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Preface
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Introduction

COHERENT is a professional operating system designed for use on machines that can run MS-DOS. It has many of
the features and functionality of the UNIX operating system, but is the creation of Mark Williams Company.
COHERENT gives your computer multi-tasking, multi-user capabilities without the tremendous overhead, both in
hardware and money, required by current editions of UNIX. COHERENT is what UNIX used to be: a well-designed
system with selected tools and well-designed utilities that bring out the best in modest computer systems.

The COHERENT system consists of the following:

• A fully multi-tasking, multi-user kernel.

• Choice of Bourne or Korn shells.

• The Mark Williams C compiler, linker, assembler, archiver, and other tools.

• A suite of commands, including editors, languages, tools, and utilities.

• Drivers for peripheral devices, including terminals; ASCII, PostScript, and PCL printers; dumb serial cards;
and tape backup.

• Libraries, including the standard C library, the mathematics library, and libraries for curses and socket
emulation.

• Numerous tools, utilities, and games.

For a list of some third-party programs that you can run under COHERENT, see the release notes that accompany
this manual. New programs are released regularly, so consult the Mark Williams Bulletin Board for the latest
information.

What Is COHERENT?
COHERENT is a multiuser, multitasking operating system. Multiuser means that with COHERENT, more than one
person can use your computer at any given time. Multitasking means that with COHERENT, any user can run more
than one program at any given time. The design of COHERENT employs a few elegant concepts to give you a
powerful and flexible system that is easy to use.

What is an Operating System?

An operating system is the master program that controls the operation of all other programs. It loads programs
into memory, controls their execution, and controls a program’s access to peripheral devices, such as printers,
modems, and terminals.

Some operating systems (e.g., MS-DOS) permit only one user to use the computer at a time; and that user can run
only one program at a time. However, you may well want your computer to support more than one user at a time,
and run more than one program simultaneously. Sharing not only yields many economies (such as allowing a
group of users to share one printer), but also allows the users to communicate with each other and so work
together more efficiently.

Any multitasking operating system must be able to do the following tasks efficiently:

• Schedule computer time
• Control mass-storage devices (disks and tape drives)
• Organize disk-storage space
• Protect programs from conflict
• Protect stored information from destruction
• Ease cooperation among users

Today’s operating systems also provide tools. These are programs that are bundled with the operating system, and
that are designed to help you do your work more efficiently. For example, you need editors, compilers, debuggers,
and assemblers to develop and test programs. Text formatters and spelling checkers help you write memoranda,
manuals, or books. Command processors (also called shells) help you run the computer easily. Status checkers
tell you what programs are being run, who is using the system, and how much space is left on your disk.
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2 Introduction

The combination of operating system and its tools transforms a boxful of wires and circuits into a useful machine.

Design Philosophy

A computer system is not an end in itself; rather, it is a ‘‘bench’’ for constructing tools to solve specific problems. If
the operating system is too specialized or limited, the range of problems it can help you solve will be narrow. On
the other hand, if the operating system is too detailed, then it becomes complex, idiosyncratic, and potentially
unreliable.

The following quotation from John Conway summarizes well the philosophy that underlies the design of the
COHERENT system:

The engineer who wants a machine for some specific purpose will normally approve the simplest
machine that does the job. He will not usually prefer a multiplicity of parts with the same effect, nor
will he countenance the insertion of components with no function.

The COHERENT system follows this approach throughout. In brief, COHERENT is what UNIX used to be: an efficient
system of selected tools and well-designed utilities, that brings out the best in your computer system.

Installation
The release notes that come with COHERENT describe how to install COHERENT. The release notes also list
hardware that is known to work with COHERENT, and hardware that is known not to work with COHERENT. Before
you begin to install COHERENT on your system, be sure to check those lists and make sure that your system is
compatible with COHERENT.

Please note that Mark Williams Company tries to keep these lists up to date, but it is not possible to keep pace
with the continual introduction of new machines and new models. If you do not find your machine on either list,
the odds are that COHERENT will work correctly with it.

User Registration and Reaction Report
Before you continue, fill out the User Registration Card that came with your copy of COHERENT. When you return
this card, you become eligible for direct telephone support from the Mark Williams Company technical staff, and
you will automatically receive information about all new releases and updates.

If you have comments or reactions to the COHERENT software or documentation, please fill out and mail the User
Reaction Report included at the end of the manual. We especially wish to know if you found errors in this manual.
Mark Williams Company needs your comments to continue to improve COHERENT.

Technical Support
Mark Williams Company provides free technical support to all registered users of COHERENT. If you are
experiencing difficulties with COHERENT, outside the area of programming errors, feel free to contact the Mark
Williams Technical Support Staff. You can telephone, send electronic mail, or write. Please note that this support
is available only if you have returned your User Registration Card for COHERENT.

Before you contact Mark Williams Technical Support with your problem, please check this manual first. If you do
not find an article in the Lexicon that addresses your problem, be sure to check the index at the back of the
manual. Often, the information that you want is kept in an article that you didn’t consider, and the index will
point you to it.

Another good way to find a topic in the manual is to use the command apropos, which is part of the COHERENT

system. apropos finds every article in the Lexicon that mentions a given term or phrase. For details on how to use
this command, see its entry in the Lexicon.

If the manual does not solve your problem — or if you find it to be misleading or difficult to understand — then
Mark Williams Technical Support is available to help you. You can reach Technical Support via any number of
routes:

Electronic Mail
If you have access to the Internet, send mail to support@mwc.com. This is the preferred means of
communication. Be sure to include your surface address and telephone number as well as your e-mail
address, so we can contact you even if return electronic mail fails.

FAX Send your technical FAXes to 1-708-291-6750.
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Surface Mail
Write to Technical Support, Mark Williams Company, 60 Revere Drive, Northbrook, IL 60062.

Telephone
To contact Technical Support via telephone, call 1-708-291-6700, between 9 AM and 5 PM, Central Time.
Please have at hand your manual for COHERENT, as well as your serial number and version number.
Please collect as much information as you can concerning your difficulty before you call. If possible, call
while you are at your machine, so the technical support person can walk you through your problem.

Help Us Help You

Mark Williams Technical Support wants to help you fix your problem as quickly as possible, so you can enjoy your
COHERENT system. You can help us to help you by doing the following:

Before you contact Technical Support, write down as carefully as possible what you did that triggered the
problem. Copy down exactly any error messages that appeared on the screen.

If the problem is triggered by a script or program, try to edit the script or program to the chunk of code that
triggers the problem. The smaller the chunk of code, the better.

In your message, please include the following information:

• The make of your computer, and the type and clock speed of its microprocessor.

• The amount of RAM that you have.

• The size and make of your hard disk, and the make of its controller.

• If the problem affects the video display, include the make of your display (i.e., tube) and controller card.

If you have found an error in the manual, please mention the page on which the error occurs.

This information will help us to to clear up your problem as quickly as possible.

How To Use This Manual
COHERENT encompasses an entire world of computing. Before you learn the signposts of this world, you may find
it difficult to perform even simple tasks; and you may feel confusion and frustration.

COHERENT, however, more than anything else, consists of tools; and this manual is one of the most useful tools
that your COHERENT system has. It is designed to guide you through the COHERENT system, to answer your
questions, and to lead you into areas of the system that may never have explored on your own. If you can learn to
use it effectively, you will both lower the amount of frustration you will have to endure, and increase your
productivity.

Beginners, in particular, should look over this manual carefully. The following sub-sections describe the steps a
beginner should take when she begins to work with this manual.

Elementary Tutorials

The following tutorials teach the essentials of COHERENT: they teach both essential information and essential skills.
Every beginner should work through these tutorials:

• First, read the tutorial Using the COHERENT System. This tutorial will introduce the COHERENT system and
its tools. It also teaches you such important tasks as how to shut the system down properly (hint — never
just shutting the machine off!) and how to boot it again.

• Then look at the subsequent tutorial, Introducing sh, the Bourne Shell. The shell is the program through
which you give commands to your COHERENT system; and it incorporates a powerful programming language of
its own. Some of this information will seem obscure to you; but the as with any language, the more you use
the shell’s programming language the more quickly will you acquire fluency.

• You should then look into learning how to use a text editor under COHERENT. You will need to use a text
editor in order to write scripts, programs, and documents, which is the heart of using any information-
processing tool like COHERENT.

COHERENT offers two screen-oriented text editors: MicroEMACS, and vi. The manual has a tutorial on
MicroEMACS. You will find it to be fairly easy to learn how to perform simple text editing with MicroEMACS.
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Advanced Tutorials

The above tutorials will teach you the rudiments of how to use COHERENT. The next set of tutorials introduce
some of COHERENT’s tools and languages. These tutorials are rather specialized. A beginner should look only at
the ones that interest her:

Introduction to the ed Line Editor
ed is an editor from the early days of UNIX. It is line oriented, which means that you edit text by typing
commands rather than by moving a cursor around the screen. ed is powerful and useful tool, but is of
limited appeal to most beginners.

Introduction to the sed Stream Editor
sed is another line-oriented editor. However, it differs from ed in that it works non-interactively: you write
a program in the sed language, then filter one or more files through the program. sed is very useful if you
wish to process large amounts of text quickly and in an automated manner, but is of limited appear to
most beginners.

The C Language
This is a primer on the C language, for persons who have never programmed before. C is the native
language of COHERENT and UNIX. If you are interested in learning something about C, you should look at
this tutorial.

Introduction to the awk Language
awk is a general-purpose for processing text. With awk, you can process both ordinary text and tables;
thus, you can quickly implement simple data-base programs and other useful tools. If you are at all
interested in processing text or data under COHERENT, you should look at this tutorial.

Introduction to lex, the Lexicon Analyzer
lex is a tool with which you can generate programs to analyze text lexically. You write a set of rules for
lex, and it generates a program that you can compile and run. lex is a very useful tool for programmers
who have to perform sophisticated analysis of text. For many beginners, however, it is of limited appeal.

Introduction to yacc
yacc is another tool that with which you can generate programs. It is often used with lex to build
sophisticated tools, such as compilers. If you are interested in building such tools, or if the problem of
parsing text interests you, you will find this tutorial to be helpful.

bc Desk Calculator Language
bc is a language in which you can write programs to perform calculations. The numbers you calculate can
be of infinite size and precision (or as infinite as your system’s memory allows). You can perform
calculations ‘‘on the fly,’’ as with a desk calculator; or you can write programs that you store on disk and
run repeatedly. If number-crunching interests you, you should find this tutorial helpful.

Introduction to the m4 Macro Processor
m4 is a macro processor. A macro is a sign or symbol whose interpretation can be deferred until needed.
For example, a writer may embed a macro in a letter in place of the name of the person to whom the letter
is addressed, and replace the macro with the name only when the letter is printed. This permits her to use
the same letter over and over again, with the computer replacing the macro with a different name. Most
COHERENT tools can process macros to a limited extent. m4, however, will teach you about macro
processing, and let you write your own macro-process programs.

The make Programming Discipline
make is a utility that builds things out of other things. This tool is absolutely essential to anyone who
writes programs or generates reports.

nroff, The Text-Formatting Language
nroff is a text-formatting language. With it (and its related program troff), you can format letters,
documents, or even entire books. For example, this manual was formatted with COHERENT troff.

UUCP, Remote Communications Utility
One of the most attractive features of COHERENT or UNIX is its ability to communicate with other
computers without needing the assistance of a human operator. UUCP is a set of programs with which you
can exchange electronic mail and files with other COHERENT and UNIX systems. With UUCP (and some help
from other computer systems) you can even tie into the Internet, and participate in the global computer
network that is being expanded every day. This tutorial will introduce you to UUCP, and help you get UUCP

up and running on your system.

TUTORIALS



Introduction 5

The Lexicon

The bulk of this manual consists of the Lexicon. This is a set of more than 1,000 articles, arranged in alphabetical
order. Each article discusses one aspect of the COHERENT system: a command; a library function; a system file; or
a general discussion of a technical topic, such as how to hook up a terminal to your system.

At first glance, the Lexicon looks like a rag-bag of material that is in no particular order. However, this is not true:
it actually has a carefully designed internal structure. Once you learn this structure, you can use it both to help
you look up a specific item of information quickly, or take a guided tour through some aspect of the COHERENT

system that you otherwise might never have explored.

Internally, the Lexicon has a tree structure. Just as the roots and branches of a tree grow from a central trunk,
dividing and subdividing as they progress, so too the articles of the Lexicon grow from one central article, and
divide into ever more detailed discussions as they go along.

The central article is the one called COHERENT. It gives an overview of the COHERENT system — its design
philosophy, how it relates to other operating systems, and its internal structure. This article introduces (or
‘‘branches into’’) the following three ‘‘overview’’ articles:

Running COHERENT
This article introduces other articles that describe things you can do with COHERENT: the commands and
tools that an ordinary user would use in the course of her daily work.

Programming COHERENT
This articles introduces other articles that describe how to write programs for COHERENT. These articles
describe, among other things, the COHERENT C compiler, and the the libraries and header files included
with COHERENT.

Administering COHERENT
This article introduces articles of interest to perons who administer a COHERENT system. These articles
cover such topics as how to set up mail and UUCP on your system; the ‘‘magic’’ files that COHERENT uses to
manage itself; and the COHERENT kernel and its device drivers.

For example, consider that you are a programmer who wants to learn if COHERENT has a library function that
compares two strings. You would turn first to the article called COHERENT, which would point you to the
overview article called Programming COHERENT. Looking in there, you see a reference to an article on libraries.
This, in turn, points to the article on libc, which is the standard C library. Turning to this article, you find a
section on string functions, which has brief summaries of the functions memcmp(), strcmp(), and strncmp(). Each
of these, in turn, is described in detail in its own Lexicon entry, which By reading each entry, you can quickly find
which function suits your purposes.

As you can see, the overview article briefly summarized the articles that are available on a given topic. If you want
details, you can turn to the articles themselves — which you can find easily because all of the articles printed in
alphabetical order.

Another approach is to look directly for an article on the subject that interests you. For example, suppose you
wanted to learn about COHERENT’s mail system. You could open the Lexicon and look for an article called mail;
and just as you supposed, there it is.

If you’re looking for a discussion of a specialized topic that does not have its own article in the Lexicon, look in the
Index, which is at the back of the manual. Often, you will find an entry that points to the information you want.

Finally, many users just like to open the Lexicon and leaf through it at random. Often, they discover nooks and
crannies within the COHERENT system that they never would have encountered otherwise.

Where To Go From Here
The next step is to install COHERENT if you have not yet done so. Fill out the user registration card at the back of
this manual and mail it to Mark Williams Company, so you will become eligible for technical support. If you are
new to UNIX or COHERENT, turn to the tutorial Using the COHERENT System; otherwise, you may wish to study a
specialized tutorial or begin to explore the Lexicon.

We hope that you enjoy using your COHERENT system!
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Using the COHERENT System

This tutorial introduces the COHERENT system. It introduces such basic concepts as command and file system,
and walks you through simple exercises to help you gain some familiarity with the dimensions of COHERENT. If
you are new to COHERENT, you should read through this tutorial first. Not every section in here will be
immediately useful to every user; for example, a beginner will probably not need to study the section on system
administration, at least at first. But sooner or later, you will need to work with all of the material in this tutorial.

If you are unfamiliar with what an operating system is, or if you are unsure how COHERENT differs from other
operating systems (such as MS-DOS), turn to the Lexicon article for COHERENT. There, you will find a brief
description of what an operating system is and what makes COHERENT special.

Before you can begin to use this tutorial, you must install COHERENT on your computer. If you have not yet done
so, turn to the Release Notes that came with this manual and follow the directions in them.

How Do I Begin?
For everyone, there’s that first time. You have installed COHERENT on your computer, you’ve checked the file
system, mounted all of your file systems, and have gone into multi-user mode. Now you are sitting in front of your
computer and all you see on your screen is the enigmatic phrase:

Coherent 386 login:

‘‘What,’’ you ask yourself, ‘‘do I do now?’’ Well, the rest of this section will tell you how to get started with
COHERENT.

Logging in

To begin, you must log in. Unlike MS-DOS, COHERENT is a multi-user system: many people can use the same
computer. They can access it either via terminals that you plug into your computer’s serial ports, or via modem.
Each user owns his personal set of files, his special way of setting up his environment, his own mailbox, and other
things which are special to him alone. Because many people can use COHERENT, before you begin to work with
COHERENT you must tell it who you are. This process of identifying yourself to COHERENT is called logging in. That
mysterious prompt

Coherent 386 login:

is COHERENT’s way of asking you who you are.

To log in, type your personal login identifier. You set this identifier when you installed COHERENT onto your
computer. Most people set their login identifier to their initials or their first names, usually all in lower-case
letters. Once you type your login identifier, press the (¢) key (sometimes labelled <Enter> or <Return>). If you
did not set up a login for yourself during installation, log in as the superuser root and add one for yourself. For
information on how to log in as the superuser, see below. For information on how to add a new user, see the
section on Adding a New User, below, or see the Lexicon article for the command newusr.

While you were installing COHERENT on your system, you were given the option of setting a password for your login
identifier. This is done to stop other users from logging in as you — and to keep ‘‘crackers’’ from dialing into your
system and vandalizing it. If you did set a password, after you enter your login identifier COHERENT prompts you
for it with the following prompt:

Password:

Type your password. Note that COHERENT does not display the password on the screen as you type it; this is to
prevent bystanders from seeing your password over your shoulder as you type it. After you type your password,
again type (¢).

If you entered your login identifier and passwords correctly, COHERENT will display the command prompt:

$

This is COHERENT’s way of saying, ‘‘Give me a command, I’m ready to go!’’ If you made a mistake while logging in,
either with your login identifier or your password, COHERENT will reply,
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8 Using COHERENT

Login incorrect: try again.

and again display its login prompt:

Coherent 386 login:

Try again, until you do manage to log in. If you have received the ‘$’ prompt, congratulations! COHERENT is now
ready to work with you.

Special Terminal Keys

The next sections will introduce you to some elementary COHERENT commands. Before we continue, however, you
must first become familiar with a few special keys on your computer’s keyboard, and with the special meanings
they have to the COHERENT system.

One special key on the keyboard will be used frequently in your work: the (¢) key. As noted above, this key is
sometimes labelled <Enter>.

You must conclude every command you type into COHERENT by pressing (¢). This tells COHERENT that you have
finished typing, and that you now want it to execute your command. COHERENT will not execute your command
until you press this key.

Another special key is the control key. This key is usually labelled Ctrl or cntl or cont. Most terminals place it to
the left of the keyboard. This key is used to send certain special characters.

The ctrl key is like another kind of shift key: to use it, hold it down while you press another key. For example, to
send the computer a <ctrl-D> character, hold down the ctrl key, strike the D key, then release both keys.

Because control characters have no corresponding printable characters, in this tutorial they will be represented in
the form:

<ctrl-D>

for the character ctrl-D.

While you are typing information into the COHERENT system, you can correct what you type before COHERENT
processes it. Two keys will help you do this. The first is the <kill> character, which erases the line entirely and
allows you to begin again. This is usually <ctrl-U>.

The other key is the <erase> character, normally <ctrl-H> or the <backspace> key. This moves the cursor one
character to the left, to erase the most recently typed character.

One more special key is the <interrupt> key. This key aborts a command before it normally finishes. By default,
<ctrl-C> is the abort key on your keyboard.

Try Some COHERENT Commands

Now that you’ve logged in to your COHERENT system, try a few simple COHERENT commands to get a feel for
COHERENT. Type the following examples just as they are shown, and observe what COHERENT does in response to
each. Be sure to press (¢) to end each line.

The first example uses the command cat, to let you type a small chunk of text and save it in a file.

cat >file01
This is a sample COHERENT file.
<ctrl-D>

Remember, don’t type <ctrl-D> literally — rather, hold down the ctrl key and press ‘D’ at the same time.

In the above script, the characters cat tell COHERENT to invoke its concatenation program. The characters >file01
tells COHERENT to write what you type into a file that you name file01. The line

This is a sample COHERENT file.

is the text that COHERENT writes into file01. Finally, <ctrl-D> signals COHERENT that you have finished typing.

Now type:

cat file01

This command again invokes the concatenation program cat, but this time tell it to print on your screen the
contents of file01, which you just created. In reply to your command, COHERENT should print on your screen:
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This is a sample COHERENT file.

which is the text you typed in the previous exercise.

Finally, type the command:

lc

This command lists all of the files that you have in the current directory. In reply to your command, COHERENT
should print on your screen:

Files:
file01

which is the file you just created. (You may see other files as well.)

Congratulations! You have just made COHERENT work for you.

To review: The first command, cat, created a file and filled it with some text. The second cat command copied the
file onto your terminal’s screen. Finally, the command lc printed the name of each of your files. The following
sections of this tutorial describe each of these commands in more depth. Each command also has its own entry in
the Lexicon, which appears in the second half of this manual; look there for a full description of each command,
what it does, and how you can use it.

Giving Commands to COHERENT

Once you have logged into COHERENT, all of its resources are yours to command. COHERENT’s commands give you
control over these resources.

Every COHERENT command has the same structure: the command name, which tells COHERENT the command you
want it to execute; and the arguments, which detail what you want the command to do, how you want it to do it,
and to what you want it done.

Some commands consist only of the command name, and do not take arguments. For example, the command

lc

which was introduced in the previous section, has lc as the first part and prints the names of all files in the
current directory, in columns. If you have no files, lc prints nothing.

The second part of the command consists of the arguments given to the command. (These are also known by the
term parameters.) Arguments are separated from each other by spaces or tab characters.

The arguments of the command are further divided into options and names. Names usually name files; options
modify the action of the command. An option is usually prefixed by a hyphen ‘-’.

An example of a name argument is shown in this example of a cat command:

cat file01

This command types the contents of file01 on your terminal. The name argument is file01.

For an example of options, consider the command ls. ls lists your file names one name per line. Thus, typing

ls

produces a list of the form:

file01

However, ls can tell you more about a file than just its name. To see additional information about each file, type:

ls -l

The ‘-l’ option to ls prints a ‘‘long’’ output, of the following form:

-rw-r--r-- 1 you 17 Sat Aug 15 17:20 file01

This listing shows the size of the file, the date it was created or last modified, and its degree of protection. The
letters to the left of the listing give the permissions for the file; these describe who is allowed to do what to the file.
These are described in detail in the Lexicon articles for the commands ls and chmod. The other entries on that
line respectively name the owner of the file (in this case, you); the size of the file, in bytes; the date and time the file
was last modified; and, finally, the file’s name.
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As an example of combining an option parameter with a name parameter, consider the command:

ls -l file01

This invokes the command ls, tells it to print a long listing, and tells it to list only the file file01.

As you will see in the following sections, almost all COHERENT commands have this syntax.

help, man, apropos: Help with Commands

The COHERENT system has three commands that give information about other commands: help, which prints a
brief summary of how to use a command; man, which prints the full Lexicon entry for that command on your
screen; and apropos, which shows all commands (all Lexicon entries, really) which relate to a given subject.

To find out about the help command, type

help

by itself, or type:

help help

The latter command tells help to print the help entry for the help command itself.

To get information on the lc command, type:

help lc

You will see something very like the following:

lc -- List directory’s contents in columnar format

lc [ -1abcdfp ] [ directory ...]

Options:
-1 List files one per line instead of in columns
-a List all files in directory (including ‘.’ and ‘..’)
-b List block-special files only
-c List character-special files only
-d List directories only
-f List regular files only
-p List pipe files only

Options can be combined. If no directory is specified, the current
directory is used.

To obtain detailed information on a command, use the man command. (man is short for ‘‘manual’’.) As noted
above, the man prints on your screen a duplicate of that command’s entry in the Lexicon. To learn more about the
help command, type:

man help

If your screen fills with information, man will wait for you to press the spacebar to continue. This is to prevent you
from missing information should it scroll too fast.

Finally, the command apropos print information about all Lexicon articles that are a propos a given topic. For
example, if you want to know what Lexicon articles are a propos the subject of printers, type the command:

apropos printer

COHERENT replies by printing something like the following:
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chreq Change priority, lifetime, or printer for a job
epson Prepare files for Epson printer
hp Prepare files for Hewlett-Packard LaserJet printer
hpd Spooler daemon for laser printer
lp Spool a job for printing
lpd Spooler daemon for line printer
lpioctl.h Definitions for line-printer I/O control
lpr Spool a job for printing on a dot-matrix printer
lpshut Turn off the printer daemon despooler
lpskip Abort/restart current job on line printer
lpstat Give status of printer or job
printer How to attach and run a printer
prps Prepare files for PostScript-compatible printer
route Show or reset a user’s default printer

Read the summary descriptions of each Lexicon article to see which ones look promising; then either look them up
in this manual, or use the man command to display them on your screen.

Our survey of elementary commands will conclude by describing two important tasks: how to reboot the computer,
and how to log out.

Shutting Down COHERENT and Rebooting

Under many operating systems, such as MS-DOS, rebooting is as simple as pressing a couple of keys or cycling
power on the computer. The COHERENT system, however, is a multi-user, multi-tasking operating system that is
more sophisticated than MS-DOS or similar operating systems. COHERENT maintains an elaborate system of
internal buffers that are designed to reduce the frequency with which a program has to read data from, or write
data to, the hard disk. If you were just to turn the computer off and turn it on again, all of the data in those
buffers would be lost. At the very least, each user would lose whatever data he was working with at the time; at
worst, the COHERENT file system could be damaged and files lost.

For this reason, it is extremely important that you shut down COHERENT properly. You must follow these
procedures if you want to shut off the computer, or if you wish to reboot MS-DOS.

To shut down COHERENT, do the following:

• When you see the COHERENT command prompt, type either <ctrl-D> or the command exit. This will log you
out of your system. (Logging out is described in more detail in the following section.)

• When you see the prompt

Coherent 386 login:

type root, to log in as the superuser root. COHERENT will ask you for the superuser’s password; type the
password that you assigned to the superuser when you installed COHERENT onto your computer. The Lexicon
article on superuser describes what the superuser is; as will later sections of this tutorial.

• Once you have logged in as the superuser, type the following command:

/etc/shutdown halt 0

As its name implies, this command shuts down the COHERENT system. The command will ask you if you
really, truly wish to shut down COHERENT; reply ‘y’, for ‘‘yes’’.

• Now, you can turn the computer off. Or, you can type <ctrl><alt><del>, or press the reset button on your
computer (should it have one).

After you have rebooted your computer, just sit back and wait until you receive the Coherent 386 login:
prompt on your screen.

If you wish to reboot MS-DOS, watch the computer: wait until you see the computer attempting to read from
the floppy-disk drive. At that moment, press the number key that corresponds to the hard-disk sector on
which you stored MS-DOS, from 0 to 7. For example, if MS-DOS is kept on partition 2, then press 2 when the
computer is attempting to read the floppy-disk drive. Be sure to press the number key that is on the main
bank of keys, — not the key on the numeric keypad.

That’s all there is to it. Shutting down is relatively simple and straightforward; but if you do not take the time to
shut COHERENT down properly, you will find that you have destroyed some or all of your data.
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By the way, the Lexicon articles on booting and login describe in detail the processes of booting and logging into
your COHERENT system.

Logging Out

As noted above, logging in tells COHERENT who you are and that you wish to work with COHERENT for a while.
When you have finished working with COHERENT, you must tell COHERENT that you are done for now. This
process is called logging out.

There are two ways to log out. Each involves typing a special command to the COHERENT prompt. The first way is
to type <ctrl-D> at the COHERENT prompt. The second is to type the command:

exit

Each of these commands has the same effect: the COHERENT system flushes all buffers that you ‘‘own’’ and prints
the prompt

Coherent 386 login:

on your screen. At this point, you cannot issue any commands to COHERENT; but you (or someone else) can log
into COHERENT from your terminal.

Please note that logging out is not the same as shutting down COHERENT. When you shut down COHERENT, you
are shutting down the entire system. When you log out, however, you are simply ceasing to work with COHERENT.
After you log out, however, COHERENT continues to work on its own: organizing files, exchanging information with
other computers via modem, executing programs for users who have logged in via modem or other terminals, and
in general making itself useful. If you shut off the computer after you log out, you will damage the file system, just
the same as if you shut it off while you were logged in.

The following sections in this tutorial will go into COHERENT’s commands in more detail. All, however, build on the
elementary actions presented here: logging into COHERENT; issuing commands; receiving responses from
COHERENT; and logging out.

Working With Files and Directories
The file and the directory are the cornerstones of the COHERENT system. Practically everything you do on the
system will involve files: changing files, invoking files, transmitting or receiving files, filling files up or emptying files
out. And, directories let you organize masses of files into a rational hierarchy.

This section discusses manipulating files and directories under the COHERENT system. It covers the following:

• What file and directory mean to COHERENT

• Introduces the commands for manipulating files, directories and their contents

• Discusses more advanced topics, such as creating and mounting new file systems

• Tours the COHERENT file system

This section of the tutorial covers much ground in a relatively brief space. Readers who are new to personal
computers should concentrate on the earlier sub-sections, which cover elementary topics; whereas more
experienced readers may wish to concentrate on the later sub-sections, which cover the more technical material.

File Names

A file is a mass of electronic impulses that is given a name and stored on a disk. Files are given names to make
them easy for you to retrieve. COHERENT has rules about how files can be named, to ensure that each file’s name
is unique.

The following are examples of legal file names:

.profile
File01
cmd.sh
file01
test.c

File names are generally made up of upper-case and lower-case letters and numbers. COHERENT, unlike MS-DOS,
distinguishes capital letters from lower-case letters; therefore, to COHERENT the file names File01 and file01 are
different.
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Any character can be used to name a file, including a control character. We recommend, however, that you name
files using only upper- or lower-case alphabetic characters, numerals, and the punctuation marks ‘.’ or ‘_’.

The file name must not be more than 14 characters long. If you specify a longer name, characters beyond the 14th
will be lopped off and thrown away. For example, COHERENT regards the file names

this_is_very_long_file_name_1

and

this_is_very_long_file_name_2

as being identical.

Introduction to Directories

A directory is a group of files that have been given a name. Directories let you organize files systematically. This
may not seem important now, but as you work with COHERENT you will find that you accumulate hundreds, or
even thousands, of files; without system of directories to organize files, you would quickly lose track of what each
file held, and find it nearly impossible to find any given file within your system.

Because files are stored within directories, the complete name of a file actually consists of its name plus the name
of the directory in which it is stored. This lets COHERENT distinguish files that have the same name but are stored
in different directories. COHERENT uses the slash character ‘/’ to distinguish a directory name from a file name; for
example, to view the contents of file junk in directory text_files, you would use the command:

cat text_files/junk

This system of naming will be described in full in the next sub-section; for the moment, just bear in mind that for
COHERENT to find a file, you must tell COHERENT not only the name of the file, but the name of the directory in
which it is kept.

When you work with COHERENT, you are always ‘‘in’’ a directory. The directory you happen to be ‘‘in’’ at any given
moment is called the current directory. The current directory is the one whose files you are working with at this
moment. When you type the name of a file and do not mention what directory it is stored in, COHERENT assumes
that the file is kept in the current directory. COHERENT includes commands that let you shift from one directory to
another.

When you log into COHERENT, COHERENT places you ‘‘in’’ a directory that you ‘‘own’’. This directory is called your
home directory. You control all of the files in your home directory; it is your ‘‘base of operations’’ for working within
COHERENT.

Path Names

As you may have deduced by now, a directory can contain both files and other directories. The directories within a
directory may themselves contain both files and directories; which then may contain other files and directories; and
so on.

This design of directories branching into other directories, which in turn branch into still other directories, is called
tree structured. As the tree-metaphor implies, the COHERENT system of directories has a root directory, that is, a
directory that is not contained in any other directory but from which all other directories descend, directly or
indirectly. The name of the root directory is simply:

/

One subdirectory of the root directory is called usr. This subdirectory contains the home directories of all users.
Other common paths for home directories are /u and /usr/acct. To list the names of all user directories, type the
command:

lc /usr

If your login name is henry, then the command

lc /usr/henry

lists the names of the files in your home directory. Please note that in the argument /usr/henry, the first slash
names the root directory; all subsequent slashes serve simply to separate one directory name from the next.

The name /usr/henry is called a path name. The term ‘‘path name’’ means the full name of a given file or directory
— including all the directories that lead from the root directory to it.
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Path names may be full or partial. All full path names begin with / for root, and continue with further
subdirectory names. Path names that do not begin with a slash are partial; COHERENT automatically prefixes them
with the path name of the current directory to make them complete before it uses them.

The elements of path names are separated by slashes, so if there were a file in newdirectory named newfile, you
would refer to it as

newdirectory/newfile

The absence of a beginning slash indicates that the path name begins in the current directory. Thus, if your home
directory name is henry, then another way to name the path to newfile is to type:

/usr/henry/newdirectory/newfile

The following diagram gives a rough description of the structure of the COHERENT file system:

bin

henry other

usr

/

Please note that unlike a real tree, the root of a tree structure has its root at the top rather than at the bottom.
Here, the root directory ‘/’ is at the top of the structure. It contains the directories bin and usr (among many
others). Directory usr contains directories henry and other (again, among many others. These directories can
contain many other directories and subdirectories.

In summary, a path name lists all the subdirectories leading from the root directory to the file in question. In the
above example, newfile is a file in subdirectory newdirectory, which in turn is a file in the home directory henry,
which is further a file in the directory usr. The directory usr is a file in the master or root directory for the system.

You don’t need to specify all of this, fortunately, whenever you want to specify a file in a subdirectory. COHERENT
assumes that partially specified path names are within the current directory. Therefore, you can specify a
subdirectory by specifying the name of the directory first, followed by the rest of the path name.

COHERENT also allows two special abbreviations for directories. The abbreviation ‘..’ always represents the current
directory’s parent directory. In the case of the directory /usr/henry, directory usr is the parent of directory henry.
In other words, ‘..’ stands for the directory in which the current directory resides. Every directory in the system
except the root directory has a parent. For the root directory, ‘..’ refers to itself.

Another directory abbreviation is ‘.’, which means the current directory.

The following sub-sections describe the commands that COHERENT includes for manipulating files and directories.
As you work with COHERENT, you will use these commands continually, so it would be worth your while to spend a
little time learning them.

ls, lc: Listing Your Directory

This sub-section introduces two of the more commonly used commands: ls and lc. Both ls and lc list the files in a
directory.

To see how these commands work, presume that your directory has the files created in previous sections and that
you did not remove directory newdirectory. To list the files in your directory, simply use the command with no
parameters:

ls

This produces a list of files, such as:

another
backup
doc1
doc2
file01
file02
newdirectory
stuff
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The command lc also lists file names, but it prints the files and directories separately, in columns across the
screen. For example, typing

lc

gives something of the form:

Directories:
backup newdirectory

Files:
another doc1 doc2 file01 file02
stuff

If you want to list files in a directory other than your own, name that directory as an argument to the command.
For example, /bin is a directory in the COHERENT system that contains commands. Type

lc /bin

and lc will print the contents of /bin.

Both ls and lc can take options. An option is indicated by a hyphen ‘-’. The option must appear before any other
argument. For example, to list only the files in the directory for user carol, leaving out any directories, use the f
option with lc:

lc -f /usr/carol

Or, if you type the command

lc -f

the COHERENT system prints all of the files in the current directory. The following gives the commonly used
options to the command lc:

-d List directories only, omitting files
-f List files only, omitting directories
-1 List files in single-column format

ls produces a list of file names, one per line, and optionally much more information. To produce all the
information, use the -l option (note that this is an ‘‘el’’, not a numeral 1):

ls -l

The following gives a sample of the long list that this option produces. Headings have been added to show the
meaning of each column:

Size, Modification
Mode # Owner Bytes Date Time Name

-rw-r--r-- 1 you 17 Wed Aug 19 17:51 file01
drwxrwxrwx 2 you 32 Wed Aug 19 17:53 backup
-rw-r--r-- 1 you 17 Wed Aug 19 17:53 doc1

The meaning of each column will be explained later. For now, note that the last column gives the name of each
file, and the fourth column from the left gives the size of each file, in bytes.

cat: Print Contents of a File

The command cat opens and prints the contents of a text file — that is, a file of source code, a document, or a
message file. For example, to list the contents of file file01, type:

cat file01

This command types the file’s contents on the terminal (sometimes also called the standard output).

Another use for cat — the use from which it gets its name — is to concatenate several files on the standard output.
For example, the command

cat one two three

prints the files one, two, and three, one after the other, on your screen.

You can use cat to concatenate several files into one file by redirecting the standard output into a file. The special
character ‘>’ tells COHERENT to redirect the standard output into a file. For example, the command
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cat one two three >four

concatenates files one two three into file four. four need not exist prior to this command; if it does, its contents
are replaced by the data redirected into it.

Redirection is a very useful feature of COHERENT that will be used through the rest of this tutorial. The ‘>’ operator
also gives an example of the set of operators that can be used with COHERENT commands. These operators, which
increase the power of each COHERENT command, will be described in detail later in this tutorial.

more: List Files on the Screen

If the file you list with cat is more than 24 lines long, the beginning lines of the file scroll off the screen too quickly
for you to read them. To ensure that you see all of the lines in the file, use the command more.

more prints a file in 24-line chunks. After it has listed a chunk of text, it pauses and waits for you to press
<space>. If you call more with an option of -s,

more -s file

it will skip all blank lines that are in the text file.

mkdir: Create a Directory

The command mkdir creates a new directory. For example, to create a new directory named newdirectory, type
the following command:

mkdir newdirectory

If you follow this command with lc, it lists your regular files, but it also lists newdirectory separately as a
directory:

Directories:
newdirectory

Files:
file01 file02

To refer to any files in newdirectory, use its name in specifying the path name.

Now, create a file in the new directory:

cat >newdirectory/newfile
lines to be
contained in newfile
<ctrl-D>

This command copies lines to the file described by the partial path name newdirectory/newfile.

cd: Change Directory

The command cd changes the current working directory. For example, the command

cd newdirectory

moves you into directory newdirectory that you created in the previous sub-section. Now, if you type the
command lc, to show the contents of the current directory, it will show the following:

Files:
newfile

To return to the previous directory, use the command:

cd ..

As noted earlier, the abbreviation ‘..’ always indicates the current directory’s parent directory.

pwd: Print Working Directory

The command pwd prints the name of the current, or working, directory. For example, if your login name is
henry, then if you type

pwd

you will see:
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/usr/henry

Now, use the cd command to switch to directory newdirectory, as follows:

cd newdirectory

When you type

pwd

you will see:

/usr/henry/newdirectory

Finally, use the cd command to return to the previous directory, as follows:

cd ..

When you type

pwd

you now see:

/usr/henry

If you are ever unsure what directory you are in, use the pwd command.

mv, cp: Move and Copy Files

The command mv moves files. You can move a file from one name to another within the current directory (in effect
rename the file), or you can move a file from one directory to another. mv takes two parameters: the first names
the file to be moved; the second names either the new name that you are giving to the file, or the directory into
which you are moving the file.

For example, to move file file01 into directory newdirectory, type:

mv file01 newdirectory

To see where file01 is now, type the following command:

lc newdirectory

The result is:

Files:
newfile

To move newfile back into the current directory, use the command:

mv newdirectory/newfile .

Remember, the abbreviation ‘.’ always stands for the current directory.

As noted above, the mv command can also be used to rename files within the current directory. For example, to
change the name of newfile to oldfile, use the following command:

mv newfile oldfile

If the current directory already has a file named oldfile, it will be thrown away and replaced with the file that used
to be named newfile.

The command cp copies a file. This command has two parameters: the first names the file to be copied, and the
second names the file or directory into which it is to be copied. For example, to copy oldfile in the current
directory back into newfile, use the following command:

cp oldfile newfile

If newfile already exists, it will be replaced by a copy of oldfile.

If you wished to copy newfile into directory newdirectory, use the command:

cp newfile newdirectory

Now, when you type the command
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lc newdirectory

you will see:

Files:
newfile

As you can see, newfile has been copied into newdirectory. If newdirectory had already contained a file called
newfile, that file would have been replaced with the newer newfile being copied into newdirectory.

The following example summarizes what’s been presented so far about files and directories. For purposes of the
example, assume that your login name is henry, and that you have in your home directory files doc1 and doc2
that you wish to back up for safekeeping.

Before you can back up these files, you must first create them. First, use the command cat to create file file01, as
follows:

cat >doc1
a few
lines of
text
<ctrl-D>

Likewise, create file doc2:

cat >doc2
second file
with some text
<ctrl-D>

(Don’t forget that <ctrl-D> means to hold the control key down and simultaneously type D.)

The command lc will now show you the files and directories in your current directory:

Directories:
newdirectory

Files:
doc1 doc2 newfile oldfile

The next step is to create the directory to hold the back-up copies. To help remind yourself what the directory is
for, name it backup.

mkdir backup

Now, lc shows you:

Directories:
backup newdirectory

Files:
doc1 doc2 newfile oldfile

The next step is to use cp to copy your files into backup:

cp doc1 backup
cp doc2 backup

After you issue these commands, lc still says:

Directories:
backup newdirectory

Files:
doc1 doc2 newfile oldfile

However, if you list the contents of subdirectory backup

lc backup

you will see:

Files:
doc1 doc2

The files have been successfully copied into the back-up directory.
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For a full description of these commands and the options available with each, see their respective entries in the
Lexicon.

rm, rmdir: Remove Files and Directories

The command rm removes a file. For example, if you wish to remove file doc2 in directory backup, type the
following command:

rm backup/doc2

After typing this command, use the command lc to show the contents of directory backup, as follows:

lc backup

You should see:

Files:
doc1

As you can see, file doc2 has been removed.

You can remove several files at once, simply by listing them on the rm command’s command line. For example:

rm file01 file02

removes files file01 and file02.

Note that once you remove a file with rm, it is gone forever. The COHERENT system does not warn you if you rm
several files at once; it will assume that you know what you’re doing and carry out your command silently. For
this reason, be careful when you use the rm command, or you may receive a rude surprise.

You cannot use the command rm to remove a directory. COHERENT does this to help prevent you from wiping out
an entire file system with one simple rm command. To remove a directory, use the command rmdir. For example,
to remove the directory newdirectory, type:

rmdir newdirectory

Note that before you can delete a directory, that directory must not have any files or directories in it. If you try to
remove a directory that has files or directories in it, COHERENT will print an error message on your screen and
refuse to remove the directory.

For a full description of these commands and the options available with each, see their respective entries in the
Lexicon.

du, df: How Much Space?

Files occupy space on your hard disk. (A corollary to Parkinson’s law states that files expand to fill the disk
allotted to them.) It is somewhat disconcerting to attempt to save a large file, only to find that you have run out of
disk space. To help you manage your hard disk, COHERENT includes the commands du and df.

The disk-usage command du tells you how much disk space the files in the current directory occupy. If the
directory has sub-directories, these are listed separately. du prints disk usage in blocks; each block is 512 bytes
(half a kilobyte).

The disk-free command df tells you how many blocks are left free on your disk. By default it prints information
only about the file system you are now in.

If you find that you are running low on disk space, you must free up some space. You can do that by removing
files you no longer need; by compressing files that you do not use often; or by backing files up to floppy disk and
then removing them. We have already described how to remove files. Look in the Lexicon entry for the command
compress for information on how to compress and uncompress files. Following sections in this tutorial will
describe how to copy files to floppy disk.

For more information on these commands, see their respective entries in the Lexicon.

ln: Link Files

COHERENT allows a file to have more than one name. When you create a file, you give it a name; COHERENT links
the name you give the file with its internal system of managing files. (For more information on how COHERENT
identifies files, see the Lexicon entry for i-node.) COHERENT allows you to give a file more than one name; another
way of expressing this is to say that you can give a file multiple links.
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To create a new link to an existing file, use the command ln. This command takes two arguments: the first names
the file to which you wish to give a new link, and the second gives the name that you wish to link to that file. If the
name you are linking to a file is already being used by a file, COHERENT will not let you link the file to that name.

For example to link the file doc1 to the name another, use the following command:

ln doc1 another

The ‘‘new’’ file has the same data in it as the ‘‘old’’ file; in fact, the names doc1 and another are synonyms for the
same file.

The next point is somewhat subtle. When you use the command rm to remove a file, what you are actually doing
is breaking the link between that file and its name. The file is not actually removed from disk until all links are
broken between it and all of its names. In the above example, if you use the command

rm another

to remove the file another, the file doc1 remains in existence, and the data to which the names another and doc1
pointed remains on the disk. If you then use the command

rm doc1

to remove doc1, then you will have broken all links between that file and the COHERENT system, and COHERENT
removes it from the disk.

Links are useful if you wish a file to be used in two different contexts but have the same data. For example, if you
use file doc1 in two different manuscripts, you can create links to the file in two different directories, one for each
manuscript. Thus, any changes you make to the file under either its names appear automatically in both
manuscripts.

As always, see the Lexicon for a full description of the ln command.

File Permissions

As you recall, the command ls -l prints a mass of information about each file. The following repeats the
information that appeared when you typed ls -l:

Size, Modification
Mode # Owner Bytes Date Time Name

-rw-r--r-- 1 you 17 Wed Aug 19 17:51 file01
drwxrwxrwx 2 you 32 Wed Aug 19 17:53 backup
-rw-r--r-- 1 you 17 Wed Aug 19 17:53 doc1

Column 3 names the owner; in this example, you represents your login name, whatever you have set it to. Column
4 gives the size of the file, in bytes. Columns 5 through 7 give the day of the week and the date on which the file
was last modified. Column 8 gives the time the file was last modified or, if the file was last modified more than a
year ago, the year it was last modified. Column 9 gives the name of the file.

Column 1 gives the mode of the file. The mode summarizes the permissions attached to this file.

Before going further, the concept of file permissions should be reviewed. COHERENT is a multi-user operating
system, which means that more than one person can log into the system, walk through its file system, execute
commands, and manipulate files. Every user has files that she ‘‘owns’’ — that is, that she has created and that she
wishes to protect against being altered or removed by others. After all, it would be disconcerting if you were to log
into your system, only to find that some of your key files had been trashed by another user, without your
knowledge or permission.

The COHERENT system protects files by its system of file permissions. Permissions have two aspects: the type of
permission, and the scope of permission. There are three types of permission:

read permission
Permission to read a file.

write permission
Permission to write into a file.

execute permission
Permission to execute a file, assuming that file contains executable code instead of text.
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Likewise, there are also three types of scope:

user The permissions extended to the owner of the file.

group The permissions extended to the group of users to which the owner belongs. For more information on
what group is, see the Lexicon entry for group.

other The permissions extended to all other users.

The mode column describes all permissions attached to a file. It also gives other information about a file, such as
whether the file is a directory. Taking the entry for file file01 as an example, we see:

1 2 3 4 # Owner Size Date Time File name
-rw-r--r-- 1 you 17 Sat Aug 15 17:20 file01

As you can see, the mode field is divided into four subfields, in this example labelled ‘1’ through ‘4’.

Subfield 1 indicates whether this file is a directory. If the file were a directory, this would contain a d; otherwise, it
contains a hyphen.

Subfields 2 through 4 describe the type of permission extended to, respectively, the owner, the owner’s group, and
other users. Each subfield consists of three characters. The first character indicates whether the file is readable; if
it is, then the character is an ‘r’; otherwise, it’s a hyphen. The second character indicates whether the file is
writable; if it is, then the character is a ‘w’; otherwise, it’s a hyphen. The third character indicates whether the file
is executable; if it is, then the character is an ‘x’; otherwise, it’s a hyphen.

In the above example, file file01 has permissions:

-rw-r--r--

These grant read and write permission to its owner, read permission to the other members of the owner’s group,
and read permission to all other users.

The COHERENT system has a set of default permissions that it applies to every file when it’s created. To change
this default set of permissions, use the command umask. For information about this command, see its entry in
the Lexicon. To change the permissions of an existing file, use the command chmod, as described in the following
sub-section.

chmod: Change File Permissions

To change the mode of a file, use the change-mode command chmod. For example, to protect file doc1 in directory
backup from being overwritten, use the command:

chmod -w backup/doc1

where the -w means ‘‘remove write permission’’ and is followed by the file name. Henceforth, if you try to write into
this file, the COHERENT system will refuse to do so and will print an error message on your screen.

To allow other users to read the backup file doc2, type:

chmod o+r backup/doc2

where the letter o signifies ‘‘other users’’, and the +r tells chmod to grant read permission.

To see the new set of permissions, type the command:

ls -l backup

As you can see, the mode string has changed from what it was above.

Directory access permissions are similar to file access permissions in that they can easily be changed via command
chmod. However, the permission bits have different meanings for directories. Permitting reads on a directory
allows the user to see the contents of the directory via commands such as lc or ls; permitting execution on a
directory allows access to the files in the directory; and permitting writes on a directory allows the user to create or
delete files in the directory, regardless of the permissions on the actual file. The latter causes the most difficulty
for new users since they mistakenly associate file deletion permissions with the actual file rather than with the
directory that contains the file.
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Creating and Mounting a File System

Earlier, we described how the COHERENT system consists of a tree of directories; and how that tree branches from
the root directory ‘/’. This is a useful description, and true as far as it goes; but the full situation is a little more
complex.

The tree of COHERENT directories in fact consists of any number of file systems, each of which exists on its own
physical device. A physical device may be a partition on your hard disk, a floppy disk, or even a chunk of RAM.

The COHERENT system contains a suite of commands that let you create a new file system on a physical device, and
graft (or mount) that new file system onto the COHERENT directory tree. The following few sub-sections will walk
you through the steps of creating a new file system on a floppy disk and mounting it onto your existing COHERENT
directory tree. These descriptions may be a bit too advanced for beginners; but most users will find them to be
interesting and helpful.

fdformat: Format a Floppy Disk

The first step in creating our new file system is to format a floppy disk. The command fdformat formats a diskette.
When a diskette is formatted, COHERENT writes information on each track that makes it possible for the floppy disk
to hold a file system.

fdformat uses the following syntax:

/etc/fdformat device

where device is the name of the device to be formatted. To format a high-density, 5.25-inch diskette, use the
command:

/etc/fdformat /dev/rfha0

To format a high-density, 3.5-inch diskette, type:

/etc/fdformat /dev/rfva0

To format a low-density, 5.25-inch diskette, type:

/etc/fdformat /dev/rf9a0

For this example, we’ll assume that you have a high-density, 5.25-inch floppy disk. Insert into drive 0 (that is,
drive A) of your computer, and type the command:

/etc/fdformat -v /dev/rfha0

The -v option to fdformat tells it to verify that the disk is sound. This option means that the command will take
longer to execute, but in the long run it’s worth it as it will ensure that you do not waste time to trying to copy data
onto a flawed disk. For details on the command fdformat, see its entry in the Lexicon.

When this command has finished executing, leave the floppy disk in drive 0.

mkfs: Create a File System

The command mkfs creates a file system on a physical device. This command has the following syntax:

/etc/mkfs special proto

special names the physical device on which the file system is to be built. proto is either a number or a file name. If
it is a number, mkfs builds a file system of that size in blocks.

For our example, type the command:

/etc/mkfs /dev/fha0 2400

This command writes a file system onto device /dev/fha0, which in this case represents the floppy disk in drive 0
that we just formatted. The number 2400 represents the number of blocks that fits onto such a disk. Please note
that the above example is for a 5.25-inch, high-density floppy disk. For directions on how to create a file system on
a floppy disk of different size or density, see the Lexicon articles for floppy disks or mkfs.

If proto is not a number, mkfs assumes that it is a prototype file. The command badscan scans a physical device
for bad blocks and writes such a prototype file for you. Prototype files are beyond the scope of this example; but
for information on them see the Lexicon entry for badscan or the Lexicon entry for floppy disks. The latter article
summarizes all the ways in which floppy disks are used by the COHERENT system.
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mount: Mount a File System

Now that you have formatted your floppy disk and built a file system on it, you can mount the newly created file
system. Mounting grafts this device’s file system onto the COHERENT system’s directory tree. Thereafter, you can
write files onto that device, read them, remove them, or do anything else that you wish with that device and its
contents.

mount has the following syntax:

/etc/mount device directory

device names the physical device whose file system is to be mounted. directory names the base directory for that
file system. The base directory is the directory by which the file system is accessed. For example, directory /usr is
the base directory for the file system that holds all users’ home directories. We’ll describe base directories a little
further in a few paragraphs.

For purposes of our example, type the following command:

/etc/mount /dev/fha0 /f0

This mounts the file system on the disk in drive 0 onto base directory /f0.

The base directory by convention is a directory in the root directory ‘/’. You do not have to do this, however. For
example, if your user name was henry and you wished to mount the file system on the floppy disk in your home
directory, you could type:

/etc/mount /dev/fha0 /usr/henry/backup

This will mount the file system on the floppy disk onto directory /etc/henry and name its base directory as
backup. Note that if directory backup already existed in directory /usr/henry, its contents will be inaccessible
until you unmount the file system on the floppy disk. Unmounting is discussed in the following sub-section.

For more information on mounting a file system, see the Lexicon article mount.

Using a Newly Mounted File System

Now that you have created and mounted a file system, you can use it like any other directory. To see how this
works, type the following command:

cat >/f0/testfile
Here’s some text we’re writing onto the
newly mounted file system on a floppy disk.
<ctrl-D>

Here you can use the cat command to write some text into file testfile, which lives on the floppy disk you just
mounted. To see that this text has been written there, type:

cat /f0/textfile

You should see the floppy-disk drive whirl briefly, and the following appear on your screen:

Here’s some text we’re writing onto the
newly mounted file system on a floppy disk.

You can now use this file system like any other, even though it lives on a floppy disk rather than your hard disk.
As you can see, this is an easy way to extend the size of your COHERENT system’s file system.

umount: Unmount a File System

Finally, when you have finished working with a file system, you must use the command umount to un-mount it.
This command prunes the file system on a given physical device from the COHERENT system’s directory tree. You
will use this command frequently as you use floppy disks.

umount takes one argument: the name of the physical device being unmounted. In our example, the command

/etc/umount /dev/fha0

unmounts the file system on the high-density, 5.25-inch floppy disk insert into drive 0 (that is, drive A) on your
computer.
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Under unsophisticated operating systems like MS-DOS, you can insert or remove floppy disks without giving the
matter a second though. The COHERENT system, however, uses a complex set of buffers to speed the reading and
writing of information to the floppy disk; for this reason, if you simply yank a floppy disk out of its drive, all of the
information in the COHERENT system’s buffers will be lost. Worse, if you yank out a floppy disk and insert a
COHERENT-formatted floppy disk, the COHERENT system will write the data in its buffers onto that new floppy disk
— and probably destroy its file system in the process. Unmounting a file system tells the COHERENT system to
flush all information in its buffers and write it onto the disk.

To emphasize this point, please read the following carefully:

If you mount a floppy disk, you must use the umount command to unmount it before you remove the disk from its
drive. If you do not, data will be destroyed.

This concludes the discussion of how to mount create a file system, mount it, and use it. See the Lexicon article
floppy disks for further information on how to do this task.

The following two sub-sections discuss how to check a file system, to ensure its integrity.

fsck: Check a File System

The command fsck checks a file system, to ensure its integrity. For example:

fsck /dev/root

where /dev/root is a disk device, checks the file system located on device /dev/root.

If possible, you should umount the file system before you check it. You cannot umount the root file system. If
you can’t unmount it, be sure that no other users are on the system (i.e., that you are in single-user mode), then
reboot the system immediately without performing a sync. If other users are creating or expanding files while the
file systems are being checked, fsck will report false errors.

If fsck finds any discrepancies, it writes appropriate messages onto the console (that is, the screen directly plugged
into your computer). An absence of messages indicates that there are no problems with the file system. The
appendix to this manual gives all of fsck’s error messages, and suggests how you should respond to each.

COHERENT’s boot routines run fsck automatically, and will rerun it if necessary to fix problems with the file
system. For more information on fsck, see its entry in the Lexicon.

Devices, Files, and Drivers

The next few sub-sections introduce the topic of special files and devices. You brushed this topic in the earlier
section that described how to format and mount a file system on a floppy disk; the following few sections go into it
more systematically. Beginners will probably find that much of this sub-section is mystifying, but experienced
users and ambitious beginners probably will find much of value here.

To begin, the COHERENT system is designed to provide device-independent I/O. Devices and files are handled in a
consistent way. Each I/O device is represented as a special file in directory /dev. For example, if your system has
a line printer device named lp, you can list a file, named prog for example, on the printer by saying:

cat prog >/dev/lp

Another example is to copy the file prog with the cp command to your terminal:

cp prog /dev/tty

There are two types of special files represented in /dev and when you list /dev with lc it will separate them.

The first type is a block special file. This type includes disks and magnetic tape. These devices are read and
written in blocks of 512 bytes, and can be randomly accessed. (As a practical note, note that magnetic tape can be
read in a random fashion only by positioning backwards and forwards one record at a time; disks can be read or
written in a totally random fashion.)

The I/O to and from block devices is buffered to improve overall system performance. When a program writes a
block of data, the data are held in a buffer to be written at a later time. If the same block is read twice in a row,
the data for it is still available in memory and do not have to be fetched from the physical device.

A special program named /etc/update forces all buffered data to the physical device periodically by calling the
command sync to protect against losing data in the case of an accident, such as a power failure. If you must bring
the system down, you must force the latest data to be written by typing the command sync.
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Character-Special Files

The second kind of special file is called a character-special file. Included in this class are devices that are not block
special: terminals, printers, and so on. Disks and tapes can also be treated as character special files. For every
block special file for a disk, such as

/dev/at0c

there is usually a character-special file:

/dev/rat0c

Character-special files are sometimes called raw files, hence the prefix r in rat0c. A raw file has no buffering or
other intermediate processing performed on its information. This difference is an efficient benefit to commands
such as dump and fsck, which do their own buffering.

tty Processing

One special set of devices has other processing — the tty or terminal files. A terminal-special file with this special
processing is called a cooked device. The processing includes handling the kill, erase, interrupt, quit, stop, start,
and end-of-file characters. Processing can be disabled with the command stty so the program deals with the raw
device. However, using a raw tty device generally has negative effects on performance of the COHERENT system.

A Tour Through the File System

Our introduction to COHERENT’s system of files and directories concludes with a tour of the COHERENT file system.
Much of this material has been described earlier.

General File System Layout

The base of the file system is the root directory, whose name is simply:

/

Most of the files in the root are directories. To list the files in the root directory, type:

lc /

/bin

Most of the commonly used commands are programs contained in /bin, such as the command lc used in the above
example. Foreign commands, such as MicroEMACS and kermit, are placed in directory /usr/bin.

The shell does not automatically look in /bin for commands, but consults the variable PATH to determine where
commands are to be found. A typical value for PATH is:

/bin:/usr/bin:.

This tells the shell to look for commands in three places (in this order): /bin, /usr/bin, and finally ., the current
directory. The shell does not consult PATH if the command contains one or more / characters, indicating a
complete or partial path specification.

/dev

Devices in the COHERENT system are accessed through files in the directory /dev. If there is a line printer available
on the system named lp, you can print characters from a file named testdata by typing the command:

cat testdata >/dev/lp

All devices on the system are represented in the /dev directory. Note that it is not recommended you access
devices directly, but use the COHERENT system’s utilities that spool files to them. This will prevent two users
attempting to write material to a device simultaneously, and so garbling the output. For example, to access the
line-printer device, use the spooler lp. See the Lexicon’s entries on printer and device drivers.

/drv

A unique feature of the COHERENT system is the concept of loadable device drivers. This feature lets COHERENT
system programmers write their own device drivers without modifying the rest of the system. Drivers can be
unloaded, modified, and reloaded without halting and rebooting the system. Loadable drivers are kept in directory
/drv. To load a driver, type:
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/etc/drvld /drv/driver

where driver is the driver to load. See the Lexicon’s entry on drvld for more information.

/etc

Several commands that you will use in your role as system administrator are kept in directory /etc. These are
described in detail elsewhere in this guide. They include commands for system accounting, booting the system,
mounting the system, create file systems, and control system time.

Also in /etc are several data files used in system administration. These include /etc/passwd, the file containing
user names, ids, and passwords; news files; and file /etc/ttys, which describes the properties of each user
terminal attached to the system.

/lib

The COHERENT system provides many useful functions for performing input and output (I/O) and mathematics, for
use in your C programs. These and other libraries, along with the phases of the C compiler itself, are kept in
directory /lib. This directory includes files containing standard system calls, standard I/O, and mathematical
routines such as sin, cos, and log.

/usr

The directory /usr contains user directories, along with a few system directories.

/usr/adm contains additional information of interest to the system administrator.

/usr/bin contains commands that were not entirely created by Mark Williams Company.

/usr/games contains computer games. /usr/games/lib/fortunes holds a set of bon mots; the game fortune
selects one at random and prints it on your screen. A call to this game can be placed in a user’s .profile, so he will
see a new fortune each time that he logs on. To add fortunes of your own, just edit the file
/usr/games/lib/fortunes.

The directory /usr/include contains header files for C programs, such as stdio.h. Other header files define formats
of files and other important data structures in the system.

/usr/lib contains the macro files ms and man used the nroff text processor; the unit conversion tables for the
command units; and the file /usr/lib/crontab used to hold commands for cron. This directory also holds the C
libraries.

/usr/man contains manual sections referenced by the commands man and help commands.

/usr/msgs stores messages displayed by the command msgs.

/usr/pub contains public files, such as telephone numbers and a copy of the ASCII table.

/usr/spool contains information for line-printer spooling, and mail that has not yet been delivered.

/u

In some systems, users’ directories are placed on a separate device to save space. Because a separate device has a
separate file system, the directory on that device is called /u.

Files: Conclusion

This concludes this tutorial’s discussion of files and directories. The rest of this tutorial introduces COHERENT’s
suite of commands, and discusses topics of special interest to persons who are administering COHERENT systems.

Introduction to COHERENT Commands
This section introduces COHERENT’s commands. The COHERENT system comes with more than 200 commands,
which perform a variety of work, from formatting text, to editing files, to performing low-level administration of the
system. The commands that manipulate files and directories were introduced in the previous section; there are,
however, many other varieties of commands, many of which will be introduced here. To begin, we’ll introduce the
COHERENT system’s master command, the shell.
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The Shell

When you type commands into the COHERENT system, it appears that you are communicating directly with the
computer. This is not exactly true, however. When you type into the COHERENT system, you are actually working
with a special COHERENT program, the shell. This program reads, interprets, and executes every command that
you type into the system. The shell can also interpret, expand, and otherwise flesh out what you type; this is done
to help spare you unnecessary typing, and to permit you to assemble powerful commands with only a few
keystrokes.

Please note, in passing, that the COHERENT system comes with two shells: the Korn shell ksh and the Bourne shell
sh. These shells have somewhat different features. The descriptions in this section assume that you are using sh,
which is COHERENT’s default shell.

The shell is so powerful that mastering it is a major accomplishment; however, you can take advantage of much of
what the shell offers by learning a few simple commands and procedures.

This section introduces some commands commonly used by COHERENT users. For more information on these or
other commands see help and man. Also, consult the Lexicon.

Please note the following special punctuation characters:

* ? [ ] | ; { }
( ) $ = : ` ’ " < > << >>

These characters have special meaning to the shell, and typing them can cause the shell to behave quite differently
from what you may expect. Do not use these characters until you have read the following section, which discusses
their use, or until they are presented in examples.

Redirecting Input and Output

Most COHERENT commands write their output to the standard output device, which is normally your terminal’s
screen. For example, who prints on your terminal the name of each user currently logged into your COHERENT
system:

who

By using the special character >, you can redirect the output of who into a file. The command

who >whofile

writes this information into whofile. The operator > tells COHERENT to redirect the standard output. Later, you
can list the information on your terminal using cat:

cat whofile

Once the information is in a file, you can process it in other ways. For example

sort whofile

sorts the contents of whofile and prints the results on your screen. In this way, you can display the users’ names
on your terminal in alphabetical order.

You can also redirect the standard input to accept input from a file rather than from your terminal. To redirect the
standard input, use the special character < before the name of the file that you want read as the standard input.
For example, the command mail sends electronic mail to another user; normally, it ‘‘mails’’ what you type on the
standard input, but you can use ‘<’ to tell it to mail the contents of a file instead.

mail fred < whofile

mails the contents of whofile to user fred.

Pipes

The pipe is an important feature of the COHERENT system. Pipes allow you to hook several programs together by
redirecting the output of one into the input of the next. A pipe is represented by the character ‘|’ in the command
line.

Most COHERENT programs are written to act as filters. A filter is a program that reads its input one line at a time
or one character at a time, performs some transformation upon what it has read, and then writes the transformed
data to the standard output device. You can easily perform complex transformations on data by hooking a number
of simple filters together with pipes. Consider, for example, the command:
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who | sort

Here, the command who generates a list of persons who are logged into the system. The output of who is then
piped to the program sort, which sorts the list of users into alphabetical order and prints them on the standard
error device.

The power and flexibility of the COHERENT operating system owes much to the pipe.

Superuser

A special user in the COHERENT system, called the superuser, has privileges greater than those of other users. The
superuser can read all files (except encrypted files) and execute all programs. You must be logged in as the
superuser during certain phases of your work as system administrator.

There are two ways to access the COHERENT system as the superuser. The first is to login under the user name
root. When the system prompts

Coherent 386 login:

reply:

root

This automatically makes you superuser. To remind you that you are superuser, the COHERENT system prompts
you with # instead of the usual $.

The second way to acquire the privileges of superuser is to issue the command

su

when you are logged in as a user other than root. You must have privileges to access root to do this, and you
must know the password for root. When you type

<ctrl-D>

in this mode, COHERENT returns you to your previous identity.

To be the superuser for only one command, use the form of the command

su root command

command is the command to be executed as superuser. For example, to edit the message of the day file
/etc/motd if you are not the superuser, type

su root me /etc/motd

When you finish using MicroEMACS, your original user id will be unchanged.

To limit access to privileged resources, the COHERENT system requires users to enter passwords before being
granted that privilege. Users may be required to enter passwords before logging in.

If the root user has a password, you will be prompted for it. If you do not enter it correctly, the system will tell you

Sorry

and not allow you to become the superuser.

It is normal practice to protect access to superuser status by setting the password. If you are the only user of your
COHERENT system, or if you deeply trust all other users, you do not have to do so. However, because the
superuser can perform any sort of mayhem on your system, it is advisable to set the password, especially if
outsiders can dial into your system via modem.

vsh: The Visual Shell

Some users prefer to work visually rather than type explicit commands on a command line. For these users,
COHERENT offers the command vsh, its visual shell.

vsh does not give you a true windowing system, like X or Microsoft Windows; nor does it use a mouse. However,
vsh does give you a visual desktop for your files and commands. You can use the arrow keys on your terminal or
console to select a command or a file; execute commands with one keystroke; program your function keys to
execute commands automatically; and in general make COHERENT easier to use.
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vsh is described in full in its Lexicon entry. However, to get the flavor of vsh, try the following exercises:

• Before you begin, make sure that COHERENT knows what kind of terminal you are working at. To check that
type the command:

echo $TERM

If you are working at your computer’s console, you should ansipc on your screen; whereas if you have logged
in from an IBM PC plugged into your computer’s serial port, you should see the response vt100. If you do not
see the correct response, do not do the following exercises, because all you will on your screen is a jumble.

• If your terminal’s type is set correctly, invoke the visual shell by typing vsh on your command line.

• In a moment, vsh draws its desktop on your screen. You will see five windows: Two long, narrow windows
across the top of your screen; a big window on the left; and two small windows stacked on top of each other
on the right. The top narrow window has a number of commands in it; the large window on the left displays
all of the files in the current directory. The top file displayed in the large, left window is highlighted.

• The two stacked windows on the right of the screen give information about your system. They give, for
example, the name of your system, the number of bytes in the current directory, your login identifier, whether
you have mail waiting for you, and other information.

• Press the arrow key ↓. The bar of highlighting moves to the next name displayed in the large, left window.
The scroll bar in the large, left window also creeps down a little. Now, press the arrow key ↑. The highlighting
bar moves up again.

• Press E (for Exit). vsh opens a pop-up window and asks if you want to really exit. Press (¢) to accept the
underlined option, ‘y’. When you do so, vsh then exits and returns you to the COHERENT command line.

vsh is a powerful command that makes COHERENT much easier for the average user. See its Lexicon entry for
details on its features and how to use it.

Manipulating Text Under COHERENT

The COHERENT system includes a number of commands and utilities with which you can process text. The phrase
process text means to edit it and prepare it for printing.

MicroEMACS: Text Screen Editor

COHERENT includes a full-featured screen editor, called MicroEMACS. MicroEMACS allows you to divide the screen
into sections, called windows, and display and edit a different file in each one. It has a full search-and-replace
function, allows you to define keyboard macros, and has a large set of commands for killing and moving text.

Also, MicroEMACS has a full help function for C programming. Should you need information about any macro or
library function that is included with COHERENT, all you need to do is move the text cursor over that word and
press a special combination of keys; MicroEMACS will then open a window and display information about that
macro or function.

For a list of the MicroEMACS commands, see the Lexicon entry for me, the MicroEMACS command. A following
section of this manual gives a full tutorial on MicroEMACS. In the meantime, however, you can begin to use
MicroEMACS by learning a half-dozen or so commands.

To invoke MicroEMACS, type the command

me hello.c

at the COHERENT prompt. This invokes MicroEMACS to edit a file called hello.c. Now, type the following text, as it
is shown here. If you make a mistake, simply backspace over it and type it correctly; the backspace key will wrap
around lines:

main()
{

printf("hello, world\n");
}

When you have finished, save the file by typing <ctrl-X><ctrl-S> (that is, hold down the control key and type ‘X’,
then hold down the control key and type ‘S’). MicroEMACS will tell you how many lines of text it just saved. Exit
from the editor by typing <ctrl-X><ctrl-C>.
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Now, re-invoke MicroEMACS by typing

me hello.c

The text of the file you just typed is now displayed on the screen. Try changing the word hello to Hello, as follows:
First, type <ctrl-N> That moves you to the next line. (The command <ctrl-P> would move you to the previous line,
if there were one.) Now, type the command <ctrl-F>. As you can see, the cursor moved forward one space.
Continue to type <ctrl-F> until the cursor is located over the letter ‘h’ in hello. If you overshoot the character,
move the cursor backwards by typing <ctrl-B>.

When the cursor is correctly positioned, delete the ‘h’ by typing the delete command <ctrl-D>; then type a capital
‘H’ to take its place.

With these few commands, you can load files into memory, edit them, create new files, save them to disk, and exit.
This just gives you a sample of what MicroEMACS can do, but it is enough so that you can begin to do real work.

Now, again save the file by typing <ctrl-X><ctrl-S>, and exit from MicroEMACS by typing <ctrl-X><ctrl-C>.

Just as a reminder, the following table gives the MicroEMACS commands presented above:

<ctrl-N> Move cursor to the next line
<ctrl-P> Move cursor to the previous line

<ctrl-F> Move cursor forward one character
<ctrl-B> Move cursor backward one character

<ctrl-D> Delete a character

<ctrl-X><ctrl-S> Save the edited file
<ctrl-X><ctrl-C> Exit from MicroEMACS
<ctrl-Z> Save a file and exit

Note that on some terminals, the arrow keys will not work. Note, too, that some remote terminals may have
trouble using <ctrl-S>, if they use XON/XOFF to control flow. In this case, use <ctrl-Z> instead.

For more information, see the tutorial for MicroEMACS included with in this manual.

pr, prps, lp: Print Files

The command lp prints files for you, making sure that your request does not conflict with other uses of the printer.
To print a file, type the command

lp file

substituting the name of the file to be printed for ‘‘file’’. If you don’t name a file on the command line, lp prints
what it receives from the standard input. Thus, you can use lp in pipes; this allows you to print immediately
matter that you type on your keyboard.

lp will take your file and try to print it on any printer you have plugged into your computer’s parallel port. If you
do not have a printer plugged in, or if it is not turned on, lp will hold onto your files until the printer becomes
ready; it will wait days, if necessary, until the printer becomes available.

lp is also intelligent enough to handle requests from several different users: if more than one user wants to print a
file, lp will print them one at a time. In this way, the COHERENT system lets several users share one printer.

lp does nothing to the file other than print it. This means that it does not attach page heading to a file, nor does it
break up the file into page-sized chunks. Another command, pr, does this for you. It paginates the standard
input, giving a header with date, file name, page number, and line numbers. The paginated output appears on the
standard output.

To print a paginated file on the line printer, type:

pr file | lp

Note the use of the pipe ‘|’, which passes the output of pr as input to lp.

The command prps is like pr; however, it writes a file in the PostScript page-description language, suitable for
printing on a PostScript printer. If you have PostScript on your system, you should use prps instead of pr to
paginate text for printing.
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COHERENT has many more features for printing files than can be covered here. For more details on lp and on how
to print text, see the Lexicon entry for printer.

nroff, troff: Text Formatters

The commands nroff and troff format text for display or printing. They are, in fact, text-formatting languages: you
type commands into your text file, and nroff or troff interprets the commands to format the text in the manner
that you want.

nroff and troff differ in the style of formatting that they perform. nroff formats text into monospaced font, like
that on an ordinary typewriter, Its output is suitable for display on the screen. troff formats text into
proportionally spaced fonts, like those seen on this page. Its output is suitable for printing on a laser printer or
other sophisticated typesetting device. The commands for nroff and troff closely resemble each other. The
following descriptions will assume that you are using nroff, but they apply to troff as well.

nroff’s programming language is quite complex and sophisticated. This manual includes a tutorial that introduces
nroff’s language. You can, however, use nroff to perform simple formatting tasks by using the ms macro package.
The following describes some of the more commonly used nroff commands.

To see how nroff works, type the following script:

cat >script.r
.ds CF "Print on Bottom of Each Page"
Here is some text.
Here is some more text.
.PP
The above command set a new paragraph.
Yet more text.
.SH
Here is a Section Heading
.PP
More text.
\fBThis is printed in bold face.\fR
This printed in Roman.
\fIThis is printed in italics or underlined.\fR
.PP
Here’s some more text.
Here’s yet more text.
And more text yet.
<ctrl-D>

Now, format and display the text with the following command:

nroff -ms script.r | more

You will see the text formatted for your screen. The string Print on Bottom of Each Page appears at the bottom
of the display. The following describes the nroff commands with which this formatting was performed.

nroff’s commands are introduced in either of two ways: by a period ‘.’ in the first column of a line; or by a
backslash ‘\’ occurring anywhere in a line. The following reviews this script in detail.

.ds CF This defines the text to appear on the bottom of each page. If the text is more than one word long, it must
be enclosed within quotation marks.

.PP Begin a new paragraph. nroff skips one line and indents the following line by five spaces (one-half inch).

.SH Print a section heading. nroff skips one line and prints in boldface the line of text that follows this
command.

\fB Print the following text in boldface.

\fR Print the following text in Roman.

\fI Print the following text in italics.

With these few commands, you can perform simple formatting of your text.

To print the formatted text, use the command lp. For example, to print script.r on a line printer, use the
command:
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nroff -ms script.r | lp

This discussion is sufficient to get you started, but it just scratches the surface of what you can do with nroff and
troff. See their respective entries in the Lexicon for details of what these commands can do. See the tutorial for
nroff that appears later in this manual for a thorough introduction to the formatting language used by these
commands.

Miscellaneous Commands

COHERENT includes numerous commands that perform miscellaneous tasks. These include some of the most
useful, and entertaining, commands in the COHERENT system.

who: Who Is on the System

To find who is logged into the system, use the COHERENT command who. This command lists who is logged into
the COHERENT system, one name per line. You will see your own user name there as well.

If you sit down at a terminal that is not in use, but at which someone has already logged in, the following
command tells you who is logged in:

who am i

COHERENT replies with the name of the user logged in at that terminal.

write: Electronic Dialogue

The command write lets you carry on a ‘‘conversation’’ with another user. The conversation continues until you or
the other user type <ctrl-D> on his terminal.

For example, user fred can begin a conversation with user anne by typing:

write anne

On anne’s terminal, the message

Message from fred...

will appear. To establish the other half of the communication, anne should then say

write fred

and a similar notification appears on fred’s terminal.

At this point, both users simply type lines on their terminal and write sends the message to the other user. To
avoid typing at the same time, each user should end a ‘‘speech’’ by typing a line that has the single letter

o

to signify ‘‘over’’, or ‘‘go ahead’’. When the other user sends you this, you know it is your turn to ‘‘talk’’, and vice
versa.

When your communication is finished, you should type

oo
<ctrl-D>

Here, oo means ‘‘over and out’’, and the <ctrl-D> terminates the write command. Note that o and oo are polite
conventions, and are not necessary to using write.

mail: Send an Electronic Letter

You can send electronic mail to another user on your COHERENT system by using the command mail. This
command works whether or not that person is logged into the system at the time you type your message. The
message is stored in an electronic ‘‘mailbox’’, and the user will be notified that a message is waiting for him the
next time he logs into your system.

Before you can use mail on your system, you must run the program uuinstall. This program will ask you some
questions about how you have configured your COHERENT system, and will write files of information that mail and
the communications protocol UUCP need to deliver your mail. For detailed directions on how to run uuinstall, see
the section Installing UUCP in the UUCP tutorial that appears later in this manual.
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Among other things, this program will ask you to name your ‘‘site’’ and your ‘‘domain’’. Without going into too
much detail at this point, the site is nom de plume by which your machine is known to other COHERENT or UNIX
systems. Site names generally are not computer-ese; conan, terminator, lepanto, chelm, and smiles are all
examples of site names. If you don’t intend to communicate with other systems, use your first name as the site
name. The domain is the name by which a group of related machines are together known. If you and a number of
other local COHERENT systems wish to be known together, you can establish a domain and register it with the
network. Domain names, too, should be descriptive. If you don’t intend to use a domain, set the domain name to
UUCP.

To mail a message to user anne, just type:

mail anne

mail immediately prompts you for a title for your message:

Subject:

You can type the message’s subject, which will be used to title the message, or you can just press (¢).

Once you have titled your message, type the body of the message. You can conclude your message in any of three
ways: you can type <ctrl-D>, type a period ‘.’ at the beginning of a line, or a question mark ‘?’ at the beginning of a
line. The first two methods end the message immediately; the last method, however, invokes an editor, and lets
you edit the message further before sending it on to the intended recipient. Environmental variable EDITOR, if
defined, selects the editor to be used.

For example, to send your message to user anne, you might do the following. First, invoke mail:

mail anne

Next, give your message a title:

Subject: I’ll be working late

Finally, type the body of the message:

I’ll be working late. I hope to get home before Catherine
and George go to bed. Please remind Ivan and Marian to do
their homework. Marian should remember to practice her
violin.
<ctrl-D>

If you wish, you can first type your message into a file and then mail it. For example:

cat >hb.msg
All come to the birthday party at four
next to the pump room.
<ctrl-D>

To mail the message to user jill, type:

mail jill <hb.msg

You can send a mail message to several users at one time by listing each user’s name on the command line. For
example, the command

mail jill jack ted barb < hb.party

mails the contents of file hb.party to jill, jack, ted, and barb. To illustrate the use of the mail command, send
yourself a mail message. Type the following; substitute your user name for ‘‘you’’ in the mail command:

mail you
Subject: test the COHERENT mail system
This is a note to
myself to test
mail.
.

If someone has sent you mail, the COHERENT system will tell you:

You have mail.

when you log in.
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To receive mail, type the mail command with no parameters:

mail

If you have no mail, COHERENT will tell you:

No mail.

If you do have mail, the system will print each message on your terminal, along with the user name of the sender,
and the date and time that the message was mailed.

After each message, the mail program types a question mark ? and waits for your reply. You can type any of the
following commands in reply to the prompt:

d Delete the message.

<Return>
Proceed to the next message.

s file Save, or copy, the message into file.

q Quit — exit from mail and return to the shell.

You will know that you are finished with all of your messages when mail sends you a ? without typing anything
before it.

mail can also send messages to other COHERENT or UNIX systems via the UUCP utility. See the accompanying
tutorial on UUCP to see how you can set up COHERENT to do this.

msgs: Cumulative Message Board

The message of the day disappears when a new message is inserted. If a user does not log in for several days, the
message of the day may no longer be there. For items that you want everyone to see, such as hours of operation or
new operating procedures, you should use msgs instead of motd.

msgs helps users get all important messages, even if they don’t log in every day. The system remembers which
users have seen each message. After a user logs in, invoking msgs will show the number, date, and author of each
message written since the user last logged in. Therefore it is easy for the user to stay up to date with the system-
wide messages.

To add a message to the file, simply mail the message to msgs. To title the message, write it as the first line in the
message, after the ‘‘Subject:’’ prompt from mail.

The home directory for msgs will grow over time, as more and more messages accumulate. Also, if a new user is
enrolled on your COHERENT system, he may have to wade through several hundred messages when he first logs in.
Therefore, you should purge the home directory for msgs every now and again; you may wish to throw away the
announcements of office parties three Christmases ago, and save important information on diskette.

msgs keeps track of what messages each user has read by recording the number of the last message read in the
file $HOME/.msgsrc. When each user logs on, his version of .msgsrc is inspected to determine the last message
seen. If messages were added after that, msgs prints the ones the user wants to see, and then updates .msgsrc.

grep: Find Patterns in Text Files

The command grep lets you find lines that contain a pattern within one or more files. Patterns are sometimes
called regular expressions.

To illustrate grep, create file doc1 by typing:

cat >doc1
a few lines
of text.
<ctrl-D>

Then the command

grep text doc1

prints the second line of file doc1:

of text.

The first parameter to grep is the pattern for which you are looking; the rest of the arguments are the names of files
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to be examined. text is the pattern and doc1 is the file.

To find if a particular user is on the system, pipe who into grep:

who | grep you

(Substitute the user name in question for you.) Try it with your user name. The pattern is you, but no file name is
specified. grep reads input from the standard input, which in this example is connected to the output of the who
command.

You can specify several files to be searched; simply put the additional file names after the first:

grep pattern doc1 doc2

Or, you can search all files in the current directory for the pattern with

grep pattern *

The asterisk will be interpreted to mean all files, and grep will look for pattern in each.

The search pattern can be a pattern. Patterns are fully discussed in the tutorial for ed.

You can also locate lines that do not contain given patterns by using the grep option -v.

grep -v bugs prog1 prog2

This command finds and prints all lines in files prog1 and prog2 that do not contain the pattern bugs.

date: Print the Date

The COHERENT system keeps track of the time and date. To find the date and time, use the command:

date

COHERENT responds with the day of the week, the month day and year, and the time of day.

Internally, the COHERENT system records the date and time as the number of seconds since January 1, 1970,
00:00:00 Greenwich Mean Time (GMT). This means that files created in one time zone and referenced in another
time zone will bear the correct time. The time and date printed out is converted from the internal form to the local
time.

passwd: Change Your Password

You should change your password from time to time, to ensure that no unauthorized person can gain access to
your files (or to the system as a whole).

It is easy to change passwords on the COHERENT system: just type the command passwd. passwd first asks you
for your current password (if you have one), and then asks you to enter your new password twice. Entering the
new password twice helps ensure that the system gets the password as you want it. If you do not type it the same
way both times, COHERENT will say:

Password not changed.

You must then begin again with the command passwd.

Be sure the password is something that you can remember. It is recommended that the password be at least six
characters long. Do not write it down, but memorize it. You can use a four-letter password, but if you do, you
should mix upper-case and lower-case letters to make it more difficult for outsiders to guess.

stty: Change Terminal Behavior

Because a wide variety of terminals can be used with the COHERENT system, you must pass some information to
the COHERENT system so it can handle your terminal correctly.

The command stty describes the information COHERENT currently has for you; you can then use stty with
arguments to change how COHERENT handles your terminal.

For example, COHERENT normally echoes each character you type, as you type it. However, if your terminal also
echoes what you type, you will see double characters. To prevent this, issue the command:

stty -echo

The program login uses this feature when you type your password, to help keep it secret from anyone who is
kibbitzing at your desk.
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To set the echo feature again, type:

stty echo

When you first log in, the system presumes that your terminal does not directly handle the tab character, so when
COHERENT sends a tab to your terminal it simulates it with spaces. If your terminal does handle tabs, issue the
command:

stty tabs

The COHERENT system will no longer substitute spaces for tabs. To go back to substitution,

stty -tabs

The <erase> character lets you delete the previously typed character. The <kill> character lets you delete the line
that you have been typing but have not yet finished. By default, COHERENT sets these to, respectively, <ctrl-H>
and <ctrl-U>. To change them to, respectively, <ctrl-E> and <ctrl-K>, use the stty command as follows:

stty erase ^E kill ^K

The carat ‘^’ tells stty that you want to specify a control character.

To reset erase and kill to the default values at login, the command

stty ek

suffices. This is equivalent to:

stty erase ^H kill ^U

To see what your current terminal parameter settings are, type

stty

with no arguments.

Scheduling Commands For Regular Execution

The command cron is a valuable tool for using your COHERENT system. With it, you can instruct COHERENT to
execute commands at various times of the day or night, even if nobody is logged into the system.

To specify a command to be executed at some later time, simply enter one line of information in a ‘‘cron’’ file.
(Where the cron file lives will described below.) For example, assume that you want to greet user norm, if he is
logged into the system on Monday morning. You can do this by sending him a message at 8:13 on Monday. Use
MicroEMACS to add the following line to the cron file:

13 8 * * 1 msg norm%You are sure in early!

The numbers and * at the beginning specify the time:

13 8 * * 1

The 13 means ‘‘13 minutes past the hour’’. (cron numbers the minutes zero through 59.) The 8 means ‘‘8 AM’’.
(cron numbers the hours of the day zero through 23, with zero indicating 12 AM.) The positions containing *
normally specify the day and month. The two * characters mean ‘‘any day’’ and ‘‘any month’’. Finally, the 1 means
‘‘day 1 of the week,’’ which is Monday. (cron numbers the days of the week zero through six, with zero indicating
Sunday.) The breakdown of this command is shown as follows:

minute 13
hour 8
day of month * — all days
month * — all months
day of week 1 — Monday

Because each entry in the cron file must be on one line, the symbol % represents the beginning of the input string.
If the information is too long for one line, type a backslash character before you press (¢) to end the line. The
backslash tells cron to ignore the <Return> character.

With this information in the file, cron executes the command

msg norm
Am Monday!
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at 8:13 every Monday morning.

cron expects time to be in the 24-hour clock, so 1 PM is represented as 13 hours. If you need to print a literal
percent sign ‘%’, precede it with a backslash:

\%

The times for cron commands can be even more complex than the numbers and * shown above.

You can express a range for any of the five parts of a time by separating two numbers with a hyphen. For example,
to send user marianne a humorous message on week days, use the command:

59 11 * * 1-5 /usr/games/fortune | msg marianne

To list a choice of times, separate single numbers or ranges with commas but no spaces. To send notification
about a meeting on Monday, Wednesday, and Friday at 3 PM, use:

0 15 * * 1,3,5 echo Meeting at 3:30 ... | mail fred anne joe

The time specification

0 15 * * 1,3,5

represents the time 1500 (3 PM) on every Monday, Wednesday, and Friday.

mail and msg are just some examples of commands that can be used with cron; many others can be used. For
example, cron is commonly used to execute UUCP commands late at night, when telephone rates are low. See the
Lexicon article on cron for more information about this command. If you wish to schedule commands to be run
but not on a regular basis, use command at. See its Lexicon article for further details.

As was mentioned above, you must edit a cron file for the cron daemon to execute a command automatically.
COHERENT uses a complex scheme of cron files. If the file /usr/lib/crontab exists, the cron daemon will read it —
and only it. However, if /usr/lib/crontab does not exist, the cron daemon will look in directory
/usr/spool/cron/crontabs for the set of cron files located there. Each user can have his own cron file. All
commands in a user’s cron file are executed with the suite of permissions granted to that user; thus, a user cannot
use cron to delete files that do not belong to him. If a user wishes to create or update his own cron file, use the
command crontab; see its entry in the Lexicon for details.

Please note that each flavor of cron file uses the syntax described above.

Managing Processes

A process is a command that is undergoing execution. Because COHERENT is a multi-tasking operating system,
numerous processes can be undergoing execution at the same time. The following commands let you monitor and,
within limits, affect the operation of the processes your COHERENT system is executing.

ps: List Active Processes

Each process in the system is assigned a number called the process id, or PID. Each user logged into the system
has one or more processes. Except in special circumstances, the first process that he has is the shell, or
command-line interpreter. The commands he types are run by the shell.

The shell normally waits for a command to terminate before it begins to process the next command. However, if
you use the ‘&’ operator, the shell creates simultaneous processes: that is, while it executes one command it will
let you type another. Thus, you can execute two or more commands simultaneously.

You can examine the processes associated with your login, or all processes in the system, with the command ps.
Type:

ps

The result will resemble:

TTY PID COMMAND
color0 36 ksh
color0 4004 mail
color0 4005 me
color0 4009 sh
color0 4010 ps

The first column names the terminal you are running on, in this case the virtual console color0. This identifier is
taken from the file /etc/ttys, with the prefix tty removed from name. The tty identifier is also printed by the
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command who. The second column lists the corresponding process identifier (PID). The third column names each
command and gives its parameters, if any. ksh represents the shell process, and ps represents the ps command
itself.

To see all the processes, type:

ps -a

The result will resemble:

TTY PID COMMAND
null 1 init
color3 33 ksh
color2 34 ksh
color1 35 ksh
color0 36 ksh
com3l 37 login
color3 3629 sh
color3 3630 kermit
color3 3631 kermit
color0 4004 mail
color0 4005 me
color0 4011 sh
color0 4012 ps

This display will, of course, differ quite a bit from system to system and from minute to minute.

For a full description of all options to ps, see its entry in the Lexicon.

kill: Signal Processes

Occasions will arise when the system administrator must log other users out of the system. For example, you may
need to bring the system down quickly; or perhaps a user forgot to log out before leaving the terminal and did not
see your broadcast message requesting that all users log out.

The command kill, when used by the superuser, terminates processes. To log out a user whose shell has process
number 300, use the command:

kill -9 300

You must be logged in as root or use the command su to kill a process that belongs to another user. Each user
can kill all processes that he owns, including his own shell process (which automatically logs him out).

kill has other uses as well — see the Lexicon’s entry for kill for more information.

Programming Under COHERENT
The COHERENT system provides a number of languages in which you can write programs.

The shells included with COHERENT — sh, the Bourne shell, and ksh, the Korn shell — not only process
commands, but are powerful programming languages in their own right. For details on how to program in these
languages, see their respective entries in the Lexicon; and see the tutorial Introducing sh, the Bourne Shell, which
follows in this manual.

COHERENT includes a full-featured assembler, with which you can assemble your assembly-language programs.
Assembly language is sometimes required for operations that require you to work very closely with the operating
system or hardware. For more information on the COHERENT assembler, see the Lexicon entry for as.

Most programming that cannot be executed efficiently by a shell language is done in C, the language in which the
COHERENT system was written. The COHERENT system comes with a full-featured C compiler, with which you can
compile the program you write in that language. If you are new to C, the tutorial The C Language, which follows in
this manual, will introduce you to it. The following sub-sections briefly describe the tools available under
COHERENT with which you can write, compile, and debug your C programs.

Basic Steps in COHERENT Programming

The steps that are necessary to generate a program are:
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1. Create the program source file
2. Compile the source program, correcting any errors
3. Test and debug the program
4. Run the program

If you have compilation errors in step 2, or program errors in step 3 or 4, return to step 1.

Use your favorite editor to build and change the source program, the cc command to compile the source program
and produce an object program, and db to help debug the program. Although the C compiler provides a macro
facility, other languages do not. Therefore, if the source program uses macros, you can use m4 to expand the
macros.

This section covers each of these steps and provides some example programs.

Create the Program Source

The first step is to use MicroEMACS, vi, ed, or some other editor to create the program’s source file. Details on the
use of ed and MicroEMACS are covered in their respective tutorials, which follow in this manual. Each editor’s
commands are summarized in its Lexicon article.

For the first program, try a simple program that prints a short message on your terminal. For the sake of
simplicity, we’ll enter text using cat instead of invoking an editor. To build the program, type the following:

cat > small.c
main ()
{

printf ("The COHERENT operating system\n");
}
<ctrl-D>

The first line invokes the concatenation program cat to enter the program’s source code. The <ctrl-D> signals that
you have finished entering text.

The program itself begins with the special word main which defines a function and must appear in every C
program. The parentheses, here with nothing between them, enclose any arguments that are passed to the
function. They are required even if there are no arguments. The body of the program appears between the braces {
and }.

The function printf is part of the standard library of C programs. It prints formatted information on the terminal.
In this case it will produce the string enclosed between quotation marks. The special character string

\n

means ‘‘newline’’. Two lines of output to the terminal can be produced by

"line 1\nline 2\n"

as an argument to printf. This appears in the output as:

line 1
line 2

For a fuller introduction to the C language, see the tutorial on the The C Language, which follows in this manual.

cc: Compile the Program

The command cc compiles C programs. It executes all the parts of the C compiler and the associated linker ld.
The linker combines pieces of programs and includes necessary elements from the library, such as printf(). The
linker is occasionally called from the command line, but only for more complex problems than you are trying here.
To compile our test program, type the command

cc small.c

If the compiler detects any errors, it prints a message on the terminal, along with the line number that contains
the error. You can use this line number to find the error with your editor and fix it. You can now use the program
by simply typing:

small

The tutorial on The C Language describes cc in greater detail; also see its entry in the Lexicon for a full summary of
its many capabilities.
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m4: Macro Processing

To extend the capabilities of all languages, the COHERENT system provides a macro processor, called m4.

Program source for all languages consists of character strings. Macro processors perform string replacement,
whereby a string in the input file may be replaced by another string. m4 provides parameter substitution, as well
as testing values of currently available strings and conditional processing. m4 is unique in that you can rearrange
large sections of the input text by using the macros. For more information on m4, see the tutorial Introduction to
the m4 Macro Processor, which follows in this manual.

make: Build Larger Programs

All the examples of programs thus far have been self-contained. As programs grow larger, it is usual to divide the
source program into smaller files. This simplifies editing, speeds compilation, increases modularity, and lets
several different programs share common functions.

Thus, in developing the larger program, you may have several source files in your directory, possibly a header file
or two, and the object files that result from compilation. From these are built the executable file that runs when
you type its name.

To change or fix the program, you must edit the source programs or header files in question with ed, recompile the
required source, and relink all the modules. But, with a change that affects several modules, it can be tricky to
remember exactly which modules need recompilation, and it can be time-consuming to recompile all modules.

COHERENT provides a command called make, which solves this problem. make examines the time a file was last
modified, and the time of modification of files that it depends upon, and performs the necessary compilation or
other processing. (COHERENT file system directories contain the time that each file was created or modified.)

The tutorial The make Programming Discipline, which follows in this manual, fully introduces this powerful and
useful program.

db: Debug the Program

The first and most critical step to debugging programs is to not put bugs in them! The methods of structured
analysis, design, and programming, or the method of stepwise refinement can substantially reduce the number of
errors in a program.

One can also place printf statements at strategic points throughout the program to display logic flow and key data
values. These display statements should be designed so that they can be turned off for normal operation without
removing them from the program.

On occasion, however, you may find that it is necessary to debug at the machine level. If you must, COHERENT’s
db will make it possible to do so.

db provides tools that make the machine program instructions visible in the most natural notation. That is,
instructions are displayed in a fashion that resembles assembly language, numbers can be displayed in
hexadecimal, octal, or decimal as needed, and strings of characters displayed in familiar graphic form. db can also
patch a program to be run again, as well as to control the execution of a program with breakpoints and one step at
a time.

Briefly, to use db on a program like our sample small above, use the command:

db small

Now you can inspect and display instructions and data in the system, control execution, and even change the
instructions in the program if you are bold enough.

To examine a data segment location in the program, simply type the address of the location. db knows about
symbols in the program, so if you want to examine the location corresponding to main, type:

main

db types out the value in hexadecimal or octal (depending upon which is appropriate for your machine).

You can expand the display command to print many locations at one time, and choose the format of printout. To
print five locations interpreted as instructions, type

main,5?i

where the format character i follows the question mark indicating format, and 5 is the count of locations to be
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printed. To exit db, type

:q

For a complete list of the format that db recognizes, and other details about db, see its entry in the Lexicon.

Administering the COHERENT System
The COHERENT system can be used by many people at the same time. One person must coordinate its use, like a
key operator does for an office copier. This person is called the system administrator, and he sees to it that the
COHERENT system runs smoothly every day. The administrator can also customize the COHERENT system to the
needs of an individual installation.

Although you may be the only person to use your COHERENT system, many of the ideas discussed here are
important for making your system work at its best. Please spend a few minutes reading this manual to familiarize
yourself with the elementary concepts of COHERENT system maintenance.

Adding a New User

Each user allowed to use your COHERENT system must have a user name and a user id; the user may also have a
password. The user name is usually the user’s initials or a nickname. The user id is an integer number used to
identify the user internally to the system. As system administrator, you will assign both of these for each user.
This section tells you how.

To log in to the system, a user must have an entry in the password file /etc/passwd. The password file contains
each user’s name, id, and password if any. As system administrator, you will maintain this file.

Likewise, each group of users is assigned a group name, as well as a group id. Groups are not necessary to use the
COHERENT system, but some installations prefer to set up groups by project or department.

It is simple to add a new user to the system. The command newusr takes care of all the details, and makes an
entry in the password file. You must be logged in as root. For example, to create an entry for a user named Henry,
log in as root, and then issue the command:

/etc/newusr henry "Henry Smith" /usr

This creates an entry in /etc/passwd for henry, creates his home directory in the /usr file system, creates all
appropriate files for him (such as his .profile and his mailbox), and sets all permissions correctly.

System Security

One of the most important tasks in running your COHERENT system is maintaining its security. Basically, security
means two things: keeping outsiders from logging into your system, and keeping your system’s users from doing
untoward things. This section describes some steps you can take to ensure that your system is secure.

Passwords

Passwords provide the first level of COHERENT system security.

For systems with passwords, each user with a password must type his password as part of the login process. If he
enters the password incorrectly, he cannot log in.

Your system’s administrator can assign a password when she creates a user’s log-in account, as described above.
If you do not assign a password, anyone will be able to log in as that user.

In any system with passwords, it is especially important to assign a password to the root, or superuser. If the
superuser does not require a password, any user can log in as root and automatically have access to the powerful
tools that control the operation of the system.

Any user with a password can restrict access to his files. Once you assign him his password, he can change it with
the command passwd. However, because of higher privileges, root can always access everyone’s files.

The passwords are kept in file /etc/passwd, with the rest of the user login information. Passwords are encrypted,
so reading /etc/passwd will not reveal passwords.

File Protection

The second level of COHERENT system security is file protection. A user can set each of three categories of
protection for each of his files. A standard protection, or access permission, is given to each file when it is created.
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The three categories of permissions are for the user himself, for other users in his group, and for all other users.
To see the levels of protection of your files, type the command

ls -l

For more details on the meaning of each column in this printout, see the Lexicon entry for the change-mode
command chmod.

Encryption

The command crypt provides a third level of system security. It lets a user encode and decode information in a
file. The superuser has access to every file in the system; so to protect sensitive information even from his prying
eyes, a user can disguise it with encryption. Sensitive system information, such as passwords, are also encrypted
for security purposes; and the mail command lets users send encrypted mail to each other. For details about
encryption, see the entry on crypt in the Lexicon.

Dumping and Saving Files

You should regularly copy your files on floppy disk, to protect your valuable files against a catastrophic system
failure. The Lexicon article backups describes in detail how to do this.

System Accounting

The COHERENT system provides two types of computer time accounting to help you track the use of the system.
Three commands control the accounting and provide reports at various levels of detail.

Note that system accounting adds overhead to your system, because your system has to do more work to record
everything it does, and because the accounting files can quickly grow to unmanageable sizes. System accounting
is useful for COHERENT systems that are being used by multiple users who must account for (i.e., pay for) their use
of the system, or in other circumstances where it is important to note each user’s activity. For most systems that
support a handful of users, system accounting simply isn’t worth the bother.

If, however, you decide that you need system accounting, read on.

ac: Login Accounting

Whenever a user logs into the COHERENT system, it records the user’s name, the terminal number, and the date
and time of the login. It also records when he logs out.

You can use this information to compute the time each user, or all users, were logged into the system. The
command ac prints the total of all login times recorded in the accounting file. An example of the result is

Total: 8357:00

You can ask for a summary of total login times for each day by typing:

ac -d

An example result would be:

Friday November 13:
Total: 53:08

Saturday November 14:
Total: 75:36

Sunday November 15:
Total: 73:15

Finally, you can summarize the times for individual users with the command:

ac -p jack ted fred

This will show the total login times for these users:

fred 1100:42
jack 910:41
ted 641:58
Total: 2653:21

Also,

ac -pd

gives the time for each user, for each day that he logged in.
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Login accounting is not automatically operational. The login information is collected only if the file
/usr/adm/wtmp exists.

To start login accounting if it is not working, type the command

>/usr/adm/wtmp

while logged in as root. This creates the file /usr/adm/wtmp if it does not exist (and destroys existing
information if it does) and thereby enables login accounting.

To turn off login accounting while it is running, you can type:

rm /usr/adm/wtmp

After you activate login accounting, you should purge /usr/adm/wtmp periodically as it grows continuously, and
on an active system will eventually consume much disk space. To purge the current information but leave
accounting turned on, type:

>/usr/adm/wtmp

sa: Processing Accounting

While login accounting tells you how much time a user spends logged into the system, it does not tell you the
individual commands used. Process accounting does so. Under COHERENT, each execution of each command
constitutes a separate process. (COHERENT’s ability to maintain a list of processes and swap each in and out of
memory until all are executed, is what gives COHERENT its multi-tasking capability.) Process accounting records
system time, user time, and real time for each command executed by each user on the system. The command sa
reports this information for you, using a format that you set.

sa has several options, to generate different reports. When used with no options, sa lists the number of times each
call is made, the total CPU time, and the total real time used by the command, ordered by decreasing CPU time.
This is a summary by command; the following gives an example:

#CALL CPU REAL
sh 61 1 832
ld 5 1 7
ar 5 0 1
ranlib 3 0 1
p 16 0 11
dld 2 0 1
lc 19 0 1
cc 4 0 8
atrun 43 0 1
find 1 0 0
ed 1 0 2

...

This report has been truncated to save space. The listing will depend on what commands are used in your system,
and the characteristics of your hardware. To summarize by user, use the -m option:

sa -m

The option -l separates CPU time expended by users from that expended by the system. This command

sa -l

produces:
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#CALL USER SYSREAL
sh 61 0 1832
ld 5 0 07
ar 5 0 01
ranlib 3 0 01
p 16 0 011
dld 2 0 01
lc 19 0 01
cc 4 0 08
atrun 43 0 01
find 1 0 00
ed 1 0 02
cat 4 0 01
rm 3 0 00

...

This report has been truncated to save space. To list the user name and the command name, use sa with the
option -u. No times or counts are given. The command:

sa -u

produces output of the form:

tj p
tj lc
tj find
tj pr
bin lc
tj spin
tj sh
bin cc
...

This report has been truncated and edited to save space. In practice, it is longer. The -u option overrides other
options.

Process accounting is on only if you turn it on. To turn on process accounting, type the command:

/etc/accton /usr/adm/acct

while logged in as root. The file /usr/adm/acct holds the raw accounting information.

To turn off process accounting, use the same command with no file name:

/etc/accton

If accounting is not on when you type this command, you will get an error message. No information is gathered
when accounting is turned off.

When process accounting is in use, the file /usr/adm/usracct grows with each user command issued. You
should regularly condense or remove the information, to keep the file from devouring all free space on your disk.
To condense the information, invoke sa with the -s option. You must turn off accounting while condensing
information.

The information summarized by user will appear in /usr/adm/usracct, and information saved by command is
placed in /usr/adm/savacct. These summarized files are used in future requests to sa. After condensing, you can
turn accounting back on.

Additional options give flexibility to the report. See the entry for sa in the Lexicon for additional details on these
options.

Conclusion
The following sections of this manual give tutorials to teach you how to use many of COHERENT’s tools and
commands. The Lexicon contains brief synopses of all commands, library routines, system calls, and macros
available under the COHERENT system. It also includes many technical references and definitions, to help you with
terminology throughout this manual.
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Introducing sh, the Bourne Shell

sh is the command that invokes the Bourne shell, which is the COHERENT system’s default command interpreter.
The Bourne shell interpets commands, and much more. It is, in effect, both a programming language and an
interpreter.

At least one writer has noted that the shell is the original ‘‘fourth-generation language’’ — that is, a powerful
programming language that is straightforward enough to be programmed by non-programmers. You will find that
taking a little time to master the rudiments of the shell programming language will pay enormous benefits in
making best use of your COHERENT system.

Simple Commands
The shell command language is built around simple commands. For example, the following command lists all files
in the current directory:

lc

You can combine several simple commands on one line by separating them with semicolons:

who;du;mail

The shell executes the commands in sequence as if they had been typed:

who
du
mail

In both of these examples, du does not begin execution until who is finished, and mail does not begin until du is
done.

Special Characters
The shell treats the following characters specially; if you want to use them without their special meaning, you must
precede them with the backslash character \, or enclose them within quotation marks:

* ? [ ] | || ; { } ( ) & &&
$ = : ` ’ " < > << >>

The function of these characters will be explained later in this section. To use one of these characters in a
command, for example ‘?’, type:

echo \?

In addition, the shell treats the following words in a special way when they appear as the first word of a command:

if then elif else fi

case esac

do done

for in

until while break

test

Running Commands in the Background
The shell can execute commands simultaneously as well as sequentially. This means that while the shell is
executing one command, it lets you type and execute another command. Under the shell, the number of
commands you can execute at the same time is limited mainly by the amount of memory and disk space on your
system.

If a command is followed by the special character ‘&’, the shell begins to execute it immediately, and prompts you
to enter another command. For example, if you need to sort a large file but want to continue with other
commands while the sort is executing, you can type:
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sort >bigfile.sorted bigfile.unsorted &
ed prog

This allows you to edit file prog while your computer quietly executes the sort in the background.

When you run a command with &, the shell types the process id of the command started in background. When the
COHERENT system runs a command, it assigns that command a process id, which is a number that uniquely
identifies that command to COHERENT. Normally, there is no need to be concerned about these numbers.
However, when you run commands in the background, the shell tells you the id of the background process so you
can keep track of its execution.

The command

ps

lists the processes you are currently running. If you have no background jobs, the response is:

TTY PID
30: 362 -sh
30: 399 ps

The first column shows the number that COHERENT has assigned to your terminal. This is the same terminal
number printed out by who. The second column shows the process id; the third column shows the program or
command executing. The characters -sh in the third column means the login shell. There are two processes
because the shell is running the ps command as a separate process.

Once you have started a background command, ps shows you the process entry, which has the process id that the
shell typed out for you.

If you need the results from a background job, you can wait for it to finish by issuing the command:

wait

The shell will then accept no further commands until all your background jobs are finished. If there are no
background jobs, there will be no delay.

Scripts
Many of the commands that you use in COHERENT are programs, such as ed. Others, like the man command, are
scripts, or files that merely contain calls to other commands. You can write scripts on your own, simply by using a
text editor to type into a file the commands you wish to execute. If you frequently use a set of commands, you can
save yourself from having to type them over and over by simply typing them once into a script.

For example, suppose that you wish to check periodically the amount of disk space that you have used, the
amount of disk space still available, and see who is using the system. You can write a script to do all of this
automatically. Create the script good.am by typing the following commands:

ed
a
du
df
who | sort
mail
.
w good.am
q

From now on, to execute the above-listed commands, you need only type:

sh good.am

where sh is a command that means: read commands from a file, in this case good.am. If you can issue a
command from your terminal, you can also execute it from within a script.

You can make a command file directly executable by using the command chmod. For example, the command

chmod +x good.am

lets you execute the script good.am by typing

good.am
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and leaving off the sh. Once you have done the chmod command, you can still issue the commands by typing:

sh good.am

as well as use ed or MicroEMACS to change the contents of the script.

Notice that the commands called by a script may themselves be scripts. This is illustrated by the following script,
second.sh:

ed
a
good.am
lc
.
w second.sh
q

Thus, typing:

sh second.sh

calls the script good.am, and also calls the command lc.

.profile: Login Shell Script
When you log into the system and before you are issued your first prompt, COHERENT checks your home directory
for a file named .profile; if it is present, the shell executes the commands it contains.

This enables you to have COHERENT execute commands as soon as you log in. Check if your installation provides
one for you by doing an lc (be sure that your current directory is the home directory). If the file is there, print it by
saying:

cat .profile

Some of the commands may be of the form:

PATH=’:/bin:/usr/bin’

This sort of command will be discussed below.

Substitutions
Scripts of the form shown above are processed by the COHERENT shell without change. However, the COHERENT

shell increases the power of commands by performing three kinds of substitutions within commands before it
executes them.

First, it replaces special characters in commands with file names from the current or other directories. This allows
you to issue a single command that processes several files.

Second, you can give a script arguments, much like arguments that are passed to a Pascal, Algol, or C procedure.
This lets you target the action of the script to a specific file name specified when you call it.

Third, the output of one command can be ‘‘piped’’ into another command to serve as its input.

We will use the command echo to illustrate these kinds of substitution. Remember that substitutions take place
for all commands in the same way that they do for echo.

File Name Substitution
File names are often used as command parameters. That is, you will often tell a command to do something to one
or more files. By using special shell characters, you can substitute file names in commands. These special
characters describe file name patterns for the shell to look for in the directory. When the shell finds the file names,
it replaces the pattern with them.

The asterisk * matches any number of any characters in file names. Thus,

echo *

echoes all the file names in the current directory, whereas

echo f*

gives all file names that begin with the letter f, and
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echo a*z

lists all names that begin with a and end with z.

To illustrate more clearly, create two files by typing

cat >zz1
<ctrl-D>
cat >zz2
<ctrl-D>

Then the echo command

echo zz*

produces the output:

zz1 zz2

Thus, by using a single *, you can substitute several file names into a command. In other words, the command

echo zz*

is equivalent to

echo zz1 zz2

If no file names fit the pattern, the special characters are not changed, but left in the command exactly as you
typed them. To illustrate, type the command

rm zz*
echo zz*

The first command will remove all files whose names begin with zz, and is therefore equivalent to:

rm zz1 zz2

The echo command that follows, however, echoes

zz*

because no files begin with zz; they were just removed.

Enclosing command words within apostrophes prevents the shell from matching file names with the enclosed
characters. In the unlikely event that you have a file whose name is

zz*

that you want to remove, use the command

rm ’zz*’

The * is enclosed within apostrophes, and therefore is not changed by the shell.

Another special character ? match any one letter. To see how this works, create empty files file1, file2, and file33
by typing:

>file1
>file2
>file33

The command

echo file?

replies

file1 file2

because ? does not match 33.

You can use brackets [ and ] to indicate a choice of single characters in a pattern:

echo file[12]

This command replies:
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file1 file2

To match a range of characters, separate the beginning and end of the range with a hyphen. The command

echo [a-m]*

prints any file name beginning with a lower-case letter from the first half of the alphabet, and is exactly equivalent
to:

echo [abcdefghijklm]*

When such patterns find several file names, they are inserted in alphabetical order.

Because the character / is important in path names, the shell does not match it with * or ? in patterns. The slash
must be matched explicitly; that is, it is matched only by a / itself. Therefore, to find all the files in the /usr
directories with the name notes, type:

echo /usr/*/notes

The asterisk matches all the subdirectories of /usr that contain a file named notes.

In addition, a leading period in a file name must be matched explicitly. If you have a file in your current directory
with the name .profile, the command

echo *file

does not match it.

These patterns can appear anywhere within a command or a command file.

Parameter Substitution
Each shell script can have up to nine positional parameters. This lets you write scripts that can be used for many
circumstances. Recall that command parameters follow the command itself and are separated by tabs or spaces.
An example of a command reference with two parameters is:

show first second

where first and second are the parameters.

To substitute the positional parameters in the script, use the character $ followed by the decimal number of the
parameter. Consider the following example. First, create two sample files:

cat > first
line 1
line two
line 3
<ctrl-D>
cat > second
line 1
line 2
line 3
<ctrl-D>

Then, issue the commands

cat first
cat second
diff first second

Inspect the output carefully. The command diff compares two files and prints all lines that differ. In this case, it
prints line two and line 2.

Now, build the script show, which uses parameter substitution:
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ed show
a
cat $1
cat $2
diff $1 $2
.
wq
chmod +x show

To demonstrate the effet of show, type:

show first second

Inspect the output and compare it with the output you received earlier.

If you issue the show command with fewer than the required number of parameters, the shell substitutes an
empty string in its place. For example, using the command

show first

is equivalent to

cat first
cat
diff first

where the null string has been substituted for $2.

The example above shows the parameter references separated from each other by a space. In some uses, you may
wish to prefix a substituted parameter to a name or a number. When more than one digit follows a $, The shell
picks up the first digit as the number of the parameter. To illustrate, build the shell file pos:

ed
a
echo $167
.
w pos
q
chmod +x pos

Then call the script with

pos five

and the result will be:

five67

Shell Variable Substitution
In addition to positional parameters, the shell provides variables. You can assign values to variables, test them,
and substitute them in commands.

The variable name can be built from letters, numbers, and the underscore character; for example:

high_tension
a
directory
167

Note that keywords must not be single digits, because the shell then treats them as positional parameters. Be
aware that the shell treats upper-case and lower-case letters differently in variable names.

An assignment statement gives a value to a shell variable:

a=welcome

You can inspect their value with the echo command:

echo $a

The shell substitutes the value of the variable a in the echo command, which then appears as

TUTORIALS



The Bourne Shell 51

echo welcome

COHERENT responds to this command by printing:

welcome

Don’t forget the $ when referring to the value.

Notice that the shell looks for special characters in any command that it sees — this includes the space character.
To avoid problems, enclose the value to be assigned in apostrophes:

phrase=’several words long’

There are several uses for variables. One is to hold a long string that you expect to type repeatedly as part of a
command. If you are editing files in a subdirectory like

/usr/wisdom/source/widget

you can abbreviate if you set a variable pw to:

pw=’/usr/wisdom/source/widget’

Then simply using $pw in a command

echo $pw

substitutes the long path name.

Another use of shell variables is as keyword parameters to commands. These then can be used the same way as
positional parameters. To see how this works, create another script resembling show:

ed
a
cat $one
cat $two
diff $one $two
.
w show2
q
chmod +x show2

To use show2, issue:

one=first two=second show2

This is equivalent in effect to:

cat first
cat second
diff first second

Unlike positional parameters, keyword parameters may be several characters in length. If you want some text to
follow immediately a keyword parameter, enclose the keyword parameter in braces. To illustrate this, build a
command file called brace, as follows:

ed
a
echo ’with brace:’ ${a}bc
echo ’without brace:’ $abc
.
w brace
q
chmod +x brace

Call the command file with a set:

a=567 brace

The result is:

with brace: 567bc
without brace:

When used in this way, the keyword parameters must be assigned before the command and on the same line as
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the command. In this case, the assignment of keyword parameters does not affect the variable after the command
is executed. For example, if you type:

one=ordinal
one=first two=second show2
echo ’value of one is ’ $one

echo produces:

value of one is ordinal

Variables set other than on the line of a command are not normally accessible to a script. To illustrate, build a
parameter display script:

ed
a
echo 1 $1 2 $2 p1 $p1 p2 $p2
.
w pars
q
chmod +x pars

This will be used to show the behavior of parameters. The parameters to echo without a $ help to read the output.
To pass positional parameters, type:

pars ay bee

The output is:

1 ay 2 bee p1 p2

To pass keyword parameters, type:

p1=start p2=begin pars

The result is:

1 2 p1 start p2 begin

To illustrate that the setting of p1 and p2 did not ‘‘stick’’, type:

echo $p1 $p2 ’to show’

echo replies:

to show

This indicates that p1 and p2 are not set.

Illustrating that variables set separately from a command are not seen by the command, type:

p1=outside1 p2=outside2
pars

This replies:

1 2 p1 p2

By using the export command, however, such variables can be made available to commands. The commands

export p1 p2
p1=’see me’ p2=hello
pars

produce:

1 2 p1 see me p2 hello

This indicates that after the export of p1 and p2, they are available to other commands. Once a variable has
appeared in an export command, its value can be changed without a need to export it again.

Command Substitution
By enclosing a command between ` characters, you can feed its output onto the command line of another
command. For example
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echo `ls`

echoes the output of the ls command.

Special Shell Variables
When you log into the COHERENT system, it sets the shell variable HOME to your home or default directory path. If
your user name is henry, then the command

echo $HOME

on most systems prints:

/usr/henry

The change directory command cd sets the working directory to the path found in HOME if no argument is given.

The shell normally prompts you with $ for commands, and with > if more information is needed. These two
prompts are taken by the shell from the variables PS1 and PS2. You can change these if you want different
prompts, for example

PS1="Fred’s Software Palace: "
PS2=’!’

To have these take effect each time you log in, put the assignment statements in your .profile file.

The shell variable PATH lists the path names of directories that contain commands. To show the contents of
PATH, type:

echo $PATH

It typically will show:

:/bin:/usr/bin

This means that the shell looks for a command first in the current directory, then in /bin, and, if not found there,
then in /usr/bin. The path names are separated by ‘:’. This means that an empty string precedes the first ‘:’, the
current directory. Another common setting for PATH is:

:..:/bin:/usr/bin

This means that the shell seeks commands first in the current directory, then in ‘..’ (the parent directory of the
current directory), then in /bin, and finally in /usr/bin.

dot . : Read Commands
Similar to the command sh is the . command. The command

. cfil

causes the shell to read and execute commands from cfil.

This differs from the sh command in several respects. First, there’s no way to pass parameters to cfil with the ‘.’
command. Second, the sh command executes another shell to read the commands, whereas ‘.’ simply reads the
commands directly. Finally, all the string variables and parameters are accessible by cfil.

The command file good.am created earlier can be executed with:

. good.am

This has the same effect. Similarly, the ‘.’ can itself be used within a command file:

ed
a
. good.am
lc
.
w third.sh
q

Then, the command

. third.sh
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has the same result as the command:

sh third.sh

Values Returned by Commands
Most COHERENT commands return a value that indicates success or failure. For example, if grep cannot find your
file, it issues a diagnostic message and returns a value that tells the shell that something went wrong. You can
examine this value by typing the command:

echo $?

This tells you the value returned by the last command executed. Zero indicates success (true), whereas a non-zero
value indicates failure (false). Note that this convention is the opposite of that in the C language (a fact that has
led to confusion on occasion).

You can use the value returned by a command to affect decisions about executing other commands.

test: Condition Testing
For most commands, the return value is a side-effect of their operation. However, the test command’s only task is
to return a value. This command can test many conditions, and return a value to indicate whether the requested
condition is true or false.

The command

test -f file01

returns true (zero) if file01 exists and is not a directory. To check if a file is a directory, use:

test -d file01

test can also test strings. This is useful when you are using parameter substitution. To illustrate, build the
following command:

ed
a
test $1 = $2
echo ’test 1 & 2 for equal:’ $?
test $1 != $2
echo ’test 1 & 2 for not equal:’ $?
.
w test.ed
q
chmod +x test.ed

Because the ‘=’ is a parameter, be sure to surround it with space characters.

This command file tests its two parameters for equality. Try the commands:

test.ed one two
test.ed one one

The test command has many other options; see the Lexicon entry for test for details.

Executing Commands Conditionally
Type the following commands to create two files:

cat >file1
line one
line two
line three
<ctrl-D>
cat >file2
line one
two is different
line three
<ctrl-D>

Now, compare the files and print the return value:

TUTORIALS



The Bourne Shell 55

cmp -s file1 file2
echo $?

The command cmp compares two files byte-by-byte; the -s option tells cmp merely to indicate whether the files
were the same. The command

echo $?

prints 1 (false) because the files are not the same.

To process a second command based on the result returned by the first, type:

cmp -s file1 file2 || cat file2

The characters || signify that the following command cat should be executed if the cmp command returns a non-
zero value, which it will for this example.

The two characters && execute the command that follows them only if the preceding command returns true (zero).

To see how this works, create a third file with the command:

cp file1 file3

Type the command:

cmp -s file1 file3 && rm file3

This command removes file3 if cmp indicates that file1 and file3 are identical. Because cmp is preceded by the
copy command cp, the files file1 and file3 are identical, and so file3 is removed.

Control Flow
Because the shell is a programming language as well as a program, it provides constructs for conditional execution
and loops. These are for, if, while, until, and case. Also, a subshell can be executed within ‘(’ and ‘)’.

for: Execute a Loop

The for construct processes a set of commands once for each element in a list of items.

To illustrate for, type the following commands to COHERENT:

for i in a b c
do echo $i
done

The items a, b, and c form the list of value that the variable i assumes. The shell executes echo with i assuming
each value in turn. The result of these commands is:

a
b
c

Notice that after you type the line containing for, COHERENT prompts with a different character > (on most
COHERENT systems). The shell does this to remind you that you must type more information. After you type the
line containing done, the prompt again becomes $.

The for command is usually used within a script. Also, you can leave off the list of value to the index variable;
when you do this, the shell by default uses the arguments typed on the script’s command line as the values for the
index variable. To illustrate, type:

ed
a
for i
do echo $i
echo ’---’
done
.
w script.for
q
chmod +x script.for

The statement for i is equivalent to:
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for i in $*

where $* means ‘‘all positional parameters’’. Notice that two commands are repeated for each value of i. Now, call
script.for with the following command line:

script.for 1 2 3 4 test

The result is:

1
---
2
---
3
---
4
---
test
---

if: Execute Conditionally

if tests the result of a command and conditionally executes other commands based upon that result. It can be
used instead of && and ||, as shown above. To demonstrate this, first type the command:

cp file1 file3

This creates file3 (because we deleted it on the previous page). Then type:

if cmp -s file1 file2
then cat file3
fi

This means that the shell executes

cat file3

if cmp returns zero (true).

To get the same result as given by the previously illustrated command:

cmp -s file1 file3 && rm file3

with the if statement, also use else:

if cmp -s file1 file3
then
else rm file3
fi

The commands between else and fi are executed if the result of the command following the if is false or non-zero.
Note that there is no command following then.

The elif statement lets you test several conditions with one if statement and act on the one that is true. In general
terms,

if command1
then action1
elif command2
then action2
elif command3
then action3
else action4
fi

The items labeled command and action are both commands or lists of commands.

First, the shell executes command1. If the result is true, it performs action1. If the result from command1 is not
true, the shell then executes command2. If its result is true, then it performs action2. This process continues so
long as none of the commands return a true result. If none of the command results are true, the action following
the else is executed.
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To illustrate elif, create a shell script that list on your terminal only one of the three file-name arguments. Use the
command

test -f name

which returns true if name is an existing non-directory file.

ed
a
if test -f $1
then cat $1
elif test -f $2
then cat $2
elif test -f $3
then cat $3
else echo ’None are files’
fi
.
w cat.1
q
chmod +x cat.1

Now, let’s exercise cat.1. Type:

cat.1 file1 file2 file3
cat.1 file3 file2 file1
cat.1 foo bar baz

Examine the results.

while: Execute a Loop

Another looping or repetitive shell statement is the while statement. The commands

while command1
do command2
done

first performs command1. If its result is true, command2 is executed, and command1 is again executed. This
process continues until command1 returns false (non-zero).

until: Another Looping Construct

The construct until resembles while. For example, the commands:

until command1
do command2
done

execute command2 until command1 returns true (zero).

case: Serial Conditional Execution

The case statement resembles the if statement in that it offers a multiple choice. To illustrate, type the following
script, which lets you choose one of several ways to list the contents of a directory:

ed
a
case $1 in

1) ls -l;;
2) ls;;
3) lc;;
*) echo unknown parameter $1;;

esac
.
w dir
q
chmod +x dir

The words case and esac bracket the entire case statement. The effect of the command

dir 2
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is equivalent to:

ls

Each choice within the case statement is indicated by a string followed by ):

2)

indicates what is to be executed if argument $1 has the value 2.

The strings that select the choices may be patterns. The choice ‘*)’ signifies that a match can be made on any
string. Notice that this resembles the use of * to substitute any file name. An expression of the form

[1-9])

in a case statement matches any digit from 1 through 9. A list of alternatives can be presented by separating the
choices with a vertical bar:

a|b|c) command

Each command or command list in the case choice must be terminated by a double semicolon ;;.

Summary
The shell is a command programming language that handles simple commands as well as complex commands that
can iterate as well as make decisions. Three kinds of substitution are provided to increase the power of your
commands.

For more information about the shell, see the tutorial for the shell that follows in this manual. For more
information about a given command, see its entry in the Lexicon.

Note, too, that the COHERENT system also includes the Korn shell ksh. This is a superset of the Bourne shell
described here, and has many features that you may find useful. For information about this shell, see the Lexicon
entry for ksh.
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Introduction to MicroEMACS

This section introduces MicroEMACS, the interactive screen editor for COHERENT.

What is MicroEMACS?
MicroEMACS is an interactive screen editor. An editor lets you type text into your computer, name it, store it, and
recall it later for editing. Interactive means that MicroEMACS accepts an editing command, executes it, displays the
results for you immediately, then waits for your next command. Screen means that you can use nearly the entire
screen of your terminal as a writing surface: you can move your cursor up, down, and around your screen to create
or change text, much as you move your pen up, down, and around a piece of paper.

These features, plus the others that will be described in the course of this tutorial, make MicroEMACS powerful yet
easy to use. You can use MicroEMACS to create or change computer programs or any type of text file.

This version of MicroEMACS was developed by Mark Williams Company from the public-domain program written by
David G. Conroy. This tutorial is based on the descriptions in his essay MicroEMACS: Reasonable Display Editing
in Little Computers. MicroEMACS is derived from the mainframe display editor EMACS, created by Richard
Stallman.

For a summary of MicroEMACS and its commands, see the entry for me in the Lexicon.

Keystrokes: <ctrl>, <esc>
The MicroEMACS commands use control characters and meta characters. Control characters use the control key,
which is marked Control or ctrl on your keyboard. Meta characters use the escape key, which is marked Esc.

Control works like the shift key: you hold it down while you strike the other key. This tutorial represent it with a
hyphen; for example, pressing the control key and the letter ‘X’ key simultaneously will be shown as follows:

<ctrl-X>

The esc key, on the other hand, works like an ordinary character. You strike it first, then strike the letter
character you want. This tutorial does not represent the Escape codes with a hyphen; for example, it represents
escape X as:

<esc>X

Becoming Acquainted with MicroEMACS
Now you are ready for a few simple exercises that will help you get a feel for how MicroEMACS works.

To begin, type the following command to COHERENT:

me sample

Within a few seconds, your screen will have been cleared of writing, the cursor will be positioned in the upper left-
hand corner of the screen, and a command line will appear at the bottom of your screen.

Now type the following text. If you make a mistake, just backspace over it and retype the text. Press the carriage
return or enter key after each line:

main()
{

printf("Hello, world!\n");
}

Notice how the text appeared on the screen character by character as you typed it, much as it would appear on a
piece of paper if you were using a typewriter.

Now, type <ctrl-X><ctrl-S>; that is, type <ctrl-X>, and then type <ctrl-S>. It does not matter whether you type
capital or lower-case letters. Notice that this message has appeared at the bottom of your screen:

[Wrote 4 lines]

This command has permanently stored, or saved, what you typed into a file named sample.
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Type the next few commands, which demonstrate some of the tasks that MicroEMACS can perform for you. These
commands will be explained in full in the sections that follow; for now, try them to get a feel for how MicroEMACS

works.

Type <esc><. Be sure that you type a less-than symbol ‘<’, which on most keyboards is located just above the
comma. Notice that the cursor has returned to the upper left-hand corner of the screen. Type <esc>F. The cursor
has jumped forward by one word, and is now on the left parenthesis.

Type <ctrl-N>. Notice that the cursor has jumped to the next line, and is now just to the right of the left brace ‘{’.

Type <ctrl-A>. The cursor has jumped to the beginning of the second line of your text.

Type <ctrl-N> again. Now the cursor is at the beginning of the third line of the program, the printf statement.

Now, type <ctrl-K>. The third line of text has disappeared, leaving an empty space. Type <ctrl-K> again. The
empty space where the third line of text had been has now disappeared.

Type <esc>>. Be sure to type a greater-than symbol ‘>’, which on most keyboards is just above the period. The
cursor has jumped to the space just below the last line of text. Now type <ctrl-Y>. The text that you erased a
moment ago has reappeared, but in a new position on the screen.

By now, you should be feeling more at ease with typing MicroEMACS’s control and escape codes. The following
sections will explain what these commands mean. For now, exit from MicroEMACS by typing <ctrl-X><ctrl-C>, and
when the message

Quit [y/n]?

appears type y and then <return>. This will return you to the shell.

Beginning a Document

This tutorial practices on file example1.c, example2.c, and example3.c. They are stored in the directory
/usr/src/example. Before beginning, type the following commands to copy these files into the current directory
and change their permissions:

cp /usr/src/sample/example?.c .
chmod +w example?.c

Now, type the following command to invoke MicroEMACS:

me example1.c

In a moment, the following text will appear on your screen:

/*
* This is a simple C program that computes the results
* of three different rates of inflation over the
* span of ten years. Use this text file to learn
* how to use MicroEMACS commands
* to make creating and editing text files quick,
* efficient and easy.
*/

#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t%f %f %f\n";/* printf string */
i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i<= 10; i++) {

w1 *= 1.07; /* apply inflation */
w2 *= 1.08;
w3 *= 1.10;
printf (msg, i, w1, w2, w3);

}
}

When you invoke MicroEMACS, it copies that file into memory. Your cursor also moved to the upper left-hand
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corner of the screen. At the bottom of the screen appears the status line, as follows:

-- Coherent MicroEMACS -- example1.c -- File: example1.c --

The word to the left, MicroEMACS, is the name of the editor. The word in the center, example1.c, is the name of
the buffer that you are using. (We will describe later just what a buffer is and how you use it.) The name to the
right is the name of the text file that you are editing.

Moving the Cursor
Now that you have read a text file into memory, you are ready to edit it. The first step is to learn to move the
cursor.

Try these commands for yourself as we described them. That way, you will quickly acquire a feel for handling
MicroEMACS’s commands.

Moving the Cursor Forward

This first set of commands moves the cursor forward:

<ctrl-F> Move forward one space
<esc>F Move forward one word
<ctrl-E> Move to end of line

To see how these commands work, do the following: Type the forward command <ctrl-F>. As before, it does not
matter whether the letter ‘F’ is upper case or lower case. The cursor has moved one space to the right, and now is
over the character ‘*’ in the first line.

Type <esc>F. The cursor has moved one word to the right, and is now over the space after the word This.
MicroEMACS considers only alphanumeric characters when it moves from word to word. Therefore, the cursor
moved from under the * to the space after the word This, rather than to the space after the *. Now type the end of
line command <ctrl-E>. The cursor has jumped to the end of the line and is now just to the right of the s of the
word results.

Moving the Cursor Backwards

The following summarizes the commands for moving the cursor backwards:

<ctrl-B> Move back one space
<esc>B Move back one word
<ctrl-A> Move to beginning of line

To see how these work, first type the backward command <ctrl-B>. As you can see, the cursor has moved one
space to the left, and now is over the letter e of the word three. Type <esc>B. The cursor has moved one word to
the left and now is over the t in three. Type <esc>B again, and the cursor will be positioned on the o in of.

Type the beginning of line command <ctrl-A>. The cursor jumps to the beginnning of the line, and once again is
resting over the ‘/’ character in the first line.

From Line to Line

<ctrl-P> Move to previous line
<ctrl-N> Move to next line

These two commands move the cursor up and down the screen. Type the next line command <ctrl-N>. The cursor
jumps to the space before the ‘*’ in the next line. Type the end of line command <ctrl-E>, and the cursor moves to
the end of the second line to the right of the period.

Continue to type <ctrl-N> until the cursor reaches the bottom of the screen. As you reached the first line in your
text, the cursor jumped from its position at the right of the period on the second line to just right of the brace on
the last line of the file. When you move your cursor up or down the screen, MicroEMACS tries to keep it at the
same position within each line. If the line to which you are moving the cursor is not long enough to have a
character at that position, MicroEMACS moves the cursor to the end of the line.

Now, practice moving the cursor back up the screen. Type the previous line command <ctrl-P>. When the cursor
jumped to the previous line, it retained its position at the end of the line. MicroEMACS remembers the cursor’s
position on the line, and returns the cursor there when it jumps to a line long enough to have a character in that
position.
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Continue pressing <ctrl-P>. The cursor will move up the screen until it reaches the top of your text.

Repetitive Motion

Some computers repeat a command automatically if you hold down the control key and the character key. Try
holding down <ctrl-N> for a moment, and see if it repeats automatically. If it does, that will speed moving your
cursor around the screen, because you will not have to type the same command repeatedly.

Moving Up and Down by a Screenful of Text

The next two cursor movement commands allow you to roll forward or backwards by one screenful of text.

<ctrl-V> Move forward one screen
<esc>V Move back one screen

If you are editing a file with MicroEMACS that is too big to be displayed on your screen all at once, MicroEMACS

displays the file in screen-sized portions (on most terminals, 22 lines at a time). The view commands <ctrl-V> and
<esc>V allow you to roll up or down one screenful of text at a time.

Type <ctrl-V>. Your screen now contains only the last three lines of the file. This is because you have rolled
forward by the equivalent of one screenful of text, or 22 lines.

Now, type <esc>V. Notice that your text rolls back onto the screen, and your cursor is positioned in the upper left-
hand corner of the screen, over the character ‘/’ in the first line.

Moving to Beginning or End of Text

These last two cursor movement commands allow you to jump immediately to the beginning or end of your text.

<esc>< Move to beginning of text
<esc>> Move to end of text

The end of text command <esc>> moves the cursor to the end of your text. Type <esc>>. Be sure to type a greater-
than symbol ‘>’. Your cursor has jumped to the end of your text.

The beginning of text command <esc>< will move the cursor back to the beginning of your text. Type <esc><. Be
sure to type a less-than symbol ‘<’. The cursor has jumped back to the upper left-hand corner of your screen.

These commands move you immediately to the beginning or the end of your text, regardless of whether the text is
one page or 20 pages long.

Saving Text and Quitting

If you do not wish to continue working at this time, you should save your text, and then quit.

It is good practice to save your text file every so often while you are working on it. If an accident occurs, such as a
power failure, you will not lose all of your work. You can save your text with the save command <ctrl-X><ctrl-S>.
Type <ctrl-X><ctrl-S> that is, first type <ctrl-X>, then type <ctrl-S>. If you had modified this file, the following
message would appear:

[Wrote 23 lines]

The text file would have been saved to your computer’s disk. (MicroEMACS sends you messages from time to time.
The messages enclosed in square brackets ‘[’ ‘]’ are for your information, and do not necessarily mean that
something is wrong.) To exit from MicroEMACS, type the quit command <ctrl-X><ctrl-C>. This will return you to
the shell.

Killing and Deleting
Now that you know how to move the cursor, you are ready to edit your text.

To return to MicroEMACS, type the command:

me example1.c

Within a moment, example1.c will be restored to your screen.

By now, you probably have noticed that MicroEMACS is always ready to insert material into your text. Unless you
use the <ctrl> or <esc> keys, MicroEMACS assumes that whatever you type is text and inserts it onto your screen
where your cursor is positioned.
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The simplest way to erase text is simply to position the cursor to the right of the text you want to erase and
backspace over it. MicroEMACS, however, also has a set of commands that allow you to erase text easily. These
commands, kill and delete, behave differently; the distinction is important, and will be explained in a moment.

Deleting Vs. Killing

When MicroEMACS deletes text, it is erased completely and disappears forever. However, when MicroEMACS kills
text, the text is copied into a temporary storage area in memory. This storage area is overwritten when you move
the cursor and then kill additional text. Until then, however, the killed text is saved. This aspect of killing allows
you to restore text that you killed accidentally, and it also allows you to move or copy portions of text from one
position to another.

MicroEMACS is designed so that when it erases text, it does so beginning at the left edge of the cursor. This left
edge is called the current position.

You should imagine that an invisible vertical bar separates the cursor from the character immediately to its left.
As you enter the various kill and delete commands, this vertical bar moves to the right or the left with the cursor,
and erases the characters it touches.

Erasing Text to the Right

The first two commands to be presented erase text to the right.

<ctrl-D> Delete one character to the right
<del> Delete one character to the right
<esc>D Kill one word to the right

The keystrokes <del> and <ctrl-D> both delete one character to the right of the current position. <esc>D deletes
one word to the right of the current position.

To try these commands, type <ctrl-D> or <del>. MicroEMACS erases the character ‘/’ in the first line, and shifted
the rest of the line one space to the left.

Now, type <esc>D. MicroEMACS erases the ‘*’ character and the word This, and shifts the line six spaces to the
left. The cursor is positioned at the space before the word is. Type <esc>D again. The word is vanishes along with
the space that preceded it, and the line shifts four spaces to the left.

Remember that <ctrl-D> deletes text, but <esc>D kills text.

Erasing Text to the Left

You can erase text to the left with the following commands:

<backspace> Delete one character to the left
<esc><backspace> Kill one word to the left

To see how to erase text to the left, first type the end of line command <ctrl-E>; this will move the cursor to the
right of the word three on the first line of text. Now, type <backspace>. The second e of the word three has
vanished.

To erase the word that lies to the left of the cursor, type <esc><backspace>: that is, type <esc> and then type
<backspace>. MicroEMACS defines a word as a string delimited by white space. For example, if you type
<esc><backspace>, the rest of the word three vanishes, and the cursor moves to the white space that lies to the
left of that word. If the cursor is at the beginning of a line, then this command kills the last word on the previous
line of text.

Please note that erasing text with <backspace> deletes the text; that is, the text is thrown away and gone forever.
Erasing text with <esc><backspace>, however, kills text; which means that the text is stored internally and can be
retrieved. The distinction between deleting text and killing is described in detail below.

Erasing Lines of Text

Finally, the following command erases a line of text:

<ctrl-K> Kill from cursor to end of line

This command kills a line of text, from the line beginning from immediately to the left of the cursor to the end of
the line.
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To see how this works, move the cursor to the beginning of line 2. Now, strike <ctrl-K>. All of line 2 has vanished
and been replaced with an empty space. Strike <ctrl-K> again. The empty space has vanished, and the cursor is
now positioned at the beginning of what used to be line 3, in the space before * Use.

Yanking Back (Restoring) Text

The following command allows you restore material that you have killed:

<ctrl-Y> Yank back (restore) killed text

Remember that when you kill text, MicroEMACS temporarily stores it elsewhere. You can return this material to the
screen by using the yank back command <ctrl-Y>. Type <ctrl-Y>. All of line 2 has returned; the cursor, however,
remains at the beginning of line 3.

Quitting

When you are finished, do not save the text. If you do so, the undamaged copy of the text that you made earlier
will be replaced with the present mangled copy. Rather, use the quit command <ctrl-X><ctrl-C>. Type <ctrl-
X><ctrl-C>. On the bottom of your screen, MicroEMACS responds:

Quit [y/n]?

Reply by typing y and a carriage return. If you type n, MicroEMACS will return you to where you were in the text.
MicroEMACS will now return you to the shell.

Block Killing and Moving Text
As noted above, text that is killed is stored temporarily within memory. You can yank killed text back onto your
screen, and not necessarily in the spot where it was originally killed. This feature allows you to move text from one
position to another.

Moving One Line of Text

You can kill and move one line of text with the following commands:

<ctrl-K> Kill text to end of line
<ctrl-Y> Yank back text

To test these commands, invoke MicroEMACS for the file example1.c by typing the following command:

me example1.c

When MicroEMACS appears, the cursor will be positioned in the upper left-hand corner of the screen.

To move the first line of text, begin by typing the kill command <ctrl-K> twice. Now, press <esc>> to move the
cursor to the bottom of text. Finally, yank back the line by typing <ctrl-Y>. The line that reads

/* This is a simple C program that computes the results

is now at the bottom of your text.

Your cursor has moved to the point on your screen that is after the line you yanked back.

Multiple Copying of Killed Text

When text is yanked back onto your screen, it is not deleted from memory. Rather, it is simply copied back onto
the screen. This means that killed text can be reinserted into the text more than once. To see how this is done,
return to the top of the text by typing <esc><. Then type <ctrl-Y>. The line you just killed now appears as both
the first and last line of the file.

The killed text will not be erased from its temporary storage until you move the cursor and then kill additional text.
If you kill several lines or portions of lines in a row, all of the killed text will be stored in the buffer; if you are not
careful, you may yank back a jumble of accumulated text.

Kill and Move a Block of Text

If you wish to kill and move more than one line of text at a time, use the following commands:
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<ctrl-@> Set mark
<esc>. Set mark
<ctrl-W> Kill block of text
<ctrl-Y> Yank back text

If you wish to kill a block of text, you can either type the kill command <ctrl-K> repeatedly to kill the block one line
at a time, or you can use the block kill command <ctrl-W>. To use this command, you must first set a mark on the
screen, an invisible character that acts as a signal to the computer. The mark can be set with either <esc>. or
<ctrl-@>.

Once the mark is set, you must move your cursor to the other end of the block of text you wish to kill, and then
strike <ctrl-W>. The block of text will be erased, and will be ready to be yanked back elsewhere.

Try this out on example1.c. Type <esc>< to move the cursor to the upper left-hand corner of the screen. Then
type the set mark command <ctrl-@>. MicroEMACS will respond with the message

[Mark set]

at the bottom of your screen. Now, move the cursor down six lines, and type <ctrl-W>. Note how the block of text
you marked out has disappeared.

Move the cursor to the bottom of your text. Type <ctrl-Y>. The killed block of text has now been reinserted.

When you yank back text, be sure to position the cursor at the exact point where you want the text to be yanked
back. This will ensure that the text will be yanked back in the proper place. To try this out, move your cursor up
six lines. Be careful that the cursor is at the beginning of the line. Now, type <ctrl-Y> again. The text reappeared
above where the cursor was positioned, and the cursor has not moved from its position at the beginning of the line
which is not what would have happened had you positioned it in the middle or at the end of a line.

Although the text you are working with has only 23 lines, you can move much larger portions of text using only
these three commands. Remember, too, that you can use this technique to duplicate large portions of text at
several positions to save yourself considerable time in typing and reduce the number of possible typographical
errors.

Capitalization and Other Tools
The next commands perform a number of tasks to help with your editing. Before you begin this section, destroy
the old text on your screen with the quit command <ctrl-X><ctrl-C>, and read into MicroEMACS a fresh copy of the
program, as you did earlier.

Capitalization and Lowercasing

The following MicroEMACS commands automatically capitalize a word (that is, make the first letter of a word upper
case), or make an entire word upper case or lower case.

