
Introduction

Congratulations on choosing csd, the Mark Williams C source debugger. csd can speed the
development of any C program and make the C language more accessible to the novice programmer
and expert alike.

C is a powerful language that combines the flexibility, speed, and compactness of assembly
language with higher level language features such as data structures, control structures, and
functions. C programs are highly portable and are not tied to a specific machine architecture.
Compilers like Let’s C brought C programming to i8086-based microprocessor systems. Programs
that once required assembly language could now be written in C. However, the lack of a true
source-level debugger meant that C programs still had to be debugged at machine level.

Now, with csd, you can debug your C programs in the same language in which you wrote them. csd
displays your source code, evaluated expressions, all traced expressions, and program output, each
in its own window. Program locations are referenced by their positions in your source file and
variables are referenced by name, relieving you of the chore of looking up and calculating numeric
machine addresses. If you are a new programmer, csd can shorten the time you need to become
productive because you no longer need to learn assembly language to debug your programs.

Debugging is the most time-consuming part of program development. csd helps make this chore
manageable. It is indispensable as a learning tool for newcomers to C, and a time saver for
experienced programmers.

Features
csd includes the following features:

• Four different windows let you examine your source code in detail, see your actual program
output displayed, evaluate C expressions, and keep a log of traced statements and
expressions.

• csd lets you enter and evaluate new C expressions, without having to recompile your
program.

• With csd you can trace any executable C statement, stopping execution immediately before
the marked line of source.

• You can also trace expressions in the evaluation window. Execution will stop each time an
expression marked as traced changes value.

• csd gives you a complete list of traced statements and expressions. Each time a program
stops at a traced expression, a copy of that line is written to the history window,
maintaining a complete list of traced statements and expressions.

• On-line help screens make csd easy to use, even without a manual.

• You can debug both large and small model C programs with csd.

csd does for debugging what high-level languages do for programming: it makes your work easier,
saves time, and increases your productivity.

What is csd?

1

2 Introduction

The task of developing a program can be broken down into several stages, each of which has its own
problems.

The first stage is planning. At this stage you identify a problem that needs solving, and determine
how it can be solved on a computer.

The second stage is design. Here, you break the problem into discrete tasks, or functions, and
sketch out how a program will link the tasks into a whole.

The third stage is coding. You translate each function into C code, then compile and link it into an
executable program.

The fourth stage is debugging. This is the most tedious part of programming. At this stage you
methodically test the program, find out where it does not work properly, and fix it. Bugs can result
from mistakes at any stage of writing a program: the planning may be faulty, the design may
incorrectly interpret the plan, and the coding may have mistakes in it.

Debugging code is often the most difficult and time-consuming part of programming. It is easy to fix
a program; the hard part is finding just what is wrong. All experienced programmers can tell
‘‘horror stories’’ about debugging programs that simply do not work. You can study the output to
find where the problem might lie. Then you embed printf statements within the code to print out
the values of certain variables, then recompile and rerun the program; if this does not help, then
you embed more printf statements elsewhere, recompile, and try again. This continues through
perhaps dozens of recompilations until you stumble across the problem. Throughout this process,
you find yourself wishing you had a tool that would let you watch the program run so you could
stop execution at selected points in the program and examine the values of variables to discover just
where the program is going wrong.

csd is such a tool. It lets you peer into your program while it is running. You can run your
program from beginning to end, from beginning to any point in the code, or from any point in the
code to any other, either all at once or one step at a time. At any point in execution, you can see
what the program has output; you can look into memory and see the value of any variable; you can
explore the stack and see what functions are calling other functions; and you can enter new C
expressions and evaluate them immediately. csd does all of this interactively, using windows and
keystrokes. You no longer need to alter your program and recompile in order to see how your
program is working.

How does csd work?

In essence, csd performs two tasks: (1) it starts and stops the execution of a program, and (2) it lets
you examine and alter the contents of memory.

Controlling execution

When you invoke csd, it loads your program and runs a portion of it. It then saves your program
window (that is, the screen on which the program writes its output), and displays your source code
in the source window, with a cursor positioned at the top of the first source file.

You can set a breakpoint on any line of source simply by moving the cursor to that line and pressing
a key; a breakpoint is a point at which csd automatically stops executing the program. A line that
bears a breakpoint is said to be traced. When you run the program, csd starts executing the
program from where it last stopped (or from the beginning of the program) to immediately before
execution of the next traced line it encounters.

