

I created this PDF version of the csd C Source Debugger manual in October 2020 using my
1987 hard copy and archived Mark Williams Company documentation sources. The pages at
the beginning and end (cover, Registration Form, title page, User Reaction Report, Other
Products, Order Form, Software License Agreement, back cover) are scans of my hard copy. The
remaining sections were regenerated from the archived sources using the COHERENT version of
troff. The reconstructed manual has not been carefully proofread.

This material was originally 1987 by Mark Williams Company. This PDF is posted with the
kind permission of Robert Swartz (founder and president of MWC), the current copyright holder.

Stephen Ness
10/19/2020

Table of Contents

Introduction . 1
Features . 1
What is csd? . 1

How does csd work? . 2
Controlling execution. 2
Referencing data . 3

How to use this manual . 3
Conventions used in this manual . 3
User registration and reaction report . 4
Installing csd . 4

Installing csd onto a hard disk . 4
How to run csd . 5

Invoking csd through the Mark Williams Shell . 5
Using csd. 5

Where to go from here . 7
Becoming familiar with csd . 9

Function keys and what they do . 10
Running csd . 11
Moving through the source code . 13
Finding text . 14
Exiting from csd. 14
Setting tracepoints . 15
Executing to the tracepoint . 15
History window . 16
Single-stepping through a program . 17
Displaying variables . 19
Getting help . 24
Where to go from here . 24

Advanced features . 27
Compiling for debugging. 27
Running without csd . 30
Evaluation window . 31
Using the select key . 37
Exploring the stack . 38
Changing variables . 40
Where to go from here . 40

A sample debugging session . 43
Where to start . 43
Editing your program. 49
Recompiling your program . 49
Another bug . 50
Calling functions in the evaluation window. 52
Exit, edit, and recompile. 53
Where to go from here . 54

Questions and answers . 55
Commands reference . 57

Invoking csd . 57
Options . 58
Exiting csd . 59

i

ii The COHERENT System

Getting help . 59
Windows . 60

Program window . 60
Source window . 60
Evaluation window . 61
History screen . 63

Command keys . 63
Begin <Home>. 64
End <End>. 64
Up <↑> . 65
Down <↓> . 65
Out <←> . 66
In <→> . 66
Page Up <PgUp>. 66
Page Down <PgDn>. 66
Find <F1> . 66
Insert <Ins> . 67
Delete . 67
Run <F4> . 68
Trace <F3> . 68
Select <F2> . 69

Help screens . 71
General help . 72
Trace . 73
Execution . 74
Evaluation window . 75
Find . 76
Insert/Delete . 77
Select . 78
History . 79
Cursor movement. 80

Error messages . 81

CONTENTS

Introduction

Congratulations on choosing csd, the Mark Williams C source debugger. csd can speed the
development of any C program and make the C language more accessible to the novice programmer
and expert alike.

C is a powerful language that combines the flexibility, speed, and compactness of assembly
language with higher level language features such as data structures, control structures, and
functions. C programs are highly portable and are not tied to a specific machine architecture.
Compilers like Let’s C brought C programming to i8086-based microprocessor systems. Programs
that once required assembly language could now be written in C. However, the lack of a true
source-level debugger meant that C programs still had to be debugged at machine level.

Now, with csd, you can debug your C programs in the same language in which you wrote them. csd
displays your source code, evaluated expressions, all traced expressions, and program output, each
in its own window. Program locations are referenced by their positions in your source file and
variables are referenced by name, relieving you of the chore of looking up and calculating numeric
machine addresses. If you are a new programmer, csd can shorten the time you need to become
productive because you no longer need to learn assembly language to debug your programs.

Debugging is the most time-consuming part of program development. csd helps make this chore
manageable. It is indispensable as a learning tool for newcomers to C, and a time saver for
experienced programmers.

Features
csd includes the following features:

• Four different windows let you examine your source code in detail, see your actual program
output displayed, evaluate C expressions, and keep a log of traced statements and
expressions.

• csd lets you enter and evaluate new C expressions, without having to recompile your
program.

• With csd you can trace any executable C statement, stopping execution immediately before
the marked line of source.

• You can also trace expressions in the evaluation window. Execution will stop each time an
expression marked as traced changes value.

• csd gives you a complete list of traced statements and expressions. Each time a program
stops at a traced expression, a copy of that line is written to the history window,
maintaining a complete list of traced statements and expressions.

• On-line help screens make csd easy to use, even without a manual.

• You can debug both large and small model C programs with csd.

csd does for debugging what high-level languages do for programming: it makes your work easier,
saves time, and increases your productivity.

What is csd?

1

2 Introduction

The task of developing a program can be broken down into several stages, each of which has its own
problems.

The first stage is planning. At this stage you identify a problem that needs solving, and determine
how it can be solved on a computer.

The second stage is design. Here, you break the problem into discrete tasks, or functions, and
sketch out how a program will link the tasks into a whole.

The third stage is coding. You translate each function into C code, then compile and link it into an
executable program.

The fourth stage is debugging. This is the most tedious part of programming. At this stage you
methodically test the program, find out where it does not work properly, and fix it. Bugs can result
from mistakes at any stage of writing a program: the planning may be faulty, the design may
incorrectly interpret the plan, and the coding may have mistakes in it.

Debugging code is often the most difficult and time-consuming part of programming. It is easy to fix
a program; the hard part is finding just what is wrong. All experienced programmers can tell
‘‘horror stories’’ about debugging programs that simply do not work. You can study the output to
find where the problem might lie. Then you embed printf statements within the code to print out
the values of certain variables, then recompile and rerun the program; if this does not help, then
you embed more printf statements elsewhere, recompile, and try again. This continues through
perhaps dozens of recompilations until you stumble across the problem. Throughout this process,
you find yourself wishing you had a tool that would let you watch the program run so you could
stop execution at selected points in the program and examine the values of variables to discover just
where the program is going wrong.

csd is such a tool. It lets you peer into your program while it is running. You can run your
program from beginning to end, from beginning to any point in the code, or from any point in the
code to any other, either all at once or one step at a time. At any point in execution, you can see
what the program has output; you can look into memory and see the value of any variable; you can
explore the stack and see what functions are calling other functions; and you can enter new C
expressions and evaluate them immediately. csd does all of this interactively, using windows and
keystrokes. You no longer need to alter your program and recompile in order to see how your
program is working.

How does csd work?

In essence, csd performs two tasks: (1) it starts and stops the execution of a program, and (2) it lets
you examine and alter the contents of memory.

Controlling execution

When you invoke csd, it loads your program and runs a portion of it. It then saves your program
window (that is, the screen on which the program writes its output), and displays your source code
in the source window, with a cursor positioned at the top of the first source file.

You can set a breakpoint on any line of source simply by moving the cursor to that line and pressing
a key; a breakpoint is a point at which csd automatically stops executing the program. A line that
bears a breakpoint is said to be traced. When you run the program, csd starts executing the
program from where it last stopped (or from the beginning of the program) to immediately before
execution of the next traced line it encounters.

When csd stops execution, it saves the program window, retaining what your program has output
up to this point. It then redraws the source window, with the cursor positioned at the line of source
code at which execution stopped.

csd C source debugger

Introduction 3

You can run your program any number of times while using csd.

Referencing data

csd also has an evaluation window. There, you may type any C expression that would be valid at
your current location in the source window. If the expression is also valid at your current execution
position (which may or may not be the same as your current source window position), it is evaluated
immediately and its value is displayed. The expression stays in the evaluation window until you
delete it.

Since expressions may involve assignment operators (++, --, =, +=, etc.) you can alter your data. The
program itself is never altered. Because data alteration may affect the future operation of your
program while debugging, this is one way to influence execution. Whenever your program is
stopped, every expression in the evaluation window that is valid at the current stopping position is
evaluated and its value is displayed.

You can also trace any expression in the evaluation window. csd can be instructed to run your
program until the value of one of the traced expressions changes.

How to use this manual
This manual introduces you to csd. It assumes that you are familiar with the C programming
language. ", as well as with DOS and its commands."

This manual also contains everything you need to use csd to its fullest advantage. It is organized
into the following sections:

1. Introduction.

2. Becoming familiar with csd. This tutorial walks you through the sample C program,infl, to
demonstrate csd’s basic functions.

3. Advanced features. Here, the tutorial walks through a more complex program, factor, to
demonstrate advanced csd features. The use of both tracepoints and the evaluation window
are two of the features described in greater detail.

4. A sample debugging session. This section uses the program inflbug to demonstrate how
you can use csd to track down some of the more common C programming bugs.

5. Questions and answers. This section presents a number of questions that new users
commonly ask about csd. If you have a question about csd or its use, look here first.

6. Commands reference. This section summarizes all of csd’s commands.

7. Help screens. This section reproduces all of csd’s help screens. It can also be used as a
quick reference.

8. Error messages. This last section presents all of csd’s error messages, discusses what each
one means, and gives hints on how to address the problem.

Conventions used in this manual
This manual represents the cursor by a block character ‘[’. On your screen, of course, it will be a
flashing underscore or block.

Text that is highlighted on your screen is represented in this manual by
00shaded print.

Sections 2 through 4 of this manual are tutorials on using csd. They also reproduce a number of
sample screens. As you work through the tutorial, the displays on your computer may differ slightly
in other ways from those shown in this manual. For example, you may be logged into a different
drive, so it may say A> rather than C>. These differences should be minor, and will not affect how

csd C source debugger

4 Introduction

csd operates on your computer.

User registration and reaction report
Before you go any further, please fill out the User Registration Card that came with your copy of
csd. Returning this card will make you eligible for direct telephone support from the Mark Williams
technical staff. Also, if you have comments or reactions to the csd software or documentation,
please fill out and mail the User Reaction Report included at the end of the manual. We especially
wish to know if you found errors in this manual. Mark Williams Company needs your comments to
continue to improve csd.

Installing csd
The following files are on the csd distribution disk:

CSDXL.OBJ CSDSELEC.HLP
CSDXS.OBJ CSDTRACE.HLP
CSD.EXE ATOD.C
LCSD.EXE FACTOR.C
CSDEVAL.HLP FACTOR.EXE
CSDEDIT.HLP INFL.C
CSDFIND.HLP INFL.EXE
CSDHELP.HLP CC4.EXE
CSDRUN.HLP INSTALL.DAT
INSTALL.EXE INFLBUG.C

Before you begin to use csd, be sure to make a backup copy of the distribution disk. Never work
with the distribution disk: always work with a copy. When you have made your backup copy, put
the distribution disk away in a safe place.

Installing csd involves copying files from the distribution disk onto either a hard disk or a floppy
disk. To use csd with a two-floppy system, simply copy the distribution disk to a formatted disk.

To copy csd to a hard disk, use csd’s install utility, which does the copying for you. By running
install and answering a few simple questions, you can build a working copy of csd on your hard-
disk system in a few minutes.

Installing csd onto a hard disk

To begin, log onto drive C on your system. On nearly all computers, this is the hard disk. Then
insert the csd distribution disk into floppy drive A and type the following command:

a:install

In a moment, install will begin to work. It will print some information on your screen, and then ask
you the following question:

Do you wish to install all the files?

Type ‘y’ for yes. install will now ask you in which directories you wish to install the files, as follows:

Where do you want executable programs(default: "\bin")?
Where do you want libraries (default: "\lib")?
Where do you want sample programs (default: "\sample")?

After each question, type <return>, which accepts the default setting. Later you may wish to re-
install csd into other directories of your own choice, but at present it is best to use the default
settings.

install will now begin to copy the files from the distribution disk onto your hard disk.

csd C source debugger

Introduction 5

That’s all there is to it. csd is now installed on your hard disk.

How to run csd
To debug a program with csd, you must first compile it with the Let’s C compiler using the -VCSD
option to the cc command line. For example, the sample program infl, which is included on your
csd distribution disk, was compiled using the command line:

cc -f -VCSD infl.c

If you are using the Mark Williams Shell, MWS, be sure to select the CSD variant option when you
compile. For complete information on compile command line options and MWS, see the Let’s C
manual.

Invoking csd through the Mark Williams Shell

It is recommended that you use csd through MWS, the Mark Williams Shell. The shell contains a
disk accelerator that will speed up csd noticeably. In addition, MWS gives you two ways to enter
csd commands: either through its graphics interface, which helps you build command lines, or
directly through command.com.

To use csd through the MWS graphics interface, do the following: First, invoke MWS by inserting
the shell disk from Let’s C into drive A (if you have a two-floppy disk system) and typing MWS.
Remove the shell disk from drive A and insert your backup copy of the csd disk.

Now, press the down-arrow key <↓> until the reverse-video band, called the cursor bar, covers the
Debug on the main menu. Press <return>. MWS will draw a new screen for you; this screen gives
you access to all of csd’s options and features.