<esc>C Capitalize a word
<esc>L Lowercase from cursor to end of word
<esc>U Uppercase from cursor to end of word

To try these commands, do the following: First, move the cursor to the letter d of the word different on line 2. Type
the capitalize command <esc>C. The word is now capitalized, and the cursor is now positioned at the space after
the word. Move the cursor forward so that it is over the letter t in rates. Press <esc>C again. The word changes
to raTes. When you press <esc>C, MicroEMACS capitalizes the first letter the cursor meets.

MicroEMACS can also change a word to all upper case or all lower case. (There is very little need for a command
that will change only the first character of an upper-case word to lower case, so it is not included.)

Type <esc>B to move the cursor so that it is again to the left of the word Different. It does not matter if the cursor
is directly over the D or at the space to its left; as you will see, this means that you can capitalize or lowercase a
number of words in a row without having to move the cursor.

Type the uppercase command <esc>U. The word is now spelled DIFFERENT, and the cursor has jumped to the
space after the word.

Again, move the cursor to the left of the word DIFFERENT. Type the lowercase command <esc>L. The word has
changed back to different. Now, move the cursor to the space at the beginning of line 3 by typing <ctrl-N> then
<ctrl-A>. Type <esc>L once again. The character ‘‘*’ is not affected by the command, but the letter U is now lower
case. <esc>L not only shifts a word that is all upper case to lower case: it can also un-capitalize a word.
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The uppercase and lowercase commands stop at the first punctuation mark they meet after the first letter they
find. This means that, for example, to change the case of a word with an apostrophe in it you must type the
appropriate command twice.

Transpose Characters

MicroEMACS allows you to reverse the position of two characters, or transpose them, with the transpose command
<ctrl-T>.

Type <ctrl-T>. MicroEMACS transposes the character that is under the cursor with the character immediately to its
left. In this example,

* use this

in line 3 now appears:

* us ethis

The space and the letter e have been transposed. Type <ctrl-T> again. The characters have returned to their
original order.

Screen Redraw

<ctrl-L> Redraw screen

Occasionally, while you are working on a text another COHERENT user will write or mail you a message. COHERENT

will write the message directly on your screen, which scrambles your screen. A message sent from another user or
a message from the COHERENT system is not recorded into your text; however, you may wish to erase the message
and continue editing. The redraw screen command <ctrl-L> will redraw your screen to the way it was before it was
scrambled.

Type <ctrl-L>. Notice how the screen flickers and the text is rewritten. Had your screen been spoiled by
extraneous material, that material would have been erased and the original text rewritten.

The <ctrl-L> command also has another use: it can move the line on which the cursor is positioned to the center of
the screen. If you have a file that contains more than one screenful of text and you wish to have that particular
line in the center of the screen, position the cursor on that line and type <ctrl-U><ctrl-L>. You will see a prompt
that says

Arg: 4

The meaning of this prompt is explained below; for now, ignore it and press <return>. Immediately, MicroEMACS

redraws the screen and places the line you selected in the center of the screen.

Return Indent

<ctrl-J> Return and indent

You may often be faced with a situation in which, for the sake of programming style, you need to indent many lines
of text: before every line you must tab the correct number of times before typing the text. These block indents can
be a time-consuming typing chore. The MicroEMACS <ctrl-J> command makes this task easier. <ctrl-J> moves
the cursor to the next line on the screen and automatically positions the cursor at the previous line’s level of
indentation.

To see how this works, first move the cursor to the line that reads

w3 *= 1.10:

Press <ctrl-E>, to move the cursor to the end of the line. Now, type <ctrl-J>.

As you can see, a new line opens up and the cursor is indented the same amount as the previous line. Type

/* Here is an example of auto-indentation */

This line of text begins directly under the previous line.
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Word Wrap

<ctrl-X>F Set word wrap

Although you have not yet had much opportunity to use it, MicroEMACS will automatically wrap text that you are
typing. Word-wrapping is controlled with the word wrap command <ctrl-X>F. To see how the word wrap
command works, first exit from MicroEMACS by typing <ctrl-X><ctrl-C>; then reinvoke MicroEMACS by typing

me cucumber

When MicroEMACS re-appears, type the following text; however, do not type any carriage returns:

A cucumber should be
well sliced, and dressed
with pepper and vinegar,
and then thrown out, as
good for nothing.

When you reached the edge of your screen, a dollar sign was printed and you were allowed to continue typing.
MicroEMACS accepted the characters you typed, but it placed them at a location beyond the right edge of your
screen.

Now, move to the beginning of the next line and type <ctrl-U>. MicroEMACS will reply with the message:

Arg: 4

Type 30. The line at the bottom of your screen now appears as follows:

Arg: 30

(The use of the argument command <ctrl-U> will be explained in a few minutes.) Now type the word-wrap
command <ctrl-X>F. MicroEMACS will now say at the bottom of your screen:

[Wrap at column 30]

This sequence of commands has set the word-wrap function, and told it to wrap to the next line all words that
extend beyond the 30th column on your screen.

The word wrap feature automatically moves your cursor to the beginning of the next line once you type past a
preset border on your screen. When you first enter MicroEMACS, that limit is automatically set at the first column,
which in effect means that word wrap has been turned off.

When you type prose for a report or a letter of some sort, you probably will want to set the border at the 65th
column, so that the printed text will fit neatly onto a sheet of paper. If you are using MicroEMACS to type in a
program, however, you probably will want to leave word wrap off, so you do not accidentally introduce carriage
returns into your code.

To test word wrapping, type the above text again, without using the carriage return key. When you finish, it
should appear as follows:

A cucumber should be well
sliced, and dressed with
pepper and vinegar, and then
thrown out, as good for
nothing.

MicroEMACS automatically moved your cursor to the next line when you typed a space character after the 30th
column on your screen.

If you wish to fix the border at some special point on your screen but do not wish to go through the tedium of
figuring out how many columns from the left it is, simply position the cursor where you want the border to be, type
<ctrl-X>F, and then type a carriage return. When <ctrl-X>F is typed without being preceded by a <ctrl-U>
command, it sets the word-wrap border at the point your cursor happens to be positioned. When you do this,
MicroEMACS will then print a message at the bottom of your terminal that tells you where the word-wrap border is
now set.

To re-word wrap the text between the cursor and the mark, type <ctrl-X>H.
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If you wish to turn off the word wrap feature again, simply set the word wrap border to one.

Search and Reverse Search
When you edit a large text, you may wish to change particular words or phrases. To do this, you can roll through
the text and read each line to find them; or you can have MicroEMACS find them for you. Before you continue,
close the present file by typing <ctrl-X> <ctrl-C>; then reinvoke the editor to edit the file example1.c, as you did
before. The following sections perform some exercises with this file.

Search Forward

<ctrl-S> Search forward incrementally
<esc>S Search forward with prompt

As you can see from the display, MicroEMACS has two ways to search forward: incrementally, and with a prompt.

An incremental search is one in which the search is performed as you type the characters. To see how this works,
first type the beginning of text command <esc>< to move the cursor to the upper left-hand corner of your screen.
Now, type the incremental search command <ctrl-S>. MicroEMACS will respond by prompting with the message

i-search forward []

at the bottom of the screen.

We will now search for the pointer *msg. Type the letters *msg one at a time, starting with *. The cursor has
jumped to the first place that a * was found: at the second character of the first line. The cursor moves forward in
the text file and the message at the bottom of the screen changes to reflect what you have typed.

Now type m. The cursor has jumped ahead to the letter s in *msg. Type s. The cursor has jumped ahead to the
letter g in *msg. Finally, type g. The cursor is over the space after the token *msg. Finally, type <esc> to end the
string. MicroEMACS replies with the message

[Done]

which indicates that the search is finished.

If you attempt an incremental search for a word that is not in the file, MicroEMACS will find as many of the letters
as it can, and then give you an error message. For example, if you tried to search incrementally for the word
*msgs, MicroEMACS would move the cursor to the phrase *msg; when you typed ‘s’, it would tell you

failing i-search forward: *msgs

With the prompt search, however, you type in the word all at once. To see how this works, type <esc><, to return
to the top of the file. Now, type the prompt search command <esc>S. MicroEMACS responds by prompting with the
message

Search [*msgs]:

at the bottom of the screen. The word *msgs is shown because that was the last word for which you searched, and
so it is kept in the search buffer.

Type in the words editing text, then press the carriage return. Notice that the cursor has jumped to the period
after the word text in the next to last line of your text. MicroEMACS searched for the words editing text, found
them, and moved the cursor to them.

If the word you were searching for was not in your text, or at least was not in the portion that lies between your
cursor and the end of the text, MicroEMACS would not have moved the cursor, and would have displayed the
message

Not found

at the bottom of your screen.

Reverse Search

<ctrl-R> Search backwards incrementally
<esc>R Search backwards with prompt

The search commands, useful as they are, can only search forward through your text. To search backwards, use
the reverse search commands <ctrl-R> and <esc>R. These work exactly the same as their forward-searching
counterparts, except that they search toward the beginning of the file rather than toward the end.
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For example, type <esc>R. MicroEMACS replies with the message

Reverse search [editing text]:

at the bottom of your screen. The words in square brackets are the words you entered earlier for the search
command; MicroEMACS remembered them. If you wanted to search for editing text again, you would just press
the carriage return. For now, however, type the word program and press the carriage return.

Notice that the cursor has jumped so that it is under the letter p of the word program in line 1. When you search
forward, the cursor moves to the space after the word for which you are searching, whereas when you reverse
search the cursor moves to the first letter of the word for which you are searching.

Cancel a Command

<ctrl-G> Cancel a search command

As you have noticed, the commands to move the cursor or to delete or kill text all execute immediately. Although
this speeds your editing, it also means that if you type a command by mistake, it executes before you can stop it.

The search and reverse search commands, however, wait for you to respond to their prompts before they execute.
If you type <esc>S or <esc>R by accident, MicroEMACS will interrupt your editing and wait for you to initate a
search that you do not want to perform. You can evade this problem, however, with the cancel command <ctrl-G>.
This command tells MicroEMACS to ignore the previous command.

To see how this command works, type <esc>R. When the prompt appears at the bottom of your screen, type <ctrl-
G>. Three things happen: your terminal beeps, the characters ^G appear at the bottom of your screen, and the
cursor returns to where it was before you first typed <esc>R. The <esc>R command has been cancelled, and you
are free to continue editing.

If you cancel an incremental search command, <ctrl-S> or <esc-S>, the cursor returns to where it was before you
began the search. For example, type <esc>< to return to the top of the file. Now type <ctrl-S> to begin an
incremental search, and type m. When the cursor moves to the m in simple, type <ctrl-G>. Your cursor returns to
the top of the file, where you began the search.

Search and Replace

<esc>% Search and replace

MicroEMACS also gives you a powerful function that allows you to search for a string and replace it with a
keystroke. You can do this by executing the search and replace command <esc>%.

To see how this works, move to the top of the text file by typing <esc><; then type <esc>%. You will see the
following message at the bottom of your screen:

Old string [m]

As an exercise, type msg, and then press <return>. MicroEMACS will then ask:

New string:

Type message, and press the carriage return. As you can see, the cursor jumps to the first occurrence of the
string msg, and prints the following message at the bottom of your screen:

Query replace: [msg] -> [message]

MicroEMACS is asking if it should proceed with the replacement. Type a carriage return: this displays the options
that are available to you at the bottom of your screen:

<SP>[,] replace, [.] rep-end, [n] dont, [!] repl rest <C-G> quit

The options are as follows:

Typing a space or a comma executes the replacement, and moves the cursor to the next occurrence of the old
string; in this case, it replaces msg with message, and moves the cursor to the next occurrence of msg.

Typing a period ‘.’ replaces this one occurrence of the old string and ends the search and replace procedure. In this
example, typing a period replaces this one occurrence of msg with message and ends the procedure.
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Typing the letter ‘n’ tells MicroEMACS not to replace this instance of the old string, but move to the next occurrence
of the old string. In this case, typing ‘n’ does not replace msg with message, and the cursor jumps to the next
place where msg occurs.

Typing an exclamation point ‘!’ tells MicroEMACS to replace all instances of the old string with the new string
automatically, without checking with you any further. In this example, typing ‘!’ replaces all instances of msg with
message without further queries from MicroEMACS. When you finish searching and replacing, MicroEMACS

displays a message that tells how many replacements it made.

Typing <ctrl-G> aborts the search and replace procedure.

Saving Text and Exiting
This set of basic editing commands allows you to save your text and exit from the MicroEMACS program. They are
as follows:

<ctrl-X><ctrl-S> Save text
<ctrl-X><ctrl-W> Write text to a new file

<ctrl-Z> Save text and exit
<ctrl-X><ctrl-C> Exit without saving text

You have used two of these commands already: the save command <ctrl-X><ctrl-S> and the quit command <ctrl-
X><ctrl-C>, which respectively allow you to save text or to exit from MicroEMACS without saving text. (Commands
that begin with <ctrl-X> are called extended commands; they are used frequently in the commands described later
in this tutorial.)

Write Text to a New File

<ctrl-X> <ctrl-W> Write text to a new file

If you wish, you can copy the text you are currently editing to a text file other than the one from which you
originally read the text. Do this with the write command <ctrl-X><ctrl-W>.

To test this command, type <ctrl-X><ctrl-W>. MicroEMACS displays the following message on the bottom of your
screen:

Write file:

MicroEMACS is asking for the name of the file into which you wish to write the text. Type sample. MicroEMACS

replies:

[Wrote 23 lines]

The 23 lines of your text have been copied to a new file called sample. The status line at the bottom of your screen
has changed to read as follows:

-- Coherent MicroEMACS -- example1.c -- File: sample --------------

The significance of the change in file name will be discussed in the second half of this tutorial.

Before you copy text into a new file, be sure that you have not selected a file name that is already being used. If
you do, MicroEMACS will erase whatever is stored under that file name, and the text created with MicroEMACS will
be stored in its place.

Save Text and Exit

Finally, the store command <ctrl-Z> will save your text and move you out of the MicroEMACS editor. To see how
this works, watch the bottom line of your terminal carefully and type <ctrl-Z>. MicroEMACS has saved your text,
and now you can issue commands directly to the shell.

Advanced Editing
The second half of this tutorial introduces the advanced features of MicroEMACS.

The techniques described here will help you execute complex editing tasks with minimal trouble. You will be able
to edit more than one text at a time, display more than one file on your screen at a time, enter a long or
complicated phrase repeatedly with only one keystroke, and give commands to COHERENT without having to exit
from MicroEMACS.
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Before beginning, however, you must prepare a new text file. Type the following command:

me example2.c

In a moment, example2.c will appear on your screen, as follows:

/* Use this program to get better acquainted
* with the MicroEMACS interactive screen editor.
* You can use this text to learn some of the
* more advanced editing features of MicroEMACS.
*/

#include <stdio.h>
main()
{

FILE *fp;
int ch;
int filename[20];

printf("Enter file name: ");
gets(filename);

if ((fp =fopen(filename,"r")) !=NULL) {
while ((ch = fgetc(fp)) != EOF)

fputc(ch, stdout);
} else

printf("Cannot open %s.\n", filename);
fclose(fp);

}

Arguments
Most of the commands already described in this tutorial can be used with arguments. An argument is a
subcommand that tells MicroEMACS to execute a command a given number of times. With MicroEMACS, arguments
are introduced by typing <ctrl-U>.

Arguments: Default Values

By itself, <ctrl-U> sets the argument at four. To illustrate this, first type the next line command <ctrl-N>. By itself,
this command moves the cursor down one line, from being over the ‘/’ at the beginning of line 1, to being over the
space at the beginning of line 2.

Now, type <ctrl-U>. MicroEMACS replies with the message:

Arg: 4

Now type <ctrl-N>. The cursor jumps down four lines, from the beginning of line 2 to the letter m of the word
main at the beginning of line 6.

Type <ctrl-U>. The line at the bottom of the screen again shows that the value of the argument is four. Type
<ctrl-U> again. Now the line at the bottom of the screen reads:

Arg: 16

Type <ctrl-U> once more. The line at the bottom of the screen now reads:

Arg: 64

Each time you type <ctrl-U>, the value of the argument is multiplied by four. Type the forward command <ctrl-F>.
The cursor has jumped ahead 64 characters, and is now over the i of the word file in the printf statement in line
11.

Selecting Values

Naturally, an argument does not have to be a power of four. You can set the argument to whatever number you
wish, simply by typing <ctrl-U> and then typing the number you want.

For example, type <ctrl-U>, and then type 3. The line at the bottom of the screen now reads:

Arg: 3

Type the delete command <esc>D. MicroEMACS has deleted three words to the right.
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You can use arguments to increase the power of any cursor movement command, or any kill or delete command.
The sole exception is <ctrl-W>, the block kill command.

Deleting With Arguments: An Exception

Killing and deleting were described in the first part of this tutorial. They were said to differ in that text that was
killed was stored in a special area of the computer and could be yanked back, whereas text that was deleted was
erased outright. However, there is one exception to this rule: any text that is deleted using an argument can also
be yanked back.

To see how this works, first type the begin text command <esc>< to move the cursor to the upper left-hand corner
of the screen. Then, type <ctrl-U> 5 <ctrl-D>. The word Use has disappeared. Move the cursor to the right until
it is between the words better and acquainted, then type <ctrl-Y>. The word Use has been moved within the line
(although the spaces around it have not been moved). This function is very handy, and should greatly speed your
editing.

Remember, too, that unless you move the cursor between one set of deletions and another, the computer’s storage
area will not be erased, and you may yank back a jumble of text.

Buffers and Files
Before beginning this section, replace the edited copy of the text on your screen with a fresh copy. Type the quit
command <ctrl-X><ctrl-C> to exit from MicroEMACS without saving the text; then return to MicroEMACS to edit
the file example2.c, as you did earlier.

Now, look at the status line at the bottom of your screen. It should appear as follows:

-- Coherent MicroEMACS -- example2.c -- File: example2.c --------------

As noted in the first half of this tutorial, the name on the left of the command line is that of the program. The
name in the middle is the name of the buffer with which you are now working, and the name to the right is the
name of the file from which you read the text.

Definitions

A file is a mass of text that has been given a name and has been permanently stored on your disk. A buffer is a
portion of the computer’s memory that has been set aside for you to use, which may be given a name, and into
which you can put text temporarily. You can place text into the buffer either by typing it at your keyboard or by
copying it from a file.

Unlike a file, a buffer is not permanent: if your computer were to stop working (because you turned the power off,
for example), a file would not be affected, but a buffer would be erased.

You must name your files because you work with many different files, and you must have some way to tell them
apart. Likewise, MicroEMACS allows you to name your buffers, because MicroEMACS allows you to work with more
than one buffer at a time.

File and Buffer Commands

MicroEMACS gives you a number of commands for handling files and buffers. These include the following:

<ctrl-X><ctrl-W> Write text to file
<ctrl-X><ctrl-F> Rename file

<ctrl-X><ctrl-R> Replace buffer with named file
<ctrl-X><ctrl-V> Switch buffer or create a new buffer

<ctrl-X>K Delete a buffer
<ctrl-X><ctrl-B> Display the status of each buffer

Write and Rename Commands

The write command <ctrl-X><ctrl-W> was introduced earlier when the commands for saving text and exiting were
discussed. To review, <ctrl-X><ctrl-W> changes the name of the file into which the text is saved, and then copies
the text into that file.
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Type <ctrl-X><ctrl-W>. MicroEMACS responds by printing

Write file:

on the last line of your screen.

Type junkfile, then <return>. Two things happen: First, MicroEMACS writes the message

[Wrote 21 lines]

at the bottom of your screen. Second, the name of the file shown on the status line changes from example2.c to
junkfile. MicroEMACS is reminding you that your text is now being saved into the file junkfile.

The file rename command <ctrl-X><ctrl-F> allows you rename the file to which you are saving text, without
automatically writing the text to it. Type <ctrl-X><ctrl-F>. MicroEMACS will reply with the prompt:

Name:

Type example2.c and <return>. MicroEMACS does not send you a message that lines were written to the file;
however, the name of the file shown on the status line has changed from junkfile back to example2.c.

Replace Text in a Buffer

The replace command <ctrl-X><ctrl-R> allows you to replace the text in your buffer with the text from another file.

Suppose, for example, that you had edited example2.c and saved it, and now wished to edit example1.c. You
could exit from MicroEMACS, then re-invoke MicroEMACS for the file example1.c, but this is cumbersome. A more
efficient way is to simply replace the example2.c in your buffer with example1.c.

Type <ctrl-X><ctrl-R>. MicroEMACS replies with the prompt:

Read file:

Type example1.c. Notice that example2.c has rolled away and been replaced with example1.c. Now, check the
status line. Notice that although the name of the buffer is still example2.c, the name of the file has changed to
example1.c. You can now edit example1.c; when you save the edited text, MicroEMACS will copy it back into the
file example1.c unless, of course, you again choose to rename the file.

Visiting Another Buffer

The last command of this set, the visit command <ctrl-X><ctrl-V>, allows you to create more than one buffer at a
time, to jump from one buffer to another, and move text between buffers. This powerful command has numerous
features.

Before beginning, however, straighten up your buffer by replacing example1.c with example2.c. Type the replace
command <ctrl-X><ctrl-R>; when MicroEMACS replies by asking

Read file:

at the bottom of your screen, type example2.c.

You should now have the file example2.c read into the buffer named example2.c.

Now, type the visit command <ctrl-X><ctrl-V>. MicroEMACS replies with the prompt

Visit file:

at the bottom of the screen. Now type example1.c. Several things happen. example2.c rolls off the screen and is
replaced with example1.c; the status line changes to show that both the buffer name and the file name are now
example1.c; and the message

[Read 23 lines]

appears at the bottom of the screen.

This does not mean that your previous buffer has been erased, as it would have been had you used the replace
command <ctrl-X><ctrl-R>. MicroEMACS is still keeping example2.c ‘‘alive’’ in a buffer and it is available for
editing; however, it is not being shown on your screen at the present moment.

Type <ctrl-X><ctrl-V> again, and when the prompt appears, type example2.c. example1.c scrolls off your screen
and is replaced by example2.c, and the message

[Old buffer]

TUTORIALS



74 MicroEMACS Screen Editor

appears at the bottom of your screen. You have just jumped from one buffer to another.

Move Text From One Buffer to Another

The visit command <ctrl-X><ctrl-V> not only allows you to jump from one buffer to another: it allows you to move
text from one buffer to another as well. The following example shows how you can do this.

First, kill the first line of example2.c by typing the kill command <ctrl-K> twice. This removes both the line of text
and the space that it occupied. If you did not remove the space as well the line itself, no new line would be created
for the text when you yank it back. Next, type <ctrl-X><ctrl-V>. When the prompt

Visit file:

appears at the bottom of your screen, type example1.c. When example1.c has rolled onto your screen, type the
yank back command <ctrl-Y>. The line you killed in example2.c has now been moved into example1.c.

Checking Buffer Status

The number of buffers you can use at any one time is limited only by the size of your computer. You should create
only as many buffers as you need to use immediately; this will help the computer run efficiently.

To help you keep track of your buffers, MicroEMACS has the buffer status command <ctrl-X><ctrl-B>. Type <ctrl-
X><ctrl-B>. The status line moves up to the middle of the screen, and the bottom half of your screen is replaced
with the following display:

C Size Lines Buffer File
- ---- ----- ------ ----
* 655 24 example1.c example1.c
* 403 20 example2.c example2.c

This display is called the buffer status window. The use of windows will be discussed more fully in the following
section.

The letter C over the leftmost column stands for Changed. An asterisk indicates that that buffer has been changed
since it was last saved, whereas a space means that the buffer has not been changed. Size indicates the buffer’s
size, in number of characters; Buffer lists the buffer name, and File lists the file name.

Now, kill the second line of example1.c by typing the kill command <ctrl-K>. Then type <ctrl-X><ctrl-B> once
again. The size of the buffer example1.c shrinks from 657 characters to 595 to reflect the decrease in the size of
the buffer.

To make this display disappear, type the one window command <ctrl-X>1. This command will be discussed in full
in the next section.

Renaming a Buffer

One more point must be covered with the visit command. COHERENT does not allow you to have more than one file
with the same name. For the same reason, MicroEMACS does not allow you to have more than one buffer with the
same name.

Ordinarily, when you visit a file that is not already in a buffer, MicroEMACS creates a new buffer and gives it the
same name as the file you are visiting. However, if for some reason you already have a buffer with the same name
as the file you wish to visit, MicroEMACS stops and asks you to give a new, different name to the buffer it is
creating.

For example, suppose that you wanted to visit a new file named sample, but you already had a buffer named
sample. MicroEMACS would stop and give you this prompt at the bottom of the screen:

Buffer name:

You would type in a name for this new buffer. This name could not duplicate the name of any existing buffer.
MicroEMACS would then read the file sample into the newly named buffer.

Delete a Buffer

If you wish to delete a buffer, simply type the delete buffer command <ctrl-X>K. This command allows you to
delete only a buffer that is hidden, not one that is being displayed.

Type <ctrl-X>K. MicroEMACS will give you the prompt:

Kill buffer:
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Type example2.c. Because you have changed the buffer, MicroEMACS asks:

Discard changes [y/n]?

Type y, then <return>. Now, type the buffer status command <ctrl-X><ctrl-B>. The buffer status window no
longer shows the buffer example2.c. Although the prompt refers to killing a buffer, the buffer is in fact deleted and
cannot be yanked back.

Windows
Before beginning this section, it will be necessary to create a new text file. Exit from MicroEMACS by typing the quit
command <ctrl-X><ctrl-C>; then reinvoke MicroEMACS for the text file example1.c as you did earlier.

Now, copy example2.c into a buffer by typing the visit command <ctrl-X><ctrl-V>. When the message

Visit file:

appears at the bottom of your screen, type example2.c. MicroEMACS reads example2.c into a buffer, and shows
the message

[Read 21 lines]

at the bottom of your screen.

Finally, copy a new text, called example3.c, into a buffer. (You copied this file into the current directory when you
began this tutorial.) Type <ctrl-X><ctrl-V> again. When MicroEMACS asks which file to visit, type example3.c.
The message

[Read 123 lines]

appears at the bottom of your screen.

The first screenful of text appears as follows:

/*
* Factor prints out the prime factorization of numbers.
* If there are any arguments, then it factors these. If
* there are no arguments, then it reads stdin until
* either EOF or the number zero or a non-numeric
* non-white-space character. Since factor does all of
* its calculations in double format, the largest number
* which can be handled is quite large.
*/

#include <stdio.h>
#include <math.h>
#include <ctype.h>

#define NUL ’\0’
#define ERROR 0x10 /* largest input base */
#define MAXNUM 200 /* max number of chars in number */

main(argc, argv)
int argc;
register char *argv[];

-- Coherent MicroEMACS -- example3.c -- File: example3.c --------------

At this point, example3.c is on your screen, and example1.c and example2.c are hidden.

You could edit first one text and then another, while remembering just how things stood with the texts that were
hidden; but it would be much easier if you could display all three texts on your screen simultaneously.
MicroEMACS allows you to do just that by using windows.

Creating Windows and Moving Between Them

A window is a portion of your screen that can be manipulated independent of the rest of the screen. The following
commands let you create windows and move between them:
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<ctrl-X>2 Create a window
<ctrl-X>1 Delete extra windows

<ctrl-X>N Move to next window
<ctrl-X>P Move to previous window

The best way to grasp how a window works is to create one and work with it. To begin, type the create a window
command <ctrl-X>2.

Your screen is now divided into two parts, an upper and a lower. The same text is in each part, and the command
lines give example3.c for the buffer and file names. Also, note that you still have only one cursor, which is in the
upper left-hand corner of the screen.

The next step is to move from one window to another. Type the next window command <ctrl-X>N. Your cursor
has now jumped to the upper left-hand corner of the lower window.

Type the previous window command <ctrl-X>P. Your cursor has returned to the upper left-hand corner of the top
window.

Now, type <ctrl-X>2 again. The window on the top of your screen is now divided into two windows, for a total of
three on your screen. Type <ctrl-X>2 again. The window at the top of your screen has again divided into two
windows, for a total of four.

It is possible to have as many as 11 windows on your screen at one time, although each window will show only the
control line and one or two lines of text. Neither <ctrl-X>2 nor <ctrl-X>1 can be used with arguments.

Now, type the one window command <ctrl-X>1. All of the extra windows have been eliminated, or closed.

Enlarging and Shrinking Windows

When MicroEMACS creates a window, it divides into half the window in which the cursor is positioned. You do not
have to leave the windows at the size MicroEMACS creates them, however. If you wish, you may adjust the relative
size of each window on your screen, using the enlarge window and shrink window commands:

<ctrl-X>Z Enlarge window
<ctrl-X><ctrl-Z> Shrink window

To see how these work, first type <ctrl-X>2 twice. Your screen is now divided into three windows: two in the top
half of your screen, and the third in the bottom half.

Now, type the enlarge window command <ctrl-X>Z. The window at the top of your screen is now one line bigger: it
has borrowed a line from the window below it. Type <ctrl-X>Z again. Once again, the top window has borrowed a
line from the middle window.

Now, type the next window command <ctrl-X>N to move your cursor into the middle window. Again, type the
enlarge window command <ctrl-X>Z. The middle window has borrowed a line from the bottom window, and is
now one line larger.

The enlarge window command <ctrl-X>Z allows you to enlarge the window your cursor is in by borrowing lines
from another window, provided that you do not shrink that other window out of existence. Every window must
have at least two lines in it: one command line and one line of text.

The shrink window command <ctrl-X><ctrl-Z> allows you to decrease the size of a window. Type <ctrl-X><ctrl-
Z>. The present window is now one line smaller, and the lower window is one line larger because the line borrowed
earlier has been returned.

The enlarge window and shrink window commands can also be used with arguments introduced with <ctrl-U>.
However, remember that MicroEMACS will not accept an argument that would shrink another window out of
existence.

Displaying Text Within a Window

Displaying text within the limited area of a window can present special problems. The view commands <ctrl-V>
and <esc>V roll window-sized portions of text up or down, but you may become disoriented when a window shows
only four or five lines of text at a time. Therefore, three special commands are available for displaying text within a
window:
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<ctrl-X><ctrl-N> Scroll down
<ctrl-X><ctrl-P> Scroll up

<esc>! Move within window

Two commands allow you to move your text by one line at a time, or scroll it: the scroll up command <ctrl-X><ctrl-
N>, and the scroll down command <ctrl-X><ctrl-P>.

Type <ctrl-X><ctrl-N>. The line at the top of your window has vanished, a new line has appeared at the bottom of
your window, and the cursor is now at the beginning of what had been the second line of your window.

Now type <ctrl-X><ctrl-P>. The line at the top that had vanished earlier has now returned, the cursor is at the
beginning of it, and the line at the bottom of the window has vanished. These commands allow you to move
forward in your text slowly so that you do not become disoriented.

Both of these commands can be used with arguments introduced by <ctrl-U>.

The third special movement command is the move within window command <esc>!. This command moves the line
your cursor is on to the top of the window.

To try this out, move the cursor down three lines by typing <ctrl-U>3<ctrl-N>; now type <esc>!. (Be sure to type
an exclamation point ‘!’, not a numeral one ‘1’, or your window will vanish. The command <esc>1 is explained
below.) The line to which you had moved the cursor is now the first line in the window, and three new lines have
scrolled up from the bottom of the window. You will find this command to be very useful as you become more
experienced at using windows.

All three special movement commands can also be used when your screen has no extra windows, although you will
not need them as much.

One Buffer

Now that you have been introduced to the commands for manipulating windows, you can begin to use windows to
speed your editing.

To begin with, scroll up the window you are in until you reach the top line of your text. You can do this either by
typing the scroll up command <ctrl-X><ctrl-P> several times, or by typing <esc><.

Kill the first line of text with the kill command <ctrl-K>. The first line of text has vanished from all three windows.
Now, type <ctrl-Y> to yank back the text you just killed. The line has reappeared in all three windows.

The main advantage to displaying one buffer with more than one window is that each window can display a
different portion of the text. This can be quite helpful if you are editing or moving a large text.

To demonstrate this, do the following: First, move to the end of the text in your present window by typing the end
of text command <esc>>, then typing the previous line command <ctrl-P> four times. Now, kill the last four lines.

You could move the killed lines to the beginning of your text by typing the beginning of text command <esc><;
however, it is more convenient simply to type the next window command <ctrl-X>N, which moves you to the
beginning of the text as displayed in the next window. MicroEMACS remembers a different cursor position for each
window.

Now yank back the four killed lines by typing <ctrl-Y>. You can simultaneously observe that the lines have been
removed from the end of your text and that they have been restored at the beginning.

Multiple Buffers

Windows are especially helpful when they display more than one text. Remember that at present you are working
with three buffers, named example1.c, example2.c, and example3.c, although your screen is displaying only the
text example3.c. To display a different text in a window, use the switch buffer command <ctrl-X>B.

Type <ctrl-X>B. When MicroEMACS asks

Use buffer:

at the bottom of the screen, type example1.c. The text in your present window is replaced with example1.c. The
command line in that window changes, too, to reflect the fact that the buffer and the file names are now
example1.c.
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Moving and Copying Text Among Buffers

It is now very easy to copy text among buffers. To see how this is done, first kill the first line of example1.c by
typing the <ctrl-K> command twice. Yank back the line immediately by typing <ctrl-Y>. Remember, the line you
killed has not been erased from its special storage area, and may be yanked back any number of times.

Now, move to the previous window by typing <ctrl-X>P, then yank back the killed line by typing <ctrl-Y>. This
technique can also be used with the block kill command <ctrl-W> to move large amounts of text from one buffer to
another.

Checking Buffer Status

The buffer status command <ctrl-X><ctrl-B> can be used when you are already displaying more than one window
on your screen.

When you want to remove the buffer status window, use either the one window command <ctrl-X>1, or move your
cursor into the buffer status window using the next window command <ctrl-X>N and replace it with another buffer
by typing the switch buffer command <ctrl-X>B.

Saving Text From Windows

The final step is to save the text from your windows and buffers. Close the lower two windows with the one
window command <ctrl-X>1. Remember, when you close a window, the text that it displayed is still kept in a
buffer that is hidden from your screen. For now, do not save any of these altered texts.

When you use the save command <ctrl-X><ctrl-S>, only the text in the window in which the cursor is positioned
is written to its file. If only one window is displayed on the screen, the save command will save only its text.

If you made changes to the text in another buffer, such as moving portions of it to another buffer, MicroEMACS

would ask

Quit [y/n]:

If you answer ‘n’, MicroEMACS will save the contents of the buffer you are currently displaying by writing them to
your disk, but it will ignore the contents of other buffers, and your cursor will be returned to its previous position
in the text. If you answer ‘y’, MicroEMACS again will save the contents of the current buffer and ignore the other
buffers, but you will exit from MicroEMACS and return to the shell. Exit from MicroEMACS by typing the quit
command <ctrl-X><ctrl-C>.

Keyboard Macros
A keyboard macro is a set of MicroEMACS commands that are stored in memory and given a name. After you create
a keyboard macro, you can execute it again and again just by typing its name. If you are revising a big file, you
will find that keyboard macros are one of the most useful features in MicroEMACS, and one that you will use often.

The following table summarizes MicroEMACS’s keyboard-macro commands:

<ctrl-X>( Open a keyboard macro
<ctrl-X>) Close a keyboard macro
<ctrl-X>E Execute a keyboard macro

<ctrl-X>M Rename a keyboard macro
<ctrl-X>I Bind current macro as initialization macro

Creating a Keyboard Macro

To begin to create a macro, type the begin macro command <ctrl-X>(. Be sure to type an open parenthesis ‘(’, not a
numeral ‘9’. MicroEMACS will reply with the message

[Start macro]

Type the following phrase:

MAXNUM

Then type the end macro command <ctrl-X>). Be sure you type a close parenthesis ‘)’, not a numeral ‘0’.
MicroEMACS will reply with the message

[End macro]
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Move your cursor down two lines and execute the macro by typing the execute macro command <ctrl-X>E. The
phrase you typed into the macro has been inserted into your text.

If you give these commands in the wrong order, MicroEMACS warns you that you are making a mistake. For
example, if you open a keyboard macro by typing <ctrl-X>(, and then attempt to open another keyboard macro by
again typing <ctrl-X>(, MicroEMACS will say:

Not now

Should you accidentally open a keyboard macro, or enter the wrong commands into it, you can cancel the entire
macro simply by typing <ctrl-G>.

Execute a Macro Repeatedly

As with most MicroEMACS commands, you can use a keyboard macro with an argument to execute it repeatedly.
For example, if you have defined a keyboard macro, then typing

<ctrl-U><ctrl-X>E

executes that macro four times. (Remember, four is the default value for <ctrl-U>.)

As described above, <ctrl-U> normally is used with a positive number, to indicate how often MicroEMACS should
execute a given command or macro. With keyboard macros, however, you can use a special value for <ctrl-U>: -1.
This tells MicroEMACS to repeatedly execute a keyboard macro until it fails.

For example, consider that you define the following keyboard macro:

<ctrl-S> foo <ctrl-K>

This macro searches for the string ‘‘foo’’, then kills the rest of line that that string is on. Now, when you type the
command

<ctrl-U> -1 <ctrl-X>E

executes this macro until MicroEMACS can no longer find the string ‘‘foo’’; it then quits.

Obviously, you should define your macro carefully before you execute it with this -1 option to <ctrl-U>; otherwise,
you can commit tremendous mayhem on your file with one keystroke.

Replacing a Macro

To replace this macro with another, go through the same process. Type <ctrl-X>(. Then type the buffer status
command <ctrl-X><ctrl-B>, and type <ctrl-X>). Remove the buffer status window by typing the one window
command <ctrl-X>1.

Now execute your keyboard macro by typing the execute macro command <ctrl-X>E. The buffer status command
has executed once more.

Renaming a Macro

Many times during a long editing session, you will find that you use one keyboard macro, then use a second
keyboard macro, then find that you need the first macro again. In previous releases of MicroEMACS, the only way
to do this work was to type the first macro, replace it with the second macro, then retype the first macro when you
need it again. The present edition of MicroEMACS, however, lets you define any number of keyboard macros, and
save them by giving each one a unique ‘‘name’’ that is, its own unique keyboard binding.

To rename a keyboard macro that you have already created, use the rename macro command <ctrl-X>M. To see
how this works, do the following: (1) Type <ctl-X>( to open the keyboard macro. (2) Type <esc>S xyz <ctrl-U>
<ctrl-D> to fill the macro with something. (3) Finally, type <ctrl-X>) to close the macro.

Now, type <ctrl-X>M, to rename the macro. MicroEMACS will reply with the prompt:

enter keybinding for macro

Type <esc>L. This tells MicroEMACS to take the keyboard macro you created and link it to the keystrokes <esc>L.

Now, whenever you type <esc>L, MicroEMACS will execute <esc>s xyz <ctrl-U> <ctrl-D>. You can now define
another keyboard macro without wiping out the one you have renamed. There is no theoretical limit to the number
of keyboard macros you can create, although there are practical limits imposed by the amount of memory available
to MicroEMACS.
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Renaming Macros: A Few Caveats

Please note that if you name a keyboard macro with a keystroke that is already defined, MicroEMACS will no longer
be able to access that keystroke’s functionality.

For example, if instead of naming your new macro <esc>L you named it <ctrl-A>, then every time you typed <ctrl-
A> MicroEMACS would execute <esc>S xyz <ctrl-U> <ctrl-D> and you would no longer be able to jump to the
beginning of a line (which <ctrl-A> normally does).

The only exceptions are <ctrl-X>, <esc>, and the <ctrl-X>R command (described below), which MicroEMACS will
not let you reassign. Obviously, you should be very careful when you assign a name to a keyboard macro, or you
could easily clobber much of the editor’s functionality.

Note, too, that MicroEMACS lets you define reflexive keybindings, but these never work. For example, if you named
the above example macro <ctrl-D> instead of <esc>L, then every time you typed <ctrl-D> MicroEMACS would try to
execute a macro that included <ctrl-D> in it. Obviously, this can tie MicroEMACS into knots in no time. Again,
please be very careful when you assign names to keyboard macros.

The commands <ctrl-X>S and <ctrl-X>L let you save all named keyboard macros into a file, and restore them
during a later editing session. These commands are described in the next section.

Setting the Initialization Macro

MicroEMACS allows one macro to be specified which will be executed every time MicroEMACS is invoked. This
‘‘initialization macro’’ can be set using the key sequence <ctrl-X>I and causes MicroEMACS to ‘‘bind’’ the currently
defined macro to the initialization macro.

Flexible Key Bindings
As you have noticed by now, MicroEMACS works through standard key bindings: that is, one keystroke or
combination of keystrokes tells MicroEMACS to perform a particular task. For example, typing <ctrl-A> tells
MicroEMACS to move the cursor to the beginning of the line; typing <ctrl-E> tells MicroEMACS to move the cursor to
the end of the line; and so on.

MicroEMACS allows you to change its key bindings, so you can bind a given keystroke or combination of keystrokes
to a task other than the default one documented in this tutorial. In this way, you can reconfigure MicroEMACS so
that it resembles another editor with which you are more familiar.

To perform this magic, MicroEMACS uses two tables for keybindings: a default table that is loaded at compile time
and never changes, and a dynamic table that you can modify with MicroEMACS’s keybinding commands.

The following table summarizes MicroEMACS’s commands for flexible keybindings:

<ctrl-X>R Replace one binding with another
<ctrl-X>X Rebind metakeys

<ctrl-X>S Save flexible bindings and macros into file
<ctrl-X>L Load flexible bindings and macros from file

Changing a Keybinding

The replace binding command <ctrl-X>R replaces one binding with another. For example, if you wished to replace
the beginning of line command <ctrl-A> with <esc>Z, you would do the following:

1. Type <ctrl-X>R to invoke the rebinding command.

2. When you see the prompt

Enter old keybinding

type the keybinding you wish to change in this case, <ctrl-A>.

3 When you then see the prompt

Enter new keybinding

type the keybinding to which you wish to change it in this case, <esc>Z.

TUTORIALS



MicroEMACS Screen Editor 81

Note that you cannot rebind the command <ctrl-X>R itself; otherwise, you would paint yourself into a corner.
Also, note that if you rebind a command to itself (that is, if you type the same keybinding in response to both
prompts), then that keybinding is bound to the old meaning of the keybindings, should there be any.

Rebinding Metakeys

MicroEMACS’s keybindings depend on several pre-defined metakeys. A metakey is a keystroke that introduces a
further set of commands. MicroEMACS’s default keybindings use two metakeys: <ctrl-X> and <esc>. Other editors
use other keystrokes as metakeys. If you wish to rebind a metakey, use the rebind metakey command <ctrl-X>X.
This command prompts you to bind up to three metakeys, and the argument key <ctrl-U>.

For example, suppose that you wish to change the metakey <ctrl-X> to <ctrl-Q>. To begin, type the command
<ctrl-X>X. You will see the prompt

Enter prefix character 1 or space

‘‘Prefix character 1’’ is <ctrl-X> in the default bindings. Type <ctrl-Q>. You will then see the prompt:

Enter prefix character 2 or space

‘‘Prefix character 2’’ is <esc> in the default bindings. Since you do not want to change it, type <space>. You will
then see the prompt:

Enter prefix character 3 or space

There is no ‘‘prefix character 3’’ in the default bindings, but you can set a third one for your keybindings if you
wish. Since (for the sake of this example) you do not wish to set one, type <space>. Finally, you will see the
prompt:

Enter repeat code or space

The ‘‘repeat code’’ executes a command repeatedly; in this tutorial, it is often called the ‘‘argument key’’ or
‘‘argument command’’. Since (in this example) you do not wish to change it, type <space>.

Now that you have reset the <ctrl-X> metakey, you must now type <ctrl-Q> every time in place of <ctrl-X>
throughout all of the MicroEMACS commands. For example, if you wished to change the metakey back from <ctrl-
Q> to <ctrl-X>, you would have to type <ctrl-Q>X to invoke the rebind metakey command.

Note that because <ctrl-Q> already is bound in the MicroEMACS keybindings, when you rebind it the command to
which it was bound is no longer available to you. However, if you un-rebind the key, then it automatically is
rebound to its old command. In the above example, <ctrl-Q> is bound to the insert literal character command,
which lets you insert control characters into your file. When you rebound the <ctrl-X> metakey to <ctrl-Q>, then
the insert literal character command was no longer available to you. However, when you re-rebound the <ctrl-Q>
metakey to <ctrl-X>, then <ctrl-Q> was automatically rebound to the insert literal character command.

To change the first prefix character back to <ctrl-X>, type <ctrl-Q>X, then enter <ctrl-X> when you see the prompt
for prefix character 1. This restores the original metacharacter. Note, however, that the original function of <ctrl-
Q> (which is to let you embed control characters within a file) is no longer available to you: MicroEMACS ‘‘forgot’’ its
original function when you made <ctrl-Q> into a prefix character.

Save and Restore Keybindings

MicroEMACS lets you save your rebound keybindings into a file, and reload them during another editing session.
To save your keybindings into a file, type the save keybindings command <ctrl-X>S. Try it. You will see the
prompt:

Store bindings file:

Type the name of a file. MicroEMACS then writes its keybindings into that file. This command saves all named
keyboard macros that you have created. It also saves other aspects of the MicroEMACS environment that you have
set; for example, if you have turn on word-wrapping, that fact will be saved.

To restore a set of keybindings, use the restore keybindings command <ctrl-X>L. Try it. You will see the prompt:

Load bindings file:

Type the name of the file in which you saved MicroEMACS’ keybindings and all named keyboard macros.
MicroEMACS will then load them into memory for you.
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These commands let you prepare several sets of customized keybindings and macros. You can customize
keybindings to suit your preference, or create custom sets of macros to suit any number of specialized editing
tasks.

By default, MicroEMACS checks for the existence of file $HOME/.emacs.rc and executes it if found. You can
generate a copy of .emacs.rc using the save-keybindings command <ctrl-X>S. The MicroEMACS command-line
option -f lets you specify an alternate file of keybindings macros. After it load .emacs.rc, MicroEMACS then
executes the initialization macro, if one exists. For example, if you wish to use the set of keybindings saved in file
keybind to edit file textfile, then you would type the following:

me -f keybind textfile

As you can see, MicroEMACS’s system of keyboard macros and flexible key bindings help make it an extremely
flexible and powerful editor.

Sending Commands to COHERENT
The only remaining commands you need to learn are the program interrupt commands <ctrl-X>! and <ctrl-C>.
These commands allow you to interrupt your editing, give a command directly to the shell, and then resume editing
without affecting your text in any way.

The command <ctrl-X>! allows you to send one command line (one command, or several commands plus
separators) to the operating system. To see how this command works, type <ctrl-X>!. The prompt ! has appeared
at the bottom of your screen. Type lc. Observe that the directory’s table of contents scrolls across your screen,
followed by the message [end]. To return to your editing, simply type a carriage return. The interrupt command
<ctrl-C> suspends editing indefinitely, and allows you to send an unlimited number of commands to the operating
system. To see how this works, type <ctrl-C>. After a moment, the COHERENT system’s prompt will appear at the
bottom of your screen. Type time. The COHERENT system replies by printing the time and date. To resume
editing, then simply type <ctrl-D>.

If you wish, you can suspend MicroEMACS’s operation, tell the COHERENT system to invoke another copy of the
MicroEMACS program, edit a file, then return to your previous editing. To see how this is done, type <ctrl-C>.
When the prompt appears at the bottom of your screen, type

me example1.c

It doesn’t matter that you are already editing example1.c. MicroEMACS will simply copy the example1.c file into a
new buffer and let you work as if the other MicroEMACS program you just interrupted never existed.

Exit from this second MicroEMACS program by typing the quit command <ctrl-X><ctrl-C>. Then type <ctrl-D>.
Your original MicroEMACS program has now been resumed. However, none of the changes you made in the
secondary MicroEMACS program will be seen here.

It is not a good idea to use multiple MicroEMACS programs to edit the same program: it is too easy to become
confused as to which edits were made to which version.

The only time this is advisable is if you wish to test to see how a certain edit would affect your text: you can create
a new MicroEMACS program, test the command, and then destroy the altered buffer and return to your original
editing program without having to worry that you might make errors that are difficult to correct.

Now type <ctrl-X><ctrl-C> to exit.

Compiling and Debugging Through MicroEMACS

MicroEMACS can be used with the compilation command cc to give you a reliable system for debugging new
programs.

Often, when you’re writing a new program, you face the situation in which you try to compile, but the compiler
produces error messages and aborts the compilation. You must then invoke your editor, change the program,
close the editor, and try the compilation over again. This cycle of compilation editing recompilation can be quite
bothersome.

To remove some of the drudgery from compiling, the cc command has the automatic, or MicroEMACS option, -A.
When you compile with this option, the MicroEMACS screen editor will be invoked automatically if any errors occur.
The error or errors generated during compilation will be displayed in one window, and your text in the other, with
the cursor set at the number of the line that the compiler indicated had the error.
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Try the following example. Use MicroEMACS to enter the following program, which you should call error.c:

main() {
printf("Hello, world!\n")

}

The semicolon was left off of the printf() statement, which is an error. Now, save the file and exit from
MicroEMACS; then try compiling error.c with the following cc command:

cc -A error.c

You should see no messages from the compiler because they are all being diverted into a buffer to be used by
MicroEMACS. Then MicroEMACS will appear automatically. In one window you should see the message:

3: error.c : missing ’;’

and in the other you should see your source code for error.c, with the cursor set on line 3.

If you had more than one error, typing <ctrl-X>> would move you to the next line with an error in it; typing <ctrl-
X>< would return you to the previous error. With some errors, such as those for missing braces or semicolons, the
compiler cannot always tell exactly which line the error occurred on, but it will almost always point to a line that is
near the source of the error.

Now, correct the error by typing a semicolon at the end of line 2. Close the file by typing <ctrl-Z>. cc will be
invoked again automatically.

cc will continue to compile your program either until the program compiles without error, or until you exit from
MicroEMACS by typing <ctrl-U> followed by <ctrl-X><ctrl-C>.

The MicroEMACS Help Facility

MicroEMACS has a built-in help function. With it, you can ask for information either for a word that you type in, or
for a word over which the cursor is positioned. The MicroEMACS help file contains the bindings for all library
functions and macros included with COHERENT.

For example, consider that you are preparing a C program and want more information about the function fopen.
Type <ctrl-X>?. At the bottom of the screen will appear the prompt

Topic:

Type fopen. MicroEMACS will search its help file, find its entry for fopen, then open a window and print the
following:

fopen - Open a stream for standard I/O
#include <stdio.h>
FILE *fopen (name, type) char *name, *type;

If you wish, you can kill the information in the help window and yank it into your program to ensure that you
prepare the function call correctly.

Consider, however, that you are checking a program written earlier, and you wish to check the call to fopen.
Simply move the cursor until it is positioned over one of the letters in fopen, then type <esc>?. MicroEMACS will
open its help window, and show the same information it did above.

To erase the help window, type <esc>1.

Where To Go From Here
For a complete summary of MicroEMACS’s commands, see the entry for me in the Lexicon. The COHERENT system
includes three other editors: the stream editor sed, the popular screen editor vi, and the interactive line editor ed.
Each can help you accomplish editing tasks that may not be well suited for MicroEMACS. For more information on
these editors, see their tutorials or check their entries in the Lexicon.
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Introduction to the ed Line Editor

This tutorial introduces the interactive editor ed. It is intended both for readers who want a tutorial introduction
to ed, and those who want to use specific sections as a reference.

Related tutorials include those for sed, the stream editor, and for me, the MicroEMACS screen editor. This tutorial
assumes that you already understand the basics of using the COHERENT system, such as what a file is, what it
means to edit text, and how to issue commands to the operating system. If you not yet know your way around the
COHERENT system, we suggest that you first study the Using the COHERENT System, which appears in the front of
this manual. It covers the basics of using COHERENT and introduces many useful programs.

Why You Need an Editor

A significant feature of computers is the capacity to store, retrieve, and operate upon information. A computer can
store many different kinds of information: programs, computer commands and instructions, data for programs,
financial information, electronic mail, or natural-language text (e.g., French, English) destined for a manuscript or
book.

ed is a program with which you can enter and edit text on your computer. You can use ed to create or change
computer programs, natural-language manuscripts, files of commands, or any other file that consists of text that
you can read.

ed is designed to be easy to use, and requires little training to get started. The fundamental commands are simple,
but have enough flexibility to perform complex tasks.

Learning To Use the Editor

Practice on your part will help you learn quickly. The following sections contain examples that illustrate each topic
discussed. We strongly recommend that you type each example presented as you encounter it in the text. Even if
you understand the concept presented, performing the example reinforces the lesson, and you will learn more
quickly how to use ed.

In addition to reading the text and doing the examples as you encounter them in the text, try your own variations
on the commands, and branch out on your own. Try things that you suspect might work, but are not shown as
examples.

General Topics
This section presents the background information you will need to understand how ed works.

To help illustrate the discussion to follow, log into your COHERENT system and type the following commands:

ed
a
this is a sample
ed session
.
w test
q

This example calls ed, then uses the a command to add lines to the text kept in memory. The period signals the
end of the additions. The w command writes the lines of text to file test, and the command q tells ed to return to
COHERENT. You will notice that after you type the w command, ed will respond with

28

which is the number of characters in the file.

Thus, to enter ed, simply type

ed

and to exit, type

q
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You can also exit by typing <ctrl-D>: that is, hold down the control key on your keyboard, and at the same time
strike the D key.

Notice that you are issuing two different kinds of commands in the above example: the command ed is given to the
COHERENT shell, to invoke the editor; the rest of the commands are given to the editor. After ed is given the q
command, it exits, and following commands are processed by COHERENT.

ed, Files, and Text

ed works with one file at a time. With ed, you can create a file, add to a file, or change a file previously created.

As you use ed to create or change files, you will type both text and controlling commands into the editor. Text is, of
course, the matter that you are creating or changing. Commands, on the other hand, tell ed what you want it to
do. As you will see shortly, there is a simple way to tell ed whether what you are typing is text or commands.

ed has about two dozen commands. Almost every one is only one letter long. Although they may seem terse, they
are easy to learn. You will appreciate the brevity of the commands once you begin to use ed regularly.

You must end each command to ed by striking the <return> key. This key is present on all terminals. However,
the labeling of the key may vary. It may be called newline, linefeed, enter, or eol, and is larger than any key on
the keyboard except for the space bar. This key will be called the <return> key in the remainder of this document.

Creating a File

The example shown above created a file. Here is another example of file creation — here, creating a file called
twoline:

ed
a
Two line Example,
thank you.
.
w twoline
q

The letter a tells ed to add lines to the file. You are creating a new file with this example; and when ed creates a
new file, it is initially empty. The w command writes the lines you have added to file twoline. The command q
tells the editor that you are finished, whereupon it returns to COHERENT. You can use the COHERENT command
cat to list the contents of the new file:

cat twoline

the reply will be:

Two line Example,
thank you.

Each command used here will be described in detail in later sections.

Changing an Existing File

Suppose that a manuscript file of yours needs a few spelling corrections. ed will help you make them. To begin,
simply name the file to correct when you issue the COHERENT command:

ed filename

where filename stands for the name of the file that you wish to edit. For example, the following adds a line to the
file twoline, which we just created:

ed twoline
$a
This is the third line of the file.
.
w
q

Listing the file with cat gives:

Two line Example,
thank you.
This is the third line of the file.
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The command $a tells ed to add one or more lines at the end of the file.

Correcting the spelling of a misspelled word is easy with ed. You can rearrange groups of words in a manuscript,
and you can move or copy larger portions of text, such as a paragraph, from one spot to another.

Working on Lines

ed uses the line as the basic unit of information; for this reason, it is called a line-oriented editor. A line is defined
as a group of characters followed by an end-of-line character, which is invisible. When you type out a file on your
terminal, each line in the file will be shown on your terminal as one line. The commands for ed are based upon
lines. When you add material to a file, you will be adding lines. If you remove or change items, you will do so to
groups of lines.

ed knows each line by its number. A line’s number, in turn, indicates its position within the file: the first line is
number 1, the second line is number 2, and so on.

ed remembers the line you worked on most recently. This can help shorten the commands you type, as well as
reduce the need for you to remember line numbers. The line most recently worked on is called the current line. ed
commands use a shorthand symbol for the current line: the period ‘.’.

Another shorthand symbol used in ed commands is $, which represents the number of the last line in the file.

Many of the ed commands operate on more than one line at a time. Groups of lines are denoted by a range of line
numbers, which appears as a prefix to the command.

Error Messages

If you type a command to ed incorrectly, ed respond with:

?

This indicates that it has detected an error. Many times, this error will be evident to you when you review the
command that you just typed.

If you do not see what the error is, you can get a more lengthy description by typing to ed:

?

It will reply with an error message.

Basic Editing Techniques
This section discusses in more detail the elementary techniques and commands that you need to use ed. With the
material presented in this section, you will be able to do most basic editing tasks.

Again, it is recommended that you type each example. This will help you understand each example, as well as
remember the technique it demonstrates.

Creating a New File

To begin, let us presume that you need to create an entirely new file named first. Perhaps you only want one line
in the file, and it is to read

This is my first example

These are the steps that you will need to go through to create this file.

The first step is to invoke the ed program. To do this, simply type

ed

Remember that you must end each line of commands or text line by pressing the <return> key, because ed will not
act upon it until you do. Thus, you invoke the editor by typing ed and a <return>. Notice that these two
characters must be lower case.

ed is now ready for commands. The first command that you will use is the append command a. This tells ed to
add lines to the text in memory, which will later be written to the file. The number of lines that ed can hold in
memory depends upon the amount of memory in your computer. For editing very large files, you should use sed,
the COHERENT stream editor, which is described in its own tutorial.
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ed will continue to add lines until you type a line that contains only a period. While it is adding lines, ed does not
recognize commands.

After you issue the a command, you can type the lines to be included, concluding with a line that consists only of a
period. This special line signals ed that you want to stop appending lines. The information that you have typed so
far is:

ed
a
This is my first example
.

Next, you must tell ed to write the edited text into a file. Do so by issuing the write command w, plus the name of
the file that is to hold the edited text. For example, if you wish to store this example in a file named first, issue the
command:

w first

ed will write the file and tell you how many characters were written, in this case 25.

Finally, to quit the editor issue the quit command:

q

The commands you type after this will be interpreted and acted upon by COHERENT.

Now, review the example in its entirety. First you invoked ed by typing ed at the COHERENT prompt. Then you
issued the add command a to add lines to the file. added lines with the a command, and finished the adding by
typing a line that consists only of a period. You then wrote the editing text into a file by issuing the write
command w, and finally you exited from ed by issuing the quit command q. The complete example is:

ed
a
This is my first example
.
w first
q

ed replied to the w command by printing the number of characters it wrote into the file. After you typed q
COHERENT prompted you for a command again.

Changing a File

Suppose that you wish to change the file that you have just created: you want to add two more lines to the file so
that the original line will be sandwiched between the new lines. You want the file to contain:

Example two, added last
This is my first example
Example two, added first

You will do this with ed using two new commands.

Again, you start by telling COHERENT to run ed. This time, however, you must type the name of the file that you
are changing after the characters ed:

ed first

ed will remember this file name for later use with the w command.

ed reads the file in preparation for editing, and tells you the number of characters that it read in, again 25.

After reading the file, ed automatically sets the current line to the last line read in.

Now, add the third line shown in the second example by entering:

a
Example two, added first
.

This resembles the first example. In that case, however, the file had no information, whereas now it does. How did
ed know where to add the lines?
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The a command adds lines after the current line. When ed reads a file, it initially sets the current line to the last
line read in; therefore, the a command added the new line after the last line.

The current line is used implicitly or explicitly by most commands, so it is helpful to know where it is. In general,
the current line is left at the last line ed has processed. If you lose track of the current line, you can ask ed to tell
you where it is, as you will see shortly.

To add the very first line to the second example, you will use yet another command, the insert command i. This
command is identical to the a command, except that it inserts lines before the current line rather than after it.

Another word about the current line. After an a command finishes, the current line is the last line added. Thus,
after the addition of ‘‘Example two, added first’’ above, the current line is now the last line in the file. So, if you
were to do the i command immediately, you would be adding lines just before the last line, which is not what you
want to do.

Nearly every ed command is flexible enough to allow you to specify the line upon which the command is to operate.
Now you can complete the second example:

1i
Example two, added last
.

The numeral 1 before the i tells ed to insert lines before the first line in the file. The line-number prefix is used
frequently, and applies to nearly every command.

Now, to finish the second example and save it into the same file, type:

w
q

Note that the file name was left off the w command. ed remembers the name of the file that you began with, and
uses that name if none is used with the w command. Therefore, the edited text is written back into file first. Note,
too, that the previous contents of the file first are lost when you write the new file first. Alternatively, you can
type:

w second

This leaves the contents of first unchanged and creates a new file called second.

In case you forget, ed can tell you the name of the file with which you began. Simply type the command:

f

If you had used f any time while working on this second example, ed would have replied:

first

Remember to use the q command to leave ed and return to COHERENT.

Printing Lines

As you use ed to edit a file, you will find it most useful to print sections of the file on your terminal. This helps you
see what you have done (and sometimes what you have not done), and helps you pinpoint where you wish to make
changes.

The print command p prints the current line unless you specify a line number.

Continuing with the example begun above, when you type the commands

ed first
p

ed replies by printing

Example two, added first

which is the last line in the file named first from the previous example.

Again, like the commands i and a, if you want ed to print a line other than the current one, just prefix the p
command with a line number. Thus, if you want to print the second line in the file, type:

2p

ed will reply with:

TUTORIALS



90 ed Interactive Line Editor

This is my first example

If you wish to print more than one line of a file, you can tell ed to print a range of line numbers: type the numbers
of the first and last lines you wish to see, separated by a comma. For example, to print all three lines in the second
example, type:

1,3p

ed responds by printing all lines. This same principle applies to other commands. The print command can also
appear after other commands such as s or d, which are discussed later in this section.

Abbreviating Line Numbers

ed recognizes some shorthand descriptions for certain line numbers. The number of the last line can be
represented by the dollar sign $. Thus, the command

1,$p

prints every line in the file. The advantage of this shorthand is that the command as typed works for any file,
regardless of its size. This construct of 1,$p is used often enough that it has an abbreviation of its own:

*p

The number of the current line can also be abbreviated by using the period or dot in the place of a line number. To
print all lines from the beginning of the file through the current line, type:

1,.p

To print all lines from the current line through the end of the file, type:

.,$p

The special symbol & prints one screenful of text. Simply type:

&

This is equivalent to:

.,.+22p

If there are fewer than 23 lines between the current line and the end of the file, it is equivalent to

.,$p

All forms of the p command change the current line to the last line printed. The command

.,$p

after printing changes the current line to the last line of the file.

How Many Lines?

You can easily see the current line with p. Type:

p

This tells ed to print the current line. On your terminal, try the command:

.p

You will see that it does the same thing as p.

To discover how large your file is, just type:

=

ed will reply by typing the number of lines in the file.

To find the number of the current line, use the dot equals command:

.=

ed responds with the number of the current line.
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Removing Lines

Editing means removing lines of text, as well as adding them. To illustrate how ed lets you remove lines of text,
create another example file with ed:

ed
a
This is the first line.
The second line is good.
However, line three is bad.
line four wishes to go away.
line 5 similarly wants to be forgotten,
as does line 6.
the next to last line stays.
as does the last line in the file.
.
w example3
q

This creates a file named example3.

Now, you can practice removing lines that you no longer want. Begin editing the file by typing:

ed example3

Now, print the contents of the file by typing:

1,$p

Our first task is to delete lines 3 through 6. First, delete line 3, then print the entire file again.

3d
1,$p

and ed will respond with

This is the first line.
The second line is good.
line four wishes to go away.
line 5 similarly wants to be forgotten,
as does line 6.
the next to last line stays.
as does the last line in the file.

Notice that the original file’s third line is no longer there. Line 3 is now what used to be line 4. Remember that the
line numbers always begin with 1 for the first line of the file and progress consecutively even after the file has been
changed. Thus, deleting a line will change the line number of each line from the deleted line to the the last line in
the file.

You still need to remove three more lines. You can do this with one command:

3,5d

Again, type *p to print the contents of the file:

This is the first line.
The second line is good.
the next to last line stays.
as does the last line in the file.

Finally, write the updated file and quit:

w
q

This illustrates how to delete lines, both singly and in a group.
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Abandoning Changes

Sometimes, you may make a mistake; rather than damage your file with badly edited text, you may wish to
abandon what you have done and begin all over again. You can do so by using the q command in a different
fashion than is shown above.

If you tell ed to q before you tell it to write the file with w, you abandon any changes made since beginning editing.
However, to prevent you from accidentally selecting this option, ed checks to see if you have made any changes to
the file; and if you have, it responds with a question mark ‘?’. To tell ed that you know what you are doing and
really do wish to abandon the edited file, reply with a second q. ed will then quit and return you to COHERENT.

You can avoid the question mark prompt by typing the upper-case Q rather than lower-case q: ed will exit without
regard to unsaved changes. You can also exit from ed by typing the end-of-file key <ctrl-D>.

Substituting Text Within a Line

If you type a line incorrectly, or later wish to rearrange some words or symbols within it, you know enough about
ed now to do so. You only need to delete the line with the delete command d and re-type the line with the insert
command i. To see how this is done, prepare the file example4, as follows:

ed
a
Software technology today has
adbanced to the point that large
software projects unherd of in
earlier times are undertaken and
.
w example4
q

This example has two misspelled words. We will correct each of them using different ed features.

The first method will be the direct way that you probably can anticipate. Give the following commands to the
editor exactly as shown:

ed example4
2d
i
advanced to the point that large
.

These commands use the delete command d to delete the second line, and then uses the insert command i to
insert the correct new line in its place.

Use the command

*p

to verify that the file now contains:

Software technology today has
advanced to the point that large
software projects unherd of in
earlier times are undertaken and

You can also use a second method to change the spelling of a word. This is the substitute command s. This
command is very powerful, and probably is used more frequently than any other ed command.

The substitute command s is more complex than commands we have discussed so far, in that it has more
elements, as follows: First is a line number or optional range of line numbers. Then comes the letter s, to invoke
the substitute command itself. Third comes two patterns or strings, which are set off from the rest of the command
and from each other with the slash character. For example:

1,$s/pattern1/pattern2/

Here, pattern1 represents the string that you want ed to replace, and pattern2 is the string that ed is to substitute
in place of pattern1. Note that three slashes separate the two patterns from the s, from each other, and from the
end of the line. These slashes must always be present.
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With this command, you can correct the second spelling error in the example4:

3s/herd/heard/
p

ed replies:

software projects unheard of in

Note that these two command lines can be condensed to one:

3s/herd/heard/p

The meaning of these commands is: on the third line of the file, change herd to heard and, when finished, print
the entire line. Without the p command, ed will change the line as you direct, but will not show you the new line.
It is a good idea to print lines that you substitute in this manner until you gain in confidence with ed. Some ed
experts always print the lines after substitution.

Type

.
w sample.text
q

to stop entering text, then save the newly typed text into file sample.text and exit (‘‘quit’’) from ed.

After these two changes, the file looks like this:

Software technology today has
advanced to the point that large
software projects unheard of in
earlier times are undertaken and

Although the above example substitutes one word for another, note that the s command can replace any
consecutive group of characters with any other: it may be one word, several words (including the space characters
that separate them), or a fragment of a word.

Because ed looks for patterns rather words, you should keep in mind that it may find the wrong pattern. For
example, assume that the current line in a file is

let not rain fall on a parade

and instead you want to say:

let not rain fall on the parade

You command ed to:

s/a/the/p

and are shocked to discover that the result is:

let not rthein fall on a parade

A better command to give ed would have been a substitute command that substituted the letter a preceded and
followed by a space:

s/ a / the /p

Another correct way to do this task is to indicate within the substitution command which of several possible
matches within the line is to be substituted. In our example, it is actually the third a that we are trying to match,
so we could have used the special form of the command

s3/a/the/p

to get ed to select the one we wanted.

Undoing Substitutions

If you did change a to the inappropriately, you can retract the substitution by issuing the undo command

u

before you move on to another current line.
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To illustrate this, enter this example:

ed
a
let not rain fall on a parade
.
w undo
q

Now, perform the substitution with

ed undo
s/a/the/p

which will result in:

let not rthein fall on a parade

To retract the substitution, simply type:

u
p

This undoes the substitution and prints the result.

Note that the undo command undoes the substitution only on the current line. Remember that if your
substitution command operated over a range of lines, when it finishes the current line is the last one upon which
the substitution was made. Thus, if you made an inappropriate substitution over a range of lines, the undo
command will fix only the last line.

Global Substitutions

As you saw with the above examples, the s command substitutes only the first occurrence of the requested pattern
on a given line.

A different form of the substitute command finds every occurrence of the indicated string on a line. Simply add the
letter g for global after the third slash in the substitute command, and ed finds and changes every one:

s/pattern1/pattern2/g

So, if the current line contains a phrase:

a rose is a rose is a rose

and we tell ed to substitute

s/a/the/g

the line is changed to:

the rose is the rose is the rose

Again, be careful that your command does not inadvertently match all or part of a word that you wish to keep
untouched.

Special Characters

In its first two parts, the substitute command uses some special punctuation characters. They will be discussed
below in detail. However, you should be aware of these characters and avoid them until you progress to the
advanced section, for unless used properly, they will give you undesired results. The characters are:

[ ^ $ * . \ &

They are used in ed and other COHERENT programs to form complex patterns.

Ranges of Substitution

Perhaps you need to change several lines that have the same misspelling or need the same editorial change. s can
do that for you also. Simply prefix the command s with the line-number range as you would do with p. Borrowing
the ‘‘rose’’ example again, if the saying were typed:
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a rose is
a rose is
a rose

then you could do the same change as before, but across the entire file by typing

1,$s/a/the/

Note that the g after the s command has been omitted here, because you know that the string that you want to
change appears only once on each line.

If some of the lines do not have the string you want to change, ed will not complain that the string is missing.
However, if none of the lines in the range has the requested string, ed will print a ?.

Intermediate Editing
This section introduces the more advanced command features of ed. Although you have already learned enough
about ed to become productive, this section covers additional features that will increase your editing power
considerably.

This section discusses the following topics: relative line numbering, moving blocks of text, finding strings, using
special characters in substitution and search commands, processing global commands, and marking lines.

Relative Line Numbering

As discussed in the previous section, most commands allow you to use line numbers to control their range of
operation. Before the command you can enter a single line number; for example:

1p

This, of course, prints the first line of the file. You may also specify a range of line numbers, by entering two
numbers separated by a comma. For example, if the file contains at least ten lines, the command

1,10p

prints the first ten lines of the file.

The period (dot) always represents the number of the current line. For example, to print the file from the first line
through the current line, just type:

1,.p

A command used without a line number always acts on the current line only. For example, typing

p

is equivalent to typing:

.p

There is yet another level of shorthand to line numbering — the plus and minus characters. These characters
indicate offsets from the current line. For example, the command

.+3p

prints the third line after the current line. Likewise, the command

.-1p

prints the line that precedes the current line. Note that using a line offset changes the current line to the one
addressed. Thus, after the above command is executed, the current line will be the one that preceded the original
current line.

You can abbreviate this notation still further by leaving out the dot. The commands

+p
-p

do the following: First, ed advances to the next line and prints it; then it backs up to the previous line (which was
the original current line) and printing it.
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You can place several of these commands on one line to move the current line multiple lines. To back up three
lines and then print, type:

---p

Note that in the absence of any other command, ed defaults to the p command. Thus

---

is equivalent to

---p

and

5

is identical to:

5p

The print command has one more abbreviation. If ed is expecting a command from you and you type nothing
except <return>, ed interprets this as a command to advance the current line to the next line and print it. This
action is equivalent to

+

or

.+1

<return> is the shortest command in ed.

All of the abbreviations for line numbers can be used by other commands that expect a range of line numbers. For
example, if you want to delete five lines centered about the current line, you could type:

.-2,.+2d

and you would get your wish.

Note that ed does not allow you to specify a line number that is beyond the range of the file; this is regardless of
whether you are typing a line number or any form of abbreviated line numbering. For example, suppose the
current line is the last line in the file and you type:

+

This tells ed to ‘‘advance one line then print’’; however, this is impossible because you are at the last line of the file,
so there is no next line to print. When you request an impossible line number, ed replies by printing a question
mark. Note, however, that the current line is always be valid so long as the file has at least one line in it. Thus,
unless the file is empty, the command

.

will never give an error message.

Changing Lines

Earlier, an example of spelling correction was solved two ways. The first way was the clumsy way of deleting a line
and retyping the entire line. This strategy means much work to change a single letter, so the substitute command
was introduced instead.

On occasion, however, it is handy to be able to change lines en masse — as was done by deleting then inserting.
ed provides this power with the change command c. In general terms,

m,nc
new lines
to be inserted
.

removes lines m through n, and insert new lines up to the period in place of them.
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Moving Blocks of Text

When handling text, you will often need to shift a block of text from one position to another. In a manuscript, for
example, you may need to rearrange the order of paragraphs to increase clarity. In a program, you may need to
rearrange the order in which procedures appear.

To allow you to do this easily, ed provides a move command m that moves a block of text from one point in the file
to another.

m is different from the other commands that we have discussed so far, in that line numbers follow as well as
precede the m command itself. The line number that follows the command gives the line after which the text is to
be moved. So, the general form of the move command is

b,emd

which means ‘‘move lines b through e to after line d ’’.

To see how this works, first build the following file:

ed
a

This is a paragraph of natural language
text. Due to stylistic considerations, it
really should be the second paragraph.

If you can read this paragraph first,
the text has been properly arranged, and
our move example has been successfully done.
.
w example5
q

The file example5 contains two paragraphs, each three lines long. We will now move the first paragraph to after
the second paragraph.

You can do this in either of two ways: you can move the first paragraph to after the second paragraph, or you can
move the second paragraph to before the first paragraph. Either gives the same result, but the commands are
somewhat different. To shift the first paragraph to after the second paragraph, type:

ed example5
1,3m$
*p
Q

Remember that $ always represents the last line in the file. The result is:

If you can read this paragraph first,
the text has been properly arranged, and
our move example has been successfully done.

This is a paragraph of natural language
text. Due to stylistic considerations, it
really should be the second paragraph.

To move the second paragraph to before the first, type:

4,6m0

Note that the destination is 0, which means that the text is to be moved to immediately after line 0. Because there
is no line number 0, the move command interprets this to mean the beginning of the file.

Of course, in our small example, line number abbreviations and knowledge of the current line may be used in a
number of different ways to perform exactly the same action. For example,

1,3m.

says to move lines 1 through 3 of the file to the line after the current line. When you invoke ed, it always sets the
line number to the last line in the file. Thus, this form of the command has the same effect as the previous forms.

If the destination of a move command is not specified, ed assumes the current line. Therefore, the command

1,3m

also repositions the first paragraph correctly.
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The move command changes the line numbers in the file, although the number of lines in the file remains the
same. The different forms of the move command will, however, yield different settings for the current line.

After a move command, the current line becomes the number of the last line moved. Thus, if you moved the first
paragraph to after the second paragraph, the current line will be reset to the last line in the file — the original line
3. However, if you moved the second paragraph to before the first paragraph, the current line would be reset to
line 3 — which was originally the last line in the file.

Copying Blocks of Text

The transfer command t resembles the move command, except that it copies text rather than moving it. When you
move text, it is erased from its original position. When you copy text, however, the text then appears both in its
original position and in the position to which you copied it. ed uses the term transfer rather than copy because
the command c is already used as the change command.

The form of the transfer command is as follows:

b,etd

This means to transfer (copy) the group of lines that begins with b and that ends with e (inclusive) to after line d.

After copying the text, ed sets the current line to the last line copied.

String Searches

The methods of line location that have been discussed to this point all involve line numbers. They specified an
absolute line number, a relative line number, or a shorthand symbol such as . or $.

Often, however, line numbers are not useful, because there is no easy way to tell what number a line has, how
many lines ago a block of text began, and so on.

ed’s solution to this problem is to locate a line by asking ed to search for a pattern of text. ed begins searching on
the line that follows the current line, and looks for a line that matches the specified pattern. If it finds a line that
contains the requested pattern, ed resets the current line to that line.

If ed encounters the end of the file before it finds a match, ed jumps to the first line in the file, and continues its
search from there. If it finds no match by the time it returns to the line where the search began, ed gives up and
issues an error message — the question mark ?. Remember, if you type a question mark in response to an error
message, ed will tell you in more detail what the error is.

What does it mean to ‘‘match’’ a pattern? The simplest meaning is that two patterns are the same — the strings
have exactly the same characters in exactly the same order. To see how this works, type the following to create file
example6:

ed
a

This is an example that we will
use for string searching. There
is much natural language here as well
as some genuine arbitrary strings.
890,;+ foxtrot
qwertyuiop ##
.
w example6
q

Now, to locate and print any line contains the pattern fox, type:

ed example6
/fox/p

In response, ed prints the line:

890,;+ foxtrot

Also, you can use string expressions to print a range of lines. For example:

/This/,/much/p

This prints:
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This is an example that we will
use for string searching. There
is much natural language here as well

That is, it printed all lines from the first line that contains the pattern This through the first line that contains the
pattern much.

Pattern searches can also be combined with relative line numbers. If you have a Pascal program file with several
procedures in it, but you find that you need to rearrange the procedures, you can combine the power of the move
command with the string searches.

PROCEDURE A;
...
...
PROCEDURE B;
...
...
PROCEDURE C;

Assume that the section of text that begins with PROCEDURE A should follow the line that contains PROCEDURE
B. The following command moves the text properly:

/PROCEDURE A/,/PROCEDURE B/-1m/PROCEDURE C/-1

This commands ed (1) to locate the chunk of text that begins with a line containing the pattern PROCEDURE A
and ends with the line just before the first line that contains the pattern PROCEDURE B, and then (2) move that
text to just before the first line that contains the pattern PROCEDURE C. As you can see, you can pack a lot of
information into one ed command.

Let’s look at this command in more detail, to see exactly how it works. First, remember that the move command m
is defined as

b,emd

where b indicates the first line of the text to be moved, e indicates the last line of the text to be moved, and d
indicates the line that the moved text is to follow. Thus, b corresponds to the number of the line that contains
PROCEDURE A and is the first line of the procedure in question. e, however, corresponds to the line before the
PROCEDURE B begins, by virtue of the -1. Here is an example of mixing pattern searches with relative line
numbers, as mentioned above. Thus, you have found the beginning and ending lines of procedure A.

The final string search locates the first line of subroutine C. The move command normally moves text to after the
given line; and because we wish to move the text to before the line that contains PROCEDURE C, we must include
the -1 to move the text up one line.

Remembered Search Arguments

As discussed earlier, line numbers may be abbreviated in many ways. They may be entered as ., or +, or -, and
certain combinations of these. With some commands, pressing <return> tells ed to use the current line number.

ed encourages you to abbreviate the search string. If you enter no string between the slashes in a search or
substitution, then ed uses the last-used search string. A common use is in the global substitution command
(which will be discussed in detail later in this section):

g/please remove this string/s// /p

This does not quite remove it, but replaces it with a blank. The last-used string can be specified by a string search,
a substitute command, or a reverse string search (also discussed later in this section). Also, the remembered
search argument may also be used in any one of these. You can use the remembered search feature to ‘‘walk’’
through the file, finding the next occurrence of a remembered search pattern.

Uses of Special Characters

As powerful as the line locator seems, some features are even even more powerful. These will be discussed in the
Expert Editing section, below. However, these more powerful capabilities depend upon certain punctuation marks
used in a special way. As you use the line locator (as well as the substitute command), be aware of these following
characters:

[ ^ $ * . \ &

They have special significance to ed when they appear in a string search or a substitution pattern.
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If you need to use one of these characters without invoking its special meaning, precede it with a backslash ‘\’.
This tells ed not to interpret the character in a special way.

For example, to find a backslash character, type the search command:

/\\/

If any of these characters is to be used in another context, for example, within lines that you are adding with the a
command, it should not be preceded with the backslash. Only use the backslash to hide the meaning when it
appears within the string search command, or within the first part of the substitution command.

Global Commands

The global commands g and v let you repeat commands on all lines within a specified range. For example, to print
all lines that contain the word example, type:

g/example/p

The global command can prefix almost any command. For example, the following command deletes all lines that
contain three consecutive plus signs:

g/+++/d

Likewise, the command

g/foxtrot/.-2,.+2p

prints the five lines that surrounds any line that contains the word foxtrot.

A common use of the global command is to perform global substitution. The command

g/PROCEDURE/s/PROCEDURE/PROC/gp

performs the substitution on each line that contains the string PROCEDURE and prints the resulting line.

This may appear similar to the command

1,$s/PROCEDURE/PROC/gp

but is different in that the global command prints each of the changed lines, whereas the substitute command
prints only the last line changed. Also, the method of operation of these two commands is different.

A related command v performs much the same task, but executes the commands only for lines that do not contain
the specified string. Thus, to print all the lines that do not have the letter w, use:

v/w/p

For more sophisticated uses of the g and v commands and how they work, see the section on Expert Editing.

Joining Lines

What do you do if you inadvertently hit <return> as you are adding lines and need to combine the two lines?

ed
a
Look out, I seem to have hit ret
urn in the
middle of a word and don’t know
what to do!
.
w rid
q

Rather that retyping the entire line, you can use the join command j:

ed rid
1,2j
1,$p

This gives:
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Look out, I seem to have hit return in the
middle of a word and don’t know
what to do!

If no line number is specified, j joins the current line and the following line. If a single line number is specified,
join operates on that and the following line.

Several lines can be joined by using the form of the command:

a,bj

This joins lines a through b into one line. Likewise, the command

1,$j

joins all the lines in the file into one line. Then, the command .p or p prints the entire file.

Note that the command

3j

does the same job as the command

3,4j

The join command generates its own second line number if none is specified, so that the command

nj

is equivalent to

n,n+1j

where n is a line number. This command is the only one that interprets a missing line number this way.

Splitting Lines

You can split one line into two with the substitute command s. To illustrate, suppose you typed in the following
commands:

ed
a
This line wants to be two, with this second.
.
w split
q

To perform the split, type:

ed split
s/two, /two,\
/p
*p
w
q

The line split is caused by the backslash that precedes the <return>. This tells ed that the <return> does not
terminate the command, but that it is part of the substitution. The contents of file split are now:

This line wants to be two,
with this second.

Marking Lines

As you edit a manuscript or program, it is sometimes handy to be able to leave a ‘‘bookmark’’ in the text for later
reference. ed provides this feature with the mark command k. To mark the next line that has the word find, use

/find/ka

where the letter a is the mark. To print the line that has been so marked, use:

’ap

You can place these references anywhere that a line number is expected.
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The mark must be one lower-case letter. Also, each mark is associated with one line. Marking a line with the k
command does not change the current line.

Marks can be especially handy when you move paragraphs with the m command. They give you a chance to review
the sections that you will be moving before you do the move.

For example, suppose that you have a manuscript with a paragraph that must be moved to a different part of the
document. Create the following example:

ed
a

This is a paragraph, first line, that
needs to be moved.
text
text
And this is the last sentence of the paragraph.

Next paragraph begins here.
text
text
text

This is the spot that we want the paragraph
to precede.
.
w example7
q

Now, place three marks to help with the move:

ed example7
/first line,/ka
/Next paragraph/kb
/is the spot/kc

This marks the first line to be moved with a, the line after the last to be moved with b, and the paragraph’s
destination with c. But you can see that the move command moves lines to the line after the third number
specified, so let’s change the third mark:

’c-1kc

Now we can use c in the move command without arithmetic. Now, print the paragraph to be moved to be sure that
the marks are correct.

’a,’bp

ed replies with

This is a paragraph, first line, that
needs to be moved.
text
text
And this is the last sentence of the paragraph.

Next paragraph begins here.

You can see that we would move one line too many if we used the marks as they are. So, change b also.

’b-1kb

Now, do the move:

’a,’bm’c
1,$p

The file now contains:
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Next paragraph begins here.
text
text
text

This is a paragraph, first line, that
needs to be moved.
text
text
And this is the last sentence of the paragraph.

This is the spot that we want the paragraph
to precede.

Marking sections of text can increase the ease with which you solve your complex ed problems.

Searching in Reverse Direction

All scanning, processing, and searching has been shown going from the beginning of the file toward the end.
Sometimes it is useful to find some word that occurs before the current line.

You can get ed to do string searching in the reverse direction by specifying the search with question marks ?
rather than slashes /. To find the previous occurrence of the word last, use:

?last?

This form of searching can be useful in finding the beginning and end of a repeat/until statement. For example, if
the current line is in the middle of a Pascal repeat/until group, you can print the group with the command:

?repeat?,/until/p

The reverse search is like the forward search in every way except the direction of search. The search begins one
line before the current or specified line, and proceeds toward the beginning of the file. If the string is not found by
the time that the search reaches the beginning of the file, the search resumes at the end of the file, and progresses
towards the starting point of the search. If the string is not found when the search reaches the original starting
point, the question-mark error message is issued signifying no match.

Also, the command

??

uses the remembered search argument.

Expert Editing
This section describes the most advanced ed commands.

File Processing Commands

Earlier, we discussed the commands

ed

and:

ed filename

ed also has file-handling commands that go beyond those already discussed.

Suppose that you entered the command

ed file1

only to discover when you examined the contents of file1 that you really wish to edit file file2. You could correct
this error by exiting from ed and then re-invoking it for file2. However, ed command e lets you close out the
current file and begin to edit a new file without exiting from the editor. For example, to stop editing file1 and begin
to edit file2, simply issue the command:

e file2

If you had made any changes to file1, ed will prompt you with a ?, which is its way of asking if you wish to throw
away the changes you have made to this file. If you immediately repeat the command, ed proceeds even if there
are unsaved changes. The command
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E new

commands ed to edit the new file, whether or not there are unsaved changes.

ed’s ‘‘read’’ command r also reads a new file, but adds it to the file being edited instead of replacing the current file
with it. This can be handy for copying one file into another one. For example, if you have a manuscript prefix
stored in the file prefix to include the prefix at the beginning of the file you are editing, type:

0r prefix

r inserts the file being read after the line number specified; in this case, line 0 means at the beginning of the file. If
used without a line number, r appends the newly read lines to the end of the file.

ed’s command w writes the entire file if no line number is specified; however, you can specify line numbers. For
example

1,3w new

writes the first three lines to file new. If the file name is omitted, the lines are written to the remembered file name.

The w command is unique in that it never changes the current line. This is true regardless of what line numbers
are specified in the range for the command, or how those line numbers were developed.

The W command resembles the w command, except that it appends lines to the end of the file, whereas w creates a
new file and erases any previous contents.

The f command prints the remembered file name that was set in

ed filename

or

e filename

or

w filename

commands. You can also use f to reset the remembered name, by typing:

f newname

This form of the command tells you what the new remembered file name is, even though you just typed it in.

Note that the command

w filename

changes the remembered name only if there is currently no remembered name, as does the r command.

Patterns

Earlier, you were cautioned that certain punctuation characters have special effect in search and substitute
commands. These characters are:

[ ^ $ * . \ &

They are used to form powerful substitute and locator commands. An orderly combination of these special
characters is called a pattern, sometimes called a regular expression. You can use a pattern to find or match a
variety of strings with one search argument.

The simplest patterns use alphabetic characters and numeric digits, which match themselves. For example,

/ab/

finds and prints the next line containing the string ab.

The next simplest character to use in a pattern is the period or dot. It matches any character except the newline
character that separates lines. Two periods in succession match any two consecutive characters, and so on. For
example, if you have a file that contains algebraic statements of the form
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a+b
c+e
a-b
a/b
d*e

and wanted to find and print any line involving a and b (in that order), then use the search statement:

/a.b/

The . in this example matches +, -, and /.

Then, you ask, how do I find a string that contains a period? For example, if you want to find all the sentences
that ended with ‘‘lost.’’ (that is, the word lost followed by a period), you might first try:

/lost./p

This, however, also matches the string ‘‘lost ’’ (the word lost followed by a space), which is not what you want.

This is where the special character backslash comes in handy. A backslash tells ed to treat the next character as a
regular character, even if it usually is a special character. Thus, to find ‘‘lost.’’, you need only type:

/lost\./p

This will not incorrectly find ‘‘lost ’’. If you want to find backslashes in your file, simply say:

/\\/p

Matching Many With One Character

The asterisk * matches an indefinite number of characters. For example, to remove extra spaces between words in
a document, type

g/##*/s//#/p

(The character # has been substituted here for the space character to make the example more readable.) This
replaces each series of spaces by one space.

Note that there are two spaces before the * in the search string. This is necessary because the * matches any
length of string, including zero. Therefore, searching for a space followed by any number of spaces finds strings
that are at least one space long.

The * matches the longest possible string of the previous character. This requires careful attention on your part,
because the string matched by * might be longer than your required string, or even zero in length. Either way
could give you unexpected results.

If you have a line

a+b-c

in your file and want to change it to

a+c

type the command:

s/a.*c/a+c/p

However, if the line read instead

a+b-c*d+c

and you applied the command, the result would be

a+c

since the .* matches the longest string between any a and any c.
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Beginning and Ending of Lines

The characters ^ and $ match, respectively, the beginning and ending of a line. Thus, you can find and print all
lines that end with a bang:

g/bang$/p

or those that begin with a whimper:

g/^whimper/p

These two characters can also help you find lines of specific length. If you need to see all lines exactly five
characters long, the command

g/^.....$/p

does the trick. To find and delete all blank lines, type:

g/^ *$/d

Note that this time the * matches a string of zero spaces. However, this is correct, because a blank line includes
lines that have nothing in them, as well as lines that contain only spaces.

Replacing Matched Part

In many cases of substituting, you find yourself extending a word, or adding information to the end of a phrase.
This can lead to extensive retyping of characters. The special & character can help out.

This character is special only when used in the right part, or pattern2 of the substitute command. It means ‘‘the
string that matched the left part’’. For example, to add ing to the word help in the current line, use:

s/help/&ing/

The ampersand may appear more than once in the right side.

This can be more interesting if the left part has a non-trivial pattern. For every word in a line that is preceded by
two or more spaces, double the number of spaces before it:

s/###*/&&/gp

(Again, spaces have been replaced with # for clarity.)

Replacing Parts of Matched String

A more sophisticated feature, which is similar to the ampersand, helps you to rearrange parts of a line. To see how
this works, create a file by typing:

ed
a
first part=second part
.
w eql
q

Two special bracket symbols, \( and \) can be used to delineate patterns in the left part of a substitution
expression. Then, you can use the special symbols \1, \2, etc., to insert the delimited parts. The symbol \( marks
the beginnning of the pattern, and \) marks the end. For example, to delete everything in the line except the
characters to the left of the =, type

ed eql
s/^\(.*\)=.*/\1/p
Q

In the substitute command, the ^ matches the beginning of the line, .* matches ‘‘first part’’, and =.* matches the
rest of the line. The symbol \1 signifies the matched characters between the first \( (the only one in this example)
and \). The p then prints the result, which will be:

first part

To interchange the two parts, type
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ed eql
s/\(.*\)=\(.*\)/\2=\1/
p
wq

The result is

second part=first part

The first portion of the substitution expression,

\(.*\)=\(.*\)

can be thought of as being in three parts. The first part

\(.*\)

matches all characters up to but not including the =, which are

first part

The second part

=

matches the = in the line, and finally the third part

\(.*\)

matches all characters following the ‘‘=’’, or

second part

The remainder of the substitution expression

\2=\1

which is the replacement part, rebuilds the line in interchanged order. The symbol \2 replaces the matched string
enclosed in the second pair of \( \) delimiters, and the symbol \1 inserts the matched string enclosed in the first
pair of \( \).

The right side of the substitution inserts the second matched expression (from \2), then inserts the = sign again,
followed finally with the first part of the line from \1.

This may appear involved, but can be immensely valuable in situations that require rearrangement of a large
number of lines.

The next special characters for patterns that we will consider are the bracket characters [ and ]. These are used to
define the character class. Inside the brackets, put a group of characters; ed will match any of them if it appears.
For example, to print a line that contains any odd digit, say:

g/[13579]/p

For even more power and flexibility, you can combine character classes with the asterisk. For example, the
following command finds and prints all lines that contain a negative number followed by a period:

g/-[0123456789]*\./p

This matches lines containing the following example strings:

-1.
-666.
-3.7.77

You can also match all lower-case letters by listing them in brackets, but the following abbreviation simplifies this:

g/[a-z]/p

This can also be used for the negative number example above:

g/-[0-9]*\./p

Most special characters lose their original meaning within the brackets, but one of the special characters, caret ^ ,
gets a new meaning. In this context, it matches all characters except those listed in the brackets. For example, the
following pattern matches a string that begins with K and continues with any character except a number:
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/K[^0-9]/

This matches:

KQ
KK
KK9

but not:

K7
kK0

Other special characters may be part of a character class, but lose their special meaning when used in that
context. Remember, however, that if you want to match the right bracket, it must appear first in the list. So, to
find all occurrences of special characters in the file, type:

g/[]^\.*[&]/p

Listing Funny Lines

The p command prints lines with graphic characters in them. It also prints lines with non-graphic (or control)
characters, but these do not appear on the screen. For example, printing a line that contains the BEL character
<ctrl-G> will ring your terminal’s bell, but you will not see where the BEL character occurs within the line.

The l command behaves like the p command, except that it also decodes and prints control characters. For
example, if you use the l command to print a line that containing the word bell followed by a BEL character, you
would see:

bell\007\n

Note that ‘‘007’’ is the ASCII value for <ctrl-G>. (ASCII is the system of encoding characters within your computer;
see ASCII in the Lexicon for the full ASCII table.) The l command displays the backspace character <ctrl-H> as a
hyphen first overstruck with a < and then a newline, which appears as \n on your screen. It displays a tab
character as a -, first overstruck with a > and followed by a newline character, which appears as >\n. If the line
being listed with l is too long to be displayed on one line on your screen, l separates it into two lines, with the
backslash character placed at the end of the first line to indicate the split.

All other features of the p command apply to the l command.

Keeping Track of Current Line

The most commonly used abbreviation in ed is the dot, or period, which stands for the current line. Many
commands can change the value of the dot, and it is useful to you to be able to anticipate this change when using
the abbreviation.

Different classes of commands affect the value of the dot in different ways; in general, however, the simple
explanation is usually correct: the current line is the last line processed by the last command to be executed.

Consider, for example, how the substitution command s changes the current line:

1,$s/flow/change/
p

In this example, the current line will be the last line modified by the substitutions; and that will be the line that
the p command prints.

The w command is an exception to this rule. It does not change the current line, regardless of any line range
selection or how these ranges are developed.

The r command changes the current line to the last of the lines read.

The d command sets the current line to the line after the last line deleted unless the last line in the file was
deleted, in which case the new last line becomes the current line.

The line insertion commands i, c, and a all leave the current line as the last line added. If no lines are added,
however, their behaviors differ: i and c effectively back up the last line by one, whereas a leaves it the same.
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When Current Line Is Changed

When the current line changes is also important. Normally, the current line does not change until the command is
completed.

To illustrate, create a file semi by typing:

ed
a
begin
second
first
in between
second
last
.
w semi
q

Now, edit the file and type all lines from first to second:

ed semi
/first/,/second/p
Q

This will cause an error! The reason is that the search command begins with current line set to $, so ‘‘first’’ is
found on line 3. But the search for ‘‘second’’ also begins with the current line set at $, and finds ‘‘second’’ on line
2. Thus, the command translates to

3,2p

which is clearly invalid.

To do what was intended, use the semicolon ; instead of the comma to separate the two searches. This forces ed
to change the current line to be changed after the search for first rather than after the entire command. Thus, the
commands

ed semi
/first/;/second/p
Q

are correct and will do what is intended. The result will be:

first
in between
second

The search for first still begins with the current line set at $. However, after it finds first, ed resets the current line
to 3, and begins the search for second there, and succeeds on line 5.

Finally, to be sure of where the current line is, you can use the p command to show you the line; or you can have
ed tell you the number of the current line by typing:

.=

To give you a perspective on where you are with respect to the end of the file, type

&=

and ed will tell you the number of the last line in the file.

You can put any line number expression before = and it will type the result. For example

/next/=

types the number of the next line to contain ‘‘next’’ (if there is one). The command = never changes the line
number.
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More About Global Commands

All the global commands discussed thus far have been followed by only one command — substitute, print, and
delete. You can, however, put several commands after a global command, and execute each of those commands for
each line that matches.

To change all occurrences of the word cacophonous to the word noisy and print the three lines that follow, issue
the command:

g/cacophonous/s//noisy/\
.+1,.+3p

Here, the additional commands are separated by the backslash before the <return>. Several commands can be
added, and all but the last need the backslash at the end.

This will work for the line-adding commands, as well. To insert a spelling warning before each line that contains
the word occurrance, issue the command:

g/occurrance/i\
((the following line needs spelling check))\
.

Note that the last line of the i group can be entered without a backslash, in which case the line containing only the
period must be omitted. This has the same effect as:

g/occurrance/i\
((the following line needs spelling check))

You should not depend upon the setting of the current line in any multiline global command. There are two
reasons for this. First, if one of the commands is a substitute and the string is not found in the matched line, the
current line will not be changed.

Second, the global command operates in two phases. The first part scans the file for lines that match the string
argument. ed marks these lines internally in a manner similar to the k command. The second phase then
executes the commands on each of the marked lines. Therefore, you cannot count on a string search following the
g to set the current line number.

Again, the v command behaves in the same way, except that it selects lines that do not match the pattern.

Caution is advised when using remembered search arguments, for a similar reason. A search argument is
remembered only if the search has been executed. Thus, in a command of the form

g/backup/s//reverse/\
s/backin /backing/

the first remembered search may use backup on some occasion, and ‘‘backin’’ on others. The reason for this is
that the second phase of the g command begins with a remembered search argument of backup. After the second
line of the multiline command executes, the remembered search argument is ‘‘backin ’’. This remains throughout
the remainder of the second g phase.

Thus, it is recommended that you avoid remembered search arguments when using multiline global commands.

Issuing COHERENT Commands Within ed

While you are using ed, you can issue COHERENT commands by prefixing them with the ! command.

This can be useful if, for example, you need to discover a file name while in the middle of an edit, and you want to
find it without leaving ed. Thus, to list your directory while in ed, type:

!lc

ed sends the command to COHERENT and echoes a ! character when the command is finished.

There is no limitation on the type of command that you may issue with this feature. It is even plausible that you
want to start another ed.

For More Information
The Lexicon article on ed summarizes its commands and options. The COHERENT system also includes three other
useful editors: sed, the stream editor; MicroEMACS, the screen editor; and vi, a clone of the standard UNIX screen
editor. MicroEMACS and sed are introduced with their own tutorials, and each is summarized in the Lexicon.
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Introduction to the sed Stream Editor

This is a tutorial for the COHERENT editor sed. It describes in elementary terms what sed does.

This guide is meant for two types of reader: the one who wants a tutorial introduction to sed, and the one who
wants to use specific sections as references.

Related tutorials include Using the COHERENT System, which presents the basics of using COHERENT and
introduces many useful programs, and the tutorials for the interactive line editor ed and for the screen editor
MicroEMACS.

In a nutshell, sed edits files non-interactively; that is, sed applies your set of commands to every line of the file
being edited. It is not meant to create a text, as you can do with ed, me, or vi. Rather, it lets you perform large,
intricate transformations on a file of text, using commands that resemble those used by ed or vi’s colon-command
mode.

Although sed is not as easy to control as ed or MicroEMACS, both of which are interactive, it can edit a large file
very quickly. You can use sed to change computer programs, natural language manuscripts, command files,
electronic mail messages, or any other type of text file.

One last point: sed normally writes its output to the standard output, which by default is your screen. To save its
output into a file, use the shell’s ‘>’ operator to redirect the standard output into a file.

Getting to Know sed
sed is a text editor. It reads a text file one line at a time, and applies your set of editing commands to each line as
it is read. Because it does not ask you for instructions after it executes each command, sed is a non-interactive
text editor.

The advantages of sed are that it can readily apply the same editing commands to many files; it can edit a large file
quickly; and it can readily be used with pipes. A pipe takes the product of one program and feeds it into another
program for further processing. If you are unsure of how a pipe works, refer to sh Shell Command Language
Tutorial.

sed resembles closely ed. sed and ed use almost all of the same commands, and locate lines in much the same
way. However, there are important differences between ed and sed. ed is interactive: when you give ed a
command from the keyboard, it executes that command immediately and then waits for you to enter the next
command. sed, on the other hand, accepts your editing commands all at once, either from the keyboard or, more
often, from a file you prepare; then, as it reads your text file one line at a time, it applies every command to every
line of text. Therefore, addressing (that is, telling the program what commands should be applied to which lines) is
much more important with sed than with ed.

Keep in mind, too, that sed does not change your original text file; rather, sed copies it, changes it, and sends the
edited file either to the standard output or to another file that you name in the command line.

Getting Started

Here are a few exercises to introduce you to sed. Type them into your COHERENT system to get a feel for how sed
works.

As explained above, sed applies a set of editing commands to your text file. To edit a file with sed, you must
prepare three elements: (1) the text file that you wish to edit; (2) a command file (or script) that contains the sed
commands you want to apply to the text file; and (3) a command line that tells the COHERENT system what you
want done and with which files.

To begin, then, type the following text into your computer using the cat command. (Remember that <ctrl-D> is
typed by holding down the ctrl key and simultaneously typing D.)

cat >exercise1
No man will be a sailor who has contrivance enough
to get himself into a gaol; for being in a ship is
being in a gaol, with the chance of being drowned.
<ctrl-D>

Now, type in the following sed script. This script will substitute jail for gaol:
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cat >script1
s/gaol/jail/g
<ctrl-D>

The last step is to prepare the command line. The command line consists of the sed command, the options that
tell sed where its instructions will be coming from (either from a file or directly from the command line), the name
of the file to be edited, and where the edited file should be send. The general form of the command line is as
follows:

sed [-n] [-e commands] [-f scriptname] textfile [>file]

The -n option will be explained below, in the section on Output. The -e option tells sed that commands follow
immediately. The -f option tells sed that the commands are contained in the file scriptname. textfile is the name of
the text file to be edited. The greater-than symbol ‘>’ followed by a file name redirects the edited version of the text
file into file; if this option is not used, the edited copy of the text file will be sent to the standard output.

In this example, a command script has been prepared, so the -f option will be used. Also, the edited text should
appear on the terminal screen, so the ‘>’ will not be used. Type the command line as follows:

sed -f script1 exercise1

The following text will appear on your screen:

No man will be a sailor who has contrivance enough
to get himself into a jail; for being in a ship is
being in a jail, with the chance of being drowned.

You can use sed not only to substitute one word for another, but to add lines to files, delete lines, and perform
more involved editing. No matter how complex your sed editing becomes, though, sed will always use the basic
format just described.

The next few sections describe sed’s basic commands.

Simple Commands

Type in the exercises exactly as shown and examine the results. Use the cat command to enter the command file
as well as the input file. The edited text will appear on your terminal. Usually when you edit, you will want to
redirect the edited text to a new file; however, for the exercises presented here, let the edited text appear on your
terminal so you can examine the results immediately.

Substituting

The substitution command is used very often when editing. sed’s substitution command s resembles the same
command in ed. Its form is as follows:

s/term1/term2/

This tells sed to substitute term2 for term1. To correct a misspelled word, for example, use this command form:

s/mispel/misspell/

As written, this command changes only the first occurrence of mispel in each line of your text file. To change
every occurrence of mispel in each line, add g (the global option) at the end of the command:

s/mispel/misspell/g

If you want to change only the third occurrence of mispel on every line, put a 3 after the s:

s3/mispel/misspell/

When no digit follows the s and no g follows the command, only the first occurrence of the term in each line
(should there be one) will be changed.

To practice the substitution, type the following file into your system (please include the misspellings):
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cat >exercise2
From the Devils Dictionary:
Hemp, n. A plant from whose fiberous bark is made
an article of neckware which is frequently put on
after public speaking in the open air and prevents
the wearer from tking cold.
<ctrl-D>

Now, prepare the following sed script to correct the misspellings:

cat >script2
s/Devils/Devil’s/
s/fiberous/fibrous/
s/tking/taking/
<ctrl-D>

Invoke sed with the following command:

sed -f script2 exercise2

The following will appear on your screen:

From the Devil’s Dictionary:
Hemp, n. A plant from whose fiberous bark is made
an article of neckwear which is frequently put on
after public speaking in the open air and prevents
the wearer from taking cold.

To see how the g command and the number option work, prepare the following text file:

cat >exercise3
sd sd sd sd
sd sd sd sd
sd sd sd sd
<ctrl-D>

The following sed script changes the third sd in each line to sed:

cat >script3
s3/sd/sed/
<ctrl-D>

Invoke sed with the following command line:

sed -f script3 exercise3

The following will appear on your screen:

sd sd sed sd
sd sd sed sd
sd sd sed sd

To change every sd to sed, use the g option. Prepare the following sed script:

cat >script3a
s/sd/sed/g
<ctrl-D>

The following will appear on your screen:

sed sed sed sed
sed sed sed sed
sed sed sed sed

The g command will be most useful for editing prose, when you have no way to tell how many times a given error
will appear on a line. The numeric option will be most useful for editing tables and lists.

Selecting Lines

Each of the substitution commands given above will be applied to every input line. Unlike ed, there is no error
message if no line of text contains term1.
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In certain instances, however, you may wish to apply a particular command only to specific lines. Lines can be
specified (or addressed) by preceding the command with the identifying line number. The following exercise
demonstrates line selection. First, prepare the following text file:

cat >exercise4
When a man is tired of London,
he is tired of life; for there
is in London all that life can afford.
<ctrl-D>

To change the word tired to fatigued on line 2 only, prepare the following sed script:

cat >script4
2s/tired/fatigued/
<ctrl-D>

Begin the editing of your text file by typing the following command line:

sed -f script4 exercise4

The following will appear on your screen:

When a man is tired of London,
he is fatigued of life; for there
is in London all that life can afford.

Remember that to specify a line number, you must place the number before the command; but to specify the
numeric option (that is, position within the line), you must place the number after the command.

You can define a range of lines to be edited. One way to do this is to list the first and last line numbers, separated
by commas, of the block of text in question. For example, the following script will change is to was only in the first
two lines of the text file you just prepared:

cat >script4a
1,2s/is/was/
<ctrl-D>

Entering the command line

sed -f script4a exercise4

will bring the following text to your screen:

When a man was tired of London,
he was tired of life, for there
is in London all that life can afford.

Note that the word is in line 3 was unaffected by the substitution command, because it lay outside the range of
lines specified by the command.

You can also select lines by patterns. Patterns are strings (any collection of letters and numbers, such as a word)
that can be combined with commands. A fuller description of patterns can be found in the tutorial for ed. Later
on, when we show you other commands, you will see that line selection by pattern rather than by line number is
quite useful.

You can use the end-of-file symbol ‘$’ for line selection. When you use this symbol, you do not have to know the
exact number of lines in your text file. For example, if you want to apply a substitution command from line 10
through the end of your text file, the command form is:

10,$s/term1/term2/

p: Print Lines

When sed edits a text file, the edited text is by default sent to the standard output, which usually is your terminal’s
screen. (As noted above, the edited text can be optionally redirected to another file by using the shell’s ‘>’
operator.) Normally, sed prints every line in the text file, whether the line is changed or not.

The next exercise will demonstrate these defaults. First, type in the following text file:
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cat >exercise5
Bill g7 r115
Nora g8 r115
Steve g7 r120
Ella g8 r120
Dave g7 r115
Robert g8 r120
<ctrl-D>

Next, create a script that contains no commands, by typing:

cat >script5
<ctrl-D>

Now, execute this empty script:

sed -f script5 exercise5

Note that sed simply copied your text file to the screen, without changing it in any way.

This default, however, can be inconvenient if you want to print only a selected portion of a file. Fortunately, with a
couple of commands you can control sed’s printing.

The command line option -n changes sed’s printing behavior. When you invoke -n, the text file no longer is printed
automatically. sed prints only the lines specified by the p command. The p command makes sed print whatever
line (or lines) to which it is applied. Use -n on the command line to stop sed from printing every line automatically;
then use the p command in the script to target the lines you want to print. The following exercise will help you
grasp this point. First, type in the following sed script:

cat >script5a
/g7/p
<ctrl-D>

Enter the command line:

sed -n -f script5a exercise5

and the following text will appear on your terminal:

Bill g7 r115
Steve g7 r120
Dave g7 r115

sed prints only the records of the students in grade 7 (g7).

It is important to note the order, or syntax, of the -n and -f command line options. The correct order is to enter -n,
then -f. (-nf or -fn are also acceptable.) If you type -f and then -n, however, all you will get is an error message.

When you use the p option with a sed command, sed will print every line of text in which that command makes a
substitution. This can be useful, but if you are not careful it can also create some problems. sed normally prints
every line in your text file, whether or not it is changed by your script, unless you specify the -n option in your
command line. Therefore, if you do not use the -n option in your command line and you do use the p option with
your s commands, every line that sed edits will be printed more than once.

The following script illustrates this point:

cat >script5b
s/g7/g8/gp
s/r115/r120/gp
<ctrl-D>

Now, execute it with the following command:

sed -f script5b exercise5

The result will look like this:
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Bill g8 r115
Bill g8 r120
Bill g8 r120
Nora g8 r120
Nora g8 r120
Steve g8 r120
Steve g8 r120
Ella g8 r120
Dave g8 r115
Dave g8 r120
Dave g8 r120
Robert g8 r120

Bill and Dave were printed three times: the first time because the p option was specified after editing the grade
number, the second time because the p option was specified after editing the room number, and the third time
because the -n option was not used on the command line. Steve and Nora were printed twice: the first time
because their lines were edited once each, and the second time because the -n option was not used on the
command line. Ella and Robert appeared once because their lines were not edited at all and the -n option was not
specified in the command line.

To get around this problem, use the -n option and use p only once, on the last substitution:

cat >script5c
s/g7/g8/g
s/r115/r120/gp
<ctrl-D>

When you enter the following command line

sed -n -f script5c exercise5

the new result will be:

Bill g8 r120
Nora g8 r120
Dave g8 r120

The w command acts like the p command, except that matched lines are written to the file whose name follows the
w. The following script shows the correct form:

cat >script5d
s/g8/g9/w grade.9
s/g7/g8/w grade.8
<ctrl-D>

When you execute script5d with this command:

sed -f script5d exercise5

the normal product will be seen produced at your terminal, and the edited lines will be written to files grade.8
and grade.9. File grade.8 will contain:

Bill g8 r115
Steve g8 r120
Dave g8 r115

Note the order in which the two s commands were given. If their order were reversed, every text line with g7 in it
would have g7 changed to g8 by the first s command, then have this newly created g8 changed to g9 by the second
s command. Thus, all the students would be shown to be in g9, and every text line would be printed into the file
grade.9.

Line Location

When you edit a file with sed, it is hard to keep track of line numbers. As noted earlier, you can locate specific
lines with sed by using patterns as line locators. To see how this works, type the following text file into your
system:
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cat >exercise6
From the Book of Proverbs:
As a door turneth upon his hinges, so the
slothful man turneth upon his bed.
A soft answer turneth away wrath: but grievous
words stir up anger.
<ctrl-D>

Now, prepare the following sed script:

cat >script6
/door/,/bed/s/turneth/turns/
<ctrl-D>

Execute it by entering the following command line:

sed -f script6 exercise6

The text will appear on your terminal this way:

From the Book of Proverbs:
As a door turns upon his hinges, so the
slothful man turns upon his bed.
A soft answer turneth away wrath: but grievous
words stir up anger.

Note that the word turns was substituted for the word turneth only in the first proverb, not the second. The reason
is that the s command in this instance was preceded by the patterns door and bed. These told sed to begin
making the substitution on the first line in which the word door appears, and to stop making the substitution with
the first line in which the word bed appears. In the text file, the fourth line also contained the word turneth, but
because it lay outside the range of line specified by the line locators, no substitution was made.

When sed locates the last line of a block of text that you have defined, it will immediately look for the next
occurrence of the first line locator. If it finds that first line locator, it will then resume making the substitution to
your file until it again finds the second line locator or comes to the end of the file, whichever occurs first. In this
example, when sed found the word bed, it began to look again for the word door; and if it had found the word
door, it would have resumed substituting turns for turneth.

Remember that, as explained earlier, line numbers can also be used as line locators. For example, the sed script

2,3s/turneth/turns/

would have produced the same changes as did the script with the pattern line locators prepared earlier.

Add Lines of Text

sed can add lines to your text file. To see how sed does this, first prepare the following text file:

cat >exercise7
From the Devil’s Dictionary:
Syllogism, n. A logical formula consisting of a major
and a minor assumption and an inconsequent.
<ctrl-D>

Now, type in the following script:

cat >script7
3a\
Economy, n. Purchasing the barrel of whiskey you do not \
need for the price of the cow you cannot afford.
<ctrl-D>

When you implement the script:

sed -f script7 exercise7

you will see this result:
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From the Devil’s Dictionary:
Syllogism, n. A logical formula consisting of a major
and a minor assumption and an inconsequent.
Economy, n. Purchasing the barrel of whiskey you do not
need for the price of the cow you cannot afford.

The append command a added text after the third line of the file. You defined where the text went. Notice the
backslash ‘\’ at the end of the line with the a command. This indicates that the next line is part of the command.
When you append several lines of text, each line but the last one to be added must end with a ‘\’ as in our
example.

Note that no other editing command, such as s, can affect any line added with a. These lines go directly to your
screen, or to a file, should you be sending the edited text there, and are invisible to all other sed commands.

The insert command i works like the a command, except that it adds its lines before the addressed line, rather
than after. The following script shows how the i command works:

cat >script7a
2i\
Peace, n. In international affairs, a period of cheating\
between two periods of fighting.
<ctrl-D>

Invoking it with this command:

sed -f script7a exercise7

produces this:

From the Devil’s Dictionary:
Peace, n. In international affairs, a period of cheating
between two periods of fighting.
Syllogism, n. A logical formula consisting of a major
and a minor assumption and an inconsequent.

As with the a command, no substitutions or other changes are performed on lines added with i.

Note, too, that you can bracket a text line by using the a and i commands at the same time. Adding a line with
either a or i does not change line numbers of the text file you are editing (although it does, of course, change the
line numbers of the file sed writes).

Delete Lines

The d command deletes lines that you do not want in the edited text. The original file stays unchanged, of course.

Lines that match the address (be it a line number, range, or pattern) of a d command do not appear in the output.
Exercise 8 illustrates the d command:

cat >exercise8
The sun was shining on the sea,
Shining with all his might.
He did his very best to make
The billows smooth and bright --
And this was odd, because it was
The middle of the night.
<ctrl-D>

Now, you have to define the lines to be deleted by matching them with a unique pattern or a line number. To
delete lines 3 through 6, prepare this script:

cat >script8
/best/,/night/d
<ctrl-D>

The command:

sed -f script8 exercise8

generates this result:
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The sun was shining on the sea,
Shining with all his might.

Note that when a line is deleted, no other commands are applied to it. Usually, if a sed script holds a number of
commands, every one of those commands is applied to every line read from your text file; however, sed is logical
enough to read the next text line immediately, should a d command delete the current line before the series of
commands has finished.

Change Lines

The c command combines the i and d options. Text is inserted before the addressed lines, which are then deleted.
To see how this command works, prepare the following text file:

cat >exercise9
Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.
<ctrl-D>

Now, type in the following script:

cat >script9
1,2c\
Twas brilliant, and the shining cove\
Did glare and glimmer in the wave;
<ctrl-D>

When you execute your script with the following command line:

sed -f script9 exercise9

the result is:

Twas brilliant, and the shining cove
Did glare and glimmer in the wave;
All mimsy were the borogoves,
And the mome raths outgrabe.

Like the i and a commands, the c command requires all added lines but the last to end with ‘\’.

Include Lines From a File

When you edit a file, you may wish to include, or read in, a second file as part of it. This is done with r command.
To see how this works, type the following file into your computer, and call it include:

cat >include
Then there comes the often-used refrain
Whose repetitious writing dulls the brain.

<ctrl-D>

Now, prepare the file to be edited:

cat >exercise10
To write a poem doesn’t take much time;
Just string some words to rhythm and a rhyme.
What poets do to language is a crime,
Words and syntax twisted for a rhyme.
<ctrl-D>

When you write your script, you must tell sed where to read in include. The form of the command should be
familiar by now:

cat >script10
/rhyme/r include
<ctrl-D>

The result is of

sed -f script10 exercise10

is:
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To write a poem doesn’t take much time;
Just string some words to rhythm and a rhyme.

Then there comes the often-used refrain
Whose repetitious writing dulls the brain.

What poets do to language is a crime,
Words and syntax twisting for a rhyme.

Then there comes the often-used refrain
Whose repetitious writing dulls the brain.

Note that the r command inserted include after the addressed line. You can address lines by number, of course,
as well as by pattern.

Quit Processing

The q command makes sed stop processing the text file. You will use this command most often to limit the
application your sed script to a portion of your text file. For example, if you were editing a large file and you knew
that your commands would be irrelevant to the last half of the file, you could insert an appropriately addressed q
and save some computer time. You can also use this command to print portions of a file.

To see how this is done, prepare the following text file:

cat >exercise11
An hourglass has a very wide top,

a very narrow
middle

and a bottom
that is also extremely wide.
<ctrl-D>

The following script will print the top of the text file. Note how the script uses middle to address the line where the
file is to be split.

cat >script11
/middle/q
<ctrl-D>

The command:

sed -f script11 exercise11

produces:

An hourglass has a very wide top,
a very narrow

middle

To print out only the lines after the pattern middle, simply delete the first half of the file with the d command, as
follows:

cat >script11a
1,/middle/d
<ctrl-D>

The result is the output:

and a bottom
that is also extremely wide.

Next Line

The n command advances to the next line of the text file. The n command is useful for instances when you have
two or more interrelated lines, and you want to ensure th a particular set of patterns is matched over the entire set
of lines. To see how n works, prepare the following text file:
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cat >exercise12
Alpha
One
Beta
Two
Gamma
Three
Delta
Four
Epsilon
Five
<ctrl-D>

To print a list of letters alone, type the following script:

cat >script12
n
d
<ctrl-D>

and execute it with the following command line:

sed -f script12 exercise12

The result will be the following:

Alpha
Beta
Gamma
Delta
Epsilon

Remember that n does not stop processing, go to the next text line, and begin processing all over again. Rather, it
simply reads the next input line and continues processing from where it left off. For example, if your sed file
consisted of three commands, the second of which was the n command, sed would apply the first command to the
first line it read, then jump to the second line and apply the last commands. Then, it would read the third line and
begin the pattern over again. To see how this works, prepare the following text file:

cat >exercise13
Alpha
Alpha
Alpha
Alpha
<ctrl-D>

Now type in this script:

cat >script13
s/Alpha/Apple/
/Apple/n
s/Alpha/Banana/
<ctrl-D>

When you execute the script with this command line:

sed -f script13 script13

the following will appear on your terminal:

Apple
Banana
Apple
Banana

Note that the first substitution command changed the first Alpha to Apple; the n command moved sed to the next
line; and the second s command changed that Alpha to Banana.

Advanced sed Commands
The following sections discuss sed’s advanced features. They also discuss the method of operation.
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Work Area

As described earlier, sed reads your text file one line at a time, and applies all of your editing commands to that
line. After the editing commands have been applied, the edited line is either sent to the standard output, written to
a file you have named, or thrown away, depending on what you have told sed to do.

When sed reads a line from your text file, it copies that line into a work area, where it actually executes your
editing commands. sed notes the number of the line in the work area, then executes each editing command in
turn, first checking to see if the patterns or line numbers specified in each command actually apply to that line.
After each command is checked in turn and performed if indicated, sed prints the edited line (if it is supposed to
be), and reads the next text line.

Add to Work Area

The exercises so far have used only one line in the work area. The N command, however, tells sed to read a second
line into the work area. The following exercise illustrates the use of the work area and the N command.

cat >exercise14
This exercise has a brok
en word.
<ctrl-D>

Now, prepare the following sed script:

cat >script14
/brok$/N
s/brok\nen/broken/
s/has/had/
<ctrl-D>

and execute it with the following command line:

sed -f script14 exercise14

which produces the following text:

This exercise had a broken word.

You will find it helpful to review this exercise in some detail. The first command in the script

/brok$/N

tells sed to search for the pattern brok at the end of the line of text. (The dollar sign ‘$’ in this instance indicates
the end of the line; remember that when the ‘$’ is used with a line number, it indicates the end of the file.) The N
command tells sed to keep this line in the working space, and copy the next line into the working space as well.

When sed executes this command on the present text file, the work area will look like this:

This example has a brok<newline>en word.

Note that the two lines now appear to sed as though they formed one long line. The word <newline> represents
the end of line character that tells your terminal or printer to jump to a new line when the text file is printed out.
This character is invisible, but it is there, and it can be changed or deleted. You can describe this character to sed
by using the characters \n. The first substitution in this script

s/brok\nen/broken/

replaces brok<newline>en with broken. Because the newline character is deleted from the text, what used to be
printed out as two lines on your screen will now be printed out as one.

Note the difference, too, between the n and N commands. The n command will replace the text line in the work
area with the next line from your text file. The N command, however, appends the next line from your text file to
the end of the text already in the working area. The next exercise demonstrates this difference. First, create the
following text file:
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cat >exercise15
Apple
Apple
Apple
Apple
<ctrl-D>

Now, prepare the following two scripts:

cat >script15
/Apple/n
s/Apple/Banana/g
<ctrl-D>

cat >script15a
/Apple/N
s/Apple/Banana/g
<ctrl-D>

When script15 is executed with the following command line:

sed -f script15 exercise15

this will appear on your screen:

Apple
Banana
Apple
Banana

The n command told sed to print out the line already in the work area before reading in the next line from the text
file. This meant that sed substituted Banana for Apple only on the second line of each pair.

Note what happens, however, when you run script15a, using this command line:

sed -f script15a exercise15

This text appears:

Banana
Banana
Banana
Banana

Because both lines of each pair were kept in the work area, the substitution command changed both of them.

Print First Line

The P command prints material from the work area. Unlike the p command, which prints everything in the work
area, P prints only the first line in the work area. To see how this works, prepare the following text file:

cat >exercise16
Student: George
Teacher: Mr. Starzynski
Student: Marian
Teacher: Miss Peterson
Student: Ivan
Teacher: Mr. Starzynski
<ctrl-D>

Now, prepare the following scripts:

cat >script16
/Student/N
/Mr. Starzynski/p
<ctrl-D>

cat >script16a
/Student/N
/Mr. Starzynski/P
<ctrl-D>

When the first of these scripts is executed with the following command line (note the use of the -n option):
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sed -n -f script16 exercise16

the result is

Student: George
Teacher: Mr. Starzynski
Student: Ivan
Teacher: Mr. Starzynski

whereas script16a, when executed as follows:

sed -n -f script16a exercise16

produces

Student: George
Student: Ivan

In script16, the N command lines pull both the name of the student and the name of the teacher into sed’s work
area; the p command prints the student and teacher in each case where the teacher is Mr. Starzynski. In
script16a, however, the N pulled both student and teacher into the work area, the P command printed only the
first line of the work area — that is, the name of the student.

As you can see, P is a powerful tool that will allow you to select material from tables, lists, and other repetitive files.

Save Work Area

sed can create a second work area in addition to the primary work area in which sed performs its editing. sed
does not execute any editing commands on the material stored in this secondary work area; rather, this work area
can be used to store material that you want to edit or insert later.

The commands h and H copy material from the primary work area into the secondary work area. h and H differ in
that h displaces any material in the secondary work area with the line being copied there, whereas H appends the
line being copied onto the material already in the secondary work area. Note, too, that both h and H merely copy
the primary work area into the secondary work area — after these commands have been executed, the material in
the primary work area remains intact, and can be edited further, printed out, or deleted, whichever you prefer.

The commands g and G copy material back from the secondary work area into the primary work area. Again, these
commands differ in that g displaces whatever is in the primary work area with the material from the secondary
work area, whereas G appends the material from the secondary work area onto the material already in the primary
work area.

The following exercises will demonstrate how these commands are used. First, create the following text file:

cat >exercise17
fruit: apple
berry: gooseberry
fruit: orange
berry: raspberry
fruit: pear
berry: blueberry
<ctrl-D>

The first script uses the h and g commands:

cat >script17
/fruit/h
/fruit/d
/berry/g
<ctrl-D>

When you execute this script with the following command line:

sed -f script17 exercise17

you receive the following text on your screen:

fruit: apple
fruit: orange
fruit: pear

Review the last script in detail. The first command, /fruit/h, copied the line beginning with ‘‘fruit’’ into the

TUTORIALS



126 sed Stream Editor

secondary work area, displacing whatever happened to be there. The command /fruit/d then deleted the line from
the primary work area; if this were not done, it would then have been printed out. The third command, /berry/g
then recopied the material from the secondary work area into the primary work area, displacing all lines in the
primary work area that begin with ‘‘berry’’. The result of all this shuffling and displacing was that the three lines
that begin with fruit were printed out.

The next script demonstrates the H command:

cat >script17a
/fruit/H
/fruit/d
/berry/g
<ctrl-D>

When you execute this script with the following command line:

sed -f script17a exercise 17

you see:

fruit: apple
fruit: apple
fruit: orange
fruit: apple
fruit: orange
fruit: pear

Because the H command appends material into the secondary work area, rather than replacing it as h does, all
three lines that began with fruit were cumulatively stored in the secondary work area. Because the g command
was used for every line that began with berry, the contents of the secondary work area (that is, the fruit lines) were
written over each of the three lines that began with berry.

The next script demonstrates the use of the G command:

cat >script17b
/fruit/H
/fruit/d
/berry/G
s/berry://g
s/fruit://g
<ctrl-D>

When you execute this script with the following command line:

sed -f script17b exercise17

you will see:

gooseberry
apple
raspberry
apple
orange
blueberry
apple
orange
pear

The H command copies the lines that begin with fruit into the secondary work area. The G command then re-
copies them from the secondary work area into the primary work area, and appends them to the material already
in the primary work area — that is, to a line that begins with berry.

The two substitution commands then strip off the fruit and berry prefixes; obviously, these substitutions do not
affect the operation of the H and G commands, but they do create a tidier result.

By the way, be sure you distinguish the g command from the g option used with the s command. If you do not,
what sed finally prints out for you may appear very strange.

The final command that uses the secondary work area is x, which exchanges the two work areas. The following
script shows how this is used:
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cat >script17c
/fruit/H
/fruit/d
/blueberry/x
s/berry://g
s/fruit://g
<ctrl-D>

When you execute this script with the following command line:

sed -f script17c exercise17

you see:

gooseberry
raspberry
apple
orange
pear

The text lines that began with fruit were moved into the secondary working area. The x command was executed
when the line that contained the word blueberry was reached, and the two working areas exchanged their
contents. The fruit lines were then printed out, while the blueberry line was simply left in the secondary working
at the end of the program, and disappeared when the program concluded.

Note that x simply swaps the two working areas — there is no ‘‘X’’ command that appends the work areas onto
each other.

Transform Characters

The y command is a special form of the s command. With the y command, you can replace a number of characters
easily, without having to write a series of s commands.

The form of the command is:

y/123/abc/

In the above example, 1 will be replaced with a, 2 with b, and 3 with c throughout the document (no g option is
needed). For y to work properly there must be a one-to-one relationship between the characters being replaced
and the characters replacing them. Also, y cannot make exchanges that involve more than one character — it
cannot, for example, replace apple with banana.

One useful task for the y command is to change all upper-case letters in a file to lower case. Prepare the following
text file to see how this is done:

cat >exercise18
NOW IS THE TIME FOR ALL GOOD MEN TO COME
TO THE AID OF THE PARTY.
<ctrl-D>

And prepare the following script, which will change these capitals:

cat >script18
y/ABCDEFGHI/abcdefghi/
y/JKLMNOPQR/jlkmnopqr/
y/STUVWXYZ/stuvwxyz/
<ctrl-D>

The alphabet is entered here in three chunks, to prevent the command from being too long to type easily. Execute
this script with the following command line:

sed -f script18 exercise18

The result is:

now is the time for all good men to come
to the aid of the party.

TUTORIALS



128 sed Stream Editor

Command Control

sed gives you advanced control over the execution of commands. The next subsections describe how these
command controls help you write compact, powerful scripts.

{ }: Command Grouping

In several of the exercises presented so far, more than one command specified the same line locator. By using
braces ‘{’ and ‘}’, you can bundle commands, which makes writing your scripts easier and lessens the chance of
making a typographical error.

To see how this is done, type the following exercise:

cat >exercise19
When my love swears that she is made of truth,
I do believe her, though I know she lies,
That she might think me some untutored youth,
Unlearned in the world’s false subtleties.
<ctrl-D>

Now, prepare the following script:

cat >script19
/truth/{N
P
}
/lies/d
<ctrl-D>

When you execute this script with the following command line:

sed -f script19 exercise19

the result on your terminal is:

When my love swears that she is made of truth,
That she might think me some untutored youth,
Unlearned in the world’s false subtleties.

Note the syntax of this command. Each subsequent command must go on a line of its own, as must the right
brace ‘}’. If this syntax is not observed, you will receive an error message.

!: All But

The ! flag inverts a line selector; that is to say, the command will be performed on every line but the one named in
the line selector. The following script will show how this works:

cat >script19a
2!d
<ctrl-D>

which, when run with the following command line:

sed -f script19a exercise19

produces

I do believe her, though I know she lies,

This script deleted every line except line 2. The ! flag may also be used with a range of lines, as indicated by line
numbers or line patterns; in either case, you must place the ! flag after the line selectors and immediately before
the command. Obviously, the ! flag is very powerful, and can be used to sift out a few desired lines from a large
file.

= : Print Line Number

You may wish to print only the line number of lines that contain a selected pattern. This is done with the =
command. For example, you may wish to know the number of each line in the exercise that contains the word
she. The following script:
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cat >script19b
/she/=
<ctrl-D>

when executed with the following command line (note the -n option):

sed -n -f script19b exercise19

produces this result:

1
2
3

These numbers can be stored in a file and used in further editing, or included with the text of the fully edited file to
provide a series of line markers.

Skipping Commands

sed normally processes editing commands in order, beginning with the first command and proceeding sequentially
to the last. This behavior can be modified by the branching commands: b, t, and :.

These commands must be used with the colon (:) command, which defines a label point in the list of commands.

The branch command b allows you to skip unconditionally some editing commands in your script. The following
exercise demonstrates how this can be used:

cat >exercise20
They went to sea in a sieve, they did;
In a sieve they went to sea;
In spite of all their friends could say,
On a winter’s morn, on a stormy day,
In a sieve they went to sea.
<ctrl-D>

The following script uses the b command to avoid making certain changes to the first line of the poem:

cat >script20
s/sea/drink/g
/They/bend
s/sieve/ship/g
:end

When you execute this script with the following command line:

sed -f script20 exercise20

you will see:

They went to drink in a sieve, they did;
In a ship they went to drink;
In spite of all their friends could say,
On a winter’s morn, on a stormy day,
In a ship they went to drink.

Note that the word sea is changed to drink throughout the file; however, when sed noted that the word They
appeared in line 1, the b command forced it to seek the : command that was labeled with the word end, and to
continue editing only after it found the labelled : command. In so doing, sed skipped the command to substitute
ship for sieve, which is why that substitution was not made in line 1.

Note the syntax of the b command: the label follows it without a break. The text of the label is unimportant, just
so long as it matches that used in the b command; however, the use of a label allows you to place several b or (as
will be seen) t commands in the same script without mixing them up.

t: Test Command

The test command, t, also allows you to change the order in which editing commands are executed. Unlike the b
command, which simply examines a line for a given pattern, the t command tests to see if a particular substitution
has been performed.
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The following script demonstrates the use of the t command:

cat >script20a
s/They/they/g
tend
s/sieve/ship/
:end
s/sea/drink/g
<ctrl-D>

which, when executed with the following command line:

sed -f script20a exercise20

produces:

they went to drink in a sieve, they did;
In a ship they went to drink;
In spite of all their friends could say,
On a winter’s morn, on a stormy day,
In a ship they went to drink.

Note that the t command checked to see that they was substituted for They before branching to the ‘:’ command
labeled with the word end.

Also note the syntax of the t command: Like the b command, the label immediately follows the command and is
not separated by a space; unlike the b command, however, the t command appears on the line below the
substitution command for which it is testing.

For More Information
The Lexicon entry for sed summarizes its command-line options and commands. The COHERENT line editor ed
resembles sed, except that it works interactively instead of in a stream. For information on ed, see its tutorial or
its entry in the Lexicon.
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C is a computer language invented by Dennis Ritchie and Ken Thompson at AT&T Bell Laboratories in the early
1970s. In the approximately 25 years since its creation, C has become one of the most popular computer
languages in the world. C is powerful and flexible, and it is highly portable. It has been implemented on
practically every computer, and under practically every operating system, in the world.

C is the ‘‘native language’’ of the COHERENT system. COHERENT is written in C, and it includes a powerful C
compiler among its suite of language tools for your use. You do not need to know C to use COHERENT to great
advantage; however, if you plan to program under COHERENT, you would be well advised to become at least
passably acquainted with it.

This tutorial is an introduction to the COHERENT C compiler and to the C language itself. The first part of this
section describes how to compile programs under COHERENT. The second part is a brief tutorial in the C language.

Compiling C Programs under COHERENT
A C compiler is a program that transforms files of C source code into machine code. Compilation is a complex
process that involves several steps; however, COHERENT simplifies it with the command cc, which controls all the
actions of the compiler.

Try the Compiler

Before we launch into a lengthy explanation of what cc is and what it does, you can get a feel for it by trying it with
a simple example. To begin, type the following to create a simple C program:

cat >hello.c
main() {

printf("Hello, world\n");
}
<ctrl-D>

This creates a simple C program called hello.c. Now, compile your program by typing the following command:

cc -V hello.c

If you typed the program correctly, cc prints something like the following on your screen:

cc0 D2B000000201 hello.c 0x418CB8
cc1 D2B000000201 0x418CB8 0x408CB4
cc2a D2B000000201 0x408CB4 0x418CB8
cc2b D2B000000201 0x418CB8 hello.o
/bin/ld -X -o hello /lib/crts0.o hello.o /lib/libc.a -Z hello.o

What each of these messages means will be described below. If you receive an error message, try re-typing the
program, and then re-compile it. When compilation is successfully completed, you will now have an executable
program called hello. To invoke it, type:

hello

It should print the following on your screen:

Hello, world

As you can see, cc makes it easy to transform a file of C code into an executable program.

Phases of Compilation

As you noticed, cc printed a number of messages on your screen as it compiled hello.c. The reason you saw the
messages was that compilation was performed with the -V option to cc; this tells cc to print a verbose output that
describes each of its actions. cc prints numerous messages because the COHERENT C compiler is not just one
program, but a number of different programs that work together. Each program performs a phase of compilation.
The following summarizes each phase:
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cpp The C preprocessor. This processes any of the ‘#’ directives, such as #include or #ifdef, and expands
macros.

cc0 The parser. This phase parses programs. It translates the program into a parse-tree format, which is
independent of both the language of the source code and the microprocessor for which code will be
generated.

cc1 The code generator. This phase reads the parse tree generated by cc0 and translates it into machine code.
The code generation is table driven, with entries for each operator and addressing mode.

cc2a The optimizer generator. This phase optimizes the generated code.

cc2b The optimizer generator. This phase writes the object module.

cc3 COHERENT also includes a fifth phase, called cc3, which can be run after the object generator, cc2. cc3
generates a file of assembly language instead of a relocatable object module. cc3 allows you to examine the
code generated by the compiler. You did not see this phase when you compiled hello.c because this phase
is optional and you did not request it. If you want COHERENT to generate assembly language, use the -S
option on the cc command line.

Unless you specify the -S option, cc creates an object module that is named after the source file being compiled.
This module has the suffix .o. An object module is not executable; it contains only the code generated by compiling
a C source file, plus information needed to link the module with other program modules and with the library
functions.

As the final step in its execution, cc calls the linker ld to produce an executable program.

Renaming Executable Files

When cc compiles a source file, by default it names the executable program after the first source file named on the
cc command line. If you wish, you can give the executable file a different name. Use the -o (output) option,
followed by the desired name.

Floating-Point Numbers

Often, you will need to use floating-point numbers in your programs. If you are unsure what a floating-point
number is, see the Lexicon entry for float.

The routines that print floating-point numbers are large, and most C programs do not need to print floating-point
numbers; therefore, the code to perform floating-point arithmetic is not included in a program by default. You
must ask cc to include these routines with your program by using the -f option to cc.

To see how this works, let’s modify hello.c to use floating-point numbers. Edit hello.c by typing the following
commands:

ed hello.c
2
c

printf("Hello, world %f\n", 123.4);
.
w
q

Now, compile the program with the same command line as before:

cc -V hello.c

When compilation has finished, type hello. You’ll see the following output:

You must compile with the -f flag
to include printf() floating point.
Hello, world

COHERENT is telling you that you are using a floating-point number but that you did not compile the program to
include code to process floating-point numbers. Now, recompile the program using the -f option to cc:

cc -V -f hello.c

When compilation has finished, type hello. If you typed the program correctly, you will see the following:

Hello, world 123.400000
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As you can see, hello is now displaying the floating-point number 123.4 for you. For detailed information on
printf(), see its entry in the Lexicon; printf() is also discussed in the tutorial section below.

Compiling Multiple Source Files

Many programs are built from more than one file of C source code. For example, the program factor, which is
provided with COHERENT, is built from the C source files factor.c and atod.c. To produce the executable program
factor, both source files must be compiled; the linker ld then joins them to form an executable file.

To compile a program that uses more than one source file, type all of the source files onto the cc command line.
For example, to compile factor you would type the following:

cc -o factor -f factor.c atod.c -lm

This command compiles both C source files to create the program factor.

In the above example, cc produces the non-executable object modules factor.o and atod.o, and then links them to
produce the executable file factor.

The argument -lm tells cc to include routines from the mathematics library when the object modules are linked.
This option must come after the names of all of the source files, or the program will not be linked correctly.

Linking Without Compiling

When you are writing a program that consists of several source files, you will need to compile the program, test it,
and then change one or more of the source files. Rather than recompile all of the source files, you can save time by
recompiling only the modified files and relinking the program.

For example, if you modify the factor program by changing the source file factor.c, you can recompile factor.c and
relink the entire program with the following command:

cc -o factor -f factor.c atod.o -lm

This cc command refers to the C source file factor.c and the object module atod.o. cc recognizes that atod.o is an
object module and simply passes it to the linker ld without re-compiling it. You will find this particularly useful
when your programs consist of many source files and you need to compile only a few of them.

To simplify compiling, especially if you are developing systems that use many source modules, you should consider
using the make utility that is included with COHERENT. For more information on make, see its entry in the
Lexicon, or see the tutorial for make that appears later in this manual.

Compiling Without Linking

At times, you will need to compile a source file but not link the resulting object module to the other object
modules. You will do this, for example, to compile a module that you wish to insert into a library. Use cc’s option
-c to tell cc not to link the compiled program. This option is often used to create relocatable object modules that
can be archived into a library for later use.

For example, if you wanted just to compile factor.c without linking it, you would type:

cc -c factor.c

To link the resulting object module with the object module atod.o and with the appropriate libraries, type the
following command:

cc -o factor -f factor.o atod.o -lm

Assembly-Language Files

C makes most assembly language programming unnecessary. However, you may wish to write small parts of your
programs in assembly language for greater speed or to access processor features that C cannot use directly.
COHERENT includes an assembler, named as, which is described in detail in the Lexicon.

To compile a program that consists of the C source file example.c and the assembly-language source file
example.s, simply use the cc command as usual:

cc -o example example1.c example2.s

cc recognizes that the suffix .s indicates an assembly-language source file, and assembles it with as; then it links
both object modules to produce an executable file.
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Changing the Size of the Stack

The stack is the segment of memory that holds function arguments, local variables, and function return addresses.
COHERENT takes advantage of the 80386 microprocessor’s ability to allocate stack dynamically.

Where To Go From Here

This discussion of the cc command is by no means complete, but it includes enough information for you to begin
to compile your programs. The Lexicon’s entry for cc gives all of the command-line options available with cc. The
Lexicon also has entries for cpp, the compiler phases, and for the linker ld, and describes them at greater length.
All error messages generated by cc and by the assembler as appear in the appendix to this manual.

The next section in this tutorial introduces the C programming language.

C for Beginners
This section briefly introduces the C programming language. It is in two parts. The first part describes what a
programming language is, and gives the history of the C programming language. It also introduces some concepts
basic to C, such as structured programming, pointer, and operator. The second part walks through a C
programming session. It emphasizes how a C programmer deals with a real problem, and demonstrates some
aspects of the language.

This chapter is not designed to teach you the entire C language. It introduces you to C, so you can read the rest of
this manual with some understanding. We urge you to look up individual topics of C programming in the Lexicon,
and especially to study the example programs given there.

Programming Languages and C

Before beginning with C, it is worthwhile to review how a microprocessor and a computer language work.

A microprocessor is the part of your computer that actually computes. Built into it is a group of instructions. Each
instruction tells the microprocessor to perform a task; for example, one instruction adds two numbers together,
another stores the result of an arithmetic operation in memory, and a third copies data from one point in memory
to another.

Together, a microprocessor’s instructions form its instruction set. The instruction set is, in effect, the
microprocessor’s ‘‘native language’’.

A microprocessor also contains areas of very fast storage, called registers. The registers are essential to arithmetic
and data handling within the microprocessor. How many registers a microprocessor has, and how they are
designed, help to determine how much memory the microprocessor can read and write, or address, and how the
microprocessor handles data.

A computer language, as the name implies, lets a human being use the microprocessor’s instruction set. The
lowest level language is called ‘‘assembly language’’. In assembly language, the programmer calls instructions
directly from the microcomputer’s instruction set, and manipulates the registers within the microprocessor. To
write programs in assembly language, a programmer must know both the microprocessor’s instruction set and the
configuration of its registers.

Assembly and High-Level Languages

With assembly language, the programmer can tailor the program specifically to the microprocessor. However,
because each microprocessor has a unique instruction set and configuration of registers, a program written in one
microprocessor’s assembly language cannot be run on another microprocessor. For example, no program written
in the assembly language for the Motorola 68000 microprocessor can be run on the IBM PC or any PC-compatible
computer. The program must be entirely rewritten in the assembly language for the Intel microprocessor, which is
difficult and time consuming.