When csd stops execution, it saves the program window, retaining what your program has output
up to this point. It then redraws the source window, with the cursor positioned at the line of source
code at which execution stopped.

csd C source debugger

Introduction 3

You can run your program any number of times while using csd.

Referencing data

csd also has an evaluation window. There, you may type any C expression that would be valid at
your current location in the source window. If the expression is also valid at your current execution
position (which may or may not be the same as your current source window position), it is evaluated
immediately and its value is displayed. The expression stays in the evaluation window until you
delete it.

Since expressions may involve assignment operators (++, --, =, +=, etc.) you can alter your data. The
program itself is never altered. Because data alteration may affect the future operation of your
program while debugging, this is one way to influence execution. Whenever your program is
stopped, every expression in the evaluation window that is valid at the current stopping position is
evaluated and its value is displayed.

You can also trace any expression in the evaluation window. csd can be instructed to run your
program until the value of one of the traced expressions changes.

How to use this manual
This manual introduces you to csd. It assumes that you are familiar with the C programming
language. ", as well as with DOS and its commands."

This manual also contains everything you need to use csd to its fullest advantage. It is organized
into the following sections:

1. Introduction.

2. Becoming familiar with csd. This tutorial walks you through the sample C program,infl, to
demonstrate csd’s basic functions.

3. Advanced features. Here, the tutorial walks through a more complex program, factor, to
demonstrate advanced csd features. The use of both tracepoints and the evaluation window
are two of the features described in greater detail.

4. A sample debugging session. This section uses the program inflbug to demonstrate how
you can use csd to track down some of the more common C programming bugs.

5. Questions and answers. This section presents a number of questions that new users
commonly ask about csd. If you have a question about csd or its use, look here first.

6. Commands reference. This section summarizes all of csd’s commands.

7. Help screens. This section reproduces all of csd’s help screens. It can also be used as a
quick reference.

8. Error messages. This last section presents all of csd’s error messages, discusses what each
one means, and gives hints on how to address the problem.

Conventions used in this manual
This manual represents the cursor by a block character ‘[’. On your screen, of course, it will be a
flashing underscore or block.

Text that is highlighted on your screen is represented in this manual by
00shaded print.

Sections 2 through 4 of this manual are tutorials on using csd. They also reproduce a number of
sample screens. As you work through the tutorial, the displays on your computer may differ slightly
in other ways from those shown in this manual. For example, you may be logged into a different
drive, so it may say A> rather than C>. These differences should be minor, and will not affect how

csd C source debugger

4 Introduction

csd operates on your computer.

User registration and reaction report
Before you go any further, please fill out the User Registration Card that came with your copy of
csd. Returning this card will make you eligible for direct telephone support from the Mark Williams
technical staff. Also, if you have comments or reactions to the csd software or documentation,
please fill out and mail the User Reaction Report included at the end of the manual. We especially
wish to know if you found errors in this manual. Mark Williams Company needs your comments to
continue to improve csd.

Installing csd
The following files are on the csd distribution disk:

CSDXL.OBJ CSDSELEC.HLP
CSDXS.OBJ CSDTRACE.HLP
CSD.EXE ATOD.C
LCSD.EXE FACTOR.C
CSDEVAL.HLP FACTOR.EXE
CSDEDIT.HLP INFL.C
CSDFIND.HLP INFL.EXE
CSDHELP.HLP CC4.EXE
CSDRUN.HLP INSTALL.DAT
INSTALL.EXE INFLBUG.C

Before you begin to use csd, be sure to make a backup copy of the distribution disk. Never work
with the distribution disk: always work with a copy. When you have made your backup copy, put
the distribution disk away in a safe place.

Installing csd involves copying files from the distribution disk onto either a hard disk or a floppy
disk. To use csd with a two-floppy system, simply copy the distribution disk to a formatted disk.

To copy csd to a hard disk, use csd’s install utility, which does the copying for you. By running
install and answering a few simple questions, you can build a working copy of csd on your hard-
disk system in a few minutes.

Installing csd onto a hard disk

To begin, log onto drive C on your system. On nearly all computers, this is the hard disk. Then
insert the csd distribution disk into floppy drive A and type the following command:

a:install

In a moment, install will begin to work. It will print some information on your screen, and then ask
you the following question:

Do you wish to install all the files?

Type ‘y’ for yes. install will now ask you in which directories you wish to install the files, as follows:

Where do you want executable programs(default: "\bin")?
Where do you want libraries (default: "\lib")?
Where do you want sample programs (default: "\sample")?

