)
while ((chp=*++argv) != NULL &&

(n=atod(chp)) != 0)
factor(n);

else
while ((chp=getnum()) != NULL &&

(n=atod(chp)) != 0)
factor(n);

factor.c
argc :: 2

[

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

argc is the number of arguments passed to a program. In this instance, the program factor has two
arguments: the name factor itself and the number to be factored, 234.

While you are still in the evaluation window, type:

argv[1]

csd will evaluate this variable, and the screen will show:

csd C source debugger

Advanced features 35

main(argc, argv)
int argc;
register char *argv[];
{

register char *chp;
double n;
double atod();
char *getnum();

00if (argc != 1)
while ((chp=*++argv) != NULL &&

(n=atod(chp)) != 0)
factor(n);

else
while ((chp=getnum()) != NULL &&

(n=atod(chp)) != 0)
factor(n);

factor.c

argc :: 2
argv[1] :: 0x5333

[

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Note that pointers are automatically displayed in hexadecimal. The number that appears in the
evaluation window after argv[1] may be different on your system, depending on how memory is
allocated. argv points to the array of arguments passed to factor. These arguments are usually
pointers to character strings.

To see the string that the pointer points to, use the csd cast (str). Type:

(str)argv[1]

The screen now shows the following:

csd C source debugger

36 Advanced features

main(argc, argv)
int argc;
register char *argv[];
{

register char *chp;
double n;
double atod();
char *getnum();

00if (argc != 1)
while ((chp=*++argv) != NULL &&

(n=atod(chp)) != 0)
factor(n);

else
while ((chp=getnum()) != NULL &&

(n=atod(chp)) != 0)
factor(n);

factor.c

argc :: 2
argv[1] :: 0x5333
(str)argv[1] :: "234"

[

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

The string ‘‘234’’ is from the command line

csd factor 234

You can enter any valid C expression into the evaluation window as long as the names in the
expression are either global or local to the current function. This includes the ability to call
functions. Type

printf("Here’s a csd string.\n")

csd’s evaluation window now appears as follows:

argv[1] :: 0x5333
(str)argv[1] :: "234"
printf("Here’s a csd string.\n") :: 0

csd shows its value as ‘0’. To see the result of the printf command that you entered in the
evaluation window, press the <F7> key. csd will jump back to the program window, where your
program prints its normal output. The program window appears as follows:

csd C source debugger

Advanced features 37

C>factor 12
2 2 3

C>csd factor 234
C Source Language Debugger Version 1.1
Copyright (c) 1984-1988 by Mark Williams Co., Lake Bluff, IL
Reading source...
Loading...
Here’s a csd string.

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
HMM<

csd executed the printf function as if it were part of the program factor, and wrote the string Here’s
a csd string onto the program window.

Using the select key
Now, return to csd’s source window by typing <F8>.

Note that the first expression you had typed into the evaluation window is no longer visible. This is
because the evaluation window can display only a fixed number of expressions at once. To display
more expressions in the evaluation window, you can increase the size of the evaluation window with
the select key. Typing <F2> followed by the <↑> or <↓> key raises or lowers the boundary between
the evaluation and source windows, respectively. You can also use the select key to choose which
screen is displayed while your program is executing. For example, if you want to watch traced
statements displayed on the history window, type <F2> followed by <F10>. You can also choose to
display the source window during the execution of your program. Type: <F2> followed by <F8>.

The following exercise demonstrates this feature. First, exit from csd by typing <Shift-F1>. This
returns you to MS-DOS. Now, invoke csd again by typing:

csd factor 234

When the source window appears, move the cursor to the open brace ‘{’ that follows main; then
jump into the evaluation window by typing <F9>. Type the expression

argc

but follow it with <F3> rather than <return>. argc will be highlighted in the evaluation window to
show that csd will trace the variable argc. When you trace an expression in the evaluation window,
csd evaluates the expression before a line of code is executed. As it traces argc, csd will run slowly
and you can view the program’s execution.

csd C source debugger

38 Advanced features

Now, return to the source window by typing <F8>. To see the execution proceed, type <F2> followed
by <F8>. With these keys, you tell csd to display the source window while the program is executing.
Start execution by typing <F4> then <End> . As you can see, the source window scrolls through the
program as it executes. The bottom line of the evaluation window displays the message

program running

The value of argc is displayed in the top line of the evaluation window. Because you used the <F2>
key to display the source window during the execution of the program, no output is written onto the
program window. Instead, any output appears in the selected window. It can be removed by
switching screens. This output, unlike that in the program window, is lost once you switch
windows.