A high-level language helps programmers to avoid these problems. The programmer does not need to know the
microprocessor in detail; instead of specific microprocessor instructions, he writes a set of logical constructions.
These constructions are then handed to another program, which translates them into the instructions and register
calls used by a specific microprocessor. In theory, a program written in a high-level language can be run on any
microprocessor for which someone has written a translation program.

A high-level language allows the programmer to concentrate on the task being executed, rather than on the details
of registers and instructions. This means that programs can be written more quickly than in assembly language,
and can be maintained more easily.
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So, What Is C?

As noted earlier, C was invented at AT&T Bell Laboratories by Dennis Ritchie and Ken Thompson. They created C
specifically to re-write the UNIX operating system from PDP-11 assembly language. Ritchie designed C to have the
power, speed, and flexibility of assembly language, but the portability of high-level languages.

In 1978, Ritchie and Brian W. Kernighan published The C Programming Language, which described and defined the
C language. In 1988, the American National Standards Institute (ANSI) published its standard for the C language.
This standard has, on the whole, become the basis for current implementations of C.

Because C is modeled after assembly language, it has been called a ‘‘medium-level’’ language. The programmer
doesn’t have to worry about specific registers or specific instructions, but he can use all of the power of the
computer almost as directly as he can with assembly language.

Because C was written by experienced programmers for experienced programmers, it makes little effort to protect a
programmer from himself. A programmer can easily write a C program that is legal and compiles correctly but
crashes when run. Also, C’s punctuation marks, or ‘‘operators’’, closely resemble each other. Thus, a mistake in
typing can create a legal program that compiles correctly but behaves very differently from what you expect.

Structured Programming

C is a structured language. This means that a C program is assembled from a number of sub-programs, or
functions, each of which performs a discrete task. If this concept is difficult to grasp, consider the following
example.

Suppose you want to turn a file of text into upper-case letters and print it on the screen. This job seems simple,
but a program to do it must perform five tasks:

1. Read the name of the file to open.

2. Open the file so it can be read, in much the same way that you must open a book before you can read it.

3. Read the text from the file.

4. Turn what is read into upper-case letters.

5. Print the transformed text onto the screen.

A good program will also perform the following tasks:

1. Check that the file requested actually exists.

2. Check that the file requested is actually a text file rather than a file of binary information; the latter makes
very little sense when printed on the screen.

3. Close the program neatly when the work is finished.

4. Stop processing and print an error message if a problem occurs.

A structured language like C allows you to write a separate function for each of these tasks.

A structured programming language offers two major advantages over a non-structured language. First, it is easier
to debug a function than an entire program because the function can be unplugged from the program as a whole,
made to work correctly, and then plugged back in again. Second, once a function works, it can be used again and
again in different programs. This allows you to create a library of reliable functions that you can pull off the shelf
whenever you need them.

The functions within a program communicate by passing values to each other. The value being passed can be an
integer, a character, or — most commonly — an address within memory where a function can find data to
manipulate. This passing of addresses, or pointers, is the most efficient way to manipulate data because by
receiving one number, a function can find its way to a large amount of data. This speeds up a program’s
execution.

C adds some extra tools to help you construct programs. To begin, C allows you to store functions in compiled
form. These precompiled functions are added only when the program is finally loaded into memory; this spares
you the trouble of having to recompile the same code again and again. Second, C adds a preprocessor that
expands definitions, or macros, and pulls in special material stored in header files. This allows you to store often-
used definitions in one file and use them just by adding one line to your program.
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Writing a C Program

As noted above, a C program consists of a bundle of sub-programs, or functions, which link together to perform the
task you want done. Every C program must have one function that is called main. This is the main function;
when the computer reads this, it knows that it must begin to execute the program. All other functions are
subordinate to main. When the main function is finished, the program is over.

To see how these elements work, review the program hello.c, which you worked with earlier in this tutorial:

main()
{

printf("Hello, world\n");
}

As you can see, this program begins with the word main. The program begins to work at this point. The
parentheses after main enclose all of the arguments to main — or would, if this program’s main took any. An
argument is an item of information that a function uses in its work.

The braces ‘{’ and ‘}’ enclose all the material that is subsidiary to main.

The word ‘‘printf’’ calls a function called printf(). This function performs formatted printing. The line of characters
(or ‘‘string’’) Hello, world is the argument to printf(): this argument is what printf() is to print.

The characters ‘\n’ stand for a newline character. This character ‘‘tosses the carriage’’, or moves the cursor to a
new line and returns it to the leftmost column on your screen. Using this character ensures that when printing is
finished, the cursor is not left fixed in the middle of the screen. Finally, the semicolon ‘;’ at the end of the
command indicates that the function call is finished.

One point to remember is that printf() is not part of the C language. Rather, it is a function that was written by
Mark Williams Company, then compiled and stored in a library for your use. This means that you do not have to
re-invent a formatted printing function to perform this simple task: all you have to do is call the one that Mark
Williams has written for you.

Although most C programs are more complicated than this example, every C program has the same elements: a
function called main(), which marks where execution begins and ends; braces that fence off blocks of code;
functions that are called from libraries; and data passed to functions in the form of arguments.

A Sample C Programming Session
This section walks you through a C programming session. It shows how you can go about planning and writing a
program in C.

C allows you to be precise in your programming, which should make you a stronger programmer. Be careful,
however, because C does exactly what you tell it to do, nothing more and nothing less. If you make a mistake, you
can produce a legal C program that does very unexpected things.

Designing a Program

Most programmers prefer to work on a program that does something fun or useful. Therefore, we will write
something useful: a version of the COHERENT utility scat, that we’ll call display. It will do the following:

1. Open a text file on disk.

2. Display its contents in 23-line chunks (one full screen).

3. After displaying a chunk, wait to see if the user wants to see another chunk. If the user presses the <return>
key alone, display another chunk; if the user types any other key before pressing the <return> key, exit.

4. Exit automatically when the end of file is reached.

As you can see, the first step in writing a program is to write down what the program is to do, in as much detail as
you can manage, and preferably in complete sentences.

Now, invoke ed or MicroEMACS and get ready to type in the program:

ed display.c

or:

me display.c
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We suggest that you use the MicroEMACS editor, because this tutorial will make numerous changes to the program
as it progresses and it will be easier to see these changes in context if you use a screen editor rather than a line
editor. The rest of this tutorial assumes that you are using MicroEMACS. If you are not familiar with MicroEMACS,
it is briefly described in Using the COHERENT System. A tutorial for MicroEMACS also appears in this manual, or
you may wish to see the entry for me in the Lexicon.

In the above commands, the suffix .c on the file name indicates that this is a file of C code. If you do not use this
suffix, the cc command will not recognize that this is a file of C code and will refuse to compile it.

Begin by inserting a description of the program into the top of the file in the form of a comment. When a C compiler
sees the symbol ‘/*’, it throws away everything it reads until it sees the symbol ‘*/’. This lets you insert text into
your program to explain what the program does.

Type the following:

/*
* Truncated version of the ’scat’ utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

Save what you have typed by pressing <ctrl-X> and then <ctrl-S>. Now, anyone, including you, who looks at this
program will know exactly what it is meant to do.

The main() Function

As described earlier, the C language permits structured programming. This means that you can break your program
into a group of discrete functions, each of which performs one task. Each function can be perfected by itself, and
then used again and again when you need to execute its task. C requires, however, that you signal which function
is the main() function, the one that controls the operation of the other functions. Thus, each C program must have
a function called main().

Now, add main() to your program. Type the code that is shaded, below:

/*
* Truncated version of the ’scat’ utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

main()
{
}

The parentheses ‘‘()’’ show that main() is a function. If main() were to take any arguments, they would be named
between the parentheses. The braces ‘‘{}’’ delimit all code that is subordinate to main(); this will be explained in
more detail below.

Note that the shortest legal C program is main(){}. This program doesn’t do anything when you run it, but it will
compile correctly and generate an executable file.

Now, try compiling the program. Save your text by typing <ctrl-X><ctrl-S>, and then exit from the editor by typing
<ctrl-X><ctrl-C>. Compile the program by typing:

cc display.c

When compilation is finished, type display. The shell will pause briefly, then return the prompt to your screen. As
you can see, you now have a legal, compilable C program, but one that does nothing.
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Open a File and Show Text

The next step is to install routines that open a file and print its contents. For the moment, the program will read
only a file called display.c, and not break it into 23-line portions.

Type the shaded lines into your program, as follows:

/*
* Truncated version of the ’scat’ utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>

main()
{

char string[128];
FILE *fileptr;

/* Open file */
fileptr = fopen("display.c", "r");

/* Read material and display it */
for (;;) {

fgets(string, 128, fileptr);
printf("%s", string);

}
}

Note first how comments are inserted into the text, to guide the reader.

Now, note the lines

char string[128];
FILE *fileptr;

These declare two data structures. That is, they tell COHERENT to set aside a specific amount of memory for them.

The first declaration, char string[128];, declares an array of 128 chars. A char is a data entity that is exactly one
byte long; this is enough space to store exactly one alphanumeric character in memory, hence its name. An array
is a set of data elements that are recorded together in memory. In this instance, the declaration sets aside 128
chars-worth of memory. This declaration reserves space in memory to hold the data that your program reads.

The second declaration, FILE *fileptr, declares a pointer to a FILE structure. The asterisk shows that the data
element points to something, rather than being the thing itself. When a variable is declared to be a pointer, the C
compiler sets aside enough space in memory to hold an address. When your program reads that address, it then
knows where the actual data are residing, and looks for them there. C uses pointers extensively, because it is
much more efficient to pass the address of data than to pass the data themselves. You may find the concept of
pointers to be a little difficult to grasp; however, as you gain experience with C, you will find that they become easy
to use.

The FILE structure is the data entity that holds all the information your program needs to read information from
or write information to a file on the disk. For a detailed discussion of the FILE structure, see its entry in the
Lexicon. For now, all you need to remember is that this declaration sets aside a place to hold a pointer to such a
structure, and the structure itself holds all of the information your program needs to manipulate a file on disk. In
effect, the variable fileptr is used within your program as a synonym for the file itself.

Now, the line

fileptr = fopen("display.c", "r");

opens the file to be read. The function fopen() opens the file, fills the FILE structure, and fills the variable fileptr
with the address of where that structure resides in memory.
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fopen() takes two arguments. The first is the name of the file to be opened, within quotation marks. The second
argument indicates the mode in which to open the file; r indicates that the file will be read rather than written into.

The lines

for(;;)
{

begin a loop. A loop is a section of code that is executed repeatedly until a condition that you set is fulfilled. For
example, you may define a loop that executes until the value of a particular variable becomes greater than zero.

for is built into the C language. Note that it has braces, just like main() does; these braces mean that the following
lines, up to the next right brace (}) are part of this loop. You can set conditions that control how a for loop
operates; in its present form, it will loop forever. This will be explained in more detail shortly.

Two library functions are executed within the loop. The first,

fgets(string, 128, fileptr);

reads a line from the file named in the fileptr variable, and writes it into the character array called string. The
middle argument ensures that no more than 128 characters will be read at a time. The second line within this
loop,

printf("%s", string);

prints the line. printf() is a powerful and subtle function; in its present form, it prints on the screen the string
contained in the variable string.

Finally, the line at the top of the program:

#include <stdio.h>

tells the C preprocessor cpp to read the header file called stdio.h. The term ‘‘STDIO’’ stands for ‘‘standard input
and output’’; stdio.h declares and defines a number of routines that will be used to read data from a file and write
them onto the screen.

When you have finished typing in this code, again compile the program as you did earlier. If an error occurs, check
what you have typed and make sure that it exactly matches the code shown on the previous page. If you find any
errors, fix them and then recompile. If errors persist, check it in the table of error messages that appear at the end
of this tutorial.

When compilation is finished, execute display as you did earlier. You will see the text from display.c scroll across
the screen. When the text is finished, however, the COHERENT prompt does not return; you have not yet inserted
code that tells the program to recognize that the file is finished. Type <ctrl-C> to break the program and return to
COHERENT.

Accepting File Names

Of course, you will want display to be able to display the contents of any file, not just files named display.c. The
next step is to add code that lets you pass arguments to the program through its command line. This task requires
that you give the main() function two arguments. By tradition, these are always called argc and argv. How they
work will be described in a moment.

The enhanced program appears as follows. You should change or insert the lines that are shaded:

/*
* Truncated version of the ’scat’ utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
/* Declare arguments to main() */
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int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptr;

/* Open file */
fileptr = fopen(argv[1], "r");

/* Read material and display it */
for (;;) {

fgets(string, MAXCHAR, fileptr);
printf("%s", string);

}
}

First, a small change has been added: the line

#define MAXCHAR 128

defines the manifest constant MAXCHAR to be equivalent to 128. This is done because the ‘‘magic number’’ 128 is
used throughout the program. If you decide to change the number of characters that this program can handle at
once, all you would have to do is to change this one line to alter the entire program. This cuts down on mistakes
in altering and updating the program. If you look lower in the program, you will see that the declaration

char string[128]

has been changed to read

char string[MAXCHAR]

The two forms are equivalent; the only difference is that the latter is easier to use. It is a good idea to use manifest
constants wherever possible, to streamline changes to your program.

Now, look at the line that declares main(). You will see that main() now has two arguments: argc and argv.

The first is an int, or integer, as shown by its declaration — int argc;. argc gives the number of entries typed on a
command line. For example, when you typed

display filename

the value of argc was set to two: one for the command name itself, and one for the file-name argument. argc and
its value are set by the compiler. You do not have to do anything to ensure that this value is set correctly.

argv, on the other hand, is an array of pointers to the command line’s arguments. In this instance, argv[1] points
to name of the file that you want display to read. This, too, is set by COHERENT, and works automatically.

If you look below at the line that declares fopen(), you will see that display.c has been replaced with argv[1]; this
means that you want fopen() to open the file named in the first argument to the display command.

Now, try running the program by typing

display display.c

Be sure that you give the command only one file name as an argument, no more and no less. Code that checks
against errors has not yet been inserted, and handing it the wrong number of arguments could cause problems for
you.

display will open display.c and print its contents on the screen. You still need to type <ctrl-C> when printing is
finished; the code to recognize the end of the file will be inserted later.

Error Checking

Obviously, the program runs at this stage, but is still fragile, and could cause problems. The next step is to
stabilize the program by writing code to check for errors. To do so, a programmer must first write code to capture
error conditions, and then write a routine to react appropriately to an error.
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Our edited program now appears as follows:

/*
* Truncated version of the ’scat’ utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
/* define arguments to main() */
int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptr;

/* Check if right number of arguments was passed */
if (argc != 2)

error("Usage: display filename");

/* Open file */
if ((fileptr = fopen(argv[1], "r")) == NULL)

error("Cannot open file");

/* Read material and display it */
for (;;) {

fgets(string, MAXCHAR, fileptr);
printf("%s", string);

}
}

/* Process error messages */
error(message)
char *message;
{

printf("%s", message);
exit(1);

}

The additions to the program are introduced by comments.

The first addition

if (argc != 2)
error("Usage: display filename");

checks to see if the correct number of arguments was passed on the command line; that is to say, it checks to
make sure that you named a file when you typed the display command.

As noted above, argc is the number of arguments on the command line, or rather, the number of arguments plus
one, because the command name itself is always considered to be an argument. The statement if (argc != 2)
checks this. The if statement is built into C. If the condition defined between its parentheses is true, then do
something, but if it is not true, do nothing at all. The operator != means ‘‘does not equal’’. Therefore, our
statement means that if argc is not equal to two (in other words, if there are not two and only two arguments to the
display command — the command name itself plus a file name), execute the function error. error is defined below.
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Our fopen() function also has some error checking added (which will be described in a moment):

if ((fileptr = fopen(argv[1], "r")) == NULL)
error("Cannot open file");

fopen() returns a value called ‘‘NULL’’ if, for any reason, it cannot open the file you requested. Thus, our new if
statement says that if fopen() cannot open the file named on the command line (that is, argv[1]), it should invoke
the error() function.

C always executes nested functions from the ‘‘inside out’’. That means that the innermost function (that is, the
function that is enclosed most deeply within the pairs of parentheses) is executed first. Its result, or what it
returns, is then passed to next outermost function as an argument; that function is then executed and what it
returns is, in turn, passed to the function that encloses it, and so on. In this instance, the innermost function is

fileptr = fopen(argv[1], "r")

fopen() is executed and what it returns is written into fileptr. What fopen returned is then passed to the next
outer operation; in this case, it is compared with NULL, as follows:

(fileptr = fopen(argv[1], "r")) == NULL)

What that operation returns is then passed to the outermost function, in this case the if statement, which
evaluates what it is passed, and acts accordingly. If fileptr is NULL (that is, if fopen couldn’t open the file), the if
statement will be true and the error function called. If, however, the file was opened, fileptr will not equal NULL
and the program will proceed.

As this example shows, C allows a programmer to nest functions quite deeply. Although nested functions are
sometimes difficult to untangle when you read them, they make programming much more convenient.

Finally, at the bottom of the file is a new function, called error():

error(message)
char *message;
{

printf("%s", message);
exit(1);

}

This function stands outside of main(), as you can tell because it appears outside of main()’s closing brace. This
function is called only when your program needs it. If there are no errors, the program progresses only until the
closing brace in main and the error function is never called.

error() takes one argument, the message that is to be printed on the screen. This message is defined by the
routine that calls error(). error() uses the function printf() to print the message, then calls the exit() function; this,
as its name implies, causes the program to stop. The argument 1 is a special signal that tells COHERENT that
something went wrong with your program.

When the error checking code is inserted, recompile the program and execute it without an argument. Previously,
this would cause the program to crash; now, all it does is print the message

Usage: display filename

and terminate the program.

Print a Portion of a File

So far, our utility just opens a file and streams its contents over the screen. Now, you must insert code to print a
23-line portion of the file. At present, it will only print the first 23 lines, and then exit.

To do so, you must insert another for loop. Unlike our first loop, which ran forever, this one will cycle only 23
times, and then stop. Our updated program appears as follows:

/*
* Truncated version of the ’scat’ utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/
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#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptr;
int ctr;

/* Check if right number of arguments was passed */
if (argc != 2)

error("Usage: display filename");

/* Open file */
if ((fileptr = fopen(argv[1], "r")) == NULL)

error("Cannot open file");

/* Output 23 lines */
for (;;) {

for (ctr = 0; ctr < 23; ctr++) {
fgets(string, MAXCHAR, fileptr);
printf("%s", string);

}
exit(0);

}
}

/* Process error messages */
error(message)
char *message;
{

printf("%s", message);
exit(1);

}

The new for loop is nested inside the loop governed by for(;;). The program also declares a new variable, ctr, at the
beginning of the program. ctr keeps track of how many times the loop has executed. Now, look at the line:

for (ctr = 0; ctr < 23; ctr++)

It has three sub-statements, which are separated by semicolons. The first sub-statement sets ctr to zero; the
second says that execution is to continue as long as ctr is less than 23; and the third says that ctr is to be
increased by one every time the loop executes (this is indicated by the ++ appended to ctr). With each iteration of
this loop, fgets() reads a line from the file named on the display command line, and printf() prints it on the screen.

Also, an exit() call has been set after this new loop. This ensures that the program will exit automatically after the
loop has finished executing. This is a temporary measure, to make sure that you no longer have to type <ctrl-C>
to return to the shell.

When you have updated the program, recompile it in the usual way. When you run it with an appropriate file of an
appropriate length, e.g., display.c itself, display will show the first 23 lines of the file, and then the shell’s prompt
will return.

The program is now approaching its final form.
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Checking for the End of File

The next-to-last step in preparing the program is teaching it to recognize the end of a file when it sees it. This does
not appear to be needed now because the program exits automatically after 23 lines or fewer, but it will be quite
necessary when the program begins to display more than one 23-line portion of text.

The function fgets() checks to see if it has arrived at the end of a file, and returns a special value if it has. fgets()
normally returns the address of the string into which it writes its output; however, if it runs into the end of a file
(or if any other error occurs), it returns the special value NULL. By reading the value of what fgets() returns,
display can detect if the end of the file has been encountered, and stop reading. To do so, the fgets() statement
must be set within an if statement. The if statement will capture what fgets() returns, and continue execution as
long as the value of the number returned is not NULL.

The updated program now appears as follows:

/*
* Truncated version of the ’scat’ utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptr;
int ctr;

/* Check if right number of arguments was passed */
if (argc != 2)

error("Usage: display filename");

/* Open file */
if ((fileptr = fopen(argv[1], "r")) == NULL)

error("Cannot open file");

/* Output 23 lines, while checking for EOF */
for (;;) {

for (ctr = 0; ctr < 23; ctr++) {
if (fgets(string, MAXCHAR, fileptr) != NULL)

printf("%s", string);
else

exit(0);
}
exit(0);

}
}

/* Process error messages */
error(message)
char *message;
{

printf("%s", message);
exit(1);

}
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First, note that the comment that describes the program’s output has been changed to reflect our changes to the
program. It is important for a programmer to ensure that the comments and the code are in step with each other.

Our new if statement

if (fgets(string, MAXCHAR, fileptr) != NULL)

checks what fgets() returns: if it does not return NULL, the end of the file has not been reached, the if statement is
true and the program prints out the next line. (The operator != indicates ‘‘not equal’’.) If it returns NULL, however,
the end of file has been reached, the if statement is false so the else statement is executed, which causes display
to exit.

Note, too, that a new control statement is introduced: else. This, like if, is built into the C language. An else
statement is always paired with an if statement; together, they mean that if the condition for which if is testing is
true, the program should do one thing; otherwise, it should do something else. In this case, the program says that
if the end of file has not been reached, another line has been read from the file and should be printed on the
screen; however, if it has been reached, then the program should exit. As you can imagine, if/else pairs are
common in C programming; they are logical and useful.

One more task must be done on our program; then it is finished.

Polling the Keyboard

For the program to be complete, it has to ask you if you want to see another 23-line portion of text whenever the
argument contains more than 23 lines. The program should write another portion if you press the <return> key
alone; if you type any other key before you press <return>, then it should exit.

To do so, we will print a query on the screen, then read what the user has typed and interpret it. When these
changes are inserted, the program is complete:

/*
* Truncated version of the ’scat’ utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptr;
int ctr;

/* Check if right number of arguments was passed */
if (argc != 2)

error("Usage: display filename");

/* Open file */
if ((fileptr = fopen(argv[1], "r")) == NULL)

error("Cannot open file");

/* Output 23 lines, while checking for EOF */
for (;;) {

for (ctr = 0; ctr < 23; ctr++) {
if (fgets(string, MAXCHAR, fileptr) != NULL)

printf("%s", string);
else

exit(0);
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}
/* Query if user wishes to continue */

printf("Continue? ");
fflush(stdout);
fgets(string, MAXCHAR, stdin);

if (string[0] != ’\n’)
exit(0);

}
}

/* Process error messages */
error(message)
char *message;
{

printf("%s", message);
exit(1);

}

These new lines introduce a few new twists. The lines

printf("Continue? ");
fflush(stdout);

print the prompt Continue? on the screen. Note that no ‘\n’ appears after the prompt; this ensures that the
cursor does not jump to the next line, but stays next to the prompt. Because no ‘\n’ appears after the line,
however, you have to force it to appear on the screen; this is accomplished with the statement:

fflush(stdout);

fflush() flushes matter to an output device. stdout points to a file stream, just like the stream that you opened
with the call to fopen(), earlier in the program. stdout is opened in the header file stdio.h, which was read at the
beginning of the program; it always points to the user’s screen.

The next line reads the user’s keyboard:

fgets(string, MAXCHAR, stdin);

This version of fgets reads matter into our array string; however, instead of reading the file pointed to by fileptr, it
reads what is pointed to by stdin. stdin is a stream that is also defined in stdio.h; it always points to the user’s
keyboard.

Finally, the statement

if (string[0] != ’\n’)

checks what the user typed by reading the first (that is, the zero-th) character written in the array string by the
preceding call to fgets(). (Note that with C, counting always begins with zero rather than one.) If the user just
types <return>, then string[0] will hold ‘\n’; and the if statement will not be true, the program jumps to the
preceding for statement, and more text is written to the screen. However, if the user types anything before typing
<return>, the if statement will succeed and the program will exit. This may seem a little convoluted, but it
actually is a straightforward and efficient way to receive information from the user.

After you have inserted these changes, again compile the program.

When compilation is finished, try typing

display display.c

The first 23 lines of the source code to the program now appear on your screen. Hit <return>; the next 23 lines
appear. Now, type any other key, and then press <return>: the program exits.

You now have a simple but helpful display utility.

TUTORIALS



The C Language 147

For More Information

This section has given you a brief, concentrated introduction to writing a C program. If you are new to
programming, much of what happened must seem strange, but we hope it helped you to appreciate the logic of
how C works.

Numerous books are on the market to teach beginners how to program in C; the following section gives a small
bibliography of books on C. Also, look at the sample C programs in the Lexicon. These demonstrate how to use
many of the functions available to you with COHERENT.
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Introduction to the awk Language

awk is a general-purpose language for processing text. With awk, you can manipulate strings, process records,
and generate reports.

awk is named after its creators: A. V. Aho, P. J. Weinberger, and Brian W. Kernighan. Unfortunately, its name
suggests that awk is awkward — whereas in truth the awk language is simple, elegant, and powerful. With it, you
can perform many tasks that would otherwise require hours of drudgery.

awk uses a simple syntax. Each statement in an awk program contains either or both of two elements: a pattern
and an action. The pattern tells awk what lines to select from the input stream; and the action tells awk what to
do with the selected data.

This tutorial explains how to write awk programs. It explains how to describe a pattern to awk. It also describes
the range of actions that awk can perform; these include formatted printing of text, assigning variables, defining
arrays, and controlling the flow of data.

Example Files
Before you begin to study awk, please take the time to type the following text files that are used by the examples in
this tutorial.

The first is some text from Shakespeare. Use the command cat to type it into the file text1, as follows. Note that
<ctrl-D> means that you should hold down the Ctrl (or control) key and simultaneously press ‘D’. Do not type it
literally.

cat > text1
When, in disgrace with fortune and men’s eyes,
I all alone beweep my outcast state,
And trouble deaf heaven with my bootless cries,
And look upon myself, and curse my fate,
Wishing me like to one more rich in hope,
Featured like him, like him with friends possest,
Desiring this man’s art and that man’s scope,
With what I most enjoy contented least.
Yet in these thoughts myself almost despising,
Haply I think on thee - and then my state,
Like to the lark at break of day arising
From sullen earth, sings hymns at heaven’s gate;
For thy sweet love remember’d such wealth brings
That then I scorn to change my state with kings.
<ctrl-D>

The second example consists of some of Babe Ruth’s batting statistics, which we will use to demonstrate how awk
processes tabular input. Type it into file table1, as follows:

cat > table1
1920 .376 54 158 137
1921 .378 59 177 171
1922 .315 35 94 99
1923 .393 41 151 131
1924 .378 46 143 121
1925 .290 25 61 66
1926 .372 47 139 145
1927 .356 60 158 164
1928 .323 54 163 142
1929 .345 46 121 154
<ctrl-D>

The columns give, respectively, the season, the batting average, and the numbers of home runs, runs scored, and
runs batted in (RBIs).

The rest of this tutorial presents many examples that use these files. Type them in and run them! In that way,
you can get a feel for awk into your fingers. Experiment; try some variations on the examples. Don’t be afraid of
making mistakes; this is one good way to learn the limits (and the strengths) of a language.
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Using awk
awk reads input from the standard input (entered from your terminal or from a file you specify), processes each
input line according to a specified awk program, and writes output to the standard output. This section explains
the structure of an awk program and the syntax of awk command lines.

Command-line Options

The complete form for the awk command line is as follows:

awk [-y] [-Fc] [-f progfile] [prog] [file1] [file2] ...

The following describes each element of the command line.

-y Map patterns from lower case to both lower-case and upper-case letters. For example, with this option the
string the would match the or The.

-Fc Set the field-separator character to the character c. The field-separator character and its uses are described
below.

-f progfile
Read the awk program from progfile

prog An awk program to execute. If you do not use the -f option, you must enter awk’s statements on its
command line.

Note that if you include awk’s program on its command line (instead of in a separate file), you must
enclose the program between apostrophes. Otherwise, some of the awk statements will be modified by the
shell before awk ever sees them, which will make a mess of your program. For example:

awk ’BEGIN {print "sample output file"}
{print NR, $0}’

(The following sections explain what the stuff between the apostrophes means.) However, if you include the
statement within a file that you pass to awk via its -f option, you must not enclose the statements within
parentheses; otherwise, awk will become very confused. If you were to put the statements in the above
program into an awk program file, they would appear as follows:

BEGIN {print "sample output file"}
{print NR, $0}

file1 file2 ...
The files whose text you wish to process. For example, the command

awk ’{print NR, $0}’ text1

prints the contents of text1, but precedes each line with a line number.

If you do not name an input file, awk processes what it reads from the standard input. For example, the
command

awk ’{print NR, $0}’

reads what you type from the keyboard and echoes it preceded with a line number. To exit from this
program, type <ctrl-D>.

Structure of an awk Program
An awk program consists of one or more statements of the form:

pattern { action }

Note that awk insists that the action be enclosed between braces, so that it can distinguish the action from the
pattern.

A program can contain as many statements as you need to accomplish your purposes. When awk reads a line of
input, it compares that line with the pattern in each statement. Each time a line matches pattern, awk performs
the corresponding action. awk then reads the next line of input.
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A statement can specify an action without a pattern. In this case, awk performs the action on every line of input.
For example, the program

awk ’{ print }’ text1

prints every line of text1 onto the standard output.

An awk program may also specify a pattern without an action. In this case, when an input line matches the
pattern, awk prints it on the standard output. For example, the command

awk ’NR > 0’ table1

prints all of table1 onto the standard output. Note that you can use the same pattern in more than one statement.
Examples of this will be given below.

awk’s method of forming patterns uses regular expressions (also called patterns), like those used by the COHERENT

commands sed, ed, and egrep. Likewise, awk’s method of constructing actions is modelled after the C
programming language. If you are familiar with regular expressions and with C, you should have no problem
learning how to use awk. However, if you are not familiar with them, they will be explained in the following
sections.

Records and Fields

awk divides its input into records. It divides each record, in turn, into fields. Records are separated by a character
called the input-record separator; likewise, fields are separated by the input-field separator. awk in effect conceives
of its input as a table with an indefinite number of columns.

The newline character is the default input-field separator, so awk normally regards each input line as a separate
record. The space and the tab characters are the default input-field separator, so white space normally separates
fields.

To address a field within a record, use the syntax $N, where N is the number of the field within the current record.
The pattern $0 addresses the entire record. Examples of this will be given below. In addition to input record and
field separators, awk provides output record and field separators, which it prints between output records and
fields. The default output-field separator is the newline character; awk normally prints each output record as a
separate line. The space character is the default output-field separator.

Patterns
This section describes how awk interprets the pattern section of a statement.

Special Patterns

To begin, awk defines and sets a number of special patterns. You can use these patterns in your program for
special purposes. You can also redefine some of these patterns to suit your preferences. The following describes
the commonest such special patterns, and how they’re used:

BEGIN This pattern matches the beginning of the input file. awk executes all actions associated with this pattern
before it begins to read input.

END This pattern matches the end of the input file. awk executes all actions associated with this pattern after it
had read all of its input.

FILENAME
awk sets this pattern to the name of the file that it is currently reading. Should you name more than one
input file on the command line, awk resets this pattern as it reads each file in turn.

FS Input-field separator. This pattern names the character that awk recognizes as the field separator for the
records it reads.

NF This pattern gives the number of fields within the current record.

NR This pattern gives the number of the current record within the input stream.

OFS Output-field separator. awk sets this pattern to the character that it writes in its output to separate one
field from another.

ORS Output-record separator. awk sets this pattern to the character that it writes in its output to separate one
field from another.
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RS Input-record separator. awk sets this pattern to the character by which it separates records that it reads.

Arithmetic Relational Expressions

An operator marks a task to be within an expression, much as the ‘+’ or ‘/’ within an arithmetic expression
indicates that the numbers are to be, respectively, added or divided. You can use awk’s operators to:

• Compare a special pattern with a variable, a field, or a constant.
• Assign a value to a variable or to a special pattern.
• Dictate the relationship among two or more expressions.

The first type of operator to be discussed are arithmetic relational operators. These compare the input text with an
arithmetic value. awk recognizes the following arithmetic operators:

< Less than
<= Less than or equal to
== Equivalent
!= Not equal
>= Greater than or equal to
> Greater than

With these operators, you can compare a field with a constant; compare one field with another; or compare a
special pattern with either a field or a constant.

For example, the following awk program prints all of the years in which Babe Ruth hit more than 50 home runs:

awk ’$3 >= 50’ table1

(As you recall, column 3 in the file table1 gives the number of home runs.) The program prints the following on
your screen:

1920 .376 54 158 137
1921 .378 59 177 171
1927 .356 60 158 164
1928 .323 54 163 142

The following program, however, shows the years in which Babe Ruth scored more runs than he drove in:

awk ’$4 > $5 { print $1 }’ table1

Remember, field 4 in file table1 gives the number of runs scored, and field 5 gives the number of runs batted in.
You should see the following on your screen:

1920
1921
1923
1924
1928

In the above program, expression

{print $1}

defines the action to perform, as noted by the fact that expression is enclosed between braces. In this case, the
program tells awk that if the input record matches the pattern, to print only the first field. However, to print both
the season and the number of runs scored, use the following program:

awk ’$4 > $5 { print $1, $4 }’ table1

This prints the following:

1920 158
1921 177
1923 151
1924 143
1928 163

Note that $1 and $4 are separated by a comma. The comma tells awk to print its default output-field separator
between columns. If we had left out the comma, the output would have appeared as follows:
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1920158
1921177
1923151
1924143
1928163

As we noted above, the special pattern OFS gives the output-field separator. awk by default defines this special
pattern to the space character. If we wish to redefine the output-field separator, we can use an operator, plus the
special pattern BEGIN, as follows:

awk ’BEGIN { OFS = ":" }
$4 > $5 { print $1, $4 }’ table1

This prints:

1920:158
1921:177
1923:151
1924:143
1928:163

The first statement

BEGIN { OFS = ":"}

tells awk to set the output-field separator (the special pattern OFS) to ‘:’ before it processes any input (as indicated
by the special pattern BEGIN).

Although we’re getting a little ahead of ourselves, note that there’s no reason to print the fields in the order in
which they appear in the input record. For example, if you wish to print the number of runs scored before the
season, use the command:

awk ’BEGIN { OFS = ":"}
$4 > $5 { print $4, $1 }’ table1

This prints:

158:1920
177:1921
151:1923
143:1924
163:1928

As you recall, the special pattern NR gives the number of the current input record. You can execute an action by
comparing this pattern with a constant. For example, the command

awk ’NR > 12’ text1

prints:

For thy sweet love remember’d such wealth brings
That then I scorn to change my state with kings.

That is, the program prints every line after line 12 in the input file. As you recall, a statement that has a pattern
but no action prints the entire record that matches the pattern.

As we saw with the special patterns, some patterns can be defined to be numbers and others to be text. If you
compare a number with a string, awk by default makes a string comparison. The following example shows how
awk compares one field to part of the alphabet:

awk ’$1 <= "C"’ text1

This program prints:

And trouble deaf heaven with my bootless cries,
And look upon myself, and curse my fate,

The statement $1 <= "C" selected all records that begin with an ASCII value less than or equal to that of the letter
‘C’ (0x43) — in this case, both lines that begin with ‘A’ (0x41). If we ran this example against table1, it would print
every record in the file. This is because each record begins with the character ‘1’ (0x31), which matches the
pattern $1 <= "C".
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Finally, you can use a numeric field plus a constant in a comparison statement. For example, the following
program prints all of the seasons in which Babe Ruth had at least 100 more runs batted in than home runs:

awk ’$3 + 100 < $5 {print $1}’ table1

This prints the following:

1921
1927
1929

Boolean Combinations of Expressions

awk has a number of operators, called Boolean operators, that let you hook together several small expressions into
one large, complex expression. awk recognizes the following Boolean operators:

|| Boolean OR (one expression or the other is true)
&& Boolean AND (both expressions are true)
! Boolean NOT (invert the value of an expression)

(The eponym ‘‘Boolean’’ comes from the English mathematician George Boole.) In a Boolean expression, awk
evaluates each sub-expression to see if it is true or false; the relationship of sub-expressions (as set by the Boolean
operator) then determines whether the entire expression is true or false.

For example, the following program prints all seasons in which Babe Ruth hit between 40 and 50 home runs:

awk ’$3 >= 40 && $3 <= 50 { print $1, $3 }’ table1

This prints the following:

1923 41
1924 46
1926 47
1929 46

In the above program, awk printed its output only if the subexpression $3 >= 40 was true and (&&) the
subexpression $3 <= 50 was true.

The next example demonstrates the Boolean OR operator. It prints all seasons for which Babe Ruth hit fewer than
40 home runs or more than 50 home runs:

awk ’$3 < 40 || $3 > 50 { print $1, $3}’ table1

This example prints the following:

1920 54
1921 59
1922 35
1925 25
1927 60
1928 54

In this example, awk printed its output if the subexpression $3 < 40 was true or (||) the subexpression $3 > 50
was true. Note that the output would also printed if both subexpressions were true (although in this case, this is
impossible).

Finally, the Boolean operator ‘!’ negates the truth-value of any expression. For example, the expression $1 = "And"
is true if the first field in the current record equals ‘‘And’’; however, the expression $1 != "And" is true if the first
field does not equal ‘‘And’’. For example, the program

awk ’$1 != "And"’ text1

prints:
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When, in disgrace with fortune and men’s eyes,
I all alone beweep my outcast state,
Wishing me like to one more rich in hope,
Featured like him, like him with friends possest,
Desiring this man’s art and that man’s scope,
With what I most enjoy contented least.
Yet in these thoughts myself almost despising,
Haply I think on thee - and then my state,
Like to the lark at break of day arising
From sullen earth, sings hymns at heaven’s gate;
For thy sweet love remember’d such wealth brings
That then I scorn to change my state with kings.

These are the 12 lines from text1 that do not begin with ‘‘And’’.

Note that awk evaluates all operators from left to right unless sub-expressions are grouped together with
parentheses, as is described in the following section.

Patterns

The previous examples have all matched strings or numbers against predefined fields in each input record. This is
fine for manipulating tabular information, like our table of Babe Ruth’s batting statistics, but it is not terribly
useful when you are processing free text. Free text is not organized into predefined columns, nor are you likely to
know which field (that is, which word) will contain the pattern you’re seeking.

To help you manage free text, awk has a pattern-matching facility that resembles those of the editors ed and sed.

The most common way to search for a pattern is to enclose it between slashes. For example, the program

awk ’/and/’ text1

prints every line in text1 that contains the string ‘‘and’’.

When, in disgrace with fortune and men’s eyes,
And look upon myself, and curse my fate,
Desiring this man’s art and that man’s scope,
Haply I think on thee - and then my state,

Note that ‘‘and’’ does not have to be a word by itself — it can be a fragment within a word as well. Note, too, that
this pattern matches ‘‘and’’ but does not match ‘‘And’’ — but it would if we were to use the -y option on the awk
command line (described above).

You can use Boolean operators to search for more than one string at once. For example, the program

awk ’/and/ && /or/’ text1

finds every line in text1 that contains both ‘‘and’’ and ‘‘or’’. There is only one:

When, in disgrace with fortune and men’s eyes,

Note that the ‘‘or’’ in this line is embedded in the word ‘‘fortune’’.

awk can also scan for classes and types of characters. To do so, enclose the characters within brackets and place
the bracketed characters between the slashes. For example, the following program looks for every line in text1
that contains a capital ‘A’ through a capital ‘E’:

awk ’/[A-E]/’ text1

This prints the following:

And trouble deaf heaven with my bootless cries,
And look upon myself, and curse my fate,
Desiring this man’s art and that man’s scope,

In addition, you can use the following special characters for further flexibility:
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[ ] Class of characters
( ) Grouping subexpressions
| Alternatives among expressions
+ One or more occurrences of the expression
? Zero or more occurrences of the expression
* Zero, one, or more occurrences of the expression
. Any non-newline character

When adding a special character to a pattern, enclose the special character as well as the rest of the pattern within
slashes.

To search for a string that contains one of the special characters, you must precede the character with a
backslash. For example, if you are looking for the string ‘‘today?’’, use the following pattern:

/today\?/

When you need to find an expression in a particular field, not just anywhere in the record, you can use one of
these operators:

~ Contains the data in question
!~ Does not contain the data in question

For example, if you need to find the digit ‘9’ in the fourth field of file table1, use the following program:

awk ’$4~/9/ {print $1, $4}’ table1

This prints the following:

1922 94
1926 139

As you can see, the above program found every record with a ‘9’ in its fourth field, regardless of whether the ‘9’
came at the beginning of the field or its end. awk also recognizes two operators that let you set where a pattern is
within a field:

^ Beginning of the record or field
$ End of the record or field

For example, to find every record in table1 whose fourth field begins with a ‘9’, run the following program:

awk ’$4~/^9/ {print $1, $4}’ table1

This prints:

1922 94

Finally, to negate a pattern use the operator !~. For example, to print every record in table1 whose fourth column
does not begin with a ‘9’, use the following program:

awk ’$4!~/^9/ {print $1, $4}’ table1

This prints:

1920 158
1921 177
1923 151
1924 143
1925 61
1926 139
1927 158
1928 163
1929 121

Ranges of Patterns

You can tell awk to perform an action on all records between two patterns. For example, to print all records
between the patterns 1925 and 1929, inclusive, enclose the strings in slashes and separate them with a comma,
then indicate the print action, as follows:

awk ’/1925/,/1929/ { print }’ table1
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You can also use the special pattern NR (or record number) to name a range of record numbers. For example, to
print records 5 through 10 of file text1, use the following program:

awk ’NR == 5, NR == 10 { print }’ text1

Resetting Separators

As noted above, awk recognizes certain characters by default to parse its input into records and fields, and to
separate its output into records and fields:

FS Input-field separator. By default, this is one or more white-space characters (tabs or spaces).

OFS Output-field separator. By default, this is exactly one space character.

ORS Output-record separator. By default, this is the newline character.

RS Input-record separator. By default, this is the newline character.

By resetting any of these special patterns, you can change how awk parses its input or organizes its output.
Consider, for example, the command:

awk ’BEGIN {ORS = "|"}
/1920/,/1925/ {print $1, $5}’ table1

This prints the following:

1920 137|1921 171|1922 99|1923 131|1924 121|1925 66|

As you can see, this prints the season and the number of runs batted in for the 1920 through 1925 season.
However, awk uses the pipe character ‘|’ instead of the newline character to separate records. If you wish to
change the output-field separator as well as the output-record separator, use the program:

awk ’BEGIN {ORS = "|" ; OFS = ":"}
/1920/,/1925/ {print $1, $5}’ table1

This produces:

1920:137|1921:171|1922:99|1923:131|1924:121|1925:66|

As you can see, awk has used the colon ‘:’ instead of a white-space character to separate one field from another.

Note, too, that the semicolon ‘;’ character separates expressions in the action portion of the statement associated
with the BEGIN pattern. This lets you associate more than one action with a given pattern, so you do not have to
repeat that pattern. This is discussed at greater length below.

You can also change the input-record separator from the newline character to something else that you prefer. For
example, the following program changes the input-record separator from the newline to the comma:

awk ’BEGIN {RS = ","}
{print $0}’ text1

This yields the following:
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When
in disgrace with fortune and men’s eyes

I all alone beweep my outcast state

And trouble deaf heaven with my bootless cries

And look upon myself
and curse my fate

Wishing me like to one more rich in hope

Featured like him
like him with friends possest

Desiring this man’s art and that man’s scope

With what I most enjoy contented least.
Yet in these thoughts myself almost despising

Haply I think on thee - and then my state

Like to the lark at break of day arising
From sullen earth
sings hymns at heaven’s gate;

For thy sweet love remember’d such wealth brings
That then I scorn to change my state with kings.

The blank lines resulted from a comma’s occurring at the end of a line.

Note that by specifying the null string (RS=""), you can make two consecutive newlines the record separator. Note,
too, that only one character can be the input-record separator. If you try to reset this separator to a string, awk
uses the first character in the string as the separator, and ignores the rest.

You can change the input-field separator by redefining FS. The default FS is <space>\t exactly and in that order
(where <space> is the space character). In this case, awk uses its ‘‘white-space rule,’’ in which awk treats any
sequence of spaces and tabs as a single separator. This is the default rule for FS. If you set FS to anything else,
including \t<space>, then each separator is separate. For example, the following program changes the input-field
separator to the comma and prints the first such field it finds in each line from file text1:

awk ’BEGIN {FS = ","}
{print $1}’ text1

This produces:

When
I all alone beweep my outcast state
And trouble deaf heaven with my bootless cries
And look upon myself
Wishing me like to one more rich in hope
Featured like him
Desiring this man’s art and that man’s scope
With what I most enjoy contented least.
Yet in these thoughts myself almost despising
Haply I think on thee - and then my state
Like to the lark at break of day arising
From sullen earth
For thy sweet love remember’d such wealth brings
That then I scorn to change my state with kings.

As you can see, this program prints text up to the first comma in each line. awk throws away the comma itself,
because the input-field separator is not explicitly printed.

You can define several characters to be input-field separators simultaneously. When you specify several characters
within quotation marks, each character becomes a field separator, and all separators have equal precedence. For
example, you can specify the letters ‘i’, ‘j’, and ‘k’ to be input-field separators. The following program does this, and
prints the first field so defined from each record in file text1:

awk ’BEGIN {FS = "ijk"}
{print $1}’ text1

This prints:

TUTORIALS



The awk Language 159

When,
I all alone beweep my outcast state,
And trouble deaf heaven w
And loo
W
Featured l
Des
W
Yet
Haply I th
L
From sullen earth, s
For thy sweet love remember’d such wealth br
That then I scorn to change my state w

Note that if you set the input-record separator to a null string, you can use the newline character as the input-field
separator. This is a handy way to concatenate clusters of lines into records that you can then manipulate further.

One last point about the FS separator. If the white-space rule is not invoked and an assignment is made to a
nonexistent field, awk can add the proper number of field separators. For example if FS=":" and the input line is
a:b, then the command $5 = "e" produces a:b:::e. If the white-space rule were in effect, awk would add spaces as
if each space were a separator, and print a warning message. In short, it would try to produce the sanest result
from the error.

Finally, the variable NR gives the number of the current record. The next example prints the total number of
records in file text1:

awk ’END {print NR}’ text1

The output is

14

which is to be expected, since text1 is a sonnet.

Actions
The previous section described how to construct a pattern for awk. For each pattern, there must be a
corresponding action. So far, the only action shown has been to print output. However, awk can perform many
varieties of actions. In addition to printing, awk can:

• Execute built-in functions
• Redirect output
• Assign variables
• Use fields as variables
• Define arrays
• Use control statements

These actions are discussed in detail in the following sections.

As noted above, each awk statement must have an action. If a statement does not include an action, awk assumes
that the action is {print}.

Within each statement, awk distinguishes an action from its corresponding pattern by the fact that the action is
enclosed within braces. Note that the action section of a statement may include several individual actions;
however, each action must be separated from the others by semicolons ‘;’ or newlines.

Some forms of awk, such as that provided by the Free Software Foundation (FSF), allow user-defined functions.
The FSF version of awk is available from the MWC BBS as well as via COHware. Note that your system must have
at least two megabytes of RAM to run the FSF version of awk.

awk Functions

awk includes the following functions with which you can manipulate input. You can assign a function to any
variable or use it in a pattern. The following lists awk’s functions. Note that an argument can be a variable, a field,
a constant, or an expression:

TUTORIALS



160 The awk Language

abs(argument)
Return the absolute value of argument.

exp(argument)
Return Euler’s number e (2.178...) to the power of argument.

index(string1,string2)
Return the position of string2 within string1. If s2 does not occur in s1, awk returns zero. This awk
function resembles the COHERENT C function index().

int(argument)
Return the integer portion of argument.

length Return the length, in bytes, of the current record.

length(argument)
Return the length, in bytes, of argument.

log(argument)
Return the natural logarithm of argument.

print(argument1 argument2 ... argumentN)
Concatenate and print argument1 through argumentN.

print(argument1,argument2, ... argumentN)
Print argument1 through argumentN. Separate each argument with the OFS character.

printf(f, argument1, ... argumentN)
Format and print strings argument1 through argument in the manner set by the formatting string f, which
can use printf()-style formatting codes.

split(str, array, fs)
Divide the string str into fields associated with array. The fields are separated by character fs or the
default field separator.

sprintf(f, e1, e2)
Format strings e1 and e2 in the manner set by the formatting string f, and return the formatted string. f
can use printf()-style formatting codes.

sqrt(argument)
Return the square root of argument.

substr(str, beg, len)
Scan string str for position beg; if found, print the next len characters. If len is not included, print from
from beg to the end of the record.

Printing with awk

Printing is the commonest task you will perform in your awk programs. awk’s printing functions printf and
sprintf resemble the C functions printf() and sprintf(); however, there are enough differences to make a close
reading of this section worthwhile.

print is the commonest, and simplest, awk function. When used without any arguments, print prints all of the
current record. The following example prints every record in file text1:

awk ’{print}’ text1

You can print fields in any order you desire. For example, the following program reverses the order of the season
and batting-average columns from file table1:

awk ’/1920/,/1925/ { print $2,$1 }’ table1

The output is as follows:

.376 1920

.378 1921

.315 1922

.393 1923

.378 1924

.290 1925
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Because the field names are separated by a comma, awk inserts the OFS between the fields when it prints them. If
you do not separate field names with commas, awk concatenates the fields when it printing them. For example,
the program

awk ’/1920/,/1925/ { print $2 $1 }’ table1

produces:

.3761920

.3781921

.3151922

.3931923

.3781924

.2901925

When you use awk to process a column of text or numbers, you may wish to specify a consistent format for the
output. The statement for formatting a column of numbers follows this pattern:

{printf "format", expression}

where format prescribes how to format the output, and expression specifies the fields for awk to print.

The following table names and defines the most commonly used of awk’s format control characters. Each
character must be preceded by a percent sign ‘%’ and a number in the form of n or n.m.

%nd Decimal number
%n.mf Floating-point number
%n.ms String
%% Literal ‘%’ character

When you use the printf() function, you must define the output-record separator within the format string. The
following codes are available:

\n Newline
\t Tab
\f Form feed
\r Carriage return
\" Quotation mark

For example, the following program prints Babe Ruth’s RBIs unformatted:

awk ’/1920/,/1925/ { print $1, $5 }’ table1

The output appears as follows:

1920 137
1921 171
1922 99
1923 131
1924 121
1925 66

As you can see, awk right-justifies its output by default. To left-justify the second column, use the following
program:

awk ’/1920/,/1925/ { printf("%d %3d\n", $1, $5) }’ table1

The output is as follows:

1920 137
1921 171
1922 99
1923 131
1924 121
1925 66

Note that the ‘3’ in the string %3d specifies the minimum number of characters to be displayed. If the size of the
number exceeds the space allotted to it, awk prints the entire number. A different rule applies when printing
strings, as will be shown below.
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To print a floating-point number, you must specify the minimum number of digits you wish to appear on either
side of the decimal point. For example, the following program gives the average number of RBIs Babe Ruth hit in
each game between 1920 and 1925:

awk ’/1920/,/1925/ { printf("%d %1.2f\n", $1, $5/154.0) }’ table1

This prints the following:

1920 0.89
1921 1.11
1922 0.64
1923 0.85
1924 0.79
1925 0.43

Note the following points about the above program:

• To get the average number of runs batted in, we had to divide the total number of RBIs in a season by the
number of games in a season (which in the 1920s was 154). awk permits you to use a constant to perform
arithmetic on a field; this will be discussed in more detail below.

• To force awk to produce a floating-point number, the constant had to be in the format of a floating-point
number, i.e., ‘‘154.0’’ instead of ‘‘154’’. Dividing an integer by another integer would not have produced what
we wanted.

awk rounds its output to match sensitivity you’ve requested — that is, the number of digits to the right of the
decimal point. To see how sensitivity affects output, run the following program:

awk ’/1920/,/1925/{printf("%1.2f %1.3f %1.4f\n",$5/154.0,$5/154.0,$5/154.0)}’\
table1

This prints the following:

0.89 0.890 0.8896
1.11 1.110 1.1104
0.64 0.643 0.6429
0.85 0.851 0.8506
0.79 0.786 0.7857
0.43 0.429 0.4286

As an aside, the above example also shows that you can break awk’s command line across more than one line
using a backslash ‘\’ at the end of every line but the last. Note, however, that you cannot break an awk statement
across more than one line, or awk will complain about a syntax error.

One last example of floating-point numbers prints Babe Ruth’s ratio of runs scored to runs batted in between 1920
and 1925:

awk ’/1920/,/1925/{x = ($5*1.0) ; printf("%1.3f\n", $4/x)}’ table1

This produces the following:

1.153
1.035
0.949
1.153
1.182
0.924

The expression x = ($5*1.0) was needed to turn field 5 (the divisor) into a floating-point number, so we could
obtain the decimal fraction that we wanted. This is discussed further below, when we discuss how to manipulate
constants.

The function sprintf() also formats expressions; however, instead of printing its output, it returns it for assignment
to a variable. For example, you could rewrite the previous example program to replace the multiplication operation
with a call to sprintf():

awk ’/1920/,/1925/{x = sprintf("%3.1f", $5)
printf("%1.3f\n", $4/x)}’ table1

The output is the same as that shown above.
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The %s formatting string can be used to align text in fields. The digit to the left of the period gives the width of the
field; that to the right of the period gives the number of characters to write into the field. Note that if input is
larger than the number of characters allotted to it, awk truncates the input. For example, the following program
aligns on seven-character fields some words from file text1:

awk ’{x=sprintf("%7.5s %7.5s %7.5s %7.5s", $1, $2, $3, $4)
print x}’ text1

The output is as follows:

When, in disgr with
I all alone bewee

And troub deaf heave
And look upon mysel

Wishi me like to
Featu like him, like
Desir this man’s art
With what I most
Yet in these thoug

Haply I think on
Like to the lark
From sulle earth sings
For thy sweet love

That then I scorn

Note that fields (words) longer than five characters are truncated; and every word is right-justified on a seven-
character field.

Redirecting Output

In addition to printing to the standard output, awk can redirect the output of an action into a file, or append it
onto an existing file. With this feature, you can extract information from a given file and construct new
documents. The following example shows an easy way to sift Babe Ruth’s statistics into four separate files, for
further processing:

awk ’{ print $1, $2 > "average"
print $1, $3 > "home.runs"
print $1, $4 > "runs.scored"
print $1, $5 > "rbi"}’ table1

Note like as under the shell, the operator ‘>’ creates the named file if it does not exist, or replaces its contents if it
does. To append awk’s onto the end of an existing file, use the operator ‘>>’.

awk can also pipe the output of an action to another program. As under the shell, the operator ‘|’ pipes the output
of one process into another process. For example, if it is vital for user fred to know Babe Ruth’s batting average for
1925, you can mail it to him with the following command:

awk ’/1925/ {print $1, $2 | "mail fred"}’ table1

Assignment of Variables

A number of the previous examples assign values to variables. awk lets you create variables, perform arithmetic
upon them, and otherwise work with them.

An awk variable can be a string or a number, depending upon the context. Unlike C, awk does not require that
you declare a variable. By default, variables are set to the null string (numeric value zero) on start-up of the awk
program. To set the variable x to the numeric value one, you can use the assignment operator ‘=’:

x = 1

To set x to the string ted also use the assignment operator:

x = "ted"

When the context demands it, awk converts strings to numbers or numbers to strings. For example, the statement

x = "3"

initializes to x to the string ‘‘3’’. When an expression contains an arithmetic operator such as the ‘-’, awk interprets
the expression as numeric. (Alphabetic strings evaluate to zero.) Therefore, the expression
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x = "3" - "1"

assigns the numeric value two to variable x not the string ‘‘2’’.

When the operator is included within the quotation marks, awk treats the operator as a character in the string. In
the following example

x = "3 - 1"

initializes x to the string ‘‘3 - 1’’.

A number of examples in the previous section showed you how to perform arithmetic on fields. The following table
gives awk’s arithmetic operators:

+ Addition
- Subtraction
* Multiplication
/ Division
% Modulus
++ Increment
-- Decrement
+= Add and assign value
-= Subtract and assign value
*= Multiply and assign value
/= Divide and assign value
%= Divide modulo and assign value

Variables are often used with increment operators. For example, the following program computes the average
number of home runs Babe Ruth hit each season during the 1920s:

awk ’ { x += $3 }
END { y = (NR * 1.0)

printf("Average for %d years: %2.3f.\n", NR, x/y) }’ table1

The output is:

Average for 10 years: 46.700.

Field Variables

awk lets fields receive assignments, be used in arithmetic, and be manipulated in string operations. One task that
has not yet been demonstrated is using a variable to address a field. For example, the following program prints
the NRth field (word) from the first seven lines in file text1:

awk ’NR < 8 {print NR, $(NR)}’ text1

The output is:

1 When,
2 all
3 deaf
4 myself,
5 one
6 with
7 man’s

Control Statements

awk has seven defined control statements. This section explains them and gives examples of their use.

if (condition) action1 [else action2 ]
If condition is true, then execute action1. If the optional else clause is present and condition is false, then
execute action2.

The following program keeps running totals of Babe Ruth’s RBIs, for both the years where his runs scored
exceeded his RBIs and the years where they did not:
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awk ’{ if ( $4 > $5 )
gyear++

else
lyear++

}
END { printf("Scored exceed RBIs: %d years.0, gyear)

printf("Scored not exceed RBIs: %d years.0, lyear)
}’ table1

This produces:

Scored exceed RBIs: 5 years.
Scored not exceed RBIs: 5 years.

Note that if more than one action is associated with an if or else statement, you must enclose the
statements between braces. If you use braces with both the if and else statements, note that the
beginning and closing braces must appear on the same line as the else statement. For example:

if (expr) {
stuff
stuff

} else {
stuff
stuff

}

while (condition) action
The while statement executes action as long as condition is true. For example, the following program
counts the number of times the word the appears in file text1. The while loop uses a variable to examine
every word in every line:

awk ’ { i = 1
while (i <= NF ) {

if ($i == "the") j++
i++

}
}

END { printf ("The word \"the\" occurs %d times.\n", j) }’ text1

The result, as follows, shows Shakespeare’s economy of language:

The word "the" occurs 1 times.

By the way, note that if a control statement has more than one statement in its action section, enclose the
action section between braces. If you do not, awk will behave erratically or exit with a syntax error.

for( initial ; end ; iteration ) action
for( variable in array ) action

awk’s for statement closely resembles the for statement in the C language. The statement initial defines
actions to be performed before the loop begins; this is usually used to initialize variables, especially
counters. The statement end defines when the loop is to end. The statement iteration defines one or more
actions that are performed on every iteration of the loop; usually this is used to increment counters.
Finally, action can be one or more statements that are executed on every iteration of the loop. action need
not be present, in which case only the action defined in the iteration portion of the for statement is
executed. for is in fact just an elaboration of the while statement, but adjusted to make it a little easier to
use. The following example writes the previous example, but replaces the while loop with a for
mechanism:

awk ’ { for (i = 1 ; i <= NF ; i++)
if ($i == "the") j++

}
END { printf ("The word \"the\" occurs %d times.\n", j) }’ text1

The output is the same as the previous example, but the syntax is neater and easier to read.

The second form of the for loop examines the contents of an array. It is described in the following section,
which introduces arrays.
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break The statement break immediately interrupts a while or for loop. For example, the following program is the
same as the previous example, but counts only the first occurrence of the word the in each line of text1.
Thus, it counts the number of lines in text1 that contain the:

awk ’{ for (i = 1 ; i <= NF ; i++) {
if ($i == "the") {

j++
break

}
}

}
END {printf ("The word \"the\" occurs in %d lines.\n", j)}’ text1

continue
The statement continue immediately begins the next iteration of the nearest while or for loop. For
example, the following program prints all of Babe Ruth’s statistics — runs scored, runs batted, and home
runs — in which he had more than 59 in one year:

awk ’ { for (i = 3 ; i <= NF ; i++)
if ($i <= 59)

continue
else

printf("%d, column %d: %d\n", $1, i, $i)
} ’ table1

This produces the following:

1920, column 4: 158
1920, column 5: 137
1921, column 4: 177
1921, column 5: 171
1922, column 4: 94
1922, column 5: 99
...

next The statement next forces awk abort the processing of the current record and skip to the next input
record. Processing of the new input record begins with the first pattern, just as if the processing of the
previous record had concluded normally. To demonstrate this, the following program skips all records in
file text1 that have an odd number of fields (words):

awk ’ { if (NF % 2 == 0) next }
{ print $0 } ’ text1

This produces:

I all alone beweep my outcast state,
Wishing me like to one more rich in hope,
With what I most enjoy contented least.
Yet in these thoughts myself almost despising,
Like to the lark at break of day arising

exit Finally, the control statement exit forces the awk program to skip all remaining input and execute the
actions at the END pattern, if any. For example, the following program prints the year in which Babe Ruth
hit his 300th home run:

awk ’ { i = $1 }
(j += $3) >= 300 { exit }
END {print "Babe Ruth hit his 300th homer in", i "."}’ table1

This produces:

Babe Ruth hit his 300th homer in 1926.

Arrays
awk has a powerful feature for managing arrays. Unlike C, awk automatically manages the size of an array, so you
do not have to declare the array’s size ahead of time. Also, unlike C, awk lets you address each element within an
array by a label, not just by its offset within the array. This lets you generate arrays ‘‘on the fly,’’ which can be very
useful in transforming many varieties of data.
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To declare an array, simply name it within a statement. awk recognizes as an array every variable that is followed
by brackets ‘[ ]’. To initialize a row within an array, you must define its value and name its label. A label can be
either a number or a string. A value, too, can be a number or a string; if the value is a number, then you can
perform arithmetic upon it, as will be shown in a following example.

Initializing an Array

To demonstrate how an array works, use the line editor ed to add a line of text to the beginning of file table1. Type
the following; please note that the token <tab> means that you should type a tab character:

ed table1
1i
Year<tab>BA<tab>HRs<tab>Scored<tab>RBIs
.
wq

This change writes a header into table1 that names each column. Now, we can read these labels into an array and
use them to describe Babe Ruth’s statistics. For example, the following prints a summary of Babe Ruth’s statistics
for the year 1926:

awk ’ NR == 1 { for (i=1; i <= NF; i++) header [i] = $i }
$1 == 1926 {

for (i=1; i <= NF; i++)
print header[i] ":\t", $i

} ’ table1

This produces:

Year: 1926
BA: .372
HRs: 47
Scored: 139
RBIs: 145

The statement

NR == 1 { for (i=1; i <= NF; i++) header [i] = $i }

reads the first line in table1, which contains the column headers, and uses the headers to initialize the array
header. Each row is labeled with the contents of the variable i.

The loop

for (i=1; i <= NF; i++)
print header[i] ":\t", $i

prints the contents of header. Because we labeled each row within header with a number, we can use a numeric
loop to read its contents.

The for() Statement With Arrays

In the previous example, each element in the array was labeled with a number. This permitted us to read the array
with an ordinary for statement, which sets and increments a numeric variable. However, the rows within an array
can be labeled with strings, instead of numbers. To read the contents of such an array, you must use a special
form of the for statement, as follows:

for ( offset in array )

array names the array in question. offset is a variable that you name at the time of contructing the for statement.
You can use the value of offset in any subordinate printing actions.

The following program demonstrates this new form of for, and (incidentally) to demonstrate the power of awk’s
array-handling feature. It builds an array of each unique word in the file text1, and notes the number of times
that word occurs within the file:

awk ’ { for (i = 1 ; i <= NF ; i++)
words [$i]++ }

END { for (entry in words)
print entry ":", words[entry] }’ text1 | sort

This prints:
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-: 1
And: 2
Desiring: 1
Featured: 1
For: 1
From: 1
Haply: 1
I: 4
Like: 1
That: 1
When,: 1
Wishing: 1
With: 1
Yet: 1
all: 1
almost: 1
...

As you can imagine, a similar program in C would require many more lines of code. However, a few features of this
program are worth noting.

First, the expression

{ for (i = 1 ; i <= NF ; i++)
words [$i]++ }

declares the array words Every time awk encounters a new field (word), it automatically adds another entry to the
array, and labels that entry with the word. No work on your part is needed for this to happen. The ‘++’ operator
increments the value of the appropriate entry within words. Because we did not initialize the entry, it implicitly
contains a number.

The expression

{ for (entry in words)
print entry ":", words[entry] }

walks through the array words. awk initializes the variable entry to the label for each row in words; the print
statement then prints entry and the contents of that row in the array — in this case, the number of times the row
appears in our input file.

Finally, we piped the output of this program to the command sort to print the words in alphabetical order.

For More Information
This tutorial just gives a brief introduction to the power of awk. To explore the language in depth, see sed & awk
by Dale Dougherty (Sebastopol, Calif, O’Reilly & Associates, Inc., 1985). This book, however, describes a more
complex version of awk than that provided with COHERENT.

The Lexicon’s article on awk gives a quick summary of its features and options.
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Introduction to lex, the Lexical Analyzer

Many computer applications involve reading text strings. This is especially true for man-machine communication.

For some forms of textual input, a programmer can design a program by hand to process it. However, it is much
easier to implement such programs when you use a software tool that will automatically construct a program to
process the data. The COHERENT command lex is such a tool.

lex accepts expressions that describe the text input, and generates a program to process it. In computer-ese, lex is
a ‘‘lexical scanner program generator’’.

This document tells you how to use lex. It presents many simple examples to illustrate how to use its features and
how to use the generated program with other tools provided with COHERENT, notably the parser generator yacc.

Readers of this document are presumed to be familiar with the C programming language and the use of the
COHERENT system. Related documents include Using the COHERENT System and the tutorial to yacc, the
COHERENT parser generator.

How To Use lex
lex generates lexical scanners for compilers, to do statistical analysis of text, and to generate filters for many
diverse tasks. This section gives examples of how to use lex. Later sections discuss the concepts used in these
examples in detail.

Translating Strings

The first example tells lex to match an input string and replace it with a different string — in this case, replace the
misspelled word ‘‘removeable’’ with the correctly spelled ‘‘removable’’. The program outputs unchanged all strings
that it does not recognize. Enter the following program into the file rmv.lex.

%%
removeable printf ("removable");

This creates the lex specification. Use the following command line to pass this specification through lex:

lex rmv.lex

This produces a C program named lex.yy.c, which you can compile by typing:

cc lex.yy.c -ll -o rmv

The executable program rmv is now ready to use. To illustrate its use, type:

rmv
Is this file removeable?
<ctrl-D>

rmv replies:

Is this file removable?

Note that the generated program reads from standard input and writes to standard output.

Remove Blanks From Input

The next example deletes all blanks and tabs from the input. Type the following lex program into file nosp.lex:

%%
[ \t]+ ;

Generate and compile the program with the following commands:

lex nosp.lex
cc lex.yy.c -ll -o nosp

To invoke the program, type nosp. Now, test it by typing the following:
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This may be hard to read after processing.
<ctrl-D>

nosp outputs:

Thismaybehardtoreadafterprocessing.

Trimming Blanks

The previous example can be rewritten to remove strings of blanks or tabs and replace them with one space. Type
the following into file onesp.lex:

%%
[ \t]+ printf (" ");

Generate and compile this with the following commands:

lex onesp.lex
cc lex.yy.c -ll -o onesp

Invoke your program with the command onesp. Now, type the following text to test the program; be sure to
separate each word by two spaces:

This should be easier to read.
<ctrl-D>

onesp prints the following:

This should be easier to read.

lex Specification Form
This section discusses the form of the lex specification.

Simple Form

The examples shown above use the simplest form of a lex program. Consider the text of the example rmv.lex:

%%
removeable printf ("removable");

The symbol

%%

divides sections of the lex specification. Not all specifications need to be present, but at least one %% must appear
in a lex program.

This symbol separates lex definitions from rules. With nothing before the %%, there are no definitions. Rules
follow the %%. No definitions are needed in the simplest of lex specifications.

Rules in lex

The format of a lex rule is simple. Every rule has two parts. Refer to the program rmv:

removeable printf ("removable");

The first part begins at the beginning of the line and ends with a space or tab. In the example rule, the first part is

removeable

This part is called the pattern.

The second part follows the space or tab, and is called the action. The action in this example is:

printf ("removable");

When the pattern specified by the rule is found in the input, the corresponding action is performed. Thus, this
rule detects every appearance of removeable and outputs the correct spelling.

A lex program tries each rule’s pattern in turn, and performs the associated action if and only if the pattern
matches. Actions often modify the input that matched the pattern; they may also do nothing for certain patterns.
To illustrate this, type the following specification into file erase.lex:
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%%
erase ;

Then compile the generated program with the following commands:

lex erase.lex
cc lex.yy.c -ll -o erase

This program copies all its input to its output, except for any appearance of the string erase. Invoke the program
by typing erase, and then test it by typing:

Have you erased the blackboard?
<ctrl-D>

erase then prints:

Have you d the blackboard?

If the input contains patterns that do not match any of the patterns in the suite of rules you typed into lex, they
are simply output unchanged. Usually, you will want to write a rule to cover every case.

Statements in lex

As noted earlier, lex is a program generator. It reads the specifications that you prepare for it, and writes a C
program that is used with the lex library. Many of the actions in the rules you specify, such as

printf ("removable");

are themselves C statements. These statements are included in the resulting program, along with other statements
that lex provides so the program can run.

You can include other statements, should the program need them, by placing them in appropriate places. The
following program, called count.lex, shows how this is done. It counts the number of tokens, or strings of non-
blank characters. Type the following into the file count.lex exactly as printed:

int count;
%%
[^ \t\n]+ count++;
[ \t\n]+ ;
%%
yywrap ()
{

printf ("Number of tokens:%d\n", count);
return (1);

}

Statements other than rule actions appear in two places in the program. The first such statement is in the
definition section, which precedes the rule section delimiter %%:

int count;

This C statement declares the variable count to be an integer variable. Notice that it is preceded by a tab; a tab or
a space indicates to lex that an input line is not a rule.

The second kind of non-rule statement follows the second %%, which marks the end of the rules section. lex
regards anything that follows the second delimiter as being source statements.

The above example includes a function named yywrap. lex programs always call this function at the end of
processing. The above program fills this function with code that prints the number of tokens in the text. If you do
not include a routine named yywrap, lex will use a standard one from its library.

Compile the program by typing the following commands:

lex count.lex
cc lex.yy.c -ll -o count

Run the program by typing:

count <count.lex

This counts the tokens in the count.lex file itself. count will print the following:

TUTORIALS



172 lex Lexical Analyzer

Number of tokens:21

Groups of Statements

In previous examples, the C statement in the action part of the rule is a single statement. In many lex
applications, however, you will need to use more than one statement per rule.

To do so, enclose the statements in the braces { }. The following example illustrates grouping. This lex
specification generates a program to add numbers found in the input and print the total whenever it reads an
asterisk ‘*’. Type the following program into nsum.lex:

int number, sum;
%%
[0-9]+ {

sscanf (yytext, "%d", &number);
sum += number;
printf ("%s", yytext);
}

"*" {
printf ("%s", yytext);
printf ("%d", sum);
sum = 0;
}

Compile the program by typing:

lex nsum.lex
cc lex.yy.c -ll -o nsum

To run the generated nsum program, enter a sample data file by typing:

cat >numbers
one two three
1 2 3 4 * 1 2 3 5 *
*
done
<ctrl-D>

Run the program by typing:

nsum <numbers

nsum will print:

one two three
1 2 3 4 *10 1 2 3 5 *11
*0
done

The statements that follow the definitions

[0-9]+

and

*

are enclosed in braces, because each action triggers several statements. Consider the first of these:

[0-9]+ {
sscanf (yytext, "%d", &number);
sum += number;
printf ("%s", yytext);
}

The pattern looks for strings of digits. sscanf converts each such string into a number and saves it in the variable
number. Now, consider the second rule:
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"*" {
printf ("%s", yytext);
printf ("%d", sum);
sum = 0;
}

This specifies that upon detection of * in the input, the program is to print the sum of the numbers and then reset
the counter to zero. In both of these rules, the statement

printf ("%s", yytext);

prints the number or * so that the output shows the input as well as the total. lex defines the variable yytext. It
always contains the string that matches the pattern.

If the input is neither a number nor an asterisk, no pattern specifically matches it. Therefore, the program echoes
it unchanged to the standard output.

Using the Same Action

To make it easier for you to write actions, lex allows you to abbreviate rules; that is, you have to write only once
any action that is performed upon detection of several patterns. To abbreviate rules represented symbolically by

p1 action1
p2 action1

use the vertical bar operator:

p1 |
p2 action1

The vertical bar means ‘‘use the action from the first rule that declares an action.’’ An example is given in the
section on macro abbreviations, below.

Patterns
The first part of each rule in the lex rules section is a pattern that may match parts of the input. This section
describes how to construct these patterns, sometimes called regular expressions. If you are familiar with ed and
how its patterns work, this will be familiar to you.

Simple Patterns

The simplest kind of pattern is a string of characters that matches itself. A previous section presented an
illustration of this:

%%
removeable printf ("removable");

The regular expression ‘‘removeable’’ matches all occurrences of removeable that appear in the input text.

Certain characters have special meaning to lex patterns. To match a special character literally, you must quote it.
For example, * has special meaning. To match the asterisk literally (that is to match any ‘*’s that appear in the
input), surround it with quotation marks:

"*"

Another way to quote characters is to precede it with the backslash character ’\’.

\*

The following characters each have special meaning and must be quoted to be matched as text characters:

" \ ( ) < > { } % * + ? [ ] - ^ / $ . |

However, within ", the \ still has its meaning, so to match the string \* use the regular expression:

"\\*"

Also, to match a quote character, use:

\"
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Classes of Characters

The power of patterns comes from special characters that match more than one character. The following examines
each special character in detail.

The period or dot matches any character except newline. The following regular expression matches any pair of
characters that begins with J:

J.

The following example prints in square brackets any sequence of five characters that precedes a blank. Type the
following into the file five.lex:

%%
....." " printf ("[%s]", yytext);

Compile the program with the following commands:

lex five.lex
cc lex.yy.c -ll -o five

Now, type the following to create a test file for five:

cat > work
how well does this work?
no match
<ctrl-D>

Now, test five by typing:

five < work

The result is:

how[ well ]does[ this ]work?
no match

The second line of the input does not have any matches. Because the dot pattern character does not match the
end-of-line character, all five characters that precede the blank must be on the same line.

Another way to match many characters, but selectively, is with the character class operation. Enclose in square
brackets the set of characters to be matched. Any of the characters listed there will match one character of the
input. For example,

[0123456789]

matches any decimal digit in the input. Characters may be in any order within the brackets. Thus

[0246813579]

is equivalent to the example above.

To simplify specifying for character classes, you can specify ranges of characters. The beginning and end of the
range is separated by a hyphen. To match all decimal digits as above, use:

[0-9]

To match all alphabetic characters, type:

[a-zA-Z]

The special character ^, when used after the opening bracket ‘[’, tells lex to match any character except those
enclosed. The following example finds all strings that consist of two digits followed by a third character that is
neither an alphabetic character nor a period, and prints them enclosed by { and }. Type the following into file
twodig.lex:

%%
[0-9][0-9][^\.a-zA-Z] printf ("{%s}", yytext);

Process and compile the program by typing the following commands:

lex twodig.lex
cc lex.yy.c -ll -o twodig
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Invoke the program by typing twodig, and test it by entering the following text:

12. 12 12a 1 12 b
<ctrl-D>

twodig prints the following in reply:

12. {12 }12a 1 {12 }b

Repetition

In the patterns shown so far, each character matches only one character at a time. However, many interesting
input patterns involve repetition of characters. The above program twodig.lex used such repetition, albeit in a
primitive way.

To match one or more instances of a character, follow it with the pattern operator +. Consider the summation
example in nsum.lex, shown earlier, which recognized strings of input numbers and added them to a total:

[0-9]+ {
sscanf (yytext, "%d", &number);
sum += number;
printf ("%s", yytext);
}

The pattern

[0-9]+

matches a string of one or more digits.

The operator * will match zero or more characters of a specified type. The following example deletes all characters
between square brackets. Type it into file star.lex:

%%
\[.*\] printf ("[]");

Type the following commands to generate and compile the program:

lex star.lex
cc lex.yy.c -ll -o star

Type the following to create a test file:

cat > disappear
[This should disappear]
[what happens with two] of them [on a line?]
<ctrl-D>

Now, use the test file with star:

star < disappear

The output is:

[]
[]

In looking at the example’s input, you might have expected the output to be:

[]
[] of them []

lex does not produce the latter output because it generates recognizers that find the longest match if several
matches are possible. Therefore, star matched the first [, then all characters up to and including the second ].
When you write a pattern that matches many characters, you should bear this possibility in mind.

To change the program to match the first ], rewrite it as follows:

%%
\[[^\]]*\] printf ("[]");

The regular expression now matches a string of all characters except a ], when that string is enclosed in square
brackets.
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The ‘?’ character signals that the previous character or regular expression is optional. In other words, ‘?’ signals
zero or one instance of a character or regular expression.

To see how this would be used in a program, consider a text processor that regards a word as being a strings of
alphabetic characters that may or may not be followed by a period. The following example does this, and encloses
the recognized words in parentheses. Enter it into file word.lex:

%%
[a-zA-Z]+\.? printf ("(%s)", yytext);

Generate and compile the program with the following commands:

lex word.lex
cc lex.yy.c -ll -o word

Create a test file:

cat > words
These are words.
Question mark not included?
<ctrl-D>

And test word with the following command:

word < words

The result is

(These) (are) (words.)
(Question) (mark) (not) (included)?

The question mark, like the * and + operators, can also follow another specification of a pattern. If you wanted to
end a sentence with a character other than a period, the following code will do the job for you:

[a-zA-Z]+[.?!,]?

The characters

.?!,

are optional.

The ‘+’ and ‘*’ operators may match many characters. If you wish to match a specific number of characters or
patterns, follow the patterns with the repetition within braces { and }. For example

[0-9]{3}

matches a string of exactly three characters. With this information, you should be able to rewrite the pattern part
of twodig.lex, described above.

You can also specify a range of counts. To match from seven to nine occurrences of lower-case alphabetic
characters, use:

[a-z]{7,9}

Choices and Grouping

To indicate alternate choices of characters or regular expressions, separate them in the regular expression with a
vertical bar operator |. For example, if you wish to match either three decimal digits or the character a, use:

[0-9]{3}|a

Parentheses help to group the parts of the pattern that are separated by the vertical bar:

(abc)|(def)

This pattern will match either the string abc or the string def.
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Matching Non-Graphic Characters

Non-special, graphic characters in patterns match themselves. Most non-graphic characters, such as space, tab,
and control characters, cannot be matched directly. lex provides special sequences to match control characters.
The following example removes tabs and blanks from the beginning and end of input lines. Type it into file
deblank.lex:

%%
[ \t]+\n printf ("\n");
\n[ \t]+ printf ("\n");

Generate and compile the program with the following commands:

lex deblank.lex
cc lex.yy.c -ll -o deblank

Type the following to create a test file:

cat > sportab
begins with no space or tab

begins with tab
begins with three spaces

<ctrl-D>

Type the following to test deblank:

deblank < sportab

The result is:

begins with no space or tab
begins with tab
begins with three spaces

The special regular expression \t represents tab, and \n represents newline.

To match the backspace character, use \b. Form feed is matched by \f. To match an arbitrary character with a
known octal value, use three octal digits after the backslash; for example,

\007

More Patterns
This section discusses more advanced capabilities of patterns.

Line Context

Like ed, lex patterns can include characters that represent the beginning and end of line. To match a line that
consists of exactly five alphabetic characters, type:

^[a-zA-Z]{5}$

The character ^ matches the beginning of the line, and $ matches the end of the line.

Context Matching

A slash (virgule) ‘/’ shows that a following context is necessary to match a string. For example, the following
program matches the string match only if it is immediately followed by the string ing. Type it into file match.lex:

%%
match/ing printf ("{%s}", yytext);

To compile the program, type the following commands:

lex match.lex
cc lex.yy.c -ll -o match

Type the following to create a test file:
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cat > matchtit
Will this match?
This is a matching test.
<ctrl-D>

And run it against match by typing:

match < matchtit

The result is:

Will this match?
This is a {match}ing test.

Notice that the string before the slash is matched. The program does not match the part that follows the slash,
even though the string must be there for the first part to be matched. Thus, the regular expression that follows the
slash may also be matched on its own. To see how this works, type the following into the file match2.lex:

%%
match/ing printf ("{%s}", yytext);
ing printf ("ed");

To compile the program, type the following commands:

lex match2.lex
cc lex.yy.c -ll -o match2

Once again, create a test file:

cat > matching
Will this match?
This is a matching test.
You must now sing for your supper.
<ctrl-D>

And run it:

match2 < matching

The result is:

Will this match?
This is a {match}ed test.
You must now sed for your supper.

The context-string that follows the / may be a regular expression. The following example matches the whole-
number portion of a decimal fraction. Type it into the file wholept.lex:

%%
"-"?[0-9]+/"."[0-9]+ printf ("(%s)", yytext);

To compile the program, type the following commands:

lex wholept.lex
cc lex.yy.c -ll -o wholept

Invoke the program by typing wholept; then type the following to test it:

123 12345 1234.567
1 <ctrl-D>

The result will be:

123 12345 (1234).567

As you can see, the part of the regular expression

"-"?

matches an optional leading minus sign. Then

[0-9]+

matches a string of at least one decimal digit. Then, the following context must match the regular expression
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"."[0-9]+

which matches the fractional part of the number. When it finds a number that matches, it prints the number’s
whole part enclosed in parentheses.

Macro Abbreviations

lex also provides a macro facility that can substantially simplify the writing of complex regular expressions.

A macro is a named body of text. A macro processor simply replaces the name of the macro with the text of the
macro.

To illustrate, type following example into file float.lex. It recognizes integer and floating point constants according
to the C format:

d [0-9]+
e [Ee][+-]?[0-9]+
%%
{d}\. |
{d}\.{d} |
\.{d} |
{d}\.{e} |
\.{d}{e} |
{d}\.{d}{e} |
{d}{e} printf ("F:[%s]", yytext);

lex replaces the macro name e with the code that matches a string of digits at least one digit long. It replaces the
macro name d with code that matches the number’s exponent. These two are invoked in the manner of

{d}

within a pattern. To compile the program, type the following commands:

lex float.lex
cc lex.yy.c -ll -o float

Type the following to create a test file:

cat > flonumb
1 1. 1.2 1.e4 1e4
.1e4 e4 .1 . 0 1.2e3
<ctrl-D>

And test it by typing:

float < flonumb

The result is:

1 F:[1.] F:[1.2] F:[1.e4] F:[1e4]
F:[.1e4] e4 F:[.1] . 0 F:[1.2e3]

Context: Start Rules

Many tasks in lexical processing require the program to be aware of a token’s context. lex lets you make
processing conditional upon previously processed input. This is done by using start conditions.

Start conditions are named in the definitions section as follows:

%S name1 name2

where name1 and name2 are names of start conditions. These start conditions are then used by prefixing a
pattern with the start condition’s name enclosed in angle brackets. For example:

<name1>

For example, you can use one start condition to control the scanning of comments in a Pascal-like language. The
start condition is set by the lex statement BEGIN when the beginning bracket of the comment is found. The
comment is scanned for strings that begin with $ to signal compiler operation. To see how this works, type the
following into the file comment.lex:
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%S CMNT
%%
<CMNT>\$[ler] printf ("Option is %s.\n", yytext);
<CMNT>[^\}] ;
<CMNT>\} BEGIN 0;
\{ BEGIN CMNT;

To compile, use the following commands:

lex comment.lex
cc lex.yy.c -ll -o comment

Once again, create a test file:

cat > option
{This is a comment}
{This comment has options $l $e $r}
program
information
<ctrl-D>

And run it by typing:

comment < option

The result is:

Option is $l.
Option is $e.
Option is $r.

program
information

The context start condition is named following BEGIN in the action part of the rule. To return to the normal
condition, use 0 as the context name.

Separate Contexts

If you wish to perform context-dependent processing that is more complex than that shown in the example above,
you will find it convenient to use separate contexts.

The names of the contexts are defined in the definitions sections, after the definitions of any start conditions: For
example:

%C name name ...

The lex function yyswitch switches to a new context.

The body of the context’s rules is preceded in the rules section by:

%C name

To see how this works, type the following into file pre.lex. It is part of a program that recognizes the preprocessor
statements in a C program:

%C PRE
%%
^# yyswitch (PRE);
[^#\n]+ printf ("[%s]", yytext);
%C PRE
include.+ |
define.+ {

printf("{%s}", yytext);
yyswitch(0);
}

.+ {
printf ("{??%s}", yytext);
yyswitch (0);
}

A # in column 1 signals the beginning of a preprocessor statement. Upon recognizing this condition, this program
uses yyswitch to activate the context PRE.
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Within this separate context, individual rules recognize different preprocessor statements; this example includes
only two. Each of the rules prints the preprocessor line enclosed in braces { }. In addition, the rules switch back to
the original (and unnamed) context by the statement

yyswitch (0);

To compile and test this program, use the following commands:

lex pre.lex
cc lex.yy.c -ll -o pre
pre <lex.yy.c | more

This example uses the function yyswitch to return to the original context at the end of each rule in the secondary
context. Some applications require a return to the context that was previously in force. To assist in this, yyswitch
returns the value of the previous context.

To modify the example to switch to the previous context, add a statement to the definitions section to declare a
variable to hold the previous context:

int prev;

Then, when switching, save the current context:

prev = yyswitch (NEW);

To switch back, use:

yyswitch (prev);

To summarize, you can specify a match at the beginning and end of input lines. You may need a following context
for a match. Macros provide a means of abbreviating elements of patterns. lex can qualify some patterns based on
a start context, or process entirely separate contexts.

More About Writing Actions
This section discusses predefined lex actions and how to use them. It also presents other lex routines that are
useful in writing actions.

ECHO

Many lex actions simply output the matched pattern:

[0-9]+ printf ("%s", yytext);

This form has been used in the examples because many examples also output additional material, such as
enclosing braces, to illustrate the matched token.

lex provides a simpler way to echo the exact token matched:

[0-9]+ ECHO;

The following example echoes all strings of digits twice, and everything else once. Type it into file double.lex:

%%
[0-9]+ {ECHO; ECHO;}
[^0-9]+ ECHO;

To compile the program, use the commands:

lex double.lex
cc lex.yy.c -ll -o double

To invoke the program, type double; and to test it, type the following text:

abcdef 123 678 as45 67gh
<ctrl-D>

double will reply:

abcdef 123123 678678 as4545 6767gh
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Processing Overlapping Strings

The lex processing illustrated to this point has been restricted to programs whose rules recognize distinct strings.
That is, once any character of a string is matched by a regular expression, it cannot be matched by another.

Some applications require that strings be matched by more than one rule; such multiply-matched strings are
called overlapping strings. The lex action word REJECT provides this capability. When REJECT appears in a
rule, other rules can also match the string. Remember, however, that lex programs give precedence to the longest
string that matches a regular expression.

The following example determines the number of letter pairs, or digrams, in its input. The input is presumed to be
lower-case letters. Enter the following into digram.lex:

int digram [128] [128];
%%
[a-z][a-z] {

digram [yytext [0]] [yytext [1]]++;
REJECT;
}

. ;
\n ;
%%
yywrap ()
{

int i1, i2;
for (i1 = ’a’; i1 <= ’z’; i1++)

for (i2 = ’a’; i2 <= ’z’; i2++)
if (digram [i1] [i2] != 0)

printf ("%d\t%c%c\n",
digram [i1] [i2], i1, i2);

}

To compile the program, type the commands:

lex digram.lex
cc lex.yy.c -ll -o digram

To invoke the program, type digram; and test it with the following text:

this is a test of digrams.
<ctrl-D>

The result will be:

1 am
1 di
1 es
1 gr
1 hi
1 ig
2 is
1 ms
1 of
1 ra
1 st
1 te
1 th

yylex

lex places the actions you provide for the rules in your lex program into a C routine named yylex.

If you add variable declarations in the definitions section before the first %%, yylex can access them, as in the
example digram.lex, shown above. You can also declare variables that are local to yylex, if you place the
declarations after the rules section delimiter and before the first rule. A tab or space must precede the declaration,
where the % symbols are at the beginning of the line. See the example yacclex.lex, below.
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The following program is a different version of digram.lex, called digram2.lex; it uses such a declaration.

int digram [128] [128];
%%

int t0, t1;
[a-z][a-z] {

t0 = yytext [0];
t1 = yytext [1];
digram [t0] [t1]++;
REJECT;
}

%%
yywrap ()
{

int i1, i2;
for (i1 = ’a’; i1 <= ’z’; i1++)

for (i2 = ’a’; i2 <= ’z’; i2++)
if (digram [i1] [i2] != 0)

printf ("%d\t%c%c\n",
digram [i1] [i2], i1, i2);

}

Header Section

You can insert additional code at the beginning of the generated program by including such code in the definitions
section. An earlier example, count.lex, demonstrated how to do this:

int count;
%%
[^ \t\n]+ count++;
[ \t\n]+ ;
%%
yywrap ()
{

printf ("Number of tokens:%d \n ", count);
return (1);

}

A tab or space character must precede the code you include.

If you wish to insert include or any other C preprocessor statement at the beginning of the program, however, a
different technique must be used. This stems from the fact that the preprocessor statements must begin at the
beginning of the line, and the blank or tab precludes this.

The alternative method to add code to the beginning is as follows:

%{
... code ...
%}

where the % symbols are at the beginning of the line.

Additional Routines

If your version of yywrap or any of the rules that you write need other routines, you can include code for them
after a second %%. (This was where yywrap was shown in digram.lex.) If you wish to provide your own version of
input or output, you must define it there.

Using lex With yacc
Although lex can handle many applications by itself, it is often used with the parser-generator yacc. For example,
programming-language compilers often have parts generated by both lex and yacc.

Like lex, yacc is a program generator. Its programs can recognize input that is structured according to a grammar
fed to the yacc program generator. In most instances, yacc-generated programs require tokens as input, instead of
individual characters. In the context of a programming language, a token is a variable name or a special character
(such as an operator). lex is often used with yacc because lex is especially well suited for partitioning text input
into tokens.
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A yacc-generated program expects a token number as input from the routine yylex. yacc assigns a unique
number, or constant definition, to each unique type of token, and expects yylex to return these numbers as input.

For your lex program to access these predefined constant definitions for token types, you must include the
generated lex source in the yacc specification.

The following examples process very simple input, to illustrate how to assemble lex- and yacc-generated programs.
To begin, type the following into the file yacclex.yy:

%token beginning midtok ending
%start simplistic
%%
simplistic : beginning middle ending

{printf ("recognized"); };
middle : midtok;
middle : middle midtok;
%%

When yacc processes this program, it produces the file y.tab.h that contains the token-name definitions. The
following lex source reads y.tab.h to learn of the constant definitions that yacc generated; type it into file
yacclex.lex:

%{
#include "y.tab.h"
%}
%%
"(" return (beginning);
")" return (ending);
[a-zA-Z] return (midtok);

The symbolic definition of the token names are beginning, ending and midtok.

To compile the programs, type the following commands:

yacc yacclex.yy
lex yacclex.lex
cc y.tab.c lex.yy.c -ly -ll -o yacclex

Type yacclex to invoke the new program; and test by typing the following:

(abcdef)
<ctrl-D>

The result will be:

recognized

Summary
lex is a utility that generates lexical analyzers according to a set of specifications that you write. Lexical analysis
means to read a mass of text, recognize strings within that mass, and react appropriately when each type of string
is discovered. With lex, you can write programs to perform complex analysis of text simply by describing what
analysis you want to perform, without worrying about the messy details of how that analysis is actually performed;
thus, lex is a fine example of what is nowadays called a ‘‘fourth-generation language’’.

lex is especially well suited to work with the parser-generator yacc. By using them together, you can efficiently
build command processors and even entire computer languages.

TUTORIALS



Introduction to yacc

The first high-level programming language compiler took a very long time to write. Since then, much has been
learned about how to design languages and how to translate programs written in high-level languages into machine
instructions. With what is known today, the writing of a compiler takes a fraction of the time it used to require.

Much of this improvement is due to the use of more powerful software development methods. In addition, we know
about the mathematical properties of computer programming languages. Software tools that apply this
mathematical knowledge have played a large part in this improvement.

The COHERENT system provides two tools to simplify the generation of compilers. These tools are the lexical
analyzer generator lex and the parser generator yacc. The following introduces yacc, and gives a basic course in
its use.

Although initially intended for the development of compilers, lex and yacc have proven their utility in other,
simpler, tasks. Examples of very simple languages are included in this tutorial.

yacc accepts a free-form description of a programming language and its associated parsing, and generates a C
program that, when compiled, will parse a program written in the described language. It uses a left-to-right,
bottom-up technique, to detect errors in the input as soon as theoretically possible. yacc generates parsers that
handle certain grammatical ambiguities properly.

This manual presumes that you are familiar with computer-language parsing and formal methods of description of
languages. Because yacc generates its programs in C and uses many of C’s syntactic conventions, you should
have a working knowledge of C. Related documents include Using the COHERENT System and Introduction to lex.

Examples
The following presents a few small examples that you can experiment with to get a feel of how to use yacc. Feel
free to experiment with the examples to investigate new ideas.

Phrases and Parentheses

The first example describes a language we call slang, or simple language. slang consists of sentences. A sentence,
in turn, consists of strings of letters or groups of letters enclosed in parentheses, terminated by a period. A group
of letters can also include other groups of letters.

The simplest ‘‘sentence’’ in slang is:

a.

The following demonstrates a sentence that consists only of a group:

(ab).

As described above, a group can have another group inside it:

ab(cd(ef)).

The following gives the yacc grammar for slang. Type it into the file slang.y. Note that the lexical-analyzer routine
yylex is included in the yacc input file. Note also that, as in C, comments are strings placed between the
characters /* and */.

/* Tokens (terminals) are all caps */
%token LPAREN RPAREN OTHER PERIOD
%%
run : sent /* Input can be a single */

| run sent /* sentence or several */
;

sent : phrase PERIOD
{printf ("sentence\n");}

;
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group : LPAREN phrase RPAREN
{printf ("group\n");}

;

phrase : /* empty */
| others
| group
| others group
;

others : OTHER /* letters and other chars */
| others OTHER
;

%%

#include <stdio.h>
#include <ctype.h>
/* Called by the parser to get a token */
yylex ()
{

int c;
c = 0;

while (c == 0) {
c = getchar();
if (c == ’.’) return (PERIOD);
else if (c == ’(’) return (LPAREN);
else if (c == ’)’) return (RPAREN);
else if (c == EOF) return (EOF);
else if (! isalpha(c)) c = 0;

}
return (OTHER);

}

To generate and compile the parser described by this input, issue the commands

yacc slang.y
cc y.tab.c -ly -o slang

Now, invoke your new parser by typing

slang

and test it by typing the following input:

a

does not reply, since this is not a sentence. When you type:

a.

slang replies:

sentence

And if you type:

abc(def).

slang replies:

group

As you can see, slang recognizes groups and sentences within the input you typed, and reactes by printing an
appropriate message. Try typing

TUTORIALS



yacc, Yet Another Compiler-Compiler 187

aaa(bbb(ccc)).
(a).

and see what you get. To exit from slang, type <ctrl-C>.

Simple Expression Processing

The next example creates a small language that includes two types of statements. The first type of statement
resembles a procedure call, and the second is an expression. Procedure names are in upper-case letters, whereas
the variables in expressions are in lower-case letters. Both procedures and expressions are terminated by a
semicolon.

The following code generates a parser that identifies either the procedure being called or the arithmetic expression
being calculated. The lexical input routine is independently generated by lex.

Enter the following program into the file calc.y:

%token VARIABLE PROCEDURE
%%
prog : stmnt

| prog stmnt
;

stmnt : stat
| stat ’\n’
| error ’\n’
;

stat : PROCEDURE ’;’
{printf ("PROCEDURE is %c\n", $1);}

| expr ’;’
{printf ("Expression\n");}

;

expr : expr ’-’ expr
{printf
("Subtract %c from %c giving E\n",
$3, $1);
$$ = ’E’;
}

| VARIABLE
{$$ = $1;}

;

Enter the lexical-analyzer part of the program into the file calc.lex:

%{
#include "y.tab.h"
%}
%%
[A-Z] {

yylval = yytext [0];
return PROCEDURE;
}

[a-z] {
yylval = yytext [0];
return VARIABLE;
}

\n return (’\n’);
. return (yytext [0]);

Now, generate the programs and compile them by typing:
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yacc calc.y
lex calc.lex
cc y.tab.c lex.yy.c -ly -ll -o calc

The following messages will appear on your console:

1 S/R conflict
y.tab.c:
lex.yy.c:

For now, you can freely ignore the S/R conflict (Shift/Reduce) message from yacc. We shall deal with the shift and
reduce notions later on. To invoke the newly generated program, type:

calc

To test it, type the following:

A;B;
C;
a-b-c;
a-b-c-d-e;

calc will reply appropriately to each line of input. To exit, type <ctrl-C>.

Background
Now that you have tried yacc, the following gives some background to it, and how the parsers that it generates
operate.

LR Parsing

yacc generates a ‘‘bottom up’’ parser. More specifically, yacc generates parsers that read LALR(1) languages.

LR parsers scan the input in a left-to-right fashion. Unfortunately, LR parsers for interesting languages are
unpractically large. LALR(k) parsers, which are derived from LR parsers, use a ‘‘look ahead’’ technique, in which
the next k elements of the input stream are used to help determine reductions. LALR(1) parsers are small enough
to be practical, are easy to generate, and are fast.

Input Specification

To generate a language with yacc, you must specify its grammar in Backus-Naur Form (BNF). (For a good
introduction to BNF, see the section on parsing in Applied C.) The languages recognized by yacc-generated parsers
are rich and compare favorably with modern programming languages. The time required to generate the parser
from the input grammar is very small — less than the time required to compile the generated parsers.

In addition to generating the parser to recognize the input language, yacc lets you include compiler actions within
the grammar rules that are executed as the constructs are recognized. This greatly simplifies the entire task of
writing your compiler. When used in combination with lex, yacc can make the process of writing a recognizer for a
simple language the task of an afternoon.

Parser Operation

yacc generates a compilable C program that consists of a routine named yyparse, and the information about the
grammar encoded into tables. Routines in the yacc library are also used.

The basic data structure used by the parser is a stack, or push down list. At any time during the parse, the stack
contains information describing the state of the parse. The state of the parse is related to parts of grammar rules
already recognized in the input to the parser.

At each step of the parse, the parser can take one of four actions.

The first action is to shift. Information about the input symbol or nonterminal is pushed onto the stack, along with
the state of the parser.

The second type of action is to reduce. This occurs when a grammar rule is completely recognized. Items
describing the component parts of the rule are removed from the stack, and the new state is pushed onto the
stack. Thus, the stack is reduced, and the symbols corresponding to the grammar rule are reduced to the left part
of the rule.
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Third, the parser can execute an error action. If the current input symbol is incorrect for the state of the stack, it
is not proper for the parser either to shift or reduce. As a minimum, this state will result in an error message
being issued, usually

Syntax error

yacc provides capabilities for using this error state to recover gracefully from errors in the input.

Finally, the parser can accept the input. This means that the start symbol, such as program, has been properly
recognized and that the entire input has been accepted.

Later sections discuss how you can have the parser describe its parsing actions step-by-step.

Form of yacc Programs
A yacc program can have up to three sections. Each section is marked by the symbol %%. The first section
contains declarations. The second section contains the rules of the grammar. User-written routines that are to be
part of the generated program can be included in the third section. The outline of yacc specifications is as follows:

definitions
%%
rules
%%
user code

If there are no definitions or user code, the input can be abbreviated to

%%
rules

Definitions

The first section in a yacc specification is the definitions section. This section includes information about the
elements used in the yacc specification. Additional items are user-defined C statements, such as include
statements, that are referenced by other statements in the generated program.

Each token, such as VARIABLE in example program calc, must be predefined in a %token statement in the
definitions section:

%token VARIABLE

Tokens are also called terminals. Only nonterminals appear as the left part of a rule, and terminals can appear
only on the right side of a rule. This helps yacc distinguish terminals from nonterminals. Other types of
statements that assist in ambiguity resolution appear here, and will be discussed in later sections.

Each grammar that yacc generates a parser for must have a start symbol. Once the start symbol has been
recognized by the parser, its input is recognized and accepted. For a programming-language grammar, this
nonterminal represents the entire program.

The start symbol should be declared in the definitions section as:

%start program

If no %start symbol is declared, it is taken to be the left side of the first rule in the rules section.

Rules

Your language’s grammar rules must be entered in a variant of BNF. The two following rules illustrate how to
define an expression:

exp : VARIABLE;
exp : exp ’-’ exp;

Action statements that are enclosed in braces { } specify the semantics of the language, and are embedded within
the rules. More information about how rules are built is given below.
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User Code

Action statements may require other routines, such as common code-generating routines, or symbol table building
routines. Such user code can be included in the generated parser after the rules section and a %% delimiter.

The following sections discuss definitions and rules in detail.

Rules
Rules describe how programming-language constructs are put together. Any given language can be described by
many configurations of rules. This frees you to write the rules for clarity and readability.

A rule consists of a left part and a right part. The left part is said to produce the right part; or, the right part is
said to reduce to the left part. A rule can also include the action the parser is to perform once it (the rule) is
reduced.

General Form of Rules

Blanks and tabs are ignored within rules (except in the action parts). Comments can be enclosed between /* and
*/. The left part of the rule is followed by a colon. Then come the elements of the right part, followed by a
semicolon.

Rules that have the same left part can be grouped together with the left part omitted and a vertical bar signifying
‘‘or’’. For example, the grammar

exp : VARIABLE;
exp : exp ’-’ exp;

can be written as:

exp : VARIABLE
| exp ’-’ exp;

Note that these are equivalent to the BNF:

<exp> ::= VARIABLE
<exp> ::= <exp> - <exp>

A rule can also contain C statements that are the compiler actions themselves. These actions are enclosed in
braces { and } and are executed by the generated parser when the grammar rule has been recognized. More will be
said about actions in the following section.

Suggested Style

yacc permits you to write rules in completely free form. For example, the grammar for the above rule can be
written:

exp:VARIABLE|exp’-’exp;

However, this form is much less readable.

Two styles of yacc grammar are in common use. The first of these is used throughout this manual.

First, start the left part at the beginning of the line; follow it with a tab; then a colon. The right part should be on
the same line, also preceded by a tab.

Second, group all rules with the same left part together, and use the vertical bar aligned under the colon for all but
the first rule in the group.

Third, place action items on a separate line following the associated rule, preceded by three tabs.

Finally, precede the terminating semicolon with a single tab, to align it with the colon and vertical bar.

The outline of this style is:

left : right1 right2
{action1}

| right3 right4
{action2}

;
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This style is compact and works well for languages whose rules and actions together are simple.

For somewhat more extensive languages, or for additional flexibility in adding statements to the action part, use
the following modification of the style.

left : right1 right2 {
action1
}

| right3 right4 {
action2
}

;

For specifications that have larger rules or more complex actions, another style is recommended.

As in the first style, group rules with the same left part, and use the vertical bar. Place the left part, with its
terminating colon, on a line by itself. Then indent the right parts of the rule one or more tabs as necessary to
make the rule and actions readable. Finally, the vertical bar and the semicolon should be at the beginning of the
line.

The outline for this style is as follows:

left:
right1 right2 {

action1
}

| right3 right4 {
action2
}

;

Since the input to yacc can be entirely free form, there is no restriction on how to write your rules. However, if you
use a consistent style throughout, it will make your job easier.

Actions
In addition to generating a parser to recognize a specific language, yacc also lets you include parsing action
statements. With this feature, you can include C-language action statements that will be performed when specified
constructs are recognized.

Basic Action Statements

The example language slang, described above, the action statements simply print information on the terminal as
productions are recognized:

sent : phrase PERIOD
{printf ("sentence\n");}

;
group : LPAREN phrase RPAREN

{printf ("group\n");}
;

Even if your actions will be more complex, using printf statements in this way can help verify your grammar early
in the development process.

Action Values

If the specification is for the grammar of a programming language, the actions will normally interface to routines
that access symbol tables or generate code.

yacc lets rules assume a value to help keep track of intermediate results within rules. These values can contain
symbol-table information, code-generation information, or other semantic information.

To set a value for a rule, simply use a statement of the form

$$ = <value>;

within an action statement. The symbol $$ is the value of the production. This value can be used by other rules
that use this rule as a non-terminal part.
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The example program calc, given above, illustrates the use of the value of productions:

expr : expr ’-’ expr {
printf

("Subtract %c from %c giving E\n",
$3, $1);

$$ = ’E’;
}

| VARIABLE
{$$ = $1;}

;

The first rule’s action statement sets the value of the production expr to ’E’:

$$ = ’E’;

The value of a rule is significant in that it can be used in productions including that rule as a nonterminal part.

An example is given in the first rule above. The printf statement refers to the items $1 and $3. yacc interprets
these symbols to mean the value of elements one and three of the right side, respectively; that is to say, $1 refers
to the value of the first expr in the right side of the first rule, and $3 refers to the second expr, as illustrated
below:

expr : expr ’-’ expr
$1 $2 $3

calc does not reference $2.

The value for the tokens is provided by the lexical analyzer. The second rule for expr uses this to get the value of
the token VARIABLE. The value represented by $1 is provided by the lexical analyzer in the statement

yylval = yytext [0];

To give another example, here is a simple calculator language, called digit, which performs arithmetic on one-digit
numbers and prints the results. Type the following grammar into the file digit.y:

%token DIGIT
%%
session : calcn

| session calcn
;

calcn : expr ’\n’ /* print results */
{printf ("%d\n", $1);}

;

expr : term ’+’ term
{$$ = $1 + $3;}

| term ’-’ term
{$$ = $1 - $3;}

;

term : DIGIT
{$$ = $1;}

;

%%
#include <stdio.h>
yylex ()
{

int c;
c = 0;

while (c == 0) { /* ignore control chars and space */
c = getchar();
if (c <= 0) return (c); /* could be EOF */
if (c == ’\n’) return (c); /* set c to ignore */
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if ((c <= ’9’) && (c >= ’0’)) {
yylval = c - ’0’;
return (DIGIT);

}
if (c <= ’ ’) c = 0;

}
return (c);

}

This creates the yacc specification file. To turn it into a program, type

yacc digit.y
cc y.tab.c -ly -o digit

To invoke the compiled progra, type:

digit

And to test it, type the following:

1+2
2+2
8+9

digit will reply, respectively:

3
4
17

To exit from digit, type <ctrl-C>.

digit is essentially an interpreter — results are calculated as numbers are typed in. When you type in

1+1

the parser recognizes the construct

term ’+’ term

and executes the statement that adds two numbers together. The two numbers each in turn came from the
construct

term : DIGIT

and the value of the digit came from yylex. When the statement calcn is recognized, the value is printed as the
result. Thus, the calculations are performed at the time that the constructs are recognized. If a compiler were
being generated, the actions would likely build some form of intermediate code, or expression tree, as in:

expr : term ’+’ term
{$$=tree (plus, $1, $3);}

Structured Values

All the examples thus far have shown action values as simple int types. This is not sufficient for a large interpreter
or compiler, because at different points in the language a value can represent a constant values, a pointer to code
generation trees, or symbol table information.

To solve this problem, yacc allows you to define the values of $$ and $n as a union of several types. This is done
in the definitions section with the union statement. For example, to declare action values as an integer, tree
pointer, or a symbol-table pointer, you would use the following code:

%union {
int cval;
struct tree_t tree;
struct sytp_t sytp;

}

This says that action values can be a constant value cval, a code tree pointer tree, or a symbol-table pointer sytp.
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To ensure that the correct types are used in assignments and calculations in actions in the generated C program,
each token whose value will be used is declared with the appropriate type:

%token <tree> A B
%token <cval> CONST

In addition, the rules themselves can have a type declaration, as they also can pass action values. Their type is
declared in the %type statement:

%type <sytp> variable

This declares the nonterminal variable to reference the sytp field of the value union.

The values referenced in the action statements do not need to be qualified (unless they are referencing a field of one
of the union elements). yacc generates the necessary qualification for the references, based upon the type
information provided in the %type and %token statements.

Keep in mind that productions that do not have explicit actions will default to an action of

$$ = $1

which might cause a type clash when compiling the generated parser. This is more likely to arise during
debugging, when you have defined the types but have not put in the actions.

Handling Ambiguities
The ideal grammar for a language is readable and unambiguous. If the grammar is readable, its users will find it
easy to use. If the language is unambiguous, the parser generator will parse the programs correctly. However,
many common programming language constructs are ambiguous. Consider the following definition of an if
statement:

statement : if_statement
| others

if_statement : IF cond THEN statement
| IF cond THEN statement ELSE statement

Consider a program that contains a statement

if a > b then if c < d then a = d else b = c;

The parser does not know by the grammar specification which if_statement the else belongs with. At the point of
the else, the parser could correctly recognize it as part of the first if or the second if. The indentations illustrate
the interpretation of the ambiguity associating the else with the first if.

if a > b then
if c < d then

a = d;
else

b = c;

Associating it with the second if:

if a > b then
if c < d then

a = d;
else

b = c;

One solution to this ambiguity is to modify the language and rewrite the grammar. Some programming languages
(including the COHERENT shell) have a closing element to the if statement, such as fi. The grammar for this
approach is:

statement : if_statement
| others

if_statement : IF cond THEN statement FI
| IF cond THEN statement ELSE statement FI

Another ambiguity arises from a grammar for common binary arithmetic expressions. The following sample
specifies binary subtraction:
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exp : TERM
| exp ’-’ exp
;

For the program fragment

a - b - c

the parser can correctly interpret the expression as

(a - b) - c

or as

a - (b - c)

While for the if example, the language can be reasonably modified to remove the ambiguity, it is unreasonable in
the case of expressions. The grammar can be rewritten for exp but it is less convenient.

How yacc Reacts

Because some ambiguities, such as the ones detailed above, are common, yacc automatically handles some of
them.

The ambiguity exemplified by the if then else grammar is called a shift-reduce conflict. The parser generator can
either choose to shift, meaning to add more elements to the parse stack, or to reduce, meaning to generate the
smaller production. In the terms of if, the shift would match the else with the first then. Alternatively, the reduce
choice will match the else with the latest (rightmost) unmatched then.

Unless otherwise specified, yacc resolves shift-reduce conflicts in favor of the shift. This means that the if
ambiguity will be resolved in favor of matching the else with the rightmost unmatched then. Likewise, the
expression

a - b - c

will be interpreted as

a - (b - c)

Additional Control

yacc provides tools to help resolve some of these ambiguities. When yacc detects shift-reduce conflicts, it consults
the precedence and associativity of the rule and the input symbol to make a decision.

For the case of binary operators, you can define the associativity of each of the operators by use of the defining
words %left and %right. These appear in the definition section with %token.

The usual interpretation of

a - b - c

is

(a - b) - c

which is called left associative. However, the shift/reduce conflict inherent in

exp ’-’ exp

is resolved in favor of the reduce, or in a right-associative manner:

a - (b - c)

To signal yacc that you want the left-associative interpretation, enter the grammer as:

%left ’+’ ’-’
%token TERM
%%
expr : TERM

| expr ’-’ expr
| expr ’+’ expr
;
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Some operators, such as assignment, require right associativity. The statement

a := b + c

is to be interpreted as

a := (b + c)

The %right keyword tells yacc that the following terminal is to right associate.

Precedence

Most arithmetic operators are left associative. For example, with the grammar

%right =
%left ’-’ ’+’ ’*’ ’/’
%%
expr : expr ’-’ expr

| expr ’*’ expr
| expr ’+’ expr
| expr ’/’ expr
| expr ’=’ expr
;

The expression

a = b + c * d - e

based on associativity alone will be evaluated

a = (((b + c) * d) - e)

which is not according to custom. We normally think of * as having higher precedence than + or -, meaning that it
is evaluated before other operators with the same associativity. The evaluation preferred is

a = (b + (c * d) - e)

To generate a parser with this evaluation, use several lines of %left, one line for each level of precedence. Each
line containing %left describes tokens of the same precedence. The precedence increases with each line. Thus, to
get the common notion of arithmetic precedence, use a grammar of

%right =
%left ’-’ ’+’
%left ’*’ ’/’
%%
expr : expr ’-’ expr

| expr ’*’ expr
| expr ’+’ expr
| expr ’/’ expr
| expr ’=’ expr
;

This method of %left and %right gives tokens a precedence and an associativity. This can eliminate ambiguities
where these operators are involved. But what about the precedence of rules or nonterminals?

To specify the precedence of rules, the %prec keyword at the end of the rule sets the precedence of the rule to the
token following the keyword. To add unary minus to the grammar above, and to give it the precedence of multiply,
use %prec * at the end of the unary rule.

%right =
%left ’-’ ’+’ ’*’ ’/’
%%
expr : expr ’-’ expr

| expr ’*’ expr
| expr ’+’ expr
| expr ’/’ expr
| expr ’=’ expr
| ’-’ expr %prec *
;

If associativity is not specified, yacc will report the number of shift/reduce conflicts. When associativity is
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specified with %left, %right or %nonassoc, this is considered to reduce the number of conflicts, and thus the
number of conflicts reported will not include the count of these.

Error Handling
Parsers generated by yacc are designed to parse correct programs. If an input program contains errors, the
LALR(1) parser will detect the error as soon as is theoretically possible. The error is identified, and the programmer
can correct the error and recompile.

However, in most programming environments, it is unacceptable to stop compiling after the detection of a single
error. yacc parsers attempt to go on so that the programmer may find as many errors as possible.

When an error is detected, the parser looks for a special token in the input grammar named error. If none is
found, the parser simply exits after issuing the message

Syntax error

If the special token error is present in the input grammar error recovery is modified. Upon detection of an error,
the parser removes items from the stack until error is a legal input token and processes any action associated with
this rule. error is the lookahead token at this point.

Processing is resumed with the token causing the error as the lookahead token. However, the parser attempts to
resynchronize by reading and processing three more tokens before resuming normal processing. If any of these
three are in error, they are deleted and no error message is given. Three tokens must be read without error before
the parser leaves the error state.

A good place to put the error token is at a statement level. For example, the calc.y example in chapter 2 defines a
statement as

stmnt : stat
| stat ’\n’
| error ’\n’
;

Thus, any error on a line will cause the rest of the line to be ignored.

There is still a chance for trouble, however. If the next line contains an error in the first two tokens, they will be
deleted with no error message and parsing will resume somewhere in the middle of the line. To give a truly fresh
start at the beginning of the line, the function yyerrok will cause the parser to resume normal processing
immediately. Thus, an improved grammar is

stmnt : stat
| stat ’\n’
| error ’\n’

{yyerrok;}
;

will cause normal processing to begin with the start of the next line.

Error recovery is a complex issue. This section covers only what the parser can do in recovering from syntax
errors. Semantic error recovery, such as retracting emitted code, or correcting symbol table entries, is even more
complex, and is not discussed here.

yacc reserves a special token error to aid in resynchronizing the parse. After an error is detected, the stack is
readjusted, and processing cautiously resumes while three error-free tokens are processed. yyerrok will cause
normal processing to resume immediately. The token causing the error is retained as the lookahead token unless
YYCLEARIN is executed.

Summary
yacc is an efficient and easy-to-use program to help automate the input phase of programs that benefit by strict
checking of complex input. Such programs include compilers and interactive command language processors.

yacc generates an LALR(1) parser, that implements the grammar specifying the structure of the input. A simple
lexical analyser routine can be hand-constructed to fit in among the rules, or you can use the COHERENT command
lex to generate a lexical analyzer that will fit with the parser.

As the structured input is analyzed and verified, you assign meaning to the input by writing semantic actions as
part of the grammatical rules describing the structure of the input.

TUTORIALS



198 yacc, Yet Another Compiler-Compiler

yacc parsers are capable of handling certain ambiguities, such as that inherent in typical if then else constructs.
This simplifies the construction of many common grammars.

yacc provides a few simple tools to aid in error recovery. However, the area of error recovery is complex and must
be approached with caution.

Helpful Hints

Until you have mastered yacc, the best way to build your program is to do it a piece at a time. For example, if you
are writing a Pascal compiler, you might start with the grammar

%token PROG BEG END OTHER
program : PROG tokens BEG END ’.’

;
tokens : OTHER

| tokens OTHER
;

and with a simple lexical analyzer of:

PROGRAM return (PROG);
BEGIN return (BEG);
END return (END);
. return (yytext [0]);

With the generated program, you can easily test the grammar by feeding it simple programs. Then add items to
both the lexical analyzer and yacc grammar. With this approach, you can see the parser working, and if it behaves
differently than you expect, you can more easily pinpoint the cause.

If you have difficulty understanding what actions your parser is taking, yacc will produce for you a complete
description of the generated parser. To use this, you should be familiar with the way LALR(1) parsers work. To get
this verbose output, specify the -v option on the command line. The result will appear in the file y.output.

In addition, you can have the parser give you a token-by-token description of its actions while it does them, by
specifying the debug option -d. This also generates the file y.output, which is helpful in reading the debug output.
The debug code is generated when the -d option is used, but is not activated unless the YYDEBUG identifier is
defined. Include some code in the definitions section to activate it:

%{
define YYDEBUG

%}

Your parser can turn on and off the debugging at execution time by setting the variable YYDEBUG: one for on, zero
for off.

A frequent cause of grammar conflicts is the empty statement. You should use it with caution. yacc generates
empty statements when you specify actions in the middle of a rule rather than at the end; for example:

def : DEFINE {defstart();}
identifier {defid ($2);}

;

yacc generates an additional rule:

$def : /* empty */
{defstart();}

;
def : DEFINE $def identifier {defid ($2);}

;

The resulting empty statement can cause parser conflicts if there are similar rules and the empty statement is not
sufficient to distinguish between them.

Where to Go From Here
The Lexicon article for yacc summarizes its command syntax and features. The tutorial for lex, the COHERENT

lexical analyzer, describes how to combine lex with yacc to build applications simply.
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bc Desk Calculator Language

This tutorial introduces bc, the calculator language for COHERENT. If you have not used bc before, this tutorial will
introduce you to its features and functions. If you are familiar with bc, you can use it as a reference.

bc is a language that can calculate to high precision. It automatically adjusts the number of digits in a number to
represent it correctly. It is like having a powerful calculator at your fingertips.

Entry and Exit

The bc calculator for COHERENT is easy to use. Whenever you wish to invoke bc all you do is type its name (bc),
followed by a stroke of the carriage return key. When you are finished using the calculator and wish to exit, just
type the word ‘quit’ or <ctrl-D>. bc exits and returns control to COHERENT.

Example of Simple Use

bc performs calculations on formulas that you type into it. The formulas are laid out as you would naturally write
them. For example, to invoke bc, have it add 2+2, and then exit, type:

bc
2 + 2

bc replies:

4

Then, leave bc by typing:

quit

bc is an arbitrary precision calculator: the number of digits carried by bc depends upon the requirements of the
calculation, and is automatically expanded by bc. Thus, bc will never overflow. The number of digits it carries is
limited only by the amount of available computer memory. For example, invoke bc and then try this calculation:

2^500

The circumflex ‘^’ character signifies a superscript; thus, we are asking bc to raise 2 to the 500th power. After a
moment, bc will reply:

327339060789614187001318969682759915221664\
204604306478948329136809613379640467455488\
327009232590415715088668412756007100921725\
6545885393053328527589376

You have probably already noticed one nice thing about this calculator: you don’t have to include a print statement
as part of your command, because bc automatically prints the results onto your terminal screen. When bc sees
any expression, like ‘‘2+2’’ or ‘‘37-7’’, it prints the result.

bc provides the common arithmetic operators for add, subtract, multiply, and divide, as illustrated by the following
commands:

7 + 5
7 - 5
7 * 5
7 / 5

bc also provides the remainder operator ‘%’. To get a sense of how it works, type:

7 % 5
5 % 7

Here, bc prints the remainder of the first number divided by the second; in the case of the first example, bc prints
2, and in the second prints 5. As you saw above, bc also includes the exponentiation operator ‘^’.

With bc, you can also enter numbers with fractional parts. Type the following to illustrate:
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9.999 * 9.999

bc replies:

99.980

You can save temporary calculations or repeated constants in variables. The following example shows you first
how to define variables, and second how to use them:

a = 1.1
b = 2.2
a
b
a * b

Variable names can be longer than one letter.

The basic calculations in the above examples show only part of what bc can do. The following section describes
simple statements — the assignment of variables and abbreviations — that allow you to perform complex
calculations easily.

Simple Statements
Although you can use bc as a simple calculator for manipulating numbers, you can take advantage of its greater
power by using variables. Variables, as noted above, store parts of calculations or constants that you will use
repeatedly in calculations. Variable names are simply ‘‘words’’ that you make up. Here are some examples of
possible variable names:

a
b
totaltaxesdue
ratio

To use variables, simply give them a value, use them in a calculation in place of a number, or print them out.

To see how a variable can save you repetitive typing, and protect you from possible errors, invoke bc and type the
following:

x = 9.999
x
x * x
x = x * x
x

The following gives the example with bc’s replies in italics:

x = 9.999
x
9.999
x * x
99.980
x = x * x
x
99.980

bc did not reply to the assignment statements x=9.999 and x=x*x. However, it did print the value of x when
requested, and the results of arithmetic using x.

Calculations executed with hand-held calculators, with programming languages like C, or with bc often use the
following formula:

x = x + 1

To decrease the likelihood of error, bc offers you a shorthand expression for this common phrase:

x += 1

What it means is, ‘‘add one to x’’. Type the following example into bc to see how this expression works:
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x = 1
x * x
x += 1
x * x
x += 1

Likewise, bc provides an abbreviation for:

x = x - 2

The form should now be familiar:

x −= 2

The number to the right of the -= or += operator can be replaced with a variable or even another calculation. When
you type:

i = 4
x = 48
x −= i
x

bc replies:

44

Alternatively, if you type:

i = 4
x = 48
x −= i * i
x

then bc replies:

32

Similar abbreviations are provided for multiplication, division, remainder, and exponentiation. Here is a summary
of this class of operation.

a += 2 Replace a with a plus 2
b += a Replace b with b plus a
b −= a Replace b with b minus a
c *= b Replace c with c multiplied by b
c /= a Replace c with c divided by a
c %= b Replace c with remainder of c divided by b
d ^= 3 Replace d with d raised to the third power

bc also has an operator that increases a variable by one: ‘++’. When you type:

a = 1
++a

then bc replies:

2

To use this operator in an expression, combine it with a variable anywhere that a variable would normally be used.
For example, entering

b = 1
a = 3
b = ++a
a
b

yields:

4
4

The ‘++’ operator can also be put after a name. The resulting value in the expression is the value of the name
before it is incremented. However, after the expression is evaluated, the name will have an incremented value. The
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following example shows the use of ‘++’ both before and after a name:

a = 1
b = 1
a++
++b
a
b

bc replies:

1
2
2
2

Operators are used in this manner:

a = 1
b = 2
c = a++ + ++b

Similar to ‘++’ is ‘−−’. It behaves the same way, except that rather than adding one, it subtracts one.

Numbers with Fractions
Most of the examples presented earlier use whole numbers (integers). However, bc can use numbers with
fractional parts. This section discusses the use of fractional numbers in bc and their precision under different
operations.

The Scale of Numbers

The number of digits to the left of the decimal point carried by bc depends upon the requirements of the
calculation. If you calculate a large number, as in:

2^500

the result will contain as many digits as needed to express the product.

The number of digits to the right of a decimal point is called the scale of the number. Scale depends upon the
operation that produces the number of digits, and a variable called scale that will be described shortly.

To illustrate simple uses of numbers with fractions, invoke bc and then type:

a = .01
b = 0.99
a + b

bc replies:

1.00

Addition and Subtraction

bc will dynamically adjust the number of digits in the calculation. It deals similarly with fractional numbers. To
the following example

a = 0.01
b = 0.001
a + b

bc reply:

.011

In addition and subtraction, the scale of the result is the larger of the scales of the two numbers involved. Results
are not truncated in addition or subtraction operations.
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Scale During Multiplication

Other arithmetic operations act differently with numbers that contain fractions. In the multiplication of two
numbers, the scale of the product will at least equal the larger of the scales of the two numbers. For example, the
input:

1.1 * 1.11

results in:

1.22

Setting the Scale of Results

To increase the number of fractional digits for higher accuracy, bc provides the built-in variable scale. The
following example illustrates the scale variable:

scale = 3
1.1 * 1.11

The result from this example is:

1.221

Note, however, the scale of the product of a multiplication procedure never exceeds the sum of the scales of the two
numbers being multiplied. For example,

scale = 10
1.1 * 1.11

yields the result:

1.221

If the variable scale is less than the sum of the scales of the numbers being multiplied, then the product will have
a scale equal to that of the variable scale. For example,

scale = 4
1.11 * 2.222

yields:

2.4664

The scales of the operands are 2 and 3. The larger scale is 3, so the result of a multiplication will have a scale of
at least 3, no matter what scale is set to. Also, the sum of the scales is 5, so the result will never have more than 5
digits to the right of the decimal point. In this example, scale has been set to a scale of 4. Therefore, the result
has four digits to the right of the decimal point.

Scale for Divisions

For division and remainder, the scale of the result is determined only by the value of the variable scale. For
example,

scale = 13
14 / 13
14 % 13

yields:

1.0769230769230
.0000000000010

For non-whole numbers, as well as for integers, the definition of remainder is chosen so that the relationship

dividend = (divisor * quotient) + remainder

is true.

TUTORIALS



204 bc Desk Calculator

Scale From Exponentiation

bc sets the scale of a result of exponentiation as if repeated multiplications had been performed. Thus, for

5.992 ^ 5

the scale is chosen as if you typed:

n = 5.992
n * n * n * n * n

That is, the default is the scale of the largest (or, in this case, the only) number being multiplied; and scale cannot
exceed the sum of the scales of the numbers being multiplied. Thus, the scale of the product in this example has a
default setting of 3, and can be reset up to 15.

What Is the Current Scale?

The variable scale is just like other variables: you can assign values to it, as above. Because it is like regular
variables, you can also use it in operations, as in this example:

scale += 1

You can also print its value:

scale

The value of the scale variable is zero until you explicitly change it.

The if Statement
The statements shown so far have been either assignment statements, giving a new value to a variable; or an
expression, which prints the resulting value. Several other kinds of statements are available. These give you
power to write programs that make decisions and perform iterative computations.

Using the if Statement

To see the if statement in action, type the following example into bc:

x = 3
if (x < 5) x
if (x > 5) -x

bc replies:

3

If the input is:

x = 6
if (x < 5) x
if (x > 5) -x
<return>

bc replies:

-6

The part of the if statement in parentheses, such as (x > 5), determines whether bc executes the statement that
follows it, such as -x. If the expression is false, the following statement is not executed. If the expression is true,
the following statement is executed.

Comparisons

The decision expression in an if statement is enclosed in parentheses. The decision can be based upon a
comparison of two operands, or numbers. The kinds of comparisons that can be done are:
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== First operand equal to second
!= First operand not equal to second
<= First operand less than or equal to second
< First operand less than second
>= First operand greater than or equal to second
> First operand greater than second

The if statement can include the sorts of the simple statements already shown. You can also include an if
statement, as well as the while, do, and for statements, which will be discussed below. The following example
illustrates the use of an if statement within an if statement:

a = 2
b = 6
if (a >= 2) if (b > a) a + b
<return>

bc replies, simply:

8

Because both of the if conditions were true, bc proceeded to add a and b. Note that nested if statements must
appear on the same line. Therefore,

if (a == 3) if (b > a) a + b

does not print the result of a + b because not both conditions were true. However

if (a == 3)
if (b > a) a + b

prints the result of a + b because bc treats if statements one by one, and the second if statement’s condition is
true.

Grouped Statements

You can place more than one statement after the expression part of the if statement by using grouping braces ‘{’
and ‘}’. This can be useful if you want to perform several calculations based on the result of an if statement
comparison. The following example prints the value of a and b if the value of b is less than the value of a:

a = 1
b = .99
if (a > b) {

a
b

}

bc replies:

1
.99

Any statement may be enclosed within the group braces, as the following example shows:

a = 1
b = .99
if (a > b) {

a
b
if ((a + b) >= 2) a + b

}

Many Statements Per Line

To this point, all of our examples typed each statement on its own line. This includes the group braces ‘{’ and ‘}’,
the latter of which must appear on a line by itself. You can, however, place several statements on one line if you
separate them with semicolons. If you do this, remember that the semicolon rather than the carriage return
separates the statements. For example, if you type:

a = 1;b = 2;c = 3
a;b;c
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bc replies:

1
2
3

You can use this in combination with the group braces:

a = 1;b = 2;c = 3
if ((a + b) >= c) {

a; b; c; a + b; }

The reply from bc is:

1
2
3
3

This example can be compressed even further by putting all of the if statement on one line:

a = 1;b = 2;c = 3
if ((a + b) >= c) { a; b; c; a + b; }

You do not need to follow the ‘}’ with a semicolon.

The while Statement
The while statement repeats calculations. This is useful in successive approximation calculations. The following
example of the while loop prints the numbers one through ten:

i = 1
while (i <= 10) {

i
i = i + 1

}

bc replies:

1
2
3
4
5
6
7
8
9
10

The statement

i = i + 1

adds 1 to the variable i. The expression

(i <= 10)

compares i with ten. While i is less than or equal to ten, the while loop executes. When i is increased to greater
than ten, the loop stops executing.

bc checks the comparison expression for the while loop before the loop is entered for the first time. If the
comparison fails, the loop is not executed at all; otherwise the processing repeats as long as the comparison is
true. For example, the following statements do not print anything:

i = 0
while (i > 1) i
quit
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Abbreviations in the while Statement

If we recall the assignment statements from the previous section, we can shorten the while counting-to-ten
example to:

i = 1
while (i <= 10) {

i
i += 1

}

The result remains the same — a list of numbers from one to ten.

Another abbreviation of the example uses the ‘++’ operator. The variable i is incremented, then tested in the while
expression, which simplifies the entire example to:

i = 0
while (++i <= 10) i

Before the while is executed, i is set to zero. Then, the while expression increments the value of i before it is used
or compared, Thus, the first value compared, then printed, is one.

Finally, the example calculation can be shortened to one line. If a variable in bc is used before it is initialized, it
will have the value of zero. For example:

zip

prints:

0

Using this in our counting-to-ten example yields:

while (++n <= 10) n

The for Statement
for is a statement that controls the execution of other bc statements. You should use for to write a formula to
control the number of times a value is computed.

The previous section demonstrated how to print the numbers one to ten using a while statement. The following
does the same task with a for statement:

for (i=1; i <= 10; ++i) i

Three Parts of the for Statement

The for statement is more complex than the while statement; its controlling expressions have three parts.

The first part, shown here in italics

for (i=1; i <= 10; ++i) i

sets up the initial condition. The second part

for (i=1; i <= 10; ++i) i

tests whether more iterations should be performed. bc performs this test before it executes the statements that are
subordinate to the for statement. If the test fails, no more iterations are performed.

The third part

for (i=1; i <= 10; ++i) i

is performed at the end of each iteration. In practically every instance, this part of the for statement modifies the
value of the variable that the second part tests.

Taken together, these statements (1) set i to zero; (2) check whether i is less than or equal to ten; (3) if i proves to
be so, prints i, and then increases it by one.
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The following example of the for statement adds the squares of the numbers one through ten, prints each square,
and then prints the sum of the squares at the end.

sum = 0
for (n=1; n <= 10; ++n) {

sq = n * n
sq
sum += sq

}
sum

The result is:

1
4
9
16
25
36
49
64
81
100
385

Similarities Between the for and while Statements

To illustrate the similarity between the for statement and the simpler while statement, the following rewrites the
above example, substituting the while for the for:

sum = 0
n = 0
while (++n <= 10) {

sq = n * n
sq
sum += sq

}
sum

Functions in bc
bc allows you to name routines that you use repeatedly. You can then call them by name without having to retype
them; obviously, this can be a great time-saver. These named routines are called functions. This section shows you
how to define and use functions for your bc calculations.

Example of Function Use

The following example defines a function that calculates the area of a circle from its radius.

scale = 5
pi = 3.14159
define area (radius) {

r2 = radius * radius
return (pi * r2);

}
area (1.00)
area (2.00)
area (56)

The results will be:

3.14159
12.56636
9852.02624

The define keyword tells bc that you are defining a function. The name of the function follows. Then, in
parentheses, come the parameters of the function. In this example, the only parameter, or argument, of the
function is radius. Most functions have arguments, but they are not mandatory.
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The return statement defines the value of the function. In the area example, the expression

area (1.00)

references the function area. bc then performs the calculation described by your definition of the function area.
The number

1.00

is substituted wherever the parameter radius is shown.

The statement

r2 = radius * radius

is then executed, yielding this result:

1.00

Then, the statement

return (pi * r2)

calculates the area and returns its value. The statement

area (1.00)

then has the value calculated in the return statement.

Functions Using Other Functions

Functions in bc perform calculations using the same expressions as the rest of the bc program. This includes the
use of functions. The area program can be written using another function, sq, to calculate the square of a
number:

scale = 5
pi = 3.14159
define sq (number) {

return (number * number)
}

define area (radius) {
return (sq (radius) * pi)
}

area (1.00)
area (2.00)
area (56)

Again, the results will be identical:

3.14159
12.56636
9852.02624

Functions That Call Themselves

Not only can functions call other functions and perform regular calculations; a function can use itself in
calculations. An example of this is the Fibonacci calculation:

define fib (f) {
if (f == 0) return (0)
if (f == 1) return (1)
if (f > 1) return (fib (f - 1) + fib (f - 2))

}
fib (5)
fib (20)

Fibonacci numbers are defined in the following way: Fibonacci number zero is zero; similarly, Fibonacci number
one is one. Any other Fibonacci number is defined as the sum of the two previous Fibonacci numbers. Fibonacci
numbers are defined only for non-negative integers.

The defined function fib follows this definition by returning zero if the number requested is zero and one if the
argument is one. If the number is neither of these, then the function calls itself to calculate the previous two
numbers of the series and adds them together.
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The auto Statement

Many functions that call other functions, including themselves, may require variables that are not changeable by
the rest of the program. This is signalled to bc by the auto statement:

auto var1, var2

This declares var1 and var2 as local to the function that contains them.

To illustrate the use of auto, the following bc program calculates the factorial of a number:

define factorial (number) {
auto value, i
value = 1
for (i = 1; i <= number; ++i) value *= i
return (value)

}
value = 3
factorial (value)
i = 99
factorial (20)
value
i

The result is:

6
2432902008176640000
3
99

The first number, 6, results from:

factorial (value)

The second number is from:

factorial (20)

The last two numbers are from value and i, and are included to demonstrate that the variables in the function
factorial appearing in this statement:

auto value, i

are separate from the variables of the same name in the rest of the program.

If the function calls itself, as the fib example does above, any variable names noted in the auto statement are
handled separately for each call of the function.

Programs in a File
Because its programs can be quite complex, bc lets you keep them in files. This lets you build a library of bc
programs and functions that can be called up easily.

Using a Program From a File

To illustrate the use of programs stored in a file, type the following example into file fib.bc using the editor of your
choice. The program defines the function fib:

define fib (f) {
if (f == 0) return (0)
if (f == 1) return (1)
if (f > 1) return (fib (f - 1) + fib (f - 2))

}

To use a bc program that has been stored in a file, enter the file name on the bc command line, like this:

bc fib.bc

The function definition will be read in by bc and ready for your use. To use the function, simply type the function
name with parameters.
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So, if you type:

bc fib.bc
fib (6)

bc will reply:

8

Using Libraries

You can enter several useful programs in their own files and call them into bc at the same time. The following
example creates another function that calculates the sum of the squares of integers up to a given number. Use an
editor to type the following into a file named sumsq.bc:

define sumsq (number) {
auto i, sum
sum = 0
for (i = number; i > 0; --i) sum += i ^ 2
return (sum)

}

Now, you can use the sumsq function to print the sum of the squares for each number from one to ten:

bc sumsq.bc
for (i = 1; i <= 10; ++i) sumsq (i)

The result is:

1
5
14
30
55
91
140
204
285
385
quit

You can use the two functions stored in a file to print the difference between the sum of the squares of numbers,
and the Fibonacci number:

bc fib.bc sumsq.bc
for (i = 1; i <= 10; ++i) sumsq (i) - fib (i)
quit

The result of this questionable computation is:

0
4
12
27
50
83
127
183
251
330

The bc Library

COHERENT provides an extended library to go with bc. It includes the following functions:
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atan(z) arctangent of z
cos(z) cosine of z
exp(z) exponential function of z
j(n,z) nth order Bessel function of z
ln(z) natural logarithm of z
pi the value of pi to 100 digits
sin(z) sine of z

The library is stored in file /usr/lib/lib.b. To use the library, invoke the bc command with the -l option.

To show how the library can be used in your work the following example computes the sine of an angle of one-third
radian with scale set to 20:

bc -l
scale = 20
sin (1/3)
quit

The result is:

.32719469679615224418

Summary
The Lexicon entry for bc summarizes its commands, features, and libraries. It will also refer you to related
commands and functions.
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Introduction to the m4 Macro Processor

m4 is a macro processor for the COHERENT system. It is a powerful and flexible text processing tool. You can tell
it, with a great degree of generality, to search for macro names and replace them with other strings. Macros can
also take arguments.

m4 provides a useful front end for programming languages such as fourth-generation lanaguages (4GLs) which
commonly have no built-in macro facility. m4 also has powerful facilities for manipulating files, making decisions
conditionally, selecting substrings, and performing arithmetic, so it is useful for processing forms.

The command

m4 [ file ... ]

invokes m4. m4 reads each file in the order given on the command line; if no file is given, m4 reads from the
standard input. The file ‘-’ also indicates the standard input; this allows you to perform interactive input while m4
is processing files. m4 reports any file that it cannot open, and eliminates it from the input stream.

m4 writes its output to the standard output stream. As with other COHERENT commands, the optional output
redirection specification >outfile on the command line redirects the output into outfile. To leave m4, type <ctrl-D>.

Definitions and Syntax

m4 reads text one line at a time from its input stream. When it reads a line of text, it scans the line for a macro
that you have defined. A legal macro name is a string of alphanumeric characters (letters, digits, underscore ‘_’),
the first of which is not a digit. m4 recognizes the macro name only if it is surrounded by nonalphanumeric
characters (i.e., spaces or newline characters) on both sides.

When m4 finds a macro, it removes it from the input stream and replaces it with its definition. It then writes the
resulting modified text (called replacement text), onto the input stream. m4 then reads another line from the input
stream, and continues processing.

Text that is contained within single quotation marks is quoted (i.e., is contained between a grave mark ` on the left
and an apostrophe ’ on the right). All other text is unquoted. m4 searches only unquoted text for macros.

A macro call can be either a macro or a macro immediately followed by a set of arguments:

macroname(arg1, ..., argn)

A set of arguments must start with a left parenthesis that follows the macro immediately (i.e., no space can come
between the macro and the left parenthesis). The entire argument set must be enclosed by balanced, unquoted
parentheses: parentheses may appear within the text of an argument, but they must always come in balanced
pairs. A single left or right parenthesis may be passed by quoting it, e.g. `(’ or `)’.

Arguments are separated by commas that are neither within apostrophes nor within an inner set of unquoted
parentheses. m4 strips from each argument all leading unquoted spaces, tabs, and newlines. It processes the text
of each argument in the same manner that it processes ordinary text; that is, it removes, evaluates, and replaces
any recognized macro calls before it stores the argument text for possible use within the replacement text. If you
wish to pass a macro name or an entire macro call as an argument, it must be quoted. m4 stores the values of the
first nine arguments for possible use in the replacement text. It processes arguments after the ninth, but throws
away the results.

m4 does not search quoted text for macros. Instead, it removes the quotation marks and copies the text to the
standard output unchanged. Quotes can be nested; that is, quoted text can contain other blocks of quoted text.
m4 removes only the outermost level of quotation marks each time it reads a piece of quoted text. This aids in
delaying macro expansion in text until the second (or later) time the text is read by m4.

m4 includes numerous predefined macros, which perform various functions. The remainder of this document
describes the predefined macros in detail. The Lexicon entry for m4 summarizes each predefined macro.
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Defining Macros

The macro

define(`name’, `definition’)

defines a macro name and its replacement text definition. m4 replaces every subsequent unquoted occurrence of
name with definition, as described above. For example, the m4 input

define(`her’, `COHERENT’)
To know, know, know her
Is to love, love, love her ...

produces the output

To know, know, know COHERENT
Is to love, love, love COHERENT ...

name should usually be quoted. If it is not quoted and it is being redefined, m4 sees its old definition as the first
argument to define, which will not have the intended effect. Similarly, definition should be quoted if the macro
names that occur in it should not be replaced.

Any legal macro name may be the first argument of a define. If you redefine a predefined macro, its original
function is lost and cannot be recovered.

As noted above, m4 recognizes a macro name only if it is surrounded by non-alphanumeric characters. For
example,

define(`her’, `COHERENT’)
Coherent software is reliable software.

produces the output

Coherent software is reliable software.

m4 does not recognize the characters her in the word Coherent as a macro name.

The value of the define macro is the null or empty string (the string which contains no characters). In other
words, m4 puts nothing (the null string) back on its input stream when it processes a define call.

Like predefined macros, user-defined macros may take arguments. m4 replaces the string $n in the macro
definition with the value of the nth argument, where n is a digit (1 to 9). It replaces $0 with the macro name. If
the argument set contains fewer than n arguments, m4 replaces $n with the null string. m4 uses functional
notation to specify argument sets. Unlike a normal function, however, an m4 macro does not require a fixed
number of arguments. The same macro may be called with or without an argument set, or with argument sets
containing different numbers of arguments.