Press the <↓> key until the cursor bar is at Files; press <return>. A new box will open on the
screen; this box displays all of the executable files that are available in the current directory. Press
the <↓> key again until the cursor bar covers the entry infl.exe; press <return>. As you can see,
the name infl.exe has been written into the command box at the top of the screen and the cursor
bar has returned to the entry Execute on the main Debug menu. Now, press <return> again. This
executes csd with the program infl.exe

If you prefer not to use the graphics interface, do the following. First, invoke MWS as described
above. Then remove the shell disk and insert the csd disk into drive A. When MWS’s main menu
appears, press the <↓> key until the cursor bar covers the entry !DOS Escape. Press <return>.
The screen will clear, and your normal DOS prompt will appear. Now you can type commands
directly into DOS; however, MWS will still be working in the background to accelerate your
programs. To return to MWS, simply type exit, and the MWS main menu will reappear.

To invoke csd now, simply type

csd infl

at the DOS prompt.

Using csd

Once you have installed csd, try running the program on the sample program infl. infl is already
compiled with the appropriate command line options, and is ready to debug.

To invoke csd, type the following command from the MS-DOS prompt:

csd infl

csd will load your program and display the beginning of the source code on your screen. Your
screen should appear as follows:

csd C source debugger

6 Introduction

[#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t%f %f %f\n"; /* printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;
printf (msg, i, w1, w2, w3);

infl.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

To make csd run the program, type the run key, <F4>, followed by the end key, <End> . The
program window, where your program writes its output, will appear briefly as infl.exe executes;
then csd displays the source window with your program’s source code.

Now, press the program key, <F7>. csd redisplays the program window so you can study the output
of your program. You will see the following screen:

csd C source debugger

Introduction 7

C>csd infl
C Source Language Debugger Version 1.1
Copyright (c) 1984-1988 by Mark Williams Company, Lake Bluff, IL
Reading source...
Loading...
1 1.070000 1.080000 1.100000
2 1.144900 1.166400 1.210000
3 1.225043 1.259712 1.331000
4 1.310796 1.360489 1.464100
5 1.402551 1.469328 1.610510
6 1.500730 1.586874 1.771560
7 1.605781 1.713824 1.948716
8 1.718186 1.850930 2.143588
9 1.838458 1.999004 2.357946
10 1.967150 2.158924 2.593741

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
HMM<

Now, type the source key, <F8>. The screen will again display the source code.

It is this easy to use csd: one command invokes the debugger and displays your source code, two
keystrokes execute your program, one keystroke displays the results for you and another returns
you to the source code to continue debugging.

Now, type <Shift-F1>, the exit key, to exit csd.

Where to go from here
If you are a newcomer to C programming, or have never used a source level debugger, you should
work through sections 2 through 4 to learn how to use csd. Experienced programmers will want to
go directly to sections 6 through 8. The Commands reference section, along with csd’s on-line help
screens, should be all you need to get started with csd.

csd C source debugger

8 Introduction

csd C source debugger

#%2=0 .nr#0

Becoming familiar with csd

This section walks through the sample C program infl, which is provided on your csd distribution
disk. It demonstrates csd’s basic features, such as how to move the cursor, shift windows, and
execute a program under csd.

infl is a simple program with a for loop. It calculates three different rates of inflation over a span of
ten years. The source code is as follows:

#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /* printf string */
i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;
printf (msg, i, w1, w2, w3);

}
}

This program has already been compiled for you. To see its output, type

infl <return>

at the MS-DOS prompt. Note that in this tutorial, each line that you type must be followed by
<return>, unless the text specifically instructs you differently.

Your screen will show the following:

9

10 Becoming familiar with csd

C>infl
1 1.070000 1.080000 1.100000
2 1.144900 1.166400 1.210000
3 1.225043 1.259712 1.331000
4 1.310796 1.360489 1.464100
5 1.402551 1.469328 1.610510
6 1.500730 1.586874 1.771560
7 1.605781 1.713824 1.948716
8 1.718186 1.850930 2.143588
9 1.838458 1.999004 2.357946
10 1.967150 2.158924 2.593741

C>

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
HMM<

Function keys and what they do
You can manipulate csd through the function keys on your keyboard and with the keys on the
numeric keypad. These keys let you move the cursor, page through your source code, and move to
the beginning or end of your source code.

While using the Mark Williams C compiler, Let’s C, you have probably become familiar with the
editor, MicroEMACS. Switching between MicroEMACS and csd while debugging and recompiling
doesn’t require that you remember two sets of keystrokes. The commands you use to move through
text with MicroEMACS will also work with csd.

Below is a quick reference list which summarizes all of the command keys and their functions.

csd C source debugger

Becoming familiar with csd 11

FUNCTION DESCRIPTION COMMAND

Find Find a string of text <F1> or <esc>1 or
<ctrl-S> or <esc>S or
<ctrl-R> or <esc>R

Select Select an option <F2> or <esc>2
Trace Trace an expression <F3> or <esc>3
Run Run the program <F4> or <esc>4
Cancel Cancel the last command <F5> or <esc>5

or <F5>
Help Display a help screen <F6> or <esc>6

or <F6>
Program Display program window <F7> or <esc>7
Source Display source window <F8> or <esc>8
Evaluation Enter evaluation window <F9> or <esc>9
History Display history window <F10> or <esc>0
Up Move cursor up <↑> or <ctrl-P>
Down Move cursor down <↓> or <ctrl-N>
Out Move to calling function <←> or <ctrl-B>
In Undo an Out <→> or <ctrl-F>
Exit Exit csd <Shift-F1> or <ctrl-X> <ctrl-C>
Current Return to current line <Shift-F8> or <ctrl-X>X
Page Up Move cursor up a page <ctrl- ↑> or <esc>V
Page Down Move cursor down a page <ctrl- ↓> or <ctrl-V>
Delete Delete a line or <ctrl-K>
Insert Insert a line <Ins> or <ctrl-O>
Beginning Beginning of source <ctrl- ←> or <esc><
End End of source <ctrl- →> or <esc>>

See section 5, Commands reference, for a complete listing of all the function and keypad keys, the
corresponding MicroEMACS command keys, and alternate keystrokes used to control csd.

Running csd
Now, try running infl under csd. If you are using the graphics interface to MWS, invoke csd on the
program as described in the Introduction.

If, however, you are using the !DOS Escape option, simply type the following at the prompt:

csd infl

In a moment, csd will load your program and display the beginning of the source code on your
screen.

The screen is divided into two parts. The first and largest of these parts is the source window, the
top portion of the screen where the source code is displayed. The reverse video line separates the
two windows and displays the name of the program module you are currently debugging. Under the
reverse video line is the evaluation window; it is now empty.

Your screen appears as follows:

csd C source debugger

12 Becoming familiar with csd

[#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /* printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;
printf (msg, i, w1, w2, w3);

infl.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

The program window displays the output of the program you are running. The program window
does not appear at the same time as the source and evaluation windows; when you display the
program window, the entire screen will be redrawn temporarily.

To see the program window, type the program key, <F7>. Your screen now shows the following:

csd C source debugger

Becoming familiar with csd 13

C>infl
1 1.070000 1.080000 1.100000
2 1.144900 1.166400 1.210000
3 1.225043 1.259712 1.331000
4 1.310796 1.360489 1.464100
5 1.402551 1.469328 1.610510
6 1.500730 1.586874 1.771560
7 1.605781 1.713824 1.948716
8 1.718186 1.850930 2.143588
9 1.838458 1.999004 2.357946
10 1.967150 2.158924 2.593741

C>csd infl
C Source Language Debugger Version 1.1
Copyright 1984-1988 by Mark Williams Co., Lake Bluff, IL
Reading source...
Loading..

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
HMM<

To redisplay the source window, press the source key, <F8>. The source window is now restored.

Moving through the source code
You can move csd’s cursor by pressing the cursor movement keys, which are found on the numeric
keypad on the right side of your keyboard. If, instead of moving the cursor, numbers appear on the
screen when you press any of the keys on the numeric keypad, press the NumLock key. This
should solve the problem. .PP To move the cursor down on the screen, press the <↓> key. Try it.
As you can see, the cursor is now positioned at the beginning of the second line of the source code.
If you hold the key down, the cursor scrolls down the screen. The MicroEmacs command <ctrl-N>
also moves the cursor down the screen one line at a time.

To move back up the screen, press the <↑> key. As you can see, the cursor has moved to the
previous line. Holding this key down scrolls the cursor up the screen. Typing the MicroEMACS
command <ctrl-P> also moves the cursor up the screen one line at a time.

Note that if you try to move the cursor past the beginning or the end of your source file, csd prints
the error message try Help at the bottom of your screen.

If you wish to move the cursor more than a few lines, it is handier to use the page keys <PgUp> and
<PgDn> . These keys move through your source program a page at a time. A page is one window of
lines. Thus, if your source window displays 19 lines of text, as it does when csd starts up, then
pressing <PgDn> displays the next 19 lines of text (unless, of course, you are at the end of the
source file). When you type <PgUp> , the previous 19 lines of text are displayed. If you are within
19 lines of the end of the source file, <PgDn> will move the cursor to the end of your file; likewise, if
you are within 19 lines of the beginning of your source file, <PgDn> will move the cursor to the
beginning of the file.

The MicroEMACS <ctrl-V> command will also move the cursor to the next page of lines; <esc> V
moves the cursor to the previous page of lines.

csd C source debugger

14 Becoming familiar with csd

To move the cursor to the end of your source file, type <End> . Try it. The cursor is now positioned
at the end of the last line of infl.c. To return to the beginning of your source code, type <Home> Try
it. The cursor is again positioned at the beginning of infl.c.

<ctrl-A> and <ctrl-E> move the cursor to the beginning and end of the source, respectively.

Finding text
If you want to locate a specific line in your program, you could hunt for it by scrolling through the
text line by line or page by page. However, to ease the search, csd has a string search feature. With
the find key, <F1>, you can type in a string that csd will find for you.

To see how this works, type <F1>. At the bottom of the screen, csd prints the following prompt:

find:[pattern] ↑ ↓ <Home> <End> Cancel<F5> Help<F6>

To find the string main in infl.c, type

main

followed by <return> or <↓>. The screen now displays the following:

[main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /* printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;

infl.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

You can control the direction of search with the <↑> and <↓> keys. The <↑> key searches for the
string above the current position of the cursor, and the <↓> key searches below it.

The MicroEMACS commands <ctrl-S> and <ctrl-R> will also search for a string. You can also use
these commands to search for strings in your source code:

<esc>S
<esc>R
<esc>1

Exiting from csd

csd C source debugger

Becoming familiar with csd 15

If you wish to exit from csd, press <Shift-F1>. csd will exit and restore the program window. You
can use the <Shift-F1> key to exit from csd at any time during debugging. However, if you are in
the middle of typing something in the evaluation window, you must type <ctrl-U> before you exit
csd. Type <Shift-F1>. You must also exit the help screens before trying to exit csd.

Setting tracepoints
As noted in section 1, csd lets you set tracepoints within a program to control its execution. When
you set a tracepoint and execute a program, the program stops executing at the tracepoint. You can
examine variables and see what has happened to them up to that point in the program. This allows
you to run a program step by step, so you discover more easily the point at which your program
fails.

To see how you can set tracepoints, invoke csd on the program infl by typing:

csd infl

Using the arrow keys, or the MicroEMACS cursor control keys, position the cursor at the first
executable statement after the for statement:

w1 *=1.07;

Press the trace key, <F3>; pressing <F3> will set a tracepoint on the line where the cursor is
positioned. As you can see, setting a tracepoint on a line of code causes that line to be highlighted
on your screen. Your screen should now look like this:

#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /* printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

00[w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;
printf (msg, i, w1, w2, w3);

infl.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

If you were to type <F3> again, the tracepoint would be removed and the line would return to its
normal intensity. For now, leave the tracepoint on.

Executing to the tracepoint

csd C source debugger

16 Becoming familiar with csd

Now, run the sample program to the traced line. To do so, press <F4> to run, and <F3> to trace.

This combination of keys tells csd to execute your program to the current statement. The current
statement is the next line of code to be executed. In this example, the program began execution at
its beginning, and continued to execute until it encountered the tracepoint you set a few moments
ago.

Note that the cursor is again positioned where you set the tracepoint.

Again, type <F4>and <F3>. csd runs until it again encounters the traced line. While it is executing
the program to the tracepoint, it will temporarily display the program window. When csd has
executed to the tracepoint, it restores the source window.

To see the program’s output, press <F7>. The screen will show the following:

4 1.310796 1.360489 1.464100
5 1.402551 1.469328 1.610510
6 1.500730 1.586874 1.771560
7 1.605781 1.713824 1.948716
8 1.718186 1.850930 2.143588
9 1.838458 1.999004 2.357946
10 1.967150 2.158924 2.593741

C> csd infl
C Source Language Debugger Version 1.1
Copyright 1984-1988 by Mark Williams Co., Lake Bluff, IL
Reading source..
Loading...

C> csd infl
C Source Language Debugger Version 1.1
Copyright 1984-1988 by Mark Williams Co., Lake Bluff, IL
Reading source...
Loading...
1 1.070000 1.080000 1.100000

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
HMM<

Because the tracepoint is set within the for loop, you can see what the program generates with each
iteration.

Return to the source window by typing <F8>. Press the trace key <F3>; this removes the tracepoint.
The line returns to normal intensity, and the cursor remains at that line.