Displaying the source window during program execution allows you to see both the program window
and the evaluation window at the same time. Using this technique lets you watch the values of
variables and expressions change in the evaluation window while your program executes.

Exploring the stack
When you evaluate variables and expressions within the evaluation window, you can examine only
global variables or variables that are local to the current function (that is, the function within which
the cursor is positioned in the source window). However, csd also lets you examine and modify
variables that are local to the function that called the current function.

When one C function calls another function, the variables local to the calling function are stored in a
special area of memory called the stack. By examining the stack, you can read the values of the
calling function’s variables; by editing the stack, you can change the values of these variables. The
In key, <→> and the Out key, <←> let you work with the stack.

The following exercise demonstrates the <→> and <←> keys. First, exit from csd by typing <Shift-
F1>. Then, restart csd with the program factor by typing:

csd factor 234

You can easily find the function factor within the program. Type <F1> followed by

^factor

That is, type a caret ‘^’ plus the string factor; then type <return> or <↓>.

The string ^factor is a pattern, or regular expression, that csd seeks. The caret ‘^’ tells csd to look
for factor only at the beginning of a line. The caret is one of the special characters that you can use
with <F1> to search for specific patterns. A list of these characters and their uses can be found in
the Commands reference, later in this manual.

The cursor is now positioned within the function factor. Press <End> to move the cursor to the line
that begins with while. Type <F3> to set a tracepoint on this line. Your screen now appears as
follows:

csd C source debugger

Advanced features 39

factor(n)
double n;
{

double temp,
limit,
try;

00[while (n > 1 && modf(n/2, &temp) == 0) {
printf("2 ");
n = temp;

}
limit = sqrt(n);
for (try=3; try <= limit; try += 2) {

if (modf(n/try, &temp) != 0)
continue;

do {
printf("%.0f ", try);

factor.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Now, type <F4> followed by <F3> to run the program up to the tracepoint.

Once this is done, the program is poised to execute the while statement within the function factor.
The scope, or stack frame, that is currently active is that of the function factor, and you can now
evaluate variables which are local to it.

You can determine what function called factor and activate the stack frame of the calling function
by typing <←> . Try it. The screen now shows:

csd C source debugger

40 Advanced features

double n;
double atod();
char *getnum();

if (argc != 1)
while ((chp=*++argv) != NULL &&

(n=atod(chp)) != 0)
[factor(n);
else

while ((chp=getnum()) != NULL &&
(n=atod(chp)) != 0)
factor(n);

return (0);
}
die(str)
char *str;

factor.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

The cursor has jumped to the line within main that called factor. The parameters of main are now
accessible.

Pressing the <→> key will return you to the while statement in factor.

With the <←> key you can explore all enclosing stack frames. For example, if a program had a
function that called another function that called yet a third function, you could position the csd
cursor within the last-called function and then use the <←> key to check the values of its two
‘‘ancestors’’. The present example, however, has only two such frames: main and the local level.

Changing variables
Comma expressions (expressions in which the comma is used as an operator) and assignment
statements are among the legal C expressions that you can enter into the evaluation window.
Expressions with side effects (for example, expressions involving operators) will propagate these
effects whenever they are evaluated. Before you proceed, please note that you should not change the
variable in the following example: doing so causes the program to run indefinitely. For example, if you
were to type

n=12

you would change the value of n. If you then tried to execute this program to the end, it would
never terminate because the assignment statement n=12 would be executed each time a tracepoint
was encountered.

You should remove assignment statements and other statements with side effects from the
evaluation window as soon as you are finished with them.

Now press <Shift-F1> to exit from csd.

Where to go from here
This section described advanced csd techniques. You can now explore your source with the Find
key, <F1>, and search for lines that contain specific character patterns. Advanced evaluation
window techniques were shown, and a method of viewing the execution of your program in real time

csd C source debugger

Advanced features 41

was demonstrated. With the <→> and <←> keys, you can explore the stack. You can also change
the value of variables by placing assignment statements in the evaluation window, although this
must be done with care.

The following section, which concludes this manual’s tutorial, presents a sample debugging session.
Section 5, Questions and Answers, presents commonly asked questions about csd, and their
answers. If you are having any difficulty with csd, check here first.

Section 6, Commands reference, summarizes csd commands. It describes the meaning of each
command key and all combinations of command keys. It also suggests some uses for csd
commands that are beyond the scope of a tutorial.

csd C source debugger

42 Advanced features

csd C source debugger