The following macro concatenates its arguments:

define(`cat’, $1$2$3$4$5$6$7$8$9)

Then

cat(one, `two’, ``three’’, `four, four ’,
five(also,),,seven)

becomes

onetwothreefour, four five(also,)seven

A more complex definition is:

define(`comma’, ``$0 (which looks like `,’)’’)

This turns each subsequent unquoted occurrence of

comma

into

comma (which looks like `,’)

Two sets of quotation marks around the replacement text are necessary. When m4 reads this call to macro define,
the resultant argument text is:
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comma

for the name and

`$0 (which looks like `,’)’

for the definition. When m4 sees the text

comma that is not quoted

it evaluates and replaces the now-defined macro name comma to produce the text

`comma (which looks like `,’)’ that is not quoted

on the input stream. Because comma appears inside a set of quotation marks, m4 does not treat it as a macro
name. For the same reason, the string ‘,’ also passes through unmodified. The final output is:

comma (which looks like `,’) that is not quoted

When the predefined macro dumpdef is used without arguments, it returns the names and definitions of all
defined macros. For each macro, it returns its quoted name, a tab character, and then its quoted definition; no
definition is given for a predefined macro. When used with arguments,

dumpdef(name)

returns the quoted definition of each macro name that appears as an argument.

The predefined macro

undefine(`name’)

removes a macro definition. As noted for define above, the argument must be quoted to have the desired effect.
undefine ignores arguments which are not defined macro names. The value of the undefine call is the null string.
If a predefined macro is undefined, its original function cannot be recovered.

Input Control

The predefined macro changequote changes the quote characters. For example:

changequote( {, })

makes the quote characters the left and right braces. It also removes the effect of the previously defined quotation
characters. Missing arguments default to ` for open quotation and ’ for close quotation. Thus, changequote
without arguments restores the original quote characters ` and ’. If the arguments are identical, the nesting ability
of quotation marks is temporarily lost. Instead, the first instance of the new quote character turns on quoting and
the next instance turns off quoting. The value of the changequote call is the null string.

The predefined macro dnl (delete to newline) ‘‘eats’’ all characters from the input stream up to and including the
next newline and returns the null string. It is particularly useful in a string of define macro calls. Although m4
replaces each define by the null string, newlines often separate macro definitions, and m4 copies the newlines to
the output stream unchanged. Two ways of using dnl are:

define(this, that)dnl
define(something, else)dnl

dnl(define(this, that), define(something, else))

The first examples use dnl without arguments. The final example uses dnl with an argument set, which m4
processes (performing each define) and subsequently ignores. The following section describes an alternative (and
generally preferable) method of eliminating extraneous newlines in a sequence of define calls.

m4 includes two decision-making macros: ifdef and ifelse.

ifdef checks whether a macro is defined. It has the following form:

ifdef(macro,defvalue,undefvalue)

If macro is defined, ifdef returns defvalue; otherwise, it returns undefvalue.

ifelse compares pairs of arguments. It has the following form:

ifelse(arg1,arg2,arg3, ... , arg9)

ifelse compares arg1 with arg2. If they are the same, it returns arg3. If not, and if arg4 is the last argument, it
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returns arg4. Otherwise, it repeats the process, comparing arg4 with arg5, and so on. Like other m4 macros, this
takes a maximum of nine arguments.

In addition to each file specified in the command line, any other accessible file may be included in the input stream
with the predefined macro

include(file)

m4 replaces this macro call on the input stream with the entire contents of the specified file. If file cannot be
accessed, include causes a fatal error; m4 prints an error message and exits. The alternative predefined macro

sinclude(file)

functions exactly like include, except that it does not print an error message and stop processing if file is
inaccessible.

Output Control

m4 maintains ten output streams, numbered zero through nine. Stream 0 is the standard output, where m4
normally directs its output. Streams 1 through 9 are temporary files. The predefined macro

divert(n)

diverts output away from stream 0, appending it instead to stream n. Any n outside the range 0 to 9 causes output
to be thrown away until the next divert call. divert without any arguments or with a nonnumeric argument is
equivalent to divert(0). The value of a divert call is the null string.

The preceding section described the use of dnl to eliminate extraneous newlines on the output stream when
processing a sequence of define calls. A more readable method of eliminating the newlines is to precede the
definitions with divert(-1) and follow them with divert. m4 then diverts the extraneous newlines to the
nonexistent stream -1.

The predefined macro

undivert(streams)

fetches text diverted to one or more temporary streams. It appends the text from the specified streams in the given
order to the current output stream. m4 does not allow diverted text to be undiverted back to the same stream.
undivert with no arguments undiverts all diversions in numerical order. The value of undivert is the null string;
undiverted text is not scanned for macro calls, but is simply moved from one place to another. m4 automatically
undiverts all diversions in numerical order to the standard output (stream 0) at the end of processing.

To illustrate the use of divert and undivert, invoke m4 and type:

define(`count’, $1$2)

And to see what macro count does, type:

count(one, three)

The output on the screen reads:

onetwo

Now type:

divert(1)

This diverts device 1 (the standard output) into a temporary file. Now type:

count(one, three)

Nothing appears on the screen. divert sent the output of the macro count(one, three) into a temporary file.
Thus, the output is not lost, as you might have thought. To demonstrate the existence of that output, type:

divert

to reset the standard output to be the screen. See for yourself. Now, when you type

count(one, four)

m4 replies on the screen:
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onefour

As you can see, the standard output is again directed to the screen. To retrieve the diverted output of count(one,
three), and send it to the screen, type:

undivert(1)

which produces:

onethree

The predefined macro divnum returns the current diversion number.

The predefined macro

errprint(message)

sends the given message to the standard error stream. The value of errprint is the null string.

String Manipulation

The predefined macro

substr(string, start, count)

returns a substring of a string of characters. The first argument string can be anything. The second argument
start is a number giving the starting position of the desired substring in string. Position 0 is the leftmost character
of string, position 1 is the next character to the right, and so on. If start is negative, the orientation switches to the
right. Position -1 is the rightmost character of string, position -2 is the character to its left, and so on. The third
argument count specifies the length and direction of the substring. Zero returns the null string. A positive count
returns a substring consisting of the character addressed by start and count-1 characters to the right of it. A
negative number does the same thing, but to the left. If count is omitted, it is assumed to be of the same sign as
start and large enough to extend to the end of string in that direction. If start is omitted, it is assumed to be 0 if
count is positive or omitted, or -1 if count is negative. For example:

define(`alpha’, `abcdefghijklmnopqrstuvwxyz’)
substr(alpha, , )

returns

abcdefghijklmnopqrstuvwxyz

Here both start and count are omitted and are therefore assumed to be 0 and 26, respectively.

substr(alpha, 0, 6)
substr(alpha, , 6)

both return

abcdef

Similarly,

substr(alpha, , -6)
substr(alpha, 21, )

both return

uvwxyz

Finally,

substr(alpha, -6, )
substr(alpha, 0, 21)

both return

abcdefghijklmnopqrstu

The predefined macro

translit(string, characters, replacements)

transliterates single characters within a string. It returns string with every occurrence of a character specified in
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characters replaced with the corresponding character from replacements. If there is no corresponding character,
translit simply deletes the character. For example:

define(liquorjugs, `pack my box with five dozen liquor jugs’)
translit(liquorjugs, aeiou, 1234)

returns:

p1ck my b4x w3th f3v2 d4z2n l3q4r jgs

Numeric Manipulation

m4 can simulate the long integer variables typical of most programming languages by using define as the
assignment operator. Whenever the defined macro name appears unquoted, m4 immediately replaces it by its
numeric value.

The predefined macros incr and decr return their argument incremented or decremented by 1. Thus,

define(`x’, 1234)
incr(x)

returns:

1235

Note that incr and decr do not change the value of the simulated variable x, or of any other variable. They return
only that value plus or minus 1; x itself retains its value of 1234.

incr and decr initialize to zero all arguments that are omitted or not a valid number. Thus, the example

incr(a34/87)

returns 1; but

incr(123.67)

returns 124. As you can see, incr truncates floating-point numbers. The same applies to a variable that you have
defined to have a floating-point value.

More generally, the predefined macro

eval(expression)

evaluates an integer-value arithmetic expression and returns the resulting value. The operators available, in order
of decreasing precedence, are:

( ) Parentheses for grouping
+ - Unary plus, negation
^ ** Exponentiation
* / % Multiplication, division, modulus
+ - Addition, subtraction
> < >= <= == != Comparisons
! Logical negation
&& & Logical and
|| | Logical or

The comparisons and logical operators return either 0 (false) or 1 (true). eval performs all arithmetic in long
integers. eval reports an error if its argument is not a well-formed expression.

The predefined macro

len(string)

returns a numeric value corresponding to the length of string.

The predefined macro

index(string, pattern)

returns a numeric value corresponding to the first position where pattern appears in string. If it does not appear,
index returns -1. Both pattern and string may be arbitrary strings of any length.

TUTORIALS



m4 Macro Processor 219

The following example defines a macro repeat that repeats its first argument the number of times specified by its
second argument.

define(`repeat’,
`ifelse(eval($2<=0),1,,`repeat($1,decr($2) )’$1)’)

The definition is recursive; that is, repeat calls itself within its own definition. The entire definition is quoted to
defer the evaluation of ifelse from when m4 encounters the definition to when it encounters a repeat macro call.
Similarly, the recursive repeat call is quoted to defer its evaluation within the ifelse. eval checks if the first
argument is less than or equal to 0; if so, it returns 1 (true) and ifelse returns the null string. Otherwise, decr
decrements the count, so each successive recursive call has a smaller second argument, and each call appends a
copy of the first argument to the previous result. For example:

repeat(`Ho! ’,3)

produces

Ho! Ho! Ho!

From this example, you can see that the lowered value of the second argument — generated by the macro decr— is
‘‘kept in mind’’ successively. Nevertheless, decr and incr never change the value of a variable. For example,
consider:

define(`turns’, 10)

We now have a variable called turns whose value is ten. Typing

repeat(`Ho! ’, turns)

produces:

Ho! Ho! Ho! Ho! Ho! Ho! Ho! Ho! Ho! Ho!

Within repeat, decr lowered the current value of the second argument (i.e., turns), until it becomes zero. But
when we type

turns

we see:

10

As you can see, the value of turns remained ten, despite that variable’s having been used in a decr statement.

COHERENT System Interface
The predefined macro

maketemp(string)

creates a unique file name for a temporary file. string is a six-character string that is normally initialized to
XXXXXX; maketemp replaces all of the Xs with a pattern of six numerals that form a unique file name in the
directory where temporary files are being written. It is the same as the C library routine mktemp. It returns the
null string if its argument is less than six characters long.

The predefined macro

syscmd(command)

performs the given COHERENT command and returns the null string. It is the same as the C library routine
system.

A common use of syscmd is to create a file which m4 subsequently reads with an include. For example, to get the
output from the COHERENT date command:

define(`tempfile’, maketemp(/tmp/m4XXXXXX))
define(`get_date’,

`syscmd(date >tempfile)’`include(tempfile)’)

In subsequent input, m4 replaces each occurrence of get_date with the system date information. The definition of
tempfile is unquoted, so m4 executes the maketemp call only once (when it processes the define), and it creates
only one temporary file. On the other hand, the definition of getdate is quoted, so m4 executes syscmd and
include to get the current time and date each time it processes a call to get_date. The temporary file should be
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removed with

syscmd(rm tempfile)

at the end of the m4 program.

The following example is more complex. It defines a macro save, which appends a macro definition to a file:

define(`save’,`syscmd(`cat>>$2 <<\#
define(`$1’,’dumpdef(`$1’)`)
#
’)’)

The arguments to define are the name

save

and the definition

syscmd(`cat >>$2 <<\#
define(`$1’,’dumpdef(`$1’)`)
#
’)

(Note that the body of macro syscmd uses the shell operator << to create a ‘‘here document’’. For more information
on here documents, see the tutorial Intorducing sh, the Bourne Shell.) A typical call of this macro is:

save(`sample’,`defs.m4’)

which saves the macro definition of sample in a COHERENT file defs.m4 containing macro definitions. When m4
processes this call, the argument of syscmd becomes

cat >>defs.m4 <<\#
define(`sample’,

followed by the definition of sample returned by dumpdef, followed by

)
#

Then syscmd executes the COHERENT cat command to append the here document delimited by # to the macro
definition file defs.m4. The leading # delimiter of the here document is quoted with \ to prevent interpretation by
the COHERENT shell. Because save uses the character # to delimit the here document, it does not work correctly
for macro definitions containing #. For example,

save(`save’,`defs.m4’)

does not work as expected.

Note that you can only use save when you run m4 interactively — you cannot use it in a script. Furthermore,
save does not always save a definition literally. For example:

save(`tempfile’, `defs.m4’)

saves the tempfile definition in defs.m4 as:

define(`tempfile’, `/tmp/m400074a’) #

where, as you can see, the XXXXXX has been replaced with a hexadecimal number (which may differ from the one
you ). Likewise, the definition of get_date will look like this:

define(`get_date’, `syscmd(date >tempfile)include(tempfile)’) #

To load a saved definition into m4, simply type m4 at the shell’s command-line prompt to invoke it interactively;
and then type:

sinclude(defs.m4)

From now on, you can use any definition that you had saved into file defs.m4.
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Errors

m4 reports all errors to the standard error stream. An error produces a line of the form

m4: line: message

where line is a decimal line number and message describes the error. For example, the error message

m4: 7: illegal macro name: ab*c

indicates an attempt to define a macro with the illegal macro name ab*c in line 7 of the input stream.

The following error messages may occur:

cannot open file
eval: invalid expression
eval: missing or unknown operator
eval: missing value
illegal macro name: name
out of space
/tmp open error
unexpected EOF

The file or name will be the file name or macro name which caused the error, or {NULL} if the required argument is
omitted.

m4 does not recognize (and therefore does not report) the most common of m4 errors, namely invoking recursive
macro definitions that never terminate. A simple example is the definition

define(`recursive’, `recursive’)

When m4 subsequently encounters a call of recursive in its input stream, it replaces it on the input stream with
its definition. Because the definition is another call to recursive, m4 replaces it in turn with its definition; the
process never terminates. More complicated examples may involve many macro definitions and may be difficult to
discover. If m4 enters an endless loop, you can terminate it from the keyboard by typing the interrupt character
(normally <ctrl-C>) or the kill character (normally <ctrl-\>). If m4 enters an endless loop while being run in the
background, you can terminate it with the kill command.

For More Information
The Lexicon entry for m4 gives a summary of its functions and options.
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The make Programming Discipline

make is a utility that guides the building of complex things out of one or more simpler things. The ‘‘complex
thing’’ can be practically any sort of file that you create regularly, such as a report or a program.

Under COHERENT, make is most commonly used to control the building of complex C programs; and it is in this
context that make shows its power most easily. This tutorial introduces the features of make, and discusses how
to use it to help you build complex C programs easily and efficiently.

How Does make Work?

To understand how make works, it is first necessary to understand how a C program is built: how COHERENT
takes you from the C source code that you write to the executable program that you can run on your computer.

The file of C source code that you write is called a source module. When COHERENT compiles a source module, it
uses the C code in the source module, plus the code in the header files that the code calls to produce an object
module. This object module is not executable by itself. To create an executable file, the object module generated
from your source module must be handed to a linker, which links the code in the object module with the
appropriate library routines that the object module calls, and adds the appropriate C runtime startup routine.

For example, consider the following C program, called hello.c:

main()
{

printf("Hello, world\n");
}

When the C compiler compiles the file that contains C code shown above, it generates an object module called
hello.o. This object module is not executable because it does not contain the code to execute the function printf();
that code is contained in a library. To create an executable program, you must hand hello.o to the linker ld, which
copies the code for printf from a library and into your program, adds the appropriate C runtime startup routine,
and writes the executable file called hello. This third file, hello, is what you can execute on your computer.

The term dependency describes the relationship of executable file to object module to source module. The
executable program depends on the object module and one or more libraries. The object module, in turn, depends
on the source module and its header files (if any).

A program like hello has a simple set of dependencies: the executable file is built from one object module, which in
turn is compiled from one source module. If you changed the source module hello.c, creating an updated version
of hello would be easy: you would simply compile hello.c to create hello.o, which you would link with the library
and the runtime startup to create hello. COHERENT, in fact, does this for you automatically: all you need to do is
type

cc hello.c

and the C compiler takes care of everything.

On the other hand, the dependencies of a large program can be very complex. For example, the executable file for
the MicroEMACS screen editor is built from several dozen object modules, each of which is compiled from a source
module plus one or more header files. Updating a program as large as MicroEMACS, even when you change only
one source module, can be quite difficult. To rebuild its executable file by hand, you must remember the names of
all of the source modules used, compile them, and link them into the executable file. Needless to say, it is very
inefficient to recompile several dozen object modules to create an executable when you have changed only one of
them.

make automatically rebuilds large programs for you. You prepare a file, called a makefile, that describes your
program’s chain of dependencies. make then reads your makefile, checks to see which source modules have been
updated, recompiles only the ones that have been changed, and then relinks all of the object modules to create a
new executable file. make both saves you time, because it recompiles only the source modules that have changed,
and spares you the drudgery of rebuilding your large program by hand.
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Try make

To see how make works, try compiling a program called factor. It is built from the following files:

atod.c
factor.c
makefile

All three are kept in directory /usr/src/sample. To use them, copy the following files into your current directory.
(By the way, first make sure that you do not already have a file named makefile in your current directory, or the
following commands will overwrite it.)

cp /usr/src/sample/atod.c .
cp /usr/src/sample/factor.c .
cp /usr/src/sample/makefile .

Now, type make. make begins by reading makefile, which describes all of factor’s dependencies. It then uses the
makefile description to create factor. The following appear on your screen:

cc -c factor.c
cc -c atod.c
cc -f -o factor factor.o atod.o -lm

Each of these messages describes an action that make has performed. The first shows that make is compiling
factor.c, the second shows that it is compiling atod.c, and the third shows that it is linking the compiled object
modules atod.o and factor.o to create the executable file factor.

When make has finished, the shell prompt returns. To see how your newly compiled program works, type

factor 100

factor calculates the prime factors of its argument 100, and print them on the screen:

2 2 5 5

To see what happens if you try to re-make your file, type make again. make will run quietly for a moment, and
then exit. make checked the dates and times of the object modules and their corresponding source modules and
saw that the object modules had a time later than that of the source modules. Because no source module
changed, there was no need to recompile an object module or relink the executable file, so make quietly exited.

To see what happens when one of the source modules changes, try the following. Use the MicroEMACS screen
editor to open the file factor.c for editing. Insert the following line into the comments at the top, immediately
following the /*:

* This comment is for test purposes only.

Now type <ctrl-Z> to save the file and exit. Type make once again. This time, you will see the following on your
screen:

cc -O -c factor.c
cc -o factor factor.o atod.o -f -lm

Because you altered the source module factor.c, its time was later than that of its corresponding object module,
factor.o. When make compared the times of factor.c and factor.o, it noted that factor.c had been altered. It
then recompiled factor.c and relinked factor.o and atod.o to re-create the executable file factor. make did not
touch the source module atod.c because atod.c had not been changed since the last time it was compiled.

As you can see, make simplifies the construction of a C program that uses more than one source module.

Essential make
Although make is a powerful program, its basic features are easy to master. This section will show you how to
construct elementary makefiles.

The makefile

When you invoke make, it searches the directories named in the environmental variable PATH for a file called
makefile or Makefile. (You can tell make to read a file other than makefile or Makefile; see the description of
make’s -f option, below.) As noted earlier, the makefile is a text file that describes a program’s dependencies. It
also describes the type of program you wish to build, and the commands for building it.
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A makefile has three basic parts.

First, the makefile describes the executable file’s dependencies. That is, it lists the object modules needed to
create the executable file. The name of the executable file is always followed by a colon ‘:’ and then by the names of
files from which the target file is generated.

For example, if the program feud is built from the object modules hatfield.o and mccoy.o, you would type:

feud: hatfield.o mccoy.o

If the files hatfield.o and mccoy.o do not exist, make knows to create them from the source modules hatfield.c
and mccoy.c.

Second, the makefile holds one or more command lines. The command line gives the command to compile the
program in question. The only difference between a makefile command line and an ordinary cc command is that a
makefile command line must begin with a space or a tab character.

For example, the makefile to generate the program feud must contain the following command line:

cc -o feud hatfield.o mccoy.o

For a detailed description of the cc command and its options, refer to the entry for cc in the Lexicon.

Third, the makefile lists all of the header files that your program uses. (If you don’t know what a header file is, see
the entry for #include in the Lexicon.) These files are given so that make can check if any had been modified since
your program was last compiled. For example, if the program hatfield.c used the header file shotgun.h and
mccoy.c used the header files rifle.h and pistol.h, the makefile to generate feud would include the following
lines:

hatfield.o: shotgun.h
mccoy.o: rifle.h pistol.h

Thus, the entire makefile to generate the program feud is as follows:

feud: hatfield.o mccoy.o
cc -o feud hatfield.o mccoy.o

hatfield.o: shotgun.h
mccoy.o: rifle.h pistol.h

A makefile can also contain macro definitions and comments. These are described below.

Building a Simple makefile

The program factor is built from two source modules, factor.c and atod.c. No header files are used. The makefile
contains the following two lines:

factor: factor.o atod.o
cc -o factor factor.o atod.o -f -lm

The first line describes the dependency for the executable file factor by naming the two object modules needed to
build it. The second line gives the command needed to build factor. The option -lm at the end of the command
line tells cc that this program needs the mathematics library libm when the program is linked. No header file
dependencies are described because these programs use no special header files.

Comments and Macros

make ignores all lines that begin with a pound sign ‘#’. This lets you embed comments within a makefile, to
‘‘document’’ the file so that whoever reads it will know what it is for. For example, you may wish to include the
following comments in your makefile for factor:

# This makefile generates the program "factor".
# "factor" consists of the source modules "factor.c" and
# "atod.c". It uses the standard mathematics library
# "libm", but it requires no special header files.
# "-f" lets you use printf for floating-point numbers.

factor: factor.o atod.o
cc -f -o factor factor.o atod.o -lm

Anyone who reads this file will know immediately what it is for by looking at the comments.
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make also lets you define macros within your makefile. A macro is a symbol that represents a string of text.
Usually, a macro is defined at the beginning of the makefile using a macro definition statement. This statement
uses the following syntax:

SYMBOL = string of text

Thereafter, when you use the symbol in your makefile, it must begin with a dollar sign ‘$’ and be enclosed within
parentheses. (If the macro name is only one character long, the parentheses are not required.) A macro name can
use both upper-case and lower-case characters.

Macros eliminate the chore of retyping long strings of file names. For example, with the makefile for the program
factor, you may wish to use a macro to substitute for the names of the object modules out of which it is built.
This is done as follows:

# This makefile generates the program "factor".
# "factor" consists of the source modules "factor.c" and
# "atod.c". It uses the standard mathematics library
# "libm", but it requires no special header files.
# "-f" lets you use printf for floating-point numbers.

OBJ = factor.o atod.o
factor: $(OBJ)

cc -o factor $(OBJ) -f -lm

The macro OBJ is used in this makefile. If you use a macro that has not been defined, make substitutes an
empty string for it. The use of a macro makes sense when generating large files out of a dozen or more source
modules. You avoid retyping the source module names, and potential errors are avoided.

Note that you can define macros in the makefile, in the environment, or as a command-line argument. A macro
defined as a command-line argument always overrides a definition of the same macro in the environment or in the
makefile. Normally, a definition in a makefile overrides a definition of the same macro name in the environment;
however, the -e option to make forces definitions in the environment to override those in the makefile.

Setting the Time

As noted above, make checks to see which source modules have been modified before it regenerates your C
program. This is done to avoid wasteful recompiling of source modules that have not been updated.

make determines that a source module has been altered by comparing its date against that of the target program.
For example, if the object module factor.o was generated on March 16, 1992, 10:52:47 A.M., and the source
module factor.c was modified on March 20, 1992, at 11:19:06 A.M., make will know that factor.c needs to be
recompiled because it is younger than factor.o.

Building a Large Program

As shown earlier, make can ease the task of generating a large program. The following gives a makefile that can
be used to generate the screen editor MicroEMACS:

# makefile for "MicroEMACS"

CFLAGS = -O
LFLAGS = /usr/lib/libterm.a
OBJ=ansi.o basic.o buffer.o display.o file.o \

fileio.o line.o main.o random.o region.o \
search.o spawn.o termio.o vt52.o window.o \
word.o tcap.o

me: $(OBJ)
cc -o me $(OBJ) $(LFLAGS)

$(OBJ): ed.h

Note that this makefile has been simplified for the purposes of this tutorial; the actual makefile that builds the
COHERENT edition of MicroEMACS is considerably more complex.

The first line in the above makefile gives commentary that describes the file does. The next five lines define
macros that are used on the target and command lines. The first macro will be discussed in the following section.
The second macro substitutes for the name of a special library that is needed to create this program. The third
macro, which is three lines long, stands for the names of the source modules that produce MicroEMACS. A
backslash ‘\’ must be used to tell make that the macro’s definition extends onto the next line.
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The next line names the target file (me) and the files used to construct it, here represented by the macro OBJ.

Next comes the command line, which gives the compilation to be performed. This line must begin with a space or a
tab.

The last line lists the header file ed.h, which is required by all of the files used to generate MicroEMACS.

Command-Line Options
Although make is controlled by your makefile, you can also control make by using command-line options. These
allow you to alter make’s activity without editing your makefile.

Options must follow the command name on the command line and begin with a hyphen, ‘-’, using the following
format. The square brackets merely indicate that you can select any of these options; do not type the brackets
when you use the make command:

make [ -deinpqrst ] [ -f filename ]

Each option is described below.

-d Debug option: make describes all of its decisions. You can use this to debug your makefile.

-e Environment option: force definitions in the environment to override those in the makefile. For example, if
the makefile defines

foo=makefoo

and the environment defines

foo=envfoo

then $(foo) expands to makefoo if you use the command make but expands to envfoo if you use the
command make -e.

-f filename
File option: Tell make that its commands are in a file other than makefile. For example, the command

make -f smith

tells make to use the file smith rather than makefile. If you do not use this option, make searches the
directories named in the environmental variable PATH, and then the current directory for a file entitled
makefile or Makefile to execute.

-i Ignore errors: make ignores error returns from commands and continues processing. Normally, make exits
if a command returns an error status.

-n No execution: make tests dependencies and modification times but does not execute commands. This
option is especially helpful when constructing or debugging a makefile.

-p Print: make prints all macro definitions and target descriptions.

-q Quit option: Return a zero exit status if the targets are up to date. Do not execute any commands.

-r Rules option: make does not use the default macros and commands from /usr/lib/makemacros and
/usr/lib/makeactions. These files will be described below.

-s Silence: make does not print each command line as it is executed.

-t Touch: make changes the modification time of each executable file and object module to the current time.
This suppresses recreation of the executable file, and recompilation of the object modules. Although this
option is used typically after a purely cosmetic change to a source module or after adding a definition to a
header file, it must be used with great caution.

Other Command Line Features

In addition to the options listed above, you may include other information on your command line.

First, you can define macros on the command line. A macro definition must follow all command-line options.
Arguments, including spaces, must be surrounded by quotation marks, as spaces are significant to the shell. For
example, the command line

TUTORIALS



228 make Programming Discipline

make -n -f smith "OPT=-DTEST"

tells make to run in the no execution mode, read the file smith instead of makefile, and define the macro OPT to
mean -DTEST.

The ability to define macros on the command line means that you can create a makefile using macros that are not
yet defined; this greatly increases make’s flexibility and makes it even more helpful in creating and debugging large
programs. In the above example, you can define a command line as follows:

cc $(OPT) example.c

When you define the macro OPT on the command line, then the program is compiled using the -DTEST option,
which defines the preprocessor variable TEST.

As noted above, a macro defined on the command line always overrides an identically named macro defined either
in the environment or in the makefile.

Another command-line feature lets you change the name of the target file on the command line. Normally, the
target file is the executable file that you wish to create, although, as will be seen, it does not have to be. As will be
discussed below, a makefile can name more than one target file. make normally assumes that the target is the
first target file named in makefile. However, the command line may name one or more target files at the end of the
line, after any options and any macro definitions.

To see how this works, recall the program factor described above. factor is generated out of the source modules
factor.c and atod.c. The command

make atod.o

with the makefile outlined above would produce the following cc command line:

cc -c atod.c

if the object module atod.o did not exist or were outdated. Here, make compiles atod.c to create the target
specified in the make command line, that is, atod.o, but it does not create factor. This feature allows you to apply
your makefile to only a portion of your program.

The use of special, or alternative, target files is discussed below.

Advanced make
This section describes some of make’s advanced features. For most of your work, you will not need these features;
however, if you create an extremely complex program, you will find them most helpful.

Default Rules

The operation of make is governed by a set of default rules. These rules were designed to simplify the compilation
of a typical program; however, unusual tasks may require that you bypass or alter the default rules.

To begin, make uses information from the files /usr/lib/makemacros and /usr/lib/makeactions to define
default macros and compilation commands. make uses the commands in makemacros and makeactions
whenever the makefile specifies no explicit regeneration commands. The command line option -r tells make not to
use the macros and actions defined in makemacros and makeactions.

As shown in earlier examples, make knows by default to generate the object module atod.o from the source
module atod.c with the command

cc -c atod.c

The macro .SUFFIXES defines the suffixes make knows about by default. Its definition in makemacros includes
both the .o and .c suffixes.

make’s files makemacros and makeactions use pre-defined macros to increase their scope and flexibility. These
are as follows:

$< This stands for the name of the file or files that cause the action of a default rule. For example, if you
altered the file atod.c and then invoked make to rebuild the executable file factor, $< would then stand for
atod.c.

$* This stands for the name of the target of a default rule with its suffix removed. If it had been used in the
above example, $* would have stood for atod.
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$< and $* work only with default rules; these macros will not work in a makefile.

$? This stands for the names of the files that cause the action and that are younger than the target file.

$@ This stands for the target name.

You can use the macros $? and $@ in a makefile. For example, the following rule updates the archive libx.a with
the objects defined by macro $(OBJ) that are out of date:

libx.a: $(OBJ)
ar rv libx.a $?

For more information on archives, see the Lexicon entry for the command ar.

makemacros also contains default commands that describe how to build additional kinds of files:

• AS and ASFLAGS call the assembler as to assemble .o files out of files with the suffix .s, which make
assumes hold assembly language.

• YACC and YFLAGS call yacc to build .o or .c files from files with the suffix .y, which make assumes hold
yacc source code.

• LEX and LFLAGS call lex to build .o or .c files from files with the suffix .l, which make assume hold lex
source code.

You can change the default rules of make by changing them in makeactions and changing the definition of any of
the macros as given in makemacros.

Source File Path

If a file is not specified with an absolute path name beginning with ‘/’, make first looks for the file in the current
directory. If the file is not found in the current directory, make searches for it in the list of directories specified by
the macro $(SRCPATH). This allows you to compile a program in an object directory separate from the source
path.

For example

export SRCPATH=/usr/src/local/me
make

or alternatively

make SRCPATH=/usr/src/local/me

builds objects in the current directory as specified by the makefile from sources kept in directory
/usr/src/local/me. To test changes to a program built from several source files, copy only the files you wish to
change to the current directory; make will use the local sources and find the other sources on the $(SRCPATH).

Note that $(SRCPATH) can be a single directory, as in the above example, or a list of directories. In the latter case,
each entry in the list must be separated by a colon ‘:’, as described in the Lexicon entry for the function path().

Double-Colon Target Lines

An alternative form of target line simplifies the task of maintaining archives. This form uses the double colon ‘‘::’’
instead of a single colon ‘:’ to separate the name of the target from those of the files on which it depends.

A target name can appear on only one single-colon target line, whereas it can appear on several double-colon target
lines. The advantage of using the double-colon target lines is that make remakes the target by executing the
commands (or its default commands) for the first such target line for which the target is older than a file on which
it depends.

For example, for the program factor described earlier, assume that two versions of the source modules factor.c
and atod.c exist: fBfactora.c plus atoda.c, and factorb.c plus atodb.c The makefile would appear as follows:

OBJ1 = factora.o atoda.o
OBJ2 = factorb.o atodb.o
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factor:: $(OBJ1)
cc -c $(OBJ1) -lm

factor:: $(OBJ2)
cc -c $(OBJ2) -lm

This makefile tells make to do the following: (1) Check if either factora.o or atoda.o is younger than factor. (2) If
either one is, regenerate factor using this version of these files. (3) If neither factora.o nor atoda.o is younger
than factor, then check to see if either factorb.o or atodb.o is younger than factor. (4) If either of them is, then
regenerate factor using the youngest version of these files.

This technique allows you to maintain multiple versions of source files in the same directory and selectively
recompile the most recently updated version without having to edit your makefile or otherwise trick the system.

You cannot target a file in both a single-colon and a double-colon target line.

Special Targets

A few target names have special meanings to make. The name of each special target begins with ‘.’ and contains
upper-case letters.

The target name .DEFAULT defines the default commands make uses if it cannot find any other way to build a
target. The special target .IGNORE in a makefile has the same effect as the -i command line option. Similarly,
.SILENT has the same effect as the -s command line option.

Errors

make prints ‘‘command exited with status n’’ and exits if an executed command returns an error status. However,
it ignores the error status and continues processing if the makefile command line begins with a hyphen ‘-’ or if the
make command line specifies the -i option.

make reports an error status and exits if the user interrupts it. It prints ‘‘can’t open file’’ if it cannot find the
specification file. It prints ‘‘Target file is not defined’’ or ‘‘Don’t know how to make target’’ if it cannot find an
appropriate file or commands to generate target. Other possible errors include syntax errors in the specification file,
macro definition errors, and running out of space. The error messages make prints are generally self-explanatory.
The section Error Messages, at the end of this manual, lists make’s error messages and describes them briefly.

Exit Status

make normally returns a status of zero if it succeeds, and of one if an error occurs. With the -q option (described
above), make returns zero if all files are up to date and two if they are not up to date.

Alternative Uses
make is a program that helps you construct complex things from a number of simpler things.

make usually is used to build complex C programs: the executable file is made from object modules, which are
made from source modules and header files. However, you can also use make to build any file that is constructed
from one or more source modules. For example, an accountant can use make to generate monthly reports from
daily inventories: all the accountant has to do is prepare a makefile that describes the dependencies (that is, the
name of the monthly report he wishes to create and the names of the daily inventories from which it is created),
and the command required to generate the monthly report. Thereafter, to recreate the report, all the accountant
has to do to generate a monthly report is type make.

In another example, the makefile can trigger program-maintenance commands. For example, the target name
backup might define commands to copy source modules to another directory; typing make backup saves a copy of
the source modules. Similar uses include removing temporary files, building archives, executing test suites, and
printing listings. A makefile is a convenient place to keep all the commands used to maintain a program.

The following example shows a makefile that defines two special target files, printall and printnew, to be used
with the source files for the program factor.
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# This makefile generates the program "factor".
# "factor" consists of the source modules "factor.c" and
# "atod.c". It uses the standard mathematics library
# libm, but it requires no special header files.

OBJ = factor.o atod.o
SRC = factor.c atod.c

factor: $(OBJ)
cc -o factor $(OBJ) -lm

# program to print all the updated source modules
# used to generate the program "factor"

printall:
pr $(SRC) | lpr
>printnew

printnew: $(SRC)
pr $? | lpr
>printnew

In this instance, typing the command

make printall

forces make to generate the target printall rather than the target factor, which is the default as it appears first in
the makefile. The pr and lpr commands are then used to print a listing of all files defined by SRC. The macro OBJ
cannot be used with these commands because it would trigger the printing of the object files, which would not be
of much use. It also creates an empty file printnew. This new file serves only to record the time the listing is
printed. This tactic is performed in order to record the time that the listing was last generated so that make will
know what files have been updated when you next use printnew.

Typing the command

make printnew

forces make to generate the target printnew rather than the default target factor. printnew prints only the files
named in the macro SRC that have changed since any files were last printed.

Where To Go From Here
The Lexicon article on make summarizes make’s options and features. The source code included with the
COHERENT system and with the COHware packages include makefiles. Studying them will show you how make
has been used to control the building of large, real-world applications.
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nroff, The Text-Formatting Language

nroff is the COHERENT system’s text-formatting language. You write a file that mingles the text you want formatted
with commands to control the formatting. nroff then uses the commands to format the text, and writes the
formatted text onto the standard-output device.

This tutorial describes how to work with nroff. It assumes you are familiar with the basic features of the
COHERENT system. In particular, you should know what a command is, what a file is, and how to create and edit a
file. If you are not familiar with these concepts, read Using the COHERENT System before you read this tutorial.

The Lexicon also contains a number of articles that relate to nroff. In particular, you should read the article for
printer, which describes how you can print text under the COHERENT system.

What is nroff?

nroff is the text processor for COHERENT. A text processor is a utility that accepts commands and text, and uses
the commands to format the text on a page. The commands may call for simple formatting, such as indenting each
new paragraph five spaces, to complex formatting of columns and entire pages.

A file that contains text mixed with nroff commands is called a script. For example, the following nroff script

.nr Z 0 5

.nf
I tire of love,
.ti \n+Z
I sometimes tire of rhyme;
.ti \n-Z
But money makes me happy
.ti \n+Z
All the time!
.fi

produces the following printed text:

I tire of love,
I sometimes tire of rhyme;

But money makes me happy
All the time!

An nroff script allows you to change your output very easily. For example, change the minus sign ‘-’ in line 7 of
the nroff to a plus sign ‘+’, and the formatted text suddenly becomes:

I tire of love,
I sometimes tire of rhyme;

But money makes me happy
All the time!

As you can see, nroff is a powerful and versatile formatter.

In truth, however, nroff is both a text formatter and a text formatting language. With nroff, you can write your
own text-formatting commands to handle automatically the unique requirements of whatever formatting you need.

nroff Input and Output

Input is what you give to nroff. Output is what nroff returns to you. If you simply type

nroff

then nroff accepts input from your keyboard, and prints its output on your screen. For example, if you want nroff
to process the contents of a file named script.r, type the command line

nroff script.r

nroff then takes the file script.r, processes it, and in a few moments it displays the formatted text on your screen.
Note that the suffix .r is used by convention to indicate that a file contains an unprocessed nroff script.
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You can save nroff’s output by redirecting it into another file. For example, you can redirect nroff’s processed
output of the file script.r into the file named target by using the following command:

nroff script.r > target

Printing nroff Output

The COHERENT system’s implementation of nroff currently can be used with any variety of printer. COHERENT,
however, fully supports three varieties of printer: Epson-compatible dot-matrix printers, printers that use the
Hewlett-Packard Page Control Language (PCL) (including the Hewlett-Packard LaserJet and DeskJet families of
printers), and any printer that has implemented the PostScript page-control language. The following descriptions
assume that you have plugged your printer into a parallel port on your computer, and have installed COHERENT
correctly so that it can access your printer.

To print nroff output on an Epson-compatible printer, use the commands epson and lpr. For example, to print
the nroff output that you have directed into file text.out, use the following command:

epson text.out | lpr

Or, you can pipe the output of nroff directly into epson, as follows:

nroff -ms text.r | epson | lpr

In the above example, text.r is your input, and -ms invokes the ms package of macros.

To print on a printer that uses PCL, use the commands hp and hpr. For example, to print the file text.out on a
PCL printer, use the command:

hp text.out | hpr -B

The option -B to hpr suppresses the printing of a banner page. If you wish, you can pipe the output of nroff
directly into hp, as follows:

nroff -ms text.r | hp | hpr -B

To access a printer that uses PostScript, use the command hpr, but do not use the command hp. Also, you use
must the -p switch to nroff, which tells it to generate PostScript output. For example, the following command
processes file text.r into PostScript output, and passes that output to a PostScript printer:

nroff -p -ms text.r | hpr -B

All of the above commands are described in their respective entries in the Lexicon.

You can also print the output of nroff through the lp spooler. For information on that spooler, see its entry in the
Lexicon. For a summary of how the COHERENT system manages printers, see the Lexicon entry for printer.

nroff Limitations

Because nroff is a text-formatting language rather than a text-formatter per se, it makes no assumptions about
how you want to lay out your page. It does not automatically leave margins at the top and bottom of pages; it does
not automatically number pages; it does not automatically format paragraphs. You must use or create a set of
formatting commands, called macros, to generate these features. This tutorial will teach you how to write macros
that can solve nearly every conceivable formatting problem. As you have seen, too, your copy of COHERENT comes
with a set of predefined macros, the -ms macro package.

The ms Macro Package

A macro package called -ms is included with your copy of nroff. It provides macros to format paragraphs, produce
headers and footers (the areas at the top and bottom of pages, respectively), and perform most other page-
formatting tasks. -ms is easy to use. The command

nroff -ms

tells nroff to accept input from your keyboard, process it using the -ms macro package, and print the output on
your screen. The command

nroff -ms script.r

tells nroff to process script.r with the -ms package and print the output on your terminal; while the command

nroff -ms script.r >target
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redirects the output of nroff into the file target; and

nroff -ms script.r | lpr

prints the output on the line printer.

Working with the -ms macro package is a good way to gain confidence in working with nroff commands. Soon you
will learn the correct way to encode nroff commands in your scripts.

Using this Tutorial

The only way to learn about nroff is to use it. You should type all the examples in this tutorial into your computer
and observe how they work. You should also alter the example and examine how your changes affect what nroff
produces. Don’t hesitate to experiment! You can learn more from analyzing why something unexpected happens
than you can from simply copying an example that works as you were told it would.

The first section describes how to use nroff with the -ms macro package. The second section describes how to
perform sophisticated formatting. For most users, this chapter contains all the information they need to know.

The rest of the tutorial describes how nroff actually works with the input text to produce its output. This will
teach you how to write your own nroff macros for your special word processing needs.

The ms Macro Package
As explained above, nroff is the text formatter for COHERENT. You give nroff a script — that is, text interspersed
with commands that control its processing; nroff, in turn, formats your text in the manner dictated by your
commands.

nroff’s most outstanding feature is its flexibility: you can control line length, page offset, page length, paragraph
format, beginning- and end-of-page format, and every other aspect of formatting a document.

nroff has built into it a set of basic commands, called primitives, that are used to control formatting. A basic
formatting function might require several primitives. For example, formatting a new paragraph requires one
primitive to force the printing of the fragment of a line left at the end of the previous paragraph; another primitive
to skip a blank line; and a third primitive to indent the first line of the new paragraph. If you were to type directly
into your script all the primitives required to control every feature of your document, formatting would be a very
difficult task, and mistakes would be common.

Fortunately, another feature of nroff makes it easier for you to prepare input: nroff allows you to bundle together a
group of primitives and give the bundle its own name. Such a bundle is called a macro. Whenever you want all the
commands in that bundle to be executed, you simply insert the name of the macro into the text. For example, you
might group the primitives needed to format a paragraph, and call that bundle PP. Then, instead of retyping the
primitives, all you need to do is insert the command .PP before the start of a paragraph.

-ms is a package of macros that are ready for you to use. When you include the option -ms on the nroff command
line, nroff automatically uses the the macros that have been defined in the -ms package. These macros will take
care of setting line length and page length, numbering pages, formatting paragraphs, and all other formatting
tasks. You do not need to know how nroff’s primitives are used in the macros; you only need to know the names
of the macros and what they do, so that you can insert them correctly into your text.

Using the -ms package is a good way to become accustomed to preparing input for nroff, so that the features of the
primitives will not seem so alien when you eventually choose to work with them. When you become familiar with
nroff, you may wish to your own macro packages, to handle the unique requirements of different types of
documents. For now, however, you will find that the -ms package will get you up and running with nroff.

Text and Commands

nroff input includes both text and commands. The commands control the processing of the text. nroff
distinguishes between text and commands by looking at the first character of each input line. If that character is a
period or an apostrophe, the line is a command; otherwise, it is text.

Earlier in this tutorial, you used the -ms package to format a text file that had already been prepared for you. To
become more accustomed to using nroff, try entering the following text into a file that can be formatted later. Use
a text editor (either ed or MicroEMACS) to create a file named script2.r that contains the following text. It is
important for this exercise that you break up the lines as they are shown here:
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London. Michaelmas Term lately over,
and the Lord Chancellor sitting in
Lincoln’s Inn Hall. Implacable November weather.
As much mud in the streets, as if the waters
had but newly retired from the face of the
earth, and it would not be wonderful to meet
a Megalosaurus, forty feet long or so, waddling
like an elephantine lizard up Holborn Hill.

Note that this file contains no commands; every line is a text line. Process the file with the command:

nroff script2.r | more

The output is piped to more so that it will not all rush past your screen. nroff will process the text, and in a
moment you will see the following:

London. Michaelmas Term lately over, and the Lord Chancellor sitting in Lincoln’s Inn Hall.
Implacable November weather. As much mud in the streets, as if the waters had but newly retired
from the face of the earth, and it would not be wonderful to meet a Megalosaurus, forty feet long
or so, waddling like an elephantine lizard up Holborn Hill.

When you see this example, the spacing will be different; the spacing for the examples in this tutorial is adjusted to
conform to the rest of the tutorial text. Notice that nroff automatically adjusts the spacing between words to
justify the right margin, even though the input text has a ragged right margin. Each output line contains 65
characters, and each output page contains 66 lines.

Now try processing script.r again, this time with the -ms macro package. Type

nroff -ms script.r | more

As you can see, nroff again adjusted the spacing to keep a strict right margin. Each line was indented with ten
leading spaces, followed by 65 characters of text. The pages output by both the nroff command and the nroff -ms
command both contain 66 lines, but the page built with the -ms package left blank lines at the top of the page and
printed the page number in a blank space at the bottom of the page. When nroff constructs its output, it assumes
that your printer prints ten characters per inch (Pica, or 10-pitch spacing) and six lines per inch. Given these
assumptions, each page of output from nroff -ms fits onto an 8.5 by 11 inch page, with an inch of blank space at
the top, at the bottom, and on each side.

As this example shows, nroff adjusts the spacing between words to keep a strict right margin. When you type in
the text, don’t worry about the right margin. You must, however, keep a strict left margin, because when nroff
encounters a line of text that begins with blank spaces, it breaks the line it was working on and begins a new,
indented line.

Also, do not hyphenate words; if you do, nroff treats each part as a separate ‘‘word’’ (the first ending with the
hyphen character), rather than keeping them joined, as you want.

nroff normally interprets as a command every line that begins with a period or an apostrophe. However, to include
an initial apostrophe or period as a literal part of your document, you must place the characters \& before the
period or apostrophe.

The remainder of this will show you how to use commands in input text to change the appearance of the output.
You can control many aspects of the printed document simply by including the appropriate commands within your
text.

Command Names

The name of every nroff primitive consists of two lower-case letters. Some commands can also include additional
information, or arguments. For example, .sp is the command to leave vertical space between output lines. The
command line

.sp

leaves one space, whereas

.sp 2

leaves two spaces. The information that follows the command name on the command line is an argument. Each
macro defined in the -ms macro package is named with one or two upper-case letters. For example, .PP is the
name of the macro that begins a new paragraph.
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Paragraphs

Every time you want to begin a new paragraph, enter the paragraph command .PP; that is, place the command line
.PP in the text. To test this macro, enter the following text under the name script3.r:

.PP
It is a truth universally acknowledged,
that a single man in possession of a good fortune,
must be in want of a wife.
.PP
However little known the feelings or views of such
a man may be on first entering a neighbourhood, the
truth is so well fixed in the minds of the surrounding
families, that he is considered as the rightful
property of some one or the other of their daughters.

When you process this text with the command

nroff -ms script3.r | more

the result resembles the following:

It is a truth universally acknowledged, that a single man in possession of a good
fortune, must be in want of a wife.

However little known the feelings or views of such a man may be on first entering a
neighbourhood, the truth is so well fixed in the minds of the surrounding families, that he is
considered as the rightful property of some one or the other of their daughters.

As the output shows, the .PP command inserts a blank line before beginning a new paragraph, and indents the
first line of the new paragraph by half an inch.

The -ms package also provides another paragraph format: the .IP command. This macro creates an indented
paragraph. The .PP macro indents only the first line of each paragraph; however, .IP indents every line except the
first. For example,

.IP
This is an indented paragraph.
All the lines are indented by
the same amount.
.PP
This is a normal paragraph.
nroff indents the first line
but does not indent the following lines.

gives the output

This is an indented paragraph. All the lines are indented by the same amount.

This is a normal paragraph. nroff indents the first line but does not indent the
following lines.

Several options are available for the basic .IP macro. You can add two arguments to it. nroff interprets the first
argument after the .IP as a tag to the paragraph, and it interprets the second argument as the amount of
indentation you want. For example,

.IP A. 8
This is the first line of text.
nroff indents the following lines by the same
amount as the first.
The indent is eight spaces.
The paragraph includes a tag in the indent.

produces

A. This is the first line of text. nroff indents the following lines by the same amount as
the first. The indent is eight spaces. The paragraph includes a tag in the indent.
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You must make sure the indent leaves enough spaces for the tag. If the tag contains blank spaces, enclose it
within quotation marks. To see how this works, enter the following script under the title script4.r:

.IP "King Lear:" 16
Is man no more than this?
Consider him well.
Thou owest the worm no silk,
the beast no hide,
the sheep no wool,
the cat no perfume...
Unaccommodated man is no more
but such a poor, bare, forked
animal as thou art.

When processed with the command

nroff -ms script4.r >script4.p

you see:

King Lear: Is man no more than this? Consider him well. Thou owest the worm no silk, the
beast no hide, the sheep no wool, the cat no perfume... Unaccommodated man is no
more but such a poor, bare, forked animal as thou art.

As this example shows, this form of the .IP macro can be used to format the script for a play.

If you do not want a tag, but merely wish to set the indentation to something other than the default setting of five
spaces, then use a pair of quotation marks with nothing between them for the first field:

.IP "" 8

If you forget the quotation marks, you will not get what you expect: nroff will interpret ‘8’ as a tag and use the
normal indentation of five spaces.

Once you set the amount of indentation, the new indentation stays in effect until you change it again. For
example, if you format a paragraph with

.IP "" 8

and follow it with another paragraph that begins with .IP, nroff will also indent the second paragraph by eight
spaces. The indentation will remain in effect until you explicitly change it — for example, by beginning a
paragraph with

.IP "" 6

which resets the indent to six spaces.

Normally, nroff measures the paragraph indentation from the left margin. Another variation of IP allows you to
measure the indentation of a new indented paragraph from the left-hand edge of a previous indented paragraph,
thus producing relative indentation. To do this, enclose the new paragraph between the macros RS and RE (for
relative indent start and relative indent end). Copy the following script into the file script5.r:

.IP
And it came to pass in an eveningtide,
that David arose from off his bed ...
and from the roof he saw a woman washing
herself; and the woman was very beautiful
to look upon. And David sent and enquired
after the woman. And one said,
.RS
.IP
Is not this Bathsheba, the daughter of Eliam,
the wife of Uriah the Hittite?
.RE
.IP
And David sent messengers and took her; and
she came in unto him, and he ...
and she returned unto her house.

When processed through nroff with the command
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nroff -ms script5.r >script5.p

the output resembles the following:

And it came to pass in an eveningtide, that David arose from off his bed ... and from the roof he
saw a woman washing herself; and the woman was very beautiful to look upon. And David sent and
enquired after the woman. And one said,

Is not this Bathsheba, the daughter of Eliam, the wife of Uriah the Hittite?

And David sent messengers and took her; and she came in unto him, and he ... and she returned unto
her house.

You can include any number of indented paragraphs between .RS and .RE. Also, you can specify tags and
different indents just as for ordinary indented paragraphs. You can even nest .RS and .RE pairs inside each other
to produce multiple relative indents. Just remember that an .RS must always be balanced by an .RE. Type the
following into the file script6.r to see how nroff handles nested flashbacks:

.IP
In England during World War II, a captain tells the
story of his Free French bomber squadron.
.RS
.IP
In the early days of the war, a French ship picks up
five men adrift in a small boat. One tells of their
life on Devil’s Island.
.RS
.IP
A convict tells others of his past.
.RS
.IP
Publication of anti-Nazi material leads to arrest on
false charges.
.RE
.IP
The convicts escape to help France in the war.
.RE
.IP
When France surrenders, the crew overpowers pro-Vichy
officers and heads for England instead of Marseilles.
.RE
.IP
The captain concludes his story as the bombers return
from a mission.

When you process this file with the -ms package, the output file script6.p should resemble the following:

In England during World War II, a captain tells the story of his Free French bomber squadron.

In the early days of the war, a French ship picks up five men adrift in a small boat. One
tells of their life on Devil’s Island.

A convict tells others of his past.

Publication of anti-Nazi material leads to arrest on false charges.

The convicts escape to help France in the war.

When France surrenders, the crew overpowers pro-Vichy officers and heads for England
instead of Marseilles.

The captain concludes his story as the bombers return from a mission.

As you can see, each .RE command peels away the current layer of indentation and moves you into the previous
one. To return to an even earlier level, you must input the appropriate number of .RE commands before you begin
a paragraph.

TUTORIALS



240 nroff Text-Formatting Language

A third type of paragraph is the quoted paragraph. It produces a paragraph that is indented on both on the right
side and on the left side, in order to set off a quotation from the surrounding text. To produce such a paragraph,
precede it with the .QS macro and follow it with the .QE macro. To break the quotation into different sections,
insert a blank line in the text before each line that you want to begin a new section. For example, type the
following example as script7.r:

Form of Tender of Rescue from Strange Young Gentleman
to Strange Young Lady at a Fire.
.QS
Although through the fiat of a cruel fate, I have been
debarred the gracious privilege of your acquaintance,
permit me, Miss [here insert name, if known], the
inestimable honor of offering you the aid of a true
and loyal arm against the fiery doom which now
o’ershadows you with its crimson wing. [This form
to be memorized, and practiced in private.]
.QE
Should she accept, the young gentleman should offer
his arm - bowing, and observing "Permit me" -
and so escort her to the fire escape and deposit
her in it.

After processing with the -ms package, the output file script7.p should resemble the following:

Form of Tender of Rescue from Strange Young Gentleman to Strange Young Lady at a Fire.

Although through the fiat of a cruel fate, I have been debarred the gracious
privilege of your acquaintance, permit me, Miss [here insert name, if known],
the inestimable honor of offering you the aid of a true and loyal arm against the
fiery doom which now o’ershadows you with its crimson wing. [This form to be
memorized, and practiced in private.]

Should she accept, the young gentleman should offer his arm - bowing, and observing "Permit me" -
and so escort her to the fire escape and deposit her in it.

Section Headings

The section heading macro .SH prints a heading or title. For example:

.SH
Section Headings

The heading may be more than one line long; consequently, you should follow a section heading with a .PP or an
.IP macro. nroff leaves a blank line before the heading and prints the heading flush with the left margin in
boldface type, as described below in the section on Fonts.

The numbered heading macro .NH produces consecutively numbered section headings. For example:

.NH
Guess What’s Coming to Dinner?
.NH
Guess Why I Won’t be There?

produces

1. Guess What’s Coming to Dinner?

2. Guess Why I Won’t Be There?

You can number subsection headings by entering a number from two to five to the .NH macro. The number
indicates the level of section headings; for example, .NH 2 numbers subsection headings, .NH 3 numbers sub-
subsection headings. For example:
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.NH
Guess What’s Coming to Dinner?
.NH 2
Guess What it Looks Like?
.NH 3
Teeth Like That Might Frighten the Children!
.NH 2
What Does it Eat?
.NH
Guess Why I Won’t be There?

produces:

1. Guess What’s Coming to Dinner?

1.1 Guess What it Looks Like?

1.1.1 Teeth Like That Might Frighten the Children!

1.2 What Does it Eat?

2. Guess Why I Won’t be There?

The number on the .NH command line is not the number that appears before the heading; instead, it controls how
many ‘‘parts’’ appear in the number. For example, .NH 3 produces a three-part number, such as 2.5.3, whereas
.NH 4 produces a four-part number, such as 7.4.5.2.

You can reset the entire numbering scheme by using the command NH 0; for example,

.NH 0
Through The Mandelbrot Set With Rod and Gun

produces

1. Through The Mandelbrot Set With Rod and Gun

with numbering starting at one.

Title Page

If you want your output to begin with a title page, begin the input with the following.

.TL
Title of Document (may be more than one line)
.AU
Name(s) of Author(s) (may be more than one line)
.AI
Institution(s) of Author(s)
.AB
Abstract (line length 5.5 inches)
.AE

The .TL macro indicates the title, the .AU macro indicates the author, the .AI macro indicates the author’s
institution, and the .AB macro precedes the abstract. The .AE macro, for abstract end, marks the end of the
abstract. If you do not want some of these headings to appear, simply omit the relevant macros. Begin the body of
the document immediately after the .AE macro. The body must begin with a formatting command, such as .PP or
.SH.

Note that the end abstract macro .AE also prints today’s date automatically. To do so, nroff reads the date as
encoded in COHERENT. Before you use these macros, be sure that you have set the correct date in COHERENT.

To see how these macros work, type the following script into file script8.r:

.TL
Tickling in the Therapy of
von Muenchausen’s Syndrome
.AU
P. R. Sanserif
.AI
The Department of Parapsychology
The University of Southern North Dakota
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at Hoople
.AB
Study of 150 subjects (75 men and 76 women)
indicated that hard tickling may prove beneficial
to patients with von Muenchausen’s syndrome.
Applications for a seven-figure grant have been
made to continue research in this area.
.AE
.PP
Due to complications in our experiment, this paper
has now been withdrawn.

After processing with the -ms macro package, you will see that in the outputfile script8.p, nroff placed the text on
the same page as the title information. You may or may not want this to happen. If you do not, one solution is to
insert two additional commands between the .AE macro and the body of your text:

.PP

.bp

Headers and Footers

The header macro controls the format of the top of each page. It automatically skips one inch at the top of the
page. The footer macro controls the format of the bottom of each page. It stops printing text one inch above the
bottom of the page, and prints the page number.

It is easy to print either a page header or a page footer. Both the page header and the page footer are three-part
titles: nroff prints the first part on the left side of the page, the second part in the middle, and the third part on the
right side of the page. The parts of the header title are named:

LT: left, top
CT: center, top
RT: right, top

and the parts of the footer title are named:

LF: left, footer
CF: center, footer
RF: right, footer

These parts are called strings. A later section of this tutorial describes strings in detail. Normally, these strings are
undefined, except for CF, which prints the current page number; therefore, the header macro normally prints
nothing, and the footer macro prints only the page number in the center of the block of space at the bottom of each
page. However, you can set any portion of the header or footer to print what you like. To set the left portion of the
header, for example, type the following:

.ds LT "Walnuts in History"

Note that you do not type a period before the LT. After you define LT in this fashion, nroff will print

Walnuts in History

at the top of each page on the left-hand side. If you want the date to appear on the right-hand side of the header,
type:

.ds RT "\*(Ds"

The string Ds is automatically initialized to today’s date, as set on your COHERENT system. A later section of this
tutorial will present strings in detail. For now, all you need to know is that whenever you want nroff to insert
today’s date into your script automatically, just type the entry \*(Ds. This entry does not have to be at the
beginning of a line to work.

Use the same procedure to define the strings in the footer title. If you want something other than the page number
to appear in the position allocated to CF, use the .ds primitive to redefine CF. If you want nothing to appear there,
type

.ds CF ""

Wherever you want the current page number to appear in the header or footer, use the symbol ‘%’. For example, if
you want the page number to appear in the upper right-hand corner of each page, type
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.ds RT "Page %"

Be sure to type in all of the macros to define headers and footers before you begin to type in your text. Otherwise,
your headers and footers will not appear on the first page of the formatted output.

To see how this works, try editing the file script1.r. At the top, insert the macro

.ds RT "\*(Ds"

and reprocess the file using the -ms macro package. Each output page should have today’s date written in the
upper right-hand corner.

Fonts

nroff normally prints ordinary, or ‘‘Roman’’, characters. In addition, nroff can print boldface and italic characters.
Each of the three styles of type — Roman, boldface, and italic — is called a font, in keeping with typesetting
terminology.

nroff prints each boldface and italic character by generating a special three-character output sequence. It prints
the boldface character c, for example, by printing a ‘c’, then the backspace character <ctrl-H>, and then another
‘c’. This sequence emaphasizes ‘c’ by forcing your printer to print it twice. nroff represents an italic character c
with the underscore character ‘_’, followed by the backspace character <ctrl-H>, followed by ‘c’.

Because of these special representations, the appearance of nroff boldface and italic fonts depends on the device
on which you see the output. On your terminal, the <ctrl-H> backspaces the cursor, and the third character of
each sequence replaces the first; therefore, boldface and italic characters appear the same as Roman characters.
On a printer, the appearance depends on the characteristics of the printer. The COHERENT system provides
programs to print boldface and italic characters appropriately on certain devices.

The -ms macro package includes three commands for easy printing in specific fonts: the boldface command .B, the
italic command .I, and the Roman command .R. To print a single word in boldface, do the following:

The last word is printed in
.B boldface.

Likewise for italics:

The last word is printed in
.I italics.

These example printed a word in a different font. You can print several words in a different font by enclosing the
words within quotation marks on the command line:

This sentence ends with
.B "three bold words".

You can also switch fonts by using one of the font commands with nothing after it on the command line. For
example,

.B
This entire sentence is printed in boldface.
.R

or

.I
This entire sentence is printed in italics.
.R

In these examples, the Roman font command .R is needed to return to the normal font after completing the
boldface or italic text.

On rare occasions, you might want different parts of one word to be in different fonts. You cannot use the -ms
macros to produce mixed-font words directly. A later section of this tutorial gives additional information about
nroff fonts. As explained there, the input

This manual describes \fBnroff\fR’s powerful features.

produces the output:

This manual describes nroff’s powerful features.
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The word nroff is boldface but the following apostrophe and ‘s’ are Roman.

Special Characters

A few characters have special meaning to nroff. You should be aware of these characters if you want nroff to
process your text properly.

As mentioned earlier, the period and the apostrophe introduce nroff command lines. Each is a special character if
it is the first non-space character on an input line. If you wish to use a period or an apostrophe at the start of an
input line simply as part of your text, you must precede it with a backslash and ampersand ‘‘\&’’. For example,
the input

The footnote command
.DS
\&.FT
.DE
generates footnotes for you automatically.

produces the output

The footnote command

.FT

generates footnotes for you automatically.

Neither the period nor the apostrophe is a special character unless it is the first non-space character on a line.

The most important special character for nroff is the backslash ‘\’. It changes the meaning of the following
character or characters. If you simply want a backslash to appear as part of your text, you must follow it with the
letter ‘e’; that is, use ‘‘\e’’ in your input to have ‘\’ appear in your output. Later sections of this tutorial describe
other special uses for backslash.

Footnotes

You can place footnotes between the footnote start command .FS and the footnote end command .FE, as in the
following example:

.FS
*MicroKVETCH Electronic Nag is a
copyrighted trademark of Caveat Emptor
Software, Inc.
.FE

You should insert each footnote into your text where the reference to it occurs; nroff will see to it that the footnote
appears at the bottom of the correct page. Footnotes should be inserted as follows:

The notion that we have been visited
by visitors from outer space may seem
outlandish(1)
.FS
1. Raucus J, O’Hooligan R: "Viruses
from Venus?" \fIJ Earth Med Assoc\fR,
1985;36:412-414.
.FE
but reason compels us to exclude no ...

The journal article cited in the footnote will appear at the bottom of the page, with the journal name in italics.

Displays and Keeps

A display is a portion of text, such as a graph or a table, that should appear in the output exactly as it is typed in
the input. nroff normally alters the spacings between elements in your text, which, of course, would destroy the
appearance of a display. Therefore, nroff has macros to tell it that a portion of text is a display, and so not to alter
spacings between elements or split it between two pages. These macros are the display start macro .DS and the
display end macro .DE. You should place your display between these macros, as follows:
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.DS
The text of the display goes here,
exactly
as
you
want
it
to appear in the output.
.DE

The .DS macro comes in three varieties. The display start centered macro .DS C centers every line of your display.
Because nroff centers each line individually, both right and left margins are ragged. The display start block-
centered macro .DS B takes the entire display at once and centers it. You can think of this as simply shifting the
display to the right by an appropriate amount. The display start indented macro .DS I indents the entire display
by half an inch.

If your display is longer than one page, do not use .DS or any of its variants. Instead, begin the display with one of
the following.

The centered display macro .CD centers each line of the display. The block-centered display macro .BD considers
the entire display as a block and centers it. The left display macro .LD performs no indenting or centering, but
simply begins each line at the left margin. Finally, the indented display macro .ID indents each line by half an
inch. If you begin the display with one of these macros, do not end it with .DE; rather, just type .PP or .SH or
whatever other macro is needed at that point.

To see how displays work, type the following into the file script9.r and process it with the -ms macro package:

.PP

.DS C
Tyger! Tyger! burning bright
In the forests of the night,
What immortal hand or eye
Could frame thy fearful symmetry?
Burma Shave
.DE

When the output file script9.p is read, the results will appear as follows:

Tyger! Tyger! burning bright
In the forests of the night,
What immortal hand or eye

Could frame thy fearful symmetry?
Burma Shave

You must remember one important fact when you use display macros: the normal length of output lines is 6.5
inches, but if the display contains lines longer than this nroff simply prints them as they are. If a line is too long
to fit onto the page, what occurs afterwards depends upon the output device. If you are displaying the output on
the screen, the text will be displayed as far as possible to the right, then the remainder will be wrapped around
onto the next line, without indentation. On most printers, however, the chunk of text that extends past the right
margin will simply be lopped off and thrown away. In any event, the effect is usually quite unsightly. The only
restriction on what you can safely put in a display, then, is that lines should be no longer than 6.5 inches. If you
are using an indented display, lines should be no longer than six inches.

A keep is a display macro: you put text between the keep start macro .KS and the keep end macro .KE when you
want it all kept on the same page. If you put a block of text between these macros that proves to be longer than
one page, nroff moves the excess text onto a new page.

The major difference between the keep and the display is that normal processing occurs in the keep: nroff adjusts
spacings between words, hyphenates words, justifies lines, and performs all other formatting tasks, just as it
normally does.

Other Commands

Several of nroff’s primitives can be used with the -ms macro package. The primitive

.sp N

skips N lines on the output page; for example, .sp 4 skips four lines.
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The begin page primitive .bp tells nroff to begin a new page, no matter where it is on the current page.

The remaining sections of this tutorial provide more information about these other nroff primitives.

Introducing nroff’s Primitives
The rest of this tutorial describe nroff’s basic commands — the commands that are ‘‘built into’’ nroff, and from
which macros are assembled. These basic commands, or primitives, form nroff’s text formatting language. Once
you have mastered the primitives, you will be able to write macros to control automatically even the most difficult
text formatting tasks.

The rest of this tutorial includes a number of exercises. You should type them into your system and execute them
as described in the tutorial; this will greatly increase the rate at which you master nroff. None of the following
examples should be processed with the -ms macro package; the purpose of this portion of the tutorial is to teach
you how to create you own text processing routines, rather than how to use ones that have already been written.

Page Format

When deciding how to process text, you must first decide how to position the text on the printed page. You must
control line length, left and right margins, page offset (i.e., how far from the left edge of the page each line begins),
and page length. Controlling these functions is quite easy with the appropriate nroff commands.

The line length primitive .ll controls the line length; and the page offset command .po controls the page offset. If
you are writing an nroff script, you should include these commands before the beginning of your text, so that
nroff can put them into effect immediately. The following example uses a line length of three inches and a page
offset of two inches. Type this into your system under the name ex1.r. Note, by the way, that the text to the right
of the characters ‘\"’ is a comment, and there is no need for you to type it into your system:

.ll 3i \" set line length

.po 2i \" set page offset
Along outside of the front fence ran the country
road, dusty in the summertime, and a good place for
snakes -- they liked to lie in it and sun themselves;
when they were rattlesnakes or puff adders, we killed
them; when they were black snakes, or racers, or belonged
to the fabled "hoop" breed, we fled, without shame; when
they were "house snakes", or "garters", we carried them
home and put them in Aunt Patsy’s work basket for a
surprise; for she was prejudiced against snakes, and
always when she took the basket in her lap and they
began to climb out of it it disordered her mind.

Process this script by typing the command

nroff ex1.r >ex1.p

From this point on, you should not use the -ms macro package with your nroff examples. When you display the
output stored in the file ex1.p, you will see that the length of each line is three inches, and each line begins two
inches from the left-hand margin.

As you noticed, line length and page offset were set in inches. nroff output can be controlled using a number of
different units of measurements, including inches, number of characters, or lines, or machine units. A following
section discusses nroff units of measurement in detail.

As noted above, this example contains two comments. nroff ignores any text that appears on a line after ‘‘\"’’. You
should use comments, for the benefit of anyone who must read your nroff script (including yourself). The above
example used the comments

\" set line length
\" set page offset

to help you understand the .ll and .po commands. Judicious comments can make a complex script much easier to
understand.
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Breaks

Before you look at the break primitive .br, it is helpful to examine how nroff constructs a finished line of output.
Suppose, for example, that you tell nroff that you want each output line to be five inches long. nroff takes your
input one word at a time, and attempts to squeeze that word into the space that has not yet been taken up in the
line. When nroff finally picks up a word that is too large to fit into the amount of space left in the line, it either
puts the word aside entirely, or hyphenates the word and places the hyphenated portion into the line. nroff then
inserts extra blank spaces between the words to justify the line. The break primitive .br, however, tells nroff to
print whatever words have already been put into the line, even if they do not form a complete line, and without
performing right justification.

The idea of a break might seem strange at first, but you are familiar with a simple example: the end of a paragraph.
You do not want the start of a new paragraph to be on the same line as the end of the previous paragraph: you
want to print the end of the previous paragraph whether or not it fills a complete line; and you want to begin the
new paragraph on a new line. As you will learn later, some nroff commands cause breaks automatically; you
should be aware of this when you use them.

Fill and Adjust Modes

Two terms describe how nroff processes your input to create its output: filling, and adjusting or justifying. Unless
you order it not to, nroff operates in the fill and adjust modes. The no-fill primitive .nf tells nroff to stop using fill
mode. The fill primitive .fi tells it to resume using the fill mode. In a similar way, the adjust primitive .ad tells
nroff to use adjust mode, whereas the no adjust primitive .na tells it to use no-adjust mode.

As mentioned above, nroff by default is in both fill mode and adjust mode, so you do not need to begin your script
with .fi and .ad if you want nroff to fill and adjust your text. However, if you turn off filling and adjusting by using
the .nf and .na commands, you must use the .fi and .ad commands to turn filling and adjusting back on.

When you use .nf to turn off fill mode, nroff no longer tries to fill lines to a fixed line length. It prints each line of
input text exactly as received. However, a sufficiently long line of text would run off the right-hand edge of the
page if nroff were to print it as entered. If the input line cannot fit on one line, nroff prints as much as it can fit
on one line, then breaks the line and prints the rest on the next line with no page offset.

In adjust mode, nroff inserts extra spaces between words to justify lines of text, as described above. When nroff is
in no-fill mode, it is automatically in no-adjust mode: with no fixed line length, there is no need to insert extra
spaces. Moral: you can fill without adjusting, but you cannot adjust without filling.

If you request filling but not adjusting, nroff fills the output line as described earlier, but does not insert extra
spaces between words; that is, it does not try to keep an even right margin. Every output line either is shorter
than the line length you specified, or exactly as long.

The .ad primitive includes several options. If you use the command .ad without an argument, nroff keeps strict
left and right margins. The primitive .ad l justifies the left margin only; .ad r justifies the right margin only; and
.ad b justifies both margins (this, of course, is the default). Finally, .ad c centers output lines while keeping their
lengths less than or equal to the line length, as set with the .ll command.

Remember that nroff ignores adjustment requests if you are in no-fill mode. If nroff is in fill mode and you
request any variety of adjustment, it adjusts accordingly until you issue either a no-fill or a no-adjust command. If
you give a no-fill command, only a fill command restores adjustment; any plea for a different kind of adjustment is
ignored while nroff is in no-fill mode.

To see how this works, type the following script under the name ex2.r, and process it as above:

.ll 6.75i

.sp \" space
When we were alone, I introduced the subject
of death, and endeavored to maintain that the fear
of it might be got over. I told [Johnson] that
David Hume said to me, he was no more uneasy to
think that he should not be after this life, than
that he had not been before he began to exist.
.sp
.na \"no adjust
JOHNSON: "Sir, if he really thinks so,
his perceptions are disturbed;
he is mad: if he does not think so, he
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lies .... When he dies, he at
least gives up all he has."
.sp
.ad r \"right-adjust
BOSWELL: "Foote, sir, told me that
he was not afraid to die."
.sp
.nf \"no-fill
JOHNSON: "It is not true, sir.
Hold a pistol to Foote’s
breast or to Hume’s breast,
and threaten to kill them,
and you’ll see how they behave."
.sp
.fi \"fill
BOSWELL: "But may we not fortify our minds for
the approach of death?"
.sp
JOHNSON: "No, sir, let it alone. It matters not
how a man
dies, but how he lives. The act of dying is not of
importance, it lasts so short a time .... A man
knows it must be so, and submits.
It will do him no good to whine."

When you process this input with nroff, your output should look like this:

When we were alone, I introduced the subject of death, and endeavored to maintain that the fear
of it might be got over. I told [Johnson] that David Hume said to me, he was no more uneasy to
think that he should not be after this life, than that he had not been before he began to exist.

JOHNSON: "Sir, if he really thinks so, his perceptions are disturbed; he is mad: if he does not
think so, he lies .... When he dies, he at least gives up all he has."

BOSWELL: "Foote, sir, told me that he was not afraid to die."

JOHNSON: "It is not true, sir.
Hold a pistol to Foote’s
breast or to Hume’s breast,
and threaten to kill them,
and you’ll see how they behave."

BOSWELL: "But may we not fortify our minds for the approach of death?"

JOHNSON: "No, sir, let it alone. It matters not how a man dies, but how he lives. The act of
dying is not of importance, it lasts so short a time .... A man knows it must be so, and submits.

It will do him no good to whine."

After the .na primitive, nroff fills but does not adjust the second paragraph. After .ad r, it fills and right adjusts
the third paragraph. After .nf, it neither fills nor adjusts the fourth paragraphs. Finally, after .fi, it fills the fifth
and sixth paragraphs and uses the .ad r adjust option that was in effect previously.

Under certain extreme conditions, nroff cannot adjust a line even though it is in adjust mode. If, for example, you
specified a line length of one inch, a seven-letter or eight-letter word would then take up most of a line. When such
a word was then followed by a word that could not fit into the line after it, nroff would begin a new line with the
second word rather than violate the right margin by inserting the into the line. When a line has only one word in
it, nroff obviously cannot adjust the line by inserting extra spaces between words; therefore, the right margin is left
uneven, as though nroff were in no-adjust mode.
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Defining Paragraphs

What happens if you copy text from several pages of a book into a file without adding any formatting commands,
and then process the file with nroff? There is no page offset, because nroff’s default page-offset setting is zero; and
the processed lines are set to the default length of 6.5 inches (65 Pica characters).

More interesting things happen with paragraphs. Suppose you skip a line between paragraphs and begin each
paragraph by indenting five spaces. The blank line in the input text causes a break, and forces nroff to print a
blank line. The last line of each paragraph is unadjusted, and a blank line appears before the next paragraph.
Initial blank spaces in a line of input also cause a break. In this example, the breaks caused by initial blank
spaces at the beginning of each paragraph do nothing, because the preceding blank line forces out the last line of
the preceding paragraph. nroff always considers initial blank spaces in a line to be significant, and preserves them
in the output.

To see how blank lines and initial spaces affect nroff’s output, copy the following example and run it through
nroff:

Here is a little text so you can see
whether nroff will ignore the initial
indentation

in this very very long sentence.
Here is a little bit more text.

And here is something to mimic
the beginning of a new paragraph.

The output should look like this:

Here is a little text so you can see whether nroff will ignore the initial indentation
in this very very long sentence. Here is a little bit more text.

And here is something to mimic the beginning of a new paragraph.

Instead of leaving a blank line in the text, you could use the space primitive .sp 1, which causes a break and
inserts one blank line into the output. In a similar way, .sp 5 causes a break and inserts five blank lines in the
output. Edit the example and replace the blank line with the command line:

.sp 1

You will see that it has the same effect. You can also use the form .sp; nroff assumes you want one space if you
omit the argument.

Most nroff input consists of many paragraphs that contain text, and you probably want each paragraph to have
the same format in the output. Rather than formatting each paragraph explicitly, as in this example, you can use
the macro facility of nroff to define a sequence of commands to format a paragraph. Macros are described in detail
later in this tutorial.

Centering

The center primitive .ce centers one or more lines of text. For example, you can center a two-line heading as
follows:

.ce 2
Heading Printed
In Center of Page

If you use the .ce command with no argument, nroff assumes a default argument of one, and centers only the next
line of input. The command ce 0 cancels any earlier centering command that is in operation.

Tabs

If your nroff input includes tables, you may find it convenient to use tabs to separate items in a line of the table.
nroff recognizes the <tab> character and expands it into spaces. If you use tabs to format a table, remember to
use no-fill mode; otherwise, nroff tries to fill and adjust your output lines.

By default, nroff sets a tab stops after every eight characters. You can use the tab primitive .ta to change the
positions of the tab stops. For example,

.ta 10 20 30 40 50 60
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sets tab stops ten characters apart rather than eight. .ta can also be used to fix tab stops in inches rather than
after a number of characters; for example,

.ta 0.8i 2.0i

sets tab stops after 0.8 inches and 2.0 inches on the output line. This is quite helpful when you are designing a
table.

You can use the tab character command .tc to change the character nroff prints between its current position and
the next tab stop. Enter the following text to see how this primitive works:

.ta 9 19 29 39

.tc *

.nf
<tab>1<tab>2<tab>3<tab>4

The output file, ex3.p, should appear as follows:

*********1*********2*********3*********4

Page Breaks

The begin page primitive .bp causes a break and forces nroff to the next output page. By default, nroff assumes a
page length of 11 inches (66 lines). You can change the page length with the page length command .pl. For
example,

.pl 2i

specifies a two-inch page length.

At this point, the question arises about how nroff handles top and bottom page margins, number pages, and other
aspects of page layout. The answer is it merely keeps track of the current output page number and the current
line number on the current output page; designing top and bottom margins, page headers and footers, and other
aspects of page layout is up to you.

Can nroff execute a set of commands whenever it reaches a certain position on the page? This would solve the
problem of producing top and bottom margins, and you would not have to guess where to insert the commands in
your script. In fact, you can tell nroff to do this, by using traps. The next section of this tutorial describes macros
and traps and how to use them to format a page.

Macros and Traps
This section presents nroff macros: how to write them, how to tell nroff to execute them at a give point on every
output page, and how to install a macro file under the COHERENT system

As with previous sections, this one uses a number of exercises. Working the exercises will help you master nroff
quickly. When you format the exercise scripts, do not use the -ms option. Also, it is not necessary for you to copy
the comments into your system; they are here to help you understand what each nroff command does, but they
have no effect on how the script executes.

What Is a Macro?

To become familiar with the idea of a macro, consider the problem of formatting a paragraph. Whenever you come
to a new paragraph, you want nroff to skip a line and indent the first line five spaces. Because nroff preserves
blank lines and initial indentations, you could force nroff to break your text into paragraphs simply by inserting a
blank line and spaces directly into your text. The same effect, however, can be achieved by inserting following set
of nroff commands

.br \" break

.sp \" skip a line

.ti 5 \" indent next line 5 spaces

between the end of each paragraph and the start of the next paragraph. You should recognize the first two
commands: .br causes a break, so that nroff prints the last line of the previous paragraph even though it might
not be a complete line; .sp skips a line before the next paragraph begins. The third command is the temporary
indent command .ti, which tells nroff to indent the next line; the number indicates how many spaces to indent.
The following exercise, ex4.r, demonstrates how this works:

.ll 3i \" line length

.po 3i \" page offset
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.ti 5 \" indent next line
Adam was human--this explains it all. He did
not want the apple for the apple’s sake, he
wanted it because it was forbidden. The mistake
was in not forbidding the serpent; then he would
have eaten the serpent.
.br \" break
.sp \" skip a line
.ti 5 \" indent next line
Training is everything. The peach was once a bitter
almond; cauliflower is nothing but cabbage with a
college education.
.br
.sp
.ti 5
Habit is habit, and not to be flung out of the window
by any man, but coaxed downstairs a step at a time.

After you have processed this file, the output file ex4.p should resemble the following:

Adam was human--this explains it all. He did not want the apple for the apple’s sake,
he wanted it because it was forbidden. The mistake was in not forbidding the serpent; then he
would have eaten the serpent.

Training is everything. The peach was once a bitter almond; cauliflower is nothing but
cabbage with a college education.

Habit is habit, and not to be flung out of the window by any man, but coaxed downstairs a
step at a time.

Now, in a small file it would be easy to type all of the nroff primitives directly into your input text; however, what if
your file is very long, with hundreds of paragraphs? Every time you wanted to begin a paragraph, you would have
to include that set of commands within the text. You would save considerable agony if you could bundle these
commands together under a common name; then you could simply put that name into your text whenever you
wanted nroff to perform these commands, rather than typing the commands themselves over and over again.

As you probably have guessed by now, you can do just that; the set of commands is called a macro. The following
shows the selections from Pudd’nhead Wilson’s calendar set with a macro called .PP that takes care of formatting
each paragraph. The following exercise, ex5.r, shows how to bundle together the nroff primitives for formatting
paragraphs into the .PP macro:

.de PP \" define the PP macro

.br \" break the line

.sp \" insert a blank line

.ti 5 \" indent next line 5 spaces

.. \" two periods ends the macro definition

.PP \" execute PP macro
Adam was human--this explains it all. He did
not want the apple for the apple’s sake, he
wanted it because it was forbidden. The mistake
was in not forbidding the serpent; then he would
have eaten the serpent.
.PP
Training is everything. The peach was once a bitter
almond; cauliflower is nothing but cabbage with a
college education.
.PP
Habit is habit, and not to be flung out of the window
by any man, but coaxed downstairs a step at a time.

As you can see, using a macro can save you a considerable amount of work when you prepare your script.
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Introducing Traps

Now, consider the problem of formatting the beginning and ending of each page of output. You could define what
are traditionally called header and footer macros, which contain the commands you want performed at the top and
bottom of each page. However, how can you tell nroff when to execute these macros? You cannot possibly know
where to call these macros in the input text, because you cannot know where any given text line will appear in the
output until you have processed it through nroff. This problem is solved by using traps.

nroff keeps track of its vertical position on each output page. You can set a trap that tells nroff to execute a
macro at a particular vertical position on every page. When a line of output reaches or extends past the position
that is specified in your trap, nroff then executes the commands named in the trap command before processing
any more input text.

You can set a trap by using the when command .wh. For example, if you want nroff to call your header macro .HD
at the very top of each page, the command

.wh 0 HD \" set header trap

sets a trap for the macro .HD at vertical position 0 (the very top of the page) of every output page. The macro .HD
will then be executed every time nroff begins a new page. To have your footer macro .FO execute one inch from
the bottom of each page, use the command

.wh -1i FO \" set footer trap

The negative number tells nroff to measure distance from the bottom of the page rather than from the top; the i is
an abbreviation for inches. (nroff recognizes various units of measurement; this will be described in more detail
later.)

Headers and Footers

Suppose you want to design the output page by defining the header and footer macros. A simple header macro
merely skips an inch of space at the top of each page; a simple footer macro forces printing to stop an inch from
the bottom of each page and prints the page number. nroff does not print page numbers automatically, but it does
automatically keep track of which output page it is on. It stores the page number internally in a number register
that you can access with the symbol ‘%’. (A later section gives more information about number registers and how
to use them.)

The following gives a simple footer macro that prints the page number:

.de FO \" define footer macro FO
’sp 4v \" skip four vertical lines (no break)
.tl ’’- % -’’ \" print hyphen, page number, hyphen
’bp \" jump to new page
.. \" end macro definition

There are several points of interest raised by this macro.

First, notice that some commands are preceded with an apostrophe rather than with a period. The use of the
apostrophe instead of the period tells nroff to suppress the break these commands normally cause. You might run
into problems if you define your header macro as follows:

.de HD \" header macro

.sp 1i \" skip an inch (break)

..

You want this to leave a blank space of one inch at the top of each page; however, the .sp command causes a
break, so that if a word were left over from the last line on the preceding page, nroff would print it at the very top
of the next page. The effect would be quite unsightly. However, if you use ’sp instead of .sp in the macro, nroff
suppresses the break and does not print the partial word until after it performs the macro commands. The same is
true for the footer macro: you do not want anything unplanned to be printed in the blank space at the bottom of
the page. You should always be conscious of these considerations when you use commands that cause breaks.

Another new item in the above example is the title command .tl, which prints a three-part title. A three-part title
contains a left part (aligned to the left margin of the page), a center part (centered), and a right part (aligned to the
right margin). The command name .tl is followed by four apostrophes: nroff prints the characters between the first
two apostrophes as the left part of the title line, those between the second and third apostrophes as the center
part, and those between the third and fourth apostrophes as the right part of the three-part title. If you do not
want nroff to print anything in one of these positions, simply put nothing between the appropriate pair of quotes.

TUTORIALS



nroff Text-Formatting Language 253

In the above example, the .tl primitive tells nroff to print nothing in the left and right portions of the footer title
line, but to print the page number in the center. If you want an apostrophe to appear as a part of the title, precede
it with the backslash character ‘\’.

nroff considers the length of the title line to be independent of the length of normal output lines; therefore, you
must set it with the length of title primitive .lt unless you want nroff to use the default title length of 6.5 inches.
For example, to set the length of the title to five inches, use the command

.lt 5i

In light of all you now know, you should give Pudd’nhead Wilson’s calendar the treatment it deserves:

.ll 3i \" set line length to 3 inches

.po 2i \" set page offset to 3 inches

.pl 9i \" set page length to 9 inches

.wh 0 HD \" set the header trap

.wh -1i FO \" set the footer trap

.de HD \" define header macro HD
’sp 1i \" skip 1 inches of space
.. \" end macro definition
.de FO \" define footer macro
’sp 2 \" skip 2 lines
.tl ’’- % -’’ \" define footer title
’bp \" begin new page
.. \" end macro definition
.de PP \" define paragraph macro
.sp 1 \" skip 1 line of space
.ti 5 \" indent the first line 5 characters
.. \" end macro definition
.PP
Adam was human--this explains it all. He did
not want the apple for the apple’s sake, he
wanted it because it was forbidden. The mistake
was in not forbidding the serpent; then he would
have eaten the serpent.
.PP
Training is everything. The peach was once a bitter
almond; cauliflower is nothing but cabbage with a
college education.
.PP
Habit is habit, and not to be flung out of the window
by any man, but coaxed downstairs a step at a time.

As a point of technique, always set header and footer traps early in your input script; otherwise, nroff may not
print the header on the first page.

Macro Arguments

You can affect how macros function by passing them modifiers, called arguments. An argument may be a bit of
text that is arranged in a special way by the macro, or it may be a number or other parameter that dictates exactly
what the macro does.

As an example of how a macro can handle arguments, consider a macro to format the list of ingredients for a
recipe. You want the ingredients to be printed as follows:

3 cups of pumpkin
1 cup of milk
1 cup of sugar
1 tsp of ground ginger
1 tbl of cinnamon

Each of these lines has the same format: the amount of ingredient, the unit of measurement, the word ‘‘of’’, and the
name of the ingredient. You can create a macro (call it .RE, for recipe) that encodes the format of these lines and
contains three ‘‘slots’’: one slot for the amount, one for the unit of measurement, and one for the name of the
ingredient. Each time you use the macro, you indicate what you want to go into each slot, and nroff substitutes it
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for you. The macro .RE can be constructed as follows:

.de RE \" define macro RE
\\$1 \\$2 of \\$3 \" set RE’s arguments
.. \" end definition
Here is some text.
.nf \" don’t fill the recipe
.RE 3 cups pumpkin
.RE 1 cup milk
.RE 1 cup sugar
.RE 1 tsp "ground ginger"
.RE 1 tbl cinnamon
.fi \" resume filling
Here is some more text.
.bp \" begin a new page, to force printing

When you call a macro that takes arguments, the arguments must appear on the same line as the macro command
itself. A macro may have up to nine arguments; they are denoted by \$1, through \$9, respectively: the first field
after the macro name is called \$1, the second \$2, and so on.

If you want to use as an argument a string of characters that includes blank spaces, you must enclose the string
within quotation marks, as with the words ‘‘ground ginger’’, in the example above. If you forget to include the
quotation marks, nroff regards each word in the string as a separate argument, and treats them accordingly.

Note that macros that are called by traps cannot accept arguments.

Double vs. Single Backslashes

If you carefully examine the definition of RE, you will see that it identifies each argument with two backslashes:

\\$1 \\$2 of \\$3

Whenever you identify an argument within a macro, always preface it with two backslashes, rather than one. The
reason is that nroff in effect processes a macro twice: when it first reads it, and later when you call it within your
text. Prefacing an argument with one backslash tells nroff that you want to expand that argument when the
macro is first read; prefacing it with two backslashes tells nroff that you want to expand it when the macro is
called in your text. In nearly every circumstance, you want to expand the arguments in your text, so you should
use two backslashes. As you will see, this rule also applies to the use of strings and number registers within
macros.

To see how this works, consider again the .RE macro:

.de RE
\\$1 \\$2 of \\$3
..
Here is some text.
.nf
.RE 3 cups pumpkin
.RE 1 cup milk
.RE 1 cup sugar
.RE 1 tsp "ground ginger"
.RE 1 tbl cinnamon
.fi
Here is some more text.
.bp

Using two backslashes, as above, allows you to redefine what $1, $2, and $3 mean many times throughout your
text, to generate the following output:

Here is some text.
3 cups of pumpkin
1 cup of milk
1 cup of sugar
1 tsp of ground ginger
1 tbl of cinnamon
Here is some more text.

If you used only one backslash, however, your output would appear as follows:
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Here is some text.
of
of
of
of
of

Here is some more text.

nroff could not expand the argument calls (\$1 etc.), because you had not yet defined them; therefore, it threw
them away; and because all of the argument calls had been thrown away, nroff then threw all the arguments away.
All that was left was word of.

Designing and Installing Macros
Now that you have been shown how to write a macro, the next step is to design some macros and install them, so
you can call them over and over again.

The first step in designing a macro is to analyze the problem that you want to solve. Suppose that in this instance
you want to print a list of names. Each name will consist of a first name, a last name, and the department with
which he is associated, and the list will be printed in columns; for example:

Firstname Lastname Department

Moreover, you want to be able to switch the order in which the columns appear without having to retype your list;
for example:

Lastname Firstname Department

or

Department Lastname Firstname

In effect, then, you want three macros: one for each of the three orders of columns shown above.

When you have finished designing your macros, they should look something the following. Type the following into
the file tmac.lst; note that the symbol <tab> represents a tab character, and should not be entered literally:

.\" List macros. $1 represents first name,

.\" $2 last name, $3 department

.de LA

.nf

.ta 1.5i 2.75i
\\$1<tab>\\$2:<tab>\\$3
.Rt
..
.de LB
.nf
.ta 1.5i 2.75i
\\$2,<tab>\\$1:<tab>\\$3
.Rt
..
.de LC
.nf
.ta 1.5i 2.75i
\\$3:<tab>\\$2,<tab>\\$1
.Rt
..

The first lines are comments, so that anyone who looks at these macros will know what they do. The first
command line, introduced with the .de command, names each macro. These names were selected after checking
the file tmac.s, which is where the -ms macro package is kept, to confirm that they are not used elsewhere.
Naturally, using the same macro name in two different places can lead to a great deal of trouble.

The next command, .nf, turns off the nroff’s normal right justification, which otherwise would smear a table. The
.ta command sets the tab characters at certain points on the page, measured from the left margin.
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The next line gives the order in which the arguments appear. The arguments are separated by tab characters, and
punctuation is inserted. The last command, .Rt, calls a macro in the file tmac.s; this macro resets nroff to its
normal fill mode and returns the tab settings to normal. Note that these macros can be used only when you also
use the -ms macro package.

After you have typed the macros into tmac.lst, carefully read over what you type to ensure that no there are no
errors; if you find any, be sure to correct them. The final step is to move tmac.lst into the directory /usr/lib,
which is where tmac.s is also kept.

To test your new macros, type the following text into the file ex6.r:

The following lists give the personnel who are involved in
this project:
.sp
.LA Ivan Morgan Engineering
.LA Marian Gusman Design
.LA George Meyer Electrical
.LA Catherine Scanlon "Metal Shop"
.LA Fred McElroy Carpentry
.LA Anne Assenmacher "Machine Shop"
.sp
.LB Ivan Morgan Engineering
.LB Marian Gusman Design
.LB George Meyer Electrical
.LB Catherine Scanlon "Metal Shop"
.LB Fred McElroy Carpentry
.LB Anne Assenmacher "Machine Shop"
.sp
.LC Ivan Morgan Engineering
.LC Marian Gusman Design
.LC George Meyer Electrical
.LC Catherine Scanlon "Metal Shop"
.LC Fred McElroy Carpentry
.LC Anne Assenmacher "Machine Shop"
.sp
We expect that they will receive your full cooperation.

The same set of names is used three times; the only difference is the macro call employed.

Now, process this file with the following command:

nroff -ms -mlst ex6.r >ex6.p

As you can see, when you installed tmac.list into /usr/lib, you could invoke it in the same way that you invoke
tmac.s with -ms.

When you look at the output file ex6.p, you should see something that resembles the following:

The following lists give the personnel who are involved in this project:

Ivan Morgan: Engineering
Marian Gusman: Design
George Meyer: Electrical
Catherine Scanlon: Metal Shop
Fred McElroy: Carpentry
Anne Assenmacher: Machine Shop

Morgan, Ivan: Engineering
Gusman, Marian: Design
Meyer, George: Electrical
Scanlon, Catherine: Metal Shop
McElroy, Fred: Carpentry
Assenmacher, Anne: Machine Shop

Engineering: Morgan, Ivan
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Design: Gusman, Marian
Electrical: Meyer, George
Metal Shop: Scanlon, Catherine
Carpentry: McElroy, Fred
Machine Shop: Assenmacher, Anne

We expect that they will receive your full cooperation.

As you grow proficient in writing nroff macros, you will probably find it most efficient to keep special macros in
their own files; this will save time by ensuring that nroff does not have to process macros that are never called.

Strings
Suppose you are writing a script for nroff and, to relieve the tedium, decide to punctuate the text occasionally with
a rousing cry of ‘‘FOOD FIGHT!!’’. If you plan to interject this phrase more than a few times in your script, you can
take advantage of another labor-saving device, called a string. You can use a string name as an abbreviation for a
long string of characters you use frequently. Like a macro, a string is a name that nroff associates with a
definition that you supply. Wherever you put the name in your text, nroff prints the definition. Although macros
refer to sets of commands that you define, strings refer to strings of characters that you define.

You define a string with the define string primitive .ds:

.ds FF "FOOD FIGHT!!"

The first field after the .ds gives the name of the sting, in this case FF. Like a macro name, a string name may be
either one or two characters. The second field after the .ds gives the definition of the string, in this case

"FOOD FIGHT!!"

As in this example, you must enclose the definition within quotation marks if it contains spaces.

Be careful whenever you define a macro or a string. If you already have a macro or a string named X and you
define a new macro or string named X, nroff forgets the previous meaning of X.

Once you have defined a string, you can refer to it anywhere in your text. The string itself appears in the output
text wherever a reference to it appears in the input text. You refer to the string FF in the following fashion:

\*(FF

Use the left parenthesis ‘(’ only when the name of the string is two characters long. If the string name is only a
single character, such as S, refer to it as follows:

\*S

As an example, type the following script into ex7.r, and process it through nroff; do not use the -ms macro
package:

.ds FF "FOOD FIGHT!!"

.ds W "WHOOPEE!!"

.ce
From Aristotle’s "Poetics"
.br
.sp
A tragedy is the imitation of an action \*(FF
that is serious and also, \*W as having magnitude,
complete in itself, with incidents \*(FF
arousing pity and fear, wherewith to accomplish \*W
\*(FF its purgation of such emotions \*(FF \*(FF.
.bp

nroff adjusts the spacings between words in a string but does not hyphenate any word that is within a string. If
you use a very short line length, such as two inches, and define a string that includes a three-inch long word, that
word would not be hyphenated but would extend past the right-hand margin.

You cannot include a newline character in a string. However, you can spread the definition of a string out over
more than one line with the aid of concealed newlines (preceded by the backslash character ‘\’). nroff ignores each
concealed newline. For example, add the following string to the previous example:

.ds PR "GO TEAM \
GO!!!"
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As you can see, nroff ignores concealed newlines anywhere in its input.

Strings Within Strings

You can define a string that has embedded within it a reference to another string. Whenever you refer to the bigger
string in your text, nroff substitutes the definition of the smaller string for any reference to the smaller string.
When you embed strings, though, you should use two backslashes to refer to the embedded string, for the same
reason that you should use two backslashes to refer to an argument within a macro:

.ds S "This string \\*x has embedded \\*y strings"

To help understand this better, type following three scripts into your computer and format them with nroff. The
first script contains proper references to embedded strings (using double backslashes); it works as expected:

.ds S "strings \\*X, strings \\*Y, strings \\*Z"

.ds X "here"

.ds Y "there"

.ds Z "everywhere"
\*S

The next script contains embedded references that use only single backslashes. Because the embedded strings are
defined after the larger string, they are not available when nroff defines the larger string, and so the references are
ignored:

.ds S "strings \*X, strings \*Y, strings \*Z"

.ds X "here"

.ds Y "there"

.ds Z "everywhere"
\*S

The third script again contains embedded references using single backslashes. This time, the embedded strings
are defined before the larger string, and so are available when the larger string is defined:

.ds X "here"

.ds Y "there"

.ds Z "everywhere"

.ds S "strings \*X, strings \*Y, strings \*Z"
\*S

To avoid unnecessary worry, you should always play it safe and use double backslashes to refer to embedded
strings.

Number Registers
You learned in previous sections that nroff keeps track of the output page number while it prints its output. You
made use of this fact when you created a footer macro that printed page numbers. nroff also keeps track of other
housekeeping information, such as the current line length, page offset, page length, and vertical position of the last
output line. It keeps this information in storage locations called number registers.

You can use the name of a number register to refer to the number that is stored in it. When you place a reference
to a number register in your text, nroff substitutes for the name whatever number is currently in the register.

Number register names are one or two characters long, just like macro and string names. You can have a number
register with the same name as a string or a macro without confusing nroff, even though you cannot give a macro
and a string the same name. However, you might become confused; nroff scripts usually are easier to understand
if you keep all macro names, string names, and register names distinct.

Another difference between number registers, macros, and strings is that nroff itself does not define any macros or
strings (although the -ms macro package does), but it does automatically define and update quite a few number
registers. You can use these predefined number registers in much the same way that you use registers you define
yourself, except that you cannot change their values.

To define a number register, you must specify the register name and the initial value for the register. The number
register primitive .nr looks like this:

.nr X 5

Here X is the name of the register and 5 is the initial value to store in it. To refer to number register X in your
text, use \nX; if the name is two characters long (for example, XY), use \n(XY. This is exactly like the way you
refer to a string, except that you use the letter ‘n’ instead of an asterisk ‘*’. When nroff sees a reference to number
register X, it automatically substitutes the value stored in X. As you will see shortly, nroff can do arithmetic, and
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learning to use number registers is an important part of learning to take advantage of nroff’s arithmetic abilities.

A reference to a number register can occur anywhere a number would normally occur. For example, if you set
register X to 5, as above, you can set the line length to five inches as follows:

.ll \nXi

This command is essentially the same as

.ll 5i

if the current value of register X is 5.

A familiar problem arises when you refer to a number register inside a macro or a string definition. If you use just
one backslash, nroff substitutes the value in the register for the reference when it first processes the macro or
string. If you have not yet defined the number register in your script, nroff inserts 0 into the macro or string.
Normally, you should use a a double backslash, such as \\nX or \\n(XY, when referring to a number register
within a macro or string. Using the double backslash is particularly important if you change the value of the
register throughout your script, and want the current value to appear in the macro or string each time you call it.

Try typing the following examples into your computer, and processing them with nroff. See if you can describe
why nroff prints what it does in each case. The first example defines a string with a register reference preceded by
a single backslash.

.ds S "Here is a number \nX"

.nr X 55
\*S
\nX

You should see the following output:

Here is number 0
55

nroff printed what it did because number register X had not yet been defined when it was called in string S; nroff
therefore erased the reference to X and substituted zero for it. Number register X was then set to 55, which was
printed when the register was specifically called later in the script.

The second example is similar, but now the number register is set before the string is called:

.nr Y 56

.ds T "Here is a number \nY"
\*T
\nY

Now the output is

Here is a number 56
56

The third example uses a double backslash for the register reference.

.ds U "Here is a number \\nZ"

.nr Z 57
\*U
.nr Z 58
\*U

This script produces the following:

Here is a number 57
Here is a number 58

The final example uses a single backslash again.

.nr W 59

.ds V "Here is a number \nW"
\*V
.nr W 60
\*V

The following is produced:
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Here is a number 59
Here is a number 59

The last example illustrates the danger of using a single backslash to refer to a number register within a string
definition. You defined the number register W before you defined the string V, so the value for W was available
when nroff read the definition of V. nroff substituted the value when it reads the definition; the reference to the
number register W is no longer there. You then change the value of W, but as you see in the next call of V, the
change does not affect the number that appears in V. In contrast to this, notice in the third example that the
double backslash in the definition of U allows the reference to number register Z to remain within the definition of
string U. Whenever you change the value of Z and then call U, nroff substitutes the new value of Z for the reference
to Z within U.

You can also use the .nr primitive to increase or decrease the value in a number register. For example, suppose
you initially store the value five in X:

.nr X 5

Incrementing and Decrementing

You can change the value of X to 9 by adding 4, as follows:

.nr X +4

You can then change the value of X to 7 by subtracting 2:

.nr X -2

A plus or minus sign before a number on the .nr command line tells nroff to add or subtract the given amount to
or from the value in the register. Because a negative number is always preceded by a minus sign whereas a
positive number usually is not preceded by a plus sign, you can use .nr to set a register to a positive value in a way
that cannot be imitated for negative values. For example, suppose you again start out with number register X set
to a value of 5:

.nr X 5

If you immediately follow this with

.nr X 7

then nroff replaces the value of 5 with 7. The second .nr does not increase the value of X by 7 to produce 12;
rather, it wipes out the previous value of 5 and replaces it by the value 7. The command line to increase X by 7 is

.nr X +7

If you again start with a value of 5 in X and want to change the value to -4, you cannot use the following command
line:

.nr X -4

nroff interprets this as a command to decrease the current value of X by 4, which is not what you intended. This
command places the value 1 in X, since 5-4=1. If X initially has a value of 5 and you want to change the value to
-4, you could use the command

.nr X -9

You can also increase or decrease the value of a number register without using .nr. If number register X currently
has the value 10, the reference \n+X increases the value in X by 1 to 11 and substitutes the new value for the
reference. The value in X becomes 11; nroff replaces the next reference \nX by 11, whereas another reference
\n+X increments the value in X to 12 and replaces the reference by 12. Similarly, if number register XY currently
has the value 15, the reference \n+(XY increases the value in XY to 16 and replaces the reference by 16.

You can also decrease a register’s value. The reference \n-X decreases the current value in X by 1 and substitutes
the new value for the reference. Likewise, the reference \n-(XY decreases the current value in XY by 1 and
substitutes the new value for the reference.

You can change the size of the increment or decrement by means of another option to the nr command. If you
define X with

.nr X 1 5

then nroff sets the value of X to 1 and sets the increment value for X to 5. The next reference \n+X increments
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the value in X from 1 to 6 (the ‘+’ now causes nroff to add 5 to the current value of X rather than adding 1) and
substitutes 6 for the reference. In the same manner, \n-X subtracts 5 from the current value of X and substitutes
the new value for the reference. This is convenient if you plan to repeatedly increment or decrement X by the same
fixed amount. If you wish to change the size of the increment, simply redefine X with another .nr that specifies the
new initial and increment values. If you define a number register but do not specify an increment value, nroff
assumes the increment value to be 1.

The following example of a macro illustrates a typical use of a number register and incrementing.

.nr W 1 \" set W to 1, inc by 1

.ds X "Here’s Wrestler No. \\nW," \" define string X

.de B \" define macro B

.br
\\*X \\$1!!! \" define arg to macro B
.nr b \\n+W \" increment W
.. \" end definition
.B "Alex ’Killer’ Bovine" \" call B with arguments
.B "William ’Crusher’ Risible"
.B "Vlad ’the Impaler’ Acephalous"
.bp \" force printing of page

to produce the following output:

Here’s Wrestler No. 1, Alex ’Killer’ Bovine!!!
Here’s Wrestler No. 2, William ’Crusher’ Risible!!!
Here’s Wrestler No. 3, Vlad ’the Impaler’ Acephalous!!!

A reference to a number register may appear any place a number can normally appear. For example:

.nr X \nY \nZ

sets register X to the value of register Y and sets the increment for X to the value of register Z.

As mentioned before, nroff performs arithmetic. It understands and evaluates properly formed arithmetic
expressions involving numbers, references to number registers, the arithmetic operators ‘+’, ‘-’, ‘*’, ‘/’, ‘%’, and
parentheses. The first four operators represent addition, subtraction, multiplication, and division. The ‘%’ is the
modulus or remainder operator: the value of 7%3 is 1, which is the remainder when 7 is divided by 3.

One word of caution: nroff evaluates expressions from left to right without any preference for performing some
operations before others. For example,

.nr X 5+4*3/9

stores 3 in X. nroff does not perform the multiplication and division before the addition, as you might expect.

Another important fact is that number registers hold only integers. If you write

.nr X 3.6

nroff truncates the value 3.6 and stores 3 in X. Also, an assignment such as

.nr X 3.9*3.9

stores 9 in X; nroff truncates each factor before it performs the multiplication. The assignment

.nr X 0.4*8

stores 0 in X rather than 3: truncation occurs before nroff performs the multiplication rather than after.

A final word of caution: when you use numbers with commands other than .nr, the results may not be what you
expect. nroff understands several different units of measurement and converts between units automatically. The
next section explains units and conversion in detail.

Units of Measurement

As mentioned above, nroff maintains many number registers during processing. For example, it stores the current
page length in the register .l (Note that the period ‘.’ is actually part of the name of this register.) If you set the line
length to five inches with the command

.ll 5i
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nroff stores the length in register .l automatically; however, if you print the value in register .l by entering \n(.l,
you find the value is 600. What does this mean?

Many nroff commands require that you specify lengths or measurements as arguments. You are already familiar
with many of these commands: for example, .ll, .po, .pl, and .lt. nroff accepts various units of measurement, but
for purposes of calculation, it converts each into a basic unit called a machine unit, which is abbreviated u. A
machine unit is 1/120 of an inch long. Because one inch is 120 machine units, the length of a five-inch line is 5
times 120, or 600 machine units.

The conversion table for units of measurement is as follows:

inch: 1i = 120u
vertical line space: 1v = 20u
centimeter: 1c = 47u
em: 1m = 12u
en: 1n = 6u
pica: 1P = 20u
point: 1p = 1u

Most of these are traditional typesetting terms.

As noted briefly earlier, nroff’s output actually consists of a sequence of characters. It is useful, though, to think
of the output as being ‘‘printed’’ at ten characters per inch (Pica or 10-pitch spacing) and six lines per inch. Many
output devices use this spacing. With these assumptions, 5i is equivalent to five inches of printed output.

Every nroff command has a default unit of measurement. For example, the default unit for .ll is m, whereas the
default unit for .sp is v. If you type

.ll 5

nroff interprets it not as five inches or five centimeters, but as 5m, which it converts to 5 times 12, or 60 machine
units (60u).

nroff always assumes a unit specification as part of each number and automatically converts each number and its
unit specification into machine units. If you append an explicit unit specification to the number, nroff uses it; if
you do not, nroff uses the default unit for the command.

For example, suppose you write the following commands:

.nr X 2i

.ll \nX

What line length results? The first command stores the number 2 times 120, or 240, in register X. The second
command is therefore equivalent to typing

.ll 240

However, the default unit for .ll is m. Because 1m equals 12u, nroff sets the line length to 12 times 240, or 2,880
machine units. If you wanted a line length of two inches to result from the above commands, you will be
unpleasantly surprised, because 2i equals only 240u. Instead, you should write:

.nr X 2i

.ll \nXu

By including the u in the .ll primitive, you do not accidentally multiply your results by 12, as happened earlier.

You should think of the unit specification as a part of a number. Because nroff accepts so many different units of
measurement, a number without a unit specification is ambiguous. What does ‘5’ mean? Five inches?
Centimeters? Ems? nroff must know what unit of measurement you are using. If you think of the unit
specification as a part of the number, you will have less trouble with potentially mystifying situations like the
following. As mentioned, number registers store only integers and nroff truncates each number in an arithmetic
expression to an integer before evaluating the expression. Therefore, the following stores 0 in register X:

.nr X 0.4*9

But now try the following:

.nr X 0.4i
\nX

This does not store 0 in X like the previous command; it stores 0.4 times 120, or 48 in X. The 0.4 is not truncated
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to 0 here! Truncation occurs after conversion to machine units, so nroff truncates 0.4u in the first example. But
the number in the second example is given in inches i instead of machine units u. nroff converts it to u before
truncating to get an integer.

As another example, the following stores 1 in X:

.nr X 0.01i

nroff converts 0.01 inches to 0.01 times 120, or 1.2u, and then truncates 1.2 to 1.

The following command illustrates that nroff understands each number in an arithmetic expression to have an
attached unit specification, whether you supply one or not.

.ll 2*8

Recall that nroff stores the current line length in the register .l; if you type

\n(.l

you will receive the number 2,304. nroff interprets the 2 as 2m and the 8 as 8m, because the default unit for .ll is
m. Then it converts each to machine units and multiplies to give the result: (2*12)*(8*12), or 2,304.

Consider one final example that illustrates the unusual consequences of seemingly innocent assignments.
Suppose you set the page offset as follows:

.po 8/3

nroff stores the current page offset in register .o. To see what number it stores there, type

\n(.o

You see that the page offset is 2. Because the default unit for .po is m, the calculation is (8*12)/(3*12)=8/3, which
nroff truncates to 2. Two machine units is equivalent to only 1/60 of an inch. This is not a physically reasonable
value for most typewriter-like devices, so a page offset of 0 characters results. On the other hand,

.po 8/3u

produces a page offset of approximately 1/4 of an inch.

Conditional Input
Now that you have been introduced to number registers, you can use them in conjunction with powerful
conditional commands to create more elaborate nroff scripts.

To see how conditional statements help you construct an nroff script, consider again the problem of creating
header and footer macros. Earlier, you constructed macros that skipped space at the top of the page and printed
the page number at the bottom of each page.

Suppose, however, that you are formatting a paper that has a title. You want to print the page number for page 1
at the bottom of the page, and to print the rest of the page numbers at the top of the page. Both the header and
the footer need some kind of conditional mechanism to perform differently on the first page than on subsequent
pages. On page 1, the header should skip to where the title will be printed; on other pages, the header should
print the page number. On page 1, the footer should print the page number; on other pages, the footer should
leave a block of blank space at the bottom of the page.

To execute commands conditionally, use the if/else commands .ie and .el, which are demonstrated in the following
example. Note that the formation ’’, which is used with the .tl command, represents two apostrophes, not a
quotation mark.

.de HD \" define header

.ie \\n%=1 .A

.el .B \" else do B

..

.de A \" define macro A

.sp |1.0i \" space down to 1 inches from top of page

..

.de B \" define macro B
’sp 2v \" skip 2 spaces
.tl ’’- % -’’ \" print page no.
’sp |1.0i \" skip to 1 inch from top of page
..
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.de FO \" define footer

.ie \\n%=1 .C \" if page no. is 1 then do C

.el .D \" else do D

..

.de C \" define macro C
’sp |-4v \" move to 4 in. above bottom of page
.tl ’’- % -’’ \" print page no.
’bp \" begin new page
..
.de D \" define macro D
’bp \" begin new page
..

As you can see, the .ie and .el commands always occur in pairs. .ie consists of three parts: the command name
.ie, then a condition that nroff tests, followed by a command nroff performs if the condition is true. If the
condition on the .ie command line is not true, nroff performs the command on the .el line instead.

In the example, each conditional invokes a macro on the command line. Actually, the conditional can specify input
text rather than the command after the condition. If you want to execute several commands or include several text
lines conditionally, enclose the lines with the special sequences ‘\{’ and ‘\}’.

Note, too, that one other new element was introduced in the construction of these macros. Some of the .sp
commands have a vertical bar immediately in front of the measurement; for example,

.sp |1.0i

Normally, when nroff sees a command like .sp 1.0i, it moves down one inch on the output page. The movement is
relative to where nroff happens to be on the output page when it received the request. The vertical bar tells nroff
that the following measurement is an absolute measurement, measuring either from the top of the page (if positive)
or from the bottom of the page (if negative). Therefore,

.sp |1.0i

tells nroff to move to one inch from the top of the page;

.sp |(-4v)

tells it to move to four vertical spaces from the bottom of the page.

The .if primitive is formed exactly like .ie. Unlike .ie, which must always be used with .el, the .if command may be
used by itself. If the condition on the .if line is true, nroff performs the command that follows the condition; if the
condition is false, it ignores the command altogether.

This chapter ends with two substantial examples that incorporate most of what you have studied so far. To
illustrate the use of conditionals, the first example begins each even paragraph of output with the phrase Even
Paragraph: and begins each odd paragraph with the phrase Odd Paragraph:. Type this into the file ex8.r, and
process it through nroff without using the -ms macro package, and as before, there is no need to copy the
comments:

.wh 0 HD \" set header trap

.wh -2i FO \" set footer trap

.nr EO 1 \" set EO register to 1

.po 2i \" page offset 2 inches

.pl 6i \" page length 6 inches

.lt 4i \" title length 4 inches

.ll 4i \" line length 4 inches

.de HD \" define header
’sp |(1i-1v) \" space down to 1 inch minus 1 line
.tl ’’\\*(WS’’ \" set WS macro in title
’sp |1.5i \" space down to 1.5 inches
..
.de FO \" define footer
’sp |(3i+3v) \" space down to 3 inches plus 3 lines
.tl ’’- % -’’ \" set page number in footer
’bp \" begin new page
..
.ds WS "From the Devil\’s Dictionary"
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. \" define string WS

.de PP \" define paragraph macro

.ie \\n(EO=0 .EP \" if EO = 0 (even) then do EP

.el .OP \" else do OP

..

.de EP \" define EP (even paragraph)

.br

.nr EO 1 \" set register EO to 1

.sp 1v \" skip 1 line

.ll 4i \" set line length to 4 inches

.lt 4i \" set title length to 4 inches
\\*E \" insert string E
..
.ds E "Even Paragraph:"
. \" define string E
.de OP \" define macro OP (odd paragraph)
.br
.nr EO 0 \" set register EO to 0
.sp 1v
.ll 3i \" set line length to 3 inches
.lt 3i \" set title length to 3 inches
\\*O \" insert string O
..
.ds O "Odd Paragraph:"
. \" define string O
.PP
Debt, n. An ingenious substitute for the whip
and chain of the slave-driver.
.PP
Bore, n. One who talks when you wish him to listen.
.PP
Brandy, n. A cordial composed of one part
thunder-and lightning, one part remorse, two parts
bloody murder, one part death-hell-and-the-grave,
and four parts clarified Satan.
.PP
Responsibility, n. A detachable burden easily
shifted onto the shoulders of God, Fate, Fortune,
Luck, or one’s neighbor.

This example uses an ‘‘even/odd’’ register called EO to determine whether you are beginning an even or an odd
paragraph. To distinguish between even and odd paragraphs, it uses a line length of four inches for even
paragraphs and one of of three inches for odd paragraphs. It changes the title length with each paragraph, so
nroff centers the page number with respect to whichever kind of paragraph happens to occur at the bottom of a
page.

The final example illustrates a loop constructed with the if/else commands. The first paragraph is six inches long
with no page offset; each succeeding paragraph is one inch shorter with a page offset one inch longer. The line
length of the sixth paragraph is one inch; the next paragraph renews the cycle with a six-inch line length. Type
this into file ex9.r, and process it as you did the above example:

.nr PO 0 1 \" set register PO to 0, increment by 1

.de PP \" define paragraph macro

.ie \\n(PO=6 .A \" if register PO=6 then do A

.el .B \" else do B

..

.de A \" define macro A

.br

.nr PO 0 \" set register PO to 0

.nr LL 6-\\n(PO \" set register LL to 6 minus PO

.ll \\n(LLi \" set line length to LL inches

.po \\n(POi \" set page offset to PO inches

.nr PO \\n+(PO \" increment register PO
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.sp \" skip a space

..

.de B \" define macro B

.br

.nr LL 6-\\n(PO \" set LL to 6 minus PO

.ll \\n(LLi \" set line length to LL inches

.po \\n(POi \" set page offset to PO inches

.nr PO \\n+(PO \" increment register PO

.sp \" skip a space

..

.PP
Future, n. That period of time in which our affairs prosper,
our friends are true, and our happiness is assured.
.PP
Gallows, n. A stage for the performance of miracle plays, in
which the leading actor is translated into heaven.
.PP
Geneaology, n. An account of one’s descent from an ancestor
who did not particularly care to trace his own.
.PP
Guillotine, n. A machine which makes a Frenchman shrug
his shoulders with good reason.
.PP
History, n. An account most false, of events
most unimportant, which are brought about by
rulers mostly knaves, and soldiers mostly fools.
.PP
Idiot, n. A member of a large and powerful tribe
whose influence in human affairs has always been
dominant and controlling.
.PP
Kiss, n. A word invented by the poets as a rhyme
for "bliss".

You should try this example to see verify that ‘‘loop’’ works as advertised.

Environments and Diversions
Another aspect of nroff’s power is the ability to shift from one environment to another.

The nroff environment is the overall manner in which nroff processes your input text. The environment’s
definition includes such aspects as line length, fill and adjust modes, and indentation.

nroff allows you to define three independent environments, called 0, 1, and 2. In each, you can set as you wish
such parameters as line length, filling, adjustment, and indentation. You can call a different environment with the
.ev command; the parameters you define for the new environment control text processing until you change them
within the present environment or shift to another environment.

Not all nroff parameters change when you switch to a new environment. For example, different environments do
not have independent page offsets; the .po command affects all environments. Parameters that may be set to
different values in different environments are environmental parameters; parameters that cannot be switched
according to environment, like page offset, are global parameters. Macro and string definitions are global.

When you first call nroff, you are by default in environment 0. In all the examples used in this tutorial thus far,
everything happened in environment 0. The following example illustrates how to switch back and forth between
environments. Type in the following ex10.r and process it to see the output as you go along.

.po 1i \" set global page offset to 1 inch

.ll 4i \" set line length in ev 0 to 4 inches

.de PP \" define paragraph macro

.sp

.ti 0.5i \" indent first line 1/2 inch

..

.PP
The heart of the righteous studieth to answer,
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but the mouth of the wicked poureth out evil things.
.br
.ev 1 \" switch to environment 1
.ll 3i \" set line length to 3 inches
.ls 2 \" line spacing now double space
.PP
A froward man soweth strife, and a whisperer
separateth chief friends.
.br
.ev \" return to previous ev (0)
.PP
It is naught, it is naught, sayeth the buyer;
but when he is gone his way, then he boasteth.
.br
.ev 1 \" switch to ev 1
.PP
Wealth maketh many friends; but the poor is separated
from his neighbors.
.br
.ev \" return to ev 0

The first .ll command sets a line length of four inches in environment 0. After defining the paragraph macro .PP
and an initial paragraph in environment 0, you switched to environment 1 with the command

.ev 1

You now enter a new environment. If you do not explicitly set environmental parameters, such as line length,
nroff automatically uses default values for them. nroff assigns the same default values in environments 1 and 2
as it does in environment 0.

The line length in environment 1 is set to three inches with the output text double-spaced. The line space
primitive

.ls 2

leaves one blank line between each output line. Thus, paragraphs processed in environment 0 have four-inch
single-spaced lines, whereas paragraphs processed in environment 1 have three-inch double-spaced lines.

The example used the command line

.ev

without an argument to leave environment 1. This leaves environment 1 and restores (or ‘‘pops’’) the previous
environment — in this case, environment 0. The next time you enter environment 1, you will not need to set the
line length to three inches again: the value stays in effect in environment 1 until you specifically change it. The
same is true of all environmental parameters.

To understand how nroff switches between environments, imagine that you have a set of plates, each marked with
either a 0, a 1, or a 2. You have as many plates of each type as you wish. You stack the plates on a table; the top
plate represents your current environment. You begin with a ‘0’ plate on the table, to represent the initial
environment when you enter nroff.

Switching to environment 1 with the command .ev 1 corresponds to placing a ‘1’ plate on top of the ‘0’ plate. You
can again change the stack of two plates either by placing a new plate on top of the stack, or by removing the top
plate from the stack: the former corresponds to calling a new environment, whereas the latter corresponds to
restoring the previous environment with the command line .ev.

Because you can have as many plates of each type as you wish, you can call environment 1, then call environment
2, then restore environment 1, then call environment 0, and so on. The command .ev N, where N is 0, 1, or 2,
places (or ‘‘pushes’’) a plate onto the stack; the command .ev removes (or ‘‘pops’’) the top plate from the stack.

To illustrate this, add the following text to the end of the previous example. Use a piece of paper and pencil to keep
track of how the .ev commands add or remove environments. Because the line lengths are different in each
environment, it should be easy to tell in which environment nroff has processed each paragraph:

.ev 2 \" introduce environment 2

.ll 5i \" set line length

.in 1i \" set indentation
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.PP \" paragraph in ev 2
A poor man that oppresseth the poor is like
a sweeping rain which leaveth no food.
.br
.ev 0 \" push ev 0
.PP
As a roaring lion, and a ranging bear; so is
a wicked ruler over the poor people.
.br
.ev 1 \" push ev 1
.PP
Wrath is cruel, and anger is outrageous;
but who is able to stand before envy?
.br
.ev 2 \" push ev 2
.PP
A good name is rather to be chosen than
great riches; and loving favour rather than
silver and gold.
.br
.ev 0 \" push ev 0
.PP
Pride goeth before destruction, and an haughty
spirit before a fall.
.br
.ev \" return to ev 2
.ev \" return to ev 1
.PP
He that answereth a matter before he heareth it,
it is folly and shame unto him.
.br
.ev \" return to ev 0
.ev \" return to ev 2
.PP
A merry heart doeth good like a medicine, but a
broken spirit drieth the bones.
.br

Buffers
Earlier, it was shown that nroff uses a buffer to assemble words from its input into output lines. Actually, each
environment has its own buffer. Switching to a new environment does not cause a break. Suppose you are
currently in environment 1 with an unfinished line in the buffer. When you give the command .ev 2, the
unfinished line remains undisturbed in the environment 1 buffer until you return to environment 1. Text you
process in the meantime in environment 2 or in environment 0 has no effect on the partial line in the environment
1 buffer, because nroff assembles text processed in other environments in different buffers.

In the following example, you process some text in environment 0 and then switch to environment 2. Any partial
line collected in environment 0 when you switch to environment 2 waits patiently in the buffer until you return to
environment 0 and issue the break command to flush the buffer. You then return to environment 2 and flush any
partially filled line left when you restored environment 0. Enter the following into the file ex11.r and process it
through nroff:

.ll 3i \" set line length in ev 0

.po 2i \" set page offset in ev 0
This is environment 0.
.ev 2 \" introduce ev 2
This is environment 2
.br \" flush ev 2 buffer
.ev \" return to ev 0
.br \" flush ev 0 buffer

As you can see, the order of the two sentences is reversed from the way you entered them. If you were to delete the
.br commands after the texts in ex10.r, the output would be very badly affected.
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Headers and Footers

A common use of environment switching is for the creation of header and footer macros. As the following example
demonstrates, the length of title set by the .lt command is an environmental parameter. The following constructs
header and footer macros that print strings of asterisks in the margins above and below the text; type it into your
computer as ex12.r:

.wh 0 HD \" set header trap

.wh |2.5i FO \" set footer trap

.de HD \" define header macro

.ev 1 \" define ev 1

.lt 5i \" set title length to 5 inches
’sp 3v \" move down three spaces
.tl ’****’’****’ \" define header title
’sp 2v \" skip two more spaces
.ev \" pop environment
..
.de FO \" define footer macro
’sp 2
.ev 1 \" push ev 1
.tl ’****’%’****’ \" define footer title
.ev \" pop environment
’bp \" begin new page
..
.ll 4i \" set line length in ev 0
.pl 3i \" set page length
.in 1i \" set indentation
.po 2i \" set page offset
.de PP \" define paragraph macro
.sp 1
.ti 0.5i \" indent 1st line 1/2 inch
..
.PP
When in the course of human events ...

The following section explains why header and footer macros often use a different environment.

More About Fonts

As earlier described in some detail, nroff output includes representations for boldface and italic characters, in
addition to the normal Roman characters. The visual appearance of boldface and italic characters depends on the
device you use to print your nroff output.

If you want a word or a phrase to appear in boldface, enclose the word or phrase between \fB and \fR:

The last word of this sentence appears in \fBboldface\fR.

The sequence \fB tells nroff to print in boldface, whereas the sequence \fR tells nroff to return to the Roman font.
Italics are used in a similar manner:

An entire phrase \fIappears in italics\fR.

To print more than a few words in a different font, you should use the font command .ft:

.ft I
Here is text you want to
appear in italics.
.ft R

The initial .ft I switches the print to italic font, and the concluding .ft R returns it to Roman font. As you might
have suspected, the command .ft B switches to boldface.

You have two additional options when you use the .ft primitive. The command .ft P returns to the previous font.
You can use .ft P within a macro or a string to return to the previous output font, even though you do not know
which font was previously in effect. You can also use the sequence \fP to return to the previous font. The .ft
primitive without an argument tells nroff to return to the Roman font.
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In scripts that frequently change fonts, you should switch to a new environment for header and footer macros, in
order to protect their font settings.

Diversions

The diversion is a powerful feature that allows you to suspend outputting lines until nroff has collected all of a
block of text. For example, suppose you use nroff to format a chapter of a book. The chapter includes footnotes at
various places in the text; you want nroff to collect these footnotes and print at the end of the chapter. To do this,
nroff must store the processed footnote text somewhere until the end of the chapter, when you want it printed.
Where do you store the text until the time comes for it to appear? To handle situations like this, nroff provides a
diversion mechanism: you can divert text into temporary storage within a macro.

Diversion normally involves passing to a new environment to process the footnote without causing a break in the
main environment. When the text of the diversion ends, nroff returns to the main environment, again without
causing a break, and continues processing just as if the text of the note had never been in the input.

However, before you attempt to write a footnote macro, type the following text into the file ex13.r, and process it
with nroff. This example illustrates the basic features of diversion. The example exchanges two paragraphs of
text, so that nroff prints the second before the first.

.di X \" divert the following to macro X

.sp
A soft answer turneth away wrath:
but grievous words stir up anger.
.br \" send last line of paragraph to X
.di \" end diversion
.sp
He that is slow to anger is better than the
mighty; and he that ruleth his spirit than he
that taketh a city.
.br
.sp
.X \" print the paragraph diverted to X

The new command here is the divert primitive .di. The command .di X tells nroff to divert the text that follows into
macro X; the matching .di with no argument marks the end of the diversion.

The break is necessary before the end of the diversion because nroff diverts processed text into the macro.
Without the break, nroff would not divert any partially filled line in its buffer to X; the last few words of diverted
text might not form a complete line in the buffer, so nroff might not divert them. However, if you break the input
before you end the diversion, nroff will also divert those last few words.

As you saw earlier, the .br command must be used to flush that environment’s buffer before switching
environments.

The next example, ex14.r, illustrates a similar point.

.br \" clear buffer
testword \" put ’testword’ into buffer
.di X \" divert to X
Piracy, n. Commerce without its folly-swaddles,
just as God made it.
.br \" divert last line
.di \" end diversion
.X \" print text in X

Here nroff diverts testword into X along with the text between .di X and .di. Why did this happen? The
command .di X does not cause a break. Because you did not pass to a new environment in this example before
you diverted, nroff formed the diversion text in the same buffer in which it stored testword. You did not break the
input, so nroff appended the diverted text to testword.

To make sure nroff diverts only text between .di X and .di into X, do one of the following: If you want to process
the diverted text within the current environment, empty the buffer by inserting the .br command before you start
the diversion. If you switch to a new environment before starting the diversion, flush the buffer for the new
environment before you begin to process diverted text.

TUTORIALS



nroff Text-Formatting Language 271

Diverting processed text into a macro that already holds material will erase whatever had already been stored
there. In some cases, such as the footnote example, you need to append information into the same macro. The
divert and append variation .da of the diversion construction allows you to do so. The following example, ex15.r,
demonstrates this command:

.ll 3i \" set line length

.po 2i \" set page offset

.de PP \" define paragraph macro

.br

.sp 1

.ti 0.5i \" indent first line 1/2 inch

..

.di X \" divert the following into X

.PP
Litigation, n. A machine which you go into as a pig
and come out of as a sausage.
.br
.di \" end diversion
.X \" print what is in X
.br
.da X \" divert and append material into X
.PP
Inventor, n. A person who makes an ingenious arrangement
of wheels, levers and springs, and believes it
civilization.
.br
.di \" end diversion
.X \" print what is now in X

In this example, you first diverted a single paragraph into the macro X. nroff stored in X the processed paragraph;
in other words, the command line .PP is not stored in X; its output is. When you invoke X with the command line
.X, nroff takes the processed text in X as input. To nroff, there is no difference between processed text and
unprocessed text as input: it processes the contents of X in the current environment, just like any other text.
Therefore, nroff processes diverted text twice: first when it stores the text within the macro, and again when you
invoke the macro.

The fact that nroff processes diverted text twice can cause problems if you are not careful. Fortunately, nothing
strange happens in the example above. You store a processed paragraph with lines three inches long in X. When
you invoke X, the line length is three inches. Because each line in X is already exactly three inches long, nothing
happens to it when reprocessed; the layout of the output paragraph is unchanged.

But now, consider what happens in the following example, ex16.r:

.ll 3i \" set line length

.po 2i \" set page offset

.de PP \" define PP macro

.sp 1

.ti 0.5i \" indent first line 1/2 inch

..

.di X \" divert following into X

.ev 2 \" push environment 2

.ll 4i \" set line length to 4 inches

.PP
Justice, n. A commodity which in a more or less
adulterated condition, the State sells to the
citizen as a reward for his allegiance, taxes
and personal service.
.br
.ev \" pop environment (return to ev 0)
.di \" end diversion
.X

A pargraph processed in environment 0 in this example has three-inch lines; you want your diverted paragraph to
have four-inch lines. However, when you print the diverted paragraph with the command line .X, what happened?
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nroff did not print four-inch lines. The four-line text lines set in environment 2 were reprocessed into three-inch
lines when the diversion macro is called in environment 0.

There are two ways to prevent such disasters. First, if you wish to invoke X in the main environment, use no-fill
mode:

.nf \" begin no-fill mode

.X

.fi \" return to fill mode

In no-fill mode, nroff outputs lines of input exactly as it receives them, so it keeps four-inch lines four inches long
and does not change the format of the diverted text. The second strategy is to return to environment 2 and then
invoke X; again, the format of the diverted paragraph does not change, because the line length in environment 2 is
four inches.

.ev 2 \" push environment 2

.X

.ev \" restore original environment

A Footnote Macro

The footnote macro that follows does not print notes at the bottom of each page; rather, it prints everything at the
end of the chapter. In the processed text, number register Fn is used to keep track of the footnote number; the
footnote number will be printed in square brackets where the footnote originally appeared in the text.

Type this macro into the file ex17.r. If you wish to use it in your text processing, transfer it to the directory
/usr/lib under the name tmac.fn. Then, whenever you wish to use this macro, be sure to include the option

-mfn

when you invoke nroff:

.de FN \" define macro FN
[\\n+(Fn] \" print footnote no. in main text
.ev 1 \" push environment 1
.da Z \" divert and append following into Z
.sp
\\n(Fn. \\$2, \\fI\\$1\\fR,

\\$3, \\$4. \" format & print footnote in Z
.br \" flush diversion buffer
.di \" end diversion
.ev \" pop environment (return to ev 0)
..

Note that requests to change fonts are preceded by double backslashes, because they are within a macro. The
change to the italic font prints the first macro argument, which should be the title of the work, in italics. Number
register Fn contains the number of the last footnote; you should initialize it with the command

.nr Fn 0 1

As shown above, each footnote entry in your text should have four arguments. In your input text, each footnote
will look like this:

.FN "Personal narrative of a pilgrimage to\
El-Medinah and Mecca" "Richard F. Burton"\
London 1856.

When you print the diversion .Z at the end of the chapter, each footnote will be laid out as follows:

8. Richard F. Burton,
Personal narrative of a pilgrimage to
El_Medinah and Mecca,
London, 1856.

Command Line Options
In the previous sections, you learned how to control nroff by including commands in the input along with the text.
You can also supply information in another way: on the command line you type to call nroff. Unlike the
commands discussed above, this information is not part of the script you input into nroff.
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You already know about some simple nroff command lines. For example, the command

nroff

forces nroff to accept input from the keyboard (sometimes called the standard input) and print output on the
terminal (the standard output). Type <ctrl-D> (that is, hold down the ctrl key and type D) to exit from nroff if it is
reading input from your terminal.

The command line

nroff script1.r

forces nroff to take accept input from the file script1.r instead of from your terminal, while the command

nroff -ms script.r

processes script1.r with the -ms macro package. You can also redirect nroff output to another file target:

nroff -ms script1.r >target

The general form of the nroff command line is:

nroff [ option ... ] [ file ... ]

This means that the command line consists of the nroff command, followed by zero or more options, followed by
zero or more files. nroff processes each named file and prints the result on the standard output (the terminal,
unless redirected). If no file argument is given, as in the first example above, nroff reads from the standard input.

Each option on the command line must begin with a hyphen ‘-’ to distinguish it from a file specification. Using
nroff with the -ms macro package is one example of entering an option. In general, the -m option takes the form

-mname

which means the option consists of the characters -m immediately followed by a name. This tells nroff to process
the macro package found in the COHERENT file

/usr/lib/tmac.name

For example, the ms macro package discussed in chapter 2 is in the file /usr/lib/tmac.s, whereashe man macro
package used for the man command and to process manual pages is in the file /usr/lib/tmac.an.

Any macro packages that you customize for your own use should be stored in the directory /usr/lib under such a
name if you wish to use them with the -mname option.

The -i option tells nroff to read input from the standard input after processing each given file. This allows you to
supply additional input interactively from your terminal.

The -x option tells nroff not to move to the bottom of the last output page when done. This is especially useful if
you want to see the output on the screen of a CRT terminal.

The -nN option sets the page number of the first output page to the number N, rather than starting at page 1. This
is useful for processing large documents with input text in several files which nroff processes separately.

The -rXN option sets the value of number register X to N. This option lets you initialize number registers when you
invoke nroff.

The COHERENT system provides many useful features which can be helpful while you are using nroff. In particular,
you can use a number of special characters. The stop-output and start-output characters, usually <ctrl-S> and
<ctrl-Q>, stop and restart output on your terminal. The interrupt character, usually <ctrl-C>, interrupts program
execution; you can use it to stop an nroff command if you typed the command line incorrectly. The kill character,
usually <ctrl-\>, also terminates program execution. Some COHERENT systems use different characters than those
mentioned above; consult Using the COHERENT System for details.

For Further Information
The Lexicon entry for nroff summarizes its primitives, dedicated number registers, escape sequences, and
command-line options.

For example, this manual was typeset by COHERENT troff. The program troff also performs text formatting. Unlike
nroff, however, troff produces proportionally spaced output that can be printed on printers that support the
Hewlett-Packard Page Control Language (including the LaserJet and DeskJet families of printers) or on any printer
that implements the PostScript page-control language. This manual (including the positioning of the fancy capital

TUTORIALS



274 nroff Text-Formatting Language

letters and ornaments) was typeset by troff under the COHERENT system. See the Lexicon entry for troff for details
on how to use this command.

The Lexicon also has entries for two macros packages that are included with the COHERENT system: man which
produces manual pages similar to those that appear in the Lexicon; and ms, which performs formatting somewhat
similar to that seen in this tutorial. You will find that these two packages already perform practically all of the
formatting tasks that you will commonly need to do.

The error messages generated by nroff are given in the appendix at the rear of this manual.
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UUCP, Remote Communications Utility

UUCP is a set of programs that together let you communicate in an unattended manner with remote COHERENT and
UNIX sites. The term UUCP is an abbreviation for ‘‘UNIX to UNIX copy’’; as its name implies, UUCP was developed
under the UNIX operating system.

UUCP allows your COHERENT system to talk to other computers that also run COHERENT or UNIX. It can transmit
files and mail to other systems and receive material from them, without needing you to guide it by hand every step
of the way. Moreover, you can instruct UUCP to telephone other computers at the same time each day; this permits
regular, orderly exchange of mail, news, and files among computers, and allows you to take advantage of lower
telephone rates during off-peak periods. In a similar fashion, UUCP allows other systems to log into your system, to
exchange mail or other information, and otherwise perform useful tasks.

Numerous UUCP systems have linked together to create an informal network called the Usenet. Many megabytes of
source code, news, and technical information are available across the Usenet. Anyone who is connected to the
Usenet can exchange mail with anyone else who is also connected to the Usenet. All that is required to hook into
the Usenet is to obtain a UUCP connection to anyone else who is connected to the Usenet.

You can use UUCP only if you have telephone access to another computer that runs UUCP, and if your system and
the remote system with which you wish to communicate have been described to each other. UUCP is standard with
COHERENT and UNIX, and can be purchased for MS-DOS. If you wish to copy files from another system, you must
arrange with the system administrator of that system before you can begin to use UUCP. Likewise, if you want
someone else to dial into your system to upload or download files, you must first describe that system to your copy
of UUCP.

Contents of This Tutorial

This tutorial describes UUCP and tells you how to set up and run your UUCP system. It contains the following
sections:

• An overview of UUCP.

• How to set up your modem to dial out.

• How to set up UUCP to contact mwcbbs, the Mark Williams bulletin board.

• How to use the COHERENT utility uuinstall to set up UUCP to contact mwcbbs.

• How to set up your UUCP system to accept calls from remote systems.

• How to use the UUCP utilities to exchange files and mail with remote systems.

• How to debug some common problems with UUCP.

• How to administer your UUCP system.

• A brief introduction to networks.

Try as we might, there is no way to present all of UUCP in a brief tutorial. If you wish to explore the heights and
depths of UUCP, we urge you to acquire the following books:

• O’Reilly, T.: !%@:: A Directory of Electronic Mail Addressing and Networks. Sebastapol, Calif, O’Reilly &
Associates Inc., 1989.

• O’Reilly, T.; Todino, G.: Managing UUCP and Usenet. Sebastopol, Calif, O’Reilly & Associates Inc., 1987.

• Krol, E.: The Whole Internet: User’s Guide & Catalog. Sebastopol, Calif, O’Reilly & Associates Inc., 1992.
Highly recommended.

• Seyer M.D.: RS-232 Made Easy: Connecting Computers, Printers, Terminals, and Modems. Englewood Cliffs,
NJ, Prentice-Hall Inc., 1984.

An Overview of UUCP
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UUCP is a set of programs that exchange files with other computers that run UUCP. You can set aside files or mail
messages to be transferred to another computer; UUCP regularly checks to see if material has been set aside to be
transferred, dials the remote system, and exchanges the files without requiring your assistance.

This appears to be a simple function, but it can be extremely useful to you. Suppose, for example, that you run a
real-estate office that is a member of an organization with regional and national offices. You can tell UUCP to call
your regional office each night, to send a file of your new listings and to accept a file of new listings in your district
that had come from other local offices. Likewise, your association’s regional office can telephone the national office
each night to receive new listings in your region, which can then be passed on automatically to the appropriate
neighborhood offices. All of this information can be transferred at night, when telephone rates are lowest, and
without needing you to be at the console. When you come to work the next morning, you will have the latest
listings instantly available on your terminal.

In brief, what UUCP offers is the ability to join a network of computers, in which every user of every computer can
exchange information with every user on every other computer, automatically. What computer networks can do is
limited only by your need to exchange information with other computer users, and by your imagination.

Implementations of UUCP

This version of COHERENT implements Taylor UUCP, a UUCP package written be Ian Taylor (ian@airs.com) with
numerous contributions from other people in the USENET community. COHERENT does not implement the full
suite of UUCP utilities provided with the Taylor UUCP package; however, it does implement the enough utilities for
you to set up a robust UUCP site on your system.

The source code for the full Taylor distribution is available via ftp from various sources, and can be downloaded
from mwcbbs. For a description of the full package, see Ian Taylor’s documentation for his package, which is
included with your COHERENT package.

This chapter presents examples to help you learn how to set up a simple UUCP configuration for a remote site. It
does not discuss the more exotic features of UUCP; however, the information given in this chapter is sufficient for
you to set up communications with most remote sites.

For more background information on the (sometimes arcane) subjects of serial ports and modems, see the Lexicon
entries for UUCP, modem, asy (the serial-port driver), and RS-232. These discuss aspects of serial communication,
and point you to other articles that you may find helpful.

Programs

The UUCP system uses the following programs to do its work:

uucico Call remote systems: log into the remote system and transfer files.

uuconv Convert configuration files into Taylor format. You will use this only if you are porting your
system from another implementation of UUCP.

uucp UNIX-to-UNIX Copy: copy files from one computer to another. Be sure not to confuse the command
uucp with the UUCP system, despite their similar names. (Note that the name of this utility is
retained for the sake of convenience, and because the abbreviation of the phrase COHERENT-
toCOHERENT Copy would remind users of the late Soviet Union.)

uuencode Translate binary files into printable ASCII characters for transmission to another system.

uudecode Translate files encoded by uuencode back into object code.

uuinstall This program displays a template on your screen, and helps you describe a system to UUCP

relatively painlessly.

uulog Read the UUCP logs, which record what UUCP does.

uumkdir Create a directory for a remote site. This command is invoked by uuinstall and other programs.

uumvlog Copy the current UUCP log files into backup files. Throw away all log files older than a requested
number of days. UUCP logs everything that it does; and since it does a lot, its log files can grow
very large very quickly. uumvlog ensures both that you have enough information on your system
to diagnose problems with uucp, and that the UUCP log files do not overwhelm your system.

uuname List the systems that your computer can reach.
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uupick ‘‘Pick up’’ files that have been uploaded to your system from a remote site.

uusched This is a script which invoke the command uucico to call all systems that have jobs waiting for
them.

uuto This is a script that invokes the command uucp to copy files from your system to another system
via UUCP.

uutouch Create a file that triggers a call to a named remote system.

uutry Force a call to a remote system, for debugging purposes.

uux Execute a command on a remote system.

uuxqt Check directory /usr/spool/uucp/sitename and execute all files therein that have the prefix ‘‘X.’’