History window
Every time your program stops at a tracepoint, csd writes a copy of the traced line into the history
window. This window is where csd logs all the statements that have been traced during the
execution of your program.

To see the history window, type the history key, <F10>. If you have followed the steps of the tutorial
so far, your screen will look like this:

csd C source debugger

Becoming familiar with csd 17

w1 *= 1.07;
w1 *= 1.07;

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
HMM<

The same statement appears twice because the program stopped executing there twice.

Type <F8> to return to the source window.

Single-stepping through a program
With csd, you can step through a program a line at a time and examine its execution in detail. This
procedure is called single-stepping.

To see how single-stepping works, you should first restart your program. You need to do this
because if you have been following the steps of this tutorial, the program is midway through its
execution. To restart a program, type <F4> followed by the begin key, <Home> . csd reloads the
program, then returns the cursor to the beginning of the source file. Your screen appears as
follows:

csd C source debugger

18 Becoming familiar with csd

[#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /* printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) {

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;
printf (msg, i, w1, w2, w3);

infl.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Now, to execute your program one step at a time, press <F4> followed by <return>. The program
window (which shows the program’s output) is displayed briefly; then, the source window is
restored, with the cursor positioned at the first executable statement in the program:

i = 0;

Again, press <F4> followed by <return>. csd runs to the next executable line in the program, which
is:

w1 = 1.0;

Now, single-step through infl.c, pressing <F4> and <return>; stop after the first iteration of the for
loop: your cursor will be positioned at the line

w1 *= 1.07;

for the second time since you began single-stepping. This is the point at which the next iteration of
the for loop would begin. Press the <F7> key, and you will see the program output to this point.
Your screen will appear as follows:

csd C source debugger

Becoming familiar with csd 19

4 1.310796 1.360489 1.464100
5 1.402551 1.469328 1.610510
6 1.500730 1.586874 1.771560
7 1.605781 1.713824 1.948716
8 1.718186 1.850930 2.143588
9 1.838458 1.999004 2.357946
10 1.967150 2.158924 2.593741

C> csd infl
C Source Language Debugger Version 1.1
Copyright 1984-1988 by Mark Williams Co., Lake Bluff, IL
Reading source..
Loading...

C> csd infl
C Source Language Debugger Version 1.1
Copyright 1984-1988 by Mark Williams Co., Lake Bluff, IL
Reading source...
Loading...
1 1.070000 1.080000 1.100000

Reloading...
1 1.070000 1.080000 1.100000

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
HMM<

Once you single-stepped to the end of the for loop, infl generated one line of output, which you can
see at the bottom of the screen.

If you wish, you can single-step through portions of a program. For example, you can locate the
area in which a program goes astray by setting tracepoints; then, you can single-step through that
area to find the exact line on which the problem occurs. Press <F8> to return to the source window.

Displaying variables
csd lets you type expressions from your program in order to display the value of variables. You can
evaluate any legal C expression, even function calls.

Local variables are declared at the beginning of a function. The local variable you wish to evaluate
must be defined within the current scope. The scope of a local variable is the part of the program
between the braces ‘{ }’ of the function in which that variable is declared. Global, or external,
variables are available from within any function’s scope because they are defined outside of all
functions.

Before entering local variables into csd’s evaluation window, you must first position the cursor in
the source window so that it is between the braces of the function in which the variable is defined.
Then switch to the evaluation window, and type in the variable you wish to see.

To illustrate how to display the value of variables and expressions, run the program to the end by
typing <F4> followed by <End> . Now, position the cursor at the printf statement and type <F3> to
set a tracepoint. Type <F4>, then <F3>: this tells csd to execute until it reaches the tracepoint.
The screen now appears as follows:

csd C source debugger

20 Becoming familiar with csd

#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /*printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00[printf (msg, i, w1, w2, w3);

infl.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Now, switch to the evaluation window by pressing the <F9> key. The cursor is now flashing at the
line below the reverse video line that says infl.c; this area of the screen is the evaluation window.

To examine the value of variable w2, type:

w2

If you make a mistake typing in the evaluation window, use the backspace key to delete the error.
You can delete an entire line by pressing <ctrl-U> as long as you have not yet typed <return>.
When you have deleted the mistake, retype the expression.

As soon as you type w2 followed by <return>, the screen will appear as follows:

csd C source debugger

Becoming familiar with csd 21

#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /*printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00[printf (msg, i, w1, w2, w3);

infl.c

w2 :: 1.08

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Notice that the value of w2 is written after two colons, ‘::’. Typing <F4> and <F3> causes the
program to cycle through the for loop once more; as you can see, the value of w2 changes to reflect
this further execution of the program. The screen now appears as follows:

csd C source debugger

22 Becoming familiar with csd

#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /*printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00[printf (msg, i, w1, w2, w3);

infl.c

w2 :: 1.1664

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Remember that all evaluation expressions in the current scope are re-evaluated in the evaluation
window whenever the debugger stops execution: whether for a traced statement, a traced
expression, the end of the program, or for single-stepped execution.

You can evaluate all legal C expressions, even those that you did not anticipate when you wrote the
program. To see how this works, return to the evaluation window (if your cursor is not there) by
typing <F9>. Now, enter the following expression by typing:

w1 + w3

The screen will show:

csd C source debugger

Becoming familiar with csd 23

#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /*printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00printf (msg, i, w1, w2, w3);

infl.c

w2 :: 1.1664
w1 + w3 :: 2.3549

[

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

csd displays the results of adding w1 with w3 without your having to edit your program and
recompile.

You can also show the value of a string pointer as a string, rather than as the address of the first
character of the string, which is the way your program understands it. To do so, use (str) to cast
the variable to a string type. For example, to see the value of the variable msg in both its forms,
type the following:

msg
(str)msg

The screen will show:

csd C source debugger

24 Becoming familiar with csd

#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /*printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00printf (msg, i, w1, w2, w3);

infl.c

w1 + w3 :: 2.3549
msg :: 0x0124
(str)msg :: " %2d\t %f %f %f\n"

[

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

The value shown for msg, which may be different on your screen, is the address of the first
character of its string: that of (str)msg is the string itself.

Note that if you enter an invalid variable in the evaluation window, csd prints an error message; you
will not be able to continue debugging until the invalid variable is removed.

Getting help
Now that you have walked through a simple program and tried csd’s basic debugging features, try
csd on a program of your own. At any time while you are using csd, you can get on-line help with
its functions by typing the help key, <F6>.

Try typing <F6>. csd displays some general help information. Now, type any of the keys listed at
the bottom of the general help screen. csd displays help information for the function you selected.
For example, while the general help screen is displayed, pressing <F3> will show the help screen
that tells you how to trace statements and expressions.

If csd gives you the error message

helpfile.hlp: cannot open

instead of a help screen, it means that csd cannot find the help files in the current path. Use the -H
option to tell csd where to find its help files. See section 6, Commands reference, for complete
information about setting paths for csd.

When you are finished with the help feature, type <F6> again. The help menu will disappear, and
the source window will be restored.

Finally, type <Shift-F1> to exit csd and return to .

Where to go from here
This section demonstrated the basics of csd on a simple program. It showed how to load a program
and display its source code and output. It also discussed how to execute a program a line at a time
or up to the next tracepoint, and how to examin the value of variables by typing an expression into

csd C source debugger

Becoming familiar with csd 25

the evaluation window.

The next section, Advanced features, will expand on the uses of these features. It will also
demonstrate csd’s more powerful capabilities, such as its ability to trace expressions and function
calls within the evaluation window.

csd C source debugger

26 Becoming familiar with csd

csd C source debugger

#%2=0 .nr#0

Advanced features

The previous section of this manual demonstrated the basics of csd, including how to set
tracepoints and evaluate variables. This section describes the advanced uses of the same features,
plus more powerful capabilities, such as tracing expressions and function calls from within the
evaluation window.

Compiling for debugging
The examples in this section use a program called factor. This program, which is included on your
csd distribution disk, calculates the prime factors of an integer. factor consists of two source
modules, factor.c and atod.c, and was compiled for use with csd by using the command:

cc -f -VCSD factor.c atod.c -lm

When csd displays source code built from more than one source module, it displays the modules in
the order in which they were entered with the compile command. Every source module that you
wish to debug must be compiled with the Let’s C compiler, using the -VCSD option to the cc
command. If you are linking existing object modules into a .exe file, you must also use the -VCSD
option: this tells the linker to include special object files from libc that are necessary for csd.

You may link in objects that are not compiled with -VCSD. In the evaluation window, the global
variables of these objects may be used just as the variables of your source, but csd will have no
knowledge of the internal variables of objects not compiled with -VCSD.

The -lm at the end of the command line tells cc to link the mathematics library into this program.

You can also use csd to debug large model programs. To invoke the large model debugger, type

lcsd <filename>

You can find more information on compiling for debugging and large and small model csd in section
6, Commands reference.

The source code for the sample program, factor, is included on your csd distribution disk.

The source code for the module factor.c is as follows:

/*
* Factor prints out the prime factorization of numbers.
* If there are arguments, it factors them.
* If there are no arguments, it reads stdin until
* either EOF or the number zero or a non-numeric
* non-white-space character. Since factor does all of
* its calculations in double format, the largest number
* which can be handled is quite large.
*/

#include <stdio.h>
#include <math.h>
#include <ctype.h>

#define NUL ’\0’
#define ERROR 0x10 /* largest input base */
#define MAXNUM 200 /*max number of chars in number */

27

28 Advanced features

main(argc, argv)
int argc;
register char *argv[];
{

register char *chp;
double n;
double atod();
char *getnum();

if (argc != 1)
while ((chp=*++argv) != NULL &&

(n=atod(chp)) != 0)
factor(n);

else
while ((chp=getnum()) != NULL &&

(n=atod(chp)) != 0)
factor(n);

return (0);
}

/*
* Print a fatal error message.
*/

die(str)
char *str;
{

fprintf(stderr, "%r\n", &str);
exit(1);

}
usage()
{

die("Usage: factor [number number ...]");
}

/*
* Input a number from the keyboard.
*/

char *
getnum()
{

register char *chp,
ch;

static char res[MAXNUM+1];

csd C source debugger

Advanced features 29

do {
ch = getchar();

} while (isascii(ch) && isspace(ch));
if (!isascii(ch) || todigit(ch) == ERROR)

return (NULL);
for (chp=res; isascii(ch) && !isspace(ch);

ch=getchar())
if (chp < &res[MAXNUM])

*chp++ = ch;
if (chp >= &res[MAXNUM])

die("number too big");
*chp++ = NUL;
return (res);

}

/*
* Factor is the routine that actually
* factors the double ’n’.
* It writes the prime factors to standard output.
*/

factor(n)
double n;
{

double temp,
limit,
try;

while (n > 1 && modf(n/2, &temp) == 0) {
printf("2 ");
n = temp;

}
limit = sqrt(n);
for (try=3; try <= limit; try += 2) {

if (modf(n/try, &temp) != 0)
continue;

do {
printf("%.0f ", try);
n = temp;

} while (modf(n/try, &temp) == 0);
limit = sqrt(n);

}
if (n > 1)

printf("%.0f", n);
putchar(’\n’);

}

The source code of atod.c is as follows:

#include <ctype.h>
#define ERROR 0x10 /* largest input base */

csd C source debugger

30 Advanced features

/*
* atod() converts the string ’num’ to a double and returns
* its value. If there is a non-digit in the string,
* or if there is an overflow, then atod() exits with an
* appropriate error message. atod() accepts leading zero
* for octal and leading 0x for hexidecimal; in the latter
* case, ’a’-’f’ and ’A’-’F’ are accepted as digits.
*/

double
atod(num)
char *num;
{

register char *str;
register int i;
double res = 0,

base = 10;

str = num;
i = *str++;
if (i == ’0’)

if ((i = *str++) == ’x’) {
i = *str++;
base = 0x10;

} else
base = 010;

for (; i != ’ ’; i = *str++) {
i = todigit(i);
if (i >= base)

die("bad number ’%s’", num);
res = res * base + i;
if (res+1 == res)

die("number too big ’%s’", num);
}
return (res);

}

/*
* todigit() converts character ’ch’ to an integer equivalent,
* assuming that ’ch’ is a digit or ’a’-’f’ or ’A’-’F’.
* If this is not true, then it returns ERROR.
*/

todigit(ch)
register int ch;
{

if (!isascii(ch))
return (ERROR);

if (isdigit(ch))
return (ch - ’0’ + 0);

if (isupper(ch))
ch = tolower(ch);

if (’a’ <= ch && ch <= ’f’)
return (ch - ’a’ + 0xA);

return (ERROR);
}

Running without csd

csd C source debugger

Advanced features 31

When you compile a program with the -VCSD option, you can run it just like any other program. To
illustrate how factor works, type the following line:

factor 12

After a moment, it prints the result:

2 2 3

This result means that the number 12 is produced by multiplying the prime numbers two, two, and
three.