After each question, type <return>, which accepts the default setting. Later you may wish to re-
install csd into other directories of your own choice, but at present it is best to use the default
settings.

install will now begin to copy the files from the distribution disk onto your hard disk.

csd C source debugger

Introduction 5

That’s all there is to it. csd is now installed on your hard disk.

How to run csd
To debug a program with csd, you must first compile it with the Let’s C compiler using the -VCSD
option to the cc command line. For example, the sample program infl, which is included on your
csd distribution disk, was compiled using the command line:

cc -f -VCSD infl.c

If you are using the Mark Williams Shell, MWS, be sure to select the CSD variant option when you
compile. For complete information on compile command line options and MWS, see the Let’s C
manual.

Invoking csd through the Mark Williams Shell

It is recommended that you use csd through MWS, the Mark Williams Shell. The shell contains a
disk accelerator that will speed up csd noticeably. In addition, MWS gives you two ways to enter
csd commands: either through its graphics interface, which helps you build command lines, or
directly through command.com.

To use csd through the MWS graphics interface, do the following: First, invoke MWS by inserting
the shell disk from Let’s C into drive A (if you have a two-floppy disk system) and typing MWS.
Remove the shell disk from drive A and insert your backup copy of the csd disk.

Now, press the down-arrow key <↓> until the reverse-video band, called the cursor bar, covers the
Debug on the main menu. Press <return>. MWS will draw a new screen for you; this screen gives
you access to all of csd’s options and features.

Press the <↓> key until the cursor bar is at Files; press <return>. A new box will open on the
screen; this box displays all of the executable files that are available in the current directory. Press
the <↓> key again until the cursor bar covers the entry infl.exe; press <return>. As you can see,
the name infl.exe has been written into the command box at the top of the screen and the cursor
bar has returned to the entry Execute on the main Debug menu. Now, press <return> again. This
executes csd with the program infl.exe

If you prefer not to use the graphics interface, do the following. First, invoke MWS as described
above. Then remove the shell disk and insert the csd disk into drive A. When MWS’s main menu
appears, press the <↓> key until the cursor bar covers the entry !DOS Escape. Press <return>.
The screen will clear, and your normal DOS prompt will appear. Now you can type commands
directly into DOS; however, MWS will still be working in the background to accelerate your
programs. To return to MWS, simply type exit, and the MWS main menu will reappear.

To invoke csd now, simply type

csd infl

at the DOS prompt.

Using csd

Once you have installed csd, try running the program on the sample program infl. infl is already
compiled with the appropriate command line options, and is ready to debug.

To invoke csd, type the following command from the MS-DOS prompt:

csd infl

csd will load your program and display the beginning of the source code on your screen. Your
screen should appear as follows:

csd C source debugger

6 Introduction

[#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t%f %f %f\n"; /* printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;
printf (msg, i, w1, w2, w3);

infl.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

To make csd run the program, type the run key, <F4>, followed by the end key, <End> . The
program window, where your program writes its output, will appear briefly as infl.exe executes;
then csd displays the source window with your program’s source code.

Now, press the program key, <F7>. csd redisplays the program window so you can study the output
of your program. You will see the following screen:

csd C source debugger

Introduction 7

C>csd infl
C Source Language Debugger Version 1.1
Copyright (c) 1984-1988 by Mark Williams Company, Lake Bluff, IL
Reading source...
Loading...
1 1.070000 1.080000 1.100000
2 1.144900 1.166400 1.210000
3 1.225043 1.259712 1.331000
4 1.310796 1.360489 1.464100
5 1.402551 1.469328 1.610510
6 1.500730 1.586874 1.771560
7 1.605781 1.713824 1.948716
8 1.718186 1.850930 2.143588
9 1.838458 1.999004 2.357946
10 1.967150 2.158924 2.593741

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
HMM<

Now, type the source key, <F8>. The screen will again display the source code.

It is this easy to use csd: one command invokes the debugger and displays your source code, two
keystrokes execute your program, one keystroke displays the results for you and another returns
you to the source code to continue debugging.

Now, type <Shift-F1>, the exit key, to exit csd.

Where to go from here
If you are a newcomer to C programming, or have never used a source level debugger, you should
work through sections 2 through 4 to learn how to use csd. Experienced programmers will want to
go directly to sections 6 through 8. The Commands reference section, along with csd’s on-line help
screens, should be all you need to get started with csd.

csd C source debugger

8 Introduction

csd C source debugger