Two other programs, while not part of UUCP per se, are used by it:

ttystat Check the status of your asynchronous ports. If UUCP is not receiving files from other systems or
not sending files to other systems, it may be because the appropriate ports have not been enabled.

mail Send ‘‘electronic mail’’ to another person, either on your system or on another system via UUCP.

Files and Directories
As mentioned earlier, your system can use UUCP to contact many different remote sites, and can have many
different sites contact it. Each site differs from all others in many respects: by its name; by the telephone number
at which you call it; by the permissions it may grant you and you may grant it; by the day of the week and the time
of day during which you may wish to call it; and by the procedure you must follow to log into it. Remote sites may
also differ with regard to the port by which you contact them; the manner in which you contact it (direct connect or
via modem); the protocol with which you exchange files; and the name by which your system identifies itself to the
remote system.

As you can see, UUCP needs a considerable amount of information before it can communicate with a remote site.
UUCP reads this information from data files. The processing of setting up communicate with a remote system
means that you write the correct information about that site into each of the appropriate UUCP data files. This
process will be confusing at first — in part because some of the notation is rather obscure, and in part because
there’s simply a lot of it, and some of the information needed may touch on aspects of your system about which
you may not know very much.

Each implementation of UUCP has its own suite of data files that you must manipulate to set up a remote site.
UUCP uses the following files and directories:

/etc/domain
This file lists the UUCP domain. It is read by mail.

/etc/uucpname
Holds the name of your system, as it is known to other UUCP sites.

/usr/bin/uucp
The uucp command. Copy a file to another system that runs UUCP.

/usr/bin/uulog
The uulog command.

/usr/bin/uuname
The uuname command.

/usr/bin/uudecode
The uudecode command.

/usr/bin/uuencode
The uuencode command.

/usr/bin/uupick
The uupick command.

/usr/bin/uuto
The script uuto.
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/usr/lib/uucp
Contains UUCP commands and system data files.

/usr/lib/uucp/dial
This file tells uucico how to dial the modems on your system.

/usr/lib/uucp/port
This file describes the devices that uucico uses to call each remote UUCP site.

/usr/lib/uucp/sys
This file describes the remote UUCP sites that your site can call, or that can call your site. The command
uucico (the command that actually talks with remote systems) reads the information in this file to to
connect to remote systems. This file also names the directories on your system into which a each remote
site may read or write files; and names the protocol or protocols that uucico uses to exchange files with a
given remote system.

/usr/lib/uucp/uucico
The uucico command.

/usr/lib/uucp/uuconv
The uuconv command.

/usr/lib/uucp/uumkdir
The uumkdir command.

/usr/lib/uucp/uumvlog
The uumvlog command.

/usr/lib/uusched
The script uusched.

/usr/lib/uucp/uutouch
The uutouch command.

/usr/lib/uucp/uutry
The uutry command.

/usr/lib/uucp/uuxqt
The uuxqt command.

/usr/spool/logs/uucp
Log of UUCP activity.

/usr/spool/uucp/.Admin/audit.local
uucico stores logging information in this file when you invoke it with with logging specified.

/usr/spool/uucp/.Admin/xferstats
This file stores the transfer rates of files received or transmitted.

/usr/spool/uucp/.Log
Directory containing UUCP logfiles, as follows:

/usr/spool/uucp/.Log/uucico/sitename
/usr/spool/uucp/.Log/uux/sitename
/usr/spool/uucp/.Log/uucp/sitename
/usr/spool/uucp/.Log/uuxqt/sitename

/usr/spool/uucp/sitename/TM*
/usr/spool/uucp/.temp/sitename/*

These are temporary files that uucico generates when receiving files.

/usr/spool/uucp/sitename/C.*
Files that instruct the local system either to send or to receive files.

/usr/spool/uucp/sitename/D.*
Work files for outgoing and incoming files.
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/usr/spool/uucp/LCK.*
The ‘‘lock’’ files UUCP uses to coordinate its resources. When a UUCP program attempts to access a remote
site, it writes a ‘‘lock’’ file for that site. This is to prevent UUCP from accidentally attempting to access the
same site more than once simultaneously. When the program that wrote the lock file exits successfully, it
erases its lock files, and so makes that site accessible to other UUCP programs.

/usr/spool/uucp/.Sequence
This directory contains the sequence number of the last file handled by UUCP.

/usr/spool/uucp/sitename/X.*
Executed files. These files will be executed by the command uuxqt, and are generated by a remote system.

/usr/spool/uucppublic
Public directory accessible by all remote UUCP systems.

Attaching a Modem to Your Computer
You can use UUCP to network computers that are within the same office or the same building. It is far more
common, though, to use uucp to connect computers that are far apart via modem. This tutorial assumes that you
will be using uucp to exchange files via modem.

If you have not yet attached a modem to your computer, this section will give you some useful hints. It is
straightforward to attach a modem to your computer, but you must be careful.

First, read the documentation that comes with your modem, and look for (1) the baud rate at which the modem
operates, and (2) the command protocol that your modem uses.

Second, check the plug on the back of your modem. The modem will connect to your computer via a nine-pin or
25-pin D plug, also known as an ‘‘RS-232 interface’’. Such a plug can be either male or female: the male plug has
nine or 25 small pins projecting from it, whereas the female does not.

Due to what can only be termed extreme stupidity, IBM AT and AT-compatible computers use RS-232D plugs for
both serial and parallel ports. Be sure to plug your modem into a serial port, not the parallel port, or you can
damage your computer and your modem!

Third, obtain a cable to connect one of the serial ports on your computer to the modem. The serial ports on an
IBM AT or AT-compatible computer are almost always male. If your modem has a female plug, you will need a
male-to-female cable, whereas if your modem’s plug is male (which is very rare), you will need a female-to-female
plug. Be sure to purchase a standard modem cable for an IBM AT; practically every computer dealer carries them.
The cable you purchase should support ‘‘full modem control’’; if it does not say on the package, be sure to ask your
dealer before you buy it. If you are handy with a soldering iron you may be able to solder up such a cable for
yourself, but unless you know precisely what you are doing it probably is not worth the trouble.

The Lexicon entry RS-232 contains pinouts for both nine- and 25-pin connectors. When you plug in your cable,
be sure to note whether you plugged it into port com1, com2, com3 or com4.

Fourth, reconfigure the serial port to suit your modem. This involves the following steps:

1. Log in as the superuser root.

2. Edit the file /etc/ttys. This file normally has several lines in it, one that describes the console and one for
each serial port. Each line has four fields: a one-character field that indicates whether a login prompt should
be displayed (used only for devices from which people will be logging into your system); a one-character field
that describes whether the device is local or remote (a local would be a modem from which you wished to dial
out, a remote device would be a modem from which someone could dial in); a one-character field that
describes the speed (or baud rate) at which the device operates; and a field of indefinite length that names the
device being described.

If you have plugged into serial port com1 a 9600-baud modem that will allow remote logins, edit the line for
com1 to read as follows:

1rPcom1r

If you have plugged into serial port com2 a 2400-baud modem from which you are only going to dial out, edit
the line for com2 to read as follows:

0llcom2l

Note that the second and last character are a lower-case L, not a one. For more information, see the Lexicon

TUTORIALS



280 UUCP Remote Communication

entries for ttys.

3. Test if you have connected your modem. Turn on your modem; then log in as the superuser root and type the
following command:

echo "foo" >/dev/com?l

where ? is the number of the port. If you are addressing the correct port, the lights on your modem should
blink briefly. For a more sophisticated test, try to communicate with your modem by using the command
ckermit. If you are not familiar with ckermit, see its entry in the Lexicon for details.

4. When you have finished editing /etc/ttys, type the following command:

kill quit 1

This forces COHERENT to read /etc/ttys and set up its ports in the manner that you have configured them.

If you continue to have problems making connections with your modem, see the volume RS-232 Made Easy,
referenced above. It describes in lavish detail how to connect all manner of devices via the RS-232 interface. also
check the Lexicon articles modem and RS-232 for helpful information.

Selecting Site and Domain Names

The first step to setting up UUCP is to select a site name for your system. You probably did this already when you
installed COHERENT on your system, because the COHERENT mail system does not work unless you have named
your system. If, however, you have not yet named your system, you can do so by editing the file /etc/uucpname.
The name you select must have eight characters or fewer, and must be unique — or unique, at least, to the system
into which you will log in. Avoid names taken from popular culture, such as ‘‘calvin,’’ ‘‘hobbes,’’ or ‘‘arnold’’ —
these have already been used many times. See the Lexicon entry uucpname for more details.

Next, select a domain name for your system. Again, you probably did this when you installed COHERENT. A
domain is a set of UUCP systems that together form one group with a common name. Even if you do not belong to
a domain, you must set a domain for your system, because mail expects it. By convention, you can use your site
name plus the suffix .UUCP to create a domain. The domain name is written into file /etc/domain. See the
Lexicon entry domain for details.

You must edit /etc/uucpname and /etc/domain to install these names.

Set Up a UUCP Site by Hand
This chapter walks you through the setting up of a typical remote site, and explains what it’s doing (and why) at
each step of the way. We hope that when you have finished reading it, you will grasp at least the principles of how
UUCP works.

Setting up UUCP to call a remote system can be confusing and difficult, mainly because there are many points at
which this task can fail. However, with patience and with the cooperation of the administrator of the system that
you will be contacting, you can accomplish this task. Fortunately, once you have succeeded in exchanging files
with another system, your connection should work indefinitely without needing modification. Fortunately, too,
UUCP is designed in such a way that you can reuse system descriptions; so over time this process should become
easier.

To set up UUCP so it can contact another system, you must enter information into files /usr/lib/uucp/sys,
/usr/lib/uucp/dial, and /usr/lib/uucp/port. uucico reads these files to learn how to communicate with a given
remote system.

The rest of this section describes how to configure your system so it can communicate with mwcbbs, Mark
Williams Company’s bulletin board. A later section describes how to use UUCP’s commands and utilities to work
with a remote system once you have established communications.

port: Describe a Serial Port

To call a given remote system, UUCP must know about the devices that it uses to communicate with that site. File
/usr/lib/uucp/port describes ports that uucico can use.

Before you proceed any further, answer the following questions:

1 What serial device will be used for communications? For example, the port /dev/com2l.
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2 At what speed will communication take place?

3 What name will you give to this port?

4 Does communication via this port involve a modem?

5 If a modem is used, what dialer entry from /usr/lib/uucp/dial should uucico use?

With the above questions answered, let’s put together our port entry.

A port entry begins with the lines that names the port. Because mwcbbs is the system to be called for the
purposes of this example, let’s call this port MWCBBS. The port entry should look like this:

port MWCBBS
type modem
device /dev/com2l
baud 2400
dialer hayes

Note that in the dialer line of this entry, an underscore was used instead of a normal space character. Do not use
spaces in the fields used to name the port, the actual device nor the dialer.

Note also the type line of this port entry. It says modem. The only other valid value for this line is direct, which
you would use should you be contacting a system via a wire that runs directly from your serial port to the other
system. Because the goal here is to call mwcbbs, you must specify modem.

dial: Describe a Modem

Because the port described above has a modem attached to it, you must tell uucico how to talk to that modem.
The following example assumes that you will call mwcbbs via a 2400-bps, Hayes-compatible modem. If you are not
familiar with sending instructions to a modem, stop here and find the manual for your modem, or find someone
familiar with modem communications before continuing.

To write the dial entry for your modem, you must answer the following questions. Some of the questions may be
unclear at first, but don’t worry — we’ll get into the details and get you through this:

1 What will you name this dial entry? For example, you could call your 2400-baud Hayes modem hayes.

2 What command tells the modem to dial out? Most Hayes-compatible modems use the command ATDT (for
Touch-Tone telephone lines) or ATDP (for pulse-dial lines).

3 What message does the modem return when it connects to the remote system’s modem? Most Hayes-
compatible modems return the phrase CONNECT 2400).

4 What messages does the modem send when it fails to connect to the remote system’s modem? Example
include BUSY, NO ANSWER, NO DIALTONE, and NO CARRIER.

5 What command tells the modem to hang up? Most Hayes-compatible modems use the command ATH0.

6 How many seconds do you want to give the modem to make the connection before uucico times out and gives
up try to connect via this modem?

Some above information is optional, but you should find all of it to write a thorough description of your modem.

An entry in dial begins with the line that names the modem. In the earlier example for the port file, we decided to
use the modem named hayes. Therefore, the first line in our example is:

dialer hayes

Our next step is to write a chat script for the modem. At this point, a short discussion of chat scripts is in order.
A chat script gives the dialogue (or ‘‘chat’’) that UUCP has with a device or a remote system. It consists of pairs of
messages: an expect message, which is a prompt that your system expects to receive from the device or remote
system, and a response message, which is what your system sends in response to it. Spaces separate messages
from each other; therefore, you cannot use a space character within a message. Instead, use the escape sequence
\s to represent a space character. If you want uucico to send a message immediately, or to send a response
message without waiting for an expect message, use an empty string "" to represent the expect string.

The next line in our example give the chat script with which uucico dials your modem. This is built from your
answer to question 2, above. Because a Hayes modem normally does not send a prompt to request a dial
command, use an empty string for the expect string. The usual command to dial a Hayes compatible modem is
ATDT (as described above), followed by the telephone number to dial. The chat script for this dialogue is as
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follows:

chat "" atdt\D

Let’s take a closer look at this chat script. It begins with "", which tells uucico to expect nothing from the modem.
atdt\D is the message that uucico is to send to the modem. atdt is the dial command for a Touch-Tone telephone
line, as noted above. The escape sequence \D represents the telephone number. We use an escape sequence
instead of the literal telephone number because you can dial many different remote sites from the same modem.
uucico finds the telephone number to dial from the entry for mwcbbs in the file sys, as will be described below.

Although this simple chat script will dial the desired telephone number, it can be improved. For example, uucico
may fail to connect to the remote system for any number of reasons. The more information we can get back from
the modem, the easier it will be to debug any problems we have in connecting to the remote system. If the modem
is set up to return verbal result codes, uucico can check for these codes to determine if a connection to a remote
modem succeeded. (For more information on verbal result codes, see the manual that came with your modem.)
The following adds these features to our chat script for a Hayes-compatible modem:

chat "" ATQ0E1V1L2M1DT\D CONNECT\s2400

Look at this chat script carefully. Again, uucico expects nothing and sends a command to make the modem dial
out. The command ATQ0E1V1L2M1DT\D has a lot of information packed into it. It is written mostly in Hayes-
ese, so we’ll break it up and show you what each portion means:

AT Attention: tell the modem that the following is a command.

Q0 Return result codes.

E1 Echo commands sent to it. (You can tell uucico to log what the modem returns, so you can see exactly what
it is doing.)

V1 Use the long form of result codes.

L2 Set the loudness of the dial tone to medium.

M1 Turn on the speaker on the modem. Sometimes it is helpful to hear when the modem dials out.

DT Dial Touch-Tone.

\D The UUCP escape sequence that represents the telephone number, as described above.

Now, look at the end of this chat script: we have added a second expect message. This tells uucico that after it has
dialed the telephone number for this site, it should expect the string CONNECT 2400. When uucico sees this
message, it assumes that a modem connection was successfully established and that it can continue normally. If
uucico does not see this message within a given period of time (as will be described below) or if it receives different
message, it assumes that the connection attempt failed. When this occurs, uucico aborts the connection attempt.

Note that, as mentioned earlier, you must use the escape sequence \s to represent the space character in the
phrase CONNECT 2400.

To review, the dial entry for dialer hayes now looks like this:

dialer hayes
chat "" ATQ0E1V1L2M1DT\D CONNECT\s2400

The next line, chat-timeout, gives the number of seconds that uucico should wait before it quits trying to connect
to a remote system. The default is 40 seconds. You may or may not prefer to change this value; but for the
purpose of this example, let’s assume that you want uucico to wait 60 seconds before it times out. The dial entry
for hayes now looks like this:

dialer hayes
chat "" ATQ0E1V1L2M1DT\D CONNECT\s2400
chat-timeout 60

Recall that our chat script for this modem turned on verbal result codes. Now, it is time to take advantage of this.
Hayes compatible modems, will, in general, return any number of messages if a connection fails, depending upon
the cause of the failure. The entry chat-fail defines a string that the modem returns when it has failed to connect.
When uucico receives the string, it realizes that the attempt to connect has failed, and quits. The description for a
modem can include any number of chat-fail entries. Let’s add some messages that a typical Hayes-compatible
modem might return when it fails to connect to a remote modem. The dial entry for the modem named hayes now
looks like:
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dialer hayes
chat "" ATQ0E1V1L2M1DT\D CONNECT\s2400
chat-timeout 60
chat-fail BUSY
chat-fail NO\sCARRIER
chat-fail NO\sANSWER

Modem-result codes offer many advantages. By looking for specific messages, uucico knows immediately when the
modem cannot connect to a remote site, and quits immediately rather than waiting to time out. More important,
uucico’s log files will show why the connection failed, which eases the debugging of connection problems.

We can add yet another safeguard to this dialer entry. By naming abort-chat and complete-chat scripts, we can
tell uucico to chat again with the modem after a communication session has ended. These scripts can, for
example, ensure that the modem hangs up the telephone and turns off error messages and echoing. If the port for
this modem normally is enabled, then it is vital that you turn off echoing and error messages, to prevent the
modem and your COHERENT getting into an infinite dialogue when the modem echoes COHERENT’s login prompt.
For details on this problem, see the Lexicon entry for modem. The following adds abort-chat and complete-chat
scripts to our description of hayes:

dialer hayes
chat "" ATQ0E1V1L2M1DT\D CONNECT\s2400
chat-timeout 60
chat-fail BUSY
chat-fail NO\sCARRIER
chat-fail NO\sANSWER
complete-chat "" +++ OK ATH0E0V0Q1
abort-chat "" +++ OK ATH0E0V0Q1

Notice that the two chat scripts are identical. uucico runs this script whenever a session ends — regardless of
whether it failed or completed successfully. As with the chat script, the first entry is an empty string, to indicate
that uucico should expect nothing before it sends its first response message — in this case the string +++, which
in Hayes-ese is the escape sequence that puts the modem into command mode. The modem replies with the
message OK. When uucico sees OK, it sends the reply ATH0E0V0Q1, which is the Hayes command sequence to
(1) hang up the telephone, (2) turn off echoing, (3) turn off verbose error messages, and (4) turn off error messages
altogether.

Please note that the last six lines of this dialer entry are optional. The only required lines are the first two.

sys: Individual System Configuration

Having completed the port and dial entries for calling mwcbbs, the last — and most difficult — step is to describe
mwcbbs to uucico. This is done by writing an entry in file /usr/lib/uucp/sys. The entry does the following:

• Names the remote system.
• Specifies valid times to call the system.
• Specifies telephone number to use when calling the system.
• Specifies valid protocols to use to exchange files with the system.
• Restricts read and write access for the remote system.

Before we continue, please note that the following example is typical of an entry in sys, but it is by no means
exhaustive. Please refer to the Lexicon article sys for more information.

Now, be prepared to answer the following questions:

1 What is the name of the remote system?

2 When is it legal for uucico to telephone the remote system?

3 At what speed will communications take place?

4 On which port will the call to the remote system be made?

5 What telephone number, if any, must be dialed?

6 What is the ‘‘chat sequence’’ (chat script) to be used to log into the system?

7 What protocol should be used to transfer files?
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8 How should your system identify itself to the remote system?

An entry in sys must begin with the line system sysname, where sysname is the name of the remote system.
This both names the remote system and tells uucico that a new entry is beginning. Make this entry into sys:

system mwcbbs

The next line of the entry, time, restricts when the uucico may call the remote system. You can restrict calls to a
given day of the week by using the following abbreviations:

Wk Every weekday (Monday through Friday)
Su Sunday
Mo Monday
Tu Tuesday
We Wednesday
Th Thursday
Fr Friday
Sa Saturday

You can restrict the time of contact; all time notation must be in military time. The following give some examples
of day/time entries:

0100-0200 Valid to call every day between 1 and 2 AM
Mo0100-0200 Valid to call every Monday between 1 and 2 AM
Sa Valid to call at any time on every Saturday
Any Valid to call at any time
Never Never call the system

To restrict the valid times for calling mwcbbs to Saturday and Sunday nights from 10 to 11:15 PM, add the line:

time SaSu2200-2315

Our sys entry now looks like this:

system mwcbbs
time SaSu2200-2315

The next line of the sys entry, baud, is self-explanatory and is answered by the third question above. For this
example, we will assume a speed of 2400 bps. The sys entry now look like:

system mwcbbs
time SaSu2200-2315
baud 2400

The next line, port, names the port that uucico is to use to telephone the remote system. This must name a port
that is defined in file port; in this case we’ll use port MWCBBS, which we wrote earlier:

port MWCBBS

The next line, phone, is answered by question 5, above; this, too, is self-explanatory. Add the following line to our
sys entry:

phone 17085590412

uucico uses this telephone number to expand the escape sequence \D, used in the dial entry defined above. Note,
by the way, that you can access mwcbbs through the following three telephone numbers:

1200/2400-baud generic modem: 708-559-0412
9600-baud Trailblazer modem: 708-559-0445
9600-baud V.32 or HST modem: 708-559-0452

This example assumes that you have a generic 2400-baud modem; but you should select the number that best
suits your modem.

The next line, chat, is the chat script that uucico uses to log into the remote system. Please refer to the previous
section about the dial file for a brief description of what a chat script is and how it is laid out; or see the Lexicon
entry for sys:

chat "" \n in:--in: nuucp word: public word: serialnum

Please note that the string serialnum represents the serial number of your COHERENT system. You must use this
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number to log into system mwcbbs.

Let’s take a moment to review this line. By the time uucico needs the information from this line, it has already
successfully dialed into and connected to one of the modems on mwcbbs. Now it must log into the system. The
chat script tells uucico to expect nothing and to immediately send out a newline, as represented by the escape
sequence \n.

After uucico sends the newline character, it waits for in:, i.e., the final characters in the mwcbbs login prompt
mwcbbs 386 login:. It is not necessary to expect the entire login prompt, just enough of it to let uucico know that
it can send the next message — in this case, your system’s login identifier. If uucico does not receive in:, it sends
another newline character and again waits for in:. (--in: is equivilant to -\n-in:).

Once it receives in:, uucico sends nuucp, which is the login name that mwcbbs expects to receive from your
system. uucico now expects the message word: which is the is the tail of the prompt mwcbbs really transmits,
password:. When uucico sees word:, it sends public, which is the password that mwcbbs expects. Once mwcbbs
receives the password it expects, it sends out a prompt for a remote-access password — hence, this chat script
again expects to see word: again. When it receives this second password prompt, this chat script tells uucico to
send your system’s serial number. This completes the chat script.

The sys entry for mwcbbs now looks like this:

system mwcbbs
time SaSu2200-2315
baud 2400
port MWCBBS
phone 17085590412
chat "" \n in:--in: nuucp word: public word: serialnum

Now, we will add the protocol line to this entry. This tells uucico which protocol to use when exchanging files
with the remote system. Different implementations of UUCP use various protocols for exchanging files. The g
protocol was the first UUCP protocol to be invented, and is still the most commonly used. (By the way, this protocol
is named after its designer, Greg Chesson.) Since then, other protocols have been invented. Each protocol has its
strengths and weaknesses; you should weigh carefully how you are communicating with the remote system and
what protocols the remote system, supports before you select a protocol. Please refer to the Lexicon article sys for
a complete list of the protocols that the Taylor UUCP package recognizes, and for information on when each should
be used.

Please note, too, that the g protocol is not implemented uniformly by all versions of UUCP. For instance, some g
protocols can only send data in packets of 64 bytes, using three sliding windows. Other implementations can
support up to 4,096 bytes per packet, using seven sliding windows. The more windows supported, the greater that
transfer rate of data. The larger the packet size per window, the greater the transfer rate of data. For a detailed
discussion of the internals of UUCP protocols, please refer to third-party publications or to documentation for the
Taylor UUCP system in the file /usr/src/alien/uudoc.tar.Z. Taylor UUCP can be configured from as little as three
windows and 64 bytes per packet, to seven windows and 4,096 bytes per packet. You can set these parameters in
the sys file; for details, see the Lexicon entry for sys. In this example, we will use the default values of seven
windows and 64-byte packets.

After all of this discussion, add the following line to the sys entry we are building:

protocol g

For the next step, you must select the name by which your system identifies itself to mwcbbs, asked in question 8,
above. ‘‘But wait!’’ you say. ‘‘Didn’t I answer this in the chat script that we labored over just earlier? We identified
ourselves as ‘nuucp’.’’ Well, not exactly, as we will make clear.

The login name of nuucp is not the same as the site name with which we wish to identify ourselves. Once our
system has logged into the remote system (in this case, mwcbbs), the remote system fires up uucico on its end.
Once again our system must identify itself — but this time to uucico, not to the login program.

Think of the login sequence this way: as a normal user must log in giving his name and a password or two just to
run a shell, so to must uucico log into mwcbbs. It logs in with the name nuucp and gives the necessary
passwords; however, mwcbbs, instead of invoking a shell for user nuucp, invokes uucico instead. (If you look in
the file /etc/passwd, you’ll see that the last entry for each user is the program that the system runs for that user;
usually it is a shell, but sometimes it’s another program, e.g., uucico). Now, uucico on mwcbbs begins to talk with
uucico on your system. The real work of transfering files can begin, as long as mwcbbs recognizes the sitename
with which your system identifies itself.
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mwcbbs does not recognize many remote systems, yet it receives calls from more than 100 different systems per
day. How does mwcbbs handle all of these calls if it really only knows a few dozen systems? Most systems identify
themselves by the same name, bbsuser. mwcbbs is set up to always recognize the remote site bbsuser.

Where does this name come from? In normal circumstances, this name is read from the file /etc/uucpname. This
file holds the name you gave your system when you installed COHERENT; you were required to select a name
because electronic mail will not work without it. (For more information on this file, see its entry in the Lexicon.)
The odds are that you did not choose the name bbsuser. Let’s say that when you installed COHERENT onto your
system, you chose the name foobar. Now, when you system calls mwcbbs, by default it will identify itself to
mwcbbs’s edition of uucico as foobar. However, mwcbbs doesn’t know foobar from Adam, so it logs your system
off and hangs up the telephone.

To get around this, you must insert the line myname into the sys entry for mwcbbs. Add this line to the sys entry
we are building:

myname bbsuser

Now, whenever your system calls mwcbbs, it will identify itself to mwcbbs’s uucico as bbsuser.

At this point, we could fill dozens of pages with discussions of the items you can configure in sys. However, we
now have all of the information we need to call mwcbbs. For a fuller discussion of sys, look up its entry in the
Lexicon.

For now, the completed sys entry for mwcbbs is as follows:

system mwcbbs
time SaSu2200-2315
baud 2400
port MWCBBS
phone 17085590412
chat "" \n in:--in: nuucp word: public word: serialnum
protocol g
myname bbsuser

There are a few other items that you will find yourself configuring as part of a typical entry in sys

First, you must indicate whether the remote system and request files from your system, and transfer files into it.
You may wish to deny this capacity to some remote systems, but you do want to grant it to mwcbbs, as the whole
point of access that system is to have it download files to you. So, add the following two lines to the bottom of the
entry for mwcbbs:

request yes
transfer yes

Next, you must name the directories on your system from which the remote system can request files, and the
directories on the remote system onto which your system has permission to write files. By default, remote systems
are limited to requesting files from directory /usr/spool/uucppublic and its subdirectories. To change this
default, add the instructions remote-send and remote-receive to the entry in sys for the remote site. For
example, suppose you decided to let mwcbbs read the directory /usr/private, but not /usr/private/myfiles. You
also decided to let mwcbbs write files into /tmp, but not into directory /tmp/secret. To do this, add the following
instructions to the sys entry for mwcbbs:

remote-send /usr/private !/usr/private/myfiles
remote-receive /tmp !/tmp/secret

Naming a directory in remote-send or remote-receive lets the remote system, respectively, read from that
directory and all of its sub-directories. However, if you prefix a directory name with an exclamation point ‘!’, that
directory and its subdirectories are specifically excluded from being accessed by the remote system. The following
gives the normal settings for these directories:

remote-send /usr/spool/uucppublic /tmp
remote-receive /usr/spool/uucppublic /tmp

Next, you must name the directories from which your system can send files to the remote system, and into which
your system can write the files that you have requested from the remote system. These are named by, respectively,
the instructions local-send and local-receive The following gives the normal settings for these directories:

local-send /usr/spool/uucppublic /tmp
local-receive /usr/spool/uucppublic /tmp
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If you are confused about how these instructions differ from the instructions remote-send and remote-receive,
just remember that the remote instructions name directories for send/receive requests initiated by the remote
system; where as the local instructions name directories for send/receive requests initiated by your system.

One last entry needs to go into this file: you need to name the commands that mwcbbs can execute on your
system. It needs to execute at least the commands rmail and uucp so that it can send you mail and upload files to
your system. So, add the following line to the end of the entry for mwcbbs:

commands rmail uucp

With these lines, our sys entry for mwcbbs is complete. It looks like this:

system mwcbbs
time SaSu2200-2315
baud 2400
port MWCBBS
phone 17085590412
chat "" \n in:--in: nuucp word: public word: serialnum
protocol g
myname bbsuser
request yes
transfer yes
remote-send /usr/spool/uucppublic /tmp
remote-receive /usr/spool/uucppublic /tmp
commands rmail uucp

This is a typical sys entry for calling a remote system.

Simplifying a UUCP Configuration With uuinstall
The program /usr/bin/uuinstall has been included to help build, modify, or delete entries in the files sys, port,
and dial, making configuring UUCP easier. uuinstall uses a system of screens and windows to gather and organize
the information UUCP needs to work with a remote system. While uuinstall does not remove all of the pain from
setting up communications with a remote site, it does make this (admittedly complex) task easier.

This section shows how uuinstall can simplify the process of configuring UUCP to communicate with mwcbbs.

If you have not read the previous section of this chapter, regarding configuring UUCP to call mwcbbs, please do so
now. That section discusses in detail many topics that will not be repeated here. In particular, look at the questions
asked in the previous section regarding configuring the files port, dial, and sys, and be prepared to answer them in
this section.

Invoking uuinstall

To invoke uuinstall, just type uuinstall at the shell prompt.

For security reasons, only the superuser root and user uucp can invoke this program. If other users could access
this program, they would have access to the information necessary to log into the remote systems listed in sys.
Only priviledged users should have access to this information.

When you invoke uuinstall, the following screen appears:

UUCP Configuration: Main menu

<s>ys file Configuration information for specific systems
<p>ort file Information for individual ports
<d>ial file Configuration information for dialing modems

Press the letter corresponding to the file you wish to examine
or <q> to quit
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The Port File

The menu says it all: choose the file to work with. For the sake of simplicity, we will modify the system files in the
same order that we did in the extended example that appeared in the previous section; so, press p to select the file
port.

When you make your selection, uuinstall displays its action menu:

Action menu

You have selected to work with the port file.

Do you wish to:
<a>dd an entry
<d>elete an existing entry
<m>odify an existing entry
<v>iew an existing entry

Press the letter corresponding to the action you wish to perform
or press <RETURN> for the main menu.

Press a to add an entry. The following screen appears:

Port File Entry Screen

port [_ ]
type [ ]
device [/dev/ ]
baud [ ]
dialer [ ]

Enter the name that you want associated with
the device that this entry will define.

Enter nothing to cancel.

It is time to enter our information. To do so, type the appropriate information into each field on the screen. When
you have entered all of the information required by that field, press (¢); the cursor drops to the next field on the
screen.

When the cursor enters selected fields, uuinstall displays a help message to describe the information that you
must enter. The message will, in many cases, give an example of valid data.

If you wish not to enter anything into a given field, type (¢) when the cursor enters that field. Some fields are
required: that is, the system demands that you type something into the field; in this case, the cursor will not move
until you have entered something. After you have completed the last line, uuinstall prompts you to ask if it should
add the new entry to file port.

From here, configuring a port entry is simple. Look at the questions that we asked in the previous section about
the information that a port entry needs. Earlier, we decided to name this port MWCBBS; therefore, type MWCBBS
into the first field on the screen — the one labelled port. Press (¢); the cursor jumps to the next field, which is
labelled type.

The port can be either of two types: direct or modem. Since we’re using a modem to telephone mwcbbs, type m
into the field labelled type. You would type d (for direct) should the remote system be connected to yours via a line
that runs directly from your serial port to the remote system. The cursor jumps to the next field, which is labelled
device, and positions itself just to the right of the string /dev/.
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Now, type the name of the device associated with this port. Earlier, we chose /dev/com2l. Because /dev/ is
already in place, just type com2l. Again, press (¢); the cursor jumps to the field labelled baud.

Type the speed that communications will take place at: in this example, 2400, then press (¢). The cursor jumps
to the field labelled dialer.

Finally, type the name of the dialer script that uucico is to use to talk with the modem plugged into this port. As
you recall, our example uses the script named hayes; so type that into this field and press (¢).

The completed entry, as we typed it here, looks like this:

Port File Entry Screen

Do you wish to write this entry? (y/n)_

port [MWCBBS]
type [modem]
device [/dev/com2l]
baud [2400]
dialer [hayes ]

uuinstall now asks if you wish to write this entry into file /usr/lib/uucp/port. Type y, and press (¢). uuinstall
saves the information and returns to its main menu.

The Dial File

From the main menu, press d to select the file dial. This will take us to the action menu. Again, select a to add an
entry. uuinstall then displays the following screen:

Dial File Entry Screen

dialer: [_ ]
chat: [ ]
chat-timeout: [ ]
chat-fail: [ ]
chat-fail: [ ]
chat-fail: [ ]
complete-chat: [ ]
abort-chat: [ ]

Enter the name of the dialer that
this entry describes.
Leaving this field blank aborts entry.

Begin by typing the name of the dialer script. In the previous example, we named it hayes. Type this in the first
line; then press (¢). The cursor jumps to the next field, which is labelled chat.

Now, type the chat script that uucico will use to dial the modem. Please refer to the previous section for a
discussion of what a chat script is, and of the elements that the dialer chat should contain. In the previous
section, we decided to use the following script:

"" ATE0Q1V1L1M0DT\D CONNECT\s2400

Type this, then press (¢). The cursor jumps to the next field, which is labelled chat-timeout.

Type the number of seconds that uucico should wait before it aborts its attempt to dial out on the modem. Press
(¢); the cursor jumps to first field labelled chat-fail.
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Into the next three fields, enter messages that the modem might return when an attempt to connect to a remote
system fails. In the previous section, we selected the messages NO\sCARRIER, BUSY, and NO\sDIALTONE. Type
the first message, then press (¢). The cursor jumps to the second chat-fail field; type the second message and
press (¢) again. The cursor jumps to the third chat-fail field; type the third message and press (¢) once again.
The cursor jumps to the field labelled complete-chat.

Note that uuinstall gives you space to enter three chat-fail messages. You can, however, enter an indefinite
number of these messages into a dialer script. If you wish to enter more than three chat-fail messages, you must
edit the file /usr/lib/uucp/dial by hand.

The next two fields, respectively labelled complete-chat and abort-chat, let you enter the chat scripts that uucico
should execute when, respectively, a call completes successfully or fails for some reason. As we noted in the
previous section, these scripts are optional; however, you are well advised to enter them, to ensure that the modem
is returned to its correct state after a call is completed. In the previous section, we devised the following script for
our Hayes-compatible modem:

"" +++ OK ATH0E0V0Q1

Type that script into the field labelled complete-chat, then press (¢). Type again type it into the field labelled
abort-chat, and press (¢) again.

The completed dial entry screen should now look like this:

Dial File Entry Screen

dialer: [hayes ]
chat: ["" ATE0Q1V1L1M0DT\D CONNECT\s2400]
chat-timeout: [60]
chat-fail: [BUSY]
chat-fail: [NO\sDIALTONE]
chat-fail: [NO\sCARRIER]
complete-chat: ["" +++ OK ATH0E0V0Q1]
abort-chat: ["" +++ OK ATH0E0V0Q1]

Do you wish to save this entry? (y/n)

If you are comfortable with your entry as it is, then press y to write it into /usr/lib/uucp/dial. If not, press n. In
either case, uuinstall returns to its main menu.

The sys File

It is now time to describe a remote system, in this case mwcbbs, to this system. From the main menu, press s to
select the sys file, then select a from the action menu to add an entry to the sys file. The following screen will
appear:
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Sys File Entry Screen

system: [_ ]
time: [ ]
speed: [ ]
port: [ ]
phone: [ ]
chat: [ ]
myname: [ ]
protocol: [ ]
commands: [ ]
read-path: [ ]
write-path: [ ]

Enter the name of a remote uucp system. You should
limit the name to 8 characters.

Leaving this field blank aborts entry.

Because we are using the remote system mwcbbs as our example, type mwcbbs into the field labelled system,
then press (¢); the cursor jumps to the field labelled time.

For this field, let’s get a little creative. Let’s limit calling mwcbbs to after 6 PM and before 6 AM on weekdays, but
permit any time on weekends. Type the following line in the time field:

Sa,Su,Wk1800-0600

Press (¢), which moves the cursor to the field labelled speed.

Now enter the speed or (‘‘baud rate’’) at which communications will occur. Earlier, we selected 2400 bps; so type
2400 and then (¢).

The cursor is now in the field labelled port. Type the name of the port via which we will call mwcbbs. As noted
above, we will be using the port that we named MWCBBS; so type that into this field and then press (¢).

The cursor is now in the field labelled phone, which holds the telephone number for the remote system. To find
the telephone number for mwcbbs, check the release notes that came with your copy of COHERENT; then type it
into this field and press (¢). The cursor jumps into the field labelled chat, for the chat script.

We discussed the chat script in some detail in the previous section. Enter the following chat script in this field:

"" \n in:--in: nuucp word: public word: serialno

Remember to replace serialno with the serial number provided with your COHERENT package. When you have
finished typing the chat script, press (¢). this moves the cursor to the field labelled myname.

Because mwcbbs does not grant access to just any system, your system must identify itself as a system that
mwcbbs already knows about. mwcbbs grants access to every system that identifies itself as bbsuser; so type
bbsuser into this field, and press (¢). The cursor moves into the field labelled protocol.

This field holds the protocol with which your system will exchange files with mwcbbs. The Taylor UUCP package
supports several protocols. mwcbbs in turn recognizes protocols a, g, and i. Please refer to the Lexicon article sys
for more information on available protocols, and the strengths and weaknesses of each. For the purposes of this
example, type g (for the g protocol), then press (¢).

The cursor is now in the field labelled commands, which lists the commands that the remote system may execute
on your system. Because mwcbbs will not be calling you, just press (¢). uuinstall will write a default list of
commands into this field, then move the cursor to the next field.

The last two fields, which respectively are labelled read-path and write-path, limit the directories that the remote
system can, respectively, write into or read from. They point to the remote-send and remote-receive instructions
within a sys entry. Press (¢) for each field; uuinstall will write into each field the default directory, which is
/usr/spool/uucppublic.
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With the template completed, your entry should look like this:

Sys File Entry Screen

system: [mwcbbs]
time: [Sa,Su,Wk1800-0600]
speed: [2400]
port: [MWCBBS]
phone: [17085590412]
chat: ["" \n in:--in: nuucp word: public word: serialno]
myname: [bbsuser]
protocol: [g]
commands: [rmail rnews uucp uux]
read-path: [/usr/spool/uucppublic]
write-path: [/usr/spool/uucppublic]

Do you wish to save this entry? (y/n)

If you are comfortable with the information you entered, press y to have it written to the file /usr/lib/uucp/sys.

This concludes our examples of configuring UUCP to call remote systems. Due to the extreme flexibility of the
Taylor UUCP package, it is not feasible to review all possible configurations available to you. Each of the
configuration files, /usr/lib/uucp/sys, /usr/lib/uucp/port, and /usr/lib/uucp/dial, can include more
commands than are reviewed here. Many of these are reviewed in the Lexicon entries for each of the files. A
complete set of ASCII text Taylor UUCP documentation, as provided with the distribution available from several
internet sites, is included in the file /usr/src/alien/uudoc104.tar.Z. The complete source code for the Taylor
UUCP package as distributed with COHERENT is available from mwcbbs.

Modifying an Existing Entry

The above examples show how to use uuinstall to enter a new entry into files port, dial, and sys. You can also use
uuinstall to delete, view, or modify existing entries in these files. Of these, the most useful is the feature for
modifying an existing entry.

Let’s say that we want to modify our entry for dialer MWCBBS to include a fourth chat-fail instruction, for the
modem message ERROR. To do so, do the following:

• Invoke uuinstall from the shell, as described above.

• When uuinstall displays its main menu, type d, to edit the file /usr/lib/uucp/dialer.

• When uuinstall displays its action screen, type m, to modify this file.

• uuinstall then displays the names of all of the entries in this file. Use the arrow keys on your terminal to
move the cursor to the entry that you wish to enter, in this case MWCBBS; then press (¢).

• uuinstall extracts the entry for MWCBBS from /usr/lib/uucp/dial, writes it into a temporary file, then
invokes the MicroEMACS editor for that temporary file. You can use the usual MicroEMACS commands to edit
this entry. In this case, add the line

chat-fail ERROR

into the entry.

• When you have finished editing the entry, type <ctrl-Z>.

• uuinstall will prompt you and ask if you wish to save your changes. Type y if you do, n if you do not.

Note that if you do save your changes, you can always use uuinstall to remodify the entry.

Configuring UUCP for Dial-in Access
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The above examples show how to configure your UUCP system so that it can dial out to another remote system.
Configuring UUCP so that other systems can dial into your system is, for the most part, like configuring it to dial
out; but this task does present some special problems that you must consider. The following example shows how
to set up UUCP so that remote system dalek can dial into your system.

Giving a Remote UUCP Site a Login

At this point, you are now the systems administrator of your COHERENT system who must tell someone else how to
set up her UUCP to log into your system. We’ve shown you the flip side of this by showing you how to access
mwcbbs: now the job is yours.

When a UUCP site calls your system, it must log in as would any ordinary user would. Once it has logged in,
however, it runs the command /usr/lib/uucp/uucico rather than a shell, which a normal user would run. This
portion of what you must set up is configured in the file /etc/passwd.

You can create a UUCP login by running the command newusr; then edit the last field of the /etc/passwd entry for
the login you just established to run the command /usr/lib/uucp/uucico instead of a /bin/sh or /usr/bin/ksh.

You could also create a UUCP login by manually editing /etc/passwd and copy the entry for user uucp, but change
the user name of uucp to something else.

You must also define the home directory if using newusr. Because this is a UUCP account, the home directory
appears under the directory /usr/spool/uucp. For example, if you wanted site dalek to call you, you might
establish an /etc/passwd entry that looks like:

dalek:password:6:6:Coherent-Coherent \
copy:/usr/spool/uucp:/usr/lib/uucp/uucico

Please note that password in the entry for dalek represents the encrypted password you assigned to site dalek.
Give the password to the system administrator of site dalek so that she may properly configure her chat script to
log into your system.

If we were to stop right here, dalek could call your system, log in, and begin a UUCP session. Unfortunately, since
we’ve yet to configure the UUCP files themselves to know about dalek, your site would quickly terminate the call
when dalek identified itself to your system after completing its chat script.

Configuring a Spooling Directory for Remote UUCP Access

Each UUCP site that calls your system must have a spooling directory in /usr/spool/uucp. While logged in as root,
go to the directory /usr/spool/uucp and run the command:

/usr/lib/uucp/uumkdir dalek

Configuring UUCP Files

To control what dalek does on your system, you should describe it in file /usr/lib/uucp/sys. COHERENT includes
a dummy entry in this file that you can easily modify for site dalek. You should make an entry that looks like this:

system dalek
time Never
commands rmail rnews uucp uux
remote-send /usr/spool/uucppublic !/usr/spool/uucppublic/bobfiles
remote-receive /usr/spool/uucppublic !/usr/spool/uucppublic/private

This entry names dalek as a system UUCP recognizes. Your system will never call dalek, because the time
command (which gives the legal dates and times during which the remote system can be contacted) states Never.

The commands instruction names the commands that you permit dalek to execute on your system. This line
overrides any permissions that may be available to dalek on the system level: that is, this line can stop dalek from
executing commands that it otherwise would have permission to execute (e.g., ls or cat), but it cannot enable dalek
to execute commands that it normally would not be permitted to run (e.g., su, shutdown, or reboot).

The lines remote-send and remote-receive name, respectively, the directories whose contents dalek can read, and
the directories into which it can write files. Once again, these lines can stop dalek from accessing directories that
it otherwise would be allowed to access (e.g., tmp), but they cannot give dalek permission to manipulate directories
that it normally would not be able to access (e.g., bin).
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In brief, all you have done is identified dalek to your system, named the commands it can execute on your system,
and limited the directories it can access. It’s that easy!

One Last, Loose Thread

With the spooling directory created, we are almost done. Run this command:

/usr/lib/uucp/uutouch dalek

It will place a dummy command in dalek’s spooling directory. More important, it returns an error if it finds some
errors in the UUCP configuration for dalek.

Unfortunately, we cannot give you a test system that will call your system to test your UUCP configuration. You
will have to use this section as a guide to configure for another UUCP site to call yours.

Requesting Files From a Remote UUCP System
To request a file from a remote UUCP system, you must know where that file is on the remote system. The file
howto.start can be found in the directory /usr/spool/uucppublic/mwcnews on mwcbbs. This file introduces
mwcbbs, its features and intended uses, and how to request files from it.

With this bit of knowledge, we can now request the file with the command uucp.

uucp is very simple. Invoked it with a specific site to call, and file to upload or download. For example, the
command:

uucp mwcbbs!/usr/spool/uucppublic/mwcnews/howto.start /tmp

tells your machine to call mwcbbs, download the file

/usr/spool/uucppublic/mwcnews/howto.start

and put it into directory /tmp on your system. The call will take place seconds after you enter the command,
unless you tell uucp to spool the request. For more information on this and other arguments, see the Lexicon
entry for uucp.

Please note that the entry for mwcbbs in /usr/lib/uucp/sys must specify that mwcbbs can write to /tmp as part
of the remote-receive instruction.

To send a file to mwcbbs, use the command:

uucp filename mwcbbs!/usr/spool/uucppublic/uploads/

This command uploads a copy of filename to the directory /usr/spool/uucppublic/uploads on mwcbbs. Again,
the call takes place within seconds, unless you tell uucp to spool the request.

At this point, we have completed our uucp configuration to ‘‘talk’’ to mwcbbs, and we have requested our first file.
You can tell uucp to download other files from mwcbbs; only the file names and path names will change.

Sending Files to a Remote UUCP System
Suppose, for example that site santa has been described to your UUCP system, and everyone has permission to
read from your current directory. Suppose, too, that you have permission to write into directory
/usr/spool/reports/parents. To send the files good.kids and bad.kids to santa, type the following command:

uucp good.kids bad.kids santa!/usr/spool/reports/parents

The uucp command compels UUCP to copy one or more files from your site to a remote site. UUCP queues both
files automatically and sends them at the next scheduled time.

Note, too, the use of the ‘!’ in the above command. The ‘!’ separates a site name from another site name, from a
directory name, or from a user ID. In the above example, the ‘!’ indicates that directory
/usr/spool/reports/parents can be found at site santa. One feature of a UUCP network is that any member can
send files to any other member. That does not mean that every member must have full permissions with every
other member; rather, for the sake of efficiency it is possible to route files through one or more intermediate
computers, to allow batch transmissions of files. For example, to send the file visibility to user blitzen via
machines santa and reindeer, use the following command:

uucp visibility santa!reindeer!blitzen!/usr/spool/weather/usa

In this example, the string santa!reindeer!blitzen!/usr/spool/weather indicates that directory
/usr/spool/weather can be contacted at site blitzen, which in turn can be contacted via site reindeer, which in
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turn can be contacted via site santa. This scenario assumes that site reindeer has permission to write into
directory /usr/spool/weather on site blitzen, and that site santa has permission to upload files to site reindeer.
(And, of course, that you have permission to upload files to site santa.) If any of these are not true, the transaction
will fail.

UUCP Administration
Once you have written and debugged the descriptions of your ports, dialers, and systems, administering UUCP

consists mainly of reviewing the log files periodically to ensure that all connections are being made, and all
programs executed correctly. The command uulog will assist you in this. When you type the command

uulog widget

uulog will open all of the log files associated with site widget, and display them for you. Given that the log files for
given site are kept in four different directories, this can be a great convenience.

Logfiles are organized as follows:

/usr/spool/uucp/.Log/uucico/sitename
/usr/spool/uucp/.Log/uucp/sitename
/usr/spool/uucp/.Log/uux/sitename
/usr/spool/uucp/.Log/uuxqt/sitename

As you can see, one logfile for each site is kept in a directory named after a given UUCP command. UUCP records
every transaction; so by reading these files, you can see whether your UUCP commands are succeeding.

If you are having trouble with your UUCP connections, send files through UUCP and observe how they fail. You may
need to use uuinstall a few times to tweak your description of the remote site. If all else fails, contact Mark
Williams Company.

If all is going well, you should run /usr/lib/uucp/uumvlog every day. This keeps the log files from getting out of
hand. The previous section on setting the polling time describes how to do this.

The main task of the UUCP administrator is to monitor the UUCP log files to see that hardware is functioning
correctly, and that files are transferred correctly. For example, failure to connect with a remote site after several
attempts may mean that the remote site is having problems with its modem, or that it is scheduling outgoing calls
for when you were scheduled to call in. Likewise, failure to receive scheduled calls from several sites may indicate
equipment failure on your end.

Finally, the UUCP administrator must monitor the use of disk space on the system. Old mail and messages,
multiple copies of files, and files automatically input by various subscription and network services can eat up disk
space rapidly; you must prune extraneous material ruthlessly.

Networks
UUCP becomes truly useful when you are hooked into a network of machines that exchange information. Through
UUCP, you can gain access to the Internet, through which you can exchange news and mail with others users
around the world.

This section briefly describes the services you can obtain from a network, and the networks now available.

Services

Many different services are available from networks: domain-name service (DNS), mail exchanger service, and
connectivity.

DNS is the registration of an Internet-style domain, e.g., mwc.com or baqaqi.chi.il.us. This usually divides into
two subservices — registration in an existing domain, and registration of your own domain. For this service you
need two sites on the Internet willing to either register you in their nameserver or run a nameserver for your
domain. A nameserver gives other people’s machines information about your registered machine or registered
domain. In particular, the nameserver publishes an MX record, which tells machines how to get mail to you.
(There are other kinds of records, but MX records are the important ones for UUCP sites.)

MX service is mail forwarding. The MX record published by the nameserver must point at a machine directly on
the Internet. This machine will the be responsible for figuring out how to actually get the mail to you.

Connectivity usually means a UUCP connection. Because almost everybody in a major city is connected to everyone
else, a UUCP connection to anybody effectively translates to an indirect connection to the Internet.
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Available Networks

UUNET is a company in Falls Church, Virginia, that provides a large number of networking services, including all
of those mentioned above.

The UUCP network is an extremely informal group of machines defined only by the fact that they connect to each
other via the UUCP protocol. It is one of the largest networks in the world and has no central control.

UseNet is a network of machines defined by the fact that they exchange UseNet news with each other. UseNet is
also an anarchy — no central organization runs it. It includes machines in the UUCP network and the Internet, as
well as hundreds of other networks. It is the largest network in the world.

The Internet is a group of high-speed networks which all communicate with Internet Protocol, i.e., TCP/IP. The
networks that comprise the Internet are mostly academic and research networks run by large central
organizations, such as the National Science Foundation or the Australian Academic Research Project. The center
of the Internet is the NIC (Network Information Center), whose address is nic.ddn.mil.

The internet (lower-case ‘i’) is defined by connectivity under mail. It is technically larger than UseNet, though less
is said about it because it is so weakly defined.

For information on networks, what is available on them, and how to connect to them, we strongly recommend the
book The Whole Internet: User’s Guide and Catalog, cited above. For a copy, check your local bookstore, or
telephone the publisher, O’Reilly & Company, at 1-800-998-9938.

Debugging UUCP Problems
When you have a problem with UUCP — and in particular, a problem with telephoning another UUCP system — you
must have a clear picture of what is occurring, and what is not occurring. For instance, if you try to call mwcbbs
and UUCP fails, you must determine what is working properly before the failure takes place.

The following subsections describe common problems with UUCP, and gives some hints on how to solve them.
Please review them carefully before you telephone Mark Williams Company to ask for help. If you do not, we will
ask that you do review them and call back only if you still cannot solve the problem.

Define the Problem Exactly

UUCP problems can take many forms. Define the problem exactly. This process may actually help you solve the
problem. Statements like ‘‘I’m having a problem using UUCP’’ or ‘‘UUCP doesn’t work’’ do not describe problems
relating to UUCP. You need to know exactly what does or does not happen when you try to connect with another
site. Please review it before you call Mark Williams Technical Support.

Before you do anything else, trying running uucp and uucico with the option -x. This option tells these programs
to log what they do; the logs are written into the subdirectories of directory /usr/spool/uucp/.Admin. Often, these
log messages will point directly to the problem.

A subtle error within a UUCP configuration file can cause no end of grief when you try to debug a UUCP problem.
To help spot these potential problems, run the command /usr/lib/uucp/uuchk. This command generates a full
report on your configuration files. It will spot and report on syntax errors in your configuration files. You will, of
course, have to fix by hand whatever uuchk finds to be in error.

The following sections discuss commonly encountered problems.

Enabling and Disabling Ports

On some COHERENT systems, the permissions for the programs /etc/enable and /etc/disable are set to:

-r-x------ root root

That is, these commands can be executed only by user root. This is to close a security hole; otherwise, a person
who breaks into your system can disable any port she wants — including the console.

If you have only one modem, and you both initiate and receive UUCP sessions on that modem, you may run into
problems with enabling and disabling that port. For the communications program uucico to be able to enable and
disable the port on its own, /etc/enable and /etc/disable must have the permissions:

-r-s--s--x root root

These permissions permit uucico to dial out on an enabled port on its own; but it reopens the security hole.
Caveat utilitor.
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For information on how to change permissions, see the Lexicon entry for the command chmod.

Stale Requests and Multiple Requests

From time to time, you may accidentally issue the same uucp request more than once.

Note that if uucp fails because you failed to connect with the remote site, one action you should not take is to
repeat the uucp command. If you do this, uucp will simply queue another request for the same file or files that
you requested with the previous uucp command. When connection is finally made, multiple uucp requests will be
executed, thus downloading multiple copies of the same file or files. Depending upon the size of the file or files,
this could be an expensive mistake.

To remove stale requests, log in as user uucp or user root; then cd to directory /usr/spool/uucp/sitename and
remove the extraneous requests. (You can also do this to remove mail files about which you have had second
thoughts.)

Note that a uucp generates one file, which has the prefix C. A mail message generates two files: one with the prefix
C, which tells the remote system what to do with the mail message; the other has the prefix D, which holds the text
of the message. Read the existing files to make sure that you are removing the correct files.

Problems With Lock Files

If uucico wishes to dial on a modem but somebody else is already using it, you will see the message

ERROR: All matching ports in use

in the log file for the site uucico is attempting to call. The solution simply is to wait until the port clears.

If uucico is already communicating with a given remote system, or if a lock file exists for a given remote system,
you will see the message

ERROR: System already locked

in the log file for the site uucico is attempting to call.

Sometimes lock files are not cleared properly, and so tie up the system long after they should have been removed.
Such files are called stale lock files. The solution is to use the command uurmlock to remove stale files.

Note that in some instances, permission problems may stop uurmlock from removing lock files. In this case, log in
as the superuser root and execute the command:

rm /usr/spool/uucp/LCK*

Enabling Ports, /etc/ttys Problems

uucico reads a port’s status in file /etc/ttys, then restores that status after it finishes its work. If you had
disabled a port by hand, it remains disabled after uucico has worked with it — which means, of course, that no
remote system can dial into your system via that port. To re-enable a port, use the command /etc/enable.

Note, too, that file /etc/ttys is sensitive to the order in which devices are named within it. The port into which
you have plugged your modem must have an entry for both the remote device (e.g., /dev/com1r) and the local
device (e.g., /dev/com1l). Note that the entry for the raw device must precede the entry for the local device. If it
does not, uucico will not be able to dial out properly.

Note, too, that device /dev/console must be the last entry in /etc/ttys, or your system will not be able to dial out
via a serial port.

Permission Problems

Incorrect permissions on files and directories will harm UUCP’s behavior.

uucico runs as a user named uucp and therefore does not have any special permission or privileges that give it
free access to every file or directory on your system. For example, consider what UUCP does when it attempts to
contact a remote system:

1. The daemon uucico checks the directory /usr/spool/uucp to see if any lock files are present; these lock files
indicate whether someone has already logged into the port from which uucico wishes to dial out.

2. If uucico finds a lock file for the port it wants to use, it checks the file /usr/lib/uucp/sys for information on
an alternate way to contact the remote system. If uucico finds an alternate way to contact the remote system,
it tries that way. If it does not, then it quits.
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3. When uucico finds a port that is available, it then check file /etc/ttys to see if the port is already enabled for
remote logins.

4. If the port is enabled, uucico disables the port and makes its call.

So far, so good. If, however, uucico does not have read and write permission on the port device from which it is
attempting to make its call, its attempt to make the call will fail.

For another example of how directory-level permission affect the behavior of UUCP, consider how UUCP transfers
files. When UUCP transfers files, it stores those files as temporary files in the directory
/usr/spool/uucp/sitename, where sitename is the name of the system with which UUCP is communicating. All
files and directories under /usr/spool/uucp must be owned by user uucp and group uucp, or UUCP cannot
transfer files correctly.

UUCP can also write temporary files into directory /usr/spool/uucp/.Temp/sitename. This directory must also be
owned by user and group uucp.

The permissions on the serial port from which you will dial out can affect the behavior of UUCP. UUCP must have
permission to read and write to that port. The device specified by the line entry in /usr/lib/uucp/port should
have permissions of 666 (see the Lexicon entry for the command chmod).

uucp should own all of its spooling directories. The spooling directory is the directory into which UUCP writes
stores data and command files for the site being contacted. The spool directory for a given remote site resides
under /usr/spool/uucp and is named after the remote site. For example, your system will use directory
/usr/spool/uucp/mwcbbs to store files being exchanged with mwcbbs. Likewise, mwcbbs has the directory
/usr/spool/uucp/yoursystem, where UUCP stores files to be exchanged with yoursystem.

UUCP Cannot Find Its Own Files

If the command /usr/bin/uucp says it can not get its own name when you invoke it, then you give yourself a UUCP

site name of no more than seven characters in the file /etc/uucpname.

The command /bin/mail command may also return a similar message. The cure is the same.

As noted above, a UUCP command may also fail to execute because permissions are set up incorrectly on the UUCP

executables. UUCP commands frequently invoke one another. For instance, uucico invokes uuxqt after it has
communicated with a remote system. uuxqt processes all files uploaded from the remote system. uuxqt may, in
turn, invoke other commands — for example, it can invoke smail to deliver mail to a user on your system or
forward mail to a user on another remote system. If the permissions on a UUCP executable are incorrect, it may
find that, when it tries to complete a task, it does not have permission to write to a given directory or a log. A list
of UUCP permissions appears in the Lexicon entry for UUCP. Make sure that the permission on your file conform to
what is given there.

Modem Configuration

The commonest source of error lies in modem configuration. Each modem has its idiosyncrasies, and command
languages differ from device to device; however, in general your modem should be configured as follows:

• Echo off.
• No result codes.
• Carrier detect (DCD) is true.
• Terminal ready (DTR) is true.
• DCD follows DTR.

If you are working with a high-speed modem (9600 baud or faster), you should also configure it to do the following:

• Lock modem to computer baud rate at 19,200 if your modem supports it;, if not, lock it to 9600 baud.
• Set modem for RTS/CTS handshaking.
• Use a flow-control device for the port’s description in file /usr/lib/uucp/port. See the Lexicon entry asy for

details on how to do this.

Telebit modems present special problems for configuration. They are designed to be used with UUCP, and in
general they are fast and robust; but because they do more than ordinary modems, they require more extensive
setup to work correctly. The Lexicon entry for modem gives detailed information on how to set up a Trailblazer
modem so that it works properly with the COHERENT implementation of UUCP.
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If your modem supports data compression, it may not be ideal to use this feature with every remote site. For
instance, attempting to compress files that already are compressed (as are the files on the Mark Williams bulletin
board), only adds to the data stream and reduces overall throughput. Before you turn on data compression, make
sure that the files you are downloading are not compressed.

The Modem Does Not Respond

When you try to call a system via the commands /usr/bin/uucp or /usr/lib/uucp/uucico and the modem does
not respond (i.e., the lights on the modem do not flicker), look at file /usr/lib/uucp/port. Check the permissions
on the serial port used to dial out on, as specified therein.

In some cases, you will see the error message

Retry time not reached

Taylor UUCP puts a horizon on callouts: if a call to a given site fails, UUCP will wait a predetermined amount of time
before it tries again. If you are repeatedly invoking uucp or uucico from the command line, you may see this error.
To get around this limitation, use the command-line option -f; for example:

uucico -s systemname -f

This problem can also arise if a previous connection to a site failed. In this case, UUCP writes a bad-connection
report into file

/usr/spool/uucp/.Status/systemname

where systemname names the system you are trying to contact. UUCP does this to keep your system from wasting
time contacting a system whose connection is defective, even if you use the -S option with uucico. Remove this file
and UUCP will resume dialing out. Note that this will not clear up the problem that triggered the original bad-
connection report, and the connection may fail for other reasons.

The Modem Responds But Does Not Dial

In some cases, the modem responds (i.e., its lights flicker) but it does not dial out. This can have any of several
causes.

First, the modem’s register settings may be incorrect. Review them. Check the above example for some simple
examples of how to set modem registers, and check the documentation that came with your modem.

You may be trying to access the modem through the remote COM port, e.g., /dev/com1r. In this instance, the
system awaits a carrier signal, as you cannot open a remote COM port without; therefore, no communication ever
begins. The solution is to use the local device, e.g., /dev/com1l. This way, the system will not wait for the carrier
to come up on the modem, and dialing will begin.

The Modem Dials But No Connection Made

Sometimes a modem will dial out but no connection is made. This is typically caused by plugging the telephone
line into the wrong port on the modem.

Check the log file for the site you are calling. It will usually give a message that indicates what the problem really
is. If calling mwcbbs, use the command:

uulog mwcbbs

The Modem Dials, Carrier Is Established, Nothing Else Happens

The first suspect is the modem’s register settings. The modem register settings that we discussed above generally
work well for uucp to dial out to another system, if your modem is Hayes-compatible. If it is not, or if it is an off-
brand that only claims to be Hayes-compatible, check your modem’s documentation and make sure that the
register settings are correct.

To get a picture of what is happening, run the command /usr/lib/uucp/uucico with the option -xchat. If calling
mwcbbs, use the command:

/usr/lib/uucp/uucico -Smwcbbs -xchat

This tells your system to call mwcbbs and to write debugging information into its log file
/usr/spool/uucp/.Admin/audit.local,which you can review later. This is very useful in determining if there is a
problem in a chat script.
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uulog Shows Lost Packets

If your UUCP communication sessions terminate prematurely, your system may be losing characters on the serial
ports. An indication of this problem is the appearance of the message Lost Packets in your UUCP logs. If your
system exhibits these symptoms during transfers on 4800-bps or higher-speed lines, we strongly urge you to
replace your existing 8250- or 16450-based UARTs with those based upon the 16550A design, such as the National
Semiconductor NS16550AFN. These newer UARTs are pin-compatible with the older UARTs. COHERENT

automatically senses and enables them when it boots.

uulog Shows Incorrect Response

This points to one of four problems:

1. Your site is sending an improper site name to the remote system (in other words, the remote site doesn’t know
about your system).

2. The remote site does not have a spooling directory for your site.

3. Your site does not have a spooling directory for the remote site

4. /usr/lib/uucp/sys contains an error or incorrect chat script.

Files Refuse To Be Sent or Cannot Be Received

Check the instructions local-send, local-receive, remote-send, and remote-receive in the remote system’s entry
in file /usr/lib/uucp/sys. This can result in the remote system being denied permission to load files onto your
system, or read files from it. Make sure these instructions are set correctly, and point to directories in which user
uucp has read and write permission.

File Transfers Fail With imsg Statements

One problem is frequently encountered when COHERENT systems attempt to UUCP with Sun workstations:
connections are made correctly, but when file transfers fail with numerous iterations of the debug message ‘‘imsg’’
until the script times out. This is caused by differences in parity: the COHERENT chat scripts by default use no
parity, while those on the other system do. The solution is to change the chat script on the Sun system to set no
parity when it talks with COHERENT system.

Files are Being Lost

If a configuration problem exists on your side of a UUCP connection, files could be lost. This may be true if uucico
or uuxqt are running with incorrect permissions. Taylor UUCP notes problems of this nature in its log files. If it
can preserve a file that would otherwise be lost, uucico saves the file in directory /usr/spool/uucp/.Preserve, and
logs the fact that it has saved it.

Non-COHERENT UUCP Site Problems

It is important to understand that COHERENT’s UUCP is designed to be compatible with other implementations of
UUCP, but may not use the same configuration files. This can complicate the debugging of problems when you
attempt to establish communication with a system that uses a different implementation of UUCP.

We will supply whatever assistance we can, but if it is determined that the non-COHERENT site is part of the
problem, it is up to you to find how that non-COHERENT site has configured itself. You may even need to set up a
conference call among yourself, the remote site’s administrator, and MWC Technical Support.

Where to Go From Here
As we mentioned earlier, COHERENT does not now implement the entire Taylor UUCP package. Full sources for
Taylor UUCP are available from mwcbbs, and from various sites on the Internet.

This tutorial only touches upon the esentials of configuring UUCP for communicating with other systems. Taylor
UUCP is much more conformable than this tutorial may have led you to believe.

For a fuller description of the Taylor UUCP configuration files, see the Lexicon entries for dial, port, and sys. For
further information, check the Lexicon entry for each UUCP command, as well as the overview article UUCP. This
article will also point you to related articles in the Lexicon, such as the ones for modem and RS-232.
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The Lexicon

The rest of this manual consists of the Lexicon. The Lexicon consists of more than 1,000 articles, each of which
describes a function or command, defines a term, or otherwise gives you useful information. The articles appear in
alphabetical order.

Internally, the Lexicon has a tree structure. The ‘‘root’’ entry is the one for Lexicon. It, in turn, introduces (or
‘‘branches to’’) three ‘‘overview’’: Running COHERENT, Administering COHERENT, and Programming
COHERENT. Each overview article points to a group of related entries. For example, the article Programming
COHERENT points to the articles on the COHERENT C compiler and to articles that introduce the library functions,
macros, and header files included with COHERENT.

Each Lexicon entry cross-references other entries. These cross-references point up the documentation tree, to its
overview article and, ultimately, to the entry for COHERENT; down the tree to subordinate entries; and across to
entries on related subjects. For example, the entry for getchar() cross-references STDIO, which is its overview
article, plus putchar() and getc(), which are related entries of interest to the user. The Lexicon is designed so that
you can trace from any one entry to any other, simply by following the chain of cross-references up and down the
documentation tree.

For more information on how to use the Lexicon and how it is organized, see the Lexicon entry for COHERENT.

301



302

TUTORIALS



! to ~

# — Preprocessing Operator
String-ize operator

The preprocessing operator # can be used within the replacement list of a function-like macro. It and its operand
are replaced by a string literal, which names the sequence of preprocessing tokens that replaces the operand
throughout the macro.

For example, the consider the macro:

#define display(x) show((long)(x), #x)

When the preprocessor reads the following line

display(abs(-5));

it replaces it with the following:

show((long)(abs(-5)), "abs(-5)");

Here, the preprocessor replaced #x with a string literal that gives the sequence of token that replaces x.

The following rules apply to interpreting the # operator:

1. If a sequence of white-space characters occurs within the preprocessing tokens that replace the argument, it
is replaced with one space character.

2. All white-space characters that occur before the first preprocessing token and after the last preprocessing
token are deleted.

3. The original spelling of the preprocessing tokens is preserved. This means that you must take care to preserve
certain characters: a backslash ‘\’ should be inserted before every quotation mark ‘"’ that marks a string
literal, and before every backslash that introduces a character constant.

Example
The following uses the operator # to display the result of several mathematics routines.

#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

void show(value, name)
double value, char *name;
{

if (errno)
perror(name);

else
printf("%10g %s\n", value, name);

errno = 0;
}

#define display(x) show((double)(x), #x)

main()
{

extern char *gets();
double x;
char string[64];

for(;;) {
printf("Enter a number: ");
fflush(stdout);
if(gets(string) == NULL)

break;
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x = atof(string);
display(x);
display(cos(x));
display(sin(x));
display(tan(x));
display(acos(cos(x)));

}
}

See Also
## #define, C preprocessor
ANSI Standard, §6.8.3.2

## — Preprocessing Operator
Token-pasting operator

The preprocessing operator ## can be used in both object-like and function-like macros. When used immediately
before or immediately after an element in the macro’s replacement list, ## joins the corresponding preprocessor
token with its neighbor. This is sometimes called ‘‘token pasting’’.

As an example of token pasting, consider the macro:

#define printvar(number) printf("%s\n", variable ## number)

When the preprocessor reads the following line

printvar(5);

it substitutes the following code for it:

printf("%s\n", variable5);

The preprocessor throws away all white space both before and after the ## operator. This gives you an easy way to
print any one of a set of strings.

## must not be used as the first or last entry in a replacement list. All instances of the ## operator are resolved
before further macro replacement is performed.

For more information on object-like and function-like macros, see #define.

See Also
# #define, C preprocessor
ANSI Standard, §6.8.3.3

Notes
Some C implementations allow token pasting by using an empty comment. For example:

variable/**/number

The COHERENT C compiler does not recognize this ‘‘trick’’ because it is not consistent with the Kernighan & Ritchie
standard for C, which states that a comment is white space and therefore is a token separator. In any event, token
pasting should always be performed with ##.

The ## operator may be used only within the replacement text of a preprocessor macro definition.

The order of evaluation of multiple ## operators is unspecified.

#define — Preprocessing Directive
Define an identifier as a macro

The preprocessing directive #define tells the C preprocessor to regard identifier as a macro.

#define can define two kinds of macros: object-like, and function-like.

An object-like macro has the syntax

#define identifier replacement-list
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This type of macro is also called a manifest constant. The preprocessor searches for identifier throughout the text of
the translation unit, and replaces it with the elements of replacement-list, which is then rescanned for further
macro substitutions.

For example, consider the directive:

#define BUFFERSIZE 75

When the preprocessor reads the line

malloc(BUFFERSIZE);

it replaces it with:

malloc(75);

A given identifier is replaced only once by a given replacement-list. This is to prevent such code as

#define FOO FOO

or

#define FOO BAR
#define BAR FOO

from generating an infinite loop.

A function-like macro is more complex. It has the syntax:

#define identifier lparen identifier-list
opt

) replacement-list

The preprocessor looks for identifier, which is a macro that resembles a function in that it is followed by a pair of
parentheses that may enclose an identifier-list. It replaces identifier with the contents of replacement-list, up to the
first lparen ‘(’ within replacement-list.

The preprocessor then examines identifier-list for further macros, which it expands. The modified identifier-list is
then replaced with the rest of replacement-list. Pairs of parentheses that are nested between the lparen that begins
replacement-list and the ‘)’ that ends it are copied into identifier-list as literal characters. The identifiers within
identifier-list are preserved after it has been modified by replacement-list. The only exceptions are identifiers that
are prefixed by the preprocessing operators # or ##; these are handled appropriately.

For example, the consider the macro:

#define display(x) show((long)(x), #x)

When the preprocessor reads the following line

display(abs(-5));

it replaces it with the following:

show((long)(abs(-5)), "abs(-5)");

When an argument to a function-like macro contains no preprocessing tokens, or when an argument to a function-
like macro contains a preprocessing token that is identical to a preprocessing directive, the behavior is undefined.

Example
For an example of using a function-like macro in a program, see #.

See Also
#, ##, #undef, C preprocessor
ANSI Standard, §6.8.3

Notes
A macro expansion always occupies exactly one line, no matter how many lines are spanned by the definition or
the actual parameters. If you have defined macros that span more than one line, you must either redefine them to
occupy one line, or somehow embed the newline character within the macro itself; otherwise, the macro will not
expand correctly.

A macro definition can extend over more than one line, provided that a backslash ‘\’ appears before the newline
character that breaks the lines. The size of a #define directive is therefore limited by the maximum size of a logical
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source line, which can be up to at least 509 characters long.

Some implementations allowed a user to re-define a macro with a new #define directive. The Standard, however,
allows only a ‘‘benign’’ redefinition; that is, the body of the new definition must exactly match the old definition,
including parameter names and white space.

#elif — Preprocessing Directive
Include code conditionally

The preprocessing directive #elif conditionally includes code within a program. It can be used after any of the
instructions #if, #ifdef, or #ifndef.

If the conditional expression of the preceding #if, #ifdef, or #ifndef directive is false (i.e., evalutates to zero) and if
the current condition is true (i.e., evaluates to a value other than zero), then group is included within the program,
up to the next #elif, #else, or #endif directive. An #if, #ifdef, or #ifndef directive may be followed by any number
of #elif directives.

The constant-expression must be an integral expression, and it cannot include a sizeof operator, a cast, or an
enumeration constant. All macro substitutions are performed upon the constant-expression before it is evaluated.
All integer constants are treated as long objects, and are then evaluated. If constant-expression includes character
constants, all escape sequences are converted into characters before evaluation.

See Also
#else, #endif, #if, #ifdef, #ifndef, C preprocessor, defined
ANSI Standard, §6.8.1

#else — Preprocessing Directive
Include code conditionally

The preprocessing directive #else conditionally includes code within a program. It is preceded by one of the
directives #if, #ifdef, or #ifndef, and may also be preceded by any number of #elif directives. If the conditional
expressions of all preceding directives evaluate to false (i.e., to zero), then the code introduced by #else is included
within the program, up to the #endif directive.

A #if, #ifdef, or #ifndef directive can be followed by only one #else directive.

See Also
#elif, #endif, #if, #ifdef, #ifndef, C preprocessor
ANSI Standard, §6.8.1

#endif — Preprocessing Directive
End conditional inclusion of code

The preprocessing directive #endif must follow any #if, #ifdef, or #ifndef directive. It may also be preceded by any
number of #elif directives and an #else directive. It marks the end of a sequence of source-file statements that are
included conditionally by the preprocessor.

Example
For an example of using this directive in a program, see assert.

See Also
#elif, #else, #if, #ifdef, #ifndef, C preprocessor
ANSI Standard, §6.8.1

#if — Preprocessing Directive
Include code conditionally

The preprocessing directive #if tells the preprocessor that if constant-expression is true (i.e., that it evalutes to a
value other than zero), then include the following lines of code within the program until it reads the next #elif,
#else, or #endif directive.

The constant-expression must be an integral expression, and it cannot include a sizeof operator, a cast, or an
enumeration constant. All macro substitutions are performed upon the constant-expression before it is evaluated.
All integer constants are treated as long objects, and are then evaluated. If constant-expression includes character
constants, all escape sequences are converted into characters before evaluation.
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If constant-expression is an undefined symbol, the preprocessor treats it the same as it would a false statement.

See Also
#elif, #else, #endif, #ifdef, #ifndef, C preprocessor, defined
ANSI Standard, §6.8.1

#ifdef — Preprocessing Directive
Include code conditionally

The preprocessing directive #ifdef checks whether identifier has been defined as a macro name. If identifier has
been defined as a macro, then the preprocessor includes group within the program, up to the next #elif, #else, or
#endif directive. If identifier has not been defined, however, then group is skipped.

An #ifdef directive can be followed by any number of #elif directives, by one #else directive, and must be followed
by an #endif directive.

Example
For an example of using this directive in a program, see assert.

See Also
#elif, #else, #endif, #if, #ifndef, C preprocessor, defined
ANSI Standard, §6.8.1

#ifndef — Preprocessing Directive
Include code conditionally

The preprocessing directive #ifndef checks whether identifier has been defined as a macro name. If identifier has
not been defined as a macro, then the preprocessor includes group within the program, up to the next #elif, #else,
or #endif directive. If identifier has been defined, however, then group is skipped.

An #ifndef directive can be followed by any number of #elif directives, by one #else directive, and by one #elif
directive.

See Also
#elif, #else, #endif, #if, #ifndef, C preprocessor, defined
ANSI Standard, §6.8.1

#include — Preprocessing Directive
Read another file and include it
#include <file>
#include "file"

The preprocessing directive #include tells the preprocessor to replace the directive with the contents of file.

The directive can take one of two forms: either the name of the file is enclosed within angle brackets (<header.h>),
or it is enclosed within quotation marks ("header.h"). Angle brackets tell cpp to look for file.h in the directories
named with the -I options to the cc command line, and then in the standard directory. Quotation marks tell cpp
to look for file.h in the source file’s directory, then in directories named with the -I options, and then in the
standard directory.

Most often, the file being included is a header, which is a file that contains function prototypes, macro definitions,
and other useful material; as its name implies, it most often appears at the head of a program. The header name
must be a string of characters, possibly followed by a period ‘.’ and a single letter, usually (but not always) ‘h’. A
header name may have up to 12 characters to the left of the period, and names may be case sensitive.

#include directives may be nested up to at least eight deep. That is to say, a file included by an #include directive
may use an #include directive to include a third file; that third file may also use a #include directive to include a
fourth file; and so on, up to at least eight files.

Note, too, that a subordinate header file is sought relative to the original source file, rather than relative to the
header that calls it directly. For example, suppose that a file example.c resides in directory /v/fred/src. If
example.c contains the directive #include <header1.h>. The operating system will look for header1.h in the
standard directory, /usr/include. If header1.h includes the directive #include <../header2.h> then COHERENT

looks for header2.h not in directory /usr, but in directory /v/fred.
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A #include directive may also take the form #include string, where string is a macro that expands into either of the
two forms described above.

See Also
header files, C preprocessor
ANSI Standard §6.8.2

Notes
If the header’s name is enclosed within quotation marks note that the name is not a string literal, although it looks
exactly like one. Thus, a backslash ‘\’ does not introduce an escape character.

Trigraphs that occur within a #include directive are substituted, because they are processed by an earlier phase of
translation than are #include directives.

The mapping provided for included files may map a given name either to an actual file, or to a member in a
partitioned data set.

#line — Preprocessing Directive
Reset line number
#line number newline
#line number filename newline
#line macros newline

#line is a preprocessing directive that resets the line number within a file. The ANSI Standard defines the line
number as being the number of newline characters read, plus one.

#line can take any of three forms. The first, #line number, resets the current line number in the source file to
number. The second, #line number filename, resets the line number to number and changes the name of the file to
filename. The third, #line macros, contains macros that have been defined by earlier preprocessing directives.
When the macros have been expanded by the preprocessor, the #line instruction will then resemble one of the first
two forms and be interpreted appropriately.

See Also
C preprocessor
ANSI Standard, §6.8.4

Notes
Most often, #line is used to ensure that error messages point to the correct line in the program’s source code. A
program generator may use this directive to associate errors in generated C code with the original sources. For
example, the program generator yacc uses #line instructions to link the C code it generates with the yacc code
written by the programmer.

#pragma — Preprocessing Directive
Perform implementation-specific preprocessing

#pragma is the C preprocessing directive that triggers implementation-specific behavior. The ANSI Standard
demands that every conforming implementation of C document what #pragma does.

COHERENT recognizes one use of #pragma:

#pragma align [n]

This directive permits COHERENT to conform to the Intel Binary Compatability Standard (BCS), which specifies
alignment requirements for structs.

The BCS requires that a struct be aligned consistently with the alignment of its most strictly aligned member. For
example, the structure

struct s {
short s_s1;
int s_i;
short s_s2;

};
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must put member s_i at offset 4, not 2 (because int is dword-aligned). If you have an array of struct s objects, the
second will be at offset 12, not 10 (or 8), because struct s itself must also be dword-aligned.

This, unfortunately, creates problems with existing compiled code, and with some standards, e.g., COFF. For
example, a struct filsys (a COHERENT file system, e.g., on a floppy or hard disk) is defined in <sys/filsys.h> as
starting out just like the above:

struct filsys {
unsigned short s_isize;
daddr_t s_fsize;
short s_nfree;
...

};

Because daddr_t is long, COHERENT would compile this and expect to find s_fsize at offset 4 (not 2) and s_nfree at
offset 8 (not 6); but this is not where the bits actually fall on an existing file system. So we circumvent the BCS
with #pragma align. The directive #pragma align n means ‘‘align objects on n-byte boundaries, at most,’’ and
#pragma align means ‘‘restore default alignment.’’ Thus, <sys/filsys.h> is edited to read:

struct filsys {
unsigned short s_isize;

#pragma align 2
daddr_t s_fsize;

#pragma align
short s_nfree;
...

};

and the compiler thinks the struct members fall at offsets 0, 2 and 6, which preserves compatibility with existing
binary objects.

See Also
cpp, C preprocessor
ANSI Standard, §6.8.6

#undef — Preprocessing Directive
Undefine a macro
#undef identifier

The preprocessing directive #undef tells the C preprocessor to disregard identifier as a macro. It undoes the effect
of the #define directive.

See Also
#define, C preprocessor
ANSI Standard, §6.8.3

__DATE__ — Manifest Constant
Date of translation

__DATE__ is a preprocessor constant that is defined by the C preprocessor. It represents the date that the source
file was translated. It is a string literal of the form

"Mmm dd yyyy"

where Mmm is the same three-letter abbreviation for the month as is used by asctime; dd is the day of the month,
with the first d being a space if translation occurs on the first through the ninth day of the month; and yyyy is the
current year.

The value of __DATE__ remains constant throughout the processing of the a module of source code. It may not be
the subject of a #define or #undef preprocessing directive.

Example
The following prints the preprocessor constants set by the ANSI standard.

#include <stddef.h>
#include <stdio.h>
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main(void)
{

printf("Date: %s\n", __DATE__);
printf("Time: %s\n", __TIME__);
printf("File: %s\n", __FILE__);
printf("Line No.: %d\n", __LINE__);

printf("ANSI C? ");
#ifndef __STDC__

printf("no0);
#else

printf("ANSI C? %s(%d)0, __STDC__ ? "Yes" : "No", __STDC__);
#endif /* _defined(__STDC__) */

exit(EXIT_SUCCESS);

}

See Also
__FILE__, __LINE__, __STDC__, __TIME__, manifest constant
ANSI Standard, §6.8.8

__FILE__ — Manifest Constant
Source file name

__FILE__ is a preprocessor constant that is defined by the C preprocessor. It represents, as a string constant, the
name of the current source file being translated.

__FILE__ may not be the subject of a #define or #undef preprocessing directive, but it may be altered with the
#line preprocessing directive.

Example
For an example of how to use __FILE__ in a program, see __DATE__.

See Also
__DATE__, __LINE__, __STDC__, __TIME__, manifest constant
ANSI Standard, §6.8.8

__LINE__ — Manifest Constant
Current line within a source file

__LINE__ is a preprocessor constant that is defined by the C preprocessor. It represents the current line within the
source file. The ANSI standard defines the current line as being the number of newline characters read, plus one.

__LINE__ may not be the subject of a #define or #undef preprocessing directive.

Example
For an example of how to use __LINE__ in a program, see __DATE__.

See Also
__DATE__, __FILE__, __STDC__, __TIME__, manifest constant
ANSI Standard, §6.8.8

__STDC__ — Manifest Constant
Mark a conforming translator

__STDC__ is a preprocessor constant that is defined by the C preprocessor. If it is defined to be equal to one, then
it indicates that the translator conforms to the ANSI standard.

The value of __STDC__ remains constant throughout the entire program, no matter how many source files it
comprises. It may not be the subject of a #define or #undef preprocessing directive.

Example
For an example of using __STDC__ in a program, see __DATE__.
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See Also
__DATE__, __FILE__, __LINE__, __TIME__, manifest constant
ANSI Standard, §6.8.8

Notes
Many users incorrectly attempt to use the construction

#ifdef __STDC__

instead of the correct form:

#if __STDC__

These constructions give different results because __STDC__ is defined, but it is defined to a value of zero, in
keeping with the fact that COHERENT C does not yet conform to the ANSI standard.

To help users avoid this error, COHERENT does not define __STDC__ at all.

__TIME__ — Manifest Constant
Time source file is translated

__TIME__ is a preprocessor constant that is defined by the C preprocessor. It represents the time that a source file
is translated. It is a string literal of the form:

"hh:mm:ss"

This is the same format used by the function asctime.

The value of this preprocessor constant remains constant throughout the processing of the translation unit. It
may not be the subject of a #define or #undef preprocessing directive.

Example
For an example of how to use __TIME__ in a program, see __DATE__.

See Also
__DATE__, __FILE__, __LINE__, __STDC__, manifest constant
ANSI Standard §6.8.8

_exit() — System Call (libc)
Terminate a program
#include <unistd.h>
void _exit(status) int status;

The system call _exit() terminates a program directly. It returns status to the calling program, and exits. Unlike
the library function exit(), _exit() does not perform extra termination cleanup, such as flushing buffered files and
closing open files.

_exit() should be used only in situations where you do not want buffers flushed or files closed. For example, you
may wish to call _exit() if your program detects an irreparable error condition and you want to ‘‘bail out’’ to keep
your data files from being corrupted.

_exit() should also be used with programs that do not use STDIO. Unlike exit(), _exit() does not use STDIO. This
will help you create programs that are extremely small when compiled.

See Also
close(), exit(), EXIT_FAILURE, EXIT_SUCCESS, libc, unistd.h, wait()
POSIX Standard, §3.2.2

Notes
If you do not explicitly set status to a value, the program returns whatever value happens to have been in the
register EAX. You can set status to either EXIT_SUCCESS or EXIT_FAILURE.
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_getwd() — General Function (libc)
Get current working directory name
char *_getwd(pathname)
char *pathname;

The current working directory is the directory from which file name searches commence when a path name does not
begin with ‘/’. _getwd() returns the name of the current working directory. It is useful for processes like spoolers
and daemons, which must generate full path names for files.

If you do not have permission to search all levels of the directory hierarchy above the current directory, _getwd()
cannot obtain the directory name for you.

See Also
chdir(), getcwd(), libc, pwd

Diagnostics
_getwd() returns NULL and writes an error message into pathname if an error occurs, e.g., if the current directory
cannot be found or if any other error occurs.

Notes
_getwd() is obsolete, and is included for reasons of compatibility. Programmers should use the function getcwd()
instead.

_getwd() fails if the current directory name is longer than MAXPATH characters (128 characters as defined in
header file <path.h>). The chunk of memory pointed to by pathname must be big enough to hold MAXPATHLEN
characters plus a trailing NUL.

If _getwd() fails, the working directory cannot be restored to its initial value.

The name of this function has been change to _getwd() to avoid confusion with the Berkeley UNIX function getwd(),
which has a different calling sequence.

_tolower() — ctype Function (libc)
Convert characters to lower case
#include <ctype.h>
int _tolower(c) int c;

The function _tolower() converts the character c to lower case, and returns the converted character. Unlike the
related function tolower(), _tolower() is not guaranteed to work correctly if handed anything other than an upper-
case character, that is, a character for which isupper() returns true.

See Also
_toupper(), libc, tolower()

Notes
_tolower() is not part of the ANSI standard; COHERENT includes it only to support old code. You should use
tolower() instead.

_toupper() — ctype Function (libc)
Convert characters to upper case
#include <ctype.h>
int _toupper(c) int c;

The function _toupper() converts the character c to upper case and returns the converted character. Unlike the
related function toupper(), _toupper() is not guaranteed to work correctly if it is passed something other than a
lower-case character, that is, any character for which islower() returns true.

See Also
_tolower(), libc, toupper()

Notes
_toupper() is not part of the ANSI standard; COHERENT includes it only to support old code. You should use
toupper() instead.
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a.out.h — Header File
Include all COFF header files
#include <coff/a.out.h>

a.out.h includes all header files needed to generate COFF output.

See Also
arcoff.h, file formats, header files
Gircyc, G.R.: Understanding and Using COFF. Sebastopol, Calif, O’Reilly & Associates, Inc., 1990.

abort() — General Function (libc)
End program immediately
#include <stdlib.h>
void abort()

abort() terminates a process with a core dump, creating a file called core, and prints a message on the screen. It is
normally invoked in situations that ‘‘should not happen’’. For example, malloc() invokes abort() if it discovers a
corrupt storage arena.

Where possible, abort() executes a machine instruction that causes the processor to trap. If the signal associated
with the trap is caught or ignored, the dump will not be produced.

See Also
_exit(), core, exit(), libc, stdlib.h
ANSI Standard, §7.10.4.1
POSIX Standard, §8.1

abs() — General Function (libc)
Return the absolute value of an integer
#include <stdlib.h>
int abs(n) int n;

abs() returns the absolute value of integer n. The absolute value of a number is its distance from zero. This is n if
n>=0, and -n otherwise.

Example
This example prompts for a number, and returns its absolute value.

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>

main()
{

extern char *gets();
extern int atoi();
char string[64];
int counter;
int input;

printf("Enter an integer: ");
fflush(stdout);
gets(string);
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for (counter=0; counter < strlen(string); counter++) {
input = string[counter];

if (!isascii(input)) {
fprintf(stderr,

"%s is not ASCII\n", string);
exit(EXIT_FAILURE);

}

if (!isdigit(input))
if (input != ’-’ || counter != 0) {

fprintf(stderr,
"%s is not a number\n", string);

exit(1);
}

}

input = atoi(string);
printf("abs(%d) is %d\n", input, abs(input));
exit(EXIT_SUCCESS);

}

See Also
fabs(), floor(), int, libc, stdlib.h
ANSI Standard, §7.10.6.1
POSIX Standard, §8.1

Notes
On two’s complement machines, the abs() of the most negative integer is itself.

ac — Command
Summarize login accounting information
ac [ -dp ] [ -w wfile ][ username ... ]

One of the accounting mechanisms available on the COHERENT system is login accounting, which keeps track of
the time each user spends logged into the system. Login accounting is enabled by creating the file
/usr/adm/wtmp. Thereafter, the routines date, login, and init write raw accounting data to /usr/adm/wtmp to
record the time, the name of the terminal, and the name of the user for each date change, login, logout, or system
reboot.

The command ac summarizes the accounting data that have accumulated for your system. By default, it prints
the total connect time found in /usr/adm/wtmp. If its command line includes a user’s login identifier, ac prints a
summary only of that user’s activity.

ac recognizes the following command-line options:

-d Itemize the output into daily periods. ac defines a day as beginning at midnight.

-p Print a summary for every user on your system.

-w Read data from wfile. By default, ac reads its data from /usr/adm/wtmp.

See Also
commands, date, init, login, sa, utmp.h

Notes
File /usr/adm/wtmp can become very large; therefore, you should truncated it periodically. Special care should
be taken if you have enabled login accounting and your system has limited amounts of free disk space.

accept() — Sockets Function (libsocket)
Accept a connection on a socket
#include <sys/types.h>
#include <sys/socket.h>
int accept(socket, address, addrlen)
int socket, *addrlen; struct sockaddr *address;
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accept() accepts a connection on a socket. It extracts the first connection request on the queue of pending
connections, creates a new socket with the same properties as socket, and allocates a file descriptor for the newly
created socket. It is used with connection-based types of sockets, currently with SOCK_STREAM.

socket gives a file descriptor that identifies a socket. It must have been returned by a call to socket(), have been
bound to an address by a call to bind(), and be listening for connections after a call to listen().

If no connections are pending on the queue and socket is not marked as non-blocking, accept() blocks the calling
process until it can establish a connection. If socket is marked non-blocking and no connections are pending on
the queue, accept() returns an error, as described below. The accepted socket may not be used to accept more
connections; however, the original socket remains open.

address gives the address of the connecting entity, as known to the ‘‘communications layer’’. Its exact format is
dictated by the domain in which communication occurs.

addrlen points to an integer that gives the number of bytes available at address. Upon return, that integer contains
the number of bytes to which address actually points.

The function select() can perform the same action as accept(): simply select the socket for reading.

If all goes well, accept() returns the file descriptor for the accepted socket, which is a non-negative integer. If
something goes wrong, accept() returns -1 and set errno to an appropriate value. The following lists the errors
that can occur, by the value to which accept() sets errno:

EBADF socket is somehow invalid.

ENOTSOCK
socket references a file, not a socket.

EOPNOTSUPP
socket references a socket that is not of type SOCK_STREAM.

EFAULT
addr contains an illegal address.

EWOULDBLOCK
The socket is marked non-blocking, and no connections are present to be accepted.

Example
For an example of this function, see the Lexicon entry for libsocket.

See Also
bind(), connect(), libsocket, listen(), select()

access() — System Call (libc)
Check if a file can be accessed in a given mode
#include <unistd.h>
int access(filename, mode) char *filename; int mode;

access() checks whether a file or directory can be accessed in the mode you wish. filename is the full path name of
the file or directory you wish to check. mode is the mode in which you wish to access filename, as follows:

F_OK File exists
R_OK Read a file
W_OK Write into a file
X_OK Execute a file

The header file unistd.h defines these values, which may be logically combined to produce the mode argument.

If mode is F_OK, access() tests only whether filename exists, and whether you have permission to search all
directories that lead to it.

access() returns zero if filename can be accessed in the requested mode, and a nonzero value if it cannot. Note
that the return value is the opposite of the intuitive value, i.e., zero means success rather than failure.

access() uses the real user id and real group id (rather than the effective user id and effective group id), so set user
id programs can use it.
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Example
The following example checks if a file can be accessed in a particular manner.

#include <unistd.h>
#include <stdio.h>

main(argc, argv)
int argc; char *argv[];
{

int mode;
extern int access();

if (argc != 3) {
fprintf(stderr, "usage: acc dir_name/file_name mode\n");
exit(EXIT_FAILURE);

}

switch (*argv[2]) {
case ’x’:

mode = X_OK;
break;

case ’w’:
mode = W_OK;
break;

case ’r’:
mode = R_OK;
break;

case ’f’:
mode = F_OK;
break;

default:
fprintf(stderr, "Bad mode. Modes: f, x, r, w\n");
exit(EXIT_FAILURE);
break;

}

if (access(argv[1], mode))
printf("file %s cannot be found in mode %d\n", argv[1], mode);

else
printf("file %s is accessible in mode %d\n", argv[1], mode);

exit(EXIT_SUCCESS);
}

See Also
libc, path(), unistd.h
POSIX Standard, §5.6.3

Notes
When the superuser root executes access(), it always returns readable/writable/executable for any file that exists,
regardless of permissions.

Note that access() used to be declared in header file <access.h>. It is now prototyped in header file <unistd.h>, to
comply with the POSIX standard. <access.h> is obsolete and has been dropped from COHERENT beginning with
release 4.2.

acct() — System Call (libc)
Enable/disable process accounting
#include <acct.h>
acct(file)
char *file;

Process accounting records who initiates each system process and how long each process takes to execute. These
data can be analyzed, to administer the system most efficiently.

The system call acct() enables or disables process accounting. If file is not NULL, then accounting is turned on; if
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file is NULL, however, then process accounting is turned off.

It is usual, but not necessary, that file be /usr/adm/acct. file must exist. When enabled, the system appends a
raw accounting data record in the format described by acct.h to file as each process terminates.

acct() is restricted to the superuser.

See Also
ac, acct.h, accton, exit(), libc, sa, times(),

Diagnostics
Successful calls return zero. acct() returns -1 for errors, such as nonexistent file or invocation by a user other
than the superuser.

Notes
The system writes accounting records for a process only when the process exits. Processes that never terminate
and processes running at the time of a system crash do not produce accounting information.

acct.h — Header File
Format for process-accounting file
#include <acct.h>

Process accounting is a feature of the COHERENT system that allows it record what processes each user executes
and how long each process takes. These data can be used to track how much each user uses the system.

The function acct() turns process accounting off or on. When process accounting has been turned on, the
COHERENT system writes raw process-accounting information into an accounting file as each process terminates.
Each entry in the accounting file, normally /usr/adm/acct, has the following form, as defined in the header file
acct.h:

struct acct {
char ac_comm[10];
comp_t ac_utime;
comp_t ac_stime;
comp_t ac_etime;
time_t ac_btime;
short ac_uid;
short ac_gid;
short ac_mem;
comp_t ac_io;
dev_t ac_tty;
char ac_flag;

};

/* Bits from ac_flag */
#define AFORK 01 /* has done fork, but not exec */
#define ASU 02 /* has used superuser privileges */

Every time a process calls exec(), the contents of ac_comm are replaced with the first ten characters of the file
name. The fields ac_utime and ac_stime represent the CPU time used in the user program and in the system,
respectively. ac_etime represents the elapsed time since the process started running, whereas ac_btime is the
time the process started. The effective user id and effective group id are ac_uid and ac_gid. ac_mem gives the
average memory usage of the process. ac_io gives the number of blocks of input-output. ac_tty gives the
controlling typewriter device major and minor numbers.

For some of the above times, the acct structure uses the special representation comp_t, defined in the header file
types.h. It is a floating point representation with three bits of base-8 exponent and 13 bits of fraction, so it fits in a
short integer.

See Also
acct(), accton, header files, sa
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accton — Command
Enable/disable process accounting
/etc/accton [ file ]

One of the accounting mechanisms available on the COHERENT system is process accounting, Process accounting
records each process, who initiates it, and how long it takes to execute.

The command accton turns process account on or off. To turn on process accounting, issue the command accton
followed by a file argument; COHERENT then begin to write accounting data into file, By convention, file should be
/usr/adm/acct. To turn off process accounting, issue the command accton without any arguments.

The command sa summarizes the data that will have been written into file.

See Also
ac, acct, acct.h, commands, init, sa

Notes
As the accounting file can become very large, you should truncate that file from time to time. You should take
extra care to monitor the growth of that file should you enable process accounting on a system with a limited
amount of free disk space.

acos() — Mathematics Function (libm)
Calculate inverse cosine
#include <math.h>
double acos(arg) double arg;

acos() calculates the inverse cosine. arg should be in the range of -1.0, 1.0. It returns the result, which is in the
range of from zero to π radians.

Example
This example demonstrates the mathematics functions acos(), cabs(), and tan().

#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define display(x) dodisplay((double)(x), #x)

dodisplay(value, name)
double value; char *name;

{
if (errno)

perror(name);
else

printf("%10g %s\n", value, name);
errno = 0;

}

main()
{

extern char *gets();
double x;
char string[64];

for(;;) {
printf("Enter number: ");
if(gets(string) == NULL)

break;

x = atof(string);
display(x);
display(acos(cos(x)));
display(cabs(sin(x),cos(x)));

}
}
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See Also
cos(), errno, errno.h, libm, perror()
ANSI Standard, §7.5.2.1
POSIX Standard, §8.1

add_history() — Editing Function (libedit)
Add a line to history buffer
void add_history(line)
char *line;

The function add_history() adds line to a ‘‘history’’ buffer, from which it can be retrieved by the function readline().
line must have been returned by readline().

See Also
libedit, readline()

address — Definition
An address is the location where an item of data is stored in memory.

On the i8086, a physical address is a 20-bit number. The i8086 builds an address by left-shifting a 16-bit segment
address by four bits, and then adding it to a 16-bit offset address. The segment address points to a particular
chunk of memory. The i8086 uses four segment registers, each of which governs a different portion of a program,
as follows:

CS Address of code segment
DS Address of data segment
ES Address of ‘‘extra’’ segment
SS Address of stack segment

SMALL-model programs use only the offset address; hence, their pointers are only 16 bits long, equivalent to an
int. LARGE-model programs use both segment and offset addresses. Their addresses are 20 bits long, which must
be stored in a 32-bit pointer, equivalent to a long. COHERENT 286 supports SMALL model.

On the i80386, addresses start as 32 bits. Segment registers are used to look up a segment descriptor. The
descriptor’s base then defines the address within a four-gigabyte virtual address space. The page tables are then
used to translate this to a physical address. For details, see the Intel 386 Programmers Manual.

On the M68000, an address is simply a 24-bit integer that is stored as a 32-bit integer. The upper eight bits are
ignored; this is not true with the more advanced microprocessors in this family, such as the M68020. The M68000
uses no segmentation; memory is organized as a ‘‘flat address space,’’ with no restrictions set on the size of code or
data.

On machines with memory-mapped I/O, such as the 68000, some addresses may be used to control or
communicate with peripheral devices.

Example
The following printes the address and contents of a given byte of memory.

#include <stdio.h>

main()
{

char byte = ’a’;
printf("Address == %x\tContents == \"%c\"\n",

&byte, byte);
}

See Also
data formats, pointer, Programming COHERENT
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Administering COHERENT — Overview
To administer a COHERENT system, you must know how to do the following:

• Perform backups, manage archives and purge old files.

• Set up and manage complex system, such as mail, UUCP, and the print spooler.

• Attach peripheral devices, such as terminals, modems, and printers.

• Install third-party software.

• Configure the kernel, and add or configure device drivers.

• Act as a resource person for other users.

Overview Lexicon Articles
Many users who have purchased COHERENT for their personal use will find some of these tasks to be confusing or
daunting. This is especially true if they have had no previous exposure to UNIX or similar operating systems. Such
a person will find the following Lexicon articles to be helpful:

backups
When and how to back up your system, using tape or floppy disks.

booting
How booting works. In particular, it shows how to boot a kernel other than the default kernel.

CD-ROM
Introduce how to use CD-ROM drives under COHERENT.

console
This introduces the device /dev/console. It also lists the many escape sequences with which you can
change the appearance and behavior of the console.

device drivers
The suite of device drivers available under COHERENT. This article also gives a

floppy disks
Information about floppy disks. This describes the floppy-disk devices available under COHERENT, how to
format floppy disks, and how to record data on a floppy disk using a COHERENT file systems, a tar archive,
or an file systems.

hard disk
This gives basic information about hard disks. In particular, it discusses the devices by which hard disks
are accessed, and how to partition a hard disk.

IRQ This article lists the IRQs available on the IBM PC.

kernel This introduces the kernel, which is the master program of COHERENT. It also gives examples of how to
configure and patch the kernel.

keyboard
This introduces the suite of keyboard drivers available for the COHERENT keyboard.

lpsched
This command is the daemon for the lp print spooler. For an overview of lp and the other print spoolers,
see the Lexicon entry for printer.

mail This gives an overview of the COHERENT mail system — both commands and configuration files.

modem
This describes how to add a modem to your COHERENT system. It also introduces the communications
programs available under COHERENT.

printer This describes how to add a printer to your system. It also gives an overview of the various print spoolers
available with COHERENT, and how to configure each to work with a variety of printers.

RS-232
This presents the design and pin-out of the RS-232 plug, which is the standard plug for serial and parallel
ports on the IBM PC and its clones.
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security
This article discusses the problem of system security — that is, how to let your users but keep the
‘‘crackers’’ out.

tape This introduces tape devices. It describes how to access tape, and goes into some detail on how to manage
tape archives.

terminal
This describes how to plug a terminal into your system, and configure it correctly.

tboot The tertiary boot is the program that loads the COHERENT kernel into memory and launches it. This article
describes it. You probably will never need to work with tboot— but you never know.

virtual console
COHERENT supports virtual consoles, whereby several console sessions can be run on the same physical
device. This describes how to set up and manage virtual consoles on your system.

System Files
The COHERENT system is controlled by system files and daemons. System files contain the information that
controls the minute-to-minute operation of the COHERENT system. A daemon is a program that the system runs to
manage a peripheral device or perform some other task that does not require the intervention of a human.
COHERENT’s system files and daemons are described in the following Lexicon articles:

/usr/lib/mail/aliases
This file holds the aliases by which your system is known to other systems.

atrun This daemon executes other commands at a preset time. A user can use the command at to spool another
command for execution at a later time.

/etc/boottime
This file records the date and time your system was last booted.

/etc/brc
COHERENT executes this script when your system enters single-user mode. It performs maintenance
chores.

/etc/checklist
This file lists the devices to check with fsck when you boot COHERENT.

/usr/lib/mail/config
This file performs overall configuration of smail.

/usr/lib/uucp/config
This file performs overall configuration of UUCP.

/usr/spool/mlp/controls
This file holds the data base for the MLP print spooler.

core This Lexicon entry describes the format of a core file — that, the file that a program dumps when it fails
catastrophically.

/etc/cron
This daemon reads a data base of commands to execute periodically, and executes each when its time
comes round at last.

/etc/d_passwd
This file holds the passwords that control access to your system via peripheral devices. For example, you
can set an extra password in this file for all users who may attempt to log in via modem.

/usr/lib/uucp/dial
This file holds the information by which UUCP dials a modem.

/etc/dialups
This file names every peripheral device that requires an additional password.

/usr/lib/mail/directors
Name the director routines that smail uses, and configure them.
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/etc/domain
This file names the mail domain to which your system belongs.

/etc/drvld.all
This file names the loadable drivers to load when you boot your system.

$HOME/.forward
This File lets you set a forwarding address for mail.

/etc/getty
This daemon initializes a serial port, watches the port, and assists any user who attempts to log into your
system.

/etc/group
This file define groups of users on your system.

/etc/hosts
This file gives the name and address of every host on your local network.

/etc/hosts.equiv
This file names ‘‘equivalent hosts’’ on your local network — that is, the hosts that have identical (or nearly
identical) sets of users.

/etc/hosts.lpd
This file holds the name and domain of your local host.

/usr/lib/hpd
This daemon is a spooler daemon for a laser printer.

/etc/inetd.conf
This file configures the Internet daemons.

/etc/init
Command helps to bring COHERENT into multi-user mode. It also helps users to log in.

$HOME/.kshrc
This script configures the Korn shell to suit your tastes.

$HOME/.lastlogin
This file records the date and time you last logged in to your COHERENT system.

login This command logs a user in to your COHERENT system. Its Lexicon article also describes the entire
convoluted process of managing an enabled port and logging a user in.

/etc/default/login
This file sets default values for logging in.

/usr/adm/loginlog
This file logs failed attempts to log in.

/etc/logmsg
This file holds the COHERENT login prompt. If you do not like the prompt

Coherent 386 login:

and a beep, you can change it by editing this file.

/usr/lib/lpd
This daemon manages the MLP print spooler.

/etc/conf/mdevice
This file describes the device drivers currently available on your system.

/etc/mnttab
This file holds the mount table — that is, the table that describes which file systems are mounted, and
what directories they are mounted on.

/etc/motd
This file holds the message of the day — a message that is printed on each user’s terminal when she logs
in.
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/etc/mount.all
This file names the disk devices to mount when your system enters multi-user mode.

/etc/conf/mtune
This file names the set of variables in the kernel and its device drivers that you can ‘‘tune,’’ to modify the
kernel’s behavior.

/etc/networks
This file describes remote networks that your system can contact.

/etc/nologin
This file, if it exists, prevents users from logging in. It is used during special periods of time, such as when
you wish to shut the system down.

/etc/passwd
This file describes every user who has permission to log into your system.

/usr/lib/mail/paths
This file holds the information by which your system routes mail to other systems.

/usr/lib/uucp/port
This file describes the serial ports through which UUCP can dial out from your system.

/etc/profile
This script sets up the default environment for each user on your system.

$HOME/.profile
This script holds commands that are executed when a given user logs in to your COHERENT system.

/etc/protocols
This file names the Internet protocols that your system supports.

/usr/bin/ramdisk
This script lets you build a RAM disk on your system.

/etc/rc
This script is executed when your system enters multi-user mode. It normally performs standard
housekeeping chores.

/usr/lib/mail/routers
This file names the routing programs that smail uses, and configures them.

/etc/conf/sdevice
This file holds the information by which device drivers are configured when you build a kernel.

/etc/serialno
This file holds your system’s serial number, which you entered when you first installed COHERENT.

/etc/services
This file lists the Internet services that your system supports.

/etc/shadow
This file holds each user’s password.

/etc/conf/stune
This file sets the values of tunable kernel variables.

/usr/lib/uucp/sys
This file describes the remote systems that you can contact via UUCP, and how to contact them.

term This Lexicon article describes the format of a compiled terminfo file.

/etc/termcap
This file holds termcap terminal-description data base.

terminfo
This article describes the terminfo terminal-description language. Its data base is kept in directory
/usr/lib/terminfo.
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/usr/lib/mail/transports
This file names the transport routines that smail can use, and configures them.

/etc/trustme
This file names of trusted users — that is, users who can log in even if file /etc/nologin exists.

/etc/ttys
This file describes terminal ports — that is, the ports via which a user can log in. This includes both serial
ports and pseudo-ttys.

/etc/update
This daemon periodically flushes all buffered information to disk.

/etc/usrtime
This file holds the time, day of the week, and terminal line by which each user can log into your COHERENT
system.

/etc/utmp
This file notes every login event that has not yet concluded — that is, a user has logged in but not logged
out again. You can examine this file to see who is using your system at this moment.

/etc/uucpname
This file sets your system’s UUCP name — that is, the name by which it is known to all other systems.

/etc/default/welcome
This script is executed whenever a user logs in for the first time. It gives the new user some basic
information and advice.

/usr/adm/wtmp
This file notes every login event that has concluded — that is, a user has logged in and logged out again.
You can examine this file to see who has logged into your system in the past, and for how long.

Finally, the following header files also hold information on file formats:

acct.h. . . . . . . . . . . Format for process-accounting file
ar.h . . . . . . . . . . . . Format for archive files
canon.h . . . . . . . . . Portable layout of binary data
coff.h . . . . . . . . . . . Define format of COHERENT 386 objects
l.out.h . . . . . . . . . . Define format of COHERENT 286 objects
mtab.h . . . . . . . . . . Currently mounted file systems
utmp.h . . . . . . . . . . Login accounting information

For a fuller description of each file and its contents, see its entry in the Lexicon.

See Also
COHERENT, Programming COHERENT, Using COHERENT

alarm() — System Call (libc)
Set a timer
#include <unistd.h>
alarm(seconds)
unsigned seconds;

alarm() sets a timer. After seconds, the COHERENT kernel sends signal SIGALRM to the process that invoked
alarm(). Setting seconds to zero turns off the alarm timer.

By default, signal SIGALRM terminates the process. However, a program can invoke the system call signal() to
catch this signal, or ignore it. Because of scheduling variation and the one-second granularity, the action of
alarm() is predictable only to within one second.

alarm() is useful for such things as timeouts. For example, a process on a dial-in port might hang up the line after
a sufficient time has elapsed with no user response.

alarm() returns the previous alarm value, which represents the time remaining from the previous call. Time
remaining is superseded by the new alarm value.
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See Also
libc, signal(), sleep(), unistd.h
POSIX Standard, §3.4.1

Notes
A process can set only one alarm at a time.

alias — Command
Set an alias
alias [name[=value ...]]

The command alias is used by the Korn shell ksh to set or display an alias.

When called without an argument, alias lists all aliases that have been set so far. When called with a name
argument alone, it lists alias of name, assuming one has been set.

When called with one or more arguments of the form name=value, it established name as an alias for the command
value. For example, the command

alias FOO="echo bar"

establishes the string FOO as an alias for the command echo bar. Thereafter, when you type FOO on the shell’s
command line, it will execute the command echo bar and so echo the string bar on your terminal.

The Korn shell sets a number of aliases by default. See the Lexicon entry for ksh for a list of these aliases and
their settings.

See Also
commands, ksh, unalias

aliases — System Administration
File of users’ aliases
/usr/lib/mail/aliases

File /usr/lib/mail/aliases holds aliases for users’ addresses — either on your system, or on other systems. The
command smail reads this file when it figures out how to deliver a mail message.

An alias is a ‘‘nickname’’ for a user. Once you have established an alias for a user, you can use that alias to send
mail to her; this spares you the trouble of typing that person’s convoluted e-mail address. An alias can also name
an entire group of users; when you use the alias to send a mail message, every person in the group receives a copy.

The format of each alias is

alias_name: target

where alias_name gives the alias to which you mail your message, and target is name to which where smail
actually directs the message. target can be a login identifier on your local system; a mail address of a user on
another system; or a cluster of users either on your system or on remote systems.

For example, consider the user whose e-mail address is ivan@lepanto.mwc.com. If you add the entry

ivan: ivan@lepanto.mwc.com

to file /usr/lib/mail/aliases, then whenever you send mail to ivan, the routing program smail will automatically
‘‘expand’’ the address from ivan to ivan@lepanto.mwc.com, and dispatch the message properly. This spares you
needless work, and eliminates the errors that would occur if you typed long addresses by hand.

Please note that smail ignores differences in case when it compares a name with an alias. If a line begins with a
white-space character, smail assumes that that line is a continuation of the previous line. smail ignores strings
within parentheses, as well as any text that appears after the pound sign ‘#’. Thus, you can use ‘#’ to embed a
comment within aliases.

Examples
The following gives an example form of aliases:

# this whole line is a comment
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# "mail programmers" sends mail to local users joe, jack, and bill
programmers: joe jack bill

# same as above
programmers: joe jack

bill

# same as above
programmers joe jack

bill

# same as above
programmers joe # Joe Smith

jack # Jack Thomas
bill # Bill Williams

# and yet another way; note use of parentheses to comment text
programmers joe (Joe Smith) jack (Jack Thomas)

bill (Bill Williams)

# send a message to someone on another system.
# this uses ‘‘bang-path’’ addressing
joe: boston!widget!js

# send a message to users on both your and another system
programmers: boston!widget!js # Joe Smith

chicago!gadget!jt # Jack Thomas
bill # Bill Williams

# all members of "programmers" group work at site "widget"
programmers!widget joe jack bill

To tell smail to use the contents of another file to expand an alias, use the following form:

fredlist :include:/usr/lib/mail/fredlist

smail adds each entry in /usr/lib/mail/fredlist to the alias for fredlist.

You can also tell smail to read another alias file, and include its contents in the list of aliases to be expanded. For
example, the following instruction

:include:/usr/lib/mail/morealiases

when embedded within /usr/lib/mail/aliases, tells smail to add the contents of /usr/lib/mail/morealiases to
those of /usr/lib/mail/aliases as a regular alias file.

All aliases are recursive, so you must be careful when you define them. For example, the entries

bill: joe
joe: bill

causes an infinite loop. smail attempts to detect infinite loops, and to guess what you intended to do. The
following example illustrates how you can use an alias to deliver mail to a remote user as well as to a local user
who has the same name as the alias being expanded. smail expands the alias

mylogin: mypc!mylogin mylogin

to

mypc!mylogin mylogin

even though the second occurrence of mylogin matches the alias name.

Both forms of file inclusion are recursive, too, and may lead to infinite loops if handled carelessly.

See Also
Administering COHERENT, mail [overview], smail

Notes
Beginning with release 4.2.14 of COHERENT, smail’s aliases are kept in the form of a DBM data base. This is a
simple data base that uses a hash table to speed the retrieval of information. If you change your file of aliases, you
must invoke either the command newaliases or the command smail -bi to rebuild the binary data base of aliases.
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For details on what a DBM data base is, see the Lexicon entry for libgdbm. For details on how to use newaliases or
smail, see their respective entries in the Lexicon.

alignment — Definition
Alignment or packing of fields within a structure

Alignment refers to the fact that some microprocessors require the address of a data entity to be aligned to a
numeric boundary in memory so that address modulo number equals zero. For example, the M68000 and the
PDP-11 require that an integer be aligned along an even address, i.e., address%2==0. In the MS-DOS world, this is
called ‘‘packing’’.

Generally speaking, alignment is a problem only if you write programs in assembly language. For C programs,
COHERENT ensures that data types are aligned properly under foreseeable conditions. You should, however,
beware of copying structures and of casting a pointer to char to a pointer to a struct, for these could trigger
alignment problems.

Processors react differently to an alignment problem. On the VAX or the i8086, it causes a program to run more
slowly, whereas on the M68000 it causes a bus error.

See Also
#pragma, data types, ld, Programming COHERENT

Notes
The COHERENT preprocessor instruction #pragma lets you set alignment to conform to Intel’s Binary Compatibility
Standard (BCS). For details, see the Lexicon entry for #pragma.

alloc.h — Header File
Define the allocator
#include <sys/alloc.h>

alloc.h defines manifest constants and structures that are used internally with memory allocation.

See Also
header files

Notes
This header file is obsolete, and will be dropped from a future release of COHERENT. Its use is strongly
discouraged.

alloca() — General Function (libc)
Dynamically allocate space on the stack
alloca(memory)
int memory;

The function alloca() allocates memory number of bytes dynamically on the stack. The allocated memory
disappears automatically as soon as the program exits from the function within which the memory was allocated.

For example, consider the function:

foo(some_string)
char *some_string;
{

char *cp;
. . .
cp = alloca(strlen(some_string) + 1);
strcpy(cp, some_string);
. . .

}

Here, the call to alloca() allocates enough space upon the stack for some_string plus the terminating NUL
character. When function foo() returns, the allocated memory vanishes.

This routine is popular in Berkeley and GNU circles because it is much faster than malloc(), and the programmer
does not need to call free() to de-allocate the memory.
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See Also
calloc(), libc, malloc(), realloc()

almanac — Command
Print an almanac entry for this date
almanac [month day]

The command almanac prints on the standard output an almanac entry of noteworthy births, deaths, and events
that occurred on this date. month and day give the date whose listing you wish to see. month must be the name of
the month. For example, the command

almanac November 23

prints something like the following on your screen:

BIRTHS:
1221: Alfonso X (el Sabio), monarch and music collector, Toledo.
1876: Manuel de Falla, composer, Cadiz.
1887: William Henry Pratt (Boris Karloff), actor.
1888: Adolph "Harpo" Marx, comedian & musician, New York City.
DEATHS:
1585: Thomas Tallis, composer, Greenwich.
EVENTS:
1923: Height of German inflation: 4.2 trillion marks to the dollar.
1935: First "Porky Pig" cartoon premieres.

If you do not supply any arguments on the command, almanac prints an almanac listing for today.

almanac reads its information from the files almanac.birth, almanac.death, and almanac.event, which are kept
in directory /usr/games/lib. Each has the same format: the date encoded by the first three letters of the name of
the month (with an initial capital letter), followed by the day of the month, followed by the body of the entry. For
example:

Nov 23 1221: Alfonso X (el Sabio), monarch and music collector, Toledo.

You are encouraged to modify these files to suit your tastes and interests.

See Also
commands

Notes
almanac does not check for bogus dates before it reads its data files. It also is quite rigid in how it expects its data
base to be laid out.

The data files reflect the tastes of the person who compiled them, and can be rather idiosyncratic.

ANSI — Definition
Standards for information

The American National Standards Institute (ANSI) includes a standards committee called X3, which writes and
publishes standards for information-processing systems. Relevant ANSI standards include the following:

X3.4-1977
Code for Information Interchange

X3.64-1979
Additional Controls for Use with ANS Code for Information Interchange

X3.159-1989
Programming Language C

Published ANSI standards are available from:

American National Standards Institute, Inc.
1430 Broadway
New York, NY 10018

LEXICON

almanac — ANSI 329



See Also
C language, POSIX Standard, Programming COHERENT,
The C Language, tutorial
Mark Williams Company: ANSI C: A Lexical Guide. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1988.

apropos — Command
Find manual pages on a given topic
apropos topic [ topic ... ]

This command implements a simplified version of the Berkeley command apropos. It prints every line in the file
man.index that contains a topic. In this way, you can find what manual pages are available on a given topic. For
example, the command

apropos daemon

prints something like the following:

daemon Definition
hpd Spooler daemon for laser printer
lpd Spooler daemon for line printer
lpshut Turn off the printer daemon despooler

You can also use apropos to nudge your memory when you cannot recall the name of a given command or library
function.

apropos normally reads its information from the index files kept in directory /usr/man. apropos assumes that
every file in that directory that ends in the string .index is an index file. For details on index files and their format,
see the Lexicon entry for man.

If the environmental variable MANPATH is set, apropos searches the index files in each directory that it names.
MANPATH must name one or more directories, with directories separated by a colon ‘:’.

Files
/usr/man/*.index

See Also
commands, help, man, Using COHERENT

ar — Command
The librarian/archiver
ar option [modifier][position] archive [member ...]

The librarian ar edits and examines libraries. It combines several files into a file called an archive or library.
Archives reduce the size of directories and allow many files to be handled as a single unit. The principal use of
archives is for libraries of object files. The linker ld understands the archive format, and can search libraries of
object files to resolve undefined references in a program.

Options and Modifiers
The mandatory option argument consists of one of the following command keys:

d Delete each given member from archive. The ranlib header is updated if present.

m Move each given member within archive. If no modifier is given, move each member to the end. The ranlib
header is modified if present.

p Print each member. This is useful only with archives of text files.

q Quick append: append each member to the end of archive unconditionally. The ranlib header is not updated.

r Replace each member of archive. If archive does not exist, create it. The optional modifier specifies how to
perform the replacement, as described below. The ranlib header is modified if present.

t Print a table of contents that lists each member specified. If none is given, list all in archive. The modifier v
tells ar to give you additional information.
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x Extract each given member and place it into the current directory. If none is specified, extract all members.
archive is not changed.

The modifier may be one of the following. The modifiers a, b, i, and u may be used only with the m and r options.

a If member does not exist in archive, insert it after the member named by the given position.

b If member does not exist in archive, insert it before the member named by the given position.

c Suppress the message normally printed when ar creates an archive.

i If member does not exist in archive, insert it before the member named by the given position. This is the same
as the b modifier, described above.

k Preserve the modify time of a file. This modifier is useful only with the r, q, and x options.

s Modify an archive’s ranlib header, or create it if it does not exist. This must be used for archives read by the
linker ld.

u Update archive only if member is newer than the version in the archive.

v Generate verbose messages.

Note that because ar was created before UNIX established the standard of introducing an option with a hyphen.
Therefore, the syntax of options to ar differs from most other COHERENT commands: ar expects all options and
modifiers to be clumped together as its first argument, without an introductory hyphen. For example, to use the
option r with the modifiers c and s on library libname.a and objects file1.o through file3.o, type the following
command:

# RIGHT!
ar rcs libname.a file1.o file2.o file3.o

The syntax

# WRONG!
ar r -s libname.a file1.o file2.o file3.o

creates an archive named -s, which you may have some trouble removing.

ar reads the environmental variables ARHEAD and ARTAIL and appends them to, respectively, the beginning and
end of its command line. For example, to ensure that ar is always executed with the c modifier, insert the
following into your .profile:

export ARHEAD=c

Library Structure
All archives are written into a specialized file format. Each archive starts with a ‘‘magic string’’ called ARMAG,
which identifies the file as an archive. The members of the archive follow the magic number; each is preceded by
an ar_hdr structure. For information on this structure, see ar.h. The structure is followed the data of the file,
which occupy the number of bytes specified by the variable ar_size.

See Also
ar.h, commands, ld, nm, ranlib

Notes
Each library that you create should have a name that begins with ‘‘lib’’ and ends with ‘‘.a’’. The prefix ‘‘lib’’ lets you
call that library with the -l option to the command cc; and the linker ld ignores archives whose names do not end
in .a.

ar.h — Header File
Format for archive files
#include <ar.h>

An archive is a file that has been built from a number of files. Archives are maintained by the command ar.
Usually, an archive is a library of object files used by the linker ld.

The header ar.h describes the format of an archive. All archives start with a magic number ARMAG, which
identifies the file as an archive. The members of the archive follow the magic number, each preceded by the
structure ar_hdr:
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#define DIRSIZ 14
#define ARMAG 0177535 /* magic number */

struct ar_hdr {
char ar_name[DIRSIZ]; /* member name */
time_t ar_date; /* time inserted */
short ar_gid; /* group owner */
short ar_uid; /* user owner */
short ar_mode; /* file mode */
size_t ar_size; /* file size */

};

The structure at the head of each member is immediately followed by ar_size bytes, which are the data of the file.

To enhance the performance of ld, the command ranlib provides a random library facility. ranlib produces
archives that contain a special entry named _ _.SYMDEF at the beginning.

All integer members of the structure (everything but ar_name) are in canonical form to ease portability. See
canon.h for more information.

See Also
ar, canon.h, header files, ld, ranlib

arcoff.h — Header File
COFF archive-file header
#include <coff/arcoff.h>

arcoff.h declares the structure ar_hdr, which is the header to a member of an archive. ar_hdr is structured as
follows:

struct ar_hdr
{

char ar_name[16]; /* file member name - ‘/’ terminated */
char ar_date[12]; /* file member date - decimal */
char ar_uid[6]; /* file member user id - decimal */
char ar_gid[6]; /* file member group id - decimal */
char ar_mode[8]; /* file member mode - octal */
char ar_size[10]; /* file member size - decimal */
char ar_fmag[2]; /* ARFMAG - string to end header */

};

The COFF common-archive format has the following structure:
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Member Contents

ARCHIVE_FILE_MEMBER_1

Archive File Header ‘‘ar_hdr’’

  1. External symbol directory

  2. Text File

ARCHIVE_MAGIC_STRING

ARCHIVE_FILE_MEMBER_2

Member Conents (.o or text file)

ARCHIVE_FILE_MEMBER_n

Archive File Header "ar_hdr"

Archive File Header "ar_hdr"

Member Contents

Other Archive Members

See Also
a_out.h, file formats, header files
Gircyc, G.R.: Understanding and Using COFF. Sebastopol, Calif, O’Reilly & Associates, Inc., 1990.

arena — Definition
An arena is the area of memory that is available for a program to allocate dynamically at run time. It is divided
into allocated and unallocated blocks. The unallocated blocks together form the ‘‘free-memory pool’’.

To allocate a portion of the arena, use any of the functions malloc(), calloc(), or realloc(). To return an allocated
portion of memory to the free-memory pool, use the function free(). To check whether a given portion of the arena
is already allocated, use the function notmem(). To check whether the arena has been corrupted, use the function
memok().

See Also
calloc(), free(), malloc(), memok(), notmem(), Programming COHERENT, realloc()

argc — C Language
Argument passed to main()
int argc;

argc is an abbreviation for ‘‘argument count’’. It is the traditional name for the first argument to a C program’s
main routine. By convention, it holds the number of arguments that are passed to main in the argument vector
argv. Because argv[0] is always the name of the command, the value of argc is always one greater than the number
of command-line arguments that the user enters.

Example
For an example of how to use argc, see the entry for argv.

See Also
argv, C language, envp, main()
ANSI Standard, §5.1.2.2.1
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argv — C Language
Argument passed to main()
char *argv[];

argv is an abbreviation for ‘‘argument vector’’. It is the traditional name for a pointer to an array of string pointers
passed to a C program’s main function; by convention, it is the second argument passed to main. By convention,
argv[0] always points to the name of the command itself.

Example
This example demonstrates both argc and argv[], to recreate the command echo.

main(argc, argv)
int argc; char *argv[];
{

int i;

for (i = 1; i < argc; ) {
printf("%s", argv[i]);
if (++i < argc)

putchar(’ ’);
}

putchar(’\n’);
exit(0);

}

See Also
argc, C language, envp, main()
ANSI Standard, §5.1.2.2.1

ARHEAD — Environmental Variable
Append options to beginning of ar command line
export ARHEAD=options

The COHERENT archiver ar reads the environmental variables ARHEAD and ARTAIL before it begins its work. You
can set these variables to hold the default options that you want the archiver always to use. ar appends the
options in ARHEAD to the beginning of its command line.

See Also
ar, ARTAIL, environmental variables

Notes
This environmental variable is included only to support existing code. Its use is deprecated, and it may not be
supported in future releases of COHERENT.

array — Definition
An array is a concatenation of data elements, all of which are of the same type. All the elements of an array are
stored consecutively in memory, and each element within the array can be addressed by the array name plus a
subscript.

For example, the array int foo[3] has three elements, each of which is an int. The three ints are stored
consecutively in memory, and each can be addressed by the array name foo plus a subscript that indicates its
place within the array, as follows: foo[0], foo[1], and foo[2]. Note that the numbering of elements within an array
always begins with ‘0’.

Arrays, like other data elements, may be automatic (auto), static, or external (extern).

Arrays can be multi-dimensional; that is to say, each element in an array can itself be an array. To declare a
multi-dimensional array, use more than one set of square brackets. For example, the multi-dimensional array
foo[3][10] is a two-dimensional array that has three elements, each of which is an array of ten elements. The
second sub-script is always necessary in a multi-dimensional array, whereas the first is not. For example, the form
foo[][10] is acceptable, whereas foo[10][] is not. The first form is an indefinite number of ten-element arrays,
which is correct C, whereas the second form is ten copies of an indefinite number of elements, which is illegal.

You can initialize automatic arrays and structures, provided that you know the size of the array, or of any array
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contained within a structure. An automatic array is initialized in the same manner as aggregate, but initialization
is performed on entry to the routine at run time, instead of at compile time.

Flexible Arrays
A flexible array is one whose length is not declared explicitly. Each has exactly one empty ‘[ ]’ array-bound
declaration. If the array is multidimensional, the flexible dimension of the array must be the first array bound in
the declaration; for example:

int example1[][20]; /* RIGHT */
int example2[20][]; /* WRONG */

The C language allows you to declare an indefinite number of array elements of a set length, but not a set number
of array elements of an indefinite length.

Flexible arrays occur in only a few contexts; for example, as parameters:

char *argv[];
char p[][8];

as extern declarations:

extern int end[];

or as a member of a structure — usually, though not necessarily, the last:

struct nlist {
struct nlist *next;
char name[];

};

Example
The following program initializes an automatic array, and prints its contents.

main()
{

int foo[3] = { 1, 2, 3 };

printf("Here’s foo’s contents: %d %d %d\n",
foo[0], foo[1], foo[2]);

}

See Also
initialization, Programming COHERENT, struct

ARTAIL — Environmental Variable
Append options to end of ar command line
export ARTAIL=options

The COHERENT archiver ar reads the environmental variables ARHEAD and ARTAIL before it begins its work. You
can set these variables to hold the default options that you want the archiver always to use.

ar appends the options in ARTAIL to the end of its command line.

See Also
ar, ARHEAD, environmental variables,

Notes
This environmental variable is included only to support existing code. Its use is deprecated, and it may not be
supported in future releases of COHERENT.

as — Command
i80386 assembler
as [-o outfile] [-bfglnpwxX] infile

The 80386 version of as, the COHERENT assembler, assembles programs written in any of several different dialects
of assembly language into object modules in COFF format, which can be linked with objects written by the
COHERENT C compiler. This version of as contains numerous features not available with the COHERENT 286
assembler:
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• It serves as a flexible base for writing programs in native 80386 assembly language.

• It assembles programs written in older flavors of COHERENT assembly language.

• It assembles programs written in UNIX assembly language.

• Unlike the old COHERENT assembler and the UNIX assembler, 80386 as comes with full macro faculities.

• It is also designed to detect many of the common errors made by assembly-language programmers.

The COHERENT system also includes the command asfix, which updates files written in the COHERENT 286
assembler. asfix changes local and character symbols to the new format.

Invoking the Assembler
as permits file names and options to be interspersed upon the command line. It recognizes the following
command-line options:

-Dname=string
Initialize string variable name to string. For example, the option

-Dname=some_string

is equivalent to:

name .define some_string

-Ename=value
Initialize variable name to value. For example, the option

-Ename=17

is equivalent to:

name .equ 17

-a Set alignment for data objects. For example, when this option is used the express

.long 5

is automatically aligned to a four-byte boundary, but is left unaligned without it.

-b Reverse bracket sense; that is, use () for expressions and [] for code. For example:

movl $[2 * 5], (%eax) / without -b
movl $(2 * 5), [%eax] / with -b

-f Reverse the order of the operands, from UNIX-assembler form to that of the Intel documentation or the
80286 version of as.

-g Make undefined symbols .globl.

-l Generate an output listing.

-n This option turns off the as mechanism for handling bugs in the 80386 chip. as tries to cope with known
80386 bugs by changing code at appropriate points in its output. If these changes create problems with
your code, you can turn off the as bug-handler mechanism by using the -n option to as.

-o outfile.o
Write the output into outfile.o. Note that the suffix .o must appear in the output file’s name, or the
assembler will exit with an error message. The default output file is infile.o.

-p Don’t use ‘%’ on register names; e.g., use ax, not %ax.

-Q Quiet: Suppress all error messages, no matter how awful an error they indicate.

-w Disable warning messages.

-x Remove all non-global symbols from the common symbol output.

-X Remove all non-global symbols starting with .L from the common symbol output.

as reads the environmental variables ASHEAD and ASTAIL and appends them to, respectively, the beginning and
the end of its command line. By setting these variables, you can ensure that as always executes with the switches
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that you want. For example, to ensure that as always executes with the -g switch set, insert the following into your
.profile:

export ASHEAD=-g

Lexography
A symbol consists of from one to 256 characters. The assembler defines a character as being an alphabetic
character, question mark, period, percent sign, or underscore. Xyz, .20, and hi_there are legal symbols; whereas
85i is not.

Like C, the as assembly language is case sensitive.

Local symbols begin with a question mark. These are recognizable (or visible) only between nonlocal symbols. For
example:

/ ?loop invisible here
abc mov $10, %cx
?loop add $1, %bx / ?loop visible here

jcxz xyz
jmp ?loop

xyz:
/ ?loop invisible here

An octal number is defined just as in the C language: it consists of an initial 0 plus two other numerals between 0
and 7. For example, 077 is a legal octal number.

A hexadecimal number consists of an initial 0x or 0X plus two other numerals: 0 through 9, a through f, or A
through F. For example, 0x0F and 0Xa3 are legal hexadecimal numbers.

A binary number consists of an intial 0b or 0B followed by an indefinite number 0’s and 1’s. For example,
0b01001010 is a legal binary number.

A decimal number begins with a numeral other than 0, followed by an indefinite number of numerals between 0
and 9. For example, 109 is a legal decimal number.

A floating-point number begins is a string of numerals, 0 through 9, with a period or e within or at the end of it. It
is like a C floating-point number, except that it cannot begin with a period because a symbol may begin with a
period. For example, 123.456, 123456., and 17e26 are legal floating-point numbers, but .123456 is not.

A character constant is enclosed between apostrophes, as in C. as recognizes the same escape sequences as C.
See the Lexicon article C language for a table of these constants.

String constants are enclosed between quotation marks, as in the C language, and use the same escape sequences
as C. See the Lexicon article C language for a table of these sequences.

Pseudo-Opcodes
as recognizes a rich set of pseudo-opcodes. These are not true assembly-language opcodes, but are interpreted by
the assembler; they are designed to help make your life easier. The following briefly summarizes the pseudo-
opcodes.

.16 . . . . . . . . . . . . 16-bit mode

.2byte . . . . . . . . . . Make unaligned short variables

.32 . . . . . . . . . . . . 32-bit mode

.4byte . . . . . . . . . . Make unaligned long variables

.align . . . . . . . . . . . Increment location counter to two- or four-byte aligned spot

.alignoff . . . . . . . . . Turn alignment off

.alignon . . . . . . . . . Turn alignment on

.blkb . . . . . . . . . . . Set tag in .data

.bracketnorm . . . . . . Normal bracket sense — see -b option

.brcketrev . . . . . . . . Reverse bracket sense — see -b option

.bss . . . . . . . . . . . . Set tag in .bss

.bssd . . . . . . . . . . . Set tag in .bss

.byte . . . . . . . . . . . Make byte variables

.comm . . . . . . . . . . Set label as common

.data . . . . . . . . . . . Change segment to .data

.def . . . . . . . . . . . . Reserved to set auxiliary symbol entries in a later release

.define . . . . . . . . . . Define string constant
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.dim. . . . . . . . . . . . Reserved to set auxiliary symbol entries in a later release

.double . . . . . . . . . . Make double variables

.eject . . . . . . . . . . . Force a page break

.else. . . . . . . . . . . . Connected to .if

.endef. . . . . . . . . . . Reserved to set auxiliary symbol entries in a later release

.endi . . . . . . . . . . . End .if

.endm. . . . . . . . . . . End .macro definition

.endw . . . . . . . . . . . End .while

.equ . . . . . . . . . . . . Define numeric constant

.errataoff. . . . . . . . . Turn off chip errata fixes

.errataon. . . . . . . . . Turn on chip errata fixes

.even . . . . . . . . . . . Increment location counter to byte-aligned spot

.fail . . . . . . . . . . . . Print error message

.file . . . . . . . . . . . . Reserved to set auxiliary symbol entries in a later release

.float . . . . . . . . . . . Make float variables

.globl . . . . . . . . . . . Declare names as visible to linker

.ident . . . . . . . . . . . .ident string

.if . . . . . . . . . . . . . Compile-time conditional

.include . . . . . . . . . Include a file

.intelorder. . . . . . . . Intel operand order — see -f option

.lcomm . . . . . . . . . . Set name up as common

.line . . . . . . . . . . . . Reserved to set auxiliary symbol entries in a later release

.list . . . . . . . . . . . . Turn on listing (assumes -l option)

.llen . . . . . . . . . . . . Set print line length

.ln . . . . . . . . . . . . . Reserved to set auxiliary symbol entries in a later release

.long . . . . . . . . . . . Make long variables

.macro . . . . . . . . . . Define a macro name

.mexit . . . . . . . . . . Exit current macro expansion

.mlist . . . . . . . . . . . Toggle listing of macro expansion

.nolist . . . . . . . . . . Turn off listing (assumes -l option)

.nopage. . . . . . . . . . Turn off page breaks and titles

.number . . . . . . . . . Convert a string to a number.

.org . . . . . . . . . . . . Change location counter

.page . . . . . . . . . . . Turn on page breaks and titles

.plen . . . . . . . . . . . Set page length

.prvd . . . . . . . . . . . Change segment to .data

.prvi. . . . . . . . . . . . Change segment to .text

.scl . . . . . . . . . . . . Reserved to set auxiliary symbol entries in a later release

.set . . . . . . . . . . . . Makes name equal to expr

.shift . . . . . . . . . . . Shift macro parameters

.shrd . . . . . . . . . . . Change segment to .data

.shri. . . . . . . . . . . . Change segment to .text

.size. . . . . . . . . . . . Reserved to set auxiliary symbol entries in a later release

.string . . . . . . . . . . Convert a floating-point expression to a string

.strn . . . . . . . . . . . Change segment to .data

.tag . . . . . . . . . . . . Reserved to set auxiliary symbol entries in a later release

.text . . . . . . . . . . . Change segment to .text

.ttl. . . . . . . . . . . . . Set page titles

.type . . . . . . . . . . . Reserved to set auxiliary symbol entries in a later release

.undef . . . . . . . . . . Free string, numeric constant, or opcode

.unixorder . . . . . . . . Return normal order of operands; undoes .intelorder

.val . . . . . . . . . . . . Reserved to set auxiliary symbol entries in a later release

.value . . . . . . . . . . . Make short variables

.version . . . . . . . . . Comment string

.warn . . . . . . . . . . . Print a warning message

.warnoff . . . . . . . . . Turn off warning messages

.warnon . . . . . . . . . Turn on warning messages

.while . . . . . . . . . . . Compile-time loop control

.word . . . . . . . . . . . Make short variables

.zero . . . . . . . . . . . Create zero-filled memory
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Each pseudo-opcode is described in the following sections.

Input Format
An assembly-language program consists of a series of lines with the following format:

[#][label] [opcode] [operands] [/ comment]

The optional ‘#’ at the beginning of the line tells as not to replace any .define symbols within the line. (These are
described below.) Normally, the assembler replaces all .define symbols in a line before it parses that line. Without
this option, a series of .defines could lead to awkward results.

For example, the code

#%ecx .define xx
#xx .define (%ecx)

mov $3, %ecx

results in:

mov $3, (%ecx)

Like the C compiler, as will not go into an infinite loop if two .define statements mirror each other.

A comment begins with a slash ‘/’ and may include the entire line. Blank lines are also legal.

Extra operands are not assumed to be comments. This is to tighten up error checking for the convenience of new
and part-time assembly-language programmers.

Expression Format
The as macro assembler has mostly the same operators and precedence as the C preprocessor. The exceptions are
?:, &&, ||, :, and ‘,’ (which are missing), ‘/’ (which is spelled .div), and ‘%’ (which is spelled .rem).

In addition, the macro assembler includes the following directives: .defined, .sizeof, .segment, .parmct, .location,
.string, .number, and .float.

Expression bracketing is normally done by [], because () is used by the operand format. This may be reversed by
the -b option, described above.

The unary operators have the following priority:

.float .number .string Conversion

.defined .sizeof

.location .segment Inquiry
- Negation
! Logical negation

The binary operators have the following priority:

[]
* .div .rem Multiply, divide, remainder
+ - Add, subtract.
>> << Left shift , right shift
< > <= >= == != Comparison
& AND
^ Exclusive OR
| OR
# Repeat

Most binary operators should be familiar to C programmers; the exception is the #, which repeats an instruction N
times. For example, the expression

.byte 5 # 3

produces five copies of byte 3, whereas the expression

.long 7 # 4

produces seven copies of the long ‘4’. Note that this operator has the lowest precedence of all binary operators.

You can use an expression wherever you can use a number. This includes address displacements, constants, and
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.if and .while statements. Integers are internally 32 bits, floats are internally C doubles.

Like C, comparison operators return one for true and zero for false.

In addition, as provides string operators. Like C, the first element of a string is indexed as zero. Unlike C,
however, attempts to access past the end of a string gives all zeroes. The following summarizes the as suite of
string operators:

string + string
Concatenate two strings. For example, "12" + "34" yields "1234".

string [ expr1, expr2 ]
Address a substring from expr1 to expr2. For example, "1234567"[1,3] yields "234"; and "123"[1,10]
yields "23".

string [ expr ]
Address a substring from expr to the end of the string. For example "1234567"[5] yields "67".

.string expr
Convert a numeric expression to a string. For example, .string 123 gives "123".

.string float
Convert a floating-point expression to a string. For example, .string 0.5 * 3 gives "1.5"

.float string
Convert a string to a floating-point number.

.float expr
Convert a numeric expression to a floating-point number.

.number string
Convert a string to a number.

.number float
Convert a floating-point number to a number.

.string ( expr )
Return character at position expr as a number. For example, "123"(1) gives two.

string1 @ string2
Return the position at which string2 begins within string1. For example, "12345" @ "23" returns one; and
"123" @ "jj" gives -1 (because ‘‘jj’’ does not appear within ‘‘123’’).

The unary operator : creates a label equal to the current location. It is generally not needed. For example, the
expression

connected .long 5

builds an aligned long, initializes it to five, and gives it the label connected. However, the expression

unconnected: .long 5

builds the label unconnected at the current location, then builds an aligned long with a value of five. Note that
the label connected will be on the five, whereas the label unconnected may be somewhere else if there was
alignment. For example, the expression

.align 4
lab1: lab2: lab3: .long 5

puts lab1, lab2, and lab3 on the long because it is already aligned.