Evaluation window
As described in the previous section, you can ask csd to print the values of variables or expressions
by typing them into the evaluation window. An evaluated expression may not use keywords (such
as if or for), labels, braces ‘{’ ‘}’, or semi-colons ‘;’. Additionally, csd reserves the types (oct), (hex),
and (str) for use as casts to display values in base 8, base 16, and as character strings, respectively.
You may redeclare these identifiers locally or globally, but you will lose the ability to cast
expressions to hexadecimal, octal, or character array display.

csd evaluates the expressions you enter in the evaluation window when you first type them in and
press <return>. It also evaluates the expressions you have typed in the window whenever the
program stops executing--that is, when it reaches the end of the program, reaches a tracepoint, or
when you single-step through the program.

To illustrate the use of the evaluation window in detail, invoke csd with the sample program factor
by typing:

csd factor 234

or by using the Mark Williams shell, MWS, as described above. In a moment, csd will draw the
source window on the screen, where you work interactively with csd.

Now press the find key, <F1>, to invoke csd’s find command. When the prompt appears, type main.
csd will find the beginning of the main function and move the cursor there. The screen will appear
as follows:

csd C source debugger

32 Advanced features

[main(argc, argv)
int argc;
register char *argv[];
{

register char *chp;
double n;
double atod();
char *getnum();

if (argc != 1)
while ((chp=*++argv) != NULL &&

(n=atod(chp)) != 0)
factor(n);

else
while ((chp=getnum()) != NULL &&

(n=atod(chp)) != 0)

factor.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Press the cursor-movement key <↓> or <ctrl-N>, until the cursor is at the line

if (argc != 1)

Now, set a tracepoint on that line by typing <F3>. Remember that tracepoints can be set only on
executable statements. If you try to set a tracepoint on a non-executable statement, csd gives you
the error message:

not executable statement

The screen now appears as follows:

csd C source debugger

Advanced features 33

main(argc, argv)
int argc;
register char *argv[];
{

register char *chp;
double n;
double atod();
char *getnum();

00[if (argc != 1)
while ((chp=*++argv) != NULL &&

(n=atod(chp)) != 0)
factor(n);

else
while ((chp=getnum()) != NULL &&

(n=atod(chp)) != 0)
factor(n);

factor.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

To run the program to this tracepoint, type <F4>. The following prompt will appear at the bottom of
the screen:

Run: Trace F3 Return D <Home> <End> <F5> <F6>

This tells you that you can run a program to a number of different points within the program. For
example, Run followed by Trace tells csd to run to the next tracepoint. Run followed by return is
the command to step through the program a line at a time. A complete description of each of these
keys can be found in section 6, Commands reference. You can find the keys for each of these points
on the bank of function keys or on the numeric keypad.

For the current example, type <F3>. csd will now execute your program from its beginning until it
reaches the tracepoint you set a moment ago. csd briefly displays the program window (which is
where your program prints its normal output); then it restores the source window with the cursor
positioned at the line causing the trace stop.

Now, press <F9>. This moves the cursor into the evaluation window, which is where you can type
an expression for csd to evaluate. csd lets you evaluate any variable that is either global or local to
the function within which the cursor was positioned in the source window. In this instance, you
can now examine any variable that is global or local to main. Remember that if you enter an invalid
variable name or an incorrect expression into the evaluation window, you must erase the characters
using the backspace key, or <ctrl-U> to erase the entire line.

To see how you can evaluate a variable in the evaluation window, type:

argc

csd will respond by printing the value of argc in the evaluation window. The screen now appears as
follows:

csd C source debugger

34 Advanced features

main(argc, argv)
int argc;
register char *argv[];
{

register char *chp;
double n;
double atod();
char *getnum();

00if (argc != 1)
while ((chp=*++argv) != NULL &&

(n=atod(chp)) != 0)
factor(n);

else
while ((chp=getnum()) != NULL &&

(n=atod(chp)) != 0)
factor(n);

factor.c
argc :: 2

[

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

argc is the number of arguments passed to a program. In this instance, the program factor has two
arguments: the name factor itself and the number to be factored, 234.

While you are still in the evaluation window, type:

argv[1]

csd will evaluate this variable, and the screen will show:

csd C source debugger

Advanced features 35

main(argc, argv)
int argc;
register char *argv[];
{

register char *chp;
double n;
double atod();
char *getnum();

00if (argc != 1)
while ((chp=*++argv) != NULL &&

(n=atod(chp)) != 0)
factor(n);

else
while ((chp=getnum()) != NULL &&

(n=atod(chp)) != 0)
factor(n);

factor.c

argc :: 2
argv[1] :: 0x5333

[

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Note that pointers are automatically displayed in hexadecimal. The number that appears in the
evaluation window after argv[1] may be different on your system, depending on how memory is
allocated. argv points to the array of arguments passed to factor. These arguments are usually
pointers to character strings.

To see the string that the pointer points to, use the csd cast (str). Type:

(str)argv[1]

The screen now shows the following:

csd C source debugger

36 Advanced features

main(argc, argv)
int argc;
register char *argv[];
{

register char *chp;
double n;
double atod();
char *getnum();

00if (argc != 1)
while ((chp=*++argv) != NULL &&

(n=atod(chp)) != 0)
factor(n);

else
while ((chp=getnum()) != NULL &&

(n=atod(chp)) != 0)
factor(n);

factor.c

argc :: 2
argv[1] :: 0x5333
(str)argv[1] :: "234"

[

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

The string ‘‘234’’ is from the command line

csd factor 234

You can enter any valid C expression into the evaluation window as long as the names in the
expression are either global or local to the current function. This includes the ability to call
functions. Type

printf("Here’s a csd string.\n")

csd’s evaluation window now appears as follows:

argv[1] :: 0x5333
(str)argv[1] :: "234"
printf("Here’s a csd string.\n") :: 0

csd shows its value as ‘0’. To see the result of the printf command that you entered in the
evaluation window, press the <F7> key. csd will jump back to the program window, where your
program prints its normal output. The program window appears as follows:

csd C source debugger

Advanced features 37

C>factor 12
2 2 3

C>csd factor 234
C Source Language Debugger Version 1.1
Copyright (c) 1984-1988 by Mark Williams Co., Lake Bluff, IL
Reading source...
Loading...
Here’s a csd string.

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
HMM<

csd executed the printf function as if it were part of the program factor, and wrote the string Here’s
a csd string onto the program window.

Using the select key
Now, return to csd’s source window by typing <F8>.

Note that the first expression you had typed into the evaluation window is no longer visible. This is
because the evaluation window can display only a fixed number of expressions at once. To display
more expressions in the evaluation window, you can increase the size of the evaluation window with
the select key. Typing <F2> followed by the <↑> or <↓> key raises or lowers the boundary between
the evaluation and source windows, respectively. You can also use the select key to choose which
screen is displayed while your program is executing. For example, if you want to watch traced
statements displayed on the history window, type <F2> followed by <F10>. You can also choose to
display the source window during the execution of your program. Type: <F2> followed by <F8>.

The following exercise demonstrates this feature. First, exit from csd by typing <Shift-F1>. This
returns you to MS-DOS. Now, invoke csd again by typing:

csd factor 234

When the source window appears, move the cursor to the open brace ‘{’ that follows main; then
jump into the evaluation window by typing <F9>. Type the expression

argc

but follow it with <F3> rather than <return>. argc will be highlighted in the evaluation window to
show that csd will trace the variable argc. When you trace an expression in the evaluation window,
csd evaluates the expression before a line of code is executed. As it traces argc, csd will run slowly
and you can view the program’s execution.

csd C source debugger

38 Advanced features

Now, return to the source window by typing <F8>. To see the execution proceed, type <F2> followed
by <F8>. With these keys, you tell csd to display the source window while the program is executing.
Start execution by typing <F4> then <End> . As you can see, the source window scrolls through the
program as it executes. The bottom line of the evaluation window displays the message

program running

The value of argc is displayed in the top line of the evaluation window. Because you used the <F2>
key to display the source window during the execution of the program, no output is written onto the
program window. Instead, any output appears in the selected window. It can be removed by
switching screens. This output, unlike that in the program window, is lost once you switch
windows.

Displaying the source window during program execution allows you to see both the program window
and the evaluation window at the same time. Using this technique lets you watch the values of
variables and expressions change in the evaluation window while your program executes.

Exploring the stack
When you evaluate variables and expressions within the evaluation window, you can examine only
global variables or variables that are local to the current function (that is, the function within which
the cursor is positioned in the source window). However, csd also lets you examine and modify
variables that are local to the function that called the current function.

When one C function calls another function, the variables local to the calling function are stored in a
special area of memory called the stack. By examining the stack, you can read the values of the
calling function’s variables; by editing the stack, you can change the values of these variables. The
In key, <→> and the Out key, <←> let you work with the stack.

The following exercise demonstrates the <→> and <←> keys. First, exit from csd by typing <Shift-
F1>. Then, restart csd with the program factor by typing:

csd factor 234

You can easily find the function factor within the program. Type <F1> followed by

^factor

That is, type a caret ‘^’ plus the string factor; then type <return> or <↓>.

The string ^factor is a pattern, or regular expression, that csd seeks. The caret ‘^’ tells csd to look
for factor only at the beginning of a line. The caret is one of the special characters that you can use
with <F1> to search for specific patterns. A list of these characters and their uses can be found in
the Commands reference, later in this manual.

The cursor is now positioned within the function factor. Press <End> to move the cursor to the line
that begins with while. Type <F3> to set a tracepoint on this line. Your screen now appears as
follows:

csd C source debugger

Advanced features 39

factor(n)
double n;
{

double temp,
limit,
try;

00[while (n > 1 && modf(n/2, &temp) == 0) {
printf("2 ");
n = temp;

}
limit = sqrt(n);
for (try=3; try <= limit; try += 2) {

if (modf(n/try, &temp) != 0)
continue;

do {
printf("%.0f ", try);

factor.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Now, type <F4> followed by <F3> to run the program up to the tracepoint.

Once this is done, the program is poised to execute the while statement within the function factor.
The scope, or stack frame, that is currently active is that of the function factor, and you can now
evaluate variables which are local to it.

You can determine what function called factor and activate the stack frame of the calling function
by typing <←> . Try it. The screen now shows:

csd C source debugger

40 Advanced features

double n;
double atod();
char *getnum();

if (argc != 1)
while ((chp=*++argv) != NULL &&

(n=atod(chp)) != 0)
[factor(n);
else

while ((chp=getnum()) != NULL &&
(n=atod(chp)) != 0)
factor(n);

return (0);
}
die(str)
char *str;

factor.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

The cursor has jumped to the line within main that called factor. The parameters of main are now
accessible.

Pressing the <→> key will return you to the while statement in factor.

With the <←> key you can explore all enclosing stack frames. For example, if a program had a
function that called another function that called yet a third function, you could position the csd
cursor within the last-called function and then use the <←> key to check the values of its two
‘‘ancestors’’. The present example, however, has only two such frames: main and the local level.

Changing variables
Comma expressions (expressions in which the comma is used as an operator) and assignment
statements are among the legal C expressions that you can enter into the evaluation window.
Expressions with side effects (for example, expressions involving operators) will propagate these
effects whenever they are evaluated. Before you proceed, please note that you should not change the
variable in the following example: doing so causes the program to run indefinitely. For example, if you
were to type

n=12

you would change the value of n. If you then tried to execute this program to the end, it would
never terminate because the assignment statement n=12 would be executed each time a tracepoint
was encountered.

You should remove assignment statements and other statements with side effects from the
evaluation window as soon as you are finished with them.

Now press <Shift-F1> to exit from csd.

Where to go from here
This section described advanced csd techniques. You can now explore your source with the Find
key, <F1>, and search for lines that contain specific character patterns. Advanced evaluation
window techniques were shown, and a method of viewing the execution of your program in real time

csd C source debugger

Advanced features 41

was demonstrated. With the <→> and <←> keys, you can explore the stack. You can also change
the value of variables by placing assignment statements in the evaluation window, although this
must be done with care.

The following section, which concludes this manual’s tutorial, presents a sample debugging session.
Section 5, Questions and Answers, presents commonly asked questions about csd, and their
answers. If you are having any difficulty with csd, check here first.

Section 6, Commands reference, summarizes csd commands. It describes the meaning of each
command key and all combinations of command keys. It also suggests some uses for csd
commands that are beyond the scope of a tutorial.

csd C source debugger

42 Advanced features

csd C source debugger

#%2=0 .nr#0

A sample debugging session

This section of the manual contains exercises that let you use csd on a program with bugs. An
error-filled version of the program infl named inflbug will be used to demonstrate some common C
language bugs and how to find them with csd. inflbug.c is included on your csd distribution disk.

To begin, compile inflbug.c using the following command line:

cc -f -A -VCSD inflbug.c

Note the -VCSD option, which tells the compiler to include the information needed to run your
program under csd. Note also the -A option. This option automatically calls the MicroEMACS
screen editor when the compiler encounters an error during compilation. The errors are displayed
in one window, and the source code file in the other, with the cursor set to the line number
indicated by the first error message. Typing <ctrl-X>> moves to the next error, and <ctrl-X><
moves to the previous error. To recompile, close the edited file with <ctrl-Z>. Compilation will
continue either until the program compiles without an error, or until you exit the editor by typing
<ctrl-U> followed by <ctrl-X><ctrl-C>.

inflbug.c will compile without an error message.

Where to start
As you know from section 2, the program infl computes three different rates of inflation over a span
of ten years. inflbug is supposed to do exactly that, but fails. To set up this example, the errors in
inflbug.c have been created so that the program will compile but not execute.

Type

inflbug

at the MS-DOS prompt. inflbug runs, but instead of producing a chart of inflated values as the
program infl did in section 2, it does nothing. If you had written this program, you would have
planned for the program to compute the inflated values ten times, and print the results in a chart to
your screen. Since the program compiled without an error message, you can now use csd on the
program to find just where the program fails.

Type

csd inflbug

The source window will appear, with the beginning of the program displayed in the source window.
Your screen will appear as follows:

43

44 A sample debugging session

[#include <stdio.h>
main ()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " ";

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++); { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

inflbug.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

To begin debugging, single-step through the program. Type <F4> followed by <return> to execute
one line of inflbug. The screen will look as follows:

csd C source debugger

A sample debugging session 45

#include <stdio.h>
main ()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " ";

[i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++); { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

inflbug.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Notice that the cursor is positioned at the first executable line of code. Continue single-stepping
through the program by typing <F4> followed by <return>. After each step, type <F7> to change
from the source window to the program window after executing each line to see what output, if any,
the program has produced. Return to the source window by typing <F8>. As the program executes
each line, the cursor will move to that line of code.

As you watch inflbug execute each line, you will notice that you must type <F4>, then return ten
times after you reach the ‘for’ loop before the cursor moves on to the statements following the for
statement. It then proceeds through the rest of the loop, stopping once before each statement.
Then the program exits, leaving the cursor positioned at the upper left corner of the source window.

Switch to the program window by typing <F7>. The program window looks like this:

csd C source debugger

46 A sample debugging session

C>inflbug

C> csd inflbug
C Source Language Debugger Version 1.1
Copyright (c) 1984-1988 by Mark Williams Co., Lake Bluff, IL
Reading source...
Loading...

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
HMM<

The program should execute the entire for loop; instead, it proceeds only with the for statement,
incrementing the variable i. It does not perform the operations in the rest of the loop until after it
has executed the for statement ten times. It seems as if the for statement is isolated from the rest
of the loop. Type <F8> to return to the source window.

To isolate the problem further, set a tracepoint on the printf statement. Use the <↓> key or <crtl-
N> to position the cursor at the printf statement, then type <F3>. The printf function is the last
executable statement of the for loop. By stopping program execution here, you can see the value of
the program’s variables after one pass through the loop. Now, run the program to the traced point
by typing <F4> then <F3>. This causes the debugger to execute the program for what should be one
pass through the for loop. Your screen looks like this:

csd C source debugger

A sample debugging session 47

#include <stdio.h>
main ()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " ";

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++); { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00[printf (msg, i, w1, w2, w3);

inflbug.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Check the value of i: move to the evaluation window by typing <F9>. Type i and <return>. The line
in the evaluation window shows

csd C source debugger

48 A sample debugging session

#include <stdio.h>
main ()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " ";

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++); { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00printf (msg, i, w1, w2, w3);

inflbug.c

i :: 11
[

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

i is a variable that is incremented to set a test-condition for execution of the for loop. Each time the
loop is executed, the value of i increases by one. Since the variable has a value of 11, you know that
the for statement has been executed ten times before it reached the traced printf at the end of the
loop. Now, check the value of w1 to see if it has been affected by the statement

w1*=1.07;

The operator ‘*=’ should multiply the variable w1 (which has a declared value of one), by 1.07, then
assign the product as the new value for w1. Type

w1

in the evaluation window, then <return>. The results will be:

csd C source debugger

A sample debugging session 49

#include <stdio.h>
main ()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " ";

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++); { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00[printf (msg, i, w1, w2, w3);

inflbug.c

i :: 11
w1 :: 1.07

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

This means that the variable w1 has been multiplied by the inflation rate once, even though the for
statement has made ten iterations. From this information, you can conclude that even though the
for loop has been incrementing, the steps within the loop have not been executed. Somehow the
test-condition statement is separated from the rest of the instructions in the loop.

Take a closer look at the for statement:

for (i = 1; i <=10; i++);

The loop test says that while i is less than or equal to 10, increment it by one; but it ends there, and
does not continue with the rest of the loop because of the semi-colon ‘;’ at the end of the line. So,
csd runs the for statement instructions the designated number of times and goes on to the
statements which apply the inflation rate. It proceeds to the printf statement, then exits.

Editing your program
Once you have tracked down the bug in this program, you need to edit out the extra semi-colon and
recompile the program. Exit from csd by typing <Shift-F1>. Use MicroEMACS to edit your
program. The source code for inflbug is in the file inflbug.c. To open the file, type

me inflbug.c

The screen clears, and in a moment the source code appears. Type <ctrl-N> to move the cursor to
the for statement, then type <ctrl-F> until the cursor is positioned just to the right of the extra
semi-colon at the end of the for statement. Type the delete key to remove the semi-colon.
Now save the text and exit MicroEMACS by typing <ctrl-Z>. For more information on how to use
the editor, see the MicroEMACS tutorial in the manual for Let’s C.

Recompiling your program
If you change your source file, as you have in this tutorial, you must recompile the program with the
-VCSD option on the compile command line. After you have returned to the prompt, type this
compile command line:

csd C source debugger

50 A sample debugging session

cc -f -A -VCSD inflbug.c

As discussed at the beginning of this section, the -A option on the command line tells the compiler
program to invoke MicroEMACS whenever it encounters an error message. If you have made any
errors while editing the source code text, you will be returned to MicroEMACS to correct the
program. Exiting from MicroEMACS automatically recompiles the program. This compile-edit-
compile cycle will continue until your program is error free, or until you exit by typing <ctrl-U>,
followed by <ctrl-X><ctrl-C>.

When you have finished compiling, try running your program again. At the system prompt, type

inflbug

Another bug
The program still produces no output. Invoke csd on the program again. Type

csd inflbug

and <return>.

Using the cursor movement keys, position the cursor at the printf call, and type <F3> to set a trace
point.

Press <F4> followed by <F3>, and the program will execute to the traced line. Now, enter the
evaluation window by typing <F9>. Type

i
w1

csd will return the following values in the evaluation window:

csd C source debugger

A sample debugging session 51

#include <stdio.h>
main ()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " ";

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00[printf (msg, i, w1, w2, w3);

inflbug.c

i :: 1
w1 :: 1.07

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Now run the program through again by typing <F4> followed by <F3>. The program will run once
through the loop. Type <F4> then <F3> repeatedly, and watch the value of the variables you typed
in the evaluation window change. When you have run inflbug to its end, your screen will appear as
follows:

csd C source debugger

52 A sample debugging session

[#include <stdio.h>
main ()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " ";

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00printf (msg, i, w1, w2, w3);

inflbug.c

i :: 10
w1 :: 1.967150

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

By checking the value of i and w1 with each iteration of the for loop, you can see that the program
is operating upon the variables and executing the loop properly. The variable i has been
incremented for the test-condition of the for loop, and the variable w1 has been operated on with
the appropriate results. However, none of the computed values are being printed to the program
window; therefore, the problem must be in the printf call.

Since printf is a format conversion function, it should contain instructions to format a line for
printing the variables. This format has conversion specifications which take the value of i as the
first number on the output line (the line number). The inflated variables are the rest of its
arguments. msg is the pointer to a string which should contain the conversion specifications.
Evaluate the string msg using the string cast (str). Move the cursor so that it is inside main.
Return to the evaluation window and type:

(str)msg

in the evaluation window. The result is:

(str)msg :: ""

The pointer has not been initialized to hold the printf conversion specifications, so it picks up a
random value in memory. The pointer is intended to contain the address of a string, but no address
has been assigned to it. The string therefore contains whatever was at that location on the stack
when the program was run. msg does not point to a valid format, and printf does nothing.

Calling functions in the evaluation window
Calling functions from the evaluation window is a powerful debugging tool. In this sample
debugging session, you can use this tool to test a modified printf call.

Type the following line in the evaluation window:

printf(" %2d %f %f %f\n", i, w1, w2, w3)

Now, restart the program by typing <F4> followed by <Home> . Run the program to its end: type
<F4> then <End> . Check the program window; you will see the effect of calling this routine in the

csd C source debugger

A sample debugging session 53

evaluation window. All of the for loop operations have been displayed in the format called for in the
new printf statement; in addition, the printf statement already in the program prints its output
with each iteration of the loop.

By calling a new printf routine, you can see that while your variables are being incremented as you
planned, there is something wrong with the printf statement: it does not have a format string.

Exit, edit, and recompile
Exit csd by typing <Shift-F1>. Then invoke MicroEMACS on the file inflbug.c. Type

me inflbug.c

With <ctrl-N>, move the cursor to the line

char *msg = " ";

Type <ctrl-K> to remove that line. The cursor will be positioned at the beginning of the line. Type a
<Tab>, then:

char *msg = " %2d %f %f %f\n";

Now save your changes and exit MicroEMACS by typing <ctrl-Z>. Recompile as before, using the
following command line:

cc -f -A -VCSD inflbug.c

If you run the program inflbug by typing

inflbug

you should get the results you expected, as follows:

csd C source debugger

54 A sample debugging session

C>inflbug
1 1.070000 1.080000 1.100000
2 1.144900 1.166400 1.210000
3 1.225043 1.259712 1.331000
4 1.310796 1.360489 1.464100
5 1.402551 1.469328 1.610510
6 1.500730 1.586874 1.771560
7 1.605781 1.713824 1.948716
8 1.718186 1.850930 2.143588
9 1.838458 1.999004 2.357946
10 1.967150 2.158924 2.593741
C>

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
HMM<

Where to go from here
This section used the program inflbug to demonstrate the use of csd on a program with bugs.
Special attention was paid to the use of the -VCSD option in the command line, as well as the -A
option to call MicroEMACS from the compile command line. Practical examples of single-stepping,
setting tracepoints, and calling functions in the evaluation window were shown.

Sections 6 through 9 will give detailed references for csd commands, as well as copies of the csd
help screens, an explanation of error messages, and some commonly asked questions. You have
seen the use of csd on some programs; with the Commands reference section and the csd on-line
help screens as guides, you will be able to use csd to debug your own C programs.

csd C source debugger

#%2=0 .nr#0

Questions and answers

Here are some questions users frequently ask about csd. The Mark Williams Company welcomes
other questions and comments from users.

Why does the -VCSD flag make objects larger?
The option -VCSD puts debug information into the object module as it compiles the C
program. This additional information enlarges the object module.

Does csd work on a color monitor?
Yes. In order to run csd on a color monitor that is not in 80x25 character mode, use the -G
(graphics) option on the csd command line.

Why can’t I cast to (str)? I cast to (str)?’>=29
csd reserves types (str), (oct), and (hex) for use as casts to display strings. You have
defined a variable str in one module that you have compiled for debugging.

Why can’t I cast to str or call functions in the evaluation window? I cast to str or call functions in the
evaluation window?’>=29
You did not use the -VCSD option to cc when you linked your program. Recompile or relink
to solve the problem.

Why can’t csd find the variables and functions I ask for in the evaluation window? csd find the
variables and functions I ask for in the evaluation window?’>=29
If csd can find the source, yet not find variables and functions in the evaluation window,
you probably have an assembly language module in your program. Use the -O (model
override) flag when you invoke csd.

55

56 Questions and answers

csd C source debugger

#%2=0 .nr#0

Commands reference

Every source file that you wish to debug must be compiled with the Let’s C compiler, using the -
VCSD option to the cc command.

You may link in objects that are not compiled with -VCSD. In the evaluation window, the global
variables defined in these objects will be visible, but csd will have no knowledge of the internal
variables of objects not compiled with -VCSD.

Invoking csd
To start csd, type csd followed by the name of the program you want to debug. If you invoke csd on
a program and receive the error message:

out of space

while reading source, you need to use the large model source debugger, lcsd. lcsd is the version of
the debugger that has a large data segment. To invoke the large model debugger, type lcsd followed
by the name of the program you want to debug.

For Tandy 2000 users, type tcsd to invoke the debugger. For any other Tandy PC compatible,
invoke the debugger with the csd command.

To debug the program infl, type:

csd infl

When you invoke the debugger, it will print in the history window:

C Source Language Debugger Version 1.1
Copyright 1984-1988 by Mark Williams Co., Lake Bluff, IL
Reading tables...
Adding source: infl.c
Loading infl...

The line

Reading tables...

shows that csd is reading the debug information for the program, and

Loading infl...

means that it is loading the .exe program file. The line

Adding source: infl.c

means that csd is adding the source file used to build the program. Adding source: followed by a
file name appears once for each source file csd adds.