Macros and Conditional Compilation
The as directive .macro lets you declare a macro that you can use through a program. The directive .endm marks
the end of a macro declaration.

A macro has the following form:

name .macro params
body of macro
.endm
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The following example creates and uses the macro store:

store .macro xy,xz / declare "store" with two parms: xy and xz
movl xy,%ecx
movl %ecx,(%eax)
movl xz,%ecx
movl %ecx,4(%eax)
.endm / end of macro

store 5,10 / moves 5 and 10 to where %eax points.

Macros can contain .if statements, and can even define other macros. For example:

def .macro .name, to / macro for defining other macros
name .macro

movl from, to
.endm
.endm

def frog, %eax, %ebx / define the macro frog
frog / movel%eax, %ebx

as increments a count every time you expand any macro, and associates that number with the macro. When the
keyword .macno is used within a macro, as translates it into that number. Thus, .macno is a unique number
within each macro expansion. This allows the generation of unique labels internal to macros. For example:

stradd .macro str
.data

L\.macno .byte str, 0 / create a data item
.text
movl L\.macno, %eax / put its address into %eax
.endm

L\.macno becomes something like L51. Note that a ‘\’ before any defined symbol or macro name vanishes in the
expansion pass.

To permit macros with indefinite parameter counts, the assembler offers the reserved word .parmct and the
command .shift. The former holds the number of parameters passed to a macro, and the latter shifts the
parameters one position to the left. For example:

kall .macro fun, parm
.while .parmct > 1 / while more than one parm remains
push parm
.shift / parm 3 becomes parm 2, parm 4 parm 3 etc
call fun
.endm

The operators .if, .else, and .endi allow a program to implement compile-time decisions. These may be inside or
outside of macros. When a macro exits, the assembler automatically closes all .if statments that had been started
within it. For example:

defy .macro
.if .defined y / if y has been defined true
.mexit / exits closing any if statements
.else

y .equ 1 / define y as 1
/ For UNIX compatibility
/ .set y, 1
/ produces the same result

.endm

When used with a label, the operator .defined is true if that label had been defined in this pass. If the label is
defined later, .defined can still be used with it, but causes a phase error, as occurs in some assemblers.

The operator .fail permits the flagging of errors. For example:

.if ! .defined y

.fail y is not defined

.endi
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The operator .include permits the inclusion of files. For example:

.include somefile.h

Undefining Symbols or Opcodes
as Some software (e.g., the GNU C compiler) requires that opcodes be recognized on column one and that opcodes
be replacable by macros. The command .undef un-defines all macros and opcodes. Once you have un-defined an
identifier, you can re-use it to name a macro or other data item. For example, to use mov (which names an
opcode) to name a macro, do the following:

.undef mov
mov .macro foo, bar

movl foo, bar
.endm

Data-Definition Operators
The following describes the data-definition operators that as supports.

.byte expr
Define expr as an array of single bytes. expr can take any number of forms, as shown by the following
examples:

.byte 5, 2 / defines 2 bytes 0x05 and 0x02

.byte "Hello World", 0 / a zero-terminated Hello World

.byte 10 # 1 / 10 repetitions of 0x01

.word expr
Define expr as a word, that is, as a two-byte integer. For example:

.word .sizeof xx / a short the size of xx

.word 50 * 50 / a short of 100
/ For UNIX compatability
/ .value 50 * 10
/ produces the same result.

.long expr
Define expr as a long (four-byte) integer. For example:

.long 10 / a long of 10

.comm name, length
Define a common variable named name, that is length bytes long. (See the entry for .lcomm, below, for a
discussion of what segment the variable is stored.) If name is linked with another module that also
declares name but sets it to another length, the linker creates one such variable and gives it the greater
length of the two.

The linker deduces the alignment of a common variable from its length: if the length of a common is
divisible by four, it is aligned on a four-byte boundary; if it is divisible by two, it is aligned on a two-byte
boundary. Otherwise, it is assumed to be unaligned. The linker supports only three classes of alignment:
four-byte, two-byte, and unaligned.

A common variable is aligned according to its most strongly aligned contributor. For example, if one
module contributes a common variable named xyz whose length is four bytes, and another contributes an
xyz whose length is five bytes, the resulting xyz is given a length of eight bytes to satisfy the length
requirement (at least five) and the alignment requirement (four-byte boundary).

After the first linker pass, all common variables are placed at the end of the .bss segment: first the four-
byte-aligned variables, then the two-byte-aligned, then the unaligned.

By default, as does not align its data objects. The command-line option -a instructs as to align all data
objects automatically.

.lcomm label, length
Same as comm, described above.

Please note that on a COFF-based system, it is not possible to put common data into the .data section,
even though the UNIX assembler documentation claims that .comm does this. Both .comm and .lcomm
place data into the .bss.
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The problem is that COFF format for common variables leaves no place for information about alignment or
segment. This creates two problems. First, the lack of information about alignment forces COFF to adopt
the complex strategy of deducing alignment from length. Second, the lack of information about segment
compels COFF to store all common variables in one segment, .bss being chosen.

.float expr
Define expr as a single-precision floating-point number. For example:

.float 1.5 / a float of 1.5

.double expr
Define expr as a double-precision floating-point number. For example:

.double 3.0 * 0.5 / a double of 1.5

Resetting the Location Counter
The instructions .org and .align reset the location counter. For example:

.org .+5 / Location counter to here plus 5

.org / Location counter to top of current section

.align 2 / Up to nearest two-byte boundary

The pseudo-opcodes .alignon and .alignoff respectively turn aligning on and off.

As noted above, the command-line option -a instructs as to align all data objects automatically.

The instructions .text, .data, and .bss reset the location counter to the corresponding sections. Instructions are
placed in the .text section, initialized data in the .data section, and the .bss is reserved for unitialized data.
Placing information into the .bss results in an error.

Dynamic Linking
The Intel Binary Compatibility Standard dictates the way that as computes addresses, to permit dynamic linking of
objects.

In object files, all .data addresses must follow all .text addresses, and all .bss address must follow all .data
addresses. This allows dynamic linking of object files, in which the object file is mapped, not read in pieces.

In the as assembly language, .data and .text addresses are started from 0 for each module. At the end of
assembly, during the output phase, as fixes these addresses to make .data follow .text, and so on.

For example, if you have a conditional like

.if some_data_address > 0x300

as calculates the address for the .if statement from the beginning of its segment; and the address is only corrected
in the final output. Such statements may appear to be working incorrectly.

Listing Commands
as prints a listing if you use its -l option. The following commands modify the form of this listing.

.ttl string
Print string as the title to the command page. For example:

.ttl This is a page title

If you do not use this command, the assembler uses the file name for the title. The first .ttl encountered
in the assembly pass 0 is used to set the first title. Subsequent .ttl commands reset the title before
printing.

.nopage
Turn off page breaks and titles.

.page Turn on page breaks and titles.

.eject Force a page break.

.nolist Turn off the listing.
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.list Turn the listing back on.

.mlist off
Turn off the listing of macro expansions.

.mlist on
Turn on the listing of macro expansions.

Addressing Modes
as recognizes two modes of addressing: 16-bit mode and 32-bit mode. In 16-bit mode, the address type and operand
mode default to 16 bits; in 32-bit mode they default to 32 bits. For example:

.16
movw %ax, (%si) # Is generated without escapes.
movl %eax, (%esi) # Has two escapes, address and operand
.32
movw %ax, (%si) # Has two escapes, address and operand
movl %eax, (%esi) # Is generated without escapes.

In 16-bit mode, the 16-bit addressing forms in table 17-2 of the Intel 386 Programmer’s Manual are generated
where they fit; otherwise, an address escape is built and the 32-bit forms in tables 17-3 and 17-4 are used. In 32
bit mode, this is reversed.

as uses the following grammar in its addressing modes:

Eight-bit registers

r8 : %al | %cl | %dl | %bl | %ah | %ch | %dh | %bh;

16-bit registers

r16 : %ax | %cx | %dx | %bx | %sp | %bp | %si | %di;

32-bit registers

r32 : %eax | %ecx | %edx | %ebx | %esp | %ebp | %esi | %edi;

Segment registers

sreg : %es | %cs | %ss | %ds | %fs | %gs;

Control registers

ctlreg : %cr0 | %cr2 | %cr3;

Debug registers

dbreg : %dr0 | %dr1 | %dr2 | %dr3 | %dr6 | %dr7;

Test registers

testreg : %tr6 | %tr7;

m16 These addresses can have a segment prefix:

m16 : m16b | sreg ’:’ m16b;

m32 These addresses can have a segment prefix:

m32 : m32b | sreg ’:’ m32b;

rm16 These addresses can have a segment prefix or may be r16:

rm16 : rm16b | sreg ’:’ rm16b;

rm32 These addresses can have a segment prefix or may be r32:

rm32 : r32 | rm32b | sreg ’:’ rm32b;

rm8 These addresses can be rm32, rm16, or r8:

rm8 : r8 | rm16b | sreg ’:’ rm16b | rm32b | sreg ’:’ rm32b;
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rm16b

displacement | (vx, vy) | displacement(vx, vy) |
displacement(vw) | (vz);

vx : %bx | %si;
vy : %si | %di;
vz : %si | %di | %bx;

rm32b

(va) | displacement(vb) | (, vb, scale) | (vb, scale)
| displacement(vb, scale) | (vb, vb, scale)
| displacement(vb, vb, scale);

va : %eax | %ecx | %edx | %ebx | %esi | %edi;
vb : %eax | %ecx | %edx | %ebx | %ebp | %esi | %edi;
vb : %eax | %ecx | %edx | %ebx | %ebp | %esp | %esi | %edi;
scale : 0 | 1 | 2 | 4 | 8;

mem32
A 32-bit memory address.

mem16
A 16-bit memory address.

reli Expand to eight-, 16-, or 32-bit relative addresses.

rel8 Eight-bit relative addresses.

rel16 Sixteen- or 32-bit relative addresses.

Using as To Create Debug Information
Some UNIX languages, such as gcc and gc++, produce assembly language rather than object code. The following
documents how to use as with such compilers. Note that error checking is minimal, and that bad debug
information can corrupt the generated COFF output. This section must be read with a listing of the header file
coff.h for reference; or see the Lexicon article coff.h.

The compiler starts with type and line information in a format much like that of the desired COFF output files. It
must break this down into lines to ship through the assembler, and the assembler then must rebuild the
information into COFF format for output.

.file filename
This connects the object file to the original source file. If used, this should be the first statement in the
file. It produces a SYMENT of n_sclass = C_FILE and an AUXENT with ae_fname = filename.

.def symbolName
This instruction initializes SYMENT with n_name = symbolName. If there is a symbol by that name on the
assembler’s internal symbol table, it is marked to prevent output to the symbol table. Any RELOC
references point to this table entry, so its n_value must be correct. Because we assume that code of this
kind is result of a compiler, we assume it is correct. The following commands up to and including .endef
refer to this SYMENT.

.type number
This sets this SYMENT’s n_type number. If number indicates a function, DT_FCN, a LINENO record is built
pointing at this SYMENT.

.val [symbol] [number]
This sets this SYMENT’s n_value. If it is a symbol, it sets n_scnum to the symbol’s section number.

.scl number
This sets this SYMENT’s n_sclass to number.

.dim number [, number [, number [, number]]]
This sets up to four entries in an AUXENT’s ae_dimen. It describes multidimensioned arrays to COFF.
This command supports only four dimensions because the COFF specifications are reliable only though
four dimensions.

.size n This sets this AUXENT ae_size to n.

LEXICON

as 345



.tag name
This scans backwards on the SYMENTs for a matching n_name. It points this ae_tagndx to that name’s
symbol number and that ae_endndx to the next symbol number.

A good example is a struct: It would start with a SYMENT of type T_STRUCT, then then have SYMENTs
for its members. At the end, there would be a C_EOS (end of structure) with a tag that gets us back to the
symbol’s name. .tag connects the forward and backward pointers.

.line n This sets the AUXENT’s ae_lnno to n.

.endef This marks the end of a SYMENT started by .def. If the n_sclass == C_EFCN (end of function), it builds the
functions ae_fsize and ae_endndx and does not output this SYMENT. If any AUXENT fields were set, an
AUXENT record follows this SYMENT.

.ln number
This builds a LINENO record with l_lnno = n and l_addr.l_paddr = the current location.

Instructions
In matching instructions, as first looks up the name of the instruction. A number of actual instructions will match
that name. For example, btsw matches 0xab and 0x0fab /5, and bts matches anything that matches btsw and
btsl.

as attempts to match operands to the instruction until a form is found that will accept all the operands. If no form
matches all the operands, as prints the error message

Illegal combination of opcode and operands

The assembler at that point cannot say which operand is wrong because of the nature of the 80386 instruction set.

If you see a great number of these messages, as’s command-line option -f may be in the wrong sense: although the
opcode is valid and the operands are valid, there is no form of this opcode that takes these operands in this order.

as first attempts to match opcodes that do not require an operand-mode escape: that is, in 80386 mode it attempts
to match long-mode instructions first, then short-mode instructions.

Register Usage
The COHERENT C compiler uses the following save/restore sequence for a function, to set the frame pointer when
the function contains no automatic variables:

push %ebp
movl %ebp, %esp

If n bytes of autos are required, then it uses the following sequence:

enter $n, $0

It then executes the code

push %esi
push %edi
push %ebx

to preserve register variables as required: they are not saved/restored if the function does not touch them. (This is
why they are saved after the frame adjust, not before). To restore register variables, it executes

pop %ebx
pop %edi
pop %esi

as required, followed by

leave
ret

Routines written in assembly language must preserve registers ebp, esi, edi, and ebx; they may overwrite eax, ecx,
and edx.

Absolute Symbols
as can create what COFF calls ‘‘absolute symbols.’’ For example
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.globl x
x .equ 10
x .equ x * x / The last value of x in the module

leaves on the symbol table an absolute symbol for x of 100. For internal reason, the .globl must preceed any .equ.

Opcodes
The following gives a table of the opcodes recognized by as. Note that the opcode is sometimes followed by a slash
and a number, or a letter. For example,

D0 /4 salb con1, rm8

means opcode is 0xD0 place 4 in the register/opcode field of the modr/m byte.

58 +r popl r32

means add the register number to 0x58.

Opcode Instruction Operands Description

37 aaa Adjust after addition
D5 0A aad Adjust AX before division
D4 0A aam Adjust AX after multiply
3F aas Adjust AL after subtraction

adc Add with carry
83 /2 adcl imm8s,rm32
83 /2 adcw imm8s,rm16
14 adcb imm8,al
15 adcw imm16,ax
15 adcl imm32,eax
15 adcl imm32
80 /2 adcb imm8,rm8
81 /2 adcw imm16,rm16
81 /2 adcl imm32,rm32
12 /r adcb rm8,r8
13 /r adcw rm16,r16
13 /r adcl rm32,r32
10 /r adcb r8,rm8
11 /r adcw r16,rm16
11 /r adcl r32,rm32

add Add
83 /0 addl imm8s,rm32
83 /0 addw imm8s,rm16
04 addb imm8,al
05 addw imm16,ax
05 addl imm32,eax
05 addl imm32
80 /0 addb imm8,rm8
81 /0 addw imm16,rm16
81 /0 addl imm32,rm32
02 /r addb rm8,r8
03 /r addw rm16,r16
03 /r addl rm32,r32
00 /r addb r8,rm8
01 /r addw r16,rm16
01 /r addl r32,rm32

and Logical AND
83 /4 andl imm8s,rm32
83 /4 andw imm8s,rm16
24 andb imm8,al
25 andw imm16,ax
25 andl imm32,eax
25 andl imm32
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80 /4 andb imm8,rm8
81 /4 andw imm16,rm16
81 /4 andl imm32,rm32
22 /r andb rm8,r8
23 /r andw rm16,r16
23 /r andl rm32,r32
20 /r andb r8,rm8
21 /r andw r16,rm16
21 /r andl r32,rm32

63 /r arpl r16,rm16 Adjust RPL field of selector

bound Check if register is within bounds
62 /r boundw m16,r16
62 /r boundl m32,r32

bsf Bit scan forward
0F BC bsfw rm16,r16
0F BC bsfl rm32,r32

bsr Bit scan reverse
0F BD bsrw rm16,r16
0F BD bsrl rm32,r32

bt Save bit in carry flag
0F A3 btw r16,rm16
0F A3 btl r32,rm32
0F BA /4 btw imm8,rm16
0F BA /4 btl imm8,rm32

btc Bit test and complement
0F BB btcw r16,rm16
0F BB btcl r32,rm32
0F BA /7 btcw imm8,rm16
0F BA /7 btcl imm8,rm32

btr Bit test and reset
0F B3 btrw r16,rm16
0F B3 btrl r32,rm32
0F BA /6 btrw imm8,rm16
0F BA /6 btrl imm8,rm32

bts Bit test and set
0F AB btsw r16,rm16
0F AB btsl r32,rm32
0F BA /5 btsw imm8,rm16
0F BA /5 btsl imm8,rm32

E8 call reli Call Procedure
98 cbtw Sign extend AL
98 cbw Sign extend AL
99 cdq Double word to quad word
F8 clc Clear carry
FC cld Clear direction Flag
FA cli Clear interrupt Flag
99 cltd Double word to quad word
0F 06 clts Clear task-switched flag in CR0
F5 cmc Complement carry flag

cmp Compare
83 /7 cmpl imm8s,rm32
83 /7 cmpw imm8s,rm16
3C cmpb imm8,al
3D cmpw imm16,ax
3D cmpl imm32,eax
3D cmpl imm32
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80 /7 cmpb imm8,rm8
81 /7 cmpw imm16,rm16
81 /7 cmpl imm32,rm32
3A /r cmpb rm8,r8
3B /r cmpw rm16,r16
3B /r cmpl rm32,r32
38 /r cmpb r8,rm8
39 /r cmpw r16,rm16
39 /r cmpl r32,rm32

A6 cmpsb Compare bytes
A7 cmpsl Compare long
A7 cmpsw Compare words
99 cwd Word to double word
98 cwde Sign extend AX
99 cwtd Word to double word
98 cwtl Sign extend AX
27 daa Decimal adjust after addition
2F das Decimal adjust after subtraction

dec Decrement by 1
48 +r decw r16
48 +r decl r32
FE /1 decb rm8
FF /1 decw rm16
FF /1 decl rm32

div Unsigned divide
F6 /6 divb rm8,al
F6 /6 divb rm8
F7 /6 divw rm16,ax
F7 /6 divw rm16
F7 /6 divl rm32,eax
F7 /6 divl rm32

C8 enter imm8,imm16 Make stack frame for procedure
D9 F0 f2xm1 ST = 2 ** ST - 1
D9 E1 fabs ST = abs(ST)

fadd Floating add
D8 /0 fadds m32
DC /0 faddl m64
D8 C0 +r fadd fpreg,st0
D8 C0 +r fadd fpreg
DE C1 fadd
DC C0 +r fadd st0,fpreg

faddp Floating add and pop
DE C0 +r faddp st0,fpreg
DE C0 +r faddp fpreg
DE C1 faddp

DF /4 fbld m80 Load Binary Coded Decimal
DF /6 fbstp m80 Store Binary Coded Decimal and Pop
D9 E0 fchs Change Floating Sign
9B DB E2 fclex Clear floating point exception flags

fcom Floating Compare
D8 /2 fcoms m32
DC /2 fcoml m64
D8 D0 +r fcom fpreg,st0
D8 D0 +r fcom fpreg
D8 D1 fcom

fcomp Floating Compare and Pop
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D8 /3 fcomps m32
DC /3 fcompl m64
D8 D8 +r fcomp fpreg
D8 D9 fcomp

DE D9 fcompp Floating Compare and pop twice
D9 FF fcos Cosine
D9 F6 fdecstp Decrement Stack Top Pointer

fdiv Floating divide
D8 /6 fdivs m32
DC /6 fdivl m64
D8 F0 +r fdiv fpreg,st0
D8 F0 +r fdiv fpreg
DE F1 fdiv
DC F0 +r fdiv st0,fpreg

fdivp Floating divide and pop
DE F0 +r fdivp st0,fpreg
DE F0 +r fdivp fpreg
DE F1 fdivp

fdivr Reverse floating divide
D8 /7 fdivrs m32
DC /7 fdivrl m64
D8 F8 +r fdivr fpreg,st0
D8 F8 +r fdivr fpreg
DE F9 fdivr
DC F8 +r fdivr st0,fpreg

fdivrp Reverse floating divide and pop
DE F8 +r fdivrp st0,fpreg
DE F8 +r fdivrp fpreg
DE F9 fdivrp

DD C0 +r ffree fpreg Free Floating Point Register

fiadd Add integer to float
DA /0 fiaddl m32
DE /0 fiadds m16

ficom Compare float to integer
DA /2 ficoml m32
DE /2 ficoms m16

ficomp Compare float to integer and pop
DA /3 ficompl m32
DE /3 ficomps m16

fidiv Divide float by integer
DA /6 fidivl m32
DE /6 fidivs m16

fidivr Reverse divide integer by float
DA /7 fidivrl m32
DE /7 fidivrs m16

fild Load integer
DB /0 fildl m32
DF /0 filds m16
DF /5 fildll m64

fimul Multiply integer to float
DA /1 fimull m32
DE /1 fimuls m16

D9 F7 fincstp Increment Stack Top Pointer
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9B DB E3 finit Initialize Floating Point Unit

fist Store integer
DB /2 fistl m32
DF /2 fists m16

fistp Store integer and pop
DB /3 fistpl m32
DF /3 fistps m16
DF /7 fistpll m32

fisub Subtract integer from float
DA /4 fisubl m32
DE /4 fisubs m16

fisubr Reverse subtract integer from float
DA /5 fisubrl m32
DE /5 fisubrs m16

fld Load Real
D9 C0 +r fld fpreg
D9 /0 flds m32
DD /0 fldl m32
DB /5 fldt m64

D9 E8 fld1 Load Constant 1
D9 /5 fldcw m32 Load Floating Point Control Word
D9 /4 fldenv m32 Load FPU Environment
D9 EA fldl2e Load Constant log(e) base 2
D9 E9 fldl2t Load Constant log(10) base 2
D9 EC fldlg2 Load Constant log(2) base 10
D9 ED fldln2 Load Constant log(2) base e
D9 EB fldpi Load Constant pi
D9 EE fldz Load Constant 0.0

fmul Floating multiply
D8 /1 fmuls m32
DC /1 fmull m64
D8 C8 +r fmul fpreg,st0
D8 C8 +r fmul fpreg
DE C9 fmul
DC C8 +r fmul st0,fpreg

fmulp Floating multiply and pop
DE C8 +r fmulp st0,fpreg
DE C8 +r fmulp fpreg
DE C9 fmulp

DB E2 fnclex Clear floating point exception flags no wait
DB E3 fninit Initialize Floating Point Unit no wait
D9 D0 fnop No Operation
DD /6 fnsave m32 Store FPU State no wait
D9 /7 fnstcw m32 Store Control Word no wait
D9 /6 fnstenv m32 Store FPU Environment no wait

fnstsw Store Status Word no wait
DD /7 fnstsw m16
DF E0 fnstsw ax

D9 F3 fpatan Partial Arctangent
D9 F8 fprem Partial Remainder toward 0
D9 F5 fprem1 Partial Remainder < 1/2 modulus
D9 F2 fptan Partial Tangent
D9 FC frndint Round To Integer
DD /4 frstor m32 Resore FPU State
DB F4 frstpm set 287XL real mode (nop for 387/486)
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9B DD /6 fsave m32 Store FPU State
D9 FD fscale Scale
DB E4 fsetpm set 287 protected mode (nop for 387/486)
D9 FE fsin Sine
D9 FB fsincos Sine and Cosine
D9 FA fsqrt Square Root

fst Store Real
DD D0 +r fst fpreg
D9 /2 fsts m32
DD /2 fstl m64

9B D9 /7 fstcw m32 Store Control Word
9B D9 /6 fstenv m32 Store FPU Environment

fstp Store Real and pop
DD D8 +r fstp fpreg
D9 /3 fstps m32
DD /3 fstpl m64
DB /7 fstpt m80

fstsw Store Status Word
9B DD /7 fstsw m16
9B DF E0 fstsw ax

fsub Floating subtract
D8 /4 fsubs m32
DC /4 fsubl m64
D8 E0 +r fsub fpreg,st0
D8 E0 +r fsub fpreg
DE E1 fsub
DC E0 +r fsub st0,fpreg

fsubp Floating subtract and pop
DE E0 +r fsubp st0,fpreg
DE E0 +r fsubp fpreg
DE E1 fsubp

fsubr Reverse floating subtract
D8 /5 fsubrs m32
DC /5 fsubrl m64
D8 E8 +r fsubr fpreg,st0
D8 E8 +r fsubr fpreg
DE E9 fsubr
DC E8 +r fsubr st0,fpreg

fsubrp Reverse floating subtract and pop
DE E8 +r fsubrp st0,fpreg
DE E8 +r fsubrp fpreg
DE E9 fsubrp

D9 E4 ftst Test

fucom Unordered compare real
DD E0 +r fucom st0,fpreg
DD E0 +r fucom fpreg
DD E1 fucom

fucomp Unordered compare real and pop
DD E8 +r fucomp st0,fpreg
DD E8 +r fucomp fpreg
DD E9 fucomp

DA E9 fucompp Unordered compare %st %st1 and pop twice
9B fwait Wait for coprocessor
D9 E5 fxam Examine
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fxch Floating exchange
D9 C8 +r fxch st0,fpreg
D9 C8 +r fxch fpreg,st0
D9 C8 +r fxch fpreg
D9 C9 fxch

D9 F4 fxtract Extract Exponent and Significand
D9 F1 fyl2x %st1 * log(%st) base 2
D9 F9 fyl2xp1 %st1 * log(%st + 1.0) base 2
F4 hlt Halt
FF /2 icall rm32 Call indirect

idiv Signed divide
F6 /7 idivb rm8,al
F6 /7 idivb rm8
F7 /7 idivw rm16,ax
F7 /7 idivw rm16
F7 /7 idivl rm32,eax
F7 /7 idivl rm32

FF /4 ijmp rm32 Jump indirect
FF /3 ilcall m32 Long call indirect
FF /5 iljmp m32 Long jump indirect

imul Signed multiply
F6 /5 imulb rm8,al
F6 /5 imulb rm8
F7 /5 imulw rm16,ax
F7 /5 imulw rm16
F7 /5 imull rm32,eax
F7 /5 imull rm32
0F AF /r imulw rm16,r16
0F AF /r imull rm32,r32
6B imulw imm8s,rm16,r16
6B imull imm8s,rm32,r32
6B /r imulw imm8s,r16
6B /r imull imm8s,r32
69 imulw imm16,rm16,r16
69 imull imm32,rm32,r32
69 /r imulw imm16,r16
69 /r imull imm32,r32

in Input from port
E4 inb imm8
E5 inw imm8
E5 inl imm8
EC inb (dx)
ED inw (dx)
ED inl (dx)

inc Increment by one
40 +r incw r16
40 +r incl r32
FE /0 incb rm8
FF /0 incw rm16
FF /0 incl rm32

6C insb Input byte from port into ES:(E)DI
6C insb (dx) Input byte from port into ES:(E)DI
6D insl Input long from port into ES:(E)DI
6D insl (dx) Input long from port into ES:(E)DI
6D insw Input word from port into ES:(E)DI
6D insw (dx) Input word from port into ES:(E)DI
CC int con3 Interrupt 3
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CD int imm8 Interrupt
CE into Int 4 if overflow is 1
CF iret Interrupt return
CF iretd Different mode different opcode ?
07 ja reli Jump if above
03 jae reli Jump if above or equal
02 jb reli Jump if below
06 jbe reli Jump if below or equal
02 jc reli Jump if carry
E3 jcxz rel8 Jump if CX is zero
04 je reli Jump if equal
E3 jecxz rel8 Jump if CX is zero
0F jg reli Jump if greater
0D jge reli Jump if greater or equal
0C jl reli Jump if less
0E jle reli Jump if less or equal
E9 jmp reli Jump absolute
06 jna reli Jump if not above
02 jnae reli Jump if not above or equal
03 jnb reli Jump if not below
07 jnbe reli Jump if not below or equal
03 jnc reli Jump if no carry
05 jne reli Jump if not equal
0E jng reli Jump if not greater
0C jnge reli Jump if not greater or equal
0D jnl reli Jump if not less
0F jnle reli Jump if not less or equal
01 jno reli Jump if not overflow
0B jnp reli Jump if not parity
09 jns reli Jump if not sign
05 jnz reli Jump if not zero
00 jo reli Jump if overflow
0A jp reli Jump if parity
0A jpe reli Jump if parity even
0B jpo reli Jump if parity odd
08 js reli Jump if sign
04 jz reli Jump if zero
04 jz reli Jump if zero
9F lahf Load flags into AH register

lar Load access rights byte
0F 02 /r larw rm16,r16
0F 02 /r larl rm32,r32

9A lcall imm16x,imm32 Long call

lds load full pointer DS:r16
C5 /r ldsw m16,r16
C5 /r ldsl m32,r32

lea Load effective address
8D /r leaw m16,r16
8D /r leal m32,r32

C9 leave High level procedure exit

les Load full pointer ES:r16
C4 /r lesw m16,r16
C4 /r lesl m32,r32

lfs Load full pointer FS:r16
0F B4 /r lfsw m16,r16
0F B4 /r lfsl m32,r32

lgdt Load m into DGTR
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0F 01 /2 lgdtw m16
0F 01 /2 lgdtl m32

lgs Load full pointer GS:r16
0F B5 /r lgsw m16,r16
0F B5 /r lgsl m32,r32

lidt Load m into IDTR
0F 01 /3 lidtw m16
0F 01 /3 lidtl m32

EA ljmp imm16x,imm32 Long jump
0F 00 /2 lldt rm16 Load local descriptor table register
0F 01 /6 lmsw rm16 Load machine status word
F0 lock Assert lock signal for next instruction
AC lodsb Load string operand byte
AD lodsl Load string operand long
AD lodsw Load string operand word
E2 loop rel8 Dec count jmp if count <> 0
E1 loope rel8 Dec count jmp if count <> 0 and ZF = 1
E0 loopne rel8 Dec count jmp if count <> 0 and ZF = 0
E0 loopnz rel8 Dec count jmp if count <> 0 and ZF = 0
E1 loopz rel8 Dec count jmp if count <> 0 and ZF = 1
CB lret Far return
CA lret imm16 Far return pop imm16 bytes of parms

lsl Load segment limit
0F 03 /r lslw rm16,r16
0F 03 /r lsll rm32,r32

lss Load full pointer SS:r16
0F B2 /r lssw m16,r16
0F B2 /r lssl m32,r32

0F 00 /3 ltr rm16 Load task register

mov Move data
A0 movb moffs,al
A1 movw moffs,ax
A1 movl moffs,eax
A2 movb al,moffs
A3 movw ax,moffs
A3 movl eax,moffs
8A /r movb rm8,r8
8B /r movw rm16,r16
8B /r movl rm32,r32
88 /r movb r8,rm8
89 /r movw r16,rm16
89 /r movl r32,rm32
8C /r movw sreg,rm16
8E /r movw rm16,sreg
B0 +r movb imm8,r8
B8 +r movw imm16,r16
B8 +r movl imm32,r32
C6 movb imm8,rm8
C7 movw imm16,rm16
C7 movl imm32,rm32
0F 20 /r movl ctlreg,r32
0F 22 /r movl r32,ctlreg
0F 21 /r movl dbreg,r32
0F 23 /r movl r32,dbreg
0F 24 /r movl treg,r32
0F 26 /r movl r32,treg

A4 movsb Move bytes

LEXICON

as 355



A5 movsl Move longs
A5 movsw Move words

movsx Move with sign extend
0F BE /r movsxb rm8,r16
0F BE /r movsxb rm8,r32
0F BF /r movsxw rm16,r32
0F BE /r movsbw rm8,r16
0F BE /r movsbl rm8,r32
0F BF /r movswl rm16,r32

movzx Move with zero extend
0F B6 /r movzxb rm8,r16
0F B6 /r movzxb rm8,r32
0F B7 /r movzxw rm16,r32
0F B6 /r movzbw rm8,r16
0F B6 /r movzbl rm8,r32
0F B7 /r movzwl rm16,r32

mul Unsigned multiply
F6 /4 mulb rm8,al
F6 /4 mulb rm8
F7 /4 mulw rm16,ax
F7 /4 mulw rm16
F7 /4 mull rm32,eax
F7 /4 mull rm32

neg Negate
F6 /3 negb rm8
F7 /3 negw rm16
F7 /3 negl rm32

90 nop No operation

not Invert bits
F6 /2 notb rm8
F7 /2 notw rm16
F7 /2 notl rm32

or Logical inclusive OR
83 /1 orl imm8s,rm32
83 /1 orw imm8s,rm16
0C orb imm8,al
0D orw imm16,ax
0D orl imm32,eax
0D orl imm32
80 /1 orb imm8,rm8
81 /1 orw imm16,rm16
81 /1 orl imm32,rm32
0A /r orb rm8,r8
0B /r orw rm16,r16
0B /r orl rm32,r32
08 /r orb r8,rm8
09 /r orw r16,rm16
09 /r orl r32,rm32

out Output from port
E6 outb imm8
E7 outw imm8
E7 outl imm8
EE outb (dx)
EF outw (dx)
EF outl (dx)

6E outsb Output byte to port into ES:(E)DI
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6F outsl Output long to port into ES:(E)DI
6F outsw Output word to port into ES:(E)DI

pop Pop a word from the stack
58 +r popw r16
58 +r popl r32
1F popw ds
07 popw es
17 popw ss
0F A1 popw fs
0F A9 popw gs
8F /0 popw m16
8F /0 popl m32

popa Pop all
61 popaw
61 popal

popf Pop stack into flags
9D popfw
9D popfl

push Push a word on the stack
50 +r pushw r16
50 +r pushl r32
6A pushb imm8s
68 pushw imm16
68 pushl imm32
0E pushw cs
1E pushw ds
06 pushw es
16 pushw ss
0F A0 pushw fs
0F A8 pushw gs
FF /6 pushw m16
FF /6 pushl m32

pusha Push all
60 pushaw
60 pushal

pushf Push flags
9C pushfw
9C pushfl

rcl Rotate carry left
D0 /2 rclb con1,rm8
D0 /2 rclb rm8
D2 /2 rclb cl,rm8
C0 /2 rclb imm8,rm8
D1 /2 rclw con1,rm16
D1 /2 rclw rm16
D3 /2 rclw cl,rm16
C1 /2 rclw imm8,rm16
D1 /2 rcll con1,rm32
D1 /2 rcll rm32
D3 /2 rcll cl,rm32
C1 /2 rcll imm8,rm32

rcr Rotate carry right
D0 /3 rcrb con1,rm8
D0 /3 rcrb rm8
D2 /3 rcrb cl,rm8
C0 /3 rcrb imm8,rm8
D1 /3 rcrw con1,rm16
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D1 /3 rcrw rm16
D3 /3 rcrw cl,rm16
C1 /3 rcrw imm8,rm16
D1 /3 rcrl con1,rm32
D1 /3 rcrl rm32
D3 /3 rcrl cl,rm32
C1 /3 rcrl imm8,rm32

F3 rep rep following instruction CX times
F3 repe repe following instruction CX times or eq
F2 repne repne following instruction CX times or ne
F2 repnz alternate name for repnz
F3 repz alternate name for repe
C3 ret Return
C2 ret imm16 Return pop imm16 bytes of parms

rol Rotate left
D0 /0 rolb con1,rm8
D0 /0 rolb rm8
D2 /0 rolb cl,rm8
C0 /0 rolb imm8,rm8
D1 /0 rolw con1,rm16
D1 /0 rolw rm16
D3 /0 rolw cl,rm16
C1 /0 rolw imm8,rm16
D1 /0 roll con1,rm32
D1 /0 roll rm32
D3 /0 roll cl,rm32
C1 /0 roll imm8,rm32

ror Rotate right
D0 /1 rorb con1,rm8
D0 /1 rorb rm8
D2 /1 rorb cl,rm8
C0 /1 rorb imm8,rm8
D1 /1 rorw con1,rm16
D1 /1 rorw rm16
D3 /1 rorw cl,rm16
C1 /1 rorw imm8,rm16
D1 /1 rorl con1,rm32
D1 /1 rorl rm32
D3 /1 rorl cl,rm32
C1 /1 rorl imm8,rm32

9E sahf Store AH into flags

sal Shift arithmetic left
D0 /4 salb con1,rm8
D0 /4 salb rm8
D2 /4 salb cl,rm8
C0 /4 salb imm8,rm8
D1 /4 salw con1,rm16
D1 /4 salw rm16
D3 /4 salw cl,rm16
C1 /4 salw imm8,rm16
D1 /4 sall con1,rm32
D1 /4 sall rm32
D3 /4 sall cl,rm32
C1 /4 sall imm8,rm32

sar Shift arithmetic right
D0 /7 sarb con1,rm8
D0 /7 sarb rm8
D2 /7 sarb cl,rm8
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C0 /7 sarb imm8,rm8
D1 /7 sarw con1,rm16
D1 /7 sarw rm16
D3 /7 sarw cl,rm16
C1 /7 sarw imm8,rm16
D1 /7 sarl con1,rm32
D1 /7 sarl rm32
D3 /7 sarl cl,rm32
C1 /7 sarl imm8,rm32

sbb Subtract with borrow
83 /3 sbbl imm8s,rm32
83 /3 sbbw imm8s,rm16
1C sbbb imm8,al
1D sbbw imm16,ax
1D sbbl imm32,eax
1D sbbl imm32
80 /3 sbbb imm8,rm8
81 /3 sbbw imm16,rm16
81 /3 sbbl imm32,rm32
1A /r sbbb rm8,r8
1B /r sbbw rm16,r16
1B /r sbbl rm32,r32
18 /r sbbb r8,rm8
19 /r sbbw r16,rm16
19 /r sbbl r32,rm32

AE scasb Compare string bytes
AF scasl Compare string longs
AF scasw Compare string words
0F 97 seta rm8 Set byte if above
0F 93 setae rm8 Set byte if above or equal
0F 92 setb rm8 Set byte if below
0F 96 setbe rm8 Set byte if below or equal
0F 92 setc rm8 Set byte if carry
0F 94 sete rm8 Set byte if equal
0F 9F setg rm8 Set byte if greater
0F 9D setge rm8 Set byte if greater or equal
0F 9C setl rm8 Set byte if less
0F 9E setle rm8 Set byte if less or equal
0F 96 setna rm8 Set byte if not above
0F 92 setnae rm8 Set byte if not above or equal
0F 93 setnb rm8 Set byte if not below
0F 97 setnbe rm8 Set byte if not below or equal
0F 93 setnc rm8 Set byte if no carry
0F 95 setne rm8 Set byte if not equal
0F 9E setng rm8 Set byte if not greater
0F 9C setnge rm8 Set byte if not greater or equal
0F 9D setnl rm8 Set byte if not less
0F 9F setnle rm8 Set byte if not less or equal
0F 91 setno rm8 Set byte if not overflow
0F 9B setnp rm8 Set byte if not parity
0F 99 setns rm8 Set byte if not sign
0F 95 setnz rm8 Set byte if not zero
0F 90 seto rm8 Set byte if overflow
0F 9A setp rm8 Set byte if parity
0F 9A setpe rm8 Set byte if parity even
0F 9B setpo rm8 Set byte if parity odd
0F 98 sets rm8 Set byte if sign
0F 94 setz rm8 Set byte if zero
0F 94 setz rm8 Set byte if zero
0F 01 /0 sgdt mem32 Store gdtr
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shl Shift arithmetic left
D0 /4 shlb con1,rm8
D0 /4 shlb rm8
D2 /4 shlb cl,rm8
C0 /4 shlb imm8,rm8
D1 /4 shlw con1,rm16
D1 /4 shlw rm16
D3 /4 shlw cl,rm16
C1 /4 shlw imm8,rm16
D1 /4 shll con1,rm32
D1 /4 shll rm32
D3 /4 shll cl,rm32
C1 /4 shll imm8,rm32

shld Shift double precision left
0F A4 shldw imm8,r16,rm16
0F A4 shldl imm8,r32,rm32
0F A5 shldw cl,r16,rm16
0F A5 shldl cl,r32,rm32

shr Shift right
D0 /5 shrb con1,rm8
D0 /5 shrb rm8
D2 /5 shrb cl,rm8
C0 /5 shrb imm8,rm8
D1 /5 shrw con1,rm16
D1 /5 shrw rm16
D3 /5 shrw cl,rm16
C1 /5 shrw imm8,rm16
D1 /5 shrl con1,rm32
D1 /5 shrl rm32
D3 /5 shrl cl,rm32
C1 /5 shrl imm8,rm32

shrd Shift double precision right
0F AC shrdw imm8,r16,rm16
0F AC shrdl imm8,r32,rm32
0F AD shrdw cl,r16,rm16
0F AD shrdl cl,r32,rm32
0F AD shrdw r16,rm16
0F AD shrdl r32,rm32

0F 01 /1 sidt mem32 Store idtr
0F 00 /0 sldt rm16 Store ldtr to EA word
0F 01 /4 smsw rm16 Store machine status to EA word
F9 stc Set carry flag
FD std Clear direction flag
FB sti Set interrupt flag
AA stosb Store string byte
AB stosl Store string long
AB stosw Store string word
0F 00 /1 str Store task register

sub Subtract
83 /5 subl imm8s,rm32
83 /5 subw imm8s,rm16
2C subb imm8,al
2D subw imm16,ax
2D subl imm32,eax
2D subl imm32
80 /5 subb imm8,rm8
81 /5 subw imm16,rm16
81 /5 subl imm32,rm32
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2A /r subb rm8,r8
2B /r subw rm16,r16
2B /r subl rm32,r32
28 /r subb r8,rm8
29 /r subw r16,rm16
29 /r subl r32,rm32

test Logical compare
A8 testb imm8,al
A9 testw imm16,ax
A9 testl imm32,eax
A9 testl imm32
F6 /0 testb imm8,rm8
F7 /0 testw imm16,rm16
F7 /0 testl imm32,rm32
84 /r testb r8,rm8
85 /r testw r16,rm16
85 /r testl r32,rm32

0F 00 /4 verr rm16 Verify segment for read
0F 00 /5 verw rm16 Verify segment for write
9B wait Wait for coprocessor

xchg Exchange register
90 +r xchgw r16,ax
90 +r xchgw ax,r16
90 +r xchgl r32,eax
90 +r xchgl r32
90 +r xchgl eax,r32
86 /r xchgb rm8,r8
87 /r xchgw rm16,r16
87 /r xchgl rm32,r32
86 /r xchgb r8,rm8
87 /r xchgw r16,rm16
87 /r xchgl r32,rm32

D7 xlat Table lookup translation
D7 xlatb Table lookup translation

xor Logical exclusive OR
83 /6 xorl imm8s,rm32
83 /6 xorw imm8s,rm16
34 xorb imm8,al
35 xorw imm16,ax
35 xorl imm32,eax
35 xorl imm32
80 /6 xorb imm8,rm8
81 /6 xorw imm16,rm16
81 /6 xorl imm32,rm32
32 /r xorb rm8,r8
33 /r xorw rm16,r16
33 /r xorl rm32,r32
30 /r xorb r8,rm8
31 /r xorw r16,rm16
31 /r xorl r32,rm32

Using C to Prototype Assembly Language
The COHERENT C compiler includes a switch, -S, that translates C code into COHERENT assembly language. The
assembly language it produces cannot be directly assembled, but you can examine it to see just what the compiler
does under given circumstances; and you can use it to prototype a routine in assembly language.

Suppose, for example, that you wish to write a function that takes two parameters: an integer, which gives a port
number to read from; and an address where the data should go. Start by writing a C function with the correct
calling sequence. For example, the following function is in a file called proto.c:
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readstuff(addr, port)
register char *addr;
int port;
{

register int dx = port;
char *foo = addr;

}

Compile it with the following command line:

cc -S proto.c

This produces file proto.s, which contains the following:

/ module name foo
.alignoff

.text

.globl readstuff
readstuff:

push %ebp
movl %ebp, %esp
push %esi
push %edi
push %ebx
movl %ebx, 8(%ebp)
movl %esi, 12(%ebp)
movl %edi, %ebx
pop %ebx
pop %edi
pop %esi
leave
ret
.align 4

This is your prototype. You can easily modify it into what you want; for example:

/ This will only work if you install it as a driver.
/ As the operating system will protect itself if
/ Ordinary users try to access ports. Ask about our
/ Device driver kits.

.text

.globl readstuff
readstuff:

push %ebp
movl %ebp, %esp
push %edi / Save the edi for the caller
movl %edx, 8(%ebp) / Get the port number
movl %edi, 12(%ebp) / Get the user address

insb / Read port (%dx) to %es:%edi

pop %edi / See 386 calling conventions
leave
ret

Example
The following example echoes strings onto your screen.

/ sstatic void foo(i) { printf("Parm is %d\n", i); }

.text
.L2: .byte "Parm is %d0, 0
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foo:
push %ebp / set up stack frame
movl %ebp, %esp
push 8(%ebp) / push parms from right to left
push $.L2
call printf
leave / %esp <- %ebp; pop %ebp
ret

/ main() { foo(5); }

.globl main
main:

push %ebp
movl %ebp, %esp
push $5
call foo
leave
ret

See Also
asfix, calling conventions, cc, cdmp, commands
Intel Corporation: 386 DX Programmer’s Reference Manual. Santa Clara, CA: Intel Corporation, 1990. Highly
recommended.

Diagnostics
The following gives the error messages returned by as. The messages are in alphabetical order. Each message is
marked as to its degree of severity: A fatal message usually indicates a condition that caused the assembler to
terminate execution. Often, they indicate internal problems in the assembler. An error message points to a
condition in the source code that the assembler cannot resolve. This almost always occurs when the program does
something illegal. A warning message points out code that is compilable, but may produce trouble when the
program is executed.

.align must be 1, 2 or 4 (error)
.align must work after the link. These are the only values for which this can be true.

Ambiguous operand length, n bytes selected (warning)
The assembler cannot tell the operand length by looking at the opcode and the operands. You may want to
do something like change mov to movl.

Arithmetic between addresses on different segments (error)
You may only add or subtract addresses if they are in the same segment.

Bad scale (error)
Address scale must be 0, 1, 2, 4, or 8.

16 bit addressing mode used in 32 bit code (warning)
You probably don’t want to do this. For example, you may want to say (%esi), not (%si).

32 bit addressing mode used in 16 bit code (warning)
You probably don’t want to do this. For example, you may want to say (%si), not (%esi).

Cannot fopen(string, string) (fatal)
Cannot insert \0 in string (error)

NUL (\0) terminates strings. Instead of

.byte "hello\n\0"
use:

.byte "hello\n", 0

Character constant n long (error)
Character constants must be one byte long.

.comm must have tag (error)
The format of .comm is .comm name, size.
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Command option ’c’ missing its argument (fatal)
Data defined in .bss (error)

The .bss segment is uninitialized data. You cannot place actual values there.

.define must have a label (error)
Duplicate symbol ’string’ (error)

symbol is defined on two different lines.

.else detected logic type n (fatal)
Logic error in assembler. Please report this problem to Mark Williams technical support.

End of line after backslash reading parm (error)
Macro parmeters may not be broken up with backslash.

End of line after backslash (error)
End of line detected in character constant (error)
End of line detected in string (error)
End of macro building .while (error)

A .macro ended while reading in a .while loop.

.endi detected logic type n (fatal)
Logic error in assembler. Please report this problem to Mark Williams technical support.

Error in binary number (error)
Error in octal number (error)
Found n parms expected n (error)
Illegal combination of opcode and operands (error)

Although the opcode is valid and the operands are valid, there is no form of this opcode which takes this
combination of operands in this order.

Illegal use of local symbol (error)
Illegal use of of predefined symbol string. (error)
Improper instruction following lock (warning)

Only a few instructions are valid after a lock instruction. See your machine documentation for details.

Improper instruction following rep (warning)
Only a few instructions are valid after a rep instruction. See your machine documentation for details.

Indirect mode on invalid instruction (error)
Indirection is only allowed on call and jump near instructions.

Internal error relative branch logic (fatal)
Logic error in assembler. Please report this problem to Mark Williams technical support.

Invalid .mlist option must be on or off (error)
Invalid character ’c’ string at position n (error)
Invalid character 0x0xn string at position n (error)
Invalid data type, must be symbol (error)
Invalid floating point register number (error)
Invalid opcode: ’string’ (error)

The string in the opcode position is not one of our opcodes or one of your macros.

Invalid operand type (error)
string is an improper register in this context (error)
Label ignored (error)

This statement cannot take a label.

Label on invalid operator (error)
Label required (error)
Length n string range exceeded (error)

Strings may not exceed 32 kilobytes.

Logic error in macro def ’string’ n (fatal)
Logic error in assembler. Please report this problem to Mark Williams technical support.

Logic error in umark (fatal)
Logic error in assembler. Please report this problem to Mark Williams technical support.
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Macro definition must have a label (error)
.mexit not in macro (error)
Missing .endi (error)

Input ended leaving .if open.

Missing .endm (error)
Input ended leaving .macro open.

Missing .endw (error)
Input ended leaving .while open.

Mixed 386/286 addressing modes (error)
No opcode allows mixed 286 and 386 addressing modes.

Mixed 386/286 data modes (error)
No 386 opcode allows mixed 286 and 386 data modes.

Mixed length addressing registers (error)
Addressing registers must both be the same length.

more than one file to process (fatal)
The assembler will only process one file at a time.

Name required (error)
The format of set is .set name, value

no work (fatal)
There were no files listed on the command line.

NULL address in relative branch (fatal)
Logic error in assembler. Please report this problem to Mark Williams technical support.

Octal number n truncated to char (error)
An octal number in a string was too big.

Optype n in lex (fatal)
Logic error in assembler. Please report this problem to Mark Williams technical support.

Org to invalid value (error)
You may not .org to doubles or strings.

Org to wrong segment (error)
You must .org to the current segment.

Out of space (fatal)
A call to malloc() failed. The typical large consumers of RAM are macros and .defines; symbols consume
less. Can you break your assembly into smaller pieces? Could you be in some sort of endless recursion or
loop?

Parm n not found (error)
An attempt to .shift too far has been made.

.parmct not in macro (error)
.parmct returns the number of parameters in the current macro.

Phase error ’string’ (error)
A symbol is defined one way in one phase of the assembly and another way in the next phase.

Redefinition of ’string’ (error)
An assembler internal symbol is being redefined.

Seek error on object file (fatal)
Seek error on object file (fatal)
.shift not in macro (error)

.shift shifts macro parameters. It has no meaning outside a macro.

String must be on .byte (error)
For example:
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.byte "This is how we place a string", 0

Symbol may not be double (error)
You may not convert a symbol to a floating-point value.

Symbol may not be float (error)
You may not convert a symbol to a floating-point value.

Syntax error (error)
The syntax of this statement makes no sense to the parser. This can be a variety of problems.

Table error kind 0xn detected (fatal)
Logic error in assembler. Please report this problem to Mark Williams technical support.

This code may not work the same way on all chips (warning)
Some chips may not execute this code as expected.

Too many operands (error)
No 386 opcode has more than three operands.

Undefined symbol ’string’ (error)
A symbol was used without defining it or using a -g option. You must define local symbols.

Unexpected .else statement (error)
Unexpected .endi statement (error)
Unexpected .endm ignored (error)
Unexpected .endw (error)
Unexpected return from parser (fatal)

Logic error in assembler. Please report this problem to Mark Williams technical support.

Unknown command option c (fatal)
Unlikely output file ’string’ (fatal)

Output file-names should have .o suffixes. Because this is generally a typographical error, as aborts to
avoid overwriting an important file.

Unmatched ’c’ (error)
A delimeter, [, (, ), or ] is unmatched in this command.

Unmatched bracket in parmeter (error)
Line ended leaving an open bracket or parenthesis.

Write error on object file (fatal)
as could not write the object module. This error can have any of several causes; the most common is that
you lack permission to write into the current directory, or you lack permission to overwrite an existing file
of the same name.

Notes
We have designed as to ease porting of programs written in other dialects of UNIX 386 assembly language, as well
as to be a powerful tool for development of new programs. We think you will find the features and documentation
of our assembler considerably more complete than are available anywhere else. However, we have chosen not to
duplicate behavior of other assemblers that leads to inefficient or incorrect output, or that generates code without
warning when given questionable input. We have also chosen to support operator precedence rather than
perpetuating antiquated left-to-right evaluation schemes seen elsewhere. Caveat utilitor.

In the course of writing this assembler, we have discovered that the UNIX implementation of fdiv, fdivr, fsub, and
fsubr differs from that described in the Intel documents. The COHERENT assembler conforms to the UNIX standard
by default. You should be very careful with the order of operands to these instructions. Once again, caveat utilitor.

ASCII — Definition
ASCII is an acronym for the American Standard Code for Information Interchange, as defined by the American
National Standards Institute standard X3.4-1977. It is a table of seven-bit binary numbers that encode the letters
of the alphabet, numerals, punctuation, and the most commonly used control sequences for printers and
terminals. ASCII codes are used on all microcomputers sold in the United States.

The following table gives the ASCII characters in octal, decimal, and hexadecimal numbers, their definitions, and
expands abbreviations where necessary.
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000 0 0x00 NUL <ctrl-@> Null character
001 1 0x01 SOH <ctrl-A> Start of header
002 2 0x02 STX <ctrl-B> Start of text
003 3 0x03 ETX <ctrl-C> End of text
004 4 0x04 EOT <ctrl-D> End of transmission
005 5 0x05 ENQ <ctrl-E> Enquiry
006 6 0x06 ACK <ctrl-F> Positive acknowledgement
007 7 0x07 BEL <ctrl-G> Bell
010 8 0x08 BS <ctrl-H> Backspace
011 9 0x09 HT <ctrl-I> Horizontal tab
012 10 0x0A LF <ctrl-J> Line feed
013 11 0x0B VT <ctrl-K> Vertical tab
014 12 0x0C FF <ctrl-L> Form feed
015 13 0x0D CR <ctrl-M> Carriage return
016 14 0x0E SO <ctrl-N> Shift out
017 15 0x0F SI <ctrl-O> Shift in
020 16 0x10 DLE <ctrl-P> Data link escape
021 17 0x11 DC1 <ctrl-Q> Device control 1 (XON)
022 18 0x12 DC2 <ctrl-R> Device control 2 (tape on)
023 19 0x13 DC3 <ctrl-S> Device control 3 (XOFF)
024 20 0x14 DC4 <ctrl-T> Device control 4 (tape off)
025 21 0x15 NAK <ctrl-U> Negative acknowledgement
026 22 0x16 SYN <ctrl-V> Synchronize
027 23 0x17 ETB <ctrl-W> End of transmission block
030 24 0x18 CAN <ctrl-X> Cancel
031 25 0x19 EM <ctrl-Y> End of medium
032 26 0x1A SUB <ctrl-Z> Substitute
033 27 0x1B ESC <ctrl-[> Escape
034 28 0x1C FS <ctrl-\> Form separator
035 29 0x1D GS <ctrl-]> Group separator
036 30 0x1E RS <ctrl-^> Record separator
037 31 0x1F US <ctrl-_> Unit separator
040 32 0x20 SP Space
041 33 0x21 ! Exclamation point
042 34 0x22 " Quotation mark
043 35 0x23 # Pound sign (sharp)
044 36 0x24 $ Dollar sign
045 37 0x25 % Percent sign
046 38 0x26 & Ampersand
047 39 0x27 ’ Apostrophe
050 40 0x28 ( Left parenthesis
051 41 0x29 ) Right parenthesis
052 42 0x2A * Asterisk
053 43 0x2B + Plus sign
054 44 0x2C , Comma
055 45 0x2D - Hyphen (minus sign)
056 46 0x2E . Period
057 47 0x2F / Virgule (slash)
060 48 0x30 0
061 49 0x31 1
062 50 0x32 2
063 51 0x33 3
064 52 0x34 4
065 53 0x35 5
066 54 0x36 6
067 55 0x37 7
070 56 0x38 8
071 57 0x39 9
072 58 0x3A : Colon
073 59 0x3B ; Semicolon
074 60 0x3C < Less-than symbol (left angle bracket)
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075 61 0x3D = Equal sign
076 62 0x3E > Greater-than symbol (right angle bracket)
077 63 0x3F ? Question mark
0100 64 0x40 @ At sign
0101 65 0x41 A
0102 66 0x42 B
0103 67 0x43 C
0104 68 0x44 D
0105 69 0x45 E
0106 70 0x46 F
0107 71 0x47 G
0110 72 0x48 H
0111 73 0x49 I
0112 74 0x4A J
0113 75 0x4B K
0114 76 0x4C L
0115 77 0x4D M
0116 78 0x4E N
0117 79 0x4F O
0120 80 0x50 P
0121 81 0x51 Q
0122 82 0x52 R
0123 83 0x53 S
0124 84 0x54 T
0125 85 0x55 U
0126 86 0x56 V
0127 87 0x57 W
0130 88 0x58 X
0131 89 0x59 Y
0132 90 0x5A Z
0133 91 0x5B [ Left bracket (left square bracket)
0134 92 0x5C \ Backslash
0135 93 0x5D ] Right bracket (right square bracket)
0136 94 0x5E ^ Circumflex
0137 95 0x5F _ Underscore
0140 96 0x60 ‘ Grave
0141 97 0x61 a
0142 98 0x62 b
0143 99 0x63 c
0144 100 0x64 d
0145 101 0x65 e
0146 102 0x66 f
0147 103 0x67 g
0150 104 0x68 h
0151 105 0x69 i
0152 106 0x6A j
0153 107 0x6B k
0154 108 0x6C l
0155 109 0x6D m
0156 110 0x6E n
0157 111 0x6F o
0160 112 0x70 p
0161 113 0x71 q
0162 114 0x72 r
0163 115 0x73 s
0164 116 0x74 t
0165 117 0x75 u
0166 118 0x76 v
0167 119 0x77 w
0170 120 0x78 x
0171 121 0x79 y
0172 122 0x7A z
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0173 123 0x7B { Left brace (left curly bracket)
0174 124 0x7C | Vertical bar
0175 125 0x7D } Right brace (right curly bracket)
0176 126 0x7E ~ Tilde
0177 127 0x7F DEL <ctrl-> Delete

Files
/usr/pub/ascii

See Also
Latin 1, Programming COHERENT

asctime() — Time Function (libc)
Convert time structure to ASCII string
#include <time.h>
#include <sys/types.h>
char *asctime(tmp)
struct tm *tmp;

asctime() takes the data found in tmp, and turns it into an ASCII string. tmp is of the type tm, which is a
structure defined in the header file time.h. This structure must first be initialized by either gmtime() or
localtime() before it can be used by asctime(). For a further discussion of tm, see the entry for time.

asctime() returns a pointer to where it writes the text string it creates.

Example
The following example demonstrates the functions asctime(), ctime(), gmtime(), localtime(), and time(), and
shows the effect of the environmental variable TIMEZONE. For a discussion of the variable time_t, see the entry
for time().

#include <time.h>
#include <sys/types.h>
main()
{

time_t timenumber;
struct tm *timestruct;

/* read system time, print using ctime */
time(&timenumber);
printf("%s", ctime(&timenumber));

/* use gmtime to fill tm, print with asctime */
timestruct = gmtime(&timenumber);
printf("%s", asctime(timestruct));

/* use localtime to fill tm, print with asctime */
timestruct = localtime(&timenumber);
printf("%s", asctime(timestruct));

}

See Also
libc, time(), time [overview]
ANSI Standard, §7.12.3.1
POSIX Standard, §8.1.1

Notes
asctime() returns a pointer to a statically allocated data area that is overwritten by successive calls.

asfix — Command
Convert assembly-language programs into 80386 format
asfix < oldfile > newfile

The command asfix converts programs written in the COHERENT-286 assembly language into a form that can be
assembled by the COHERENT 386 edition of as, the COHERENT assembler.

asfix reads the standard input and writes to the standard output. It changes DEC-form local symbols to the form
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recognized by COHERENT-386 as, changes character constants from the form ’x to the form ’x’, and changes local
symbols from the COHERENT-286 form to the COHERENT-386 form.

See Also
as, commands

ASHEAD — Environmental Variable
Append options to beginning of as command line
export ASHEAD=options

The COHERENT assembler as reads the environmental variables ASHEAD and ASTAIL before it begins its work.
You can set these variables to hold the default options that you want the assembler always to use.

as appends the options in ASHEAD to the beginning of its command line.

See Also
as, ASTAIL, environmental variables

asin() — Mathematics Function (libm)
Calculate inverse sine
#include <math.h>
double asin(arg) double arg;

asin() calculates the inverse sine of arg, which must be in the range [-1., 1.]. The result will be in the range [-π/2,
π/2].

If all goes well, asin() returns the inverse sine. However, if arg is out of range, asin() sets errno to EDOM and
returns zero.

Example
For an example of this function, see the entry for tan().

See Also
libm, sin()
ANSI Standard, §7.5.2.2
POSIX Standard, §8.1

ASKCC — Environmental Variable
Force prompting for CC names
ASKCC=YES/NO

The environmental variable ASKCC directs the mailer program mail to prompt for carbon-copy names. A carbon-
copy (or CC) name gives another person to whom a mail message should be sent. To turn on prompting, use the
command:

export ASKCC=YES

See Also
environmental variables, mail

assert() — Macro Diagnostics (assert.h)
Check assertion at run time
#include <assert.h>
void assert(outcome)
int outcome;

assert() checks the value of outcome, which usually is the product of an expression. If outcome is false (zero),
assert() sends a message into the standard-error stream and calls exit(). It is useful for verifying that a necessary
condition is true.

The error message includes the text of the assertion that failed, the name of the source file, and the line within the
source file that holds the expression in question. These last two elements consist, respectively, of the values of the
preprocessor macros _ _FILE_ _ and _ _LINE_ _.
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assert() calls exit(), which never returns.

To turn off assert(), define the macro NDEBUG prior to including the header assert.h. This forces assert() to be
redefined as

#define assert(ignore)

See Also
exit(), assert.h, C preprocessor,
ANSI Standard, §7.2.1.1
POSIX Standard, §8.1

Notes
The ANSI Standard requires that assert() be implemented as a macro, not a library function. If a program
suppresses the macro definition in favor of a function call, its behavior is undefined.

Turning off assert() with the macro NDEBUG will affect the behavior of a program if the expression being evaluated
normally generates side effects.

assert() is useful for debugging, and for testing boundary conditions for which more graceful error recovery has not
yet been implemented.

assert.h — Header File
Define assert()
#include <assert.h>

assert.h is the header file that defines the macro assert().

See Also
assert(), header files,
ANSI Standard, §7.2

ASTAIL — Environmental Variable
Append options to end of as command line
export ASTAIL=options

The COHERENT assembler as reads the environmental variables ASHEAD and ASTAIL before it begins its work.
You can set these variables to hold the default options that you want the assembler always to use.

as appends the options in ASTAIL to the end of its command line.

See Also
as, ASHEAD, environmental variables,

asy — Device Driver
Device driver for asynchronous serial lines

The device driver asy supports serial ports. It uses major number 5.

asy can handle from one to 32 serial ports. The ports can be any mixture of 8250, 8250B, 16550, 16550A, and
equivalent devices, including nearly all conventional COM1 through COM4 serial cards, and most non-intelligent
multiport add-in cards. It automatically recognizes, and uses, on-chip FIFO, and it can specify groups of ports that
share a single interrupt status.

Types of Port Configuration
Each port that asy serves has a base name, e.g., /dev/com1r. Each has its own minor device number. Different
configurations of the port are selected by using different suffixes, as follows:

l (Local) ‘‘Local mode’’ means that the line will have a terminal plugged into it, or is connected to a modem
running in command mode. Local mode uses the minor device with the modem-control bit (bit 7) set.

r (Remote) ‘‘Modem control’’ means that the line will have a modem plugged into it. Modem control is enabled
on a serial line by resetting the modem control bit (bit 7) in the minor number for the device. This allows the
system to generate a hangup signal when the modem indicates loss of carrier by dropping DCD (Data Carrier
Detect). A modem line should always have its DSR, DCD and CTS pins connected. If left hanging, spurious
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transitions can cause severe system thrashing. An open() to a modem-control line will block until a carrier is
detected (i.e., until DCD goes true).

p (Polled mode) ‘‘Polled mode’’ means that the port cannot generate an interrupt, but must be checked (or
polled) constantly by the COHERENT system to see if activity has occurred on it. Such polling takes a
significant toll on system performance. The main reason for supporting polled devices is that older style COM
equipment will not allow both com1 and com3 to use interrupts at the same time, nor will it allow both com2
and com4 to use interrupts at the same time. If you use a port in polled mode, you will get better
performance using one of the newer FIFO parts, such as the 16550A.

To convert from using a polled to an interrupt driven device, edit file /etc/ttys and then type the command:

kill quit 1

For details, see the Lexicon entry for ttys.

f (Flow control) A device with hardware flow control. Here, signal CTS must be active for the driver to send data
out the port, and signal RTS will be set active by the driver whenever it is ready for input. Some high-speed
modems, and some serial printers, are capable of using these conventions. If your equipment does not
support RTS/CTS handshaking, there is no benefit to using this option.

Due to limitations in the design of the ports, you can enable interrupts on either COM1 or COM3 (or on COM2 or
COM4), but not both. If you wish to use both ports simultaneously, one must be run in polled mode. For
example, if you wish to open all four serial lines, you can open two of the lines in interrupt mode: you can open
either COM1 or COM3 in interrupt mode, and you can open either COM2 or COM4 in interrupt mode. The other
two lines must be opened in polled mode.

Opening a device in polled mode consumes many CPU cycles, based upon the speed of the highest baud rate
requested. For example, on a 20 MHz 80386-based machine, polling at 9600-baud was found to consume about
15% of the CPU time. As only one device can use the interrupt line at any given time, the best approach is to make
the high-speed line of the pair interrupt driven and open the low-speed or less-frequently used line in polled mode.
However, if you enable a polled line for logins, the port is open and will be polled as long as the port remains open
(enabled). Thus, even if a port is not in use, the fact that it has a getty on it consumes CPU cycles. As a rule of
thumb, try to open a port in interrupt mode. If you cannot, use the polled version.

If you intend to use a modem on your serial port, you must insure that the DCD signal from the modem actually
follows the state of carrier detect. Some modems allow the user to ‘‘strap’’ or set the DCD signal so that it is always
asserted (true). This incorrect setup will cause COHERENT to think that the modem is ‘‘connected’’ to a remote
modem, even when there is no such connection.

There are eight possible configurations, and eight valid suffixes. In the example of the port whose base name is
com1, the configurations would be found in the directory /dev as /dev/com1l, /dev/com1r, /dev/com1pl,
/dev/com1pr, /dev/com1fl, /dev/com1fr, /dev/com1fpl, and /dev/com1fpr.

Driver Configuration
asy is usually configured — and proper names are created in directory /dev — when you install COHERENT. The
following explains how to configure asy, in case you must modify the original installation.

To configure asy, do the following:

1. Type the following command to become the superuser root:

su root

2. Change to directory /etc/conf.

3. Execute script asy/mkdev. This script walks you through the process of describing your serial ports to
COHERENT.

4. When you have successfully completed asy/mkdev, type the command:

bin/idmkcoh -o cohtest

This generates a new kernel, called cohtest, which incorporates the changes you described when you ran
asy/mkdev.

5. Boot your new kernel. If you do not know how to do this, read the Lexicon entry booting.
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Editing /etc/default/async
The first step in reconfiguring asy is to edit /etc/default/async. This file holds the description of how the asy
driver is to be configured.

asy ignores blank lines and lines that begin with a pound sign ‘#’; you can use them as comments if you wish.
Each port that is not in a group must have a line beginning with the letter ‘P’, followed by seven numbers:

• The hexadecimal base address for the port.

• The IRQ number, in decimal, used by the port (use zero if no interrupt line is needed).

• The hexadecimal value used for control lines OUT1 and OUT2 when the port is open. Permissible values are
0, 4, 8, and C. Use 4 if OUT1 must be asserted, 8 if OUT2 must be asserted, and C if both signals are needed.
The most common value needed in this field is 8.

• One if the port needs exclusive use of its interrupt line (true for conventional COM1/COM4 equipment), zero
otherwise.

• Default baud rate for the port.

• Channel number for the port (0-31).

• A flag to indicate if modem-status interrupts are to be disabled for this board: one if they are to be disabled,
zero if they are not.

The last field is required because some chips are defective and lock up the system if modem status interrupts are
enabled. This flag protects you against such problems, but at the price of disabling hardware flow control.

Many multiport boards support a separate I/O address that can be read to determine which port requires service.
Each group of up to 16 ports must have a line beginning with the letter ‘G’, followed by a separate line describing
each port in the group. There are four different group types:

1. Bits in the status port are one when the corresponding port needs service, zero otherwise. (Sealevel, Comtrol,
Star Gate, Connect Tech, Boca Research.)

2. Bits in the status port are zero when the corresponding port needs service, one otherwise. (Arnet.)

3. The low three bits in the status port give the slot number on the card for the port needing service. (GTEK.)

4. The low four bits in the status port give the slot number on the card for the port reading service. If no port
needs service, the status port contains hexadecimal value FF. (Digiboard.)

The ‘G’ line requires the following fields. All are in decimal, except as noted:

• The hexadecimal address for the group-status port.

• The IRQ number used by the group. Use zero if no interrupt line is needed.

• The hexadecimal value used for control lines OUT1 and OUT2 when the port is open (usually eight).

• The type number of the group — one, two, or three, as described above.

• The number of ports in the group, 1 through 16.

• A flag to indicate if modem-status interrupts are to be disabled for this board: one if they are to be disabled,
zero if they are not.

Each group line is followed by a separate ‘M’ line for each member of the group. Fields required on the ‘M’ line (in
decimal, except as noted) are:

• The hexadecimal base address for the port.

• Default baud rate for the port.

• The slot number of the port within the group 0 through 7. For group types 1 and 2, slot 0 corresponds to the
least-order bit in the status port, slot 7 to the highest order bit.

• Channel number for the port (0-31).

The following gives the async file for a system with standard COM1 through COM4 ports as channels 0 through 3,
a Comtrol Hostess 550/16 as channels 4 through 19, and finally an Arnet Multiport as channels 20 through 27.
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# /etc/default/async spec for standard com1-com4
#Record formats:
#P Port Irq OUT[12] Excl Speed Channel No MS int
#G Port Irq OUT[12] Type Number-of-Slots No MS int
#M Port Speed Slot Channel

# com1/2/3/4
P 3f8 4 8 1 9600 0 0
P 2f8 3 8 1 9600 1 0
P 3e8 4 8 1 9600 2 0
P 2e8 3 8 1 9600 3 0

# Hostess 550 16 - two groups of 8 ports, using irq 12
G 507 12 8 1 8 0
M 500 9600 0 4
M 508 9600 1 5
M 510 9600 2 6
M 518 9600 3 7
M 520 9600 4 8
M 528 9600 5 9
M 530 9600 6 10
M 538 9600 7 11

G 547 12 8 1 8 0
M 540 9600 0 12
M 548 9600 1 13
M 550 9600 2 14
M 558 9600 3 15
M 560 9600 4 16
M 568 9600 5 17
M 570 9600 6 18
M 578 9600 7 19

# Arnet Multiport - one group of 8 ports, using irq 7
G 272 7 0 2 8 0
M 280 9600 0 20
M 288 9600 1 21
M 290 9600 2 22
M 298 9600 3 23
M 2A0 9600 4 24
M 2A8 9600 5 25
M 2B0 9600 6 26
M 2B8 9600 7 27

You should look at the version of /etc/default/async that is shipped with COHERENT for examples of all async
features, including those described above. This file includes sample configurations for every board that Mark
Williams Company had available for testing.

Building a New Kernel
Now that you have described how you want asy to be configured, the next step is to build a new kernel. Log in as
the superuser root and execute the following commands:

cd /etc/conf
asy/mkdev
bin/idmkcoh -o /kernel_name

where kernel_name is the new kernel that includes the asy driver. To run this new kernel, simply reboot your
machine.

See Also
asymkdev, device drivers, RS-232

Notes
If your system loses characters while transferring files on 4800-bps or higher-speed lines, we strongly urge you to
replace your existing 8250- or 16450-based UARTs with those based upon the 16550A design, such as the National
Semiconductor NS16550AFN. These newer UARTs are pin-compatible with the older UARTs. COHERENT
automatically senses and enables them when it boots.
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asymkdev — Command
Create nodes for asynchronous devices
/conf/asymkdev [-u] [async_file [outfile]]

The command asymkdev reads async_file, questions the user about her system, and writes a shell script into
outfile. When run, the script creates the proper nodes (up to 256 of them) for the asynchronous devices in /dev.

If you name no async_file, asymkdev /dev/default/async. If you name no outfile, it writes its script into
asy_mknod.

asymkdev asks about each asynchronous channel for which a port is configured. It asks for the basic device
name (e.g., asy00 or com0), and then asks which of the eight possible port configurations will be used. The
options are:

l or r Local or remote.

i or p Interrupt-driven or polled.

f or n RTS-CTS flow control or no hardware flow control.

For details of what the options mean, see the Lexicon article for the device driver asy.

Suffix letters ‘‘rlipnf’’ respectively indicate remote, local, interrupt, polled, no-flow, and flow-control configurations,
as explained in the Lexicon article for asy.

For each question, type the value that applies or press <Enter>, to select the default displayed in brackets. The
option -u suppresses prompts.

See Also
asy, asypatch, commands

Notes
Only the superuser root can run this command.

asypatch — Command
Patch a kernel file for an asynchronous configuration
/conf/asypatch [-v] <kernel_name> <async_file

The command asypatch patches a kernel file for the asynchronous configuration specified in async_file. The format
of async_file is described in the Lexicon article for the device driver asy.

See Also
asy, asymkdev, commands

at — Device Driver
Drivers for hard-disk partitions

/dev/at* are the COHERENT system’s AT devices for the hard-disk’s partitions. Each device is assigned major-
device number 11, and may be accessed as a block- or character-special device.

at handles two drives with up to four partitions each:

• Minor devices 0 through 3 identify the partitions on drive 0.

• Minor devices 4 through 7 identify the partitions on drive 1.

• Minor device 128 allows access to all of drive 0.

• Minor device 129 allows access to all of drive 1.

To modify the offsets and sizes of the partitions, use the command fdisk on the special device for each drive (minor
devices 128 and 129).

To access a disk partition through COHERENT, directory /dev must contain a device file that has the appropriate
type, major and minor device numbers, and permissions. To create a special file for this device, invoke the
command mknod as follows:
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/etc/mknod /dev/at0a b 11 0 ; : drive 0, partition 0
/etc/mknod /dev/at0b b 11 1 ; : drive 0, partition 1
/etc/mknod /dev/at0c b 11 2 ; : drive 0, partition 2
/etc/mknod /dev/at0d b 11 3 ; : drive 0, partition 3
/etc/mknod /dev/at0x b 11 128 ; : drive 0, partition table

Drive Characteristics
When processing BIOS I/O requests prior to booting COHERENT, many IDE drives use translation-mode drive
parameters: number of heads, cylinders, and sectors per track. These numbers are called ‘‘translation-mode’’
parameters because they do not reflect true physical drive geometry. The translation-mode parameters used by the
BIOS code present on your host adapter can be obtained using the command info from within the tertiary-boot
routine tboot. (For details on info, see the Lexicon entry for tboot.) It is often necessary to patch the at driver with
BIOS values of translation-mode parameters in order to boot COHERENT on IDE hard drives. In COHERENT
versions 3.1.0 and later, drive parameters are stored in table atparm in the driver. For the first hard drive,
number of cylinders is a short (two-byte) value at atparm+0, number of heads is a single byte at atparm+2, and
number of sectors per track is a single byte at atparm+14. For the second hard drive, number of cylinders is a
short value at atparm+16, number of heads is a single byte at atparm+18, and number of sectors per track is a
single byte at atparm+30. For example, if testcoh is a kernel linked with the at driver and you want to patch it for
a second hard drive with 829 cylinders, 10 heads, and 26 sectors per track, you can do:

/conf/patch testcoh atparm+16=829:s atparm+18=10:c atparm+30=26:c

To read the characteristics of a hard disk once the at driver is running, use the call to ioctl of the following form:

#include <sys/hdioctl.h>
hdparm_t hdparms;

. . .
ioctl(fd, HDGETA, (char *)&hdparms);

where fd is a file descriptor for the hard-disk device and hdparms receives the disk characteristics.

Non-Standard and Unsupported Types of Drives
Prior releases of the the COHERENT at hard-disk driver would not support disk drives whose geometry was not
supported by the BIOS disk parameter tables. COHERENT adds support for these drives during installation by
‘‘patching’’ the disk parameters into the bootstrap and the /coherent image on the hard disk.

Files
/dev/at* — Block-special files
/dev/rat* — Character-special files

See Also
device drivers, fdisk, hai, ideinfo

Notes
The driver at offers two varieties of polling: normal and alternate. Normal, as its name implies, is used with most
varieties of AT controllers. Alternate polling is for Perstor controllers and some other older equipment. Using the
wrong type of polling causes frequent controller timeouts and bad-track messages.

at also lets you specify the number of seconds to wait for a response from the drive after an I/O request. The
default value is six. Some IDE drives occasionally become unresponsive for long intervals (several seconds) while
control firmware makes adjustments to drive operation.

To set either the type of polling or the default waiting period, su to the superuser root; then cd to directory
/etc/conf and run the script at/mkdev. This script will walk you through describing your AT controller to
COHERENT. Once you have run this script, execute the command

/etc/conf/bin/idmkcoh -o cohtest

to create a test kernel that incorporates your changes; then reboot your system and invoke the new kernel, as
described in the Lexicon entry booting. Note that the changes you make to the driver will not be seen by your
COHERENT system until you boot the new kernel.

The at driver lets you have up to two AT hard disks on your system. Note, however, that in our experience, it is
very difficult to combine different brands of AT hard disks and have both run successfully. This is especially true
with Conner drives, which apparently do not cooperate with other IDE drives as master and slave. Caveat utilitor.
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at — Command
Execute commands at given time
at [ -v ] [ -c command ] time [ [ day ] week ] [ file ]
at [ -v ] [ -c command ] time month day [ file ]

at executes commands at a given time in the future.

If the -c option is used, at executes the following command. If file is named, at reads the commands from it. If
neither is given, at reads the standard input for commands.

If time is a one-digit or two-digit number, at interprets it as specifying an hour. If time is a three-digit or four-digit
number, at interprets it as specifying an hour and minutes. If time is followed by a, p, n, or m, at assumes AM,
PM, noon, or midnight, respectively; otherwise, it assumes that time indicates a 24-hour clock. Note that you
should not type a colon ‘:’ in the time string.

For example, the command

at -c "time | msg henry" 1450

set the time command to be executed at 2:50 PM, and pipe time’s output to the msg command, which will pass it
to the terminal of user henry. The argument to the -c option had to be enclosed in quotation marks because it
contains spaces and special characters; if this were not done, at would not be able to tell when the argument
ended, and so would generate an error message. If you wish to pass information to a user’s terminal with the at
command, you must tell at to whom to send the information. The command

at 250p commandfile

sets the file commandfile to be read and executed at 2:50 PM. It is not necessary to use the file’s full path name.
Also, if the suffix p were not appended to the time, the file would be set to be read at 2:50 AM.

The time set in at’s command line is not the exact time that the command is executed. Rather, the daemon cron
periodically executes the command /usr/lib/atrun to see if any commands have been scheduled commands to be
executed at or before the present time. The frequency with which cron executes atrun determines the
‘‘granularity’’ of at execution times. To change when cron executes atrun, edit file
/usr/spool/cron/crontabs/root. For example, the entry

0,5,10,15,20,25,30,35,40,45,50,55 * * * * /usr/lib/atrun

sets /usr/lib/atrun to be executed every five minutes. Thus, the at command that is set, for example, to 2:53 PM
will actually be executed at 2:55 PM. atrun executes specified commands when it discovers that the given time is
past; therefore, at commands are executed even if the system is down at the specified time or if the system’s time is
changed.

The at command has two forms, as shown above. In the first form, the option day names a day of the week (lower
case, spelled out). If week is specified, at interprets the given time and day as meaning that time and day the
following week. For example, the command

at -c "time | msg henry" 1450 friday week

executes time and sends its output to henry’s terminal one week from Friday at 2:50 PM.

In the second form given above, month specifies a month name (lower case, spelled out) and the number day
specifies a day of the month. For example, the command

at 1450 july 4 commandfile

set the file commandfile to be read at 2:50 PM on July 4.

If the -v flag is given, at prints the time when the commands will be executed, giving you enough information to
plan for the execution of the command. For example, if it is now August 13, 1990, at 2:30 PM, and you type the
command

at -v -c "/usr/games/fortune | msg henry" 1435

at will reply:

Tue Aug 13 14:35:00

indicating that the command will be executed five minutes from now. However, if you type
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at -v -c "/usr/games/fortune | msg henry" 1435 august 10

at will reply

Sun Aug 10 14:35:00 1991

which indicates that on Sunday, August 10 of next year, at 2:35 PM, the COHERENT system will print a fortune
onto your terminal.

Should you create such a long-distance at file by accident, you can correct the error by simply deleting the file that
encodes it from the directory /usr/spool/at. The file will be named after the time that it is set to execute, plus a
unique two-character suffix, should more than one command be scheduled to run at the same time. For example,
the file for the above command would be named 9108101435.aa.

Finally, note that the current working directory, exported shell variables, file creation mask, user id, and group id
are restored when the given command is executed.

Example
The following example invokes the command wall at 11 P.M. to confirm that the at command is working properly:

at -c "echo ’testing to see if cron is working’ | /etc/wall" 2300

Files
/bin/pwd — To find current directory
/usr/lib/atrun — Execute scheduled commands
/usr/spool/at — Scheduled activity directory
/usr/spool/at/ yymmddhhmm.xx — Commands scheduled at given time

See Also
at, commands, cron

atan() — Mathematics Function (libm)
Calculate inverse tangent
#include <math.h>
double atan(arg) double arg;

atan() calculates the inverse tangent of arg, which may be any real number. The result will be in the range [-π/2,
π/2].

Example
For an example of this function, see the entry for acos().

See Also
errno, libm, tan(),
ANSI Standard, §7.5.2.3
POSIX Standard, §8.1

atan2() — Mathematics Function (libm)
Calculate inverse tangent
#include <math.h>
double atan2(num, den) double num, den;

atan2() calculates the inverse tangent of the quotient of its arguments num/den. num and den may be any real
numbers. The result will be in the range [-π, π]. The sign of the result will have the same sign as num, and the
cosine will have the same sign as den.

Example
For an example of this function, see the entry for hypot().

See Also
errno, libm
ANSI Standard, §7.5.2.4
POSIX Standard, §8.1
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ATclock — Command
Read or set the AT realtime clock
/etc/ATclock [yy[mm[dd[hh[mm[.ss]]]]]]

ATclock reads or sets your system’s ‘‘hardware’’ time, which is stored in your system’s CMOS. This clock should
contain the current standard time for your locale.

With no argument, the command ATclock reads the hardware clock and returns a string in the format expected by
the command date. With an argument, it sets the hardware clock to the given date. For example, to set your
hardware clock to October 24, 1994, at 9:30 PM, use the command:

/etc/ATclock 9410242130

ATclock also lets you reset the time incrementally: that is, you can reset only the year; the year and month; the
year, month, and day; and so on down to the second.

Note that if you use ATclock to reset your hardware clock, you must reset it to the standard time in your locale,
even if daylight-savings time happens to be in effect when you reset the clock. If you do not, COHERENT’s
commands that set the local time on your system (e.g., the command date) will be off by one hour when daylight-
savings time is in effect.

The system startup file /etc/brc typically contains a command of the form

date -s `/etc/ATclock`

to reset the time properly when the COHERENT system starts up.

See Also
brc, clock, CMOS, commands, date

atexit() — General Function (libc)
Register a function to be called when the program exits
#include <stdlib.h>
int atexit(void (function)
void (*function)();

atexit() registers one or more functions to be called when the program exits. These registered functions can, for
example, perform clean-up beyond what is ordinarily performed when a program exits. atexit() can register up to
32 functions.

function points to the function to be called. A registered function takes no arguments and returns nothing.

The functions that atexit() registers are called when the program exits normally, i.e., when the function exit() is
called or when main() returns. They are called in reverse order of registration.

atexit() returns zero if function could be registered, and a value other than zero if it could not.

Example
This example registers two functions to be executed upon exiting: one displays a message, and the other waits for
the user to press a key before terminating.

#include <stdlib.h>
#include <stdio.h>

void
lastgasp()
{

fprintf(stderr, "Type return to continue");
}

void
get1()
{

getchar();
}
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main()
{

/* set up get1() as last exit routine */
atexit(get1);
/* set up lastgasp() as exit routine */
atexit(lastgasp);

/* exit, which invokes exit routines */
exit(EXIT_SUCCESS);

}

See Also
exit(), libc
ANSI Standard, §7.10.4.2

atof() — General Function (libc)
Convert ASCII strings to floating point
#include <stdlib.h>
double atof(string) char * string;

atof converts string into the binary representation of a double-precision floating point number. string must be the
ASCII representation of a floating-point number. It can contain a leading sign, any number of decimal digits, and a
decimal point. It can be terminated with an exponent, which consists of the letter ‘e’ or ‘E’ followed by an optional
leading sign and any number of decimal digits. For example,

123e-2

is a string that can be converted by atof().

atof() ignores leading blanks and tabs; it stops scanning when it encounters any unrecognized character.

Example
For an example of this function, see the entry for acos().

See Also
atoi(), atol(), float, libc, long, printf(), scanf(), stdlib.h
ANSI Standard, §7.10.1.1
POSIX Standard, §8.1

Notes
atof does not check to see if the value represented by string fits into a double. It returns zero if you hand it a
string that it cannot interpret.

atoi() — General Function (libc)
Convert ASCII strings to integers
#include <stdlib.h>
int atoi(string) char *string;

atoi() converts string into the binary representation of an integer. string may contain a leading sign and any
number of decimal digits. atoi() ignores leading blanks and tabs; it stops scanning when it encounters any non-
numeral other than the leading sign, and returns the resulting int.

Example
The following demonstrates atoi(). It takes a string typed at the terminal, turns it into an integer, then prints that
integer on the screen. To exit, type <ctrl-C>.

#include <stdlib.h>

main()
{

extern char *gets();
extern int atoi();
char string[64];
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for(;;) {
printf("Enter numeric string: ");
if(gets(string))

printf("%d\n", atoi(string));
else

break;
}

}

See Also
libc
ANSI Standard, §7.10.1.2
POSIX Standard, §8.1

Notes
atoi does not check to see if the number represented by string fits into an int. It returns zero if you hand it a
string that it cannot interpret.

atol() — General Function (libc)
Convert ASCII strings to long integers
#include <stdlib.h>
long atol(string) char *string;

atol() converts the argument string to a binary representation of a long. string may contain a leading sign (but no
trailing sign) and any number of decimal digits. atol() ignores leading blanks and tabs; it stops scanning when it
encounters any non-numeral other than the leading sign, and returns the resulting long.

Example

#include <stdlib.h>

main()
{

extern char *gets();
extern long atol();
char string[64];

for(;;) {
printf("Enter numeric string: ");
if(gets(string))

printf("%ld\n", atol(string));
else

break;
}

}

See Also
atof(), atoi(), float, libc, long, printf(), scanf(), stdlib.h
ANSI Standard, §7.10.1.3
POSIX Standard, §8.1

Notes
No overflow checks are performed. atol() returns zero if it receives a string it cannot interpret.

atrun — System Administration
Execute commands at a preset time

atrun is a program that executes programs at a time set by the command at.

When user steve types

at 1230 /v/steve/lunchtime

the command at creates a shell script in directory /usr/spool/at that contains the information needed to execute
command /v/steve/lunchtime at a later time — in this instance, 12:30 PM. The spooled file sits in
/usr/spool/at until /usr/lib/atrun sees that the specified time has been reached. atrun then executes the
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spooled command and removes it from /usr/spool/at.

atrun is not a daemon; that is, it is invoked by another program, does its work, and exits. Thus, it is typically run
periodically from an entry in the cron file owned by the superuser root.

See Also
Administering COHERENT, at

Notes
Although atrun technically is a command, it is never invoked by a user.

auto — C Keyword
Note an automatic variable

auto is an abbreviation for an automatic variable. This is a variable that applies only to the function that invokes it,
and vanishes when the functions exits. The word auto is a C keyword, and must not be used to name any
function, macro, or variable.

See Also
C keywords, extern, static, storage class,
ANSI Standard, §6.5.1

awk — Command
Pattern-scanning language
awk [ POSIX or GNU style options ] -f program-file [ -- ] file ...
awk [ POSIX or GNU style options ] [ -- ] program-text file ...

awk is a general-purpose language designed for processing input data. Its features allow you to write programs
that scan for patterns, produce reports, and filter relevant information from a mass of input data. It acts upon the
contents of each program-file, or the standard input if no -program-file is specified.

You can specify the program either as an argument (usually enclosed in quotation marks to prevent interpretation
by the shell sh) or in the form -f program-file. If no -f option appears, the first non-option argument is the awk
program.

awk views its input as a sequence of records, each consisting of zero or more fields. By default, newlines separate
records and white space (spaces or tabs) separates fields. The option -Fc changes the input field separator
characters to the characters in the string c. An awk program can also change the field and record separators. The
program can access the values of each field and the entire record through built-in variables.

For details on the construction of awk programs, consult the tutorial to awk that appears in this manual. Briefly,
an awk program consists of one or more lines, each containing a pattern or an action, or both. A pattern
determines whether awk performs the associated action. It may consist of regular expressions, line ranges, boolean
combinations of variables, and beginning and end of input-text predicates. If no pattern is specified, awk executes
the action (the pattern matches by default).

An action is enclosed in braces. The syntax of actions is C-like, and consists of simple and compound statements
constructed from constants (numbers, strings), input fields, built-in and user-defined variables, and built-in
functions. If an action is missing, awk prints the entire input record (line).

Unlike lex or yacc, awk does not compile programs into an executable image, but interprets them directly. Thus,
awk is ideal for quickly-implemented, one-shot efforts.

Examples
The following examples illustrate the economy of expression of awk programs.

The first example reads the standad input, and echoes all lines containing the string ‘‘COHERENT’’:

awk ’/COHERENT/’

To exit, type <ctrl-D>/

The built-in variable NR is the number of the current input record. The next example reads the standard input,
and prints the number of records you typed after you exit (again, by typing <ctrl-D>):

awk ’END { print NR }’
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The built-in variable $3 gives the value of the third field of the current record. The last example sums the third
field from each record you type on the standard input, and prints the total when you exit:

awk ’{ sum += $3 }
END { print sum }’

See Also
commands, gawk, lex, sed, yacc
Introduction to the awk Language, tutorial.

Notes
Beginning with release 4.2.14 of COHERENT, awk has been replaced by gawk, the GNU implementation of this
language. For details on this implementation of the awk language, see the Lexicon entry for gawk.
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backups — Technical Information
Strategies for backing up COHERENT

This entry describes how to backup files — that is, how to copy one or more selected files onto floppy disks. You
should do this regularly to provide yourself with a spare copy of valuable files should your system suffer a
catastrophe.

The strategy you adopt for backups will vary quite a bit, depending upon the medium onto which you back up your
files: tapes or floppy disks. Floppy disks are inexpensive, but their limited capacity means that you have to plan
carefully. Tapes are simpler to use than floppy disks, but are more expensive. The following sections describe first
the strategies for backing up onto floppy disks; and then for backing up onto tapes.

Backing up Onto Floppy Disks
There are two general strategies for backing up files onto floppy disks:

• Use the command tar to create archives of files on a floppy disk. This is fine for archiving a limited set of files
on an irregular basis.

• The other strategy uses the command gnucpio to implement a system of regular dumps. This strategy is
preferred for systems that daily amass data of importance for a real-world job, such as running a business or
managing a research project.

You should always have a procedure of backups for your system. Which strategy you use depends on how you are
using your system. The following sections describe how to implement each strategy of backups. Note that
COHERENT includes a version of the UNIX utility dump for the sake of compatibility with older versions of UNIX and
COHERENT; however, dump is obsolete, should not be used, and will not be described here.

Please note that the following descriptions assume that you are using a 5.25-inch, high-density floppy disks set in
drive 0 (drive A). For a list of available floppy-disk devices, see the Lexicon entry for floppy disks.

The following describes how to use tar to back up onto floppy disks.

The first step is to prepare floppy disks to receive files. Insert a 5.25-inch floppy disk into drive 0, and then type
the following command:

/etc/fdformat -v /dev/rfha0

The command fdformat formats the floppy disk, verifying that no media defects exist. You must perform this task
of formatting a floppy disk before you use it the first time.

The next step is to create an archive of the files you wish to back up. Use the portable archive command tar to
collect a mass of files into an archive on the floppy disks. For example, to archive all files in directory source, use
the following command:

tar cvf /dev/rfha0 source

The options cvf tell tar to create an archive, run in verbose mode, and write the archive onto the device or into the
file named in the next argument. /dev/rfha0 names the floppy device onto which you wish to write the archive.
Finally, source is the directory whose files you wish to back up.

To perform a listing of the contents of the newly created archive, type

tar tvf /dev/rfha0

The options tvf tell tar to list the contents of the archive, run in verbose mode, and read the archive from the
device or file named in the next argument.
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To extract several files from the archive, enter a command of the form

tar xvf /dev/rfha0 source/myfile ’source/*.c’

The options xvf tell tar to extract or unarchive the specified files, run in verbose mode, and read the archive from
the device or file named in the next argument. Note that the second file argument contains a ‘‘wildcard’’ character
and thus must be quoted to prevent expansion by the shell.

For more information on how to use tar, see its entry in the Lexicon.

The following describes how to back up using gnucpio.

The COHERENT utility gnucpio performs mass dumps and restores of files using a universally recognized file
format.

In this example, dumps are performed monthly, weekly, and daily. You should prepare at least three sets of floppy
disks for the monthly saves, giving you three months of full backup. You will use the floppy disks in rotation, with
the oldest always used next.

Once a month, you should dump the entire system.

Once a week, you should dump information in the system that is new or has been changed since the end of the
previous week. You will need five sets of floppy disks, because some months have five weekends in them.

Finally, every day you should save information that has changed that day. For these dumps, you will need five sets
of floppy disks: one for each working day. You may need extras in case of weekend work.

Label each set of disks carefully as monthly, weekly, or daily. Label the daily floppy disks ‘‘Monday’’ through
‘‘Friday’’, the weekly floppy disks ‘‘Week 1’’ through ‘‘Week 5’’, and the monthly floppy disks ‘‘Month 1’’ through
‘‘Month 3’’. When you perform the dump, write the date on the label.

The following gives a step-by-step description of how to use gnucpio to back up files. The next samples are given
with the suggestion that your system has only one 5.25-inch floppy-disk drive.

1. Log into the system as the superuser root.

2. If you have not yet done so, use the command fdformat to format a set of floppy disks, as shown above. With
high-density, 5.25-inch floppy disks, a rule of thumb is to prepare one floppy disk for each megabyte of data
to be dumped.

3. If other users are logged into the system, use the command wall to request that they log off. For example:

/etc/wall
Please log off.
Time for file dump.
<ctrl-D>

4. Be sure that all users are logged off the system by typing the command:

who

This command names all users who are still on the system.

If they have not logged off in a few minutes, send another message. Repeat the process until who shows no
users except yourself.

5. When all other users have logged off, execute the command shutdown as described in its Lexicon entry.

6. Run the script mount.all to mount all of your file systems. Then, run the COHERENT command fsck on each
file system to check its integrity.

7. If this is the last workday of the month, perform a monthly dump, to back up the entire system. Insert the
first volume of the correct monthly dump floppy disk into the floppy drive, after adding today’s date to the
label, and type the commands:

cd /
find . -print | gnucpio -ocF /dev/rfha0

Option -F tells gnucpio to write everything to the raw, 2400-block, floppy-disk device /dev/rfha0.
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Note that if you want to split your dump across different media (i.e., write the first volume onto tape and the
second onto a floppy disk), you should not use the option -F; gnucpio will write its output to the standard
output, and you can use the shell operator ‘>’ to redirect that to the device /dev/rfha0. If you do not use -F,
gnucpio will ask you, after it finishes writing a volume, for the name of the device into which it should
redirect the next volume of output.

As more floppies are needed, gnucpio will ask you to insert them. Be sure to label each floppy disk with its
volume number.

8. If this is the last work day of the week, but not the last workday of the month, perform a weekly dump.
Prepare the correct weekly dump floppy disks, add today’s date to the label, insert the first floppy disk, and
type the command:

cd /
find . -newer cpio.weekly -print | gnucpio -ocF /dev/rfha0
touch cpio.weekly

This will dump all files that are younger than file cpios.weekly.

9. If this is neither the last workday of the month nor the last workday of the week, you will perform a daily
dump. Prepare the daily dump floppy disk with today’s day of the week, add today’s date to the label, insert
the first floppy disk into the drive, and type the command:

cd /
find . -newer cpio.daily -print | gnucpio -ocF /dev/rfha0
touch cpio.daily

This will dump files that are younger than file cpio.daily.

10. Type sync to ensure that all buffers are flushed.

11. When you are finished dumping data, type the command /etc/reboot to return your system to multi-user
mode.

For more information on how to use gnucpio and find, see their respective entries in the Lexicon.

If you wish, you can back up only limited portions of your system. To do so, just name in your find command the
directories you wish to back up. For example, to back up everything in your home directory and in /usr/lib, use
the following command:

find $HOME /usr/lib -type f -newer cpio.daily -print | gnucpio -ocF /dev/rfha0
touch cpio.daily

When you determine the backup strategy you wish to use, you should save the appropriate commands into a
script, to ensure that backups are run correctly every time.

The following describes how to restore files from floppy disks.

If you find that a file has been inadvertently destroyed, you can restore the information to disk from backup floppy
disks.

To restore information from backups created with gnucpio or tar, you must first determine the date and time that
the file was last known to have been modified. From this date, determine on which set of disks the file was last
correctly dumped. Find the set of floppy disks labeled with that date, and insert into the floppy-disk drive the first
one in the set. For example, if you wish to restore the file myfile, from a gnucpio archive, use the command:

gnucpio -icdvF /dev/rfha0 myfile

To retrieve myfile from a tar archive, use the command:

tar xvf /dev/rfha0 myfile

Both of these commands assume that the disks are high-density, 5.25-inch floppies in drive 0 (drive A). See the
Lexicon article floppy disk for a table that shows which COHERENT device is associated with which size and
density of disk, and which disk drive. You may have to insert more than one disk from the set of backups until
you find the one that holds the file you want.

Backing up Onto Tapes
The strategy for backing up onto tape resembles that for floppy disks, with the exception that in many instances
the tape medium is larger than the device being backed up. This makes it worth your while to back up the entire
device every time you do a back up, rather than perform incremental backups. The reason for this is simple: the
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fewer tapes over which you have spread your backups, the lower the risk that one will fail.

To back up an entire partition, do the following:

1. Pop a tape into your tape device. Make sure the tape is appropriately labeled.

2. Log in as the superuser root, and type the following command:

/etc/shutdown single 0

This returns your system to single-user mode immediately.

3. Use the command gtar to back up your partition, as follows:

gtar -cvzf /dev/tape directory

tape identifies the tape device onto which the backup will be written, and directory identifies the file system to
back up. For example, tape device /dev/rStp2 is a SCSI tape device that has SCSI identifier 2 and performs
autorewinding. For a list of recognized tape devices, see the article for tape. in the Lexicon.

Please note two points about directory. First, do not use the absolute path name when specifying a directory:
that is, use usr, not /usr. gtar strips the leading ‘/’ in any event, but it’s always best to use relative path
names whenever possible. Second, in single-user mode only the root file system is mounted by default;
therefore, if the file system you wish to back up resides on its own partition, you must mount that file system
by hand before you begin to back it up.

Note that the z option to the gtar command tells gtar to use gzip to compress the files automatically. File
compression is a good idea: because fewer bits are being written to the tape, the backup will go faster; and
because less tape is used, the risk of a tape failure is lessened.

3. When gtar has finished writing to the tape, wait until the tape finishes rewinding; then remove it from its
drive and put it in a safe place (i.e., away from magnets and children). Then type <ctrl-D> to return your
system to multi-user mode.

That’s all there is to it. To restore information from the tape, put the tape into the drive and use the gtar command
to fetch the file you want. For example, to restore file /v/fwb/myfile.c from a SCSI tape drive that has SCSI
identifier 2, use the following command:

gtar -xvzf /dev/rStp2 "v/fwb/myfile.c"

Note that the file will be written into a subdirectory of your current directory. For example, if your current
directory is /v/fwb, then myfile.c will be restored into a file with the path name /v/fwb/v/fwb/myfile.c. This
may be a little inconvenient, but is not nearly as inconvenient as having to create myfile.c by hand.

An Example of Using Floppy Tape
This section gives examples of how to use QIC-40/QIC-80 (‘‘floppy tape’’) to write archives to floppy tape, and read
them back. It uses the commands tape, which manipulates the tape device; and gtar, which writes archives onto
the physical tape, and reads them back.

Suppose you have a directory named dir1, which contains files you want to backup. To back up all files in that
directory onto a tape, insert a tape cartridge into the drive, then type:

gtar -cvf /dev/ft dir1

To verify that the contents of the tape match the original files, run gtar again in verification (‘‘diff’’) mode:

gtar -df /dev/ft

We strongly urge you to verify tapes after they have been written, especially with floppy-tape devices. If a tape fails
this test, throw it away and build a new archive; otherwise, you may receive a nasty surprise when you try to
restore a file from that tape. Do not be surprised if an otherwise sound tape fails after time: a tape does wear out
after a number of uses.

To later extract the files from the tape, use

gtar -xf /dev/ft

To use data compression, the preceding commands can be used with the addition of gtar’s option -z, as follows:
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gtar -czvf /dev/ft dir1
gtar -dzf /dev/ft
gtar -xzf /dev/ft

To backup only selected files to tape, you could do the following:

find dir -type f -print | sort > Files

then manually edit the file Files so it contains only the names of the files you want to back up. Then use the
command:

gtar -cv -T Files -f /dev/ft

The previous examples used /dev/ft, the device node that calls for the tape to be rewound when the device is
closed. This is convenient if you are putting only one archive onto tape. To concatenate multiple archives on a
single cartridge, use the no-rewind-on-close device. For example, suppose you have a second directory, dir2, and
you want to back it up on the same tape, after an archive of dir1. The following commands accomplish this:

gtar -cvf /dev/nft dir1
gtar -cvf /dev/nft dir2

After each archive is written, the tape remains positioned at the end of the archive. To verify the contents of both
archives, do the following:

# this command rewinds the tape:
tape rewind
# this command displays the contents of the first archive:
gtar -tvf /dev/nft
# this command displays the contents of the second archive:
gtar -tvf /dev/nft

If you make a note of the locations of archives as they are written, you can retrieve them later without having to
read the preceding archives. For example:

# rewind the tape:
tape rewind
# write "dir1" archive at start of tape:
gtar -cvf /dev/nft dir1
# find current position of the tape:
tape tell

The command tape tell returns a string of the form:

Tape Is at Byte Offset 102400

Continuing:

# write "dir2" archive after "dir1":
gtar -cvf /dev/nft dir2
# read the current position:
tape tell

The second instance of tape tell returns a string of the form:

Tape Is at Byte Offset 235520

That is, it shows that the tape has advanced after the second archive was written onto it. At this point, the
cartridge is removed, then reinserted into the tape drive at a later date:

tape seek 102400
gtar -tvf /dev/tape

The command tape seek moves the tape to the byte position 102400, i.e., the end of the first archive. This
command assumes that you jotted down the position displayed by the command tape tell executed earlier. The
command gtar then displays the contents of the second archive.

See Also
Administering COHERENT, gnucpio, gtar, tape
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bad — Command
Maintain list of bad blocks
bad [-acdl] device [ block ... ]

A hard disk or floppy disk may have bad blocks on it: a ‘‘bad block’’ is a portion of disk that is flawed, and so
cannot reliably be read or written. It is the unusual disk that is free of bad blocks.

COHERENT keeps a list of bad blocks so it can avoid using them. The command bad maintains this bad-block list
for the given device, which must be a block-special file. bad recognizes the following command-line options:

a Add each given block to the bad-block list
c Clear the bad-block list
d Delete each given block from the bad-block list
l List all blocks on the bad-block list

Note that bad merely adds a block to the list of bad blocks, or removes a block from that list. It does not deallocate
any i-node associated with a block when adding it to the bad-block list. You should run the command icheck with
the option -s immediately after bad to correct the problem, or run the command fsck. After you modify the list of
bad blocks, you must reboot your system to force the kernel to use this modified list.

The file system on device should be unmounted if possible. You must have appropriate permissions for device
before you can invoke bad. For many file systems, only the superuser may use bad to change the bad-block list.
Use the command badscan to create a prototype file of bad blocks.

When the command mkfs creates a file system, the prototype specification may include a list of bad blocks for the
new file system.

See Also
badscan, commands, icheck, mkfs

badscan — Command
Build bad block list
/etc/badscan [ -v ] [ -o proto ] [ -b boot ] device size
/etc/badscan [ -v ] [ -o proto ] [ -b boot ] device xdevice

badscan scans a floppy disk or a partition of the hard disk for bad blocks. It writes onto the standard output a
prototype file that lists all bad blocks on the disk.

badscan recognizes the following options:

-v Print an estimate of time needed to finish examining the device.

-o proto Redirect output into file proto.

-b boot Insert a given boot into the proto file as the bootstrap. The default is /conf/boot.

device names the special device to scan.

The command line for badscan comes in two forms, as shown at the top of this article. The first version is for a
floppy disk; size gives the size of the device, in blocks. The second version is for a hard-disk partition; xdevice
specifies devices /dev/at0x or /dev/at1x, which hold the partition-table information for the disk in question.
badscan reads the data from the boot block of the drive to find the size of the device.

Examples
The first example uses badscan to find all bad blocks on a high-density, 3.5-inch floppy disk in drive 1 (i.e., drive
B), and writes its output into file proto:

/etc/badscan -v -o proto /dev/rfva1 2880

See the article floppy disks for a table that gives the device name and number of sectors to be found on the
various types of floppy disk that COHERENT recognizes.

The second example uses badscan to prepare a list of bad blocks for partition 2 on hard-drive 0, which is an IDE
drive accessed via COHERENT’s at driver. Again, the output is written into file proto:

/etc/badscan -v -o /conf/proto.at0c /dev/rat0c /dev/at0x

LEXICON

bad — badscan 389



See Also
at, bad, commands, floppy disks, mkfs

Notes
Because SCSI hard-disk drives maintain their own map of bad blocks, badscan is not required for SCSI drives.
However, we recommend that you use it on removeable-media SCSI drives.

banner — Command
Print large letters
banner [ argument ... ]

banner prints large (seven-character by five-character) letters on the standard output. Each argument produces
one large text output line. If there is no argument, each line from the standard input produces one line of large-
text output.

See Also
commands, libmisc, lpr, pr

basename — Command
Strip path information from a file name
basename file [ suffix ]

basename strips its argument file of any leading directory prefixes. If the result contains the optional suffix,
basename also strips it. basename prints the result on the standard output.

For example, the command

basename /usr/fred/source.c

returns

source.c

basename is most useful when it is used with other shell commands. For example, the command

for i in *.c
do

cp $i `basename $i .c`.backup
done

copies every file that has the suffix .c into an identically named file that has the suffix .backup.

See Also
commands, ksh, sh

bc — Command
Interactive calculator with arbitrary precision
bc [ -l ] [ file ... ]

bc is a language that performs calculations on numbers with an arbitrary number of digits. bc is most commonly
used as an interactive calculator, where the user types arithmetic expressions in a syntax reminiscent of C. If you
invoke bc with no file argument, it reads the standard input. For example:

Input Output
(1000+23)*42 42966
k = 2^10
16 * k 16384
2 ^ 100 1267650600228229401496703205376

You can invoke bc with one or more file arguments. After bc reads each file, it reads the standard input. This
provides a convenient way to read programs that are stored in files. COHERENT includes a library of mathematical
functions for bc; to use it, invoke bc with its option -l.

The following summarizes briefly the facilities provided by bc. More information is available in the tutorial to bc
that is included with this manual.

The delimiters ‘/*’ and ‘*/’ enclose comments. Names of variables or functions consist of a lower-case letter
followed by any number of letters or digits. (Names cannot begin with an upper-case letter because numbers with
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a base greater than ten may need upper-case letters for their notation.) The three built-in variables obase, ibase,
and scale represent, respectively, the number base for printing numbers (default, ten), the number base for reading
numbers (default, ten), and the number of digits after the decimal (radix) point (default, zero). Variables may be
simple variables or arrays, and need not be pre-declared, with the exception of variables internal to functions.
Some examples of variables and array elements are x25, array[10], and number.

Numbers are any string of digits, and may have one decimal point. Digits are taken from the ordinary digits (0-9)
and then the upper-case letters (A-F), in that order.

Certain names are reserved for use as key words. The key words recognized by bc include the following:

if, for, do, while
Test conditions and define loops, with syntax identical to C

break, continue
Alter control flow within for and while loops.

quit Tell bc to exit immediately

define function (arg, ..., arg)
Define a bc function by a compound statement, as in C.

auto var, ..., var
Define variables that are local to a function, rather than having global scope.

return (value)
Return a value from a function.

scale (value)
Return the number of digits to the right of the decimal point in value.

sqrt (value)
Return the square root of value

length (value)
Return the number of decimal digits in value.

bc recognizes the following operators:

+ - * / % ^ ++
-- = += -= *= /= %=
^= == != < <= > >=

These operators are similar to those in C, with the exception of ^ and ^=, which are exponentiation operators.
Expressions can be grouped with parentheses. Statements are separated with semicolons or newlines, and may be
grouped with braces into compound statements.

bc prints the value of any statement that is an expression but is not an assignment.

As in the editor ed, an ‘!’ at the beginning of a line causes that line to be sent as a command to the COHERENT shell
sh.

The library lib.b holds code written in bc for the following mathematical variables and functions:

atan(z) Arctangent of z
cos(z) Cosine of z
exp(z) Exponential function of z
j(n,z) nth order Bessel function of z
ln(z) Natural logarithm of z
pi Value of pi to 100 digits
sin(z) Sine of z

If you invoke bc with its option -l, it reads lib.b and thus makes the above functions and constants available to
you.

Examples
The first example calculates the factorial of its positive integer argument by recursion.
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/*
* Factorial function implemented by recursion.
*/
define fact(n) {

if (n <= 1) return (n);
return (n * fact(n-1));

}

The second example also calculates the factorial of its positive integer argument, this time by iteration.

/*
* Factorial function implemented by iteration.
*/
define fact(n) {

auto result;

result = 1;
for (i=1; i<=n; i++) result *= i;
return (result);

}

Files
/usr/lib/lib.b — Source code for the library

See Also
commands, conv, dc, libmp
bc Desk Calculator Language, tutorial

Notes
Line numbers do not accompany error messages in source files.

bc performs integer calculations with arbitrary precision, limited only by the memory available. However, the
results of some calculations on numbers with fractional parts depends on the specified scale; see the tutorial for
details.

bcmp() — String Function (libc)
Compare two chunks of memory
int bcmp (source, destination, count)
VOID *source, *destination; size_t count;

Function bcmp() compares the first count bytes of data at address source with the first count bytes of data at
address destination. It returns the offset of the first character where source and destination differ; if they do not
differ, it returns zero.

See Also
libsocket, memcmp()

Notes
This function is included for compatibility with Berkeley socket code. It is equivalent to the standard C function
memcmp(), except that its first two arguments are reversed.

bcopy() — String Function (libc)
Berkeley function to copy memory
void bcopy(source, destination, amount)
char *source, *destination;
int size;

Function bcopy() copies size bytes of data from address source to address destination. destination must point to
enough allocated memory to hold size bytes of data, or problems will result.

See Also
libc, memcpy(),
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Notes
Please note the arguments of bcopy() are the opposite of those used by memcpy(). This function is included solely
for compatibility with existing code; users are encouraged to use the standard function memcpy() instead.

bind() — Sockets Function (libsocket)
Bind a name to a socket
#include <sys/types.h>
#include <sys/socket.h>
int bind (socket, name, namelen)
int socket, namelen; struct sockaddr *name;

Function bind() binds a name to an unnamed socket.

When function socket() creates a socket, that socket exists but has no name. bind() creates a special file, assigns
it a name, and binds that file to a socket. Thereafter, the socket can be accessed by reading or writing the file.

socket is a file descriptor that identifies the socket in question. It must have been returned by a call to socket().
name points to the full path name of the file to which socket is to be bound. The calling process must unlink name
when it no longer needs it. namelen gives the number of bytes in the path name name to which name points.
Under COHERENT, no element of name can exceed 14 characters (not including separating ‘/’ characters).

If all goes well, bind() returns zero. If something goes wrong, bind() returns -1 and sets errno to an appropriate
value. The following lists the errors that can occur, by the value to which bind() sets errno:

EBADF socket is somehow not a valid descriptor.

ENOTSOCK
socket is not a socket.

EADDRNOTAVAIL
name is not available from the local machine.

EADDRINUSE
name is already bound to another socket.

EINVAL
socket is already bound to a name.

EACCES
The memory to which name points is protected and the user lacks permission to access it.

EFAULT
name points to an illegal address.

ENOTDIR
The path name to which name points contains an element that is not a directory.

EINVAL
The path name to which name points contains a character with the high-order bit set.

ENOENT
A prefix component of the path name does not exist.

EIO An I/O error occurred while creating the directory entry for name or allocating its inode.

EROFS name would reside on a read-only file system.

EISDIR
name points to an empty path name.

Example
For an example of this function, see the Lexicon entry for libsocket.

See Also
connect(), getsockname(), libsocket, listen(), socket()
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bit — Definition
bit is an abbreviation for ‘‘binary digit’’. It is the basic unit of data processing. A bit can have a value of either zero
or one. Bits can be concatenated to form bytes.

A bit can be used either as a placeholder to construct a number with an absolute value, or as a flag whose value
has a particular meaning under specially defined circumstances. In the former use, a string of bits builds an
integer. In the latter use, a string of bits forms a map, in which each bit has a meaning other than its numeric
value.

See Also
bit map, byte, nybble, Programming COHERENT,
ANSI Standard, §1.6

bit-fields — Definition
A bit-field is a member of a structure or union that is defined to be a cluster of bits. It provides a way to represent
data compactly. For example, in the following structure

struct example {
int member1;
long member2;
unsigned int member3 :5;

}

member3 is declared to be a bit-field that consists of five bits. A colon ‘:’ precedes the integral constant that
indicates the width, or the number of bits in the bit-field. Also, the bit-field declarator must include a type, which
must be one of int, signed int, or unsigned int.

A bit-field that is not given a name may not be accessed. Such an object is useful as ‘‘padding’’ within an object so
that it conforms to a template designed elsewhere.

A bit-field that is unnamed and has a length of zero can be used to force adjacent bit-fields into separate objects.
For example, in the following structure

struct example {
int member1;
int member2 :5;
int :0;
int member3 :5;

};

the zero-length bit-field forces member2 and member3 to be written into separate objects.

Finally, it is illegal to take the address of a bit-field.

See Also
bit, bit map, byte, Programming COHERENT,
ANSI Standard, §3.5.2.1

Notes
Because bit-fields have many implementation-specific properties, they are not considered to be highly portable.
Bit-fields use minimal amounts of storage, but the amount of computation needed to manipulate and access them
may negate this benefit. Bit-fields must be kept in integral-sized objects because many machines cannot directly
access a quantity of storage smaller than a ‘‘word’’ (a word is generally used to store an int).

bit_count() — Sockets Function (libsocket)
Count bits in a bit-mask
int bit_count (mask)
unsigned mask;

The function bit_count() counts and returns the bits in bitmask that have been turned on.

See Also
libsocket
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bit map — Definition
A bit map is a string of bits in which each bit has a symbolic, rather than numeric, value.

See Also
bit, byte, Programming COHERENT,

Notes
C permits the manipulation of bits within a byte through the use of bit-field routines. These generate code rather
than calls to routines. Bit fields are generally less efficient than masking because they always generate masking
and shifting.

block — Technical Information
A block is a mass of data that is read at one time. Blocks are different lengths under different operating systems;
COHERENT defines a block as being BSIZE bytes long.

Information is read in blocks from block-special devices, such as the hard disk or floppy disks. This is done to
increase the speed with which data are read from these devices; reading characters one at a time, such as is done
with character-special devices such as terminals or modems, would be too slow.

See Also
Using COHERENT,
ANSI Standard, §3.6.2

boot — Driver
Boot block for hard-disk partition/nine-sector diskette

Several different programs are used to load COHERENT from a floppy or hard disk into memory. This process is
called bootstrapping (from the old expression about pulling one’s self up by one’s bootstraps) or booting for short.
The program used depends upon whether one is loading COHERENT from a hard-disk partition, from a 5.25-inch
floppy disk, or from a 3.5-inch floppy disk. All of these programs are installed onto your computer during normal
installation.

mboot is the master boot program. This is code that resides in the first 446 bytes of the first sector on the hard
disk. Because this sector also contains the partition table for the hard disk, mboot is normally written to the hard
drive only during installation and only by the fdisk utility.

boot, boot.fha, and boot.fva are variations of the same program. boot occupies the first sector of any bootable
hard-drive partition. boot.fha occupies the first sector of a 5.25-inch, high-density floppy disk. boot.fva occupies
the first sector of a 3.5-inch, high-density floppy disk.

boot is normally copied to the root partition automatically during installation by a command such as:

/bin/dd if=/conf/boot of=/dev/at0a count=1

In another example, the following commands format and create a file system on a high-density, 5.25-inch floppy
disk:

/etc/fdformat -v /dev/fha0
/etc/mkfs /dev/fha0 2400
/bin/cp /conf/boot.fha /dev/fha0

When invoked, boot loads for the tertiary boot program tboot. This, in turn, searches the root directory ‘/’ for file
autoboot, which is the COHERENT kernel. If it finds this kernel, boot loads and invokes it. Otherwise, it gives the
prompt ?, and you must type the name of the operating-system kernel to load (typically, ‘‘coherent’’). If boot
cannot find the requested kernel or if an error occurs, boot does not print an error message, but re-prompts with
‘?’.

Files
/conf/boot — Boot for AT partitions
/conf/boot.at — Boot for AT partitions (linked to /conf/boot)
/conf/boot.atx — AT master boot (linked to /conf/mboot)
/conf/boot.f9a — Boot for single-density, nine-sector, 5.25-inch floppy disk
/conf/boot.fha — Boot for 15-sector, 5.25-inch floppy disk
/conf/boot.fqa — Boot for quad-density, nine-sector, 3.5-inch floppy disk
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/conf/boot.fva — Boot for 18-sector, 3.5-inch floppy disk
/conf/mboot — AT master boot

See Also
device drivers, fdisk, mboot, mkfs, tboot

boot.fha — Device Driver
Boot block for floppy disk

To be bootable, a COHERENT file system must contain a boot block (either boot or boot.fha). In addition, all hard
disks must contain the master boot block mboot or an equivalent.

boot.fha is a boot block for a hard disk partition or a 15-sector floppy. It must be installed as the first sector of
the partition or diskette, as follows:

/etc/fdformat -a /dev/fha0
/etc/badscan -v -o proto1 /dev/fha0 2400
/etc/mkfs /dev/fha0 proto1
rm proto1
cp /conf/boot.fha /dev/fha0

boot.fha searches its root directory ‘/’ for file autoboot. If it finds this kernel, boot.fha loads and runs it.
Otherwise, it gives the prompt ?, to which the user must type the name of the operating-system kernel to load
(typically, coherent). If boot.fha cannot find the requested kernel or if an error occurs, boot.fha repeats the
prompt and the user must type another name.

Files
/conf/boot.fha — Partition or 15-sector 96tpi floppy boot block

See Also
badscan, boot, device drivers, fdisk, mboot, mkfs

booting — Technical Information
How booting works

Booting is the method by which COHERENT is loaded from a hard disk or floppy disk and set into action. The term
comes from the old expression about pulling one’s self up by one’s bootstraps.

This article discusses the events that take place while booting the COHERENT system. You do not need to read this
article to know how to boot COHERENT, as all booting details are handled by COHERENT automatically. However, if
you are interested in the details, or want to tailor the system to your needs, it will help.

Two I/O devices are involved in booting. The first device is called the boot device; it contains the program
necessary to invoke the COHERENT system and start it running. The second device is called the root device; it
contains the root file system after the system is running. In most cases, these two devices are the same physical
device.

Initial Startup
When you boot from a hard disk, your computer’s BIOS loads the master boot from the first sector of your hard
disk into memory. The master boot then loads the secondary boot from the first sector of your boot partition.
When you boot from a floppy disk, however, the BIOS loads the secondary boot directly.

This program, called the bootstrap or secondary boot, is very small (only 512 bytes), so it cannot do very much.
Therefore, its main purpose is to read in a larger, more complex program called the tertiary boot, or /tboot. It is
/tboot that actually performs the work of loading the COHERENT system into memory.

If the secondary boot does not find a file called /tboot, it print a ‘?’ to prompt for the boot image you want it to
load. This indicates a severe error because it means that the tertiary boot can not be found.

If the secondary boot finds /tboot, it loads it into memory and lets it take over booting. The first thing /tboot does
is search for a file called /autoboot in the root directory of the device being booted. If /tboot finds /autoboot, it
first pauses for five seconds, so you can abort the process and boot another kernel if you wish. If you do not abort
booting within five seconds, /tboot then loads /autoboot into memory and runs it. If, however, /tboot cannot
find /autoboot, it prompts you to type the name of the COHERENT image to boot, usually /coherent. You can type
the commands dir or ls if you do not remember the name of the image you wish to boot. Note that /autoboot is
usually a link to /coherent.
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If you need to find the file name of the kernel you are now running (usually /coherent), use the program fifo(),
which is kept in library libmisc. See the Lexicon entry libmisc for details.

After it loads the system image /autoboot from the root device, the system initializes all devices, as well as starting
the idle process and program /etc/init. The idle process uses any leftover computer time.

init controls the operation of the system from this point on. It first executes the command /etc/brc (i.e., ‘‘boot
run commands’’), which can run commands like fsck. brc can request a reboot, remain in single-user mode, or
enter multi-user mode automatically. init then calls the shell to handle commands from the system console. The
shell responds by prompting with #, and expects regular commands. At this point, the system is in single-user
mode, which means that no other users can log in to the system. The shell is running in superuser mode and only
the console’s user is logged in.

At this point, you can enter commands to the system in a normal fashion. One difference from normal, multi-user
operation is that the system is in single-user mode, to allow special processing to take place before other users log
in. Being in single-user mode gives you the opportunity to run fsck to check the file system and perform other
administrative tasks before other users log into the system.

When administrative activities are finished, you should type <ctrl-D>. This terminates single-user operation; init
then opens the system to other users.

The file /etc/rc contains shell commands that the system executes just before making the system available to
other users. This file typically includes commands to delete temporary files and mount standard devices. It also
performs any installation-specific commands you require. As system administrator, you maintain this file. You
must be sure that it is properly updated and never removed.

One command that must be included in /etc/rc is /etc/update, which periodically calls sync() to update buffered
data to the disk.

init also maintains the file /etc/utmp, which notes users’ login and logout.

Features of the Master Bootstrap
The COHERENT master bootstrap allows you to boot different operating systems from different partitions of any
hard drive. It is more powerful than similar programs of other operating systems, and we strongly recommend that
you use it. If you do not use the MWC bootstrap, you may have to use floppy disks to boot up MS-DOS and
COHERENT. If you have two hard drives and you are placing COHERENT on the second drive, you must use the
MWC bootstrap.

The bootstrap can be configured in three ways:

1. No active partition. With this configuration, you have the greatest degree of flexibility. When you boot your
system, the following prompt appears on the screen:

Select Partition 0-7

This means that you must press the number key that corresponds to the partition that holds the root
partition of the operating system you wish to boot. (For example, if you wish to boot COHERENT and its root
partition is on partition 2, then press the ‘2’ key in response to this prompt.) If you have one hard drive, only
partitions 0 through 3 are relevant to you. The bootstrap waits indefinitely until you tell it what to boot.

2. COHERENT is active partition. Under this configuration, the system will automatically boot COHERENT unless
you press the number key that represents the root partition of another operating system (e.g., MS-DOS) while
the A-drive light is on.

3. MS-DOS (or another operating system) is active partition. Under this configuration, the system automatically
boots MS-DOS unless you hit the number key that represents the root partition of another operating system
(e.g., COHERENT) while the A-drive light is on.

Under some hardware configurations, particularly faster 80386 machines, having an active partition can cause
difficulties when you try to boot a non-active partition. It often is difficult to press the appropriate number key at
the right time, and the right time itself can vary. For this reason, the default setting of the master bootstrap is to
have no active partition. If at any time you wish to reconfigure the bootstrap, you need only to run the fdisk utility
under COHERENT and access option 1 (Change active partition) of the option menu. Make the desired change and
then save the updated partition table.
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Files Used During Startup
The following files are used when the system is in single-user mode:

/etc/drvld.all Device tables to load. This usually names the keyboard driver to use, should you be using the
keyboard driver vtnkb.

/etc/init Initiate a process on each terminal line, call login when appropriate.

/etc/brc Shell commands for booting.

/etc/checklist List of partitions for fsck to check.

/bin/sh Bourne shell.

/bin/ksh Korn shell.

The following files are needed after the system has entered multi-user mode:

/bin/login This file holds the program that controls logging in.

/etc/getty This file holds the executable program that permits a user to log in on a port.

/etc/logmsg This file holds the text of the login prompt.

/etc/motd This file holds the message of the day.

/etc/mount.all Shell script to mount partitions.

/etc/rc This file holds a series of shell commands that coherent executes when it enters multi-user
startup.

/etc/ttys This file is holds information about terminals. Its contents are read by getty to ensure that it
sets the port to the correct baud rate and terminal type.

/etc/utmp This file holds information about who is logged in right now. It is read by the command who.

Building a Bootable Floppy Disk
Building a bootable floppy disk for COHERENT requires a few more steps than are required to build a bootable
floppy for MS-DOS. The task is not particularly painful, it simply requires a little more attention to detail.

The following details the steps required to build a version of COHERENT that can be booted off a floppy disk. Note
that the following describes an extremely minimal configuration, which can be used only in single-user mode.

1. Format the Floppy Disk
To begin, format the floppy disk with the command /etc/fdformat. After you format the floppy disk, use
the command /etc/mkfs command to write a blank file system onto it.

2. Write a Bootstrap to the Floppy Disk
To make the floppy disk bootable, you must copy a special program, or bootstrap, into the first sector (or
boot block) of the floppy disk. (This is the same program that is called the secondary boot in the above
sections.) If a floppy disk is to be bootable, a set of instructions must be present in the boot block that tell
the system the name of the kernel — that is, the file on the floppy disk to be loaded and executed.

To write the bootstrap to the floppy disk, you must copy it to the device that the floppy disk is in. This
ensures that the bootstrap is copied to the first sector, or boot block, of the floppy disk. For example, to
copy the bootstrap for a 1.2-megabyte floppy disk in floppy drive 0 (or A), type the command:

cp /conf/boot.fha /dev/fha0

To copy the bootstrap for a 1.44-megabyte floppy disk to floppy drive 0, type the command:

cp /conf/boot.fva /dev/fva0

3. Write Tertiary Boot
After you have copied the boot sector, you must mount the floppy device and copy /tboot to it. To mount
a 1.44-megabyte floppy disk to floppy drive 0, type the command:

/etc/mount /dev/fva0 /f0
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Copy /tboot with the following command:

cp /tboot /f0

Warning: Never mount the floppy disk before you copy the bootstrap to it!

See the Lexicon article on floppy disks for the table of floppy disk devices to use with the above
commands.

4. Copy the Necessary Files
Once the bootstrap is properly written to the floppy disk, it is now time to copy the essential files to it.
Type the following commands:

mkdir /f0/etc
mkdir /f0/dev
mkdir /f0/bin
mkdir /f0/tmp
cp /tboot /coherent /coherent.sym /f0
cp /etc/init /etc/brc /etc/profile /f0/etc
cp /dev/* /f0/dev
cp /bin/sh /bin/sync /f0/bin

If you are using either of the loadable keyboard drivers nkt or vtnkb, also execute the following
commands:

mkdir /f0/drv
mkdir /f0/conf
mkdir /f0/conf/kbd
cp /etc/drvld.all /f0/etc
cp /drv/* /f0/drv
cp /conf/kbd/* /f0/conf/kbd

The above files will let you run COHERENT in single-user mode, which is all that you need when you boot
COHERENT from a floppy disk.

Note that the files /etc/brc and /etc/drvld.all are scripts that you must modify to suit your needs. The
file /etc/brc is a key file in the booting process, so be prepared to modify its contents. The significance of
this will be reviewed in depth in the next section.

Warning: After you have finished copying files to the floppy disk, execute the command umount to
unmount the floppy disk. If you do not, the files will be damaged or lost!

5. The Boot Sequence, Modifications To Make the Disk Work
When the computer system powers up and accesses the floppy disk, it reads the boot sector of the disk,
which in turn looks for the file /tboot and executes it. /tboot looks for the kernel named /autoboot,
reads it, and executes it. If /tboot cannot find /autoboot, it prompts you to type the name of the kernel
to boot.

The kernel loads and invokes /etc/init which, in part, looks for and executes the statements in /etc/brc,
which, in turn, typically loads loadable drivers and runs /etc/fsck to check the file systems. If you wish
to run fsck on the floppy disk, you must copy it from the hard drive.

What is truly important is the exit status of /etc/brc. If its exit status is not zero, the system remains in
single-user mode. If its exit status is zero, the system attempts to enter multiuser mode.

The above-listed files are the bare minimum for a single-user floppy disk. To build a floppy disk with the
minimum files needed, your /etc/brc file should look like this:

/etc/drvld.all
exit 1

This forces an exit status of one and causes COHERENT to spawn a single-user shell, /bin/sh.

From the shell prompt, you can do whatever you wish, but you are limited to the commands and functions
copied to the floppy disk.

/etc/brc is not the only file that may need modification. The kernel (/coherent or /autoboot) must have
the values rootdev and pipedev patched for the floppy disk’s major and minor device numbers. This
patching can be done with the commands /bin/db or /conf/patch.
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To patch the kernel on the floppy disk mounted on /f0 for a 5.25-inch, high-density disk as the root and
pipe device, type:

/conf/patch /f0/coherent rootdev=makedev\(4,14\)
/conf/patch /f0/coherent pipedev=makedev\(4,14\)

For a 3.5-inch, high-density disk, type:

/conf/patch /f0/coherent rootdev=makedev\(4,15\)
/conf/patch /f0/coherent pipedev=makedev\(4,15\)

Finally, note that when you boot your floppy disk, the disk must not be write protected. This is because COHERENT

must be able to write temporary files into directory /tmp; if it cannot do so, booting will fail.

Uses of a Bootable Floppy Disk
A bootable floppy disk can be a lifesaver should something occur to corrupt the COHERENT file system on the hard
drive. A properly prepared floppy can be used to recover a damaged file system by running /etc/fsck. You can
also use it to copy files from the hard drive should you decide to re-install COHERENT on the hard drive.

Multiuser-mode floppy disks can also be built for the fun of seeing such a system run from a floppy disk. The
capacity of such a system is limited, of course, but it can be done.

See Also
Administering COHERENT, boot, libmisc, tboot

Notes
Some users have attempted to use Norton Utilities or similar tools to rearrange the partition table, only to find that
COHERENT no longer boots. That is because the kernel has embedded within it the name of the partition on which
it and its root file system live. By using Norton Utilities to shuffle the partition table, the kernel will no longer be
able to find any of the files or utilities it needs to boot your system.

If you still wish to shuffle your disk’s partition table, be sure to change the name of the root device within the
kernel before you change the partition table.

boottime — System Administration
File that holds time system was last booted

/etc/boottime is an empty file maintained by the init process and the date command. The modification time of
boottime, as displayed by the command ls -l, is the time that the system was last booted. You can read the time
shown by boottime with ls -l, or with the system calls stat or fstat.

Files
/etc/boottime

See Also
Administering COHERENT, date, init, mount

Notes
Commands that depend upon /etc/boottime may malfunction if the system’s date is not set correctly. For
instance, the mount command depends on the relative modification times of /etc/boottime and /etc/mtab to
detect whether the mount table has been invalidated by a system boot. If the date is set sufficiently far into the
past, the mount table may appear to be valid when in fact it is not.

brc — System Administration
Perform maintenance chores, single-user mode
/etc/brc

The shell script /etc/brc is executed by the init process when the COHERENT system enters single-user mode. The
commands in brc do such things as set system clock, set the local time zone, and call fsck to scan and (if
necessary) fix the file systems that that are named in the file /etc/checklist.

See Also
Administering COHERENT, checklist, init, rc
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Notes
The default message consists of the bell character <ctrl-G> plus the text Going multiuser. If the bell annoys you,
simply delete the <ctrl-G> from this string.

break — Command
Exit from shell construct
break [ n ]

The command break is used with the shell to control how it performs loops. It is analogous to the break keyword
in C.

When it is used without an argument, break forces the shell to exit from the innermost current for, until, or while
loop. If used with an argument, break exits from n levels of for, until, or while loops.

The shell executes break directly.

See Also
commands, continue, for, ksh, sh, until, while

break — C Keyword
Exit from loop or switch statement

break is a C statement that causes an immediate exit from a switch sequence, or from a while, for, or do loop.

See Also
C keywords
ANSI Standard, §6.6.6.3

brk() — System Call (libc)
Change size of data area
#include <unistd.h>
brk(addr)
char *addr;

The break is the lowest address above the data area of a process. brk() sets the break to the given addr, possibly
rounding up by some machine-dependent factor.

See Also
libc, malloc(), sbrk(), unistd.h If the request succeeds, brk() returns zero. Otherwise, it returns -1 and sets errno
to ENOMEM.

bsearch() — General Function (libc)
Search an array
#include <stdlib.h>
char *bsearch(key, array, number, size, comparison)
char *key, *array;
size_t number, size;
int (*comparison)();

bsearch() searches a sorted array for a given item. item points to the object sought. array points to the base of the
array; it has number elements, each of which is size bytes long. Its elements must be sorted into ascending order
before it is searched by bsearch().

comparison points to the function that compares array elements. comparison must return zero if its arguments
match, a number greater than zero if the element pointed to by arg1 is greater than the element pointed to by arg2,
and a number less than zero if the element pointed to by arg1 is less than the element pointed to by arg2.

bsearch() returns a pointer to the array element that matches item. If no element matches item, then bsearch()
returns NULL. If more than one element within array matches item, which element is matched is unspecified.

Example
This example uses bsearch() to translate English into ‘‘bureaucrat-ese’’.
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#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct syntab {
char *english, *bureaucratic;

} cdtab[] = {
/* The left column is in alphabetical order */

"affect", "impact",
"after", "subsequent to",
"broke", "revenue shortfall",
"building", "physical facility",
"call", "refer to as",
"do", "implement",

"false", "inoperative",
"finish", "finalize",
"first", "initial",
"full", "in-depth",
"help", "facilitate",

"idiot", "elected representative",
"kill", "terminate with extreme prejudice",
"lie", "inoperative statement",
"order", "prioritize",
"talk", "interpersonal communication",
"then", "at that point in time",
"use", "utilize"

};

int
comparator(key, item)
char *key;
struct syntab *item;
{

return(strcmp(key, item->english));
}

main()
{

struct syntab *ans;
char buf[80];

for(;;) {
printf("Enter an English word: ");
fflush(stdout);

if(gets(buf) || !strcmp(buf, "quit") == NULL)
break;

if((ans = bsearch(buf, (char *)cdtab,
sizeof(cdtab)/ sizeof(struct syntab),
sizeof(struct syntab),
comparator)) == NULL)

printf("%s not found\n");

else
printf("Don’t say \"%s\"; say \"%s\"!\n",

ans->english, ans->bureaucratic);
}

return(EXIT_SUCCESS);
}

See Also
libc, qsort(), stdlib.h
ANSI Standard, §7.10.6.2
POSIX Standard, §8.1
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Notes
The name bsearch implies that this function performs a binary search. A binary search looks at the midpoint of
the array, and compares it with the element being sought. If that element matches, then the work is done. If it
does not, then bsearch() checks the midpoint of either the upper half of the array or of the lower half, depending
upon whether the midpoint of the array is larger or smaller than the item being sought. bsearch() bisects smaller
and smaller regions of the array until it either finds a match or can bisect no further.

It is important that the input array be sorted, or bsearch() will not function correctly.

buf.h — Header File
Buffer header
#include <sys/buf.h>

Header file <sys/buf.h> defines the structure used to hold buffers.

See Also
header files

buffer — Definition
A buffer is a portion of memory set aside to hold data read from or to be written to another process or device.
Often, although not always, this involves setting aside a portion of the arena with malloc or its related functions.

Buffering, and problems therewith, are encountered most often when using the standard input and output (STDIO)
routines. Many operating systems (including COHERENT) automatically place data from a peripheral device into a
buffer. Buffers normally can be cleared with fflush(), by pressing the carriage return key on routines that perform
input, or by sending a newline character on routines that perform output. The function fclose(), which closes a file
stream, flushes all buffers associated with that stream. exit() calls fclose().

Combining unbuffered and buffered I/O functions on the same file or device within one program will produce
results that are at best unpredictable.

Example
The following example demonstrates what does and does not happen when you use fflush() with the output buffer.

#include <stdio.h>
main()
{

extern char *malloc();
char *buffer;

/* use malloc() to create a 120-char buffer */
if ((buffer = malloc(120)) == NULL) {

/* if malloc() fails, bail out */
fprintf(stderr, "malloc failed\n");
exit(1);

}

printf("Type your name: ");
fflush(stdout);
gets(buffer);
printf("Your name is %s\n", buffer);

}

See Also
arena, array, close(), exit(), fflush(), malloc(), Programming COHERENT, stdio.h

build — Command
Install COHERENT onto a hard disk
/etc/build

build installs COHERENT onto your hard disk. COHERENT runs /etc/build to install itself onto your hard disk.
After installation, you should never have an occasion to run build.

See Also
commands
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builtin — Command
Execute a command as a built-in command
builtin command [ arg ... ]

The command ksh is used by the Korn shell ksh to establish command as a built-in command.

See Also
commands, ksh

byte — Definition
A byte is a group of bits that encodes a character or a small-integer quantity. A byte, like a dollar, consists of eight
bits.

The ANSI Standard defines the data type char as being equal to one byte. It defines all other data types as
multiples of char.

See Also
bit, char, data formats, nybble, Programming COHERENT
ANSI Standard, §1.6

byte ordering — Definition
Machine-dependent ordering of bytes

Byte ordering is the order in which a given machine stores successive bytes of a multibyte data item. Different
machines order bytes differently.

The following example displays a few simple examples of byte ordering:

main()
{

union
{

char b[4];
int i[2];
long l;

} u;
u.l = 0x12345678L;

printf("%x %x %x %x\n",
u.b[0], u.b[1], u.b[2], u.b[3]);

printf("%x %x\n", u.i[0], u.i[1]);
printf("%lx\n", u.l);

}

When run on ‘‘big-endian’’ machines, such as the M68000 or the Z8000, the program gives the following results:

12 34 56 78
1234 5678
12345678

As you can see, the order of bytes and words from low to high memory is the same as is represented on the screen.

However, when this program is run on ‘‘little-endian’’ machines, such as the PDP-11, you see these results:

34 12 78 56
1234 5678
12345678

As you can see, the PDP-11 inverts the order of bytes within words in memory.

Finally, when the program is run on the i8086 you see these results:

78 56 34 12
5678 1234
12345678

The i8086 inverts both words and long words.
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See Also
C language, canon.h, data formats, Programming COHERENT

bzero() — Sockets Function (libsocket)
Initialize memory to NUL
void bzero(address, size)
char *address;
int size;

The function bzero() initializes size bytes of memory to NUL, beginning at address.

See Also
libsocket, memset()

Notes
bzero() is included for compatibility with Berkeley socket code. It is equivalent to the standard C function
memset().
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c — Command
Print multi-column output
c [ -lN ] [ -wN ] [ -012 ]

c reads lines from the standard input and writes them in columns on the standard output. The longest input line
and the width of the page determine how many columns will fit across the page.

c recognizes the following options:

-lN Set the length of the page to N lines. c columnizes its output by pages when this option is used with mode
1 or mode 2.

-wN Set the width of the page to N characters. The default is 80.

-0 Multi-column mode 0. Order the fields horizontally across the page.

-1 Multi-column mode 1 (default mode). Order the fields vertically down each column; the last column may
be short.

-2 Multi-column mode 2. Order the fields similarly to mode 1, but place blank fields in the last output line
rather than the last column.

Options may also be given in the environmental variable C, separated by white space. Command line options
override options in the environment. For example,

export C="-l56 -w72 -2"
c -w80 <file1

has the same effect as

c -l56 -w72 -2 -w80 <file1

This command sets the page width to 80 rather than to 72.

See Also
commands, export, pr

Diagnostics
c prints ‘‘out of memory’’ and returns an exit status of one if it cannot allocate enough memory to process its input.

C keywords — Overview
A keyword is a word that is reserved within C, and must not be used to name variables, functions, or macros.
COHERENT recognizes the following C keywords:
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alien auto break
case char const
continue default do
double else enum
extern float for
goto if int
long register return
short signed sizeof
static struct switch
typedef union unsigned
void volatile while

In conformity with the ANSI standard, the keywords entry and readonly are no longer recognized. The ANSI
Standard transfers the functionality for readonly to the keyword const. For details, see the Lexicon entry for
const.

The COHERENT C compiler recognizes the keywords const and volatile, but ignores them.

The following tokens are C++ keywords:

class
inline
private
protected
public

Your programs should avoid using them in the interest of compatibility with future versions of the COHERENT C
compiler.

See Also
C language

C language — Overview
COHERENT includes a C compiler that fully implements the Kernighan and Ritchie standard of C, with extensions
taken from the ANSI standard.