Typing csd at the prompt without arguments produces the following reminder:

usage: CSD -G -D -O[L][M] -Hhelppath -Ssourcepath -T file[.exe] args

The information following ‘‘CSD’’ refers to command line options, which are discussed below. file is
the name of a .exe file you wish to debug. The .exe suffix is optional. args is the remainder of the
command line to be supplied to your program (as if it were running without csd). For example,
when you type

57

58 Commands reference

csd factor 234

the number 234 is the argument passed to the program factor.

The csd options must precede the file name, so that they are not confused with the arguments to
your program. The csd options may be entered in any order.

Options
The following describes the options to the csd command.

-O[L][M]
User program is:

-O small model object module format
-L large model object module format
-M small model Mark Williams format

Ordinarily, csd determines the format of the .exe file you are using by the number of
relocations to be done at load time (this is part of the .exe header).

0 relocations means MWC format
1 relocation means small OMF
>1 relocations means large OMF

If a small model program contains a .s file with absolute segment references (the @
operator), these references must be relocated, causing the above rule to be violated. Note
that the Mark Williams format was produced by Let’s C in versions earlier than 4.0. It is no
longer used by Let’s C. These options allow debugging of such .exe files.

-Dnnn Change data segment size. If you are using a version of csd.exe called lcsd that has a large
data segment, the -D option lets you specify the size of csd’s workspace. nnn is a decimal
number of kilobytes; the default is 128. This workspace holds disk buffers, user
expressions, and the history. It is allocated in addition to the fixed memory used to hold
your program’s symbol table. If this option does not appear in the usage reminder, you are
using a csd.exe with a small data segment; if this is the case, the data segment is 64
kilobytes, the maximum possible.

-H Set the help path. This option tells csd where to find its help files. By default, csd looks for
help files in the current directory, then in the directories named by the environmental
variables PATH and LIBPATH.

The help path must be a complete MS-DOS directory specification. It should terminate in a
back slash (\), the only exception being a drive specification (e.g., C:).

-G The graphics option. Use this when running csd on a color system that is not in 80x25
character mode.

-Inn The reset interrupt option. csd ordinarily uses MS-DOS interrupt 3 to set tracepoints in
your program. However, if the program you are debugging already uses interrupt 3, you
may want csd to set tracepoints using a different interrupt. The -I option tells csd to use
interrupt nn, where nn is a decimal number.

-S source path

-T source path
These options tell csd where to find your C source files.

When you compile a C source file with the -VCSD option, the file name that you type (which

csd C source debugger

Commands reference 59

may include a directory specification) is saved within the object modules and the executable
file. For example, if you typed

cc -VCSD \source\example.c

the executable program would remember the name of its source file not as example.c, but
as \source\example.c. This name will be displayed in the reverse-video line between the
source and evaluation windows.

The -S option tells csd to look for C source files in the named source path. csd will prepend
the given directory path to each source file name in the symbol table. -S is useful if you
compiled the program using the file names with no directory specification, and you want to
use the debugger from another directory without recompiling. For example, if you compiled
the program with

cc -vcsd program.c

and invoked csd with the command

csd -Sutility\program

csd will look for the source file utility\program.c.

The -T option also tells csd to look for C source files in the named source path, and it strips
the existing directory information from the saved source file names. csd will strip any
directory path names from the source file names it finds in the symbol table, then prepend
the given path before reading in the files. -T is useful if you compiled the program giving
path names that are no longer relevant and should be disregarded. For example, if you
compiled the program using the command line

cc -vcsd \src\program.c

and invoked csd with

csd -T\utility\program

csd will look for a source file called \utility\program.c and ignore the leading directory
name it found in the symbol table.

This feature is helpful in situations where you would rather not rebuild an executable file or
change directories. For simplicity’s sake, it is suggested that you run csd from the same
directory where you compiled the program being debugged, or specify complete pathnames
for the source files given to the cc command.

Exiting csd
To exit the debugger once you have started debugging, press the <Shift-F1> key. If you are
currently typing a line in the evaluation window, type <ctrl-U> before exiting.

Getting help
Whenever the debugger is waiting for your input, you can type the <F6> key and the debugger will
display the master help screen. This help information describes all the major functions of the
debugger and the key that invokes each function. From this screen, you can choose other help
screens that describe individual functions in detail.

After you have read the help screen, type <F6> again to return to the debugger.

The following help screens are provided:

csd C source debugger

60 Commands reference

Cursor movement
General
Trace
Run
Evaluation
Find
History
Insert/Delete
Select

The help screens are detailed enough so that many users do not need to refer to this manual once
they get started. Section 6, Help screens, contains a copy of every help screen.

Windows
csd uses four windows: the source window, the evaluation window, the program window, and the
history window.

The source window displays your program’s source code. By moving the cursor within this window,
you can tell csd which portion of code to evaluate, where to set tracepoints, and which stack frame
to use.

The evaluation window is where csd accepts C expressions and variables that you type on the
keyboard. When an expression is typed into this window, csd evaluates it and prints the result
back in the evaluation window.

The program window is the area in memory where a program normally writes its output.

The history window is where csd records the events of your debugging session. Each time csd stops
your program at a tracepoint, the traced statement or expression is written onto the history window.
This is csd’s way of logging statements that it encounters during a debugging session.

Program window

To see the program window, type <F7>. csd normally jumps to the program window while your
program is running, so you can see the output that your program has generated. This screen
appears just as it would if your program were executed without csd.

You can choose to display a screen or window other than the program window while your program
is running. To do so, use the <F2> key. Keep in mind that the program’s output will go to the
selected screen when you run the program. To erase the output, press <F7>, followed by the key for
the selected screen or window.

Source window

The source window contains the source code of the program you are debugging. The cursor appears
in this window when you first invoke csd. To return to this window from another screen or window,
type the <F8> key.

If your program is more than one screen long (about 19 lines), not all of your program can be
displayed at one time. To scroll through your program one line at a time, use the <↑> and <↓>
arrow keys. The <PgDn> and <PgUp> keys move through your source program one page (or screen
full of text) at a time. Finally, the <Home> and <End> keys jump to the beginning or the end,
respectively, of your entire source file.

If you want to look at a line that contains a specific string, use the <F1> key. This provides a
powerful search feature with which you can find a specific string and locate the next statement to be
traced. The <F1> key is discussed in more detail later in this section.

csd C source debugger

Commands reference 61

To execute your program, press the <F4> key, then one of the following:

<F3> Execute to the next tracepoint.

<return> Execute one line of code.

<↓> Same as <return>, but function calls are
treated as one statement.

<←> Execute to the end of the current function.

<Home> Reload and initialize program.

<End> Execute to the end of the program;
do not stop at tracepoints.

If you have been moving through your source window and have lost track of what the next
executable statement is, press the <Shift-F8> key. This will automatically position the cursor at the
next executable statement.

When csd stops at a tracepoint in your source program, the cursor is positioned at the beginning of
the traced source line, which is the next line to be executed.

csd displays both the source window and the evaluation window at the same time. The boundary
between them is a reverse-video line that names the source file being displayed. If your program
uses more than one source file, the name will change as you scroll from one file to another. csd
displays the source files in the order in which you entered them on the cc command line.

You can change the relative sizes of the evaluation and source windows with the <F2> key, which
will be described later in this section.

Evaluation window

The evaluation window is beneath the source window, under the reverse-video line. To jump to the
evaluation window, press the <F9> key. This window is where you can type expressions that you
want csd to evaluate. For example, if the variable index is an int that is in the current scope of the
program and has the value ‘1’, you can display its value by typing

index

into the evaluation window. csd will evaluate index and print the following:

index :: 1

Values are displayed in their natural format except for structs and unions, which are displayed as a
list of hexadecimal bytes. For large structures, csd will display as much as will fit on the current
line. For purposes of tracing, large structures are, of course, evaluated in their entirety. Strings are
printed within quotation marks, and characters are enclosed within apostrophes.

You can type any legal C expression into the evaluation window. csd will check the legality of the
expression as you type it. If you make an error in syntax or if a variable name is typed incorrectly,
csd will give you an error message. To delete a character that is mistyped, use the backspace key.
Typing <ctrl-U> deletes an entire line of text.

csd can evaluate expressions that use the following elements:

operators
constants (except ‘#’ defined constants)
variables (in the current scope)
functions

In addition, the following special casts allow you to display information in a useful form:

csd C source debugger

62 Commands reference

oct octal
hex hexadecimal
str character strings

For example, if you issue the command

csd factor 12 22 32

then execute one statement by typing <F4> and <return>. Now you can enter the evaluation
window, and type the following statements:

argv[1]
(str)argv[1]
(oct)argv[1]

csd will fill the evaluation window as follows:

argv[1] :: 0x5321
(str)argv[1] :: "12"
(oct)argv[1] :: 051441

Note that pointers are automatically displayed in hexadecimal. Keep in mind that argv[1] contains a
pointer allocated by the run-time startup library routine and might have a different value for your
system.

csd cannot evaluate expressions that contain C keywords, braces, labels, or semicolons. One
exception to this rule is the keyword sizeof: it can be used in the evaluation window. Also,
preprocessor information is not available in the evaluation window: csd does not recognize ‘#’
defined symbols.

Expressions are evaluated as soon as they are typed in, and also whenever your program encounters
a tracepoint, provided they are in the current scope.

Another powerful feature of csd is its ability to set tracepoints on expressions entered in the
evaluation window. This causes csd to halt execution of your program if the value of the traced
expression changes. To do this, csd enters single-step mode to evaluate all of the expressions in the
evaluation window before each line of source code is executed.

To set a tracepoint on an expression in the evaluation window, switch to the evaluation window;
then type the expression to be evaluated, but instead of typing <return>, type <F3>. The expression
will shift into high-intensity characters to show that it is being traced. From now on, when you run
the program in trace mode, execution will stop whenever the value of the traced expression changes.

When you type in expressions that contain variables, the variables must be in the current scope.
This means that the variables that you are entering must be either external or declared by the
function within which the cursor is positioned. Expressions that refer to several different scopes
can appear in the evaluation window at the same time; however, csd cannot evaluate all of them at
the same time. csd stops execution when it encounters a tracepoint and checks the expressions
within the evaluation window; it evaluates only the expressions that are within the current scope.

Note that evaluation window expressions that produce side effects, such as assignments or printf
statements, should be used with caution and deleted after use. Remember, too, that if you are
tracing an expression, each expression in the window is evaluated after each statement in the
program. Because the debugger needs to halt the program after each line to evaluate any traced
expressions, execution is slowed considerably.

You can manipulate the evaluation window by using the following keys:

csd C source debugger

Commands reference 63

Up <↑> Move up to previous expression
Down <↓> Move down to next expression
Page Up <PgUp> Move to previous page of expressions
Page Down <PgDn> Move to next page of expressions
Begin <Home> Move to beginning of evaluation window
End <End> Move to end of evaluation window
Find <F1> Move to pattern specified
Delete Delete portions of the evaluation window
Insert <Ins> Add expression at cursor

Please note the following:

1. Preprocessor information is not available in csd.

2. Literal strings may be used only as function arguments; you may only reference objects in
your own data space. You can affect one assignment, as follows:

cp=strcpy(malloc(4), "cat")

3. Structure initializors, for example {0, NULL, 135}, are not expressions. Structures must be
initialized one member at a time.

History screen

The history window is called by striking the <F10> key. This screen displays a log of events that
occur while debugging, including every line of code or expression that was executed or traced while
it had a tracepoint set.

You can manipulate the history window using the same keys as above, except Insert.

Up <↑> Move up to previous line
Down <↓> Move down to next line
Page Up <PgUp> Move to previous page of lines
Page Down <PgDn> Move to the next page of lines
Begin <Home> Move to beginning of history window
End <End> Move to end of history window
Find <F1> Move to pattern specified
Delete Delete portions of history window

Because the history window and the other I/O activity done by csd share the same buffers in
memory, the contents of the history window are deleted automatically by csd as memory gets full.

You can redirect history window entries to a printer by using the <F2> command with the ‘L’ option.
Keep in mind that a program with many traced statements and expressions will generate large
amounts of output.

Command keys
csd supports a number of different keystrokes for any given command. The following table lists
each csd function and cursor movement command and the corresponding keys to invoke the
command. The following sections describe the cursor movement commands.

csd C source debugger

64 Commands reference

FUNCTION DESCRIPTION COMMAND

Find Find a string of text <F1> or <esc>1 or
<ctrl-S> or <esc>S or
<ctrl-R> or <esc>R

Select Select an option <F2> or <esc>2
Trace Trace an expression <F3> or <esc>3
Run Run the program <F4> or <esc>4
Cancel Cancel the last command <F5> or <esc>5

or <F5>
Help Display a help screen <F6> or <esc>6

or <F6>
Program Display program window <F7> or <esc>7
Source Display source window <F8> or <esc>8
Evaluation Enter evaluation window <F9> or <esc>9
History Display history window <F10> or <esc>0
Up Move cursor up <↑> or <ctrl-P>
Down Move cursor down <↓> or <ctrl-N>
Out Move to calling function <←> or <ctrl-B>
In Undo an Out <→> or <ctrl-F>
Exit Exit csd <Shift-F1> or <ctrl-X> <ctrl-C>
Current Return to current line <Shift-F8> or <ctrl-X>X
Page Up Move cursor up a page <PgUp> or <esc>V
Page Down Move cursor down a page <PgDn> or <ctrl-V>
Delete Delete a line or <ctrl-K>
Insert Insert a line <Ins> or <ctrl-O>
Beginning Beginning of source <Home> or <esc><
End End of source <End> or <esc>>

Begin <Home>

The <Home> key can be used by itself to move the cursor or with another key to modify that key’s
action.

<Home>
Move the cursor to the beginning of the source, evaluation, or history windows. This
command positions the cursor on the first line of the material in the screen or window.

 <Home>
In the evaluation window or history window, remove all material from the beginning to the
current cursor position.

<F1> <Home>
In the source window, the evaluation window, or the history window, search for a pattern
from the current cursor location back toward the beginning of the window. In the case of
the source window, all source files are searched.

<F4> <Home>
Reload and reinitialize the target program.

End <End>

The <End> key can be used by itself to move the cursor, or with another key to modify that key’s
action.

csd C source debugger

Commands reference 65

<End> Move the cursor to the last line of the source window, the evaluation window, or the history
window.

 <End>
Erase all lines from the current cursor position to the end of the window or screen. This
works in the evaluation and history windows only.

<F1> <End>
In the source window, the evaluation window, or the history window, search for a pattern
from the current cursor location through the end of the window. In the case of the source
window, all source files are searched.

<F4> <End>
Execute the target program to the end, without stopping at tracepoints. All tracepoints,
however, are logged into the history window.

Up <↑>

The <↑> key can be used by itself to move the cursor, or with another key to modify that key’s
action.

<↑> Move the cursor to the previous line in the source window, the evaluation window, or the
history window.

 <↑>
Erase the current line and move the cursor to the previous line. This works in the
evaluation and history windows only.

<F1> <↑>
In the source, evaluation, or history windows, search for a pattern from the current cursor
location through the beginning of the window. In the case of the source window, only the
current source file is searched, beginning at the current cursor position and moving toward
the first line of the current source module.

<F2> <↑>
In the source or evaluation window, increase the size of the evaluation window by one line
and decrease the size of the source window by one line.

Down <↓>

The <↓> key can be used either by itself to move the cursor, or with another key to modify that key’s
action.

<↓> Move to the next line in the source window, the evaluation window, or the history window.

<↓>
In the evaluation window or the history window, remove the current line and move the
cursor to the next line.

<F1> <↓>
In the source window, the evaluation window, or the history window, search for a pattern
from the current cursor location through the end of the window. In the source window,
search only the current source file.

<F2> <↓>
In the source or evaluation windows, decrease the size of the evaluation window by one line
and increase the size of the source window by one line.

<F4> <↓>
Execute one line of code. A function call is treated as one single line of code. This is in
contrast to the sequence <F4> <return>, which executes a single statement, even if the next

csd C source debugger

66 Commands reference

statement is within a called function.

Out <←>

The <←> key is used in the source window to change the current scope of a variable. When your
program stops at a tracepoint, the active scope is that of the function being executed. Using the
<←> key activates the scope of the function that called the current function. Then you can examine
or change variables defined in the scope of the calling routine as well. When the scope is changed,
the cursor is moved to the line of code that called the current function. Repeatedly pressing the
<←> key will bring you to the outermost stack frame.

In <→>

When used in the source window, the <→> key undoes the effect of the <←> key. If you have not
typed the <←> key since the last tracepoint, the <→> key has no effect.

Page Up <PgUp>

When used in the source window, the evaluation window, or the history window, the <PgUp> key
scrolls the current window one page (or screen full of text) toward the beginning. If the current page
of the source window is less than one page from the beginning of the file, the cursor will be moved to
the beginning of the file.

If the cursor is positioned in the source window near the beginning of a source file, the <PgUp> key
will move the cursor into the previous file, should there be one.

Page Down <PgDn>

In the source window, the evaluation window, or the history window, pressing the <PgDn> key
moves the cursor one page toward the end. If the cursor is less than one page from the end, it will
be moved to the end of the file.

If the cursor is in the source window and positioned near the end of a source file, the <PgDn> key
will move the cursor into the next file, if there is one.

Find <F1>

The <F1> key searches for a specific pattern. For this reason, it is also called the find key.

The action of the <F1> key can be modified by a number of different keys, as follows.

<F1> <F3>
In the source and evaluation windows, find the next statement that has a tracepoint set on
it.

<F1> <Home>
In the evaluation window and the history window, search toward the beginning. In the
source window, search toward the beginning of the window and examine all files.

<F1> <↑>
In the evaluation window and the history window, search toward the beginning. In the
source window, search toward the beginning but search only the current source file.

<F1> <End>
In the evaluation window and the history window, search toward the end. In the source
window, search toward the end and examine all files.

<F1> <↓>
In the evaluation window and the history window, search toward the end. In the source
window, search toward the end, but search only the current source file.

csd C source debugger

Commands reference 67

The string that <F1> seeks is a pattern of characters. These characters can be ordinary
alphanumeric characters, or a mixture of alphanumeric characters with wildcard characters that
modify how the search is conducted.

The simplest pattern is a set of non-special characters, which is matched literally.

The following special characters can be used to specify powerful patterns:

^ Match only the beginning of a line
$ Match only the end of a line
? Match any one character
* Match any number of characters
\ Escape character: use it to search

for a wildcard literally
[abc] Match any one of a, b or c
[a-m] Match any of the letters a through m

To match a line in the source, evaluation, or history windows that ends in a ‘;’, type the sequence

<F1>;$<return>

This says to find a pattern that has a semicolon followed by the end of a line.

Keep in mind that <F1> will search for the strings exactly as they appear on the screen. For
example, to find the line

a :: 11

where 11 is the value supplied by csd, type:

<F1>1$<return>

If you want to search for any of the special characters of the patterns, precede that character by a
backslash ‘\’. For example, to find the line

c = a*b;

type:

a*b

Note that if you do not type a pattern after the <F1> key, csd will search for the last pattern used, if
there is one.

If you start an <F1> command and wish to abandon it or restart it, press the <F5> key. Typing
<ctrl-U> restarts the find pattern.

Insert <Ins>

The <Ins> command is used only in the evaluation window. It opens a blank line so you can enter a
new expression above the one entered in the current line.

Delete

The key can be used in the evaluation window or the history window to remove or ‘‘kill’’ text.
Its action can be modified by other keys, as follows:

 <↑>
Kill the current line of text, and reposition the cursor on the previous line.

 <↓>
Kill the current line of text, and reposition the cursor on the following line.

csd C source debugger

68 Commands reference

 <Home>
Kill all text from the beginning of the file to the cursor.

 <End>
Kill all text from the cursor to the end of the file.

To cancel a kill command before it is executed, type <F5>.

You should periodically use to purge the history window of information you no longer need. If
you do not, it will take up space that could be used to hold source lines in memory, and slow down
csd.

Run <F4>

The <F4> key, which can be used in any window, tells csd to execute your program. Its operation is
modified by the following keys.

<F4> <F3>
Execute the program up to the next tracepoint. The tracepoint can be either in the source
window, in which case execution stops just before execution of the traced line, or in the
evaluation window, in which case csd stops if the value of the traced expression changes.
The cursor is moved to the statement or expression that bears the tracepoint, unless it is in
a different window.

<F4> <return>
Execute one line of code. If that line is a function call, execution stops on the first line of
that function.

<F4> <↓>
Execute one line of code, as with the <return> modifier discussed above, but treat function
calls as a single line of code.

<F4> <→>
Execute to the end of the current function.

<F4> <Home>
Reload and restart the program being debugged.

<F4> <End>
Execute the program to its end, without stopping at any traced statements or expressions.
Traced statements and expressions will be logged onto the history screen.

To cancel <F4>, press the <F5> key.

Trace <F3>

The <F3> sets a tracepoint on the line on which the cursor is currently positioned. Traced lines are
written in high-intensity characters. To turn a tracepoint off, simply move the cursor back to the
line being traced and press <F3> again. Tracepoints can be set either in the source window or in
the evaluation window.

When a tracepoint is set on a line of code in the source window, execution stops immediately before
that line of code. Only executable lines of code can be traced; statements such as comments and
declarations cannot be traced. Note, too, that because the compiler optimizes unused and some
common code out of existence, some things that appear to be executable actually cannot be
executed. If you try to set a tracepoint on a line that has no executable code, the debugger will give
you the error message:

not executable statement

csd C source debugger

Commands reference 69

When a tracepoint is set on an expression in the evaluation window, execution of the program stops
when the value of the traced expression changes.

Tracing an evaluated expression causes csd to single-step through the entire program. This is done
so csd can recognize the change in the variable as soon as possible. Thus, tracing an expression in
the evaluation window noticeably slows the execution of the program being debugged. The
execution will also be noticeably slower if a large number of statements are executed if you Run to
the next line, or Run to the end of the function.

Select <F2>

The <F2>, or ‘‘select’’, key controls the way csd presents its screens. How it functions is controlled
by a number of modifying keys, as follows.

<F2> <↑>
Move the boundary between the source and evaluation windows up by one line.

<F2> <↓>
Move the boundary between the source and evaluation windows down by one line.

<F2> <F7>
Display the program’s output on the program window. This is the default.

<F2> <F8>
Display the program’s output in the source window. The source window will shift to display
the code currently being executed. Note that if no tracepoints are set, execution may be too
fast to follow.

<F2> <F9>
Display the program’s output in the evaluation window. The variables in the evaluation
window will change as the program executes. Note that if no tracepoints are set, execution
may be too fast to follow.

<F2> <F10>
Display the program’s output on the history window.

<F2> L Redirect to the printer all material normally logged onto the history window. Pressing this
combination of keys again turns off this feature.

To cancel an <F2> command, press the <F5> key.

csd C source debugger

70 Commands reference

csd C source debugger

#%2=0 .nr#0

Help screens

If you have a question about how the debugger operates, press <F6>. This will let you invoke any of
the following help screens to refresh your memory about how a given csd command works.

Note that the windows may appear slightly differently on your screen due to differences in
formatting.

71

72 Help Screens

General help
Program <F7>

Enter program window. This is the window that is usually shown while the
program is running.

Source <F8>
Enter source window, where the program source is shown.

Eval <F9>
Enter evaluation window, where C expressions are evaluated.

History <F10>
Enter the history window, where a log of traced statements and expressions is
shown.

Help <F6>
Display helpful information, or return to debugger if already in the help window.

Exit <Shift-F1>
Exit the debugger.

The keys below are not accepted in the program window.

Beg<Home>
Go to beginning of display; in the source window, this is the first line of the first
source file.

End <End>
Go to the end of the display; in the source window, this is the last line of the last
source file.

Out <←>
In the source window, go to the statement from which the current function was
called.

In <→>
Go back to the statement from which you went Out.

Move about with <↑> <↓> (up, down arrows).

For more on the following commands, press the corresponding key.

Trace <F3> Run <F4> Eval <F9> Find <F1>
Insert <Ins> Delete Select <F2>

csd C source debugger

Help Screens 73

Trace
In the source window, the current statement is marked traced. The statement is shown
highlighted, and whenever it is executed it is first copied to the history log. If the statement is
already traced, the trace is removed.

Only executable statements may be traced. This excludes all comments and declarations.
Furthermore, the optimizer in the compiler deletes unreachable and duplicated code (usually break,
continue or return statements); deleted code is not executable.

In the evaluation window, the current expression is traced. This means that before each source
statement is executed, the expression is re-evaluated and is copied to the history log whenever it is
found to have changed value. If the expression is already traced, the trace is removed.

This command is not accepted in any other window.

The program may also be run until a trace is encountered: see Run <F4>.

Press Help <F6> to return to the debugger.

csd C source debugger

74 Help Screens

Execution
Run <F4>

Execute program.

The next key must be one of the following:

Trace <F3>
Program executes until a traced statement is encountered or a traced expression
changes value.

Return <return>
One statement is executed (i.e., program is single-stepped).

Down <↓>
One statement in the current function is executed. A function call is treated as an
indivisible statement.

Beg <Home>
Program is reloaded and execution is reinitialized.

End <End>
Program executes through to the end, logging tracepoints in history window.

Out <←>
Program executes until the current function returns.

Cancel <F5>
Cancels the <F4> command.

The program executes at full speed if there are no traced expressions in the evaluation window
(traced statements do not significantly impact the speed) and if you use Run Trace or Run End.
Otherwise, it runs at single-step speed, which can be significantly slower.

Press Help <F6> to return to the debugger.

csd C source debugger

Help Screens 75

Evaluation window
Evaluating C Expressions

In the evaluation window, a C expression may be entered involving operators, literal strings,
constants and variables in the current scope (the scope of the current line in the source window).
An expression may not involve keywords (such as if, for) or labels or braces ‘{}’or semi-colons ‘;’. See
your C reference manual for details.