Please note that in the following discussion, word indicates an object 16 bits long; dword, an object 32 bits long;
and qword, an object 64 bits long:

Identifiers
Characters allowed: A-Z, a-z, _, 0-9
Case sensitive
Number of significant characters in a variable name: 255

Escape Sequences
The COHERENT C compiler recognizes the following escape sequences:

ASCII Ctrl Hex Description
\a BEL <ctrl-G> 0x07 audible tone (bell)
\b BS <ctrl-H> 0x08 backspace
\f FF <ctrl-L> 0x12 formfeed
\n LF <ctrl-J> 0x0A linefeed (newline)
\r CR <ctrl-M> 0x0D carriage return
\t HT <ctrl-I> 0x09 horizontal tab
\v VT <ctrl-K> 0x0B vertical tab
\xhh 0xhh hex (one to four hex digits [0-9a-fA-F])
\ooo octal (one to four octal digits [0-7])

Trigraphs
The COHERENT C compiler recognizes the following trigraphs:
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Trigraph Character
Sequence Represented

??= #
??( [
??/ \
??) ]
??’ ^
??< {
??! |
??> }
??- ~

For details, see the Lexicon entry trigraph.

Reserved Identifiers (Keywords)
See the Lexicon entry for C keywords.

Data Formats (in bits)

char 8
unsigned char 8
double 64
enum 8|32
float 32
int 32
unsigned int 32
long 32
unsigned long 32
pointer 32
short 16
unsigned short 16

Floating-Point Formats

IEEE floating-point float:
1 sign bit
8-bit exponent
24-bit normalized fraction with hidden bit
Bias of 127

IEEE floating-point double:
1 sign bit
11-bit exponent
53-bit fraction
Bias of 1,023

Reserved values:
+- infinity, -0

All floating-point operations are done as doubles.

Limits
Maximum bitfield size: 32 bits
Maximum number of cases in a switch: no formal limit
Maximum number of arguments in function declaration: 32
Maximum number of arguments in function call: no formal limit
Maximum block nesting depth: no formal limit
Maximum parentheses nesting depth: no formal limit
Maximum structure size: no formal limit
Maximum array size: no formal limit

Preprocessor Instructions

LEXICON

408 C language



#define #ifdef
#else #ifndef
#elif #include
#endif #line
#if #undef
#pragma

Structure Name-Spaces
Supports both Berkeley and Kernighan-Ritchie conventions for structure in union.

Function Linkage
Return values in EAX
Return values for doubles:

With software floating-point emulation returns in EDX:EAX
Hardware floating-point (-VNDP) returns in the NDP stacktop %st0

Parameters pushed on stack in reverse order:
chars, shorts, and pointers pushed as dwords
Structures copied onto the stack

Caller must clear parameters off stack
Stack frame linkage is done through ESP register

Structures and Alignment
Structure members are aligned according to the most strictly aligned type within the structure. For
example, a structure is word-aligned if it contains only shorts, but on dword if it contains an int or long.
#pragma align n can override this feature.

Registers
Registers EBX, EDI, and ESI are available for register variables. Only 32-bit objects go into registers.

Special Features and Optimizations
Both implementations of C perform the following optimizations:

• Branch optimization is performed: this uses the smallest branch instruction for the required range.

• Unreached code is eliminated.

• Duplicate instruction sequences are removed.

• Jumps to jumps are eliminated.

• Multiplication and division by constant powers of two are changed to shifts when the results are the same.

• Sequences that can be resolved at compile time are identified and resolved.

Compilation Environments
COHERENT supports a number of different compilation environments. For example, you can compile a program to
use the environment for UNIX System V release 4 or release 3, or the Berkeley environment. This is done by setting
manifest constants on your C compiler’s command line, which, in turn, invokes various settings within the header
files. For details, see the Lexicon entry for header files.

Example
The following gives an example C program, which does something interesting. It was writen by Charles Fiterman:

char *x="char *x=%c%s%c;%cmain(){printf(x,34,x,34,10,10);}%c";
main(){printf(x,34,x,34,10,10);}

See Also
argc, argv, C keywords, C preprocessor, environ, envp, header files, initialization, libraries, main(), name
space, offsetof(), Programming COHERENT, trigraph

C preprocessor — Overview
Preprocessing encompasses all tasks that logically precede the translation of a program. The preprocessor
processes headers, expands macros, and conditionally includes or excludes source code.

LEXICON

C preprocessor 409



Directives
The C preprocessor recognizes the following directives:

#if . . . . . . . . . . . . . Include code if a condition is true
#elif. . . . . . . . . . . . Include code if directive is true
#else . . . . . . . . . . . Include code if preceding directives fail
#endif . . . . . . . . . . End of code to be included conditionally

#ifdef . . . . . . . . . . . Include code if a given macro is defined
#ifndef . . . . . . . . . . Include code if a given macro is not defined

#define . . . . . . . . . . Define a macro
#undef . . . . . . . . . . Undefine a macro
#include . . . . . . . . . Read another file and include it
#line . . . . . . . . . . . Reset current line number

The COHERENT preprocessor also recognizes the directive #pragma, which performs implementation-specific tasks.
See the Lexicon entry on #pragma for details.

A preprocessing directive is always introduced by the ‘#’ character. The ‘#’ must be the first non-white space
character on a line, but it may be preceded by white space and it may be separated from the directive name that
follows it by one or more white space characters.

Preprocessing Operators
The Standard defines two operators that are recognized by the preprocessor: the ‘‘stringize’’ operator #, and the
‘‘token-paste’’ operator ##. It also defines a new keyword associated with preprocessor statements: defined.

The operator # indicates that the following argument is to be replaced by a string literal; this literal names the
preprocessing token that replaces the argument. For example, consider the macro:

#define display(x) show((long)(x), #x)

When the preprocessor reads the line

display(abs(-5));

it replaces it with the following:

show((long)(abs(-5)), "abs(-5)");

The ## operator performs ‘‘token pasting’’ — that is, it joins two tokens together, to create a single token. For
example, consider the macro:

#define printvar(x) printf("%d\n", variable ## x)

When the preprocessor reads the line

printvar(3);

it translates it into:

printf("%d\n", variable3);

In the past, token pasting had been performed by inserting a comment between the tokens to be pasted. This no
longer works.

Predefined Macros
The ANSI Standard describes the following macros that must be recognized by the preprocessor:

__DATE__ Date of translation
__FILE__ Source-file name
__LINE__ Current line within source file
__STDC__ Conforming translator and level
__TIME__ Time of translation

For more information on any one of these macros, see its entry.

Conditional Inclusion
The preprocessor will conditionally include lines of code within a program. The directives that include code
conditionally are defined in such a way that you can construct a chain of inclusion directives to include exactly the
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material you want.

The preprocessor keyword defined determines whether a symbol is defined to the #if preprocessor directive. For
example,

#if defined(SYMBOL)

or

#if defined SYMBOL

is equivalent to

#ifdef SYMBOL

except that it can be used in more complex expressions, such as

#if defined FOO && defined BAR && FOO==10

defined is recognized only in lines beginning with #if or #elif.

Note that defined is a preprocessor keyword, not a preprocessor directive or a C keyword. You could, for example,
write a function called defined() without any complaint from the C compiler.

The COHERENT preprocessor implicitly defines the following macros:

__COHERENT__
__MWC__
__IEEE__
__I386__

_IEEE
_I386
MWC
COHERENT

These can be used to include conditionally code that applies to a specific edition of COHERENT. COHERENT 286
uses DECVAX floating-point code; whereas COHERENT 386 uses IEEE. If you were writing code that intensively
used floating-point numbers and you wanted to compile the code under both editions of COHERENT, you could
write code of the form:

#ifdef _DECVAX
...

#elif _IEEE
...

#endif

The C preprocessor under each edition of COHERENT would ensure that the correct code was included for
compilation.

Macro Definition and Replacement
The preprocessor performs simple types of macro replacement. To define a macro, use the preprocessor directive
#define identifier value. The preprocessor scans the translation unit for preprocessor tokens that match identifier;
when one is found, the preprocessor substitutes value for it.

Inclusion of Macros or Functions
The ANSI standard demands that every routine implemented as a macro also be implemented as a function, with
the exception of the macro va_arg(). For example, COHERENT implements the STDIO routines toupper() and
tolower() both as macros and functions.

By default, COHERENT uses the macro version of routines. To force it to use the function of a routine, you must
undefine the macro version. You can do that either by using the preprocessor instruction #undef in your code, or
by using the option -U on the cc command line. For example, to compel COHERENT to use the function version of
tolower(), include the statement

#undef tolower

in your program, or include the argument

-Utolower
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on the cc command line.

cpp
Under COHERENT, C preprocessing is done by the program cpp. The cc command runs cpp as the first step in
compiling a C program. cpp can also be run by itself.

cpp reads each input file; it processes directives, and writes its product on stdout.

If its -E option is not used, cpp also writes into its output statements of the form #line n filename, so that the
parser cc0 can connect its error messages and debugger output with the original line numbers in your source files.

See the Lexicon entry on cpp for more information.

See Also
C language, cc, cpp, defined, macro, manifest constant,

cabs() — Mathematics Function (libm)
Complex absolute value function
#include <math.h>
double cabs(z) struct { double r, i; } z;

cabs() computes the absolute value, or modulus, of its complex argument z. The absolute value of a complex
number is the length of the hypotenuse of a right triangle whose sides are given by the real part r and the
imaginary part i. The result is the square root of the sum of the squares of the parts.

Example
For an example of this function, see the entry for acos().

See Also
hypot(), lib

cal — Command
Print a calendar
cal [ month ] [ year ]

cal prints a calendar for the specified year (by default, the current year), or for the given month if one is specified.
If neither is specified, a calendar of the current month is printed. year must be between 1 and 9999. month may
be either the month name (lower case, spelled out or first three letters) or a number between 1 and 12.

For example, try:

cal september 1752

See Also
commands

Notes
cal assumes that the Gregorian calendar was adopted on September 3, 1752, which is the date of its adoption
throughout the British empire.

calendar — Command
Reminder service
calendar [ -a ] [ -ffile ]... [ -d[date] ] [ -w[date] ] [ -m[month] ]

calendar is the COHERENT system’s ‘‘reminder service’’. It reads a calendar file, which should contain information
organized by date; if an event is scheduled to happen today or tomorrow, calendar prints the entry on the standard
output. Thus, you can use calendar to remind you of both one-time events (such as appointments) and yearly
events (such as anniversaries).

calendar recognizes the following command-line options:

-a Search the calendars of all users and send mail. Default is to search only your calendar.
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-ffile Search each ‘‘file’’ in order given. Default is $HOME/.calendar.

-d[date] Print all entries for ‘‘date’’. Default date is today.

-w[date] Print all entries for the week beginning with ‘‘date’’.

-m[month] Print entries for the given ‘‘month’’.

By default, calendar print entries for today and tomorrow, with ‘‘tomorrow’’ encompassing the following Monday
should ‘‘today’’ be a Friday or Saturday. If an entry in your .calendar has an at-sign ‘@’ embedded in it, calendar
prints it regardless of when it is to occur, until its date has passed.

The following gives an example of a calendar file. As you can see, calendar understands different formats of dates:

Apr 16 Dave’s birthday
7/6 Dad’s birthday
Sep 26 Mom’s birthday
Jun 30 Barry’s birthday
10/4 Marianne’s birthday
Jul 31 Anniversary!
Mar 16 Pot luck luncheon

You can run calendar automatically by embedding the command

calendar

in your .profile.

If you wish, you can run calendar automatically for yourself, by inserting it into file
/usr/spool/cron/crontabs/root. In this case, calendar should be used with its -a option, to force it to search
each user’s $HOME directory for .calendar and mail the appointments it finds to that user.

See Also
commands

Notes
calendar’s notion of tomorrow understands weekends but not holidays. Thus, if you invoke calendar on a Friday,
it returns the events for that day and the following Saturday, Sunday, and Monday. If Monday is a holiday,
however, you will not receive appointments for Tuesday.

calling conventions — Definition
The following presents the calling conventions for COHERENT.

The calling conventions of C take into account machine architecture and the fact that the number of arguments
passed to a function may vary, as in the functions printf() and scanf().

For example, consider the following C program, called foo.c:

short a;
long b;
char c;

foo()
{

example(a, b, c);
}

Compiling this program with the command

cc -S foo.c

generates the assembly-language code (with added comments):

.alignoff

.comm a, 2 / a, b, and c are commons in the .bss

.comm b, 4

.comm c, 1
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foo:
.text
.globl foo

foo:
push %ebp
movl %ebp, %esp
movsxb %eax, c / move c to %eax with sign extend
push %eax / pass c
push b / pass b
movsxw %eax, a / move a to %eax with sign extend
push %eax / pass a
call example

leave / epilog code for foo
ret
.align 4

Note the following points:

• Parameters are pushed in reverse order. You should not depend on this feature, as the ANSI standard says
that parameters may be calculated and pushed in any order.

• The stack is reset by the caller, not the callee. Only the caller knows the number of parameters pushed.

• All parameters become int or double when passed under Kernighan & Ritchie C. This changes under ANSI C.

Now consider the module example.c, which gives the receiving end:

double
example(x, y, z)
short x;
long y;
char z;
{

int tmp;

tmp = x * y;
return (tmp + z);

}

The command

cc -S example.c
generates the code:

.alignoff

.text

.globl example

example:
enter $4, $0 / 4 bytes of local variables
push %edi
movl %eax, 12(%ebp) / x * y
imull 8(%ebp) / 8 == 4 + sizeof(int)
movl -4(%ebp), %eax / save into tmp
movl %edi, 16(%ebp) / tmp + z
addl %edi, %eax / return double in EDX:EAX
movl %eax, %edi
call _dicvt
pop %edi

leave / leave with result in %eax:%edx
ret
.align 4

After the prologue code, the stack always looks like
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return address

passed parameters

saved %EBP

local variables

other saved registers may include

%ESI, %EDI, and %EBX

High Addresses

4 (%EBP)

%EBP
-4 (%EBP)

%ESP
Notice that parameters start at

[4 + first parm size](%ebp)

and go to higher addresses, whereas local variables start at

-4(%ebp)

and go to lower addresses. Therefore, if you have a local array and overwrite it in the forward direction, you
clobber your caller’s %ebp; if you overwrite it in the backward direction, you clobber your caller’s register variables
(although if the caller has no register variable, it’s harmless).

On the 80386, the stack starts at 0x80000000 and grows down being expanded by the system as it is needed.
Reasonable programs should never have stack-overflow problems, as they did under COHERENT 286.

Note that the convention for returning floating-point numbers differ depending upon whether a program uses
software floating-point emulation, or hardware floating-point code as invoked by the cc option -VNDP. Programs
that use hardware floating point return double in the NDP stack top $st0.

See Also
C language, Programming COHERENT,

calloc() — General Function (libc)
Allocate dynamic memory
#include <stdlib.h>
char *calloc(count, size)
unsigned count, size;

The function calloc() is one of a set of routines that helps manage a program’s arena. calloc() calls malloc() to
obtain a block large enough to contain count items of size bytes each; it then initializes the block to zeroes. When
this memory is no longer needed, you can return it to the free pool by using the function free().

calloc() returns the address of the chunk of memory it has allocated, or NULL if it could not allocate memory.

Example
This example attempts to calloc() a small portion of memory; it then reallocates it to demonstrate realloc().

#include <stdio.h>
#include <stdlib.h>

main()
{

register char *ptr, *ptr2;
extern char *calloc(), *realloc();
unsigned count, size;

count = 4;
size = sizeof(char *);
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if ((ptr = calloc(count, size)) != NULL)
printf("%u blocks of size %u calloced\n",

count, size);
else

printf("Insuff. memory for %u blocks of size %u\n",
count, size);

if ((ptr2 = realloc(ptr,(count*size) + 1)) != NULL)
printf("1 block of size %u realloced\n",

(count*size)+1);
}

See Also
alloca(), arena, free(), libc, malloc(), memok(), realloc(), setbuf(), stdlib.h
ANSI Standard, §7.10.3.1
POSIX Standard, §8.1

Notes
The function alloca() allocates space on the stack. The space so allocated does not need to be freed when the
function that allocated the space exits.

cancel — Command
Cancel a print job
cancel [job [ ... job]] [-all]

The command cancel cancels execution of a printing job. It recognizes the following options:

-all Cancel all requests that are currently executing.

job Cancel each job. Each job is identified by the number printed by lp when the job was first spooled.

When a job is cancelled, it remains in the print queue for the remainder of its ‘‘lifetime’’, and may be printed later.
When it cancels a job, cancel sends mail to the owner of the job to notify him of the job’s cancellation.

cancel does not affect jobs that have already been downloaded into their destination printers. The only way to stop
a job from printing after it has been downloaded is to clear the printer’s memory. See the documentation that
came with your printer for instructions on how to do that.

See Also
commands, lp, printer

Notes
cancel is a link to lpstat.

cancel is available only under COHERENT release 4.2 and subsequent releases.

canon.h — Header file
Portable layout of binary data
#include <canon.h>
#include <sys/types.h>

The routines declared in canon.h were designed to aid the transfer of binary information among different
implementations of COHERENT. For technical reasons, these routines are slated to be dropped from a future
release of COHERENT. Their use is strongly discouraged.

See Also
ar.h, byte ordering, header files,

captoinfo — Command
Convert termcap data to terminfo form
captoinfo [filename]

The command captoinfo converts a file of terminal information that is in the termcap format into terminfo source
format.
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captoinfo reads filename; if no file is named on the command line, it reads the standard input. It writes its
product to the standard output.

The input to captoinfo must be in correct termcap format. captoinfo complains about all constructs that it
cannot interpret.

See Also
commands, termcap, terminfo, tic

Notes
The original code for captoinfo was written by Robert Viduya of the Georgia Institute of Technology, and was
adapted for COHERENT by Mark Williams Company.

case — Command
Execute commands conditionally according to pattern
case token in [pattern [|pattern] ...) sequence ;;] ... esac

case is a construct that used by the shell. It tells the shell to execute commands conditionally, according to a
pattern. It tests the given token successively against each pattern, in the order given. It then executes the
commands in the sequence corresponding to the first matching pattern. Optional ‘|’ clauses specify additional
patterns corresponding to a single sequence. If no pattern matches the token, the case construct executes no
commands.

Each pattern can include text characters (which match themselves), special characters ‘?’ (which matches any
character except newline) and ‘*’ (which matches any sequence of non-newline characters), and character classes
enclosed in brackets ‘[ ]’; ranges of characters within a class may be separated by ‘-’. In particular, the last pattern
in a case construct is often ‘*’, which will match any token.

The shell executes case directly.

Example
The following example prints a string in response to a command-line option:

case $1 in
FOO) echo "This is option FOO";;
BAR) echo "This is option BAR";;
BAZ) echo "This is option BAZ";;
*) echo "An asterisk marks the default option";;

esac

See Also
commands, ksh, sh

case — C Keyword
Introduce entry in switch statement

The C keyword case is a label within a switch statement. For example:

while ((int = getchar()) != EOF)
switch (foo) {
case ’q’:
case ’Q’:

exit(0);
case ’ ’:

n++;
default:

break;
}

case labels each of the three possibilities recognized by the switch statement: a space, ‘q’, and ‘Q’. The statements
that follow a case statement behave as if they were enclosed within braces.

Note that a case statement is simply a label: it sets a point to which the switch statement jumps, and execution
continues from that point. Once a switch statement jumps to the point marked by a given case label, execution
continues until an exit, break, or return is read, or the closing brace of the switch statement is encountered.
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See Also
break, C keywords, switch
ANSI Standard, §6.6.4.2

cast — Definition
The cast operation ‘‘coerces’’ a variable from one data type to another.

There are two reasons to cast a variable. The first is to convert a variable’s data into a form acceptable to a given
function. For example, the function hypot takes two doubles. If the variables leg_x and leg_y are floats, the rules
of C require that they be cast automatically to double. If the compiler did not do not do this, hypot would grab a
double’s worth of memory: the four bytes of your float, plus four bytes of whatever happens to be sitting on the
stack. The leads to results that are less than totally accurate.

The other reason to cast a variable is when you cast one type of pointer to another. For example,

char *foo;
int *bar;
bar = (int *)foo;

Although foo and bar are of the same length, you would cast foo in this instance to stop the C compiler from
complaining about a type mismatch.

See Also
data formats, data types, Programming COHERENT

cat — Command
Concatenate the contents of a file to the standard output
cat [ -u ][ file ... ]

cat copies each file arguments to the standard output. A ‘-’ tells cat to read the standard input. If no file is
specified, cat reads the standard input.

The -u option makes the output unbuffered. Otherwise, cat buffers the output in units of the machine’s disk block
size (e.g., 512 bytes).

See Also
commands

Notes
If you redirect cat’s the output to one of its input files, it will loop forever, reading from the file the text that it has
just written into it: in effect, cat will chase its own tail endlessly.

caveat utilitor — Definition
Latin (sort of): ‘‘Let the user beware.’’ Cf, ‘‘Heads up!’’ in the American dialect.

See Also
Using COHERENT

cc — Command
C compiler
cc [compiler options] file . . . . [linker options]

cc is the program that compiles C programs. It guides files of source and object code through each phase of
compilation and linking. cc has many options to assist in the compilation of C programs; in essence, however, all
you need to do to produce an executable file from your C program is type cc followed by the name of the file or files
that hold your program. cc checks whether the file names you give it are reasonable, selects the right phase for
each file, and performs other tasks that ease the compilation of your programs.

How cc Works
cc works as follows:

• If a file ends in .c, cc assumes that it contains C code, and compiles it. The compiler generates a relocatable
object module with the suffix .o.
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• If the file has the suffix .s, cc assumes that it is a file of assembly language, and invokes the assembler as to
assemble it. The assembler also generates a relocatable object module with the suffix .o.

• cc assumes that all files with the suffix .o are relocatable object modules. It also assumes that all files with
the suffix .a are libraries of object modules. It passes both directly to the linker ld. Additional libraries can
also be invoked by using the -l option cc, described below.

• Once all files of C code and assembly language have been compiled or assembled, cc then invokes the linker
ld to link the newly created object files with any objects and libraries you named on cc command line. It also
automatically includes the C runtime startup routine and the standard C library, so you do not have to name
these on your cc command line.

• cc also cleans up after itself. It removes all of its temporary files automatically. If only one object file is
created during compilation, cc deletes it after linking; however, if more than one object file is created, or if an
object file of the same name existed before you began to compile, then the object file or files are not deleted.

Assuming that no error occurs along the way, cc writes the linked result into a file named after the file on its
command line, minus that file’s suffix — .c, .s, or .o, depending upon the type of data file holds. It is now ready to
be executed.

Options
The following lists all of cc’s command-line options. cc passes some options through to the linker ld unchanged,
and correctly interprets for it the options -o and -u.

A number of the options are esoteric and normally are not used when compiling a C program. The following are
the most commonly used options:

-c Compile only; do not link
-f Link in floating-point printf()
-lname Pass library libname.a to linker
-o name Call output file name
-V Print verbose listing of cc’s action

? Print a detailed usage message that describes available cc’s options to the standard output.

-A MicroEMACS option. If an error occurs during compilation, cc automatically invokes the MicroEMACS screen
editor. The error or errors are displayed in one window and the source code file in the other, with the cursor
set to the line number indicated by the first error message. Typing <ctrl-X>> moves to the next error, <ctrl-
X>< moves to the previous error. To recompile, close the edited file with <ctrl-Z>. Compilation will continue
either until the program compiles without error, or until you exit from the editor by typing <ctrl-U> followed
by <ctrl-X><ctrl-C>.

-a By default, cc generates an executable file that is named after the source module. For example, the
command

cc foo.c

generates an executable named foo. If you name more than source module on the cc command line, by
default it names the executable after the first module you name. The option -a tells cc to create an
executable file named a.out. This is for compatibility with other versions of UNIX. Note that option -o,
described below, overrides the effect of -a.

-B[path]
Backup option. Use an alternative path for the compiler phases cc0, cc1, cc2, and cc3. If path is supplied,
cc prefixes it onto the name of each phase of the compiler, to form the name of the new compiler phase, and
the path to the directory in which it lives. If you do not supply a string, cc prefixes the name of the current
directory.

If you precede a -B option with a -t option, the -B option affects only the phase of the compiler that the -t
option names. For example, the command

cc -t0 -B/usr/fred/bin hello.c

compiles hello.c using the version of cc0 found in directory /usr/fred/bin. You can include any number of
pairs of -t and -B options, with each -t option naming phase of the compiler that the subsequent -B option
affects.
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If followed by the prefix option -M, the name of the compiler phase in question is prefixed by the string
named in the -M option. For example, the command

cc -t0 -B/usr/fred/cc -Mnew a.c

tells the compiler to look for /usr/fred/cc/newcc0 and execute instead of the usual cc0.

-c Compile option. Suppress linking and the removal of the object files.

-Dname[=value]
Define name to the preprocessor, as if set by a #define directive. If value is present, it is used to initialize
the definition.

-E Expand option. Run the C preprocessor cpp and write its output onto the standard output.

-f Floating-point option. Include the version of printf() that converts floating-point numbers to text. If a
program is compiled without the -f option but attempts to print a floating-point number during execution by
using the e, f, or g format specifications to printf(), the program prints the error message

You must compile with -f option for floating point

and exits.

Note that if you wish to include the libm library routines that perform floating-point mathematics functions,
you must specify -lm on the command line to load the library libm.a.

-g Generate debugging information. Same as option -VDB, described below.

-Iname
Include option. Specify a directory the preprocessor should search for files given in #include directives,
using the following criteria: If the #include statement reads

#include "file.h"

cc searches for file.h first in the source directory, then in the directory named in the -Iname option, and
finally in the system’s default directories. If the #include statement reads

#include <file.h>

cc searches for file.h first in the directories named in the -Iname option, and then in the system’s default
directories. Multiple -Iname options are executed in the order of their appearance.

-K Keep option. Do not erase the intermediate files generated during compilation. Temporary files will be
written into the current directory.

-Ldirectory
Tell the linker ld to search directory for its libraries before it searches the directories named in the
environmental variable LIBPATH. You can use multiple -L options in a cc command.

-lname
Pass the name of a library to the linker. cc expands -lname into /lib/libname.a. If an alternative library
prefix has been specified by the -tl and -Bstring options, then -lname expands to stringlibname.a. Note that
this is a linker option, and so must appear at the end of the cc command line, or it will not be processed
correctly.

-Mstring
Machine option. Use an alternate version of cc0, cc1, cc1a, cc1b, cc2, cc3, as, lib*.a, and crts0.o, named
by fixing string between the directory name and the pass and file names. For examples, see the description
of option -B, above. Before release 4.0 of COHERENT, cc executed the compiler phases /lib/cc0 through
/lib/cc3. Beginning with release 4.0, cc itself contains all the compiler phases; the preprocessor /lib/cpp
executes the parser /lib/cc0, but compiler phases /lib/cc[123] do not exist for cc.

-o name
Output option. Rename the executable file from the default to name. Unlike UNIX, the COHERENT
implementation of cc by default names an executable after the first first .c or .o file given on the command
line, instead of naming it a.out. If you want cc to conform to the UNIX standard, set include the option -o
a.out when you set the environmental variable CCHEAD. This environmental variable is described below.
Another approach is to invoke make to control compilation. For details, see the Lexicon entry for make.
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-O Optimize option. Run the code generated by the C compiler through the peephole optimizer. The optimizer
pass is mandatory for the i8086, Z8000, and M68000 compilers, and need not be requested. It is optional
for the PDP-11 compiler, but is recommended for all files except those that consist entirely of initialized
tables of data.

-p Generate code to profile functions calls. Programs compiled with this option can be run with the command
prof to print a summary of how much time the program spends in each subroutine, to help you optimize
your programs. You must use this option to compile each module whose functions you wish to examine;
and you must also use this option on the cc command line with which you link the program, to ensure that
the appropriate library routines are linked into your executable.

-Q Quiet option. Suppress all messages, no matter how awful an error they indicate.

-S Suppress the object-writing and link phases, and invoke the disassembler cc3. This option produces an
assembly-language version of a C program for examination, for example if a compiler problem is suspected.
The assembly-language output file name replaces the .c suffix with .s. This is equivalent to the -VASM
option.

-Tsize
cc writes its temporary data into two 64-kilobytes buffers that grow as needed. The -T option tells cc to use
buffers of size bytes each. Setting these to a larger size may help large files compile faster. Setting size to
zero forces cc to use temporary files written onto the disk.

-tphase
Take option. Use an alternate versions of the phase or phases of the compiler specified by phase, which
must consist of one or more of the characters 01ab23sdlrt. If no phase string appears, cc uses alternate
version of every phase of the compiler, except the preprocessor. If the -t option is followed by a -B option, cc
prefixes the path named in the -B option to the phases and files named in the -t option. For examples, see
the description of option -B, above,

-Uname
Undefine symbol name. Use this option to undefine symbols that the preprocessor defines implicitly, such as
the name of the native system or machine. Users who wants serious ISO namespace compliance should
compile with the options:

-UCOHERENT -UMWC -U_I386 -U_IEEE

These options turn off the macros COHERENT, MWC, _I386, and _IEEE, all of which are automatically
defined by the COHERENT preprocessor.

-V Verbose option. cc prints onto the standard output a step-by-step description of each action it takes.

-Vstring
Variant option. Toggle (i.e., turn on or off) the variant string during the compilation. Variants that are
marked on are turned on by default. Options marked Strict: generate messages that warn of the conditions
in question. cc recognizes the following variants:

-VASM
Output assembly-language code. Identical to -S option, above. Default is off.

-VCOMM
Permit .com-style data items. Default is on.

-VCPLUS
Ignore C++-style comments, which are deliminted by ‘//’.

-VDB
Generate debugging information, same as option -g described above. Default is off.

-VFLOAT
Include floating-point printf() code. Same as option -f, described above.

-VNDP
Generate code to execute hardware floating-point arithmetic. cc executes floating-point arithmetic on
an 80387 or 80486-DX, if present; or use software emulation if it is not. For more information, see the
section on hardware floating-point arithmetic, below.
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-VNOWARN
Suppress all warning and strict messages. Use this option if you wish to suppress cascades of warning
message about, say, nested comments.

-VPROF
Same as the option -p, described above.

-VPSTR
‘‘imPure’’ strings: Place all string literals into the .data segment rather than in .text. This may be
necessary for sloppily written code that assumes it can overwrite string literals.

-VQUIET
Suppress all messages. Identical to -Q option. Default is off.

-VS Turn on all strict checking. Default is on.

-VSBOOK
Strict: note deviations from The C Programming Language, ed. 1. Default is off.

-VSCCON
Strict: note constant conditional. Default is off.

-VSINU
Implement struct-in-union rules instead of Berkeley-member resolution rules. Default is off, i.e.,
Berkeley rules are the default.

-VSLCON
Strict: int constant promoted to long because value is too big. Default is on.

-VSMEMB
Strict: check use of structure/union members for adherence to standard rules of C. Default is on.

-VSNREG
Strict: register declaration reduced to auto. Default is on.

-VSPVAL
Strict: pointer value truncated. Default is off.

-VSRTVC
Strict: risky types in truth contexts. Default is off.

-VSTAT
Give statistics on optimization.

-VSUREG
Strict: note unused registers. Default is off.

-VSUVAR
Strict: note unused variables. Default is on.

-VVERSION
Print to the standard error the compiler’s version number. This information is useful when reporting
bugs.

-VWIDEN
Warn the user if a parameter is widened from char or short to int, or from float to double. Default is
off.

-V3GRAPH
Translate ANSI trigraphs. Default is off.

cc reads the environmental variables CCHEAD and CCTAIL and appends their contents to, respectively, the
beginning and the end of the cc command. For example, if you insert the following entries into your .profile

export CCHEAD=’-f -o a.out’
export CCTAIL=-lm

then cc will always use the floating-point version of printf(), always write its executable into file a.out, and always
link in the mathematics library libm. In effect, it turns the command
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cc hello.c

into:

cc -f -o a.out hello.c -lm

If you set a command option in CCHEAD or CCTAIL, you can always override it for specific cc commands. For
example, if you have set -o a.out in CCHEAD, typing the command

cc -o hello hello.c

generates the command:

cc -o a.out -o hello hello.c

The latter -o option is the one used, and in effect cancels the effect of the CCHEAD entry. Thus, setting CCHEAD
and CCTAIL give you a flexible way to set cc’s default behavior.

Note that

CCHEAD=’-Wa,-f -Wl,-oa.out’

will give you a compilation environment that matches that of the UNIX operating system.

Linking Objects
The linker ld does not know about paths: it links exactly what you tell it to link via the cc command line. cc looks
for compiler phases and for runtime startoff and library by searching the directories named in the environmental
variable LIBPATH. If you do not define LIBPATH in your environment, it searches the default LIBPATH as defined
in /usr/include/path.h. If you define LIBPATH, cc searches the directories in the order you specify. For example,
a typical definition is:

export LIBPATH=:/lib:/usr/lib

This searches the current directory ‘.’, then /lib, then /usr/lib.

Hardware Floating-Point Arithmetic
The C compiler shipped with version of COHERENT prior to release 4.2 generated software floating-point calls. That
is, floating-point code such as

d1 = d2 + 2.5;

generated calls to software routines to perform the desired operations. This is called ‘‘software floating-point
arithmetic’’.

Beginning with release 4.2.05 of COHERENT, cc generates software floating-point arithmetic by default, but let you
select ‘‘hardware floating-point arithmetic’’. With hardware floating-point arithmetic, cc generates calls to execute
floating-point operations on a numeric data processor (NDP), such as the 80387. To do so, use the option -VNDP.
A program compiled to perform hardware floating-point arithmetic runs correctly on any computer: if the computer
contains an NDP, the code executes on that part; but if the computer does not contain an NDP, the code emulates
the operation of the NDP. Note that persons who do not have an NDP on their system must have the floating-point
emulation module linked into their kernels; those who do have an NDP, however, do not need this module. The
libraries in directories /lib and /usr/lib are compiled using software floating-point arithmetic; the libraries
compiled with hardware floating-point arithmetic are kept in sub-directories /lib/ndp and /usr/lib/ndp.

As mentioned above, code compiled to use hardware floating-point arithmetic runs much faster when your
machine has an NDP installed. If your system does not have a numeric co-processor (i.e., an 80387, 80487, an
80486DX, or a Pentium) and you wish to run programs that intensively use floating-point arithmetic, we strongly
urge you to consider upgrading your system to use an NDP.

Files
/bin/cc — C compiler

See Also
as, C language, cc0, cc1, cc2, cc3, commands, C preprocessor, cpp, ld, LIBPATH, make, makedepend,
TMPDIR
The C Language tutorial
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Diagnostics
The following gives the error messages returned by the COHERENT C compiler. The messages are in alphabetical
order, and each is marked as to whether it is a fatal, error, warning, or strict condition. A fatal message usually
indicates a condition that caused the compiler to terminate execution. Fatal errors from the later phases of
compilation often cannot be fixed, and may indicate problems in the compiler or assembler. An error message
points to a condition in the source code that the compiler cannot resolve. This almost always occurs when the
program does something illegal, e.g., has unbalanced braces. Warning messages point out code that is compilable,
but may produce trouble when the program is executed. A strict message refers to a passage in the code that is
unorthodox and may not be portable. For error messages produced by the assembler as, the linker ld, and the
preprocessor cpp, see their respective entries in the Lexicon.

ambiguous reference to ‘‘string’’ (error)
string is defined as a member of more than one struct or union, is referenced via a pointer to one of those
structs or unions, and there is more than one offset that could be assigned.

argument list has incorrect syntax (error)
The argument list of a function declaration contains something other than a comma-separated list of
formal parameters.

array bound must be a constant (error)
An array’s size can be declared only with a constant; you cannot declare an array’s size by using a variable.
For example, it is correct to say foo[5], but illegal to say

bar = 5;
foo[bar];

array bound must be positive (error)
An array must be declared to have a positive number of elements. The array flagged here was declared to
have a negative size, e.g., foo[-5].

array bound too large (error)
The array is too large to be compiled with 32-bit index arithmetic. You should devise a way to divide the
array into compilable portions.

array row has 0 length (error)
This message can be triggered by either of two problems. The first problem is declaring an array to have a
length of zero; e.g., foo[0]. The second problem is failing to declare the size of a dimension other than the
first in a multi-dimensional array. C allows you to declare an indefinite number of array elements of n
bytes each, but you cannot declare n array elements of an indefinite length. For example, it is correct say
foo[][5] but illegal to say foo[5][].

associative expression too complex (fatal)
An expression that uses associative binary operators (e.g., ‘+’) has too many operators; for example,
i=i1+i2+i3+ . . . +i30;. You should simplify the expression.

bad argument storage class (error)
An argument was assigned a storage class that the compiler does not recognize. The only valid storage
class is register.

bad external storage class (error)
An extern has been declared with an invalid storage class, e.g., register or auto.

bad field width (error)
A field width was declared either to be negative or to be larger than the object that holds it. For example,
char foo:9 or char foo:-1 will trigger this error.

bad filler field width (error)
A filler field width was declared either to be negative or to be larger than the object that holds it. For
example, char foo:9 or char foo:-1 will trigger this error.

bad flexible array declaration (error)
A flexible array is missing an array boundary; e.g., foo[5][]. C permits you to declare an indefinite number
of array elements of n bytes each, but you cannot declare an array to have n elements of an indefinite
number of bytes each.
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break not in a loop (error)
A break occurs that is not inside a loop or a switch statement.

call of non function (error)
What the program attempted to call is not a function. Check to make sure that you have not accidentally
declared a function as a variable; e.g., typing char *foo; when you meant char *foo();.

cannot add pointers (error)
The program attempted to add two pointers. ints or longs may be added to or subtracted from pointers,
and two pointers to the same type may be subtracted, but no other arithmetic operations are legal on
pointers.

cannot apply unary ‘&’ to a register variable (error)
Because register variables are stored within registers, they do not have addresses, which means that the
unary & operator cannot be used with them.

cannot cast double to pointer (error)
The program attempted to cast a double to a pointer. This is illegal.

cannot cast pointer to double (error)
The program attempted to cast a pointer to a double. This is illegal.

cannot cast structure or union (error)
The program attempted to cast a struct or a union. This is illegal.

cannot cast to structure or union (error)
The program attempted to cast a variable to a union or struct. This is illegal.

cannot declare array of functions (error)
For example, the declaration extern int (*f)[](); declares f to be an array of pointers to functions that return
ints. Arrays of functions are illegal.

cannot declare flexible automatic array (error)
The program does not explicitly declare the number of elements in an automatic array.

cannot initialize fields (error)
The program attempted to initialize bit fields within a structure. This is not supported.

cannot initialize unions (error)
The program attempted to initialize a union within its declaration. unions cannot be initialized in this
way.

string: cannot reopen (fatal)
The optimizer cannot reopen a file with which it has worked. Make sure that your mass storage device is
working correctly and that it is not full.

case not in a switch (error)
The program uses a case label outside of a switch statement. See the Lexicon entry for case.

character constant overflows long (error)
The character constant is too large to fit into a long. It should be redefined.

character constant promoted to long (warning)
A character constant has been promoted to a long.

class not allowed in structure body (error)
A storage class such as register or auto was specified within a structure.

compound statement required (error)
A construction that requires a compound statement does not have one, e.g., a function definition, array
initialization, or switch statement.

constant expression required (error)
The expression used with a #if statement cannot be evaluated to a numeric constant. It probably uses a
variable in a statement rather than a constant.

constant ‘‘number’’ promoted to long (warning)
The compiler promoted a constant in your program to long; although this is not strictly illegal, it may
create problems when you attempt to port your code to another system, especially if the constant appears
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in an argument list.

constant used in truth context (strict)
A conditional expression for an if, while, or for statement has turned out to be always true or always false.
For example, while(1) will trigger this message.

construction not in Kernighan and Ritchie (strict)
This construction is not found in The C Programming Language; although it can be compiled by
COHERENT, it may not be portable to another compiler.

continue not in a loop (error)
The program uses a continue statement that is not inside a for for while loop.

declarator syntax (error)
The program used incorrect syntax in a declaration.

default label not in a switch (error)
The program used a default label outside a switch construct. See the Lexicon entry for default.

divide by zero (warning)
The program will divide by zero if this code is executed. Although the program can be parsed, this
statement may create trouble if executed.

duplicated case constant (error)
A case value can appear only once in a switch statement. See the Lexicon entries for case and switch.

empty switch (warning)
A switch statement has no case labels and no default labels. See the Lexicon entry for switch.

error in enumeration list syntax (error)
The syntax of an enumeration declaration contains an error.

error in expression syntax (error)
The parser expected to see a valid expression, but did not find one.

exponent overflow in floating point constant (warning)
The exponent in a floating point constant has overflowed. The compiler has set the constant to the
maximum allowable value, with the expected sign.

exponent underflow in floating point constant (warning)
The exponent in a floating point constant has underflowed. The compiler has set the constant to zero, with
the expected sign.

expression too complex (fatal)
The code generator cannot generate code for an expression. You should simplify your code.

external syntax (error)
This could be one of several errors, most often a missing ‘{’.

file ends within a comment (error)
The source file ended in the middle of a comment. If the program uses nested comments, it may have
mismatched numbers of begin-comment and end-comment markers. If not, the program began a comment
and did not end it, perhaps inadvertently when dividing by *something, e.g., a=b/*cd;.

function cannot return a function (error)
The function is declared to return another function, which is illegal. A function, however, can return a
pointer to a function, e.g., int (*signal(n, a))()

function cannot return an array (error)
A function is declared to return an array, which is illegal. A function, however, can return a pointer to a
structure or array.

functions cannot be parameters (error)
The program uses a function as a parameter, e.g., int q(); x(q);. This is illegal.

identifier ‘‘string’’ is being redeclared (error)
The program declares variable string to be of two different types. This often is due to an implicit
declaration, which occurs when a function is used before it is explicitly declared. Check for name
conflicts.
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identifier ‘‘string’’ is not a label (error)
The program attempts to goto a nonexistent label.

identifier ‘‘string’’ is not a parameter (error)
The variable ‘‘string’’ did not appear in the parameter list.

identifier ‘‘string’’ is not defined (error)
The program uses identifier string but does not define it.

identifier ‘‘string’’ not usable (error)
string is probably a member of a structure or union which appears by itself in an expression.

illegal character constant (error)
A legal character constant consists of a a backslash ‘\’ followed by a, b, f, n, r, t, v, x, or up to three octal
digits.

illegal character (number decimal) (error)
A control character was embedded within the source code. number is the decimal value of the character.

illegal # construct (error)
The parser recognizes control lines of the form #line_number (decimal) or #file_name. Anything else is
illegal.

illegal integer constant suffix (error)
Integer constants may be suffixed with u, U, l, or L to indicate unsigned, long, or unsigned long.

illegal label ‘‘string’’ (error)
The program uses the keyword string as a goto label. Remember that each label must end with a colon.

illegal operation on ‘‘void’’ type (error)
The program tried to manipulate a value returned by a function that had been declared to be of type void.

illegal structure assignment (error)
The structures have different sizes.

illegal subtraction of pointers (error)
A pointer can be subtracted from another pointer only if both point to objects of the same size.

illegal use of a pointer (error)
A pointer was used illegally, e.g., multiplied, divided, or &-ed. You may get the result you want if you cast
the pointer to a long.

illegal use of a structure or union (error)
You may take the address of a struct, access one of its members, assign it to another structure, pass it as
an argument, and return. All else is illegal.

illegal use of floating point (error)
A float was used illegally, e.g., in a bit-field structure.

illegal use of ‘‘void’’ type (error)
The program used void improperly. Strictly, there are only void functions; COHERENT also supports the
cast to void of a function call.

illegal use of void type in cast (error)
The program uses a pointer where it should be using a variable.

inappropriate signed (error)
The signed modifier may only be applied to char, short, int, or long types.

inappropriate ‘‘long’’ (error)
Your program used the type long inappropriately.

inappropriate ‘‘short’’ (error)
Your program used the type short inappropriately.

inappropriate ‘‘unsigned’’ (error)
Your program used the type unsigned inappropriately.

LEXICON

cc 427



indirection through non pointer (error)
The program attempted to use a scalar (e.g., a long or int) as a pointer. This may be due to not de-
referencing the scalar.

initializer too complex (error)
An initializer was too complex to be calculated at compile time. You should simplify the initializer to
correct this problem.

integer pointer comparison (strict)
The program compares an integer or long with a pointer without casting one to the type of the other.
Although this is legal, the comparison may not work on machines with non-integer size pointers, e.g.,
Z8001 or LARGE-model on the i8086 family, or on machines with pointers larger than ints, e.g., the
M68000 family of microprocessors.

integer pointer pun (strict)
The program assigns a pointer to an integer, or vice versa, without casting the right-hand side of the
assignment to the type of the left-hand side. For example,

char *foo;
long bar;
foo = bar;

Although this is permitted, it is often an error if the integer has less precision than the pointer does. Make
sure that you properly declare all functions that returns pointers.

internal compiler error (fatal)
The program produced a state that should not happen during compilation. Try to localize the offending
statement if at all possible. Forward a minimal program that exhibits the error, preferably on a machine-
readable medium, to Mark Williams Company, together with the version number of the compiler, the
command line used to compile the program, and the system configuration. For immediate advice during
business hours, telephone Mark Williams Company technical support.

‘‘string’’ is a enum tag (error)
‘‘string’’ is a struct tag (error)
‘‘string’’ is a union tag (error)

string has been previously declared as a tag name for a struct, union, or enum, and is now being declared
as another tag. Perhaps the structure declarations have been included twice.

‘‘string’’ is not a tag (error)
A struct or union with tag string is referenced before any such struct or union is declared. Check your
declarations against the reference.

‘‘string’’ is not a typedef name (error)
string was found in a declaration in the position in which the base type of the declaration should have
appeared. string is not one of the predefined types or a typedef name. See the Lexicon entry on typedef
for more information.

‘‘string’’ is not an ‘‘enum’’ tag (error)
An enum with tag string is referenced before any such enum has been declared. See the Lexicon entry for
enum for more information.

class ‘‘string’’ [number] is not used (strict)
Your program declares variable string or number but does not use it.

label ‘‘string’’ undefined (error)
The program does not declare the label string, but it is referenced in a goto statement.

left side of ‘‘string’’ not usable (error)
The left side of the expression string should be a pointer, but is not.

lvalue required (error)
The left-hand value of a declaration is missing or incorrect. See the Lexicon entries for lvalue and rvalue.

member ‘‘string’’ is not addressable (error)
The array string has exceeded the machine’s addressing capability. Structure members are addressed with
16-bit signed offsets on most machines.
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member ‘‘string’’ is not defined (error)
The program references a structure member that has not been declared.

mismatched conditional (error)
In a ‘?:’ expression, the colon and all three expressions must be present.

misplaced ‘‘:’’ operator (error)
The program used a colon without a preceding question mark. It may be a misplaced label.

missing ‘‘(’’ (error)
The if, while, for, and switch keywords must be followed by parenthesized expressions.

missing ‘‘=’’ (warning)
An equal sign is missing from the initialization of a variable declaration. Note that this is a warning, not
an error: this allows COHERENT to compile programs with ‘‘old style’’ initializers, such as int i 1. Use of
this feature is strongly discouraged, and it will disappear when the ANSI standard for the C language is
adopted in full.

missing ‘‘,’’ (error)
A comma is missing from an enumeration member list.

missing ‘‘:’’ (error)
A colon ‘:’ is missing after a case label, after a default label, or after the ‘?’ in a ‘?’-‘:’ construction.

missing ‘‘;’’ (error)
A semicolon ‘;’ does not appear after an external data definition or declaration, after a struct or union
member declaration, after an automatic data declaration or definition, after a statement, or in a for(;;)
statement.

missing ‘‘]’’ (error)
A right bracket ‘]’ is missing from an array declaration, or from an array reference; for example, foo[5.

missing ‘‘{’’ (error)
A left brace ‘{’ is missing after a struct tag, union tag, or enum tag in a definition.

missing ‘‘}’’ (error)
A right brace ‘}’ is missing from a struct, union, or enum definition, from an initialization, or from a
compound statement.

missing ‘‘while’’ (error)
A while command does not appear after a do in a do-while() statement.

missing label name in goto (error)
A goto statement does not have a label.

missing member (error)
A ‘.’ or ‘->’ is not followed by a member name.

missing right brace (error)
A right brace is missing at end of file. The missing brace probably precedes lines with errors reported
earlier.

missing ‘‘string’’ (error)
The parser cc0 expects to see token string, but sees something else.

missing semicolon (error)
External declarations should continue with ‘,’ or end with ‘;’.

missing type in structure body (error)
A structure member declaration has no type.

multiple classes (error)
An element has been asigned to more than one storage class, e.g., extern register.

multiple types (error)
An element has been assigned more than one data type, e.g., int float.

nonterminated string or character constant (error)
A line that contains single or double quotation marks left off the closing quotation mark. A newline in a
string constant may be escaped with ‘\’.
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number has too many digits (error)
A number is too big to fit into its type.

only one default label allowed (error)
The program uses more than one default label in a switch expression. See the Lexicon entries for default
and switch for more information.

out of tree space (fatal)
The compiler allows a program to use up to 350 tree nodes; the program exceeded that allowance.

parameter string is not addressable (error)
The parameter has a stack frame offset greater than 32,767. Perhaps you should pass a pointer instead of
a structure.

potentially nonportable structure access (strict)
A program that uses this construction may not be portable to another compiler.

return type/function type mismatch (error)
What the function was declared to return and what it actually returns do not match, and cannot be made
to match.

return(e) illegal in void function (error)
A function that was declared to be type void has nevertheless attempted to return a value. Either the
declaration or the function should be altered.

risky type in truth context (strict)
The program uses a variable declared to be a pointer, long, unsigned long, float, or double as the
condition expression in an if, while, do, or ‘?’-‘:’. This could be misinterpreted by some C compilers.

size of string overflows size_t (strict)
A string was so large that it overran an internal compiler limit. You should try to break the string in
question into several small strings.

size of union ‘‘string’’ is not known (error)
A pointer to a struct or union is being incremented, decremented, or subjected to array arithmetic, but the
struct or union has not been defined.

size of string too large (error)
The program declared an array or struct that is too big to be addressable, e.g., long a[20000]; on a
machine that has a 64-kilobyte limit on data size and four-byte longs.

sizeof truncated to unsigned (warning)
An object’s sizeof value has lost precision when truncated to a size_t integer.

sizeof(string) set to number (warning)
The program attempts to set the value of string by applying sizeof to a function or an extern; the compiler
in this instance has set string to number.

storage class not allowed in cast (error)
The program casts an item as a register, static, or other storage class.

string initializer not terminated by NUL (warning)
An array of chars that was initialized by a string is too small in dimension to hold the terminating NUL
character. For example, char foo[3] = "ABC".

structure ‘‘string’’ does not contain member ‘‘m’’ (error)
The program attempted to address the variable string.m, which is not defined as part of the structure
string.

structure or union used in truth context (error)
The program uses a structure in an if, while, or for, or ‘?:’ statement.

switch of non integer (error)
The expression in a switch statement is not type int or char. You should cast the switch expression to an
int if the loss of precision is not critical.
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switch overflow (fatal)
The program has more than ten nested switches.

too many adjectives (error)
A variable’s type was described with too many of long, short, or unsigned.

too many arguments (fatal)
No function may have more than 30 arguments.

too many cases (fatal)
The program cannot allocate space to build a switch statement.

too many initializers (error)
The program has more initializers than the space allocated can hold.

too many structure initializers (error)
The program contains a structure initialization that has more values than members.

trailing ‘‘,’’ in initialization list (warning)
An initialization statement ends with a comma, which is legal.

type clash (error)
The parser expected to find matching types but did not. For example, the types of e1 and e2 in
(x) ? e1 : e2 must either both be pointers or neither be pointers.

type of function ‘‘string’’ adjusted to string (warning)
This warning is given when the type of a numeric constant is widened to unsigned, long, or unsigned long
to preserve the constant’s value. The type of the constant may be explicitly specified with the u or L
constant suffixes.

type of parameter ‘‘string’’ adjusted to string (warning)
The program uses a parameter that the C language says must be adjusted to a wider type, e.g., char to int
or float to double.

type required in cast (error)
The type is missing from a cast declaration.

unexpected end of enumeration list (error)
An end-of-file flag or a right brace occurred in the middle of the list of enumerators.

unexpected EOF (fatal)
EOF occurred in the middle of a statement. The temporary file may have been corrupted or truncated
accidentally. Check your disk drive to see that it is working correctly.

union ‘‘string’’ does not contain member m (error)
The program attempted to address the variable string m, which is not defined as part of the structure
string.

write error on output object file (fatal)
cc could not write the relocatable object module. Most likely, your mass storage device has run out of
room. Check to see that your disk drive or hard disk has enough room to hold the object module, and that
it is working correctly.

zero modulus (warning)
The program will perform a modulo operation by zero if the code just parsed is executed. Although the
program can be parsed, this statement may create trouble if executed.

Notes
If you see the message

Out of memory

when compiling, this probably means that your program has exhausted the buffer space available to it. Use the
option -T0 to force cc to write its temporary files on the disk.

Prior to COHERENT release 4.2, cc wrote its diagnostic messages to the standard output device. cc now writes its
diagnostic messages to the standard error. You may need to modify any scripts that redirect the output of cc.
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cc0 — Definition
cc0 is the parser for the COHERENT C compiler cc. It parses C programs using the method of recursive descent and
translates the program into a logical tree format.

See Also
cc, cc1, cc2, cc3, cpp, Programming COHERENT

cc1 — Definition
cc1 is the code generator for the COHERENT C compiler. This phase generates code from the trees created by the
parser, cc0. The code generation is table driven, with entries for each operator and addressing mode.

See Also
cc, cc0, cc2, cc3, cpp, Programming COHERENT

cc2 — Definition
cc2 is the optimizer/object generator phase of the COHERENT C compiler. It optimizes the code generated by cc1,
and writes the object code. COHERENT uses multiple optimization algorithms. One optimizes jump sequences: it
eliminates common code, optimizes span-dependent jumps, and removes jumps to jumps. The other function
scans the generated code repeatedly to eliminate unnecessary instructions.

See Also
cc, cc0, cc1, cc3, cpp, Programming COHERENT

cc3 — Definition
cc3 is the output phase of the COHERENT C compiler. It writes a file of assembly language rather than a
relocatable object module. This phase is optional; it allows you to examine the code generated by the compiler. To
produce an assembly-language output of a C program, use the -S option on the cc command line. For example,

cc -S foo.c

tells cc to produce a file of assembly language called foo.s, instead of an object module.

See Also
cc, cc0, cc1, cc2, cpp, Programming COHERENT

CCHEAD — Environmental Variable
Append options to beginning of cc command line
export CCHEAD=options

The COHERENT compiler cc reads the environmental variables CCHEAD and CCTAIL before it begins its work. You
can set these variables to hold the default options that you want the compiler always to use.

cc appends the options in CCHEAD to the beginning of its command line.

See Also
cc, CCTAIL, environmental variables

CCTAIL — Environmental Variable
Append options to end of cc command line
export CCTAIL=options

The COHERENT compiler cc reads the environmental variables CCHEAD and CCTAIL before it begins its work. You
can set these variables to hold the default options that you want the compiler always to use.

cc appends the options in CCTAIL to the end of its command line.

See Also
cc, CCHEAD, environmental variables
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cd — Command
Change directory
cd directory

The shell keeps track of the directory in which the user is currently working. If a command is not specified by a
complete path name beginning with ‘/’, the shell prefixes it with the name of the current working directory. cd
changes the current working directory to directory. If no directory is specified, the directory named in the $HOME
environmental variable becomes the current working directory.

See Also
commands, ksh, pwd, sh

CD-ROM — Overview
COHERENT support for read-only compact disk devices

The term CD-ROM stands for ‘‘compact disk — read-only memory’’. COHERENT supports a variety of CD-ROM
devices, from which you can read files or play music.

Devices Supported
As of this writing, COHERENT supports three varieties of CD-ROM drives:

• Sony CD-ROM models CDU31A or CDU33A, plugged its own dedicated controller.

• Mitsumi CD-ROM models FX001, FX001 high speed, FX001D, or LU005, plugged into its own dedicated
controller. Mitsumi model FX001 also is known to work when plugged into the CD-ROM port of the
SoundblasterPro sound card; the other Mitsumi drives have not yet been tested with the Soundblaster Pro
card.

• Any SCSI CD-ROM drive plugged into an Adaptec 1542 SCSI controller.

• Any SCSI CD-ROM drive plugged Seagate host adapter models ST01 or ST02.

Please note that the NEC SCSI CD-ROM is support for ISO file systems, but not for audio disks. That is because
the NEC drive does not use a standard interface for audio disks.

To use the driver for the Sony CDU31A drive, you must build a kernel that contains the driver cdu31. Normally,
this is done when you install or update COHERENT. To add the driver to the kernel after installation or updating,
do the following:

• Log in as the superuser root.

• cd to directory /etc/conf.

• Execute script cdu31/mkdev. This script will walk you through the process of adding the driver to the kernel.
If you are unsure of the answer to any question that the script asks you, select the default; in most instances,
this is correct.

• Execute the command:

/etc/conf/bin/idmkcoh -o coh.test

This builds a new kernel called coh.test.

• Boot the new kernel, as described in the Lexicon entry booting.

To use the driver for the Mitsumi drive, you must build a kernel that contains the driver mcd. Normally, this is
done when you install or update COHERENT. To add the driver to the kernel after installation or updating, do the
following:

• Log in as the superuser root.

• cd to directory /etc/conf.

• Execute script mcd/mkdev. This script will walk you through the process of adding the driver to the kernel.
If you are unsure of the answer to any question that the script asks you, select the default; in most instances,
this is correct.
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• Execute the command:

/etc/conf/bin/idmkcoh -o coh.test

This builds a new kernel called coh.test.

• Boot the new kernel, as described in the Lexicon entry booting.

If your CD-ROM drive is attached to an Adaptec 1542 SCSI controller, you must modify the driver hai to support
the drive. Do so as follows:

• Log in as the superuser root.

• cd to directory /etc/conf.

• Execute script hai/mkdev. This script will walk you through the process of configuring hai to support your
SCSI devices. If you are already using hai to support a SCSI disk or SCSI tape, be sure that you do not alter
how they are configured. If you are unsure of the answer to any question that the script asks you, select the
default; in most instances, this is correct.

• Execute the command:

/etc/conf/bin/idmkcoh -o coh.test

This builds a new kernel called coh.test.

• Boot the new kernel, as described in the Lexicon entry booting.

Reading a CD-ROM
COHERENT at present includes three commands for manipulating CD-ROMs: cdview, cdv, and cdplayer.

cdplayer lets you play audio CDs on your CD-ROM drive. It uses a text-based interface to let you display the
contents of a CD, select a track, set the volume, and otherwise manipulate your audio CDs.

cdv is a script with which you can play CD-ROM disks — that is, disks that hold an ISO-9660 file system. The
interface is character-based and rather crude; however, with it you can read the contents of a directory on a CD-
ROM, or copy a file from the CD-ROM into a COHERENT directory. cdview is a lower-level command that is invoked
through cdv.

Files
/dev/cdrom — Device applications read by default for CD-ROMs
/dev/rscd0 — Device for accessing Sony CDU31A CD-ROM
/dev/rmcd0 — Device for accessing Mitsumi CD-ROM
/dev/Scdrom* — Block-special SCSI CD-ROM devices
/dev/rScdrom* — Character-special SCSI CD-ROM devices

See Also
Administering COHERENT, cdplayer, cdrom.h, cdv, cdview, device drivers, hai, mcd

Notes
At present, you cannot mount an ISO-9660 file system onto your COHERENT system. A future release of COHERENT
will permit you to do so.

Please note that COHERENT, like most UUCP-like operating systems, does not support playing audio CDs on a
NEC/Toshiba CD-ROM. This is because NEC uses a non-standard interface for audio CDs.

cdmp — Command
Dump COFF files into a readable form
cdmp [-adlrs] filename

cdmp dumps a file in COFF format into its most readable format. Its default is to dump all information; but as
this can produce a very large output file, cdmp lets you use the following switches to mix-and-match its output:

-a Suppress auxiliary symbol entries.

-d Suppress data dumps
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-l Suppress line numbers.

-r Suppress relocation entries.

-s Suppress symbol entries.

cc and as do not produce line numbers and auxiliary-symbol entries, and ld does not preserve them.

cdmp writes its dump into the ‘‘vertical hexadecimal format,’’ like that produced by the function xdump(). For
example, the vertical hexadecimal dump of the string ‘‘hello world.\n’’ is:

0 hell o wo rld. .
6666.6276.7662.0
85CC.F07F.2C4E.A

The hexadecimal value of ‘h’ is 0x68, which appears vertically under the ‘h’. The dump is broken into groups of
four bytes; every unprintable character appears as ‘.’.

For details on xdump(), see the Lexicon entry for libmisc.

See Also
as, asfix, coff.h, commands, ld, libmisc

Notes
cdmp is an analogue of the UNIX command cdump.

cdplayer — Command
Play audio CDs
cdplayer [eject info pause play [track] resume skip stop volume level]

cdplayer gives you a text-based interface with which you can play audio compact disks (CDs) through a COHERENT
CD-ROM device. It reads environmental variable CD_DEVICE for the name of the device to manipulate. If this
variable is not set, by default cdplayer manipulates device /dev/cdrom.

cdplayer normally is invoked with one of the following commands. If you invoke it without a command (or with a
command it does not recognize), it prints a usage message and exits. If an error occurs, cdplayer returns an exit
status of one. cdplayer recognizes the following commands:

eject Eject the CD from the drive. Note that not every CD drive supports this feature; in particular, the Mitsumi
model LU005 does not.

info Display information about the CD that is in the drive: the total number of tracks, total playing time,
playing time per track, drive status, and track being played.

pause Pause the audio CD. Unlike the command stop, described below, cdplayer remembers the point at which
playing stopped, and will resume playing at that point. If the CD is not playing, cdplayer ignores this
command. To restart a paused CD, use the command cdplayer resume.

play [track]
Play the CD, beginning at track. If no track is given, it begins as track one.

resume
Resume playing a paused CD. If the CD had not been paused, cdplayer ignores this command.

skip Skip to the next track. If the CD is on its last track, cdplayer returns it to its first track.

stop Stop playing this CD. If the CD is not being played, cdplayer ignores this command. The CD player
‘‘forgets’’ the point at which it had been playing the CD. To begin playing this CD again, use the command
cdplayer play.

volume level
Set the CD drive’s volume to level, which must be a number between 0 (softest) and 255 (loudest). Note
that not every drive supports this feature.

Environment
CD_DEVICE — The CD-ROM device to manipulate.
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See Also
CD-ROM, cdv, commands

Notes
cdplayer was written by Mark Buckaway (mark@datasoft.com) for the Linux operating system. Please direct
comments concerning its COHERENT port to support@mwc.com. It is is distributed under the GNU Public License.
Full source code for this program is available on the Mark Williams Bulletin Board and on other publically
available systems.

cdrom.h — Header File
Definitions for CD-ROM drives
#include <sys/cdrom.h>

The header file <sys/cdrom.h> defines structures and IOCTLs used to manipulate CD-ROM drives.

See Also
CD-ROM, header files, ioctl

cdu31 — Device Driver
Driver for the Sony CD-ROM drives

cdu31 is a device driver for the Sony CD-ROM drive, models CDU31A and CDU33A. It has major-device number
14.

Normally, this device driver is included in the kernel when you install or update COHERENT. To configure this
driver, log in as the superuser root, and execute script /etc/conf/cdu31/mkdev. Then run the command

/etc/conf/bin/idmkcoh -o coh.test

to build a test kernel that includes the driver.

Files
/dev/cdrom — Device applications read for CD-ROMs by default
/dev/rscd0 — Device for accessing CDU31A CD-ROM

See Also
CD-ROM, device drivers, hai

cdv — Command
Interface to CD-ROM devices
cdv [directory]

The script cdv provides a easy-to-use interface to the set of commands that interrogate an ISO-9660 CD-ROM. It
is designed to spare you the trouble of having to remember the names and syntax used by each of these
commands. If you name a directory on its command line, cdv uses that directory within the CD-ROM’s file system
as its root file system; otherwise, it begins its work in the CD-ROM’s default root directory. The advantage of this
option is that CD-ROM file systems tend to hold many files, and reading the CD-ROM can be quite slow (depending
upon the speed of your system and of your CD-ROM reader); making directory the root directory lessens the
number of files cdv must paw through before it finds the material that interests you. Obviously, you must have
some idea of the CD-ROM’s contents before you can use this option.

After you invoke cdv, it displays the prompt:

Command:

Enter the command that you want cdv to execute, as follows:

cd directory
Change directory. directory is the directory to enter. This can be a relative path name or absolute path
name. As with the COHERENT command cd, you can use ‘.’ and ‘..’ as synonyms for, respectively, the
current directory and the parent directory.

G directory
Read the contents of directory.
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g file Get file; copy it into the current directory.

N
n Because the contents of a CD-ROM’s directory may not fit onto the screen, cdv lets you display a

directory’s contents one page at a time. These commands display the next page of the current directory’s
contents.

P
p Display the previous page of the current directory’s contents.

Q
q Quit.

v file View file, which is on the CD-ROM. cdv displays file with the pager named in the environmental variable
$PAGER. If this variable is not defined, it uses more.

! Invoke the shell. To return to cdv, type exit, to exit from the shell.

See Also
CD-ROM, cdview, commands

Notes
cdv was written by Chris Hilton.

cdview — Command
Read a file from a CD-ROM
cdview [file]

The command cdview reads file from an ISO-9660 CD-ROM, and writes its contents to the standard output. If file
names a directory on the CD-ROM, cdview writes its contents to the standard output.

cdview normally is used with the script cdv, which provides a kinder, gentler way to interrogate the device.

See Also
CD-ROM, cdv, commands

ceil() — Mathematics Function (libm)
Set numeric ceiling
#include <math.h>
double ceil(z) double z;

ceil() returns a double-precision floating-point number whose value is the smallest integer greater than or equal to
z.

Example
The following example demonstrates how to use ceil():

#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define display(x) dodisplay((double)(x), #x)

dodisplay(value, name)
double value; char *name;
{

if (errno)
perror(name);

else
printf("%10g %s\n", value, name);

errno = 0;
}
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main()
{

extern char *gets();
double x;
char string[64];

for (;;) {
printf("Enter number: ");
if (gets(string) == NULL)

break;
x = atof(string);

display(x);
display(ceil(x));
display(floor(x));
display(fabs(x));

}
putchar(’\n’);

}

See Also
abs(), fabs(), floor(), frexp(), libm
ANSI Standard §7.5.6.1
POSIX Standard, §8.1

cfgetispeed() — termios Macro (termios.h)
Get terminal input speed
#include <termios.h>
int cfgetispeed(tty)
termios *tty;

Macro cfgetispeed() returns the input speed of the terminal device. tty gives the address of a structure of type
termios. It must have been initialized by a call to the termios routine tcgetattr().

See Also
termios
POSIX Standard, §7.1.3

cfgetospeed() — termios Macro (termios.h)
Get terminal output speed
#include <termios.h>
int cfgetospeed(tty)
termios *tty;

Macro cfgetospeed() returns the input speed of the terminal device. tty gives the address of a structure of type
termios. It must have been initialized by a call to the termios routine tcgetattr().

See Also
termios
POSIX Standard, §7.1.3

cfsetispeed() — termios Macro (termios.h)
Set terminal input speed
#include <termios.h>
int cfsetispeed(tty, speed)
termios *tty;
int speed;

Macro cfsetispeed() sets the input speed of the terminal device.

tty gives the address of a structure of type termios. It must have been initialized by a call to the termios routine
tcgetattr(). speed gives the speed to which the terminal device should be set. It must be one of the following
constants:
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B50 50 baud
B75 75 baud
B110 110 baud
B134 134.5 baud
B150 150 baud
B200 200 baud
B300 300 baud
B600 600 baud
B1200 1200 baud
B1800 1800 baud
B2400 2400 baud
B4800 4800 baud
B9600 9600 baud
B19200 19200 baud
B38400 38400 baud

You must call routine tcsetattr() for tty before this change can take effect.

See Also
termios
POSIX Standard, §7.1.3

cfsetospeed() — termios Macro (termios.h)
Set terminal output speed
#include <termios.h>
int cfsetospeed(tty, speed)
termios *tty;
int speed;

Macro cfsetospeed() sets the output speed of the terminal device.

tty gives the address of a structure of type termios. It must have been initialized by a call to the termios routine
tcgetattr(). speed gives the speed to which the terminal device should be set. It must be one of the following
constants:

B50 50 baud
B75 75 baud
B110 110 baud
B134 134.5 baud
B150 150 baud
B200 200 baud
B300 300 baud
B600 600 baud
B1200 1200 baud
B1800 1800 baud
B2400 2400 baud
B4800 4800 baud
B9600 9600 baud
B19200 19200 baud
B38400 38400 baud

You must call routine tcsetattr() for tty before this change can take effect.

See Also
termios
POSIX Standard, §7.1.3

cgrep — Command
Pattern search for C source programs
cgrep [-clnsA] [-r new] expression file ...

cgrep is a string-search utility. It resembles its cousins grep and egrep, except that it is specially designed to be
used with C source files. It checks all C identifiers against expression and prints all lines in which it finds a
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match. cgrep allows you to search for a variable named ‘i’ without finding every ‘if’ and ‘int’ in your program.
cgrep defines an ‘‘identifier’’ to be any variable name or C keyword. expression can be a regular expression; if it
includes wildcard characters or ‘|’s, you must ‘‘quote it’’ to protect it against being modified by the shell. For
details on the expressions that cgrep can recognize, see the Lexicon entry for egrep.

cgrep tests names that include the ‘.’ and ‘->’ operators against expression. Thus, to look for ptr->val, type:

cgrep "ptr->val" x.c

This finds ptr->val even if it contains spaces, comments, or is spread across lines. If it is spread across lines, it
will be reported on the line that contains the last token. The only exception is if you include the -A option, in
which case it will be reported on the line which contains the first token. This is to simplify MicroEMACS macros, as
will be described below.

To find structure.member, type:

cgrep "structure\.member"

because ‘.’ in a regular expression matches any character.

Do not include spaces in any pattern. Only identifiers and ‘.’ or ‘->’ between identifiers are included in the tokens
checked for pattern-matching.

Command-line Options
cgrep recognizes the following command-line options:

-A Write all lines in which expression is found into a temporary file. Then, call MicroEMACS with its error option
to process the source file, with the contents of the temporary file serving as an ‘‘error’’ list. This option
resembles the -A option to the cc command, and lets you build a MicroEMACS script to make systematic
changes to the source file. To exit MicroEMACS and prevent cgrep from searching further, <ctrl-U> <ctrl-X>
<ctrl-C>.

-c Print all comments in each file. This form takes no expression.

-l List only the names of the files in which expression is found.

-n Prefix each line in which expression is found with its line number in the file.

-r Replace all expression matches with new. This option may not be used with any others, and it can only
match simple tokens, not items like ptr->val. When -r is used and the input is stdin, a new file will always be
created as stdout.

-s Print all strings in each file. This form takes no expression.

Examples
The command

cgrep tmp *.c

will find the variable name tmp, but not tmpname, or any occurrence of tmp in a string or comment.

The script

cgrep -c < myfile.c | wc -l

count the lines of comments in myfile.c.

The command

cgrep "x|abc|d" *.c

will find x, ab, or d. Note this is a regular expressions with a surrounding ‘‘^( )$’’ which is applied to every
identifier. Thus, reg* will not match register, but reg.* will.

See Also
commands, egrep, grep, me
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char — C Keyword
Data type

char is a C data type. It is the smallest addressable unit of data. According to the ANSI Standard, a char consists
of exactly one byte of storage; a byte, in turn, must be composed of at least eight bits. sizeof(char) returns one by
definition, with all other data types defined as multiples thereof. All Mark Williams compilers sign-extend char
when it is cast to a larger data type.

Under COHERENT, a char by default is signed.

See Also
byte, C keywords, data formats, unsigned
ANSI Standard, §6.1.2.5

chase — Command
Highly amusing video game
/usr/games/chase [ -c ] [ speed ]

chase is a COHERENT version of a popular video game. It runs on the console with input from the console
keyboard. chase assumes that the system console is a monochrome display adapter unless you select the -c color-
display option.

To accomodate different computer system speeds and different levels of skill, chase prompts the user to type a
speed when the game begins. Press <return> to try out the game with the default speed of ten; typing a higher
number makes the game slower, a lower number makes it faster. If you can play at speed zero on a fast computer
system, you play too many video games. If you know the speed you want, you can enter it as a command-line
argument. If you see the boss coming, quit by pressing <ctrl-C>.

The Rules
The player (represented by a blinking shaded rectangle) attempts to evade four ‘‘ghosts’’ (represented by shaded
rectangles with arrows) while erasing dots from the playing-board maze.

At the beginning of a game, the four ghosts are in the ghost box above the center of the maze and the player is
below it. The maze is filled with dots, including four blinking diamonds called power pellets. The ghosts emerge
from the ghost box and chase the player. The console arrow keys move the player left, right, up, or down through
the maze. Typing ‘0’ stops the player. The player continues to move in the same direction until a wall of the maze
stops him, you type a ‘0’, or you type another arrow key.

When the player eats a power pellet, he acquires super power and can chase the ghosts briefly; the ghosts change
color while the player has super power. If the player catches a ghost, he scores a bonus and the ghost returns to
the ghost box temporarily. Once a player eats all the dots on the board, the game continues at the next level.

The upper left corner of the screen displays a score and the current board level. Each dot the player eats scores
ten points. The first ghost a player eats while he has super power scores 200 points, the second 400, the third
800, and the fourth 1,600. At certain times during the game, a bonus letter appears below the ghost box; the
player scores 100 points for eating the bonus letter on level ‘A’, 300 on level ‘B’, 500 on level ‘C’, and so on.

The lower left corner of the screen displays the number of extra players remaining in the current game (initally
two). Another bonus player appears every 10,000 points, to a maximum of three extra players. The game ends
when the ghosts eat the last player.

See Also
commands

chdir() — System Call (libc)
Change working directory
#include <unistd.h>
chdir(directory) char *directory;

The working directory (or current directory ) is the directory from which the search for a file name begins if a path
name does not begin with ‘/’. By convention, the working directory has the name ‘.’. chdir() changes the working
directory to the directory pointed to by directory. This change is in effect until the program exits or calls chdir()
again.
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See Also
cd, chmod(), chroot(), directory, libc, unistd.h
POSIX Standard, §5.2.1

Diagnostics
chdir() returns zero if successful. It returns -1 if an error occurred, e.g., that directory does not exist, is not a
directory, or is not searchable.

check — Command
Check file system
check [-s] filesystem ...

check uses the commands icheck and dcheck to check the consistency of a file system. It acts on each argument
filesystem in turn; it calls first icheck and then dcheck on each to detect problems.

If -s is specified, check attempts to repair any errors automatically. You should first unmount the file system, if
possible. If the root device is involved, you should be in single-user mode and then reboot the system immediately
(without typing sync).

See Also
clri, commands, icheck, ncheck, sync, umount

Notes
Certain errors, such as duplicated blocks, cannot be fixed automatically. Decisions must be made by a human.

In earlier releases of COHERENT, check acted upon a default file system if none was specified.

This command has largely been superceded by fsck.

checkerr — Command
Check the mail system for errors
/usr/lib/mail/checkerr

The script checkerr reads error reports that have been deposited into the error directory /usr/spool/smail/error.
If it finds an error, checkerr concatenates them into file /usr/spool/smail/.checkerror,and mails that file to user
postmaster on your system. If mail cannot be sent to postmaster for any reason, checkerr leaves the file in place;
when you next invoke this command, it will again try to mail the error messages.

See Also
commands, mail [overview], smail

checklist — System Administration
File systems to check when booting COHERENT
/etc/checklist

The file /etc/checklist names all COHERENT partitions on your hard disk. COHERENT executes fsck for each file
named in this file. This ensures that the file-system of each partition is checked and cleaned before it is mounted.

When you add a new COHERENT partition to your system, you should insert its name (that is, the name of its raw
device) into /etc/checklist to ensure that its file system is checked at boot time.

See Also
Administering COHERENT, brc

chgrp — Command
Change the group owner of a file
chgrp group file ...

chgrp changes the group owner of each file to group. The group may be specified by a valid group name or a valid
numerical group identifier.

Only the superuser may use chgrp.
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Files
/etc/group — Convert group name to group identifier

See Also
chmod, chmog, chown, commands

chmod — Command
Change the modes of a file
chmod +modes file
chmod -modes file

The COHERENT system assigns a mode to every file, to govern how users access the file. The mode grants or denies
permission to read, write, or execute a file.

The mode grants permission separately to the owner of a file, to users from the owner’s group, and to all other
users. For a directory, execute permission grants or denies the right to search the directory, whereas write
permission grants or denies the right to create and remove files.

In addition, the mode contains three bits that perform special tasks: the set-user-id bit, the set-group-id bit, and
the save-text or ‘‘sticky’’ bit. See the Lexicon entry for the COHERENT system call chmod() for more information on
how to use these bits.

The command chmod changes the permissions of each specified file according to the given mode argument. mode
may be either an octal number or a symbolic mode. Only the owner of a file or the superuser may change a file’s
mode. Only the superuser may set the sticky bit.

A symbolic mode may have the following form. No spaces should separate the fields in the actual mode
specification.

[which] how perm ... [, ...]

which specifies the permissions that are affected by the command. It may consist of one or more of the following:

a All permissions, equivalent to gou
g Group permissions
o Other permissions
u User permissions

If no which is given, a is assumed and chmod uses the file creation mask, as described in umask.

how specifies how the permissions will be changed. It can be

= Set permissions
+ Add permissions
- Take away permissions

perm specifies which permissions are changed. It may consist of one or more of the following:

g Current group permissions
o Current other permissions
r Read permission
s Setuid upon execution
t Save text (sticky bit)
u Current user permissions
w Write permission
x Execute permission

Multiple how/perm pairs have the same which applied to them. One or more specifications separated by commas
tell chmod to apply each specification to the file successively.

An octal mode argument to chmod is obtained by ORing the desired mode bits together. For a list of the
recognized octal modes, see the Lexicon entry for chmod().

Examples
The first example below sets the owner’s permissions to read + write + execute, and the group and other
permissions to read + execute. The second example adds execute permission for everyone.
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chmod u=rwx,go=rx file
chmod +x file

See Also
chgrp, chmod(), chmog, chown, commands, ls, stat, umask

chmod() — System Call (libc)
Change file-protection modes
#include <sys/stat.h>
chmod(file, mode)
char *file; int mode;

chmod() sets the mode bits for file. The mode bits include protection bits, the set-user-id bit, and the sticky bit.

mode is constructed from the logical OR of the mode constants declared in the header file stat.h, as follows:

S_ISUID Set user identifier on execution
S_ISGID Set group identifier on execution
S_ISVTX Save file on swap device (‘‘sticky bit’’)
S_IRUSR Read permission for owner
S_IWUSR Write permission for owner
S_IXUSR Execute permission for owner
S_IRGRP Read permission for members of owner’s group
S_IWGRP Write permission for members of owner’s group
S_IXGRP Execute permission for members of owner’s group
S_IROTH Read permission for other users
S_IWOTH Write permission for other users
S_IXOTH Execute permission for other users

For directories, some protection bits have a different meaning: write permission means files may be created and
removed, whereas execute permission means that the directory may be searched.

The save-text bit (or ‘‘sticky bit’’) is a flag to the system when it executes a shared for of a load module. After the
system runs the program, it leaves shared segments on the swap device to speed subsequent reinvocation of the
program. Setting this bit is restricted to the superuser (to control depletion of swap space which might result from
overuse).

Only the owner of a file or the superuser may change its mode.

See Also
creat(), libc, stat.h
POSIX Standard, §5.6.4

Diagnostics
chmod() returns -1 for errors, such as file being nonexistent or the invoker being neither the owner nor the
superuser.

chmog — Command
Change mode, owner, and group simultaneously
chmog mod own grp file ...

chmog combines the functionality of the commands chmod, chown, and chgrp into one command. This lets you
fine-tune the permissions on files without having to type three separate commands.

The arguments mode, own, and grp give, respectively, the mode, owner, and group to which chmog sets file.
Setting any of these three arguments ‘-’ means that that feature of file is not changed. For example, the command

chmog - bin bin file_name

changes the owner and group of file file_name to bin and does not alter file_name’s permissions.

For details on how to set mode, own, and grp, see the Lexicon entries for, respectively, chmod, chown, and chgrp.

See Also
chgrp, chmod, chown, commands
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chown — Command
Change the owner of files
chown owner file ...

chown changes the owner of each file to owner. The owner may be specified by valid user name or a valid
numerical user id.

Only the superuser may use chown

Files
/etc/passwd — To convert user name to user id

See Also
chgrp, chmod, chmog, commands

chown() — System Call (libc)
Change ownership of a file
#include <unistd.h>
chown(file, uid, gid)
char *file; short uid, gid;

chown() changes the owner of file to user id uid and group id gid.

To change only the user id without changing the group id, use stat() to determine the value of gid to pass to
chown().

chown() is restricted to the superuser, because granting the ordinary user the ability to change the ownership of
files might circumvent file space quotas or accounting based upon file ownership.

chown() returns -1 for errors, such as nonexistent file or the caller not being the superuser.

See Also
chmod(), libc, passwd, stat(), unistd.h
POSIX Standard, §5.6.5

chreq — Command
Change priority, lifetime, or printer for a job
chreq [-dprinter] [-llifetime] [-ppriority] job

The command chreq lets you change the printer, lifetime, and priority of a job, which identifies a print job spooled
with the command lp. It recognizes the following options:

-dprinter Move job to the queue for printer.

-llifetime Change the lifetime of job, where lifetime is one of T (temporary), S (short-term), or L (long-term).
Temporary lifetime means that a job ‘‘survives’’ in the spool directory for two hours after being spooled;
short-term means that it survives 48 hours; and long-term that it survives for 72 hours. After a job’s
lifetime has expired, the print daemon lpsched removes it.

-ppriority Change the despooling priority of job to priority, which is one of 0 (highest priority) to 9 (lowest
priority). Jobs with high priority are printed before those with low priority. The default priority is 2.

See Also
commands, lp, MLP_PRIORITY, printer

Notes
You can reset the default priority for print jobs by setting the environmental variable MLP_PRIORITY.

chreq is available only under COHERENT release 4.2 and subsequent releases.
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chroot — Command
Change root directory
chroot directory program ...

The command chroot runs program program with root directory directory.

See Also
commands

Notes
Only the superuser root can use chroot.

chroot() — System Call (libc)
Change the root directory
#include <unistd.h>
int chroot(path)
char *path;

The COHERENT system call chroot() changes the current process’s root directory to that specified by path. Once the
chroot() system call completes, all references to absolute directories (i.e., ones starting with ‘/’) will actually refer to
directory pointed to by path. It does not change the current directory.

chroot() is often used to add extra security to special or public login accounts.

See Also
chroot, libc

Notes
The process that invokes chroot() must be running as the superuser root, and path must name a valid directory.

chsize() — System Call (libc)
Change the size of a file
int chsize(fd, size);
int fd; long size;

The COHERENT system call chsize() changes the size of the file associated with the file descriptor fd to be exactly
size bytes long. If size is larger than the file’s initial size, then chsize() pads the file with the appropriate number
of extra bytes. If size is smaller than the initial size, then chsize() frees all allocated disk blocks between size and
the initial size. The maximum file size as set by ulimit() is in force for calls to chsize().

With a successful call, chsize() returns 0; otherwise, it returns -1 and sets errno to an appropriate value.

See Also
libc, open(), ulimit()

Notes
When you use chsize() to shorten a file, COHERENT frees all disk blocks beyond the new end-of-file mark. However,
it does not zero out the bytes beyond the new end-of-file in the last allocated disk block. If you wish to obliterate a
file, simply using chsize() to reset its size to zero will not do the trick.

When you use chsize() to lengthen a file, the new bytes beyond the initial size are simply those bytes that were in
the final disk block beyond the original end-of-file marker. All additional bytes beyond that point are zeroes. The
file system will not actually allocate new disk blocks to accomodate the new file size, but rather will create one or
more sparse blocks.

The term sparse block refers to the fact that in the COHERENT file system, a disk block that would be all zeroes
need not take up a physical disk block. Rather, COHERENT marks the i-node to indicate that the block is all zeroes,
but does not allocate a physical block. This saves space on the disk.

A sparse file, is a file that contains one or more sparse blocks. The file system handles sparse files correctly;
however, the command fsck may return the error message

Possible File Size Error
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for them.

If you lengthen a file with chsize(), you may create a sparse file, which may in turn cause fsck to complain.

ckermit — Command
Interactive inter-system communication and file transfer
ckermit [-abcdefghiklpqrstwx] [ file ... ]

ckermit implements the kermit communications protocol. It lets you communicate with other systems via modem
or network, and to exchange files with other systems that have also implemented the kermit protocol. Unlike the
kermit command also included with the COHERENT system, ckermit uses an interactive shell to remove some of
the pain from the process of exchanging files. The name ckermit relects the fact that this command is written in
the C language, and so has been ported to many different machines and operating systems.

You can run ckermit in either interactive mode or command mode. Simply typing the command

ckermit

invokes ckermit in interactive mode: ckermit displays a prompt, waits for your command, executes, then prompts
you for its next command. Typing the command line plus one or more arguments invokes ckermit in command
mode: ckermit then reads the arguments from the command line and executes them. After execution of the
commands, ckermit returns to interactive mode.

ckermit’s command-line options name either actions or settings. An action option tells ckermit to send a file,
receive a file, or connect to a remote system. The command line may contain no more than one action option. A
settings option changes one or more of the internal values that control how ckermit operates; for example, one
setting option lets you set the baud rate of the serial port that ckermit will be using. A command line can contain
any number of settings options.

Command-Line Options
ckermit recognizes the following command-line options:

-a filename Give an alternate name to a file being transferred. For example, the command

ckermit -s foo -a bar

transmits the file foo to a remote system, but tells the remote system that the file is named bar.
Likewise, the command

ckermit -ra baz

stores the first incoming file under the name baz.

If more than one file arrives or is sent, only the first file is affected by the -a option.

-b baudrate Set the baud rate of the device to baudrate.

-c Connect to serial port, and pass all subsequent typing to that port To resume talking to your local
system, type the escape character followed by the letter ‘c’. The escape character is set by default to
<ctrl-\>, although you can change it if you wish.

-d Debug mode — record debugging information in the file debug.log in the current directory.

-e n Set the length of the packet to n where n is a number between ten and about 1,000. Lengths of 95 or
greater require that the implementation of kermit on the remote system support the long-packet
extension to the kermit protocol.

-f Send a ‘‘finish’’ command to a remote server.

-g file Ask a remote system to send file or files. The file name must use the remote system’s own syntax; you
must quote all characters normally expanded by the COHERENT shell, e.g.:

ckermit -g x\*.\?

-h Help — display a brief synopsis of the command-line options.

-i The ‘‘image’’ option: specify that the file being transmitted or received is an eight-bit binary file, and
therefore no conversion should be performed upon the data being received.
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-k Passively receive file or files, copying them to standard output.

-l device Name the serial device to be used. For example

ckermit -l /dev/com2l

tells ckermit to use device /dev/com2l.

-n Like -c, but used after a protocol transaction has occurred. You can use both -c and -n in the same
command.

-p x Set parity, where x is one of e, o, m, s, or n (respectively, even, odd, mark, space, or none). If parity is
other than none, then ckermit uses the eighth-bit prefixing mechanism to transfer binary data,
provided the impementation of kermit on the remote system agrees. The default parity is none.

-q Quiet — suppress screen update during file transfer; for example, this lets you transfer a file in the
background.

-r Receive a file or files. Wait passively for files to arrive.

-s file Send the specified file or files. If fn is ‘-’ then ckermit sends from standard input, which may come
from a file:

ckermit -s - < foo.bar

or come from a parallel process:

ls -l | ckermit -s -

You cannot use this mechanism to send text typed from the keyboard. To send a file named ‘-’,
precede it with a path name, e.g.:

ckermit -s ./-

-t Specify half duplex, line turnaround with XON as the handshake character.

-w Write-Protect — avoid file-name collisions for incoming files.

-x Begin server operation. This option can be used in either local or remote mode.

If ckermit is in local mode, shows the progress of the file transfer. A dot is printed for every four data packets;
other packets are shown by type (e.g., ‘S’ for Send-Init); ‘T’ is printed when there’s a timeout; and ‘%’ is printed for
each retransmission.

During file transfer, you can type the following ‘‘interrupt’’ commands:

<ctrl-F> Interrupt the current file and go on to the next, if any.

<ctrl-B> Interrupt the entire batch of files and terminate the transaction.

<ctrl-R> Resend the current packet.

<ctrl-A> Display a status report for the current transaction.

These interrupt characters differ from the ones used in other implementations of ckermit to avoid conflict with the
COHERENT shell’s interrupt characters.

Interactive Operation
When you invoke ckermit in interactive mode, it displays the following prompt.

C-Kermit>

Type any valid ckermit command; the set of valid commands is described below. ckermit executes the command
and then prompts you for another. The process continues until you tell it to quit.

Commands begin with a keyword, normally an English verb, such as send. You can abbreviate any keyword, as
long as you type enough characters to distinguish it from all other keywords. Certain commonly used keywords
(e.g., send, receive, connect) have special non-unique abbreviations (respectively, ‘s’, ‘r’, and ‘c’).

Certain characters have special functions in interactive commands:
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? Print a message that explains what is possible or expected at the current point within a command.
Depending upon the context, the message may be a brief phrase, a menu of keywords, or a list of files.

<esc> Request completion of the current keyword or file name, or insertion of a default value. ckermit will
beep if the requested operation fails. <tab> does the same thing.

<del> Delete the previous character from the command. <backspace> does the same thing.

<ctrl-W> Erase the rightmost word from the command line.

<ctrl-U> Erase the entire command.

<ctrl-R> Redisplay the current command.

<space> Delimit fields (keywords, filenames, numbers) within a command.

<return> Execute the command.

\ Insert any of the above characters into the command, literally. To enter a literal backslash, type two
backslashes in a row (\\). Typing one backslash immediately <return> lets you continue the
command on the next line.

ckermit recognizes the following interactive commands:

! command Execute a shell command. A space must follow the !.

% A comment. ckermit ignores everything that follows the %.

bye Terminate and log out a remote kermit server.

close Close a log file.

connect Connect to the remote system.

cwd directory
Change the working directory to directory.

dial Dial a telephone number.

directory Display a directory listing.

echo Display arguments literally. Useful in take-command files.

exit Exit from the program, closing any open logs.

finish Instruct a remote kermit server to exit, but not log out.

get Get files from a remote kermit server.

hangup Hang up the telephone.

help Display a help message for a given command.

log Open a log file — debugging, packet, session, transaction.

quit Same as exit.

receive Passively wait for files to arrive.

remote Issue file-management commands to a remote kermit server.

script Execute a login script with a remote system.

send file Send file to the remote kermit server.

server Begin server operation.

set Set various internal parameters.

show Display values of parameters, program version, etc.

space Display current disk space usage.
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statistics Display statistics about most recent transaction.

take Execute commands from a file.

Interactive ckermit accepts commands from files as well as from the keyboard. Upon startup, ckermit looks for
the file .kermrc first in directory $HOME and then in the current directory; if it finds the file, it executes all
commands it finds therein. These commands must be in interactive format. Command files may be nested to any
reasonable depth.

The set Command
As noted above, the set command lets you set the internal parameters by which ckermit operates. The set
command recognizes the following arguments:

block-check
Level of packet error detection.

delay Time to wait before sending first packet.

duplex Specify which side echoes during connect mode.

escape-character
Character to prefix escape commands during connect mode.

file Set various file parameters.

flow-control
Communication line full-duplex flow control.

handshake Communication line half-duplex turnaround character.

line Communication-line device name.

modem-dialer
Type of modem-dialer on communication line.

parity Communication line character parity.

prompt Change the ckermit program’s prompt.

receive Set various parameters for inbound packets.

retry Set the packet retransmission limit.

send Set various parameters for outbound packets.

speed Communication line speed.

Remote Commands
ckermit also has a suite of commands that are sent to the remote system for execution. They are as follows:

cwd Change remote working directory (also, remote cd).

delete Delete remote files.

directory Display a listing of remote file names.

help Request help from a remote server.

host Issue a command to the remote host in its own command language.

space Display current disk space usage on remote system.

type Display a remote file on your screen.

who Display the users logged in to the remote system, or get information about a user.

Files
.kermrc — ckermit initialization commands

See Also
commands, kermit, uucp
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Notes
The kermit protocol was developed at the Columbia University Center for Computing Activities. ckermit is
copyright  by the Trustees of Columbia University.

On some remote systems, the command hangup does not hang up the telephone properly. If this occurs, add the
following macro to file $HOME/.kermrc:

define myhangup sleep 2,output +++,sleep 2,output ATH0\13

This create a macro named myhangup, which you can invoke to hang up the remote telephone. To test the proper
load of the macro, type the following at the ckermit prompt:

show macro myhangup

It should show the command sequence. If it is intact, you can execute the new hangup command by typing
myhangup.

Please note that ckermit is provided in binary form per the licensing terms set forth by its copyright holders. It is
distributed as a service to COHERENT customers, as is. It is not supported by Mark Williams Company. Caveat
utilitor.

clear — Command
Clear the screen
clear

The command clear reads the termcap description of your terminal and uses the information therein to clear your
terminal’s screen. The environmental variable TERM must define your terminal’s type.

See Also
commands, TERM, termcap

clearerr() — STDIO Function (libc)
Present stream status
#include <stdio.h>
clearerr(fp) FILE *fp;

clearerr() resets the error flag of the argument fp. If an error condition is detected by the related macro ferror,
clearerr() can be called to clear it.

Example
For an example of this function, see the entry for ferror().

See Also
ferror(), libc
ANSI Standard, §7.9.10.1
POSIX Standard, §8.1

clist.h — Header File
Character-list structures
#include <sys/clist.h>

The header file clist.h holds definitions useful to functions that manipulate character lists. It defines the
character-list structure CLIST and the character-queue structure CQUEUE.

See Also
header files

clock — Device Driver
Read the system clock
/dev/clock

The file /dev/clock lets you read and set your system’s clock. It is a part of the driver mem, which manages
memory; thus, it has major number 0 and minor number 5.

The real time clock occupies the first 14 bytes of nonvolatile RAM (/dev/cmos). The difference between
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/dev/cmos and /dev/clock is that the latter device locks the circuit during a read, so that the clock will not be
updated as it is being read.

/dev/clock limits access to a 14-byte data area. Attempts to read or write beyond this limit will fail. /dev/clock
stores the system time in binary-coded decimal (BCD). For details on BCD, see the Lexicon entry for float.

The COHERENT command ATclock reads this device and writes to it.

See Also
ATclock, cmos, device drivers, float

clock() — Time Function (libc)
Get processor time
#include <time.h>
clock_t clock();

The function clock() calculates and returns the amount of processor time a program has taken to execute to the
current point. Execution time is calculated from the time the program was invoked. This, in turn, is set as a point
from the beginning of an era that is defined by the implementation. Under COHERENT, time is recorded as the
number of milliseconds since January 1, 1970, 0h00m00s GMT.

The value clock() returns is of type clock_t, which is defined in header file. time.h. If clock() cannot determine
execution time, it returns -1 cast to clock_t.

To calculate the execution time in seconds, divide the value returned by clock() by the value of the macro
CLK_TCK, which is also defined in time.h.

Example
This example measures the number of times a for loop can run in one second on your system. This is approximate
because CLK_TCK can be a real number, and because the program probably will not start at an exact tick
boundary.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main()
{

clock_t finish;
long i;

/* finish = about 1 second from now */
finish = clock() + CLK_TCK;
for(i = 0; finish > clock(); i++)

;

printf("The for() loop ran %ld times in one second.\n", i);
return(EXIT_SUCCESS);

}

See Also
difftime(), libc, mktime(), time.h
ANSI Standard, §.12.2.1

close() — System Call (libc)
Close a file
#include <unistd.h>
int close(fd) int fd;

close() closes the file identified by the file descriptor fd, which was returned by creat(), dup(), open(), or pipe().
close() also frees the associated file descriptor.

Because each program can have only a limited number of files open at any given time, programs that process many
files should close() files whenever possible. The function exit() automatically calls fclose() for all open files;
however, the system call _exit() does not.
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Example
For an example of this function, see the entry for open().

See Also
creat(), libc, open(), unistd.h
ANSI Standard, §4.9.3
POSIX Standard, §6.3.1

Diagnostics
close() returns -1 if an error occurs, such as its being handed a bad file descriptor; otherwise, it returns zero.

closedir() — General Function (libc)
Close a directory stream
#include <dirent.h>
int closedir(dirp)
DIR *dirp;

The COHERENT function closedir() is one of a set of COHERENT routines that manipulate directories in a device-
independent manner. It closes the directory stream pointed to by dirp.

closedir() returns zero if no error occurs. If something goes wrong, it returns -1 and sets errno to an appropriate
value.

Example
For an example of this system call, see the Lexicon entry for opendir().

See Also
dirent.h, getdents(), libc, opendir(), readdir(), rewinddir(), seekdir(), telldir()
POSIX Standard, §5.1.2

Notes
The COHERENT implementation of the dirent routines was written by D. Gwynn.

clri — Command
Clear i-node
/etc/clri filesystem inumber ...

clri zeroes out each i-node with inumber on filesystem. filesystem is almost always a device-special file that
corresponds to a disk device, e.g., /dev/rat0a or /dev/rsd1c. The raw device should be used. For example, the
command

/etc/clri /dev/rat0a 8250

clears i-node 8250 on the file system on device /dev/rat0a, which is the first partition on your first AT hard disk.

The user must have read and write permission on the filesystem. If the file that inumber identifies is open, then clri
probably will not work as you expect: the system maintains in core memory a copy of all active i-nodes, and the
kernel will eventually write this copy to disk, thus undoing the action of clri. To ensure that this does not happen,
unmount the file system before you running clri. If the i-node is for the root file system, reboot the system
immediately after you run clri.

See Also
commands, dcheck, fsck, icheck, i-node, umount

cmos — Device Driver
Device for reading CMOS

The file /dev/cmos the entry via which you can read your system’s CMOS. It is a part of the driver mem, which
manages memory; thus, it has major number 0 and minor number 3.

The CMOS is a special, non-volatile area of random-access memory (RAM) that holds information about your
system’s configuration. The following gives the common meanings assigned to the various byte positions within
the CMOS area:
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Real-time clock:
0x00 Seconds
0x01 Alarm, seconds
0x02 Minutes
0x03 Alarm, minutes
0x04 Hours
0x05 Alarm, hours
0x06 Day of the week
0x07 Day of the month
0x08 Month
0x09 Year
0x0A Update in progress

Diagnostic power byte:
0x0E Bit 7 — Chip lost power

Bit 6 — Bad checksum
Bit 5 — Bad configuration byte
Bit 4 — Bad memory size
Bit 3 — Bad hard-disk byte
Bit 2 — Bad time of day

Restart-status byte:
0x0F Reloaded when restarting, e.g., returning from

protected mode

Floppy-disk drive, drives A and B:
0x10 Bits 7-4 — Drive A:

0 = no drive
1 = 360-kilobyte drive
2 = 1.2-megabyte drive
3 = 720-kilobyte drive
4 = 1.44-megabyte drive

Bits 3-0 — Drive B:
0 = no drive
1 = 360-kilobyte drive
2 = 1.2-megabyte drive
3 = 720-kilobyte drive
4 = 1.44-megabyte drive

Floppy-disk drive, drives C and D:
0x11 Bits 7-4 — Drive C:

0 = no drive
1 = 360-kilobyte drive
2 = 1.2-megabyte drive
3 = 720-kilobyte drive
4 = 1.44-megabyte drive

Bits 3-0 — Drive D:
0 = no drive
1 = 360-kilobyte drive
2 = 1.2-megabyte drive
3 = 720-kilobyte drive
4 = 1.44-megabyte drive

Hard-disk drive:
0x12 Bits 7-4 — First hard-disk drive

0 = No drive
1-3 = Type 1-15
F = Use contents of byte 19

Bits 3-0 — Second hard-disk drive
0 = No drive
1-3 = Type 1-15
F = Use contents of byte 1A
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Configuration of equipment:
0x014 Bits 7-6 — Floppy disks

00 = one floppy-disk drive
01 = two floppy-disk drives
10 = three floppy-disk drives
11 = four floppy-disk drives

Bits 5-4 — Type of display
00 = EGA/VGA
01 = CGA 40×25
10 = CGA 80×25
11 = monochrome display

Bit 1 — floating-point coprocessor installed
Bit 0 — Floppy-disk drive present

Memory:
0x15-0x16 Amount of memory below one megabyte
0x17-0x18 Amount of memory above one megabyte

Type of hard disk:
0x19 Type of first hard disk. Read only when

bits 7-4 of byte 0x12 equal 0xF.
0x21 Type of second hard disk. Read only when

bits 3-0 of byte 0x12 equal 0xF.

Miscellaneous:
0x2E-0x2F Checksum for bytes 0x10 through 0x2D
0x30-0x31 Indicate memory size above one megabyte
0x32 Century byte (BCD)
0x33 Flag for power-on information:

Bit 7 — Top 128 kilobytes of RAM is installed
(shadow RAM is available)

Bit 6 — First boot after running set-up routine

/dev/cmos limits access to a 256-byte data area. Any attempt to read or write beyond this limit will fail.

See Also
ATclock, clock, device drivers, RAM

Notes
If you want to read or set the real time clock, then you should use /dev/clock instead of /dev/cmos.

Vendor-specific information, e.g., your system’s memory configuration, is often kept in the CMOS area at locations
beyond those documented above. Therefore, writing to undocumented regions of the CMOS area is extremely
unwise: your computer could subsequently refuse to boot up properly. Caveat utilitor.

cmp — Command
Compare bytes of two files
cmp [-ls] file1 file2 [skip1 skip2]

The command cmp compares two files byte by byte for equality. file1 and file2 name the files to compare; the file
name ‘-’ indicates the standard input.

If cmp finds two bytes that differ, it prints the number of the byte at which the discrepancy occurs, then exits. If it
encounters EOF on one file but not on the other, it prints the message:

EOF on filen

cmp recognizes the following command-line options:

-l Note each differing byte by printing the positions and octal values of the bytes of each file.

-s Print nothing, but return the exit status.

By default, cmp begins at byte 1 of each file. The optional arguments skip1 and skip2 are integer values that tell
cmp to skip that many bytes for the corresponding file before it begins the comparison. For example, the
command
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cmp FOO BAR 35 40

tells cmp to skip the first 35 bytes of FOO and the first 40 bytes of BAR before it begins to compare them.

See Also
commands, diff, sh, zcmp

Diagnostics
cmd returns zero for identical files, one for non-identical files, and two for errors, e.g., bad command or
inaccessible file.

coff.h — Header File
Format for COFF objects
#include <coff.h>

coff.h describes the Common Object File Format (COFF), which is the object format used by COHERENT 386.

What Is COFF?
In brief, COFF is the UNIX System V standard for file formats. It defines the formats for relocatable object modules,
for executable files, and for archives.

A COFF file is built around three sections, or segments:

text This holds executable machine code. It is write protected — the operating system is forbidden to overwrite
it. (This is why operating systems that use COFF or similar formats are said to run in ‘‘protected mode.’’)

data This holds initialized data, that is, the data that the program finds when it begins execution. The program
can read and write into this segment.

bss This segment holds unitialized data. It is simply a mass of space that is initialized to zeroes. It is
contiguous with the data segment. The term bss from the old IBM mainframe days, and stands for ‘‘block
started by symbol’’.

Not all segments have to be included in every COFF file. Further, some implementations of COFF define their own
segments that manipulate special features of the operating system or hardware.

The following describes the structure of a COFF file. The areas within the file are described in the order in which
they appear.

1. file header
This holds information set when the file was created, such as the date and time it was created, the number
of segments in the file, a pointer to the symbol table, and status flags.

2. optional header
This gives information set at run-time, such as the address of the program entry point, and the size of the
code and data segments.

3. segment headers
The next area holds a header for each segment in the file. Each header describes its segment’s
characteristics and contains pointers to the segment’s contents, relocation information, line-number
information, and other useful addresses.

4. segment contents
The next area holds the contents of the segments used in this file.

5. relocation information
The fifth area gives relocation information, one set of information for each segment in the file. The linker
ld uses this information to generate the executable file at link time.

6. line-number information
This area holds debug information, one set of information for each segment. This area is optional.

7. symbol table
This area holds information used by both the linker and the debugger.
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8. string table
This table holds very long names of variables.

Most of this information is irrelevant to the average user, or even the average developer of software. To the average
user, COFF is ‘‘a machine that would go of itself’’; you can run or compile programs without worrying what the
linker puts where, or why. These details, however, can be very important if you are writing tools that manipulate
the internals of files, such as archivers or debuggers. If you need detailed information on COFF and how to
manipulate it, see Understanding and Using COFF (citation appears below).

For more information on how the COFF format affects COHERENT’s language tools, see the Lexicon articles for ar,
as, cc, db, and ld.

See Also
ar, as, cc, cdmp, coffnlist(), file formats, header files, ld
Gircys, G.R.: Understanding and Using COFF. Sebastopol, Calif., O’Reilly & Associates, Inc., 1988.

coffnlist() — General Function (libc)
Symbol table lookup, COFF format
#include <coff.h>
coffnlist(fn, nlp, names, count)
char *fn;
SYMENT *nlp;
char *names;
int count;

The function coffnlist() finds one or more names in the symbol table of a file in the COFF format.

You must arrange the names you seek into the form of a COFF symbol table. All long names (i.e., names longer
than four characters) must be strung together like the COFF long-symbol-name section. Give each name an
n_type of -1. After the call, any unfound names will still have this n_type, as a sign that it could not be found.
Thus, you can use the same table to search several different COFF files.

fn points to the name of the file to be searched. nlp points to an array of type SYMENT. This structure is defined
in header file coff.h as follows:

typedef struct syment {
union {

char _n_name[SYMNMLEN]; /* Name */
struct {

long _n_zeroes; /* If name[0-3] zero, */
long _n_offset; /* string table offset */

} _n_n;
char *_n_nptr[2];

} _n;
long n_value; /* Value */
short n_scnum; /* Section number */
unsigned short n_type; /* Type */
char n_sclass; /* Storage class */
char n_numaux; /* Auxilliary entries */

#pragma align 2
} SYMENT;
#pragma align

count gives the number of symbols being sought. If there are long names, the displacement works from the names
parameter.

Each item being sought must have 0xFFFF in its n_type field. This allows coffnlist() to be used on several files in
order.

coffnlist() opens and reads the file pointed to by fn. It then scans the symbol table and tries to find a symbol with
an n_type of 0xFFFF. Upon finding this entry, coffnlist() fills in the fields of the symbol entry.

coffnlist() returns zero if anything goes wrong, such as an inability to open the file fn. Otherwise, it returns one.

Example
The following example looks up three symbol names in the symbol table of file tx.o.
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#include <stdio.h>
#include <coff.h>

main()
{

int i;
static SYMENT sym[3]; /* the table of names to find */

/* the long names section */
static char long_names[] = "a_very_long_name";
strcpy(sym[0].n_name, "x"); /* look up x */
sym[0].n_type = -1;

strcpy(sym[1].n_name, "y"); /* look up y */
sym[1].n_type = -1;

sym[2].n_zeroes = 0; /* look up a_very_long_name */
/* the long name table starts with a long giving its length
* offsets are from the beginning of that long. Therefore

* the n_offset of the first field is 4 not zero */
sym[2].n_offset = sizeof(long);
sym[2].n_type = -1;

/* do lookups */
if (!coffnlist("tx.o", sym, long_names, 3))

exit(1);

/* show off results */
for (i = 0; i < 3; i++) {

if (sym[i].n_type != -1)
printf("%s found at %x\n",

(sym[i].n_zeroes ? sym[i].n_name :
long_names + sym[i].n_offset - sizeof(long)),
sym[i].n_value);

}
}

See Also
coff.h, libc, nlist()

coh_intro — Command
Tour the COHERENT file system
/etc/coh_intro [ > outfile ]

The command coh_intro walks you through the COHERENT file system. It gives you a brief introduction to each
directory in the root file system, describes what it holds, and displays its contents.

This command is designed chiefly for a newcomer to COHERENT, to help teach her about the structure and
operation of the COHERENT file system. An experience user may also wish to run coh_intro from time to time, in
order to take a snapshot of her systems’ current configuration.

See Also
commands

coherent.h — Header File
Miscellaneous useful definitions
#include <sys/coherent.h>

The header file coherent.h defines various useful types and objects. Among other things, it defines the structure
TIME.

See Also
header files
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COHERENT — Summary
Principles of the COHERENT System

This article describes COHERENT: its features, properties, and what sets it apart from other operating systems. It
also gives tips on how to port an application to COHERENT, and describes how to un-install COHERENT from your
system. For information on how COHERENT compares with MS-DOS, see the Lexicon article on MS-DOS.

What Is COHERENT?
COHERENT is a multiuser, multitasking operating system. Multiuser means that with COHERENT, more than one
person can use your computer at any given time. Multitasking means that with COHERENT, any user can run more
than one program at any given time. The design of COHERENT employs a few elegant concepts to give you a
powerful and flexible system that is easy to use.

What is an Operating System?
An operating system is the master program that controls the operation of all other programs. It loads programs
into memory, controls their execution, and controls a program’s access to peripheral devices, such as printers,
modems, and terminals.

Some operating systems permit only one user to use the computer at a time; and that user can run only one
program at a time. However, you may well want your computer to support more than one user at a time, and run
more than one program at a time. Sharing not only yields many economies (such as allowing a group of users to
share one printer), but also allows the users to communicate with each other and so work together more efficiently.

Any multitasking operating system must be able to do the following tasks efficiently:

• Schedule computer time

• Control mass-storage devices (disks and tape drives)

• Organize disk-storage space

• Protect programs from conflict

• Protect stored information from destruction

• Ease cooperation among users

Today’s operating systems also provide tools. These are programs that are bundled with the operating system, and
that are designed to help you do your work more efficiently. For example, you need editors, compilers, debuggers,
and assemblers to develop and test programs. Text formatters and spelling checkers help you write memoranda,
manuals, or books. Command processors (also called shells) help you run the computer easily. Status checkers
tell you what programs are being run, who is using the system, and how much space is left on your disk.

The combination of operating system and its tools transforms a boxful of wires and circuits into a useful machine.

COHERENT Documentation
This manual is designed to walk you through the COHERENT system. It consists of two parts: tutorials and Lexicon.

Each tutorial introduces a particular aspect of COHERENT. If you are a beginner, you should read the tutorials
Using the COHERENT System, Introductingsh,theBourneShell , and Introduction to MicroEMACS. These will give you
the basic information and basic skills you need to run COHERENT efficiently. A beginner who is interested in
learning about the C language should look at the tutorial The C Language.

The tutorial The make Programming Discipline introduces the tool make. This tool is essential to building any
complex tool under COHERENT. If you are going to be building tools under COHERENT, you should look at this
tutorial.

The tutorial UUCP, Remote Communications Utility introduces UUCP. This bundle of programs lets your computer
exchange mail and files with other computers, even if it is unattended. If you are all interested in networking with
other computers (or plugging into the Internet), you should look at this tutorial.

The other tutorials introduce tools that are interest to advanced users.

The Lexicon fills the latter two thirds of this manual. It consists of more than 1,000 articles. The articles are
printed in alphabetical order, to make it easy for you to find the one you want.

Most articles discuss a single aspect of the COHERENT system. Some articles, called ‘‘overview’’ articles, give a
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broader discussion of an entire topic. Three overview articles are of particular interest:

Using COHERENT
This article discusses the parts of COHERENT that are of interest to an ordinary user. It describes such
matters as the commands available with COHERENT, and how a user can manage his own account.

Programming COHERENT
This introduces the programming tools available under COHERENT; points to where you can find
information about the COHERENT implementation of the C programming language; and points to where you
can find information about the library routines and system calls that you can use in a program.

Administering COHERENT
This article discusses how to administer COHERENT. It points to where you can find information on how to
connect peripheral devices; manage mail and UUCP; change some of COHERENT’s default behaviors; and
modify and rebuild the COHERENT kernel. It also points to the articles that describe the files with which
COHERENT manages itself.

If you cannot easily find an article that gives you the information you want, look in the index in the back of the
manual. There is a good chance that you will find an entry there that points to the information you need. Also,
you can use the command apropos to search the on-line version of the Lexicon for a key word that interests you.
For details on this command, see its entry in the Lexicon.

How To Un-install COHERENT
To remove (or ‘‘un-install’’) COHERENT from your system, do the following:

1. Log in as the superuser root.

2. Invoke the COHERENT version of fdisk.

3. Choose the option to change all logical partitions. Don’t change any parameters of any MS-DOS partitions.

4. Change all COHERENT partitions to type Unused with a size of 0, starting and ending at 0.

5. Exit fdisk and update the partition table.

6. Reboot the computer and run the MS-DOS fdisk utility to create a new MS-DOS partition table. Turn the
unused space (formerly the COHERENT partitions) into an MS-DOS EXT partition. If you already have an MS-
DOS EXT partition, change its parameters so that it incorporates the unused space.

7. Create one or more logical drives in the MS-DOS EXT partition.

8. Format the new logical drives using the MS-DOS format command.

Repeated tests with MS-DOS have shown that the above directions work. However, given the many flavors and
releases of MS-DOS in circulation, Mark Williams Company cannot guarantee that the above steps will always work
with MS-DOS. If they do not, consult your MS-DOS manual for creating a DOS partition table and file system on a
new hard drive. If that information is not available, telephone Microsoft Technical Support at (206)454-2030.

Uninstalling the Mark Williams Bootstrap
The following describes how to remove the Mark Williams bootstrap program. You must do this if you are un-
installing COHERENT from your system.

To remove the Mark Williams master boot program, you must overwrite the master boot-block on hard drive 0 with
another boot program. Usually, this is the MS-DOS master boot program. Beginning with release 5.0, the MS-DOS
version of fdisk has the switch /mbr that builds a new bootstrap program. All versions of the MS-DOS edition of
fdisk writes a new master boot program if no valid signature appears at the end of the current contents of the
master-boot block.

If you have MS-DOS version 5.0 or later, simply boot MS-DOS and run the command:

fdisk /mbr

If your version of MS-DOS predates release 5.0, you must modify the last two bytes of the master-boot block (to
remove the magic ‘‘signature’’ that indicates a valid bootstrap program) then boot MS-DOS and run its version of
fdisk.

Warning: See the note in the preceeding section about MS-DOS fdisk — back up your hard drive is backed up
before you try this! There are several ways by which you can invalidate the signature at the end of the master-boot
block. One way is to copy any sort of garbage into the master-boot block. You can (1) reformat cylinder 0 of your
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hard drive — for example, using the DIAGNOSTICS menu of the AMI BIOS — or (2) use COHERENT to overwrite the
block, e.g., with the command:

dd if=/coherent of=/dev/at0x count=1

The master-boot block is the first physical sector of the hard drive, i.e., cylinder 0, head 0, sector 1. (Note that
numbering of sectors begins with one, not zero.) The MWC master bootstrap is part of the initial program load, and
does not belong to any operating system because it runs before an operating system is loaded.

Please read the following carefully before you attempt erase the master-boot block:

Mark Williams Company can make no promises or guarantees concerning the behavior of any given version of the
MS-DOS fdisk. Every version of the MS-DOS fdisk that we have tested does not recognize partitions allocated for
other operating systems: MS-DOS cannot delete, or even display, such partitions. Certain configurations of empty
partitions cause MS-DOS fdisk to hang.

Worst of all, don’t expect any data on your hard drive to be available after MS-DOS fdisk rewrites an invalid master-
boot block. Our experience is that MS-DOS fdisk erases all data in all partitions, even if previously existing MS-DOS
partitions are re-allocated with identical cylinder ranges as at the time of their initial creation. Caveat utilitor!

cohtune — Command
Set a variable within a device driver
cohtune driver tagfield "tagfield = value"

The command cohtune sets the tagfield to value within the given device driver driver. You can then use the
command idmkcoh to build a new kernel that incorporates your changes. When you boot the new kernel, your
changes will have been made.

cohtune works by modifying the file Space.c for driver. Each device driver has such a file, that sets user-definable
dimensions of its operation. When you invoke the command idmkcoh to build a new kernel, COHERENT
automatically checks whether a Space.c module that have changed, compiles it, and links it into the newly built
kernel. idmkcoh also recompiles every Space.c whenever you change a tunable variable in the kernel, just to
ensure that all drivers are synchronized with changes in the kernel.

For example, the file /etc/conf/hai/Space.c gives the user-settable variable for the driver hai, which is
COHERENT’s host-adapter-independent SCSI driver. This file contains, among others, the variable HAI_TAPE. This
variable is a bit-map; bit n is turned on if there is a SCSI tape device at SCSI ID n. If you have installed a SCSI tape
as SCSI device 3, then type the following command:

cohtune hai "HAI_TAPE" "int HAI_TAPE = 0x08"

The value 0x08 turns on bit 3. As you can see, cohtune finds the line in /etc/conf/hai/Space.c that contains
the string HAI_TAPE and is not commented out of the source, and replaces it with the line

int HAI_TAPE = 0x08

You can read a driver’s Space.c to see how you can configure it. Space.c also gives some useful clues as to how
the driver works and how it is currently configured.

You should never modify a Space.c by hand. If you do so, you run the risk of building a kernel that does not boot,
or trashes your file system.

See Also
commands, device drivers, idenable, idmkcoh, idtune

Notes
cohtune cannot be used with STREAMS drivers.

Note that cohtune peforms no checks whatsoever on the content of the string with which you replace tagfield It
should only be used by people familiar with C programming, because setting invalid values may cause errors that
are difficult to diagnose. Caveat utilitor.

Because of the primitive nature of cohtune, we recommend that users not use it directly, but work instead
through the configuration shell scripts supplied by the driver’s developer (which typically live in directory
/etc/conf/driver) that can interactively generate the correct sequence of cohtune commands.
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col — Command
Remove reverse and half-line motions
col [ -bdfx ][ -pn ]

The command col reads the standard input and writes to the standard output. It removes reverse and half-line
motions from the output of nroff for the benefit of output devices that cannot perform them. It maintains an
image of the page in memory and performs these motions virtually so they do not appear on the output.

col understands four escape sequences: <esc> 7 for reverse line feed, <esc> 8 for half reverse line feed, <esc> 9 for
half forward line feed, and <esc> B for a forward line feed. It removes <esc> (ASCII 033) from the input stream if it
is followed by any other character.

Eight control characters besides <esc> are interpreted by col. Newline, return, space, backspace, and tab carry
their usual meaning. VT (013) is an alternate form of reverse line feed. The characters SO (017) and SI (016)
signal the start and end of text in an alternate character set. col remembers the character set for each character
and uses SO and SI to distinguish them on the output. col removes all other control characters from the input
stream.

col recognizes the following options:

-b The output device cannot backspace. Only the last of a set of characters destined for a given position will
appear.

-d Double-space the output. This doubles the length of a document but preserves relative vertical spacing.
The -f option has precedence.

-f The output device can perform half-forward line feeds. Full lines appear single spaced with half lines
between them. This is the only situation in which half forward line feeds appear in the output of col —
reverse line motions never appear.

-x Suppress the default conversion of white space to tabs on output.

-p n Set the internal page buffer size to n full lines (default, 128).

If neither -f nor -d is chosen, col moves non-empty half lines to the next lower full line and pushes all later lines
down one line. This can distort the appearance of the document.

See Also
ASCII, commands, nroff

Notes
Backing up past the start of a document or of the page buffer loses characters.

comm — Command
Print common lines
comm [ -123 ] file1 file2

The command comm prints the lines unique to file1 in the first column, the lines unique to file2 in the second
column, and the lines common to both in the third. Both file1 and file2 should be sorted in ASCII order. Any or
all columns may be suppressed by indicating the column or columns to suppress in the optional flag. The file ‘-’
means standard input.

See Also
cmp, commands, diff, sort, uniq

commands — Overview
The following lists the commands included with COHERENT. The command name is given on the left and a
description on the right.

CD-ROM Commands
The following commands let you manipulate a CD-ROM device.

cdplayer . . . . . . . . . Play audio CDs
cdv . . . . . . . . . . . . Interface to CD-ROM devices
cdview . . . . . . . . . . Read a file from a CD-ROM
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Communications
The following commands let you exchange information with other users and other systems.

ckermit . . . . . . . . . Interactive inter-system communication and file transfer
cu . . . . . . . . . . . . . UNIX-compatible interactive communications program
mail . . . . . . . . . . . . Send/read electronic mail
mesg . . . . . . . . . . . Permit/deny messages from other users
msg . . . . . . . . . . . . Send a brief message to other users
msgs . . . . . . . . . . . Read messages intended for all COHERENT users
uucico . . . . . . . . . . Connect to a remote system
uucp . . . . . . . . . . . Copy a file to or from a remote system
wall . . . . . . . . . . . . Send a message to all logged in users
write . . . . . . . . . . . Converse with another user

De-fragmentation Commands
The following commands give you information about the degree of fragmentation shown by a file system’s free list.
They can also rebuild a file system, to de-fragment it and so greatly the speed with which you can read and write it.

dpac. . . . . . . . . . . . De-fragment a COHERENT file system
fmap . . . . . . . . . . . Measure fragmentation of the free list
qpac. . . . . . . . . . . . Map the file system
spac. . . . . . . . . . . . Sort a file system
upac . . . . . . . . . . . De-fragment a file system without sorting

Directory and File Handling
The following commands let you create, remove, and otherwise manipulate files and directories.

cat. . . . . . . . . . . . . Concatenate a file to the standard output
cd . . . . . . . . . . . . . Change directory
chgrp . . . . . . . . . . . Change the group owner of a file
chmod . . . . . . . . . . Change the modes of a file
chmog . . . . . . . . . . Change mode, ownership, and group of a file
chown . . . . . . . . . . Change ownership of a file
cmp . . . . . . . . . . . . Compare bytes of two files
compress . . . . . . . . Compress a file
cp . . . . . . . . . . . . . Copy a file
cpdir . . . . . . . . . . . Copy directory hierarchy
dd . . . . . . . . . . . . . Convert the contents of a file
dos . . . . . . . . . . . . Manipulate files on MS-DOS file systems
doscat . . . . . . . . . . Concatenate a file on an MS-DOS file system
doscp . . . . . . . . . . . Copy files to/from an MS-DOS file system
doscpdir . . . . . . . . . Copy directories to/from an MS-DOS file system
dosdir. . . . . . . . . . . List the contents of an MS-DOS directory
dosdel . . . . . . . . . . Delete a file from an MS-DOS file system
dosformat . . . . . . . . Build an MS-DOS file system on a floppy disk
doslabel . . . . . . . . . Label an MS-DOS floppy disk
dosls . . . . . . . . . . . List files on an MS-DOS file system
dosmkdir . . . . . . . . Create a directory in an MS-DOS file system
dosrm. . . . . . . . . . . Remove a file from an MS-DOS file system
dosrmdir . . . . . . . . . Remove a directory from an MS-DOS file system
fdisk . . . . . . . . . . . View/change hard-disk partitioning
file . . . . . . . . . . . . Name a file’s type
find . . . . . . . . . . . . Search for files satisfying a pattern
gzip . . . . . . . . . . . . GNU utility to compress files
gunzip . . . . . . . . . . GNU utility to uncompress files
l . . . . . . . . . . . . . . List directory’s contents in long format
lc . . . . . . . . . . . . . List directory’s contents in columnar format
lf. . . . . . . . . . . . . . List directory’s contents in columnar format
ln . . . . . . . . . . . . . Create a link to a file
lr. . . . . . . . . . . . . . List subdirectorys’ contents in columnar format
ls . . . . . . . . . . . . . List directory’s contents
lx . . . . . . . . . . . . . List directory’s contents in columnar format
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mkdir. . . . . . . . . . . Create a directory
mv. . . . . . . . . . . . . Rename files or directories
mvdir . . . . . . . . . . . Rename a directory
pwd . . . . . . . . . . . . Print the name of the current directory
qfind . . . . . . . . . . . Quickly find all files with a given name
rm . . . . . . . . . . . . . Remove files
rmdir . . . . . . . . . . . Remove directories
touch . . . . . . . . . . . Update modification time of a file
uncompress . . . . . . . Uncompress a file
unpack . . . . . . . . . . GNU utility to uncompress files
unzip . . . . . . . . . . . Unzip a zipped archive
whereis. . . . . . . . . . Locate source, binary, and manual files
which . . . . . . . . . . . Locate executable files
zcat . . . . . . . . . . . . Concatenate a compressed file
zcmp . . . . . . . . . . . Compare compressed files
zforce. . . . . . . . . . . Force the suffix .gz onto every gzip file
znew . . . . . . . . . . . Recompress .Z files to .gz files

Editors
COHERENT includes a number of text editors, to suit a variety of tastes.

ed . . . . . . . . . . . . . Interactive line editor
elvis. . . . . . . . . . . . Berkeley-style screen editor
emacs. . . . . . . . . . . COHERENT screen editor
ex . . . . . . . . . . . . . Berkeley-style line editor
me. . . . . . . . . . . . . COHERENT screen editor
sed . . . . . . . . . . . . Stream editor
vi . . . . . . . . . . . . . Berkeley-style screen editor

Games
The following commands are just for fun.

almanac . . . . . . . . . Print an almanac entry for this date
banner . . . . . . . . . . Print large sized letters
cal . . . . . . . . . . . . . Print a calendar
chase . . . . . . . . . . . Highly amusing video game
fortune . . . . . . . . . . Print randomly selected, hopefully humorous, text
guess . . . . . . . . . . . Extraordinarily amusing guessing game
lines . . . . . . . . . . . Highly amusing board game
moo . . . . . . . . . . . . Greatly amusing numeric guessing game
rubik . . . . . . . . . . . Play Rubik’s cube
ttt . . . . . . . . . . . . . Three-dimensional tic-tac-toe

Kernel Tools
The following commands let you configure the COHERENT kernel, and build a new bootable kernel:

asypatch . . . . . . . . . Patch a kernel file for an asynchronous configuration
cohtune . . . . . . . . . Set a variable within a device driver
idbld . . . . . . . . . . . Reconfigure the COHERENT kernel
idenable . . . . . . . . . Enable or disable a device driver
idmkcoh . . . . . . . . . Build a new kernel
idtune . . . . . . . . . . Set a tunable system value
patch . . . . . . . . . . . Patch a variable or flag within the kernel

Languages and Programming Tools
The COHERENT system comes with a number of languages, and tools for debugging and maintaining your
programs.

as . . . . . . . . . . . . . Mark Williams assembler
asfix . . . . . . . . . . . Convert file to 80386 as form
awk . . . . . . . . . . . . Report generation, pattern scanning, and processing language
cc . . . . . . . . . . . . . C-language compiler
cdmp . . . . . . . . . . . Dump COFF files into a readable form
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conv . . . . . . . . . . . Numeric base converter
cpp . . . . . . . . . . . . C preprocessor
db . . . . . . . . . . . . . Assembly-level symbolic debugger
ld . . . . . . . . . . . . . Link relocatable object files
lex. . . . . . . . . . . . . Lexical analyzer generator
m4 . . . . . . . . . . . . Macro processor
make . . . . . . . . . . . Program building discipline
makedepend . . . . . . Generate list of dependencies for a makefile
nm . . . . . . . . . . . . Print a program’s symbol table
od . . . . . . . . . . . . . Print an octal dump of a file
prof . . . . . . . . . . . . Print execution profile of a C program
ref . . . . . . . . . . . . . Display a C function header
srcpath. . . . . . . . . . Find source files
size . . . . . . . . . . . . Print size of an object file
strip . . . . . . . . . . . Strip symbol tables from executable file
yacc. . . . . . . . . . . . Parser generator

Libraries and Archives
The following commands help you create and read libraries and archives. These can be used as libraries (such as
the libraries used when linking a C program), or to back up files.

ar . . . . . . . . . . . . . The object librarian/archiver
cpio . . . . . . . . . . . . Archiving/backup utility
dump . . . . . . . . . . . File-system backup utility
dumpdate . . . . . . . . Print dump dates
dumpdir . . . . . . . . . Print the directory of a dump
gnucpio . . . . . . . . . Archiving/backup utility
gtar . . . . . . . . . . . . Archiving/backup utility
ranlib . . . . . . . . . . . Create index for object library
restor . . . . . . . . . . . Restore file system
tar . . . . . . . . . . . . . Archiving/backup utility

Mail
COHERENT comes with with a full-featured, UNIX-style mail facility based on the program smail. This is described
in the overview article mail. The following commands perform mail-related work. Some are also listed in other
sections of this article. Please note that the descriptions of smail and rmail are only for those users who wish to
manipulate UUCP mailing on a low level; for most users, the descriptions under the command mail are more than
sufficient.

checkerr . . . . . . . . . Check the mail system for errors
cvmail . . . . . . . . . . Convert stored mail to System V format
getmap . . . . . . . . . . De-archive Usenet map articles
lmail . . . . . . . . . . . Deliver local mail
mail . . . . . . . . . . . . Send/read electronic mail
mailq . . . . . . . . . . . Display information about spooled mail
mkdbm . . . . . . . . . . Build a data base for smail
mkfnames . . . . . . . . Generate data base of user names
mkhpath . . . . . . . . . Build a pathalias data base from a hosts table
mkline . . . . . . . . . . Fold mail data into one-line records
mkpath. . . . . . . . . . Create a pathalias output file
mksort . . . . . . . . . . Sort the standard input, allowing arbitrarily long lines
newaliases. . . . . . . . Build the aliases data base from ASCII source
nptx. . . . . . . . . . . . Generate permutations of users’ full names
pathalias. . . . . . . . . Generate a set of paths among computers"
pathmerge. . . . . . . . Merge sorted paths files
rmail . . . . . . . . . . . Receive mail
rsmtp . . . . . . . . . . . Run batched SMTP mail
runq. . . . . . . . . . . . Periodically process the mail queue
savelog . . . . . . . . . . Save a mail log
smail . . . . . . . . . . . Send mail
smtpd . . . . . . . . . . SMTP daemon
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For information on the configuration files used by the smail system, see the overview article mail, or the article
Administering COHERENT.

Printing
The following commands help you print text. For commands that drive communications devices, e.g., modems, see
the section on Communications, above.

cancel . . . . . . . . . . Cancel a print job
chreq . . . . . . . . . . . Change priory, lifetime, or printer for a job
epson . . . . . . . . . . . Prepare a file for an Epson printer
fnkey . . . . . . . . . . . Set/print function keys for the console
hp . . . . . . . . . . . . . Prepare files for HP LaserJet-compatible printer
hpr . . . . . . . . . . . . Send to LaserJet printer spooler
hpskip . . . . . . . . . . Abort/restart current listing on LaserJet
lp . . . . . . . . . . . . . Spool a job for printing
lpadmin . . . . . . . . . Administer the lp print-spooler system
lpsched. . . . . . . . . . Print jobs spooled with command lp
lpshut . . . . . . . . . . Turn off the printer daemon
lpr . . . . . . . . . . . . . Send to line printer spooler
lpskip. . . . . . . . . . . Terminate/restart current line printer listing
lpstat . . . . . . . . . . . Give status of printer or job
pclfont . . . . . . . . . . Prepare a PCL font for downloading via MLP
reprint . . . . . . . . . . Reprint a spooled print job
route . . . . . . . . . . . Show or reset a user’s default printer
stty . . . . . . . . . . . . Set/print terminal modes

Shell Commands
COHERENT comes with two command interpreters, or shells: ksh, the Korn shell, and sh, the Bourne shell. The
following commands are used either by the Korn shell, by the Bourne shell, or by both. Please note that
commands used only by the Korn shell are marked by a dagger ‘†’, whereas commands used only by the Bourne
shell are marked by an asterisk ‘*’.

alias† . . . . . . . . . . . Set an alias
basename . . . . . . . . Strip path information from a file name
bind† . . . . . . . . . . . Bind key sequence to editing command
break . . . . . . . . . . . Exit from shell construct
builtin†. . . . . . . . . . Execute a command as a built-in command
case . . . . . . . . . . . . Execute commands conditionally according to pattern
cd . . . . . . . . . . . . . Change directory
continue . . . . . . . . . Terminate current iteration of shell construct
dirname . . . . . . . . . Extract a directory name
dirs*. . . . . . . . . . . . Print contents of directory stack
echo . . . . . . . . . . . Repeat an argument
eval . . . . . . . . . . . . Evaluate arguments
exec. . . . . . . . . . . . Execute command directly
exit . . . . . . . . . . . . Exit from a shell
export . . . . . . . . . . Add a shell variable to the environment
expr . . . . . . . . . . . . Compute a command line expression
false. . . . . . . . . . . . Unconditional failure
fc†. . . . . . . . . . . . . Edit and re-execute one or more previous commands
for . . . . . . . . . . . . . Execute commands for tokens in list
from . . . . . . . . . . . Generate list of numbers, for use in loop
getopts . . . . . . . . . . Parse command-line options
hash† . . . . . . . . . . . Add a command to the shell’s hash table
id . . . . . . . . . . . . . Print user and group IDs and names
if. . . . . . . . . . . . . . Execute a command conditionally
jobs† . . . . . . . . . . . Print information about jobs
let . . . . . . . . . . . . . Evaluate an expression
nohup . . . . . . . . . . Run a command while ignoring hangup signals
popd* . . . . . . . . . . . Pop an item from the directory stack
prep. . . . . . . . . . . . Produce a word list
print†. . . . . . . . . . . Echo text onto the standard output
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pushd* . . . . . . . . . . Push an item onto the directory stack
read . . . . . . . . . . . . Assign values to shell variables
readonly . . . . . . . . . Mark a shell variable as read only
set. . . . . . . . . . . . . Set shell option flags and positional parameters
shift. . . . . . . . . . . . Shift positional parameters
sleep . . . . . . . . . . . Stop executing for a specified time
tee. . . . . . . . . . . . . Copy input to multiple output streams
test . . . . . . . . . . . . Evaluate conditional expression
times . . . . . . . . . . . Print total user and system times
trap . . . . . . . . . . . . Execute command on receipt of signal
true . . . . . . . . . . . . Unconditional success
typeset† . . . . . . . . . Set/list variables and their attributes
umask . . . . . . . . . . Set the file-creation mask
unalias† . . . . . . . . . Remove an alias
unset . . . . . . . . . . . Unset an environmental variable or shell function
until . . . . . . . . . . . Execute commands repeatedly
wait . . . . . . . . . . . . Await completion of background process
whence† . . . . . . . . . List a command’s type
while . . . . . . . . . . . Execute commands repeatedly
xargs . . . . . . . . . . . Execute a command with many arguments

String Processing
Some of the most useful commands are those that process strings. COHERENT has many commands that search
for strings, manipulate strings, sort strings, and otherwise perform useful manipulations on strings.

c . . . . . . . . . . . . . . Print multi-column output
cgrep . . . . . . . . . . . Pattern search for C programs
comm. . . . . . . . . . . Print common lines
cut . . . . . . . . . . . . Select portions of each line of a file
detab . . . . . . . . . . . Replace tab characters with spaces
diff . . . . . . . . . . . . Summarize differences between two files
diff3. . . . . . . . . . . . Summarize differences among three files
egrep . . . . . . . . . . . Extended pattern search
grep . . . . . . . . . . . . Pattern search
head . . . . . . . . . . . Print the beginning of a file
join . . . . . . . . . . . . Join two data bases
look . . . . . . . . . . . . Find matching lines in a sorted file
more . . . . . . . . . . . Display text one screenful at a time
paste . . . . . . . . . . . Merge lines of files
rev . . . . . . . . . . . . Print text backwards
scat . . . . . . . . . . . . Print text files one screenful at a time
sort . . . . . . . . . . . . Sort lines of text
split. . . . . . . . . . . . Split a text file into smaller files
strings . . . . . . . . . . Print all character strings from a file
tail . . . . . . . . . . . . Print the end of a file
tr . . . . . . . . . . . . . Translate characters
tsort . . . . . . . . . . . Topological sort
uniq. . . . . . . . . . . . Remove/count repeated lines in a sorted file
view. . . . . . . . . . . . Berkeley-style text viewer
wc . . . . . . . . . . . . . Count words, lines, and characters in text files
zdiff. . . . . . . . . . . . Compare two compressed files
zgrep . . . . . . . . . . . Search compressed files for a regular expression
zmore. . . . . . . . . . . Display compressed text one page at a time

System Accounting
The following commands help you to keep track of how your COHERENT system is working.

ac . . . . . . . . . . . . . Summarize login accounting information
accton . . . . . . . . . . Enable/disable process accounting
df . . . . . . . . . . . . . Measure free space on disk
du . . . . . . . . . . . . . Summarize disk usage
hmon . . . . . . . . . . . Monitor the COHERENT System
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ps . . . . . . . . . . . . . Print process status
sa . . . . . . . . . . . . . Print a summary of process accounting
quot. . . . . . . . . . . . Summarize file-system usage
time. . . . . . . . . . . . Time the execution of a command
times . . . . . . . . . . . Print total user and system times
uulog . . . . . . . . . . . Examine UUCP operations

System Maintenance
These commands help you to maintain your COHERENT system.

asymkdev . . . . . . . . Create nodes for asynchronous devices
at . . . . . . . . . . . . . Execute commands at given time
bad . . . . . . . . . . . . Maintain list of bad blocks
badscan . . . . . . . . . Examine a device for bad blocks
build . . . . . . . . . . . Install COHERENT onto a hard disk
check . . . . . . . . . . . Check file system
clri . . . . . . . . . . . . Clear i-node
crontab. . . . . . . . . . Copy a command file into the crontab directory
date . . . . . . . . . . . . Print/set the date and time
dcheck . . . . . . . . . . Check directory consistency
fdformat . . . . . . . . . Low-level format a floppy disk
fsck . . . . . . . . . . . . Check and repair file systems interactively
icheck . . . . . . . . . . i-node consistency check
mkfs . . . . . . . . . . . Make a new file system
mknod . . . . . . . . . . Make a special file or named pipe
mount . . . . . . . . . . Mount a file system
ncheck . . . . . . . . . . Print file names corresponding to i-node
newgrp . . . . . . . . . . Change to a new group
newusr . . . . . . . . . . Add new user to COHERENT system
reboot . . . . . . . . . . Reboot the COHERENT system
shutdown . . . . . . . . Shut down the COHERENT system
sync. . . . . . . . . . . . Flush system buffers
ttytype . . . . . . . . . . Set default terminal types
umount . . . . . . . . . Unmount a file system
uuchk . . . . . . . . . . Sanity-check the UUCP system

terminfo
COHERENT supports an implementation of terminfo, the terminal-description utility used under UNIX System V.
(It also supports termcap, should you prefer to use that venerable, but still useful, system.) The following
commands help support terminfo:

captoinfo . . . . . . . . Convert termcap data to terminfo form
infocmp . . . . . . . . . De-compile a terminfo binary file
tic . . . . . . . . . . . . . Compile a terminfo description

Text Processors
These commands help you to create orderly, attractive printed text. For information on how to print the output of
these commands, see the commands listed under Device Handling, above.

col. . . . . . . . . . . . . Remove reverse and half line motions
deroff . . . . . . . . . . . Remove text formatting control information
nroff . . . . . . . . . . . Text-formatting language
fmt . . . . . . . . . . . . Adjust the length of lines in a file of text
fwtable . . . . . . . . . . Build a font-width table from PCL or PostScript font
lcasep. . . . . . . . . . . Convert text to lower case
pr . . . . . . . . . . . . . Paginate and print files
prps . . . . . . . . . . . . Paginate and print files on PostScript printers
PSfont . . . . . . . . . . Cook an Adobe font into PostScript format
spell. . . . . . . . . . . . Find spelling errors
troff . . . . . . . . . . . . Extended text-formatting language
typo. . . . . . . . . . . . Detect possible typographical and spelling errors
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UUCP
The UUCP commands lets you form a network with other COHERENT or UNIX systems. Members of the network can
grant each other permission to exchange mail and execute commands on each others’ systems remotely and
automatically, without having to be directed by a human being. The overview article UUCP describes the
COHERENT UUCP facility in some detail. The following commands perform UUCP-related work; note that some of the
commands listed here also are also listed in other sections of this article.

mwcbbs . . . . . . . . . Download files from the Mark Williams bulletin board
uuchk . . . . . . . . . . Sanity-check the UUCP system
uucico . . . . . . . . . . Connect to a remote system
uuconv . . . . . . . . . . Convert UUCP configuration files into Taylor format
uucp . . . . . . . . . . . Copy a file to or from a remote system
uudecode . . . . . . . . Decode a transmitted UUCP file
uuencode . . . . . . . . Encode a UUCP file for tranmission
uuinstall . . . . . . . . . Configure UUCP control files
uumkdir . . . . . . . . . Create UUCP directories
uulog . . . . . . . . . . . Examine UUCP operations
uumvlog . . . . . . . . . Archive UUCP log files
uuname . . . . . . . . . Print names of recognized systems
uupick . . . . . . . . . . Pick up a file uploaded from a remote system
uurmlock . . . . . . . . Remove UUCP lock files
uusched . . . . . . . . . Call all systems that have jobs waiting for them
uuto. . . . . . . . . . . . Send a file to a remote system
uutouch . . . . . . . . . Force polling of a remote site
uux . . . . . . . . . . . . Execute a command on a remote system
uuxqt . . . . . . . . . . . Execute file as requested by remote system

Miscellaneous
The following commands do not fit neatly into any of the above categories. These include some of the more
interesting and useful COHERENT commands, and are worth your attention.

apropos . . . . . . . . . Find manual pages on a given topic
ATclock . . . . . . . . . Read/set the AT realtime clock
bc . . . . . . . . . . . . . Interactive calculator with arbitrary precision
calendar . . . . . . . . . Electronic reminder service
chroot . . . . . . . . . . Change root directory
clear . . . . . . . . . . . Clear your terminal’s screen
coh_intro . . . . . . . . Tour the COHERENT file system
crypt . . . . . . . . . . . Encrypt/decrypt text
dc . . . . . . . . . . . . . Desk calculator
disable . . . . . . . . . . Disable a port
elvprsv . . . . . . . . . . Preserve the modified version of a file after a crash
elvrec. . . . . . . . . . . Recover the modified version of a file after a crash
enable . . . . . . . . . . Enable a port
env . . . . . . . . . . . . Execute a command in an environment
factor . . . . . . . . . . . Factor a number
findmouse . . . . . . . . Examine a port to see if a mouse is plugged into it
ftbad . . . . . . . . . . . Manipulate bad-block list on a floppy-tape cartridge
help . . . . . . . . . . . . Print concise description of command
ideinfo . . . . . . . . . . Display information about an IDE disk drive
install . . . . . . . . . . Install a software update onto COHERENT
ipcrm . . . . . . . . . . . Remove an interprocess-communication memory item
ipcs . . . . . . . . . . . . Display a snapshot of interprocess communications
kill . . . . . . . . . . . . Signal a process
ksh . . . . . . . . . . . . Invoke the Korn shell
login . . . . . . . . . . . Log in or change user name
makeboot . . . . . . . . Make a bootable floppy disk
man . . . . . . . . . . . . Display Lexicon entries
mklost+found. . . . . . Make an enlarged lost+found directory
passwd . . . . . . . . . . Set/change login password
phone. . . . . . . . . . . Print numbers and addresses from phone directory
script . . . . . . . . . . . Capture a terminal session into a file
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sh . . . . . . . . . . . . . Invoke the Bourne shell
su . . . . . . . . . . . . . Substitute user id, become superuser
sum . . . . . . . . . . . . Print checksum of a file
tape . . . . . . . . . . . . Manipulate a tape device
tty. . . . . . . . . . . . . Print the user’s terminal name
ttystat . . . . . . . . . . Get terminal status
uname . . . . . . . . . . Print information about the system
units . . . . . . . . . . . Convert units of measure
vsh . . . . . . . . . . . . Invoke the COHERENT visual shell
who . . . . . . . . . . . . Print who is logged in
yes . . . . . . . . . . . . Print infinitely many responses

For more information on any of these commands, see its entry within the Lexicon.