Expressions are evaluated immediately, and whenever the program encounters a tracepoint. The
resulting value is displayed in a format appropriate to the type. No value is displayed if the
expression involves an automatic variable and the current function does not have an active stack
frame. The debugger defines types (oct), (hex) and (str) for use as casts to display values in base 8,
base 16, or as character strings, respectively. Macro names (generated by #define) are not
recognized.

Expressions with side effects (assignments, increments, decrements, functions performing I/O) will
naturally cause these effects whenever evaluated; they should probably be removed after being
evaluated the first time. Literal character strings may be used as arguments to functions (including
strcmp and strcpy), but cannot be assigned to variables, since the space for any literal in a C
program is allocated statically.

Press Help <F6> to return to the debugger.

csd C source debugger

76 Help Screens

Find
Find <F1>

Find the first line in the current window matching a pattern, which may be the
Trace key or metacharacters.

Trace <F3>
The Trace key causes the pattern to be highlighted and matches traced statements
or expressions.

^ matches the beginning of a line.
$ matches the end of a line.
? matches any character.
* matches a string of zero or more of any characters.
[abc] a class (in []) matches any member of the class.
[i-n] part of a class may be specified as a range.

If not given, the pattern defaults to the previous value.

The command is terminated by one of the following:

Up <↑>
Search up to the beginning of the current source file or top of the evaluation or
history display.

Down <↓>
Search down to the end of the current source file or bottom of the evaluation or
history display.

Beg <Home>
Search up to the beginning of the first source file or top of the evaluation or history
display.

End <End>
Search down to the end of the last source file or bottom of the evaluation or history
window.

Cancel <F5>
Cancel the <F1> command.

If the pattern is not found, this failure is reported.

Press Help <F6> to return to the debugger.

csd C source debugger

Help Screens 77

Insert/Delete
Insert<Ins>

Insert a blank line above the current line and make it current. This is only
permitted in the evaluation window.

Delete
Delete a range of lines in the current window. This works in the evaluation and
history windows only.

The command is terminated by one of the following:

Up <↑>
Delete the current line and move up one line.

Down <↓>
Delete the current line and move down one line.

Beg <Home>
Delete from the current line to the beginning of the display.

End <End>
Delete from the current line to the end of the display.

Cancel <F5>
Cancel the command.

If you get an ‘‘out of space’’ message in the evaluation window, it may be necessary to remove part of
the display to free space for new expressions. If the debugger is rereading the disk for each new
screen of source, removing several lines of history or evaluation may free enough space for more
source buffers, eliminating the extra disk activity.

Press Help <F6> to return to the debugger.

csd C source debugger

78 Help Screens

Select
Select <F2>

Select various auxiliary options.

The command is terminated by one of the following:

Up <↑>
Move the boundary between the source and evaluation windows up one line.

Down <↓>
Move the boundary between the source and evaluation windows down one line.

L
Toggle the listing switch (initially off). When on, this copies the history log to the
printer.

Program <F7>
Select the program window to be displayed when the program is running. When
initially invoked, the debugger selects the program window by default.

Source <F8>
Select the program window to be displayed when the program is running. Any
program output will be displayed in the source window.

Eval <F9>
Select the evaluation window to be displayed when the program is running. Any
program output will be displayed in the evaluation window.

History <F10>
Select the history window to be displayed when the program is running. Any
program output will be displayed in the history window.

Cancel <F5>
Cancel the <F2> command.

Press Help <F6> to return to the debugger.

csd C source debugger

Help Screens 79

History
History log

The history window stores messages about the program being debugged.

These messages begin with csd’s sign on banner, the list of source files found in the
debug tables, and an announcement that csd has loaded the program for execution.

If the program causes a machine exception, the details are reported. If the program
terminates normally, the exit status is reported. If you Run the program after a
normal or abnormal termination, the reload for execution is reported. If you Run
the program to the End, Out, or Down, traced statements and changes in the
values of traced expressions are logged to the history window as they occur. If csd
encounters an error during the session, the details are reported.

You can use the cursor movement and Find commands to examine the history log,
and you can Delete lines.

csd automatically discards history, from the beginning, when other commands for
memory begin to fail.

Press Help to return to the debugger.

csd C source debugger

80 Help Screens

Cursor movement
FUNCTION KEY ACTION

Begin <Home>Go to beginning of display; in the source
window this is the first line of the first
source file.

End <End> Go to end of the display; in the source
window this is the last line of the last
source file.

Fbegin <ctrl-A>Go to beginning of current source file.

Fend <ctrl-E>Go to end of the current source file.

Up <↑> Move the cursor one line up.

Down <↓> Move the cursor one line down.

Previous <ctrl-↑>Move the cursor one page up.

Next <ctrl-↓>Move the cursor one page down.

Out <←> In the source window go to the statement
from which current function was called.

In <→> Go back to the statement from which you went
Out.

Locate <Home>Go to the source statement at which
execution is stopped.

Cursor movement is possible in the source, evaluation, and history windows.

Press Help to return to the debugger.

csd C source debugger

#%2=0 .nr#0

Error messages

The following are the error messages printed by csd. All Messages are displayed in the history
window. All Fatal error messages are displayed in the history window. Fatal errors force the
history window to be displayed, and ask that you exit from csd.

usage: CSD -G -D -O[L][M] -Hhelppath -Ssourcepath -T file[.exe] args
Fatal error. You have specified improper arguments to csd. This message tells you the
form of the csd command. If the source file is to be found other than on the current disk or
directory, you need to specify the -S option to tell csd where to find it. If the csd disk is not
in the current disk drive or directory, you need to tell csd where it is with the -H option so
that it can find the help files. The -G option is used when running csd on a color system
which is not in 80 x 25 character mode. The file is the name of the program that you are
debugging. Finally, [args] is the list of arguments to your program. For a complete listing
of the compile command arguments and their uses, see section 6, csd Command reference.

Reading tables...
Message. This means that the tables containing debugging information are being read in.

Loading filename...
Message. filename is the name of the program being debugged. This message is printed the
first time the program is loaded.

Reloading filename...
Message. This message is printed when the program is reloaded after <Run><End>,
<Run><Begin>, a machine fault or after the program exits under its own control.

Adding source: sourcefile
After the "Reading tables..." message, you will see one of these for each source file found in
the tables.

file .exe : cannot open
Fatal error. The file that you have specified in the csd command cannot be found.

insufficient memory for csd to run
Fatal error. Not enough memory is available for csd to load the symbol table and allocate
the number of kilobytes specified with the -D option. Reduce the number of bytes specified.

insufficient memory to load program
Fatal error. Not enough memory is left after loading the symbol table and the sources to
run the program. Reduce the number of bytes specified with the -D option.

this source file is more recent than the program
Message. This message reports that the program probably needs to be recompiled to bring
it up to date with the source.

blocks nested too deeply
Fatal error. The program has nested compound statement blocks deeper than csd can keep
track of.

valid breakpoint traps are 0, 3,...12, and 15
Fatal error. This reports that the -Itrap# option has an invalid value. The default value is
12.

81

82 Error Messages

csd stack overflow
Message. This message appears when csd overflows its own stack.

junk in high byte of program counter: addr
Message. This reports that the traced program has a program counter with non-zero value
in the high 8 bits. These bits are not used by the 68000 processor, but it’s unusual for
them to be set.

no room in vblqueue for break key handler
Message. This means that the break key will not be active. This should not appear in most
circumstances because there are seven free slots available.

Can’t read file.prg read file.prg’>=29
Fatal error. csd has encountered a read error trying to read your program.

No source!
Fatal error. No source files were compiled with the -VCSD option. You must use this
option when compiling programs for debugging if you want to use them with csd.

out of memory
Fatal error. There is not enough room to hold the program’s debug tables. Try using the -D
option to increase the size of csd’s workspace. Otherwise, debug smaller portions of your
program.

execute failed: filename
This means that the program cannot be executed.

sourcefile.c: cannot open
One of the source files used to compile your program cannot be found. The names of the
source files are kept in the executable .exe file, so if you have moved them, csd cannot find
them. Use the -T or -S command line option to tell csd where to find them.

Cannot Open
This means that the file name specified as the program to be debugged cannot be opened to
read the debug tables.

file has a corrupted image, should be recompiled
Fatal error. In order to start tracing your program, csd must write a breakpoint instruction
into the program file. When tracing begins, the program file is rewritten to its original
value. This message means that something went wrong, and csd left the breakpoint in the
program file. The program cannot be traced as it is, and you will have to relink from object
files or recompile.

try Help
You have pressed a key that is not acceptable at this time. For example, if you are at the
beginning of the source file and type <↑>, you will get this message.

at outermost frame
In exploring the stack, you have typed the <←> key, but your caller, if it exists, is not visible
to csd.

at innermost frame
In exploring the stack, you have pressed the <→> key, but you are already positioned at the
innermost frame; that is, you have undone all of the <←>’s.

not executable statement
You are trying to set a trace on a statement that is not executable. Declarations, comments,
braces ‘{ }’, and ‘#’ statements are not executable. In addition, code for some statements is
combined during optimization, so that statements such as break, continue and do may not
have any executable code.

csd C source debugger

Error Messages 83

not traceable expression
The expression you are trying to trace cannot be traced because it has no value. This is
true of functions that are of void type.

out of space
Remove some of the expressions, or delete some of the history window.

helpfile.hlp: cannot open
csd cannot find helpfile.hlp in the current path(s). You can use the -H option to correct
this.

more space required
There is not enough room to add expressions to the evaluation window. Remove some
expressions from the evaluation window and try again.

Can’t move boundary any further move boundary any further’>=29
You are trying to move the cursor so it is positioned before the beginning or after the end of
the expression, history, source or evaluation windows. csd requires that the source window
be at least three lines long, and that the evaluation window be at least two lines long.

exit status nnn
Message. this message reports the value returned by the program when it terminated.

Evaluation window error messages
The following messages refer to expressions in the evaluation window. They describe errors
in entering expressions, and are self explanatory:

integer type required
integer or pointer type required
numeric type required
numeric or pointer type required
expression required
literal or variable in current scope required
struct or union member required
lvalue required
pointer required
lvalue or type required
terminal or prefix op required
function required
array or pointer required
pointer to struct or union required
struct or union required
infix operator required
matching ’?’ and ’:’ required
pointer to same type required
matching types required
’)’ required
’]’ required

Machine fault names

The following lists named machine faults.

bus error
Access to an address which does not exist, or which the hardware forbids in user mode.

Address error
Access to an odd address for a long or word operand.

csd C source debugger

84 Error Messages

Illegal instruction
Execution of an instruction which is not supported by the processor.

Divide by zero
The divide instruction was given a zero as a divisor.

Bounds trap
The 68000 chk instruction trapped.

Overflow trap
The 68000 trapv instruction trapped.

csd C source debugger

#%2=0 .nr#0

The COHERENT System 85

Index

to _

<*(Ad> . 13
<*(Au>. 13
<ctrl-*(Ad> 13
<ctrl-*(Al>. 19
<ctrl-*(Au> 13

\fB(str)\fR . 23
\fB-VCSD\fP 5
\fB<ctrl-N>\fR 13
\fB<ctrl-P>\fR. 13
\fB<ctrl-V>\fP. 13
\fB<esc> V\fP 13
\fB<F10>\fR. 16
\fB<F1>\fR 14
\fB<F2>\fR 37
\fB<F3>\fR 15
\fB<F4>\fR 16
\fB<F6>\fR 24
\fB<F8>\fR 13
\fB<F9>\fR 20
\fB<Shift-F1>\fR 14
\fB\Fb\fR . 64
\fB\Fc\fR . 61
\fB\FP\fR . 66
\fB\Fz\fR . 64

A

argc . 34
argv . 34
arrow key

down. 13, 65
up . 13, 65

C

command keys 63
compiling

for debugging 27
options . 27

current statement key 61
cursor. 13

D

delete key. 67
displaying variables. 19
down arrow 13, 65

E

error

in expression 61
messages 81

evaluate
expressions 22
variables. 19

evaluation window 11, 20, 31, 60-61
calling functions in 36, 52
change size of 37
removing errors 20
trace expressions in 37

execute
single line 17
to tracepoint 15

exit BcsdR . 14

F

find
find key . 66
lines . 14
pattern . 60
patterns . 38

function keys 10
definition table 10

H

help screens 24, 59, 71
cursor movement 80
delete . 77
evaluation window. 75
execution 74
find. 76
general help. 72
history. 79
insert . 77
select . 78
trace . 73

history window 16, 60, 63

I

In key . 66
insert key. 67
install . 4

L

large model csd 57
lcsd . 57
left arrow . 66

M

Mark Williams Shell 5
MicroEMACS keystrokes. 10
MWS . 5

O

INDEX

86 The COHERENT System

options
csd command 58

Out key . 66

P

pattern . 60
program window 60

R

removing errors 61
restart program 17
right arrow . 66
run key . 68

S

scope . 19
select key. 37, 69
single step 17, 44
source window. 11, 60
stack . 38

In key . 66
Out key . 66

T

Tandy 2000 57
tcsd . 57
trace key . 68
tracepoint . 15

removing tracepoint 15
setting tracepoint 15

U

up arrow 13, 65

W

window . 60

INDEX