See Also
Administering COHERENT, Programming COHERENT, Using COHERENT

compress — Command
Compress a file
compress [ -dfvc ] [ -bnum ] [ file ... ]

compress compresses a file using the Lempel-Ziv algorithm. With text files and archives, it often can achieve 50%
rate of compression.

If one or more files are specified on the command, compress compresses them and appends the suffix .Z onto the
end of each compressed file’s name. If no file is specified on the command line, compress compresses text from
the standard input and writes the compressed text to the standard output.

compress recognizes the following options:

-b The ‘‘bits’’ option. compress uses the compression level set via the num argument. Previous releases of
compress would only allow values of num up to 12, with 12 being the default value if the -b option was not
specified. The version of compress introduced with COHERENT version 3.1 handles values up to 16, with
12 being the default.

-c Send output to stdout.

-d Decompress rather than compress.

-f Force an output file to be generated even if no space is saved by compression.

-v Verbose mode: force compress to write statistics about its performance.

If you wish to ensure backwards compatibility with previous releases of COHERENT, do not use compress with a
num value greater than 12.

See Also
commands, compression, gzip, ram, uncompress, zcat

compression — Technical Information
Programs used to compress text

Compression is the technique whereby a file is analyzed mathematically and made smaller. Compress is very
useful in reducing the amount of disk space taken up by large files that you use infrequently.

The amount of compression will vary, depending upon the type of file being compressed, the compression algorithm
used, and the level of compression requested. In general, files that show a great deal of repetition internally will
compress more thoroughly than those that are largely random; thus, in general a text file will compress more
thoroughly than will a digitized sound sample or image (although there are exceptions). The higher the level of
compression you request, the more thoroughly the file will be compressed, but the longer the machine will have to
work to achieve it. In most instances, raising the level of compression very high will save only a few bytes at a
great cost in computer time.

You should note, too, that although compression algorithms try very hard not to lose information, it is possible
that compressing some very complex files may result in a loss of information: that is, if you compress a file and de-
compress it, the de-compressed file may be exactly the same as it was before you first compressed it. These
programs will not affect most everyday varieties of data; but you should be aware of this fact.
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COHERENT comes with the following tools for compressing and uncompressing files:

compress
This program compresses files uses the Lempel-Ziv algorithm. By default, it creates a file with the suffix
.Z. It replaces the uncompressed original with its compressed analogue.

gtar This program creates tape archives. Its options -z and -Z invoke, respectively, the programs gzip and
compress to compress the archive as it is being built, thus permitting you to build a compressed archive
automatically.

gunzip This de-compresses files that had been compressed by the program gzip. By default, it works only with
files that have the suffices .z or .gz. It replaces the compressed file with its uncompressed analogue.

gzip This program compresses files into the zip format. In general, it is faster and more thorough than
compress, although it may not work as well on some files. It replaces the uncompressed original file with
its compressed analogue.

uncompress
This uncompresses files that had been compressed by compress. It works with files that have the suffix .Z.
It replaces the compressed file with its uncompressed analogue.

zcat This program de-compresses ‘‘on the fly’’ programs that had been compressed by compress, and writes the
decompressed form to the standard output device. This is useful if you want to look at the contents of a
compressed file but do not want to bother with de-compressing all of it.

Default Suffixes
Compressed files cannot be used in their compressed form; you must first uncompress them before you can use
them. The key to uncompressing a compressed file is figuring out what program it was compressed with in the
first place, so you can apply the correct de-compression tool.

If you have received a compressed file from a third-party source, you may have no idea what tool was used to
compress the file; fortunately, however, most compression tools use standard suffices to ‘‘stamp’’ the files they
compress. The following table gives commonly used suffices, plus examples of how to uncompress files that bear
them:

Compression Decompression Example
Suffix Program Program
.Z compress uncompress uncompress foo.Z
.tar.Z tar|compress uncompress|tar zcat foo.tar.Z | tar xvf -
.z gzip gunzip gunzip foo.z
.tar.z tar|gzip gunzip|tar gunzip foo.tar.z ; tar xvf foo.tar
.tgz gtar -cz gtar -xz gtar -xvzf foo.z
.gtz Same as .tgz
.taz Same as .tgz

See Also
compress, gtar, gunzip, gzip, uncompress, Using COHERENT, zcat

con.h — Header File
Configure device drivers
#include <sys/con.h>

The header file con.h gives the configuration for each device driver included with the COHERENT system. Each
driver is defined using the structure CON, which is declared in <sys/con.h>.

See Also
header files

config — System Administration
File that configures smail
/usr/lib/mail/config

File /usr/lib/mail/config holds instructions that configure the mailer-delivery program smail. You can modify
this file to supplement, modify, or override smail’s default configuration.
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Please note that this file is in no way related to file /usr/lib/uucp/config, which can be used to configure the
Taylor UUCP system. For details on how to configure UUCP, see the Lexicon entry for /usr/lib/mail/config, which
immediately follows this article in the Lexicon.

The rest of this article describes config, the attributes you can set within it, and how the setting of each attribute
affects smail’s behavior.

Suite of Configuration Files
To begin, your machine can have two smail configuration files: a primary one, and a secondary one. Either can
reset the values of any smail variable; for example, each can define names for the local host, define where files
reside, or set the values for site-definable message-header fields. You are not obliged to use a configuration file: if
smail’s default configuration suits you, then you can rename or move the primary configuration file so it will no
longer be read. Likewise, if you have a primary configuration file, you are not obliged to have a secondary one.

smail reads the primary configuration file first, then the secondary configuration file. The values in the secondary
configuration file can override those set in the primary file; the primary file, in turn, can redefine the name of the
secondary configuration file. This gives you great flexibility to configure smail to suit your needs and preferences.

Format of a Configuration File
A configuration file consists of instructions; each instruction, in turn, sets an attribute to a value. Attributes come
in three flavors: string, numeric, and Boolean. To set a variable to a string or numeric value, use the form:

variable = value

For example, the instructions

postmaster = tron@glotz.uucp
domains = wall.com
spool_mode = 0664

set the default address for the postmaster to tron@glotz.uucp, the attribute domains to wall.com, and the
permissions for spool files to permit the file’s owner and group to write into it.

Boolean attributes are either turned off or turned on. To turn on a Boolean attribute, use the notation:

+boolean-attribute

To turn it off, use the notation:

-boolean-attribute

You can also use the notation -attribute to set a numeric variable to zero and to un-set a value for a string variable.
For example, the following instructions disable the use of an external transport file and tells smail that
configuration files are not optional:

-transport_file
+require_configs

smail ignores blanks lines within a configuration file. If smail encounters a ‘#’ character, it ignores that character
plus all text to its right; thus, you can use this character to introduce a comment.

If a line begins with white space, smail assumes that it continues the previous line; in this way, you can extend an
instruction over more than one line. For example, the following instructions set the Received: header field to use
for messages to a multi-line value, and also set the name of a user that has few access capabilities:

# Use a verbose format for the Received: header field
received_field = "Received: by $primary_name

with smail ($version_string)
id <$message_id@$primary_name); $date"

nobody = unknown # comment: user "unknown" has few access capabilities

smail Attributes
The following names the attributes that you can set in a configuration file. Each attribute’s name is followed by its
type and its default setting in parentheses.

auth_domains (string, off)
Name the domains for which your host is considered authoritative — i.e., the domains that your host
knows how to access directly. The domain names must be separated by a single colon character ‘:’. Mail
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addressed to any domain named in this list will not be forwarded to the smart host (described below).

auto_mkdir (Boolean, on)
If set, smail creates all directories required for spooling and logging if they do not exist. However, smail
will never create required parent directories.

auto_mkdir_mode (integer, 0755)
When smail creates a directory, give it this permission mask. For details on what the numbers in a
permission mask mean, see the Lexicon entry for chmod.

console (string, /dev/console)
Name the console device. This device is used as a last resort in attempting to write panic messages.

copying_file (string, COPYING)
The path name to file COPYING, which states your distribution rights and details the warranty information
from the authors of smail. If this does not begin with ‘/’, smail assumes that it is in the directory named
by attribute smail_lib_dir (described below).

date_field (string, Date: $spool_date)
smail expands this string to form field Date: in a mail message’s header, should the header not already
contain such a field.

delivery_mode (string, foreground)
The default mode for delivering new mail. This can be one of the following values:

foreground
Immediate delivery via the process that received the message.

background
Immediate delivery via a child process. The process that received the message exits immediately.

queued
Do not attempt delivery until a later queue run.

director_file (string, directors)
This names the file that configures smail’s directors. If this does not begin with ‘/’, smail assumes that it
is in the directory named by variable smail_lib_dir (described below).

domains (string)
This sets the domain name that smail writes into the header of an outgoing mail message. It is computed
at run time. If attribute visible_name is turned off, then smail sets it to the first name set by attribute
hostnames. If hostnames is not set, then smail constructs the domain-name host names of the form
hostname.domain. hostname is set in file /etc/uucpname domain is a name set by the attribute
domains— smail uses each entry in domains, in order, to create the hostnames value.

For sites in the UUCP zone, domains often will merely be set to the string uucp. Finally, you can use the
variable $visible_name within the string to which you set this attribute.

For compatibility with earlier versions of smail, this attribute can also be called visible_domains.

error_copy_postmaster (Boolean, off)
Send the postmaster a copy of every error message. Normally, smail sends the postmaster only the errors
that appear to result from administrator mistakes. If you set this attribute, then smail also sends the
postmaster the errors that are returned to the sender or that are mailed to owners of mailing lists.

fnlock_interval (number, 3)
Set the sleep interval between retries while attempting to lock mailbox files with a lockfile-based locking
protocol. Under COHERENT, the function sleep() has a one-second granularity; therefore, you must this
value to at least two.

fnlock_mode (number, 0666)
Create mailbox lock files.

fnlock_retries (number, five)
The number of times smail attempts to lock mailbox files using a file-based locking protocol.

from_field (string)
smail expands this string to form the fields From: and Sender: in a mail message’s header. The expanded
string must begin with From:, which may be replaced by other strings to form an actual header field. The
default value is:
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From: $sender${if def:sender_name: ($sender_name)}

grades (string)
Set the grade (or priority) characters that correspond to values of the Precedence: field in a mail message’s
header. The fields within the string are separated by ‘:’; precedence strings alternate with grade
characters. Numbers have higher priority than upper-case letters, which in turn are higher than lower-
case letters. Lower numbers are higher in priority than higher numbers, and the same goes for letters
lower in the alphabet. Grades in the range ‘a’ through ‘m’ only return an error message and header to the
sender when an error occurs. Grades in the range ‘n’ through ‘z’ return nothing to the sender should an
error occur. The precedence names recognized by many BSD sendmail configurations are special-
delivery, first-class, and junk. Others are useful mainly for getting mail out of the local machine or for
communicating with other machines that run smail in a similar configuration. The grade character for a
message is available in string expansions as the variable $grade. The default setting is:

special-delivery:9:air-mail:A:first-class:C:bulk:a:junk:n

hit_table_len (number, 241)
The length of the internal-address ‘‘hit’’ table. smail hashes addresses into this table to prevent multiple
deliveries to the same address. Longer tables speed address hashing, at the price of a small increase in the
amount of memory used. NB, this value may be ignored in the future.

host_lock_timeout (numeric, 30)
Set the time during which smail will attempt to lock a host’s retry file; this file is used to guarantee
exclusive delivery to that thost. If smail cannot lock the file within this time, then it leaves the message in
the queue, to be delivered later.

A number with no suffix indicates seconds. Suffixes can be added to indicate a time multiplier: m
indicates minutes, h indicates hours, and d indicates days.

hostnames (string)
hostname (string)

A colon-separated list of names for the local host. This list, together with the attributes uucp_host and
more_hostnames, should represent all possible names for the local host. Note that smail does not
recognize the name hostname as a name for the local host unless that name is also set by one of the other
hostname variables. If your local host is in more than one domain or can gateway to more than one level
of domains, then this attribute should represent those names. For a host in a registered domain in the
UUCP zone, which is also in the maps distributed over USENET, localhost.uucp should also be in the list.
The first value in hostnames is used internally as a special ‘‘primary name’’ for the local host.

Under COHERENT, this attribute is turned off by default. smail computes the value of hostnames by
pairing the local host’s name, as set in file /etc/uucpname, with every value set by attribute domains.
smail re-computes the default value each time you run it.

lock_by_name (Boolean, on)
If this variable is turned on, locking of the input spool file is always based on lock files. Otherwise, an i-
node—based locking mechanism may be used, such as the BSD function flock() or lockf() under System V
or COHERENT. I-node—based locking is more efficient, if available. However, lock files can be easily
created by shell scripts, which may be advantageous under some circumstances.

lock_mode (number, 0444)

log_mode (number, 0664)
The mode assigned to newly created mail-system log files.

logfile (string, /usr/spool/smail/log/logfile)
The file into which smail writes transaction messages and error messages. If this file does not exist, smail
creates it with the mode set by variable log_mode.

max_hop_count (number, 20)
If the hop count for a message equals or exceeds this number, then any attempt at remote delivery results
in an error message being returned to the sender. smail uses this mechanism to prevent infinite loops. To
set the hop count for a specific message, use smail’s command-line option -h. Otherwise, smail computes
it from the number of Received: fields in the message header.

LEXICON

474 config



max_load_ave (number)
For systems on which a load average can be computed, this attribute sets the maximum load average at
which mail will be delivered. If the load average exceeds this number, smail saves incoming mail within
the input spool directory for delivery later. Under COHERENT, this attribute is not set; therefore, smail
does not compute the load average, and always attempts to deliver mail.

max_message_size (number, 100k)
Set the maximum size of a message. smail truncates messages longer than this. (This is not yet
implemented; at present, smail sets nolimit on the size of a message.)

message_buf_size (number, 100k)
The size of the internal buffer that smail uses to read and write messages. The larger the value of this
buffer, the fewer the number of calls to read() are required to read the message, because the entire
message is always kept in memory. The default value is 100 kilobytes (100k).

message_id_field (string)
smail expands this attribute to form the field Message-Id: in a mail message’s header. This will be used if
such a field does not already exist in the header. The default value is:

Message-Id: <$message_id@$primary_name>

message_log_mode (number, 0644)
Each message has associated with it a unique file that contains a transaction log for that message. This
number sets the permissions that smail gives this file when it creates it.

method_dir (string, methods)
If a method attribute for a router does not specify a path name that begins with ‘/’, smail prefixes this
directory onto the path to form the complete path for the method file. If this does not begin with ‘/’, smail
assumes that it is in the directory set by attribute smail_lib_dir (described below). See the description of
the router file for more information on method files.

more_hostnames (string, off)
A colon-separated list of host names. These host names are in addition to any names that smail computed
from the domains when forming the value of the variable hostnames. Thus, it is useful for specifying
names that are not formed from the computed name for the host.

Attribute more_hostnames can also be called gateway_names, because it is often used to indicate the list
of domains for which this machine is a gateway.

nobody (string, nobody)
The default user. This variables defines permissions to use when no other user is specified. Also, smail
uses this user in some conditions when it is not certain whether a set of actions can be trusted, if
performed under other, potentially more powerful users. This should reference a login identifier that has
little power to do harm or access protected files.

paniclog (string, /usr/spool/smail/log/paniclog)
The name of the file onto which smail appends panic messages and other important error messages. If
this file does not exist, smail creates it and assigns it the permissions specified by variable log_mode.
smail records in this log all errors that require human intervention, such as configuration errors or
directory-permission errors, that prevent mail spooling or delivery.

When a configuration error occurs, smail usually moves the mail into a special error directory under the
input spool directory. This prevents smail from again attempting to delivery the message until the
configuration error has been corrected.

Thus, you should regularly check both the panic log and the error directory, especially after you have
changed a configuration. When the problem has been resolved, you can move the diverted messages back
into the spool directory, and smail will again attempt to deliver them.

postmaster_address (string, root)
postmaster (string, root)

This attribute sets the default address of the postmaster. If the address Postmaster is not resolved by any
of the configured directors, smail then uses this address.

qualify_file (string, qualify)
This variable names the file that contains the host-name qualification information. If this does not begin
with ‘/’, smail assumes that it is a subdirectory of the directory defined by the attribute smail_lib_dir.
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queue_only (Boolean, off)
If this flag is set, then smail does not deliver incoming mail immediately. It only attempts delivery when it
explicitly processes the input queue, such as when you invoke it with command-line option -q.

received_field (string)
smail expands this string to form the field Received: in a mail message’s header. It inserts this field into
the header if the ‘‘received’’ attribute is not explicitly turned off for a transport. The default value for
received_field is:

received_field="Received: \
${if def:sender_host\

{from $sender_host by $primary_name\
${if def:sender_proto: with $sender_proto}\
\n\t(Smail$version #$compile_num) }\

else {by $primary_name ${if def:sender_proto:with $sender_proto }\
(Smail$version #$compile_num)\n\t}}\

id $message_id; $spool_date"

require_configs (Boolean, off)
If this option is turned off or is not set, then smail does not require its configuration files to exist. This
applies to the primary and secondary configuration files, and the director, router, and transport files
(respectively, /usr/lib/mail/directors, /usr/lib/mail/routers, and /usr/lib/mail/transports). If one of
these files does not exist, smail ignores it and instead uses its internally compiled configuration. If,
however, you turn on this attribute, then if smail cannot find a configuration file whose file name is not
null, it displays a panic message and exits.

To set a configuration file’s name to null, turn off the attribute that names it. For example, to set the
router file’s name to null, use the attribute -router.

retry_file (string, retry)
This names the file that contains the retry-control information. If this name does not begin with ‘/’, smail
assumes that it is in directory named by variable smail_lib_dir (described below).

retry_duration (interval, 5d)
This specifies the default period of time for which smail will attempt to deliver a message. If the message
cannot be delivered within this period of time, smail assumes it is undeliverable, and sends a ‘‘bounce’’
message either to the sender or to the list’s owner, should there be one. A number with no suffix indicates
seconds. Suffices can be added to indicate a time multiplier: m indicates minutes, h indicates hours, and
d indicates days. Under COHERENT, the default is five days.

retry_interval (interval, 10m)
If smail cannot connect to a given host, it will wait at least this amount of time before it tries again. This
applies to all messages routed to the host in question, to help process a queue efficiently.

return_path_field (string, Return-Path: <$sender>)
smail expands this string into field Return-Path: in the mail-message’s header. It inserts this field into
the header if attribute return_path is turned on for a given transport in file /usr/lib/mail/transports.

router_file (string, routers)
This attribute names the file that contains the router-configuration information. If this does not begin
with ‘/’, smail assumes that it is in the directory named by attribute smail_lib_dir (described below).

second_config_file (string, none)
This names the secondary configuration file. The section on configuration files, above, describes how this
file relates to the primary configuration file. If this file’s name does not begin with ‘/’, smail assumes that
it is in the directory named by attribute smail_lib_dir (described below).

This is primarily useful in networks whose machines share file systems. In particular, the attributes
smart_user, smart_path, and smart_transport are set in the secondary configuration file.

sender_env_variable (string, not set)
This attribute names the environmental variable that, in turn, gives the name of the mail message’s
sender. Normally, the name of the sender is determined from her login identifier, or by checking calling
process’s real-user identifier. If sender_env_variable is set and the environmental variable it names
exists, then smail uses that name by default. For example, if the line
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sender_env_variable=BOGUS_NAME

appears in /usr/lib/mail/config, and if variable BOGUS_NAME is set in the user’s environment, then
smail uses that name to identify the sender, instead of the name for that user that appears in file
/etc/passwd.

smail (string, /bin/smail)
This attribute names the smail binary. smail uses this to re-exec itself when a major configuration
change has been detected, or to exec smail when delivering error messages. If this name does not begin
with ‘/’, smail assumes that this binary is kept in the directory named by attribute smail_lib_dir.

smail_lib_dir (string, /usr/lib/mail)
This attribute gives the full path name of the directory in which smail by default seeks its configuration
files.

smail_util_dir (string, /usr/lib/mail)
This attribute gives the full path name of the directory that holds smail’s utilities, in particular the utilities
mkaliases and mkdbm.

smart_path (string, not set)
This attribute defines the value that the router smarthost uses by default for its path attribute. It gives
the path to a machine whose routing data base is more complete than the one on your local host. By
default, this is not set; however, if you using UUCP to receive mail service from another system, you must
set this variable to the name of that system. For details, see the Lexicon entry for routers.

smart_transport (string, not set)
This attribute defines the value that the smarthost router driver uses by default for its attribute
transport. For details, see the Lexicon entry for routers.

smart_user (string, not set)
This attribute defines the value that the smarthost router driver uses by default for its attribute
smart_user. For details, see the Lexicon entry for routers.

smtp_accept_max (number, 20)
This attribute sets the maximum number of SMTP connections that smail will process at any one time.
This is for use with SMTP daemons started with smail’s command-line option -bd, or through the
command smtpd. If smail receives a a connection request when this number of SMTP-connection children
have already been forked, smail shuts down the connection with SMTP message 421. If this attribute is
set to zero, then the number of SMTP connections is unlimited.

smtp_accept_queue (number, 5)
If this number of SMTP connection processes is exceeded, then smail accepts additional connections but
queues their messages for later processing. When the number of current connection processes drops
below this number, smail resumes the immediate processing of mail (if attribute delivery_mode is set to
foreground or background.) If delivery_mode is set to zero, then smail will always process mail
immediately, regardless of the number SMTP connections that it is handling. Note that the value of
smtp_accept_queue should be less than the value of smtp_accept_max. Setting smtp_accept_max to
zero prevents smtp_accept_queue from working correctly in all cases.

smtp_banner (string)
smail expands this string to the SMTP startup banner. smail’s SMTP server writes this banner when it
accepts a connection request. Each line of this message is automatically preceded by identification code
‘‘220’’; newlines are correctly changed into a carriage-return newline sequence. The default value for
smtp_banner is:

$primary_name Smail$version #$compile_num ready at $date

smtp_debug (Boolean, on)
This Boolean variable controls the meaning of the DEBUG command when receiving SMTP commands. If
this variable is on, then the DEBUG command (with an optional debugging level) sets debugging to the
specified level, or to level 1 if no level was specified. smail writes the debugging output to the SMTP
connection.

smtp_receive_command_timeout(interval, 5m)
This attribute sets the time that smail’s SMTP daemon waits for a receiver command after it displays its
prompt. If the daemon does not receive the command within this interval, it closes down the connection
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and exits. The default is 5m, that is, five minutes.

smtp_receive_message_timeout(interval, 2h)
This attribute sets the time that smail SMTP daemon waits for a message after it has displayed its prompt:

354 Enter mail

If it does not receive the entire message within this interval, it removes the message, closes the connection,
and exits. The default is 2h, that is, two hours.

spool_dirs (string, /usr/spool/smail)
This sets the directory or directories into which smail spools incoming mail. If it names more than one
directory, the directories must be separated by a colon ‘:’. If smail cannot write a message to the first
directory (say, due to permission problems, file-system-full errors, etc.), it tries to write the message into
the other directories, one after another, until it either succeeds in writing the message or runs out of
directories to try. Each spool directory is expected to have the following writable subdirectories:

input The actual spool files
lock Temporary lock files
msglog Temporary per-message transaction logs and audit trails
error Messages failing from problems requiring human intervention

spool_grade (character, C)
This attribute gives the default grade for mail messages. It can be overridden by a Precedence: field in a
message’s header. smail uses the grade to sort messages in the input spool directory. The grade is also
available in string expansions as the variable $grade. See the description of the attribute grades, above, for
more information.

spool_mode (number, 0440)
This attribute sets the permissions smail gives to spooled files.

transport_file (string, transports)
This attribute names the file that holds the transport-configuration information. If the directory does not
begin with ‘/’, smail assumes it is in the directory named by the attribute smail_lib_dir (described above).

trusted_users (string, off)
This names the users who are trusted to specify a sender for a message. Users who are not in this list
cannot specify a Sender: field in a mail header; if they do, smail removes it. If a trusted user specifies a
From: header field, then smail also creates a Sender: field that names the real user who submitted the
message.

In general, this attribute should name every user under whom remote mail is received and sent to smail. If
this list is turned off, using the form -trusted, then every user is trusted.

NB, smail uses the real user identifier to verify a trusted user. However, the program uucico runs under
the real user identifier of the user who invoked it — and any user can invoke uucico. smail cannot
distinguish this case from any other, and thus will do the ‘‘wrong thing’’ in this instance. Under
COHERENT, this attribute is turned off by default to avoid this problem.

trusted_groups (string, off)
This attribute names the user groups that are trusted to specify a sender of a message. smail checks a
user’s effective group identifier to ensure that he really is a member of a trusted group. Thus, were smail a
setgid program, then this string would be of no value and should be turned off. However, if smail is not
set gid (as it is not under COHERENT), then programs that invoke smail under a specific effective gid, not a
specific real uid, can be detected and can be properly treated as trusted.

uucp_name (string)
This attribute gives the name of your local host. It is computed at run-time. This name is available in
string expansions as the variable $uucp_name smail also uses it in the ‘‘remote from hostname’’ suffix to
‘‘From’’ lines for mail being delivered to remote machines, when the from attribute is turned on for a
transport.

visible_domains (string)
This is a synonym for attribute domains.

See Also
Administering COHERENT, directors, mail [overview], routers, smail, transports
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Notes
Copyright  1987, 1988 Ronald S. Karr and Landon Curt Noll. Copyright  1992 Ronald S. Karr.

For details on the distribution rights and restrictions associated with this software, see file COPYING, which is
included with the source code to the smail system; or type the command: smail -bc.

config — System Administration
File that configures UUCP
/usr/lib/uucp/config

The file /usr/lib/uucp/config performs overall configuration of the Taylor UUCP system. By setting commands
within this file, you can override the default settings that are compiled into the COHERENT edition of UUCP.

Please note that this file is in no way related to file /usr/lib/mail/config, which configures smail, the mail-
delivery program. For details on how to configure smail, see the Lexicon entry for /usr/lib/mail/config, which
immediately precedes this article in the Lexicon.

Please note also that COHERENT does not include an edition of this file with its release of Taylor UUCP. That is
because the default behaviors for COHERENT are already compiled into UUCP. However, you can create this file if
you wish, and use it to change or override the default behaviors built into Taylor UUCP. This lets you customize
UUCP to suit your needs and preferences, without having to modify or recompile the UUCP sources.

The rest of this article describes the commands that you can embed within config, should you wish to change the
defaults for UUCP on your COHERENT system.

Miscellaneous Commands
The following config commands perform miscellaneous actions:

hdb-files true|false
If true, use HoneyDanBer configuration files instead of Taylor configuration files. COHERENT by default
uses Taylor configuration files.

lockdir directory
Write lock files into directory. Under COHERENT, these files are written into /usr/lib/uucp.

max-uuxqts number
Set to number the maximum number of uuxqt processes that can run at any given time. The default is
zero, which means that there is no limit.

nodename name
hostname name
uuname name

These commands are synonyms. Each tells UUCP to use name as the name of your system. Under
COHERENT, your system’s name is set in file /etc/uuname, and is returned by the system call uname().

pubdir directory
Use directory as the publically accessible directory. Under COHERENT, the default public directory is
/usr/spool/uucppublic.

run-uuxqt string|number
Specify when uucico should invoke uuxqt. If its argument is a number, uucico invokes uuxqt after it has
received number execution files. If it is not a number, it must be one of the following strings:

once Invoke uuxqt once at the end of execution.
percall Invoke uuxqt once per call.
never Never invoke uuxqt.

Under COHERENT, the default is once.

spool directory
Use directory as the spool directory. Under COHERENT, the default spool directory is /usr/spool/uucp.

timetable period time_string
Define a time table to be used by default with subsequent time instructions. period is the period of day to
which the time table applies. time_string is a standard time string that applies to that time of day. Taylor
UUCP defines the following time tables by default:
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timetable Evening Wk1705-0755,Sa,Su
timetable Night Wk2305-0755,Sa,Su2305-1655
timetable NonPeak Wk1805-0655,Sa,Su

unknown string ...
Let unknown systems log into your system. An ‘‘unknown,’’ is one that is not described in
/usr/lib/uucp/sys. Each string is applied to the unknown system, just as if it were named in sys. The
COHERENT configuration of Taylor UUCP does not permit unknown systems to log in.

v2-files true|false
If true, use V2-style configuration files. COHERENT by default uses Taylor configuration files.

Configuration File Names
The following commands instruct Taylor UUCP to use configuration files other than the default ones:

callfile file ...
When dialing out, read the system name and password that your system passes to the remote system from
each file. Taylor UUCP reads these files should the password or system name in a given system’s
description be set to ‘*’. Each line within a call file consists of three fields: the name of the remote system,
the name by which your system identifies itself to the remote system, and the password. This mechanism
permits you to make file /usr/lib/uucp/sys publically readable, while keeping the system names and
passwords confidential.

COHERENT’s default implementation of Taylor UUCP does not use call files, but you can set them up easily
enough. Note that if you do so, pay careful attention to the permissions that you give each file.

dialcode file ...
Read dial codes from each file. ‘‘Dial codes’’ permits UUCP to interpret telephone numbers so they can be
used through different telephone systems or area codes. COHERENT by default does not name or configure
any dial-code files.

dialfile file ...
Read dialer-configuration information from every file instead of from the default file, /usr/lib/uucp/dial.

passwdfile file ...
Tell uucico to read system passwords from each file. This applies only to systems that are logging into
your system, and only when uucico is managing the login process instead of the standard COHERENT
programs. Each line in a file consists of two fields: the login name used by the remote system, and its
password. uucico reads each file until it finds a password for the system that is attempting to log in.

Note that the COHERENT configuration of Taylor UUCP does not support encrypted passwords.

portfile file ...
Read port-configuration information from every file instead of from the default file, /usr/lib/uucp/port.

sysfile file ...
Read system-configuration information from every file instead of from the default file, /usr/lib/uucp/sys.

Log Files
The following commands let you change the log files that Taylor UUCP uses by default:

debugfile file
Write debugging information into file instead into the default file. Because COHERENT’s port of Taylor
UUCP uses HoneyDanBer logging instead of Taylor logging, uucico ignores this command. Under
COHERENT, Taylor UUCP writes debugging information into /usr/spool/uucp/.Admin/audit.local.

logfile file
Write logging data into file. COHERENT’s port of Taylor UUCP uses HoneyDanBer logging by default, which
means that each system has its own log file within directory /usr/spool/uucp/.Log.

statfile file
Write statistics information into file instead of into the default file, /usr/spool/uucp/.Admin/xferstats.

Levels of Debugging
The COHERENT port of Taylor UUCP has debugging compiled into it. As noted above, under COHERENT Taylor UUCP
writes its debugging information into file /usr/spool/uucp/.Admin/audit.local. You can place the command
debug into file config to set the level of debugging to use by default.
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Please What the Taylor documentation calls a level of debugging really records information about a given activity.
For example, the command debug chat tells Taylor UUCP to record information about all actions taken while
executing a chat script — not just the problems that occur while a chat script is being executed.

The command debug recognizes the following commands:

abnormal
Log abnormal situations.

chat Log chat-script activities.

handshake
Log activities during handshaking with the remote system.

uucp-proto
Log activities that involve the UUCP session protocol.

proto Log activities that involve individual link protocols.

port Log activities that involve the communications port.

config Log activities that occur while reading the configuration files.

spooldir
Log activities in the spool directory.

execute
Log whenever a program is executed.

incoming
Log all incoming data.

outgoing
Log all outgoing data.

all Log all of the above.

You can name more than one activity with the debug command. If you have more than one activity, the items in
the list of activities must be separated by a comma instead of white space; for example, command

debug chat,handshake

tells UUCP to log activities that occur during execution of the chat script and handshaking.

A form of the debug command lets you invoke activities by number from the above list. note that the order is
significant: abnormal is activity number zero, and all activity 11. For example, command

debug 3

tells UUCP to log activities zero through three — that is, abnormal through uucp-proto.

Note, too, that the debug command in this file can be overridden by using command-line option -x with any UUCP
command.

See Also
Administering COHERENT, dial, port, sys, UUCP

connect() — Sockets Function (libsocket)
Connect to a socket
#include <sys/types.h>
#include <sys/socket.h>
int connect(socket, name, namelen)
int socket, namelen; struct sockaddr *name;

The function connect() establishes a connection for a socket.

socket is a file identifier that describes a socket possessed by the current process. It must have been returned by a
call to socket(). If it is of type SOCK_DGRAM, connect() specifies the peer with which the socket is to be
connected; this address is that to which datagrams are to be sent, and the only address from which datagrams are
to be received. If, however, it is of type SOCK_STREAM, connect() attempts to connect it with another socket. The
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other socket is identified by name, which points to the full path name of the file to which the other socket is bound.
This connection must have been established by a call to function bind(). namelen gives the length, in bytes, of the
file name to which name points.

As a rule, a socket of type SOCK_STREAM can successfully connect only once; however, those of type
SOCK_DGRAM sockets can call connect() multiple times to change their association. Datagram sockets can
dissolve the association by connecting to an invalid address, such as a null address.

If the connection or binding succeeds, connect() returns zero. If an error occurs, it returns -1 and sets errno to an
appropriate value. The following lists the errors that can occur, by the value to which connect() sets errno:

EBADF socket is somehow invalid.

ENOTSOCK
socket references a file, not a socket.

EADDRNOTAVAIL
The address is not available on this machine.

EAFNOSUPPORT
Addresses in the specified address family cannot be used with socket.

EISCONN
socket is already connected to an address or socket.

ETIMEDOUT
connect() timed out without establishing a connection.

ECONNREFUSED
The attempt to connect was forcefully rejected.

ENETUNREACH
The network is not reachable from this host.

EADDRINUSE
The address is already in use.

EFAULT
name gives an illegal address.

EINPROGRESS
socket is non-blocking yet the connection cannot be completed immediately.

EALREADY
The socket is non-blocking and a previous call to connect() has not yet been completed.

Example
For an example of this function, see the Lexicon entry for libsocket.

See Also
accept(), getsockname(), libsocket, select(), socket()

console — Device Driver
Console device driver

/dev/console is the device driver for the console of a COHERENT system. It is currently assigned major device
number 2 and minor device number 0.

/dev/console interprets escape sequences in console output to control output on the console monitor. These
escape sequences include the sequences from ANSI 3.4-1977 and ANSI X3.64-1979 that deal with terminal control.
Thus, they are similar to those used by the DEC VT-100 and VT-220 terminals.

Escape Sequences
In addition to the ASCII control characters BEL, BS, CR, FF, HT, LF, and VT, /dev/console recognizes a number of
special sequences, each of which is introduced by the ASCII character ESC. You can type these on the keyboard,
or write them in a file and invoke them by cating the file to the standard output.

The following gives the escape sequences that /dev/console recognizes. The text in parentheses gives the ANSI
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mnemonic for this escape sequence. Note that in this table, ESC represents the ASCII character ESC (i.e., 0x1B).
CSI stands for Control Sequence Introducer, which here consists of the character ESC followed by the character ‘[’
(0x5B). Note, too, that this table inserts spaces between characters. This is simply for the sake of legibility; at
present, no escape sequence can contain a literal space character.

ESC = Enter alternate keypad mode. This escape sequence is non-standard and is slated for removal;
you should avoid embedding it in scripts or programs.

ESC > Exit alternate keypad mode. This escape sequence is non-standard and is slated for removal; you
should avoid embedding it in scripts or programs.

ESC n Print the special graphics character n.
ESC 7 Save the current cursor position. This escape sequence is non-standard and is slated for removal;

you should avoid embedding it in scripts or programs.
ESC 8 Restore the previously saved cursor position. This escape sequence is non-standard and is slated

for removal; you should avoid embedding it in scripts or programs.
ESC D (IND, Index)

Move the cursor down one line without changing the column position. This command moves the
scrolling region text up and inserts blank lines if required. Although this escape sequence now
moves the cursor down, it may not do so in the future when COHERENT supports writing systems
other than left-to-right, top-to-bottom. Furthermore, this control sequence has been marked for
removal from future international standards. This escape sequence has been slated for removal;
you should avoid embedding it in scripts or programs.

ESC E (NEL, Next Line)
Move the cursor to the first column of the next line. This command move the scrolling region
down and inserts blank line if required.

ESC M (RI, Reverse Index)
Move the cursor up one line without changing column position. As with IND, the direction of
motion depends on the writing system currently in use.

CSI n @ (ICH, Insert Character)
Insert n characters at the current position (default, one).

CSI n A (CUU, Cursor Up)
Move the cursor up n rows (default, one). Stop at top of page.

CSI n B (CUD, Cursor Down)
Move the cursor down n rows (default, one). Stop at bottom edge of scrolling region.

CSI n C (CUF, Cursor Forward)
Move the cursor n columns forward (default, one). Stop at right bottom corner of scrolling region.

CSI n D (CUB, Cursor Backwards)
Move the cursor n columns backwards (default, one).

CSI n E (CNL, Cursor Next Line)
Move the cursor n rows down (default, one). Move scrolling region up and insert a blank line if
required.

CSI n F (CPL, Cursor Preceding Line)
Move the cursor n rows up (default, one). Move the scrolling-region text down and insert a blank
line if required.

CSI n G (CHA, Cursor Character Absolute)
Move the cursor to column n of the current line.

CSI n ; m H (CUP, Cursor Position)
Move the cursor to column m of row n. Position is relative to the scrolling region.

CSI n I (CHT, Cursor Horizontal Tabulation)
Move the cursor n tabulation stops forward (default, one).

CSI c J (ED, Erase in Display)
Erase display, where c is one of the following characters:

0 Erase from cursor to end of screen.
1 Erase from beginning of screen to cursor.
2 Erase the entire screen.

CSI c K (EL, Erase in Line)
Erase line, where c is one of the following characters:

0 Erase from cursor to end of line.
1 Erase from beginning of line to cursor.
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2 Erase entire line.

CSI n L (IL, Insert Line)
Insert n blanks lines (default, one).

CSI n M (DL, Delete Line)
Delete n lines (default, one).

CSI c O (EA, Erase in Area)
Erase scrolling region, where c is one of the following characters:

0 Erase from cursor to end of scrolling region.
1 Erase from beginning of scrolling region to cursor.
2 Erase entire scrolling region. Reposition cursor at top left corner of scrolling region.

CSI n P (DC, Delete Character)
Delete n characters at the current position (default, one).

CSI n S (SU, Scroll Up)
Scroll the characters in the scrolling region up by n lines (default, one). The bottom of the
scrolling region is cleared to blanks.

CSI n T (SD, Scroll Down)
Scroll the characters in the scrolling region down n lines (default, one). The top line of the
scrolling region is cleared to blanks.

CSI n X (ECH, Erase Character)
Erase n characters at the current position (default, one).

CSI n Z (CBT, Cursor Backward Tabulation)
Move the cursor backwards by n tabulation stops (default, one).

CSI n ‘ (HPA, Horizontal Position Absolute)
Move the cursor to column n of the current line.

CSI n a (HPR, Horizontal Position Relative)
Move the cursor forward (i.e., to the right) n columns in the current line.

CSI n d (VPA, Vertical Position Absolute)
Move the cursor to row n of the display.

CSI n e (VPR, Vertical Postition Relative)
Move the cursor down n rows.

CSI n ; m f (HVP, Horizontal and Vertical Position)
Move the cursor to column m of row n.

CSI s1 ; ... sN m (SGR, Select Graphic Rendition)
Select graphics rendition on the terminal. This command takes one or more colon-separated
parameters s1 through sN, each of which is one of the following strings:

0 All attributes off.
1 Bold intensity.
4 Underlining on. On color terminals, underlining rendered as white characters on a red

background, in compliance with UNIX practices.
5 Blink on.
7 Reverse video.
10 Select primary font (see notes, below).
11 Select first alternative font (see notes, below).
12 Select second alternative font (see notes, below).
30 Black foreground.
31 Red foreground.
32 Green foreground.
33 Brown foreground.
34 Blue foreground.
35 Magenta foreground.
36 Cyan foreground.
37 White foreground.
40 Black background.
41 Red background.
42 Green background.
43 Brown background.
44 Blue background.
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45 Magenta background.
46 Cyan background.
47 White background.

For example, the following command sets the foreground color to cyan and the background to
black:

echo ’\033[36;40m’

The following codes are not standard, and are slated for modification. Do not embed these codes
in scripts or programs:

In the default font (font 0), /dev/console ignores control characters other than BEL, BS, CR, ESC,
FF, HT, LF and VT and prints all other ASCII characters.

In font 1, /dev/console prints all characters (including control characters), except ESC.

In font 2, /dev/console prints every character except ESC with the high bit toggled. This provides
access to the IBM graphics character set using ordinary ASCII characters.

CSI n ; m r Make rows n through m of the display into the scrolling region. This is not a standard control
sequence. It implements functionality included in standard sequences, and will be removed from a
future console driver that implements the standard sequence.

CSI c v Select cursor rendition, where c is one of the following characters:

0 Cursor visible.
1 Cursor invisible.

This is not a standard sequence. It implements functionality not provided by any standard
sequence. Developers are cautioned that there is no truly portable equivalent (although on many
systems positioning the cursor off the screen has the same effect).

CSI ? 4 h (SM, Set Mode)
Enable smooth scrolling. This eliminates ‘‘snow’’ from the screen, but slows down the speed at
which the console scrolls. The mode selected by the private-use parameter ?4 is not a standard
mode.

Note that the term ‘‘smooth’’ is somewhat misleading; it means that the driver waits for vertical
retrace before it updates video memory. The reason for waiting for retrace was that the old CGA
tubes were poorly designed — the CRT logic and the main CPU were allowed simultaneous access
to the video memory, with the result that direct-memory screen writes often produced static
(snow). Having code wait for vertical retrace obviates the problem, but it also slows down the
screen.

CSI ? 4 l (RM, Reset Mode)
Disable smooth scrolling. This is the default. The mode selected by the private-use parameter ?4
is not a standard mode.

CSI ? 7 h (SM, Set Mode)
Enable wraparound. Typing past column 80 moves the cursor to the first column of the next line,
scrolling if necessary. The mode selected by the private-use parameter ?7 is not a standard mode,
but is mandated by iBCS2.

CSI ? 7 l (RM, Reset Mode)
Disable wraparound. The cursor will not move past column 80. This is useful if the screen is
being used as a block-mode interface. The mode selected by the private-use parameter ?7 is not a
standard mode, but is mandaetd by iBCS2.

CSI ? 8 h (SM, Set Mode)
Erase in the current foreground color.

CSI ? 8 l (RM, Reset Mode)
Erase in the original foreground color, even if the current mode is reverse video.

CSI ? 25 h (SM, Set Mode)
Enable line 25.

CSI ? 25 l (RM, Reset Mode)
Disable line 25.

CSI > 13 h (SM, Set Mode)
Enable the screen saver. This is not standard.

CSI > 13 l (RM, Reset Mode)
Disable the screen saver. This is not standard.
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ESC ‘ (DMI, Disable Manual Input)
Disable manual input. Terminal ‘‘beeps’’ (outputs <ctrl-G>) when you press a key on the
keyboard. Interrupt and quit signals are still passed to the terminal process. Input may be
renabled via ESC c (power up reset) or ESC b (enable manual input).

ESC b (EMI, Enable Manual Input)
Enable keyboard input that has been disabled by ESC ‘.

ESC c (RIS, Reset to Initial State)
Reset to power-up configuration

ESC t Enter keypad-shifted mode. This is a non-standard sequence that conflicts with explicit provisions
of the relevant standards. It will be removed from future versions of the console driver in favor of a
sequence that does not conflict.

ESC u Exit keypad-shifted mode. This is a non-standard sequence that conflicts with explicit provisions
of the relevant standards. It will be removed from future versions of the console driver in favor of a
sequence that does not conflict.

Numeric Keypad
The following describes the sequences sent by the numeric keypad.

The keypad sends the following escape sequences:

Key 0 Send CSI L.
Key 1 Send CSI F.
Key 2 Send CSI B.
Key 3 Send CSI G.
Key 4 Send CSI D.
Key 5 Send ESC 7.
Key 6 Send CSI C.
Key 7 Send CSI H.
Key 8 Send CSI A.
Key 9 Send CSI I.
Key . Send ASCII DEL.

When the <shift> key is pressed or the <num-lock> key is set, the keypad sends the literal characters ‘0’ through
‘9’ and ‘.’. If the <num-lock> key is set, pressing <shift> restores the escape sequences shown above.

The escape sequence ESC = sets the alternate-keypad mode. In this mode, the keypad sends the following escape
sequences when the <num-lock> key is not set:

Key 0 Send ESC ? p.
Key 1 Send ESC ? q.
Key 2 Send ESC ? r.
Key 3 Send ESC ? s.
Key 4 Send ESC ? t.
Key 5 Send ESC ? u.
Key 6 Send ESC ? v.
Key 7 Send ESC ? w.
Key 8 Send ESC ? x.
Key 9 Send ESC ? y.
Key . Send Esc ? n.

The escape sequence ESC > resets this mode.

Other Special Keys
The following gives the escape sequences sent by the keyboard’s special keys:

<home> Send ‘‘cursor home’’ ( CSI H).
<up> Send ‘‘cursor up’’ (CSI A).
<pg up> Send CSI I.
<left> Send ‘‘cursor left’’ (CSI D).
<right> Send ‘‘cursor right’’ (CSI C).
<end> Send CSI F. Note that this escape sequence does not do what users normally expect: to send

cursor to bottom left of screen, send the escape sequence CSI 24 H.
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<down> Send ‘‘cursor down’’ (CSI B).
<pg dn> Move cursor to previous page (CSI G).
<ins> Send CSI L. Note that this escape sequence does not do what users normally expect.
<del> Send ASCII DEL.
F1 Send CSI M.
F2 Send CSI N.
F3 Send CSI O.
F4 Send CSI P.
F5 Send CSI Q.
F6 Send CSI R.
F7 Send CSI S.
F8 Send CSI T.
F9 Send CSI U.
F10 Send CSI V.
<shift>F1 Send CSI Y.
<shift>F2 Send CSI Z.
<shift>F3 Send CSI a.
<shift>F4 Send CSI b.
<shift>F5 Send CSI c.
<shift>F6 Send CSI d.
<shift>F7 Send CSI e.
<shift>F8 Send CSI f.
<shift>F9 Send CSI g.
<shift>F10 Send CSI h.
<ctrl>F1 Send CSI k.
<ctrl>F2 Send CSI l.
<ctrl>F3 Send CSI m.
<ctrl>F4 Send CSI n.
<ctrl>F5 Send CSI o.
<ctrl>F6 Send CSI p.
<ctrl>F7 Send CSI q.
<ctrl>F8 Send CSI r.
<ctrl>F9 Send CSI s.
<ctrl>F10 Send CSI t.
<ctrl><shift>F1

Send CSI w.
<ctrl><shift>F2

Send CSI x.
<ctrl><shift>F3

Send CSI y.
<ctrl><shift>F4

Send CSI z.
<ctrl><shift>F5

CSI @.
<ctrl><shift>F6

CSI [.
<ctrl><shift>F7

CSI \.
<ctrl><shift>F8

CSI ].
<ctrl><shift>F9

CSI ^.
<ctrl><shift>F10

CSI _.
<alt>F1 Send CSI 1 y.
<alt>F2 Send CSI 2 y.
<alt>F3 Send CSI 3 y.
<alt>F4 Send CSI 4 y.
<alt>F5 Send CSI 5 y.
<alt>F6 Send CSI 6 y.
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<alt>F7 Send CSI 7 y.
<alt>F8 Send CSI 8 y.
<alt>F9 Send CSI 9 y.
<alt>F10 Send CSI 0 y.
<esc> Send ASCII ESC (0x1B).
<tab> Send ASCII HT.
<ctrl> When combined with ‘A’ through ‘_’, send the corresponding ASCII control character; when

combined with the (¢) key, send ASCII LF; when combined with the key <backspace>, send
ASCII DEL ; when combined with <alt> and <del>, issue system reset.

<shift> Change alphabetic keys from lower case to upper case. If the <caps-lock> is set, shift from upper
case to lower case.

<alt> When combined with <ctrl> and <del>, issue a system reset.
<backspace> Send ASCII BS; when combined with <ctrl>, send ASCII DEL.
<return> Send ASCII CR; when combined with <ctrl>, send ASCII LF.
* Send ASCII ‘*’.
<caps-lock> Toggle ‘‘caps lock’’ mode.
<num-lock> Toggle the interpretation of the numeric keypad, as described above.
<scroll-lock> Send <ctrl-S> and toggle the Scroll Lock LED.
- Send ‘-’.
+ Send ‘+’.

Altering Console Configuration
To change the hardware configuration of your console (i.e., to switch from a monochrome to a color console, or
modify your keyboard or configuration of virtual consoles), log in as the superuser root and type the following
commands:

cd /etc/conf
console/mkdev
bin/idmkcoh -o /kernel_name

where kernel_name is what you wish to name the newly built kernel. When you reboot, invoke kernel_name in the
usual manner and your new configuration will have been implemented.

The following tunable kernel variables affect the behavior of the console driver:

CON_BEEP_SPEC
This tunable kernel parameter lets you toggle whether the console can beep. If you set it to zero, the
console will not beep, no matter what. By default, this is set to one, which enables beeping.

SEP_SHIFT
This tunable kernel variable permits each virtual-console session to have its own settings for the
keyboard’s shift keys. When this variable is set to one, you can have <CAPS LOCK> turned on in one
screen and <NUM LOCK> in another, and the driver correctly remembers the proper shift state when you
switch sessions. The default for this variable is zero — that is, the keyboard uses the same settings for the
shift keys in every virtual-console session.

See Also
Administering COHERENT, ASCII, device drivers, virtual consoles

Notes
Under COHERENT release 4.2, the codes sent by the keys F1 through F10, <pg up>, <pg dn>, <ins>, <del>, and
<end> have changed from those sent under previous releases. This was done so that COHERENT can more closely
conform to the standard expected by many third-party packages. If this presents a problem, you can use the
COHERENT command fnkey to change the codes sent by the function.

If you are using the keyboard driver vtnkb, you can remap the keyboard and (within limits) change the codes sent
by some keys. For details, see the Lexicon entry vtnkb.

Beginning with COHERENT release 4.2, the console uses a 25-line screen, rather than the 24-lines used in previous
releases. This is to support the numerous third-party packages that assume a 25-line display. A variant form of
the termcap and terminfo entries for ansipc returns the screen to 24 lines, should you need that feature.

Please note that as of this writing (March 1994), the sequences CSI n m; do not work, where n is between 50 and
57. This is being worked repaired.
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const — C Keyword
Qualify an identifier as not modifiable

The type qualifier const marks an object as being unmodifiable. An object declared as being const cannot be used
on the left side of an assignment (an lvalue), or have its value modified in any way. Because of these restrictions,
an implementation may place objects declared to be const into a read-only region of storage.

See Also
C keywords, volatile
ANSI Standard §6.5.3

const.h — Header File
Declare machine-dependent constants
#include <sys/const.h>

The header file const.h declares most machine-dependent constants. These are constants that change among the
various machines for which the COHERENT system is available; an example is the clock speed of the processor.

See Also
header files, times()

Notes
This header file is obsolete and will be dropped from a future release of COHERENT. Its use is strongly discouraged.

continue — Command
Terminate current iteration of shell construct
continue [ n ]

The command continue helps to control the flow of commands given to the shell. When it is used without an
argument, continue terminates the execution of the current iteration of the innermost for, until, or while shell
construct; that is, it acts like a branch to the enclosing done, after which loop execution may continue or
terminate. If an argument is given, continue terminates the current iteration of the nth enclosing for, until, or
while loop.

The shell executes continue directly.

See Also
break, commands, for, ksh, sh, until, while

continue — C Keyword
Force next iteration of a loop

continue forces the next iteration of a for, while, or do loop. For example,

while ((foo = getchar()) != EOF) {
if ((foo < ’a’) || (foo > ’z’))

continue;
... /* do something */

}

forces the while loop to throw away everything except lower-case alphabetic characters.

See Also
C keywords, for, while
ANSI Standard, §6.6.6.2

controls — System Administration
Data base for the lp print spooler
/usr/spool/mlp/controls

The file /usr/spool/mlp/controls is the data base for the print spooler lp. The superuser root can modify this file,
either with a text editor or (to a more limited extent) with the command lpadmin.

The format of controls is simple. Every blank line is ignored. All text after the pound sign ‘#’ is also ignored; you
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can use this feature to embed comments in the file. The rest of the file consists of commands, each of which has
the format command=arguments.

The following describes the commands that you can embed in controls:

default=printer
This command sets the default printer, that is, the printer on which jobs are printed when the user does
not specify a printer on the lp command line.

docopies=status
This command controls how lp prints multiple copies. If it is set to on, then multiple copies are generated
by invoking the printer’s control script for each time; if it is set to off, then multiple copies are printed by
telling the control script to do it. The difference in the two methods is that the former gives you more
accurate information about the status of the job. If you wish to print many copies and you want to
monitor the job’s progress, then set docopies to on.

feed=status
The command localfeed tells lp whether to insert a formfeed character between printing jobs sent to
printers other than local printers. Setting it to on tells lp to output a formfeed character; setting it to off
(or deleting it) tells it not to do so.

localfeed=status
The command localfeed tells lp whether to insert a formfeed character between printing jobs sent to a
local printer. (A local printer is one plugged into the auxiliary port of a terminal.) Setting it to on tells lp to
output a formfeed character; setting it to off (or deleting it) tells it not to do so.

logroll=hours
This command sets the time, in hours, at which the log file log is renamed log.o and a fresh log file is
begun. This is done so the log file does not grow without bounds. The default value is 168 hours (one
week).

longlife=hours
Set, in hours, the ‘‘life-expectancy’’ of a file with a lifetime of L. The default is three days (72 hours).

printer=name,device,script
This command defines a printer. lp accesses a printer by its name; it cannot access a printer unless you
name it in a printer command. name names the printer. You can name a printer anything you like, so
long as it is one word. device names the device into which it is plugged. script names the file in directory
/usr/spool/mlp/backend that tells how to massage the text being passed to the printer. You can write or
modify each script in that directory, and name each script whatever you like. Note that one physical
printer can have multiple names, each using a different script; and one script can be shared by multiple
physical printers.

The command

printer = linenlq, /dev/lpt2, pannlq

names a printer linelq that is plugged into port /dev/lpt2, and whose input is filtered through the
contents of script /usr/spool/mlp/backend/pannlq.

The command

printer = linepr, /dev/lpt2, linepr

names a printer linepr that is plugged into /dev/lpt2, and whose input is filtered through the contents of
script /usr/spool/mlp/backend/linepr.

Note that these examples both name the same physical device. They differ in the scripts they use to
massage their input; this will be described in detail below.

Finally, a printer can direct its output to any device, serial or parallel, even /dev/null. For example:

printer=disk,/dev/null,disk

As will be shown below, the script disk writes its output into a temporary file, so you can examine it
without wasting a piece of paper. The format of a printer-control script is described below.
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You do not have to include a printer-control script in a printer command; if you do not include one, the
printer daemon lpsched uses the command cat by default.

shortlife=hours
Set, in days, the ‘‘life-expectancy’’ of a file with a lifetime of S. The default is 48 hours (two days).

templife=hours
Set, in minutes, the ‘‘life-expectancy’’ of a file with a lifetime of T. The default is two hours.

Printer Control Scripts
A printer-control script massages the text being handed to a given printer. The printer daemon lpsched redirects
the output of the script (and therefore, of every command within the script) to the device named on the appropriate
printer command named in the file /usr/spool/mlp/controls.

For example, consider the command

printer = linenlq, /dev/lpt2, pannlq

This command names a printer linenlq, declares that it is plugged into port /dev/lpq2, and requests that lpsched
massage input to the printer through script /usr/spool/mlp/backend/pannlq.When lpsched processes a request
that is directed to printer linelq, it pipes the text of the job into script pannlq, and redirects the output of pannlq
to device /dev/lpt2.

It is important to remember that a printer-control script is not restricted to a few commands that the spooler
understands. Each is a true shell script that can use any or all COHERENT commands to process text. The limits
of what a script can do are set only by your imagination.

Consider the following examples. In the discussion, above, of the command printer, two scripts were mentioned:
pannlq and linepr. Both send their output to the same physical printer, but they process the input text in different
ways. The following gives the contents of linepr:

# filter the input through pr
pr

# throw a page at the end
echo "\f\c"

This script filters its input through the COHERENT command pr, which paginates the text and puts a header on it.
It then echoes a formfeed character, to force the printer to throw a blank page at the end of the job. As in other
shell scripts, a pound sign ‘#’ introduces a comment and blank lines are ignored.

The following gives the contents of script pannlq:

# turn on near-letter-quality printing
echo "\021\033n"

pr

# turn off near-letter-quality printing
echo "\021\033P"

This script resembles the first, except that it includes commands to echo the magic strings that turn on and turn
off near-letter-quality printing on this printer. This is one small example of the flexibility you can employ in
devising a script

As with other shell scripts, you can modify the behavior of a printer-control script by setting environmental
variables. For example, consider the following variation on the script linepr:

if [ $HEADER ]; then
pr -h "$HEADER"

else
pr

fi

# throw a page at the end
echo "\f\c"

If you have exported the environmental variable HEADER, then this script prints it at the top of each page;
otherwise, it prints the default header. You can use the same technique to do other work, such as force the
printing of a banner page.
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The lp spooler reserves for its own use the environmental variables MLP_COPIES, MLP_FORMLEN, MLP_LIFE,
MLP_PRIORITY, MLP_SPOOL. Your scripts can also use these variables. For more information on what each
does, see its entry in the Lexicon.

When lpsched uses a printer-control script, it passes it three arguments: respectively, the sequence number of the
print job (which identifies the job uniquely); the name of the user; and the number of copies being printed. You
can use this information to control the printing of output; for example, consider the following:

for i in ‘from 1 to $3‘
do

pr -h "User $2 - Copy $i of $3"
done
echo "\f\c"

Note, too, that just as each physical printer can be accessed in different ways via different scripts, so too the same
script can be used by multiple physical printers. If you had multiple Panasonic printers plugged into your system,
you could use the above script with each of them to massage their input appropriately.

One last example. As noted above, the output of a printer-control script can be directed to any device, not just a
port. (It can also be redirected to non-existent ports, so be careful when you enter your print commands.) You can
use this feature to redirect formatted text into files or other interesting places. Consider the following printer
command:

printer=disk,/dev/null,disk

This creates a ‘‘printer’’ named disk. The text filtered through file disk is redirected to /dev/null. The contents of
script disk show what this device is up to:

tee /tmp/D$$

This script uses the COHERENT command tee to redirect its input both to the standard output (which in the case of
printer disk is thrown away) and into a file in directory tmp. You can use this command to save input for further
examination later.

This discussion just scratches the surface of what you can do with the lp print spooler and its control scripts. For
more information, see the Lexicon entries for printer and lp.

See Also
Administering COHERENT, lp, lpadmin, MLP_COPIES, MLP_FORMLEN, MLP_LIFE, MLP_PRIORITY,
MLP_SPOOL, printer

conv — Command
Numeric base converter
conv [number]

conv converts number to hexadecimal, decimal, octal, binary, and ASCII characters, and prints the results on the
standard output. If no number is given, conv reads one number per line from the standard input until you type
the end-of-file character <ctrl-D>.

number may be in hexadecimal, decimal, octal, binary, or character format, as shown below. Each example
represents the decimal number 97.

Base Representation
hexadecimal 0x61
hexadecimal #61
decimal 97
octal 0141
binary $1100001
character ‘a’

conv represents an ASCII control character in its output by preceding the character by a carat ‘^’. For example, it
prints <ctrl-X> as ‘^X’. conv prints ‘‘bad digit’’ if anything is wrong with the input.

See Also
bc, commands, conv, dd, od, units
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Notes
conv represents the input number internally as a long integer. If number does not fit in a long, conv silently
truncates it.

core — System Administration
Format of a core-dump file
#include <sys/core.h>

When a process terminates abnormally because a it encounters an unrecoverable error or receives an
asynchronous signal from another process, COHERENT tries to write a copy of its image in memory into a file called
core. You can examine this file with the debugger db and other tools to try to determine what went wrong.

The structure ch_info appears at the head of a core file. The header file core.h defines it as follows:

struct ch_info {
unsigned short ch_magic;
unsigned int ch_info_len;

};

Field ch_magic is always set to the constant CORE_MAGIC. This ‘‘magic’’ value signifies to COHERENT that this is a
core file. Field ch_info_len gives a count of information bytes in the core file, including the ch_info structure
itself.

If the value of ch_info_len exceeds the size of the ch_info structure, this indicates that data follow the ch_info
structure. These data follow the ch_info structure, and are in the form of a core_proc structure. Header file
<sys/core.h> defines this structure as follows:

struct core_proc {
gregset_t cp_registers;
int cp_signal_number;
struct _fpstate cp_floating_point;
dregset_t cp_debug_registers;

};

This substitutes for a dump of the u area, whose information is reserved for the kernel alone.

This is followed by an image of each process segment. The data for each segment consists of the following: a
header, which is a structure of type core_seg; cs_pathlen bytes of data that give the path name of the file from the
segment data originated; and cs_dumped bytes of core-image data.

core.h defines strucutre core_seg as follows:

struct core_seg {
size_t cs_pathlen; /* length of path name */
off_t cs_dumped; /* dumped size in bytes */
caddr_t cs_base; /* virtual base address */
off_t cs_size; /* full size in bytes */
unsigned long cs_reserved[8];

};

The order of the segments is the text segment first (if it is present — usually it is omitted), followed by the data
segment, and then the stack segment. The contents of the text segment can usually be identified from the program
being debugged. The patchable kernel variable DUMP_TEXT allows the COHERENT kernel to dump text segments
as well as data and stack segments.

Patchable kernel variable DUMP_LIM sets the maximum size of a segment within a core file. The system uses this
limit to keep keep core files from getting out of hand.

See Also
Administering COHERENT, core.h, signal(), wait()

Diagnostics
COHERENT will not write core if that file already exists as a non-ordinary file or if there is more than one link to it.
The 0200 bit in the status returned to the parent process by wait() indicates a successful dump.

For a list of signals that automatically trigger a core dump, see the Lexicon entry for signal().
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core.h — Header File
Declare structure of a core file
#include <sys/core.h>

The header file core.h includes the structures and constants from which the system builds a core file. For more
information on core files, see the Lexicon entry for core.

See Also
core, header files

cos() — Mathematics Function (libm)
Calculate cosine
#include <math.h>
double cos(radian) double radian;

cos() calculates the cosine of its argument radian, which must be in radian measure.

Example
For an example of this function, see the entry for sin().

See Also
acos(), cosh(), libm
ANSI Standard, §7.5.2.5
POSIX Standard, §8.1

cosh() — Mathematics Function (libm)
Calculate hyperbolic cosine
#include <math.h>
double cosh(radian) double radian;

cosh() calculates the hyperbolic cosine of radian, which is in radian measure.

Example
The following example uses cosh() to compute the height and time to impact of a falling object. Assume that an
object is acted on both by gravity and by air resistance propotional to v

2, where v is its velocity. When p is the
proptionality constant for the resistance of air, the object’s height after t seconds is given by the formula

y = y0 -1/p*ln(cosh(t*sqrt(p*g)))

and its time to reach the ground is given by the formula:

t = 1/sqrt(p*g)*log(exp(p*y0)+sqrt(exp(2*p*y0)-1))

Assuming that

g = 32 ft/s2

the example computes an object’s height after t seconds and the total time in seconds that it will take to reach the
ground. It was written by Sanjay Lal (sanjayl@tor.comm.mot.com):

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

main ()
{

float height, init_height, resistance, time_to_hit, g;
int i;
char buffer[50];

g = 32.0;

printf("Enter initial height, in feet: ");
fflush(stdout);
init_height = atof(gets(buffer));
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resistance = 0.0;
while (resistance > 0.005 || resistance < 0.001) {

printf("Enter air resistance (0.001 to 0.005): ");
fflush(stdout);
resistance = atof(gets(buffer));

}

time_to_hit = 1.0/sqrt(resistance*g) *
log(exp(resistance*init_height) +
sqrt(exp(2*resistance*init_height)-1));

printf("Initial height: %1.0f\n", init_height);
printf("Air resistance: %1.3f\n", resistance);
printf("Time for object to hit the ground: %1.3f seconds\n",

time_to_hit);

/* countdown to impact */
for (i = 2; ; i++) {

height = init_height -
(1.0/resistance*log(cosh(sqrt(resistance*g)*(double)i)));

if (height < 0) {
printf("BOOM!\n");
exit(EXIT_SUCCESS);

} else
printf("Height after %i seconds: %1.3f feet\n", i, height );

}
}

See Also
libm, cos()
ANSI Standard, §7.5.3.1
POSIX Standard, §8.1

Diagnostics
When overflow occurs, cosh() returns a huge value that has the same sign as the actual result.

cp — Command
Copy a file
cp [ -d ] oldname newname
cp [ -d ] file1 ... fileN directory

cp copies files. In its first form, cp copies the contents of oldname to newname, which it creates if necessary. If
newname is a directory, cp copies oldname to a file of the same name in directory newfile.

In its second form, cp copies each file, from file1 through fileN, into directory.

With the -d option, cp preserves the date (modification time) of the source file or files on the target file or files. By
default, target files get the current time.

A file cannot be copied to itself.

See Also
commands, cpdir, ksh, mv, sh, wildcards

Notes
If you use cp to copy a file into another existing file, the newly copied file takes on the permissions of the file into
which the text was copied. For example, consider the files foo and bar, whose permissions are as follows:

-rw-r--r-- 1 fred user 40 Tue Apr 14 18:19 bar
-rw-r----- 1 fred user 1816 Tue Apr 14 20:53 foo

If you use cp to copy foo into bar, then typing ls -l shows the following:

-rw-r--r-- 1 fred user 1816 Tue Apr 14 21:37 bar
-rw-r----- 1 fred user 1816 Tue Apr 14 20:53 foo
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bar now has exactly the same contents as foo but retains its old set of permissions.

cpdir — Command
Copy directory hierarchy
cpdir [option ... ] dir1 dir2

cpdir copies source directory hierarchy dir1 to target hierarchy dir2, which is created if necessary. Either
hierarchy may straddle device boundaries.

cpdir preserves as much as possible of the source structure. Files under dir1 go to identically named files under
dir2. Links between source files are preserved as links between corresponding target files. Preserved source file
attributes include mode, subject to the user’s file creation mask. If the user is not the superuser, cpdir cannot
preserve the owner, group, and sticky bits in the mode, and the invoking user owns all new files; under the
superuser it preserves these as well. In addition, the superuser may ‘‘copy’’ special nodes and pipe nodes; cpdir
copies only the facility, not the contents. It also preserves real major and minor device numbers of special nodes.

If the target file corresponding to a source file exists and is not a directory, cpdir unlinks it before copying. This
differs from the action of cp.

cpdir recognizes the following options:

-a Give a verbose account on one line of the files copied.

-d Preserve the last-modified date instead of using the present date.

-e Print error message and continue execution after an error. The default action is to exit on any error.

-r [n] Descend no more than n levels in the source hierarchy. Contents of dir1 are at level 1. If missing, n
defaults to 1.

-s name
Suppress the copy of file name, which should be the pathname of the file relative to dir1.

-t Test only, make no changes. With this option, cpdir prints a report of all errors (-e is implied), all
unlinked target files, and other useful information, including a summary of all external links into the
target hierarchy that would have been broken had the unlinking actions been executed.

-u Update regular files. Copy the source only if it was created or altered more recently than the target file, or
if the target does not exist.

-v Print a verbose account of its activities. cp prints a file-by-file account of its actions, in addition to the
information listed under -t.

See Also
commands, cp, link(), umask(), unlink()

cpio — Command
Archiving/backup utility

cpio is a standard utility that writes archives of files to disk or tape. Under COHERENT, cpio is a link to the
command gnucpio. For details, see the Lexicon entry for that command.

See Also
commands, gnucpio

cpp — Command
C preprocessor
/lib/cpp [option...] [file...]

The command cpp calls the C preprocessor to perform C preprocessing. It performs the operations described in
section 3.8 of the ANSI Standard; these include file inclusion, conditional code selection, constant definition, and
macro definition. See the entry on C preprocessor for a full description of C’s preprocessing language.

Normally, cpp is used to preprocess C programs, but it can be used as a simple macro processor for other types of
files as well. For example, the X utility imake uses cpp to help build makefiles.

cpp reads each input file, processes directives, and writes its product on stdout. If the option -E is not used, cpp
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also writes into its output statements of the form #linen filename, so the parser can connect its error messages
and debugger output with the original line numbers in your source files.

Options
cpp recognizes the following options:

-C Do not suppress comments. Normally, cpp strips all comments from C code before it invokes the parsing
phase, cc0.

-DVARIABLE[=value]
Define VARIABLE for the preprocessor at compilation time. If value is not defined, VARIABLE is set to one.
For example, the command

cc -DLIMIT=20 foo.c

tells the preprocessor to define the variable LIMIT to be 20. The C preprocessor acts as though the
directive #define LIMIT 20 were included in all source code.

-E Strip all line-number information from the source code. This option is used to preprocess assembly-
language files or other sources, and should not be used with the other compiler phases.

-Idirectory
C allows two types of #include directives in a C program, i.e., #include "file.h" and #include <file.h>. The
-I option tells cpp to search a specific directory for the files you have named in your #include directives, in
addition to the directories that it searches by default. You can have more than one -I option on your cpp
command line.

-o file Write output into file. If this option is missing, cpp writes its output onto stdout, which may be redirected.

-P Strip all file and line-number information from the C code. This is identical to the -E option, defined
above.

-Q Suppress all messages.

-UVARIABLE
Undefine VARIABLE, as if an #undef directive were included in the source program. This is used to
undefine the variables that cpp defines by default.

-V Print verbose messages.

-VCPLUS
Suppress C++-style online comments.

cpp reads the environmental variables CPPHEAD and CPPTAIL and appends their contents to, respectively, the
beginning and the end of the command cpp.

See Also
C preprocessor, cc, commands

Diagnostics
The following gives the error messages returned by cpp. The messages are in alphabetical order. Each is marked
as to whether it is a fatal, error, or warning condition. A fatal message usually indicates a condition that caused
the compiler to terminate execution. Fatal errors from the later phases of compilation often cannot be fixed, and
may indicate problems in the compiler or assembler. An error message points to a condition in the source code
that the compiler cannot resolve. This almost always occurs when the program does something illegal, e.g., has
unbalanced braces.

string argument mismatch (error)
The argument string does not match the type declared in the function’s prototype. Either the function
prototype or the argument should be changed.

#assert failure (error)
The condition being tested in a #assert statement has failed.

## at beginning of macro (error)
Macro replacement lists may contain tokens that are separated by ##, but ## cannot appear at the
beginning or the end of the list. The tokens on either side of the ## are pasted together into one token.
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## at end of macro (error)
Macro replacement lists may contain tokens that are separated by ##, but ## cannot appear at the
beginning or the end of the list. The tokens on either side of the ## are pasted together into one token.

string: cannot create (fatal)
The preprocessor cpp cannot create the output file string that it was asked to create. This often is due to a
problem with the output device; check and make sure that it is not full and that it is working correctly.

string: cannot open (fatal)
The compiler cannot open the file string of source code that it was asked to read. cpp may not have been
told the correct directory in which this file is to be found; check that the file is located correctly, and that
the -I options, if any, are correct.

cannot open include file string (fatal)
The program asked for file string, which was not found in the same directory as the source file, nor in the
default include directory specified by the environmental variable INCDIR, nor in any of the directories
named in -I options given to the cc command.

conditional stack overflow (fatal)
A series of #if expressions is nested so deeply that it overflowed the allotted stack space. You should
simplify this code.

#define argument mismatch (warning)
The definition of an argument in a #define instruction does not match its subsequent use. One or the
other should be changed.

#elif used without #if or #ifdef (error)
An #elif instruction must be preceded by an #if, #ifdef, or #ifndef control line.

#elif used after #else (error)
An #elif instruction cannot be preceded by an #else instruction.

#else used without #if or #ifdef (error)
An #else control line must be preceded by an #if, #ifdef, or #ifndef control line.

#endif used without #if or #ifdef (error)
An #endif instruction must be preceded by an #if, #ifdef, or #ifndef instruction.

EOF in comment (fatal)
Your source file appears to end in mid-comment. The file of source code may have been truncated, or you
failed to close a comment; make sure that each open-comment symbol ‘/*’ is balanced with a close-
comment symbol ‘*/’.

EOF in macro string invocation (error)
Your source file appears to end in a macro call. The source file may be been truncated.

EOF in midline (warning)
Check to see that your source file has not been truncated accidentally.

EOF in string (error)
Your file appears to end in the middle of a quoted string literal. Check to see that your source file has not
been truncated accidentally.

#error: string (fatal)
An #error control line has been expanded, printing the remaining tokens on the line and terminating the
program.

error in #define syntax (error)
The syntax of a #define statement is incorrect. See the Lexicon entry for #define for more information.

error in #include syntax (error)
An #include directive must be followed by a string enclosed by either quotation marks (‘‘ ’’) or angle
brackets (<>). Anything else is illegal.

identifier string has too many arguments (error)
Too many actual parameters have been provided.
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illegal control line (error)
A ‘#’ is followed by a word that the compiler does not recognize.

illegal cpp character (n decimal) (error)
The character noted cannot be processed by cpp. It may be a control character or a non-ASCII character.

illegal use of defined (error)
The construction defined(token) or defined token is legal only in #if, #elif, or #assert expressions.

string in #if (error)
A syntax error occurred in a #if declaration. string describes the error in detail.

include stack overflow (fatal)
A set of #include statements is nested so deeply that the allotted stack space cannot hold them.
Examines the files for a loop. You should try to fold some of the header files into one, instead of having
them call each other.

macro body too long (fatal)
The size of the macro in question exceeds the limit designed into the preprocessor. Try to shorten or split
the macro.

macro expansion buffer overflow in string (fatal)
The COHERENT C compiler uses a static buffer space to expand preprocessor macros. In some extreme
cases, a macro will exhaust this space, thus causing the C compiler to exit with this message. Try to
shorten the macro, or break it up. See the Lexicon entry for cpp for suggestions on how to use an
alternative C preprocessor to expand huge macros.

macro string redefined (error)
The program redefined the macro string.

macro string requires arguments (error)
The macro calls for arguments that the program has not supplied.

macros nested number deep, loop likely (error)
Macros call each other number times; you may have inadvertently created an infinite loop. Try to simplify
the program.

missing #endif (error)
An #if, #ifdef, or #ifndef instruction was not closed with an #endif instruction.

missing output file (fatal)
The preprocessor cpp found a -o option that was not followed by a file name for the output file.

multiple #else’s (error)
An #if, #ifdef, or #ifndef expression can be followed by no more than one #else expression.

nested comment (warning)
The comment introducer sequence ‘/*’ has been detected within a comment. Comments do not nest.

new line in string literal (error)
A newline character appears in the middle of a string. If you wish to embed a newline within a string, use
the character constant ‘\n’. If you wish to continue the string on a new line, insert a backslash ‘\’ before
the new line.

newline in macro argument (warning)
A macro argument contains a newline character. This may create trouble when the program is run.

out of space (fatal)
The compiler ran out of space while attempting to compile the program. To remove this error, examine
your source and break up any functions that are extraordinarily large.

parameter must follow # (error)
Macro replacement lists may contain # followed by a macro parameter name. The macro argument is
converted to a string literal.

preprocessor assertion failure (warning)
A #assert directive that was tested by the preprocessor cpp was found to be false.
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string redefined (error)
cpp macros should not be redefined. You should check to see that you are not #includeing two different
versions of a file somehow, or attempting to use the same macro name for two different purposes.

too many arguments in a macro (fatal)
The program uses more than the allowed ten arguments with a macro.

too many directories in include list (fatal)
The program uses more than the allowed ten #include directories.

string: unknown option (fatal)
The preprocessor cpp does not recognize the option string. Try re-typing the cc command line.

Notes
The COHERENT C compiler uses a static buffer space to expand preprocessor macros. Some programs that make
especially intensive use of the C processor’s macro facility may die during compilation with the message

macro expansion buffer overflow

This means that the program has exhaused the compiler’s ability to process macros. You may wish to use an
alternative preprocessor, such as the one that comes with gcc, as described below.

The COHERENT C compiler combines the preprocessor cpp with the parser cc0. The file /lib/cpp is simply a link to
the C compiler /lib/cc0. Thus, there is no way to specify an alternative version of the preprocessor through the cc
command. You can get around, this however, by linking the alternative preprocessor to a file named cc0 in a
directory other than /lib, then calling the alternative version via cc. For example, to have gcc preprocess program
hugemacro.c, do the following. First, type the following commands to link the gcc preprocess to a file named cc0:

su root
cd /usr/local/lib/gcc-lib/i386-coh/2.3.2
ln cpp cc0

Then, to preprocess and compile hugemacro.c, type the following:

cc -t0 -B/usr/local/lib/gcc-lib/i386-coh/2.3.2 -E hugemacro.c > tmp.c
cc tmp.c
rm tmp.c

You may wish to embed the above into your makefile, or write it into a shell script.

CPPHEAD — Environmental Variable
Append options to beginning of cpp command line
export CPPHEAD=options

The COHERENT C preprocessor cpp reads the environmental variables CPPHEAD and CPPTAIL before it begins its
work. You can set these variables to hold the default options that you want the preprocessor always to use.

cpp appends the options in CPPHEAD to the beginning of its command line.

See Also
cpp, CPPTAIL, environmental variables

CPPTAIL — Environmental Variable
Append options to end of cpp command line
export CPPTAIL=options

The COHERENT C preprocessor cpp reads the environmental variables CPPHEAD and CPPTAIL before it begins its
work. You can set these variables to hold the default options that you want the preprocessor always to use.

cpp appends the options in CPPTAIL to the end of its command line.

See Also
cpp, CPPHEAD, environmental variables
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creat() — System Call (libc)
Create/truncate a file
#include <fcntl.h>
int creat(file, mode)
char *file; int mode;

creat() creates a new file or truncates an existing file. It returns a file descriptor that identifies file for subsequent
system calls. If file already exists, its contents are erased. In this case, creat() ignores the specified mode; the
mode of the file remains unchanged. If file did not exist previously, creat() uses the mode argument to determine
the mode of the new file. For a full definition of file modes, see chmod() or the header file stat.h. creat() masks the
mode argument with the current umask, so it is common practice to create files with the maximal mode desirable.

Example
For an example of how to use this routine, see the entry for open().

See Also
chmod(), fcntl.h, fopen(), libc, open(), stat.h, stdio.h
ANSI Standard, §4.9.3
POSIX Standard, §5.3.2

Diagnostics
If the call is successful, creat() returns a file descriptor. It returns -1 if it could not create the file, typically
because of insufficient system resources or protection violations.

cron — System Administration
Execute commands periodically
/etc/cron&

cron is a daemon that executes commands at preset times.

Once each minute cron searches for commands to execute. cron first looks for file /usr/lib/crontab. If it exists,
then cron reads it for commands to execute. If /usr/lib/crontab does not exist, however, cron searches
/usr/spool/cron/crontabs for command files. Each user can have her own command file in that directory. See
the Lexicon entry for crontab for information how to write and load a command file.

For each entry in each command file, cron compares the current time with the scheduled execution time and
executes the command if the times match. When it finishes the search, cron sleeps until the next minute.
Because it never exits, cron should be executed only once (customarily by /etc/rc).

cron is designed for commands that must be executed regularly. Temporal commands that need to be executed
only once should be handled with the command at.

Permissions
cron performs some interesting manipulations with permissions. This is necessary to allow cron to run a wide
variety of programs untended without creating loopholes in the system’s security. Occasionally, this can create
difficulties for users who do not grasp what cron does or why. The following describes how cron manipulates
permissions on the programs you ask it to run.

To begin, when cron executes a user’s crontab file, it changes the effective user ID to the ID of that user whose
crontab file is being executed, cd’s to the user’s HOME directory. When, however, cron runs an entry from a
/usr/lib/crontab, it uses the user ID and group ID of user daemon. This prevents security holes involving entries
in a crontable file.

For example, the following crontab entry contains redirection:

* * * * * echo hello world >/dev/console 2>&1

If cron finds this entry in /usr/lib/crontab, it tries to execute the command as user daemon. The command will
not execute it if user daemon lacks permission to write to /dev/console. Note that using /usr/lib/crontab is not
recommended.

If however, it finds the entry in user henry’s crontab file, it tries to execute the command under the effective user
ID of henry. The command will fail if henry lacks permission to write to /dev/console, and will succeed if he does.
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When the shell executes a command in the background, it reads its standard input from /dev/null (unless
redirected) and writes its standard output to the controlling tty. If cron is invoked with /etc/cron& from /etc/rc,
there is no controlling tty, so the standard output goes to /dev/null. Thus,

* * * * * echo hello world

typically writes hello world to /dev/null.

When a user logs in, /bin/login grabs the tty and runs chown and chmod on it. It is owned by the user with
default permissions 700. If the user who has logged in on the console types the command

chmod /dev/console a+w

to allow all users to write to it, then the crontab entry

* * * * * echo hello world >/dev/console 2>/tmp/cron.err

will indeed echo to the console every minute.

cron should be executed only once, at boot time. It uses /usr/lib/cron/FIFO as a lock file to prevent the
execution more than one cron daemon.

If mail options are enabled, which is the default, cron sends mail to the owner of a crontab about all commands in
that file that failed.

To allow cron to remove lock file /usr/lib/cron, do not send signal KILL to cron. Instead, use signal TERM. cron
ignores signals INT, HUP, and PIPE. cron uses the signal ALRM internally.

Files and Directories

/usr/lib/cron/FIFO
Lock file (named pipe). Created by cron; removed by cron/rc.

/usr/lib/cron/cron.allow
List of allowed users. Permissions: 600 root root.

/usr/lib/cron/cron.deny
List of denied users. Permissions: 600 root root.

/usr/lib/crontab
Global crontab file, used by previous COHERENT cron mechanism.

/usr/spool/cron
Spool directory parent. Permissions: 700 root root.

/usr/spool/cron/crontabs
Main cron directory. It holds each user’s command file. Permissions: 700 root root.

See Also
Administering COHERENT, commands, crontab

Notes
cron does not presently write into the log file. The size of the hostname + domain must not exceed 1,000
characters.

cron looks for /usr/lib/crontab to remain compatible with the COHERENT 286 version of cron. If, however, you
continue to keep all cron commands in file /usr/lib/crontab, it will not be possible to run setuid cron tasks for
logins that have a password. It is strongly recommended that you do not use /usr/lib/crontab, and instead create
individual crontab files.

crontab — Command
Copy a command file into the crontab directory
/usr/bin/crontab [-l] [-r] [-f filename] [-m[ed]] [-uuser]

The command crontab copies a command file into directory /usr/spool/cron/crontabs. This directory holds the
command files for all users. This mechanism permits each user to have her own file of commands to be executed
periodically. If the file name is ‘-’, then crontab reads the standard input.
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crontab recognizes the following options.

-f filename
Replace your crontab file with filename.

-l List your crontab file.

-m[ed] Enable/disable the sending of mail to a user about any command in her crontab file that fails.

-r Remove your crontab file.

-u user Specify user. Only the superuser root can specify any user other than herself.

Allowing and Denying Access
The files /usr/lib/cron/cron.allow and /usr/lib/cron/cron.deny let the system administrator govern which
users can use the crontab command:

• If cron.allow exists, then crontab checks its contents; if a given user is identified therein, then she can use
crontab. Obviously, if cron.allow exists but is empty, then nobody can use crontab.

• If cron.allow does not exist, then crontab checks the contents of cron.deny. If a given user is identified
therein, then she cannot use crontab; otherwise, she can. If cron.allow does not exist and cron.deny exists
but is empty, then everyone can use crontab.

• If neither file exists, then everyone can use crontab.

Format of a crontab File
A crontab command file consists of lines separated by newlines. Each line consists of six fields separated by white
space (tabs or blanks). The first five fields describe the scheduled execution time of the command. Respectively,
they represent the minute (0-59), hour (0-23), day of the month (1-31), month of the year (1-12), and day of the
week (0-6, 0 indicates Sunday). Each field can contain a single integer in the appropriate range, a pair of integers
separated by a hyphen ‘-’ (meaning all integers between the two, inclusive), an asterisk ‘*’ (meaning all legal values),
or a comma-separated list of the above forms. The remainder of the line gives the command to be executed at the
given time.

For example, the crontab entry

29 * * 7 0 msg henry Succotash!

means that every hour on the half-hour during each Sunday in July, cron will invoke the command msg, and the
user named henry will have the message

daemon: Succotash!

written on his terminal’s screen (if he is logged in).

crond recognizes three special characters and escape sequences in a crontab file. If a command contains the
percent character ‘%’, crond executes only the portion up to the first ‘%’ as a command, then passes the remainder
to the command as its standard input. crond translates any percent characters ‘%’ in the remainder to newlines.
To prevent the special interpretation of a ‘%’, precede it with a backslash, ‘\%’. Finally, crond removes the
sequence \<newline> from the text before it passes the text to the shell sh; this can be used to make an entry in
the crontab more legible.

You must pay special attention to permissions when you write a crontab command file. For information on how
the crontab daemon crond manipulates permissions, see the entry for crond in the Lexicon.

Directories and Files

/usr/spool/cron/crontabs
Main cron directory. It holds each user’s command file. Permissions: 700 root root.

/usr/lib/cron/FIFO
Lock file (named pipe). Created by cron; removed by crond/rc.

/usr/lib/cron/cron.allow
List of allowed users. Permissions: 600 root root.
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/usr/lib/cron/cron.deny
List of denied users. Permissions: 600 root root.

/usr/lib/crontab
Global crontab file, used by previous COHERENT cron mechanism. /usr/spool/cron Spool directory
parent. Permissions: 700 root root.

/usr/spool/cron/crontabs
Spool directory. Permissions: 700 root root.

See Also
commands cron

Notes
COHERENT crontab is superset of the command of the same name included with UNIX System V release 3 (SVR3).
The main differences are as follows:

• COHERENT crontab prints the usage when no options have been chosen, whereas SVR3 crontab reads stdin
and can just remove the user’s crontab file.

• SVR3 crontab does not include option -f file_name.

• SVR3 crontab does not include option -u user. Under SVR3 crontab, you must su to another user (e.g.,
uucp) before you can maintain her crontab file.

crypt — Command
Encrypt/decrypt text
crypt [password]

The command crypt encrypts data. It emulates a rotor-encryption machine, such as the Enigma or Hagelin C-48
cipher machines. Unlike these machines, crypt uses only one rotor, with a 256-character alphabet and a keying
sequence of period 2^32.

crypt reads text from standard input and writes the encrypted text to standard output. password is used to
construct the model of the machine and to start the keying sequence. If no password is given, crypt prompts for a
password on the terminal and disables echo while it is being typed in. The password may be up to ten characters
long, but must not be empty; all characters past the first ten are ignored. All characters are legal, although it may
not be possible to input certain characters from the terminal.

crypt uses the same password for both encryption and decryption. For example, the commands

crypt COHERENT <file1 >file2
crypt COHERENT <file2 >file3

leave file3 identical to file1.

Encrypted files produced by ed with its -x option may be read by crypt, and vice versa, as ed uses crypt to
perform its encryption.

Security of a cryptosystem depends on several factors:

1. Brute-force attempts to break the system should be infeasible. Passwords should be at least five characters
long; although the construction of the machine model from the password takes a substantial fraction of a
second, it is still plausible that encrypted files could be read by a brute-force search of a portion of the
password space (say, all passwords less than four characters long).

2. Cryptanalysis of the basic encryption scheme should be very hard. Analysis of rotor machines is understood,
but it is difficult and in most cases probably not worth the trouble.

3. Passwords must be kept secret. crypt erases password as soon as it can, to avoid the possibility that it could
appear in the output of ps.

4. Privileged access to the system must be guarded. Under COHERENT, the security of crypt can be no better
than the security governing access to superuser status, because the superuser can do practically anything.
This is probably crypt’s most vulnerable point.
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Files
/dev/tty — Typed passwords

See Also
commands, passwd, security, shadow

crypt() — General Function (libc)
Encryption using rotor algorithm
char *crypt(key, extra); char *key, *extra;

crypt() implements a version of rotor encryption. It produces encrypted passwords that are verified by comparing
the encrypted clear text against an original encryption.

key is an ASCII string that contains the user’s password. extra is a ‘‘salt’’ string of two additional characters that
are stored in the password file with the encrypted password. Each character must come from an alphabet of 64
symbols, which consists of the upper-case and lower-case letters, digits, the period ‘.’, and the slash ‘/’.

crypt() returns a string built from the 64-character alphabet described above; the first two characters returned are
the extra argument, and the rest contain the encrypted password.

See Also
libc

ct — Device Driver
Controlling terminal driver

Most processes that the COHERENT kernel executes are associated with a controlling terminal. (The only exceptions
are daemon processes that are started by the process init.) This terminal directs I/O to the physical device through
which the user who invoked the process is accessing COHERENT. Usually, this is a serial port or the console, but it
could also be a socket (in the case of a telnet or ftp session), or some other device.

The driver ct lets a program access the controlling terminal automatically. It is accessed through the device
/dev/tty. Thus, when a program invokes the system calls open(), close(), ioctl(), read(), or write() on /dev/tty,
driver ct directs those calls automatically to the appropriate driver for the controlling terminal. This spares
applications from having to know the details of the controlling device — all it has to do is manipulate /dev/tty and
let ct take care of the details.

Files
/dev/tty

See Also
device drivers, init

Diagnostics
When a call finds no valid controlling terminal for a process, it returns a value of -1 and sets errno to ENXIO.

ctags — Command
Generate tags and refs files for vi editor
ctags [-r] files...

ctags generates the files tags and refs from a group of C-source files. tags is used by the elvis editor’s :tag
command, <ctrl-]> command, and -t option. refs is used by the command ref.

Each C-source file is scanned for #define statements and global function definitions. The name of the macro or
function becomes the name of a tag. For each tag, a line is added to tags, which contains the following:

• the name of the tag
• a tab character
• the name of the file containing the tag
• a tab character
• a way to find the particular line within the file

refs is used by the command ref, which can be invoked via elvis’s K command. When ctags finds a global
function definition, it copies the function header into refs. The first line is flush against the right margin, but the
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argument definitions are indented. The command ref can search refs much faster than it could search all C-
source files. The file-names list will typically include the names of all C-source files in the current directory, in the
following format:

ctags -r *.[ch]

The -r to ctags tells it to generate both tags and refs. Without -r, it generates only tags.

See Also
commands, elvis, ref

Notes
This version of ctags does not parse ANSI source code very well. It has trouble recognizing the ANSI function
definitions.

ctags is copyright  1990 by Steve Kirkendall, and was written by Steve Kirkendall (kirkenda@cs.pdx.edu) assisted
by numerous volunteers. It is freely redistributable, subject to the restrictions noted in included documentation.
Source code for ctags is available through the Mark Williams bulletin board, USENET, and numerous other
outlets.

Please note that this program is offered as a service to COHERENT users, but is not supported by Mark Williams
Company. Caveat utilitor.

ctermid() — General Function (libc)
Name the terminal device that controls the current process
#include <stdio.h>
char *ctermid (path_name)
char *path_name;

The general function ctermid() returns the full path name of the terminal device that controls the current process.
It does for the controlling terminal what the function ttyname() does for a general file descriptor.

path_name points to a block of memory into which ctermid() can write the name of the contolling terminal. It
must point to at least L_ctermid bytes of available memory. If path_name is NULL, ctermid() writes the name into
a statically allocated buffer that may be overwritten by subsequent calls to ctermid().

If all goes well, ctermid() returns the address where it wrote the name of the controlling terminal. If an error
occurs — for example, it could not discover the name of the controlling terminal — it returns an empty string.

See Also
libc
POSIX Standard 1003.1, §4.7.1

Notes
In almost every instance, ctermid() returns the string ‘‘/dev/tty’’. Under COHERENT, the name of the controlling
terminal for the current process is /dev/tty. Because some operating systems do not follow this common practice,
POSIX Standard provides ctermid() as a portable means of getting the controlling terminal’s name.

ctime() — Time Function (libc)
Convert system time to an ASCII string
#include <time.h>
#include <sys/types.h>
char *ctime(timep)
time_t *timep;

ctime() converts the system’s internal time into a string that can be read by humans. It takes a pointer to the
internal time type time_t, which is defined in the header file <sys/types.h>, and returns a fixed-length string of
the form:

Thu Mar 7 11:12:14 1989\n

ctime() is implemented as a call to localtime() followed by a call to asctime().

Example
For another example of this function, see the entry for asctime().
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#include <time.h>
#include <sys/types.h>

main()
{

time_t t;

time(&t);
printf("%s\n", ctime(&t));

}

See Also
libc, time [overview], time.h
ANSI Standard, §7.12.3.2
POSIX Standard, §8.1

Notes
ctime() returns a pointer to a statically allocated data area that is overwritten by successive calls.

ctype.h — Header File
Header file for data tests
#include <ctype.h>

ctype.h declares and defines the following routines, which can check and transform character types:

_tolower() Convert an upper-case character to lower case
_toupper() Convert a lower-case character to upper case
isalnum() Test if alphanumeric character
isalpha() Test if alphabetic character
isascii() Test if ASCII character
iscntrl() Test if a control character
isdigit() Test if a numeric digit
isgraph() Test if a graphics character
islower() Test if lower-case character
isprint() Test if printable character
ispunct() Test if punctuation mark
isspace() Test if a tab, space, or return
isupper() Test if upper-case character
isxdigit() Test if hexadecimal numeral
toascii() Convert a character to ASCII
tolower() Convert an upper-case character to lower case
toupper() Convert a lower-case character to upper case

Example
The following example demonstrates isalnum(), isalpha(), isascii(), iscntrl(), isdigit(), islower(), isprint(),
ispunct(), and isspace(). It prints information about the type of characters it contains.

#include <ctype.h>
#include <stdio.h>

main()
{

FILE *fp;
char fname[20];
int ch;
int alnum = 0;
int alpha = 0;
int allow = 0;
int control = 0;
int printable = 0;
int punctuation = 0;
int space = 0;
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printf("Enter name of text file to examine: ");
fflush(stdout);
gets(fname);

if ((fp = fopen(fname, "r")) != NULL) {
while ((ch = fgetc(fp)) != EOF) {

if (isascii(ch)) {
if (isalnum(ch))

alnum++;
if (isalpha(ch))

alpha++;
if (islower(ch))

allow++;
if (iscntrl(ch))

control++;
if (isprint(ch))

printable++;
if (ispunct(ch))

punctuation++;
if (isspace(ch))

space++;

} else {
printf("%s is not ASCII.\n",

fname);
exit(1);

}
}

printf("%s has the following:\n", fname);
printf("%d alphanumeric characters\n", alnum);
printf("%d alphabetic characters\n", alpha);
printf("%d alphabetic lower-case characters\n",

allow);
printf("%d control characters\n", control);
printf("%d printable characters\n", printable);
printf("%d punctuation marks\n", punctuation);
printf("%d white space characters\n", space);
exit(0);

} else {
printf("Cannot open \"%s\".\n", fname);
exit(2);

}
}

See Also
header files, libc
ANSI Standard, §7.3

Notes
The argument for a ctype function or macro should be an int that is representable as an unsigned char or EOF —
i.e., [-1, 0, ..., 255], as described in the ANSI standard §4.3.

The functions _tolower(), _toupper(), isascii(), and toascii() are not part of the ANSI standard. Programs that use
them may not be portable to all implementations of C.

cu — Command
UNIX-compatible communications utility
cu [options] [system] [phone] [dir]

The command cu implements a version of the communications utility used under UNIX System V. (Its name is an
acronym for ‘‘call UNIX’’.) With it, you can interactively telephone other systems, upload files, download files, and
perform other communications tasks. Unlike the program ckermit, which is also included with COHERENT, cu
uses the information stored in UUCP data-base files dial, port, and sys to automate the dialing of a remote system.

To tell cu to dial a given system, just use that system’s name on the cu command line. cu then reads from files
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dial, port, and sys the information on how to dial the system you have named; then uses that information to open
the port, set up the modem, and dial the system, up to the point where you see a login prompt on the remote
system. For example, to dial system mwcbbs, use the command:

cu mwcbbs

Instead of dialing a remote system, you may wish to talk directly to a modem — for example, to reset its registers;
or you may wish to log into a local system that is directly connected to your system via a serial port. To talk
directly to a device, use the option -p followed by the name of the port into which the device is plugged, plus the
command dir. This command tells cu that you wish to talk to the port directly. (Ports are named in the file port;
for details, see its entry in the Lexicon.) For example, to talk directly a modem that is on a port named MWCBBS,
use the command:

cu -p MWCBBS dir

To have cu dial a specific telephone number over a specific port, again use the option -p option to name the port,
followed by the telephone number to call. For example, the command

cu -p MWCBBS 17085590412

connects to the modem on port MWCBBS and dial the telephone number 1-708-559-0412.

cu assumes that a string that begins with an alphabetic character names a system. To call a system whose name
begins with numeral, use the command-line option -z, described below.

cu Commands
You can give commands to cu while you converse with the remote system. Each command begins with an escape
character, which by default is the tilde ‘~’. cu recognizes the escape character only when it appears at the
beginning of a line. After you type the escape character, cu replies with the name of your system, to show that it is
ready to receive your command. If you do not see cu’s reply within a second or two, something has gone wrong.

To send to the remote system an escape character at the beginning of a line, enter it twice; for example, typing

~~

sends a single ‘~’ to the remote system. All commands are either a single character or a word that begins with ‘%’.

cu recognizes the following commands:

~. Terminate the conversation.

~! command
Run command in a shell on your local system. If no command is given, start up a shell.

~$ command
Run command on your local system, and redirect to the remote system what command writes to the
standard output.

~| command
Run command on your local system, and pipe into command what the remote system sends to your
system.

~+ command
Combine the commands ~$ and ~|. You can use this command to invoke alternative file-transfer utilities,
e.g., rz and sz.

~#
~%break

Send a break signal.

~c directory
~%cd directory

cd to directory on your local system.

~> file Send file to the remote system. This command just dumps the file over the communication line, and
performs no error checking. It assumes that the remote system is expecting it. You should first open a file
on the remote system such as through the command

cat > filename
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before you invoke this feature of cu.

~< Receive a file from the remote system. cu prompts you to name the file into which it will write what it
receives from the remote system, then prompts you for the command to execute on the remote system to
begin the file transfer (often, just cat filename). cu reads data from the remote system and writes them
into into the file you named on your system until it detects the variable eofread.

~p herefile farfile
~%put herefile farfile

Copy (or put) file herefile on your system into file farfile on the remote system.

~t farfile herefile
~%take farfile herefile

Take file farfile from the remote system, and write it into file herefile on your system. This runs the
appropriate commands on the remote system.

~s variable [value]
Set the cu variable to value. If no value is not given, set variable to true. cu’s variables are described
below.

~! variable
Set the cu variable to false. cu’s variables are described below.

~%nostop
Turn off XON/XOFF flow control.

~%stop
Turn on XON/XOFF flow control.

~v List all cu variables and their values. cu’s variables are described below.

~? Help: list all cu commands.

cu Variables
The following variables are build into cu to control its default behaviors:

binary This variable indicates whether to pass binary information untouched when it transfers a file. If this
variable is false, cu converts newline characters to carriage returns. If set to true, then cu passes
binary data through untouched. The default is false.

binary-prefix
This variable gives the string that prefaces a binary character in a file transfer. This variable applies
only if the variable binary variable is true. The default is <ctrl-Z>.

delay If this variable is true, cu delays for one second after it recognizes the escape character. The default is
true.

echo-check
If true, cu checks file transfers by examining what the remote system echoes. This is not a robust
method of checking the integrity of a transferred file, but it is the best that cu offers. The default is
false.

echonl The character that cu looks for after it sends each line in a file. The default is the carriage return.

eofread This sets the string that cu looks for after it receives a file retrieved with the command ~<. The default
is $, which is intended to be a typical shell prompt.

eofwrite The string that cu writes after it sends a file with the command ~>. The default is <ctrl-D>.

eol This variable gives the characters that cu recognizes as completing a line of input. cu recognizes the
escape character only when it occurs immediately after one of the eol characters. cu recognizes the
following eol characters by default: <ctrl-C>, <ctrl-D>, <ctrl-O>, <ctrl-Q>, <ctrl-R>, <ctrl-S>, and
<ctrl-U>.

escape The escape character. By default, this is the tilde ‘~’.

kill This tells cu the character to use to delete a line if the echo-check fails. The default is <ctrl-U>.
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resend The number of times to resend a line if the echo-check continues to fail. The default is ten.

timeout This variable sets the time, in seconds, that cu waits for a character either when it does echo-checking
or when it looks for the echonl character. The default is 30.

verbose Print accumulated information during a file transfer. The default is true.

To list the values of the variables, use the command ~v. To modify a variable, use the commands ~s or ~!. For
example, to turn off the one-second pause after sending an escape character, use the command:

~! delay

To change the escape character from ‘~’ to ‘\’, use the command:

~s escape \

Options
cu recognizes the following command-line options:

-a port The same as the option -p, described below.

-c number Dial number. You must use this option if the telephone number begins with a letter.

-d Enter debugging mode. This is equivalent to -x all.

-e Use even parity.

-N Equivalent to the command -s N, where N is an integer.

-h Half-duplex mode: echo locally all characters sent to the remote system.

-I file Use file instead of the configuration file.

-l device The device on which to dial out. Use this option to dial out on ports that are not list in the file port.
You must have write permission on device.

-n Prompt for the telephone number to use.

-o Use odd parity. If you use both -e and -o on the command line, no parity is used. If neither is
specified, cu uses the default parity of the line.

-p port The port to use. If you do not use this option, cu uses the default port for the system being contacted,
as set in file /usr/lib/uucp/sys.

-s speed Set the baud rate to speed.

-t Map every carriage return character to the pair carriage/linefeed. Use this option when transferring
files to an MS-DOS system.

-z system Call system. You must use this option if the name of the remote system begins with a numeral.

-x activity Log a given activity. These logs can help you debug problems with cu. cu recognizes the following
activities:

abnormal
chat
handshake
port
config
incoming
outgoing

One -x option can name multiple activities, with the activities separated by commas. A cu command
line can contain multiple -x options.

You can also use this option with a number, which turns on that many activities from the foregoing
list, in the order in which the appear in this list. For example, the option -x 2 is equivalent to the
option -x abnormal,chat The option -x all logs on all activities.

See Also
ckermit, commands, dial, port, sys, UUCP
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Notes
Unlike ckermit, the file-transfer facility in cu is primitive and performs no error checking. If you wish primarily to
transfer files, you should consider using ckermit instead of cu. As noted above, the command ~+ plugs the
standard input and standard output of two commands into each other; with this feature, you can use the other
file-transfer utilities (e.g., rz and sz) to transfer files under cu.

cu requires that the device /dev/console appear last in file /etc/ttys. If this is not so, cu refuses to disable the
enabled port or dial out. For details on this file, see the Lexicon entry for ttys.

cu was ported to COHERENT from the Taylor UUCP package, written by Ian Taylor (ian@airs.com).

curses.h — Header File
Define functions and macros in curses library
#include <curses.h>

curses.h defines the macros and declares the functions that comprise the curses library.

See Also
header files, libcurses, termcap, terminfo

cut — Command
Select portions of each line of its input
cut -clist [file ...]
cut -flist [-s] [-d char] [file ...]

cut ‘‘cuts’’ one or pieces out of each line in its input, and writes the piece or pieces to the standard output. list
specifies the pieces to cut out of each line. cut reads its input from file; if no file is named on its command line,
cut reads the standard input.

A ‘‘piece’’ of an input line can be defined either as one or more characters from fixed positions in the line; or as one
or more fields. The option -c selects characters from fixed positions; you would use this option if you were cutting
up a file each of whose lines was of a fixed length. The option -f selects fields. A field does not have to have a fixed
length, but its end must be marked by some special character; by default, a white-space character marks the end
of a field. Option -d lets you specify the ‘‘magic character’’ that marks the end of a field. Option -s tells cut to
throw away every line that does not contain the field-delimiter character. By default, cut will pass through
unmodified every line that does not contain the field delimiter.

Options -c and -f are each followed by a list, which describes the pieces that you want from each input line. A
piece is defined as follows:

N A piece consists of a single column or field. For example, the command

cut -f2 /etc/ttytype

selects field 2 from file /etc/ttytype.

N-N The range of columns or fields. For example, command

cut -c4-12 /etc/ttytype

selects columns 4 through 12, inclusive, from file /etc/ttytype.

-N Select every column or field from the beginning of the line through N. For example, command

cut -d\| -f-3

reads the first three fields from the standard input.

N- Select every column or field from N through the end of the line. For example, the command

cut -c15-

selects every character from character 15 through the end of the line.

If list defines more than one piece, the definitions of the pieces must be separated by commas. For example, the
command

cut -c3-5,7-9
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cuts columns three through five and seven through nine from the standard input, and writes them onto the
standard output.

cut returns zero on success, one if an error occurred.

Examples
The following cuts column 4 through the end of the line from file /etc/ttys, and writes the cut piece onto the
standard output. In effect, it throws away the first three columns of every line in that file:

cut -c4- /etc/ttys

You would use this command to display every serial-port device name that that file contains.

The next command selects fields one and six from file /etc/passwd. (Field one in this file gives a user’s login
identifier; and field six gives her home directory.) Note that fields in this file are delimited by a colon ‘:’.

cut -d: -f1,6 /etc/passwd

The final example cuts the first field from the input. It also explicitly sets the field delimiter to the space character.
You would use this command to clip any trailing white space from data read from the standard input:

cut -f1 -d’ ’

See Also
awk, commands, paste, sed

Notes
cut is copyright  1988,1990 by The Regents of the University of California. All rights reserved.

cvmail — Command
Convert mail from COHERENT 3.X format to SV format
cvmail [-m filename] [filename]

The command cvmail converts to System V format existing COHERENT 3.X mailboxes and files used to store
messages saved by COHERENT’s 3.X mail utility.

To convert a default mailbox (i.e., a mailbox in directory /usr/spool/mail), invoke cvmail with its -m option,
followed by the name of the user whose mailbox is to be converted. For example, to convert the mailbox belonging
to user bob, type:

cvmail -m bob

If you have saved mail messages into a file, invoke cvmail with the name of the file to convert. For example, if you
have stored mail messages in file msg.save, you can convert this file by typing:

cvmail msg.save

See Also
commands, mail

Notes
If you invoke cvmail without any arguments, it prompts you for the name of a file to convert. The file is not
assumed to be a mailbox in directory /usr/spool/mail.

CWD — Environmental Variable
Current working directory

The Korn shell uses the environmental variable CWD to hold the current working directory.

See Also
environmental variables, ksh
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d_passwd — System Administration
Give passwords for devices
/etc/d_passwd

The COHERENT system lets you force classes of users who log in through particular devices to enter an extra
password. This helps you protect your system against people who may be try to break into your system via
modem.

When a user attempts to log in, the command login check file /etc/dialups (should it exist) to see if this device is
protected by an extra password. If this file names the device, login looks in file /etc/d_passwd to see if that user’s
shell is associated with an extra password. If that is so, then login prompts the user for that password, in addition
to his usual password as set in file /etc/passwd or /etc/shadow.

Each entry in /etc/d_passwd has the following format:

shell:password:comment

If field shell is empty, then login applies this password to all users who are using shells not named elsewhere
within d_passwd.

The following gives an example of d_passwd:

/usr/lib/uucp/uucico::UUCP logins don’t have extra password
/bin/sh:encrypted password:normal user with interactive shell
/usr/bin/ksh:encrypted password:normal user with interactive shell

To recreate the function of the account remacc (which login no longer recognizes as special), set /etc/dialups to
name your dial-up ports, and set d_passwd to the following:

:encrypted_password:people/accounts dialing in

The following gives the contents of d_passwd from a typical COHERENT system:

:.03qn7EtBd.gi:Default dialup password
/usr/lib/uucp/uucico:.03qn7EtBd.gi:Dialup password for UUCP
/bin/sh:.03qn7EtBd.gi:Normal dialup extra password
/usr/bin/ksh:.03qn7EtBd.gi:Normal dialup extra password

The gibberish between the first and second ‘:’ characters are the encrypted passwords. Note that this user has
given the same password to each shell upon dialing up. This probably is a mistake.

See Also
Administering COHERENT, dialups, login

daemon — Definition
A daemon is a program that runs continually on your computer. It waits quietly for some condition to occur; then
it awakens and performs some action (such as redirecting the file to a printer).

For example, the daemon /etc/cron wakes up every minute and checks every cron file. If a file contains a
command to be executed at this time, then cron executes it.

As a general rule, anything that does not interact directly with users can be classified as a daemon. Daemons do
not generally generate output to a user’s terminal.

Any time you have a resource, like a printer or data base, to which access should be controlled, you can use a
daemon.
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For a list of daemons available under the COHERENT system, see the Lexicon entry for Administering COHERENT.

See Also
Using COHERENT

Notes
The function bedaemon(), which is included in libmisc, makes a program a daemon. See the article on libmisc for
details.

A daemon may be killed accidentally, or through an error condition. When that occurs, a user may summon the
daemon from the misty deep, but it will not come. The superuser root can reinvoke a daemon like any other
program.

data formats — Definition
Mark Williams Company has written C compilers for a number of different computers. Each has a unique
architecture and defines data formats in its own way.

The following table gives the sizes, in chars, of the data types as they are defined by various microprocessors.

i8086 i8086
Type i80386 SMALL LARGE Z8001 Z8002 68000 PDP11 VAX
char 1 1 1 1 1 1 1 1
double 8 8 8 8 8 8 8 8
float 4 4 4 4 4 4 4 4
int 4 2 2 2 2 2 2 4
long 4 4 4 4 4 4 4 4
pointer 4 2 4 4 2 4 2 4
short 2 2 2 2 2 2 2 2

COHERENT places some alignment restrictions on data, which conform to all restrictions set by the microprocessor.
Byte ordering is set by the microprocessor; see the Lexicon entry on byte ordering for more information.

Please note that Intel processor documentation and the Intel Binary Compatibility Standard (iBCS2) use the term
word differently. The following table defines how they differ:

Bytes 1 2 4 8
Bits 8 16 32 64
Intel byte word dword qword
iBCS2 byte halfword word doubleword

See Also
byte ordering, C language, data types, double, float, float.h, Programming COHERENT

Notes
COHERENT 286 supports Intel SMALL model only. COHERENT 386 supports the i80386 data format.

data types — Definition
COHERENT’s implementation of C recognizes the following data types:

char
double
float
int
long
long float
long int
short
short int
signed char
signed int
signed long
signed long int
signed short
signed short int
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unsigned int
unsigned long
unsigned long int
unsigned char
unsigned short
unsigned short int

The following types are synonymous:

char signed char
short short int signed short signed short int
unsigned short unsigned short int
int signed int
long signed long long int signed lont int
unsigned long unsigned long int
long float double long double

The ANSI Standard states that int, short, and long are signed by default. It also sates that the implementation
determines whether a char is signed or unsigned by default; but it does state that a printable character must be
positive. COHERENT uses signed chars by default; therefore, if you wish to use a character value greater than
0x7F, you must explicitly declare the character to have type unsigned char. If you use this type in an arithmetic
expression, COHERENT’s C compiler automatically casts it to unsigned int.

Finally, COHERENT’s header files define these commonly used data types:

<acct.h> typedef unsigned short comp_t;
<fcntl.h> typedef struct flock flock_t;
<signal.h> typedef long sig_atomic_t;
<stddef.h> typedef int ptrdiff_t;
<stdio.h> typedef long fpos_t;
<stdlib.h>

typedef struct { int quot; int rem; } div_t;
typedef struct { long quot; long rem; } ldiv_t;

<sys/acct.h>
typedef unsigned short comp_t;

<sys/clist.h>
typedef unsigned int cmap_t;

<sys/confinfo.h>
typedef ddi_init_t init_t;
typedef ddi_start_t start_t;
typedef ddi_exit_t exit_t;
typedef ddi_halt_t halt_t;

<sys/fd.h> typedef unsigned fd_t;
<sys/ksynch.h>

typedef struct lock_info lkinfo_t;
typedef struct sleep_lock sleep_t;
typedef struct readwrite_lock rwlock_t;

<sys/mmu.h>
typedef long cseg_t;

<sys/mzioctl.h>
typedef long mzattr_t;

<sys/poll.h>
typedef struct event event_t;

<sys/resource.h>
typedef unsigned long rlim_t;

<sys/scsiwork.h>
typedef struct scsi_work scsi_work_t;
typedef struct scsi_cmd scsi_cmd_t;

<sys/seg.h>
typedef long cseg_t;

<sys/signal.h>
typedef n_sigset_t sigset_t;
typedef o_sigset_t sigset_t;

LEXICON

516 data types



<sys/stream.h>
typedef struct free_rtn frtn_t;

<sys/types.h>
typedef char *vaddr_t;
typedef unsigned short minor_t;
typedef unsigned short major_t;

<sys/uio.h>
typedef struct uio uio_t;

See Also
C language, char, data formats, double, float, int, long, pointer, Programming COHERENT, short, unsigned

date — Command
Print/set the date and time
date [-s] [-u] [[yymmdd]hhmm[.ss]]

date sets or prints prints the date and time of day.

If invoked without an argument, date prints the current date and time. It looks for the environmental variable
TIMEZONE, which specifies local time zone and daylight saving time information. For details on the format of this
variable, see the Lexicon entries for TIMEZONE and ctime().

If invoked with a numeric argument (that is, one that consists of just digits, with no prefix), date interprets that
argument as giving the current date and time, and uses it to set the current system time. The string must have
the format yymmddhhmm[ss]; the fields must be defined as follows:

yy Year (00-99)
mm Month (01-12)
dd Day (01-31)
hh Hour (00-23)
mm Minute (00-59)
ss Seconds (00-59)

For example, typing

date 940612141233

sets the date to June 12, 1994, and the time to 2:12:33 P.M. At least hh and mm must be specified — the rest are
optional. date will complain and refuse to change the time should you attempt to set an impossible date or time,
e.g., the date to February 30 or the time to 25 o’clock.

Note that the COHERENT command ATclock returns the date and time as recorded by your computer’s internal
clock. To reset the time as COHERENT understands it to the time as your computer understands it, use the
command:

date `/etc/ATclock`

If you use option -s on date’s command line, date does not convert to daylight savings time when it sets the time.

If you use option -u on date’s command line, date sets and prints the date and time in Greenwich Mean Time
(GMT) rather than in your local time.

See Also
ATclock, commands, ctime(), printf(), time, TIMEZONE

Notes
Only the superuser root can change the system’s date or time.

The COHERENT version of the date command differs from the UNIX version in that the last two fields of its output
are reversed. For example, the UNIX output of date reads

Sun Jan 13 12:02:09 CST 1991

where the COHERENT output reads:

Sun Jan 13 12:02:09 1991 CST
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This may be important when importing UNIX shell commands into COHERENT.

db — Command
Assembler-level symbolic debugger
db [-a symfile] [-cdefort] [[mapfile] program]

db is an interactive, symbolic debugger. It allows you to run object files and executable programs under trace
control (see the Lexicon entry for ptrace), run programs with embedded breakpoints, and dump and patch files in
a variety of forms. You can use it to debug assembly-language programs that have been assembled by as, the Mark
Williams assembler, and programs that have been compiled with the Mark Williams C compiler cc.

What is db?
db is a symbolic debugger, which means that it works with the symbol tables that the compiler builds into the
object files it generates. Because db works on the level of assembly language, you need a working knowledge of
i80386 assembly language and microprocessor architecture.

Invoking db
To invoke db, type its name, plus the options you want (if any) and the name of the files with which you will be
working. mapfile is an object file that supplies a symbol table. program is the executable program to be debugged.
If both names are given, the options default to -c. If only one name is given, it is the program; in this case the
options default to -o. If both names are omitted, mapfile defaults to l.out or a.out, and program defaults to core. If
possible, db accesses program with write permission.

db recognizes the following command-line options:

-a symfile
Read symfile for the list of symbols within the executable, instead of the executable’s symbol table. This lets
you copy an executable’s symbol table in symfile, then strip that executable.

-c program is a core file produced by a user core dump. db checks the name of the command that invoked the
process that produced the core, against the name of the mapfile, if given. Pure segments are read from the
mapfile.

-d program is a system dump. If the command line names no files, mapfile defaults to /COHERENT and
program defaults to /dev/dump.

-e The next argument is an object file; db executes it as a child process and passes it the rest of the command
line. This permits the shell to expand wildcard characters that you place in the db command line, without
spoiling the syntax of the db command.

-f Map program as a straight array of bytes (file).

-k Map program as a kernel process; mapfile defaults to /coherent, and program defaults to /dev/kmem.

-o program is an object file. If mapfile is given, it is another object file that provides the symbol table.

-p prompt
Change the command prompt from db: to prompt.

-r Only read the file, even if you have write permission for it. Use this to give a file additional protection.

-s Do not load symbol table.

-t Perform input and output for db via /dev/tty. This permits you to debug a process whose standard input or
output has been redirected.

Commands and Addresses
db executes commands that you give it from the standard input. db displays the prompt

db:

when it is ready to receive a command. To change its prompt, use the -p option, described above. A command
usually consists of an address, which tells db where in the program to execute the command; and then the
command name and its options, if any.

An address is represented by an expression, which can be built out of one or more of the following elements:
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• The ‘.’, which represents the current address. When you enter an address, db sets the current address to that
location. To advance the current address, type the <Enter> key.

• The name of a register. db recognizes the names of all registers on the 80386 microprocessor and the 80387
numeric co-processor. You can preceed a register name with a ‘%’, but this is not required. If your program
contains function eax(), the identifier eax identifies the function and %eax the register. If your program does
not define eax, then either eax or %eax means the register. For example, the commands

sin:b
:e
:s
%st0?N

sets a breakpoint at routine sin(), executes to it, single steps into it, and then prints the contents of the NDP
stacktop %st0, which one step into sin() contains the argument.

Typing the name of a register displays its contents. db displays register contents and stack traceback in
hexadecimal values, regardless of the current default radix.

• The symbols d, i, and u, which represent location 0 in, respectively, the data space, the instruction space, and
the u-area.

• The names of global symbols and symbolic addresses can be used in place of the addresses where they occur.
This is useful when setting a breakpoint at the beginning of a subroutine.

• An integer constant, which can be used in the same manner as a global symbol. The default is hexadecimal; a
leading 0 indicates octal and 0x indicates hexadecimal.

• You can use the following binary operators:

+ Addition
- Subtraction
* Multiplication
/ Integer division

All arithmetic is done in longs.

• You can use the following unary operators:

~ Complementation
- Negation
* Indirection

All operators are supported with their normal level of precedence. You can use parentheses ‘()’ for binding.

Every symbol refers to a segment: the data segment, the instruction segment, or the u-area. This segment, in turn,
dictates the format in which db displays by default what it finds at that address. The format used by an
expression is that of its leftmost operand. The symbols d, i, and u name specific segments in the absence of other
symbols.

Displaying Information
To display information about program, use an expression of the form

[address][,count]?[format]

This displays format for count iterations, starting at address. The symbol ‘.’ represents the address, which defaults
to the current display address if omitted. count defaults to one. The format string consists of one or more of the
following characters:
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^ Reset display address to ‘.’
+ Increment display address
- Decrement display address
b Byte
c char; control and non-chars escaped
C Like ‘c’ except ‘\0’ not displayed
d Decimal
f float
F double
i Machine instruction, disassembled
l long
n Output ‘\n’
N NDP (80387) register
O octal
p Symbolic address
s String terminated by ‘\0’, with escapes
S String terminated by ‘\0’, no escapes
u unsigned
w word
x Hexadecimal
Y time (as in i-node, etc.)

The format characters d, o, u, and x, specify a numeric base. Each of these can be followed by b, l, or w, which
specify a datum size, to describe a single datum for display. A format item may also be preceded by a count that
specifies how many times the item is to be applied. format defaults to the previously set format for the segment
(initially o for data and u-area, and i for instructions). Except where otherwise noted, db increments the display
address by the size of the datum displayed after each format item.

Execution Commands
In the following commands, address defaults to the address where execution stopped, unless otherwise specified;
count and expr default to one. commands is an arbitrary string of db commands, terminated by a newline. A
newline may be included by preceding it with a backslash ‘\’.

[address]=
Print address (offset) in hexadecimal. address defaults to ‘.’.

[address]=value[,value[,value]...]
Patch value into the program, beginning at point address. The address defaults to ‘.’. You can list up to
ten values. The command = assigns values to sequential locations in the traced process. db determines
the size of the assigned value from the last display format used. You can set and display the registers of
the traced process, just like any other address in the traced process.

? Print the last error message.

[address][,n]?[ft]
Display formatted information. ft indicates the format, which must be one of bcCdfFilnNopsSuvwxY. For
details, see the command :hf, below

address?
Print address.

!command
Pass command to a shell for execution.

[address] :a
Print address symbolically. address defaults to ‘.’.

[address]:b[commands]
Set a breakpoint at address. Execute commands when the breakpoint is encountered. commands defaults
to i+.:a\ni+.?i\n:x\n — that is, print the breakpoint address, disassemble the instruction at the
breakpoint address, and read more commands from the console.

:br [commands]
Set breakpoint at return from current routine, and execute commands. The default commands are the
same as for :b, above.
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[address] :c
Continue execution from address.

[address] :d[r][s]
Delete the breakpoint previously set at address. If the optional r or s is specified, delete return or single-
step breakpoint. address defaults to ‘.’.

[address]:e[commandline]
Begin traced execution of the object file at address (default, entry point). db parses commandline and
passes it to the traced process. argv[0] must be typed directly after :e if supplied. For example,

:eprogname foo bar baz

sets argv[0] to progname, argv[1] to foo, argv[2] to bar, and argv[3] to baz. Quotation marks,
apostrophes, and redirection are parsed as by the shell, but special characters ‘?*[]’ and shell punctuation
‘(){}|;’ are not. For complete shell command line parsing use the -e option, above.

Note that you must use the :e command to start the program execution prior to using the single-step,
trace-back, or display-register commands. For example, the following COHERENT command sequence sets
a breakpoint at main(), begins execution, and single-steps ten times through the program after having
reached the breakpoint:

main:b
:e
,10:s

:f Print type of fault that caused a core dump or stopped the traced process.

:h Print help information.

:hf Print help information about display formats. db recognizes the following display formats:

b Byte.
c char; control, and non-chars printed as escape sequences.
C char; control and non-chars print as ‘.’.
d Decimal.
f float.
F double.
i Disassembled machine instruction.
l long.
n Output ‘\n’.
N NDP (80387) floating-point register (ten bytes).
o Octal.
p Symbolic address.
s String (NUL-terminated) with escape sequences.
S String (NUL-terminated).
u unsigned.
v File system l3-block address (three bytes).
w Word.
x Hexadecimal.
Y Time.

Options d, o, u, and x specify numeric bases (decimal, octal, unsigned decimal, hexadecimal). Each may
be followed by b, w, or l to indicate a datum size (respectively, byte, word, or long).

:m Display segmentation map.

:p Display all breakpoints.

[expr] :q
If expr is nonzero, quit the current level of command input (see :x). expr defaults to one. End-of-file is
equivalent to :q.

:r Display the contents of all registers on the microprocessor.

:rN Display the contents of all registers on the microprocessor and on the numeric co-processor. If your
system does not possess a numeric co-processor, it displays the contents of the pseudo-registers used by
COHERENT’s emulator.
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[address][,count]:s[c][commands]
Single-step execution starting at address, for count steps, executing commands at each step. commands
defaults to i+.?i.

After a single-step command, <Enter> is equivalent to .,1:s[c]. The option c tells db to turn off single-
stepping at a subroutine call and turn it on again upon return.

[depth] :t
Print a call traceback to depth levels. If depth is zero (default), unwind the whole stack.

[expr] :x
If expr is nonzero, read and execute commands from the standard input up to end of file or to receiving the
command :q. expr defaults to one.

Note that the :c, :s, :t, and :r commands cannot be executed before a program is started. If you are debugging the
program hello, do the following first:

db hello
main:b
:e

This invokes the debugger for hello and advances it to main. Now you can use the full set of commands.

Examples
The first example uses db to examine a program named myprog, which has core-dumped. To debug it, use the
command

db myprog core

You could then issue the following commands to see where the problem lay:

:f This command displays the fault that caused the core dump.

:r This displays the contents of registers at the point where the program core dumped.

:t This command traces back the stack. With this command, you can see how your program arrived at the point
where it core dumped. You can use this to find the point in your code where the program ‘‘jumps the rails’’;
often, this is all the information you need to fix the fault.

i1? This prints the value of global variable i1 in your program at the time of the core dump.

:q Quit db. At this point, you should have a good idea of what went wrong with your program.

For another example, consider the following program, named segv.c:

main()
{

register char *cp;

cp = &main;
*cp = 1000;

}

Compile this program with the command cc segv.c. To run it, type segv; as you can see, it crashes with a
segmentation violation, producing a core-dump file named core. Now, you can use db to find out why the program
core dumped.

To invoke the debugger, type:

db segv core

Now, type the db command:

:f

This tells db to print the type of fault that caused the program to dump core. db replies:

segmentation violation

Now, type:
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*%eip?

db replies:

000000E9 movb (%ebx), $0xE8

Here, db gives you the value of the instruction pointer register %eip when the segmentation violation occurred and
disassembles the instruction at that location. The offending instruction is trying to store indirectly through
register %ebx. Type:

:t

db prints a traceback of the call stack:

7FFFFD24 000000E9 main(1, 0x7FFFFD38, 0x7FFFFD40)

This shows the program was in main() and not in any other function. Type:

:r

db prints contents of the machine registers:

%cs =000B %eip=000000E9 %ss =0013 %fw =00011246
%ds =0013 %es =0013 %fs =0000 %gs =0000
%eax=00000001 %ebx=000000D4 %ecx=00000013 %edx=7FFFFD40
%esp=7FFFFD1C %ebp=7FFFFD24 %edi=004090F4 %esi=00400D24

This shows that register %ebx has the value 0xD4 at the time of the core dump. Print the contents of %ebx
symbolically:

%ebx?p

db replies:

00000020 main

The program is trying to store into the address of main. This causes a segmentation violation because COHERENT

does not allow programs to write on code. Finally, type

:q

to exit from db.

In the last example, suppose you want to print the current address, the instruction at the current address, and the
contents of global variable j when you hit function fn while running db. Type:

db cmd
main:b
:e
fn:b.:a\
.?i\
j?\
:x

The backslash ‘\’ at the end of a line ‘‘escapes’’ a newline — that is, it tells db to ignore the newline, and
concatenate the contents of the next line onto those of the present line. Thus, the fn command line (four physical
lines with escaped newlines) forms a single db command that says the following:

.:a Print the current position as an address.

.?i Print the contents of the current position as an instruction.
j? print the contents of j.
:x Read more db input from the console.

The :x is necessary if you want to keep debugging interactively after db executes the breakpoint command list!

See Also
commands, coff.h, core, l.out.h, od, ptrace()
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dbm.h — Header File
Header file for DBM routines
#include <dbm.h>

Header file <dbm.h> declares the functions used to manipulate DBM data bases:

dbmclose(). . . . . . . . Close a DBM data base
dbminit(). . . . . . . . . Open a DBM data base
delete() . . . . . . . . . . Delete a record from a DBM data base
fetch() . . . . . . . . . . Fetch a record from a DBM data base
firstkey() . . . . . . . . . Retrieve the first record from a DBM data base
nextkey(). . . . . . . . . Retrieve the next record from a DBM data base
store() . . . . . . . . . . Write a record into a DBM data base

It also defines the structure datum, which holds a data element, either a key or its associated data set:

typedef struct {
char *dptr;
int dsize;

} datum;

See Also
gdbm.h, header files, libgdbm, ndbm.h

Notes
Please note that function dbmclose() is non-standard. A program that uses it cannot be recompiled on an
orthodox UNIX system.

For a statement of copyright and permissions on this header file, see the Lexicon entry for libgdbm.

dbm_clearerr() — NDBM Function (libgdbm)
Clear an error condition on an NDBM data base
#include <ndbm.h>
dbm_clearerr (database)
DBM *file;

Macro dbm_clearerr() clears an error that had been set on database.

See Also

Notes
As of this writing, this macro in fact does nothing.

For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

dbm_close() — NDBM Function (libgdbm)
Close an NDBM data base
#include <ndbm.h>
void dbm_close (database)
DBM *database;

Function dbm_close() closes the NDBM data base to which database points. database must first have been
opened by a call to dbm_open().

See Also

Notes
This function is a wrapper for function gdbm_close(). It is included for compatibility with existing code.

If you have called dbm_fetch() to select data from database, you must use or copy the returned information before
you call dbm_close(). If you do not, dbm_close() may corrupt the data in the datum that dbm_fetch() has
returned.

For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.
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dbm_delete() — NDBM Function (libgdbm)
Delete records from an NDBM data base
#include <ndbm.h>
int dbm_delete (database, key)
DBM *database;
datum key;

Database function dbm_delete() deletes the record with key from the data base to which database points.
database must have been opened by a call to dbm_open().

If all goes well, dbm_delete() returns zero. It returns -1 if database did not contain a record with key, or if
database were opened into read-only mode.

See Also

Notes
This function is a wrapper for function gdbm_delete(). It is included for compatibility with existing code.

For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

dbm_dirfno() — NDBM Function (libgdbm)
Return the file descriptor for an NDBM .dir file
#include <ndbm.h>
int dbm_dirfno (database)
DBM *database;

A NDBM data base consists of two files. One, with the suffix .dir, holds the index for the data base; the other, with
the suffix .pag, holds the data themselves.

Function dbm_dirfno() returns the file descriptor for the .dir file associated with the data base to which database
points. database must have been returned by a call to dbm_open().

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

dbm_error() — NDBM Function (libgdbm)
Check a NDBM data base for an error
#include <ndbm.h>
int dbm_error (database)
DBM *database;

Macro dbm_error() checks database for an error condition, should a call to another data-base function fail.

See Also

Notes
Under the GDBM package, this macro in fact does nothing. It is included simply for compatibility with existing
software.

For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

dbm_fetch() — NDBM Function (libgdbm)
Fetch a record from an NDBM data base
#include <ndbm.h>
datum dbm_fetch (database, key)
DBM *file;
datum key;

Function dbm_fetch() retrieves from database the record with the given key. database must first have been opened
through a call to function dbm_open().
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dbm_fetch() returns the address of the record it has retrieved. It returns NULL either if something went wrong
(e.g., it could not read database), or if database does not contain a record with key.

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

dbm_firstkey() — NDBM Function (libgdbm)
Retrieve the first key from an NDBM data base
#include <ndbm.h>
datum dbm_firstkey (database)
DBM *database;

Function dbm_firstkey() retrieves the record with the first key in database. database must first have been opened
through a call to function dbm_open().

dbm_firstkey() returns the address of the record it has retrieved. It returns NULL either if something went wrong
(e.g., it could not read database), or if database is empty.

You can use dbm_firstkey() with function dbm_nextkey() to walk through database. For example:

for (key = dbm_firstkey(db); key.dptr != NULL; key = dbm_nextkey(db))

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

dbm_nextdbm() — NDBM Function (libgdbm)
Retrieve the next key from an NDBM data base
#include <ndbm.h>
datum dbm_nextkey (database)
DBM *database;

Function dbm_nextkey() retrieves the next key from the data base to which database points. database must first
have been opened via a call to function dbm_open(), and had the first key retrieved from it via a call to function
dbm_firstkey().

dbm_nextkey() returns the address of the record it has retrieved. If something has gone wrong, it returns NULL.
If the last record within database has already been retrieved, it returns a record whose field dptr is NULL.

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

dbm_open() — NDBM Function (libgdbm)
Open an NDBM data base
#include <ndbm.h>
DBM *dbm_open (database, type, mode)
char *database;
int type, mode;

Function dbm_open() opens database. Parameters type and mode are the same as for the system call open(); for
details, see its Lexicon entry.

To close database, call dbm_close().

dbm_open() returns the address of the name of the data base it has opened. If something has gone wrong, it
returns NULL.

See Also
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Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

dbm_pagfno() — NDBM Function (libgdbm)
Return the file descriptor for an NDBM .pag file
#include <ndbm.h>
int dbm_pagfno (database)
DBM *database;

A NDBM data base consists of two files. One, with the suffix .dir, holds the index for the data base; the other, with
the suffix .pag, holds the data themselves.

Function dbm_pagfno() returns the file descriptor for the .pag file associated with the data base to which database
points. database must have been returned by a call to dbm_open().

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

dbm_rdonly() — NDBM Function (libgdbm)
Set an NDBM data base into read-only mode
#include <ndbm.h>
int dbm_rdonly (database)
DBM *database;

Function dbm_rdonly() puts an NDBM data base into read-only mode. database points to the data base; it must
have been returned by a call to dbm_open().

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

dbm_store() — NDBM Function (libgdbm)
Store a record into an NDBM data base
#include <ndbm.h>
int dbm_store (database, key, content, flags)
DBM *database;
datum key, content;
int flag;

Function dbm_store() inserts a record into database, which must first have been opened by a call to dbm_open().
content points to the data to be stored within the data base; and key points to the key under which the data are to
be stored.

flag indicates how the the data are to be inserted into the data base. If it is set to DBM_INSERT, the data are
appended onto the data base as new records; in this case, dbm_store() will not modify existing records that have
an identical key. If, however, you set flag to DBM_REPLACE, contents replaces any existing record with an
identical key.

If all goes well, dbm_store() returns zero. It returns a negative value should an error occur. If you set flag to
DBM_INSERT and dbm_store() finds that database already contains a record with key, it returns one.

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libdbm.
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dbmclose() — DBM Function (libgdbm)
Close a DBM data base
#include <dbm.h>
void dbmclose()

Function dbmclose() closes a DBM-style data base. database points to the data base to be closed; it must have
been returned by a call to function dbminit().

See Also

Notes
This function is non-standard. A program that uses it cannot be recompiled on an orthodox UNIX system.

For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

dbminit() — DBM Function (libgdbm)
Open a DBM data base
#include <dbm.h>
int dbminit(database)
char *database;

Function dbminit() opens and initializes a DBM data base. database points to the name of the data base to open.

Please note that unlike the GDBM function gdbm_open() or the DBM function dbm_open(), dbminit() does not
create a data base — it merely opens it for manipulation. If the data base does not exist, you must first create it.
To do so, create the empty files database.pag and database.dir.

If all goes well, dbminit() returns zero. If something goes wrong, it returns a negative value.

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

dc — Command
Desk calculator
dc [file]

dc is an arbitrary precision desk calculator. It simulates a stacking calculator with ancillary registers. Input must
be entered in reverse Polish notation. dc maintains the expected number of decimal places during addition,
subtraction, and multiplication, but the user must make an explicit request to maintain any places at all during
division.

dc reads input from file if specified, and then from the standard input. dc accepts an arbitrary number of
commands per line; moreover, spaces need not be left between them.

The scale factor of a number is the number of places to the right of its decimal point. The scale factor register
controls decimal places in calculations. The scale factor does not affect addition or subtraction. It affects
multiplication only if the sum of the scale factors of the two operands is greater than it. The result of every division
command has as many decimal places as it specifies. It affects exponentiation in that multiplication is performed
as many times as the integer part of the exponent indicates; any fractional part of the exponent is ignored.

dc recognizes the following commands and constructions:

number
Stack the value of number. A number is a string of symbols taken from the digits ‘0’ through ‘9’, and the
capital letters ‘A’ through ‘F’ (usual hexadecimal notation), with an optional decimal point. An underscore
‘_’ as a prefix indicates a negative number. The letters retain values ten through 15, respectively,
regardless of the base chosen by the user.

+ - / * % ^
The arithmetic operations: addition(+), subtraction(-), division(/), multiplication(*), remainder(%), and
exponentiation(^). dc pops the two top stack elements, performs the desired operation by calling the
multiprecision routine desired (see multiprecision arithmetic), and stacks the result.
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c Clear the stack.

d Duplicate the top of the stack (so that it occupies the top two positions of the stack).

f Print the contents of the stack and the values of all registers.

i Remove the top of the stack and use its integer part as the assumed input base (default, ten). The new
input base must be greater than one and less than 17.

I Stack the current assumed input base.

k Remove the top of the stack and put it in the internal scale factor register.

K Put the value of the internal scale register (which the k command sets) on the top of the stack.

l x Load the value of register x to the top of the stack. The value of register x is unaltered. x may be any
character.

o Remove the top of the stack and use its integer part as the assumed output base (default, ten). The
specified base may be any positive integer.

O Stack the current assumed output base.

p Print the top of the stack. The value remains on the stack.

q Quit the program; control returns to the shell sh.

s x Remove the top of the stack and store it in register x. The previous contents of x are overwritten. x may be
any character.

v Replace the top of the stack by its square root.

x Remove the top of the stack, interpret it as a string containing a sequence of dc commands, and execute it.

X Replace the top of the stack by its scale factor (i.e., the number of decimal places it has).

z Place the number of occupied levels of the stack on top of the stack.

[...] Place the bracketed character string on top of the stack. The string may be executed subsequently with
the x command.

<x >x =x !<x !>x !=x
Remove the top two elements of the stack and compare them. If there is no ‘!’ sign before the relation,
execute register x if the two elements obey the relation. If a ‘!’ sign is present, execute register x if the
elements do not obey the relation.

! Interpret the rest of the line as a command to the shell sh. Control returns to dc after command execution
terminates.

Example

The following example program prints the first 20 Fibbonacci numbers. The character l is printed in boldface to
help you tell from a numeric one.

1sa1sb1sc
[lalbdsa+psblc1+dsc21<y]sy
lyx

See Also
bc, commands

Notes
For most purposes, the in-fix notation of bc is more convenient than the Polish notation of dc.

dcheck — Command
Check directory consistency
dcheck [-s] [-i inumber...] filesystem ...

dcheck checks the consistency of each filesystem. It scans all the directories in each filesystem and counts all i-
nodes referenced. It then compares its counts against the link counts maintained in the i-nodes. dcheck notes
any discrepancies, and notes allocated i-nodes with a link count of zero.
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The -i argument tells dcheck to compare each inumber in the list against those in each directory. It reports
matches by printing the i-number, the i-number of the parent directory, and the name of the entry. The -s
argument tells dcheck to correct the link count of errant i-nodes to the entry count.

Because dcheck uses two passes to check a filesystem, the file system should be unmounted. If -s is used on the
root file system, the system should be rebooted immediately (without performing a sync). The raw device should be
used.

See Also
check, commands, icheck, ncheck, sync, umount

Diagnostics
If the link count is zero and there are entries, the file system must be mounted and all entries removed
immediately. If the link count is nonzero and the entry count is larger, the -s option must be used to make the
counts agree. In all other cases there may be wasted disk space but there is no danger of losing file data.

Notes
In earlier releases of COHERENT, dcheck acted upon a default file system if none was specified.

This command has largely been replaced by fsck.

dd — Command
Convert the contents of a file
dd [option=value] ...

dd copies an input file to an output file, while performing requested conversions. Options include case and
character set conversions, byte swapping conversion for other machines, and different input and output buffer
sizes. dd can be used with raw disk files or raw tape files to do efficient copies with large block (record) sizes.
Read and write requests can be changed with the bs option described below.

The following list gives each available option. Any numbers which specify block sizes or seek positions may be
written in several ways. A number followed by w, b, or k is multiplied by two (for words), 512 (for blocks), or 1,024
(for kilobytes), respectively, to obtain the size in bytes. A pair of such numbers separated by x is multiplied
together to produce the size. All buffer sizes default to 512 bytes if not specified.

bs=n Set the size of the buffer for both input and output to n bytes.

cbs=n Set the conversion buffer size to n bytes (used only with character set conversions between ASCII and
EBCDIC).

conv=list Perform conversions specified by the comma-separated list, which may include the following:

ascii Convert EBCDIC to ASCII
ebcdic Convert ASCII to EBCDIC
ibm Convert ASCII to EBCDIC, IBM flavor
lcase Convert upper case to lower
noerror Continue processing on I/O errors
swab Swap every pair of bytes before output
sync Pad input buffers with 0 bytes to size of ibs
ucase Convert lower case to upper

count=n Copy a maximum of n input records.

files=n Copy a maximum of n input files (useful for multifile tapes).

ibs=n Set the input buffer size to n (normally used if input and output blocking sizes are to be different).

if=file Open file for input; the standard input is used when no if= option is given.

obs=n Set the output buffer size to n.

of=file Open file for output; the standard output is used when no of= option is given.

seek=n Seek to position n bytes into the output before copying (does not work on stream data such as tapes,
communications devices, and pipes).
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skip=n Read and discard the first n input records.

Examples
The first example copies the entire contents of a 1.44-megabyte, 3.5-inch diskette from drive 0 to file disk.dd:

dd if=/dev/fva0 of=disk.dd bs=36b count=80

The second example writes the contents of the previously stored 5.25-inch file backup.dd to a 1.2-megabyte, 5.25-
inch floppy disk in drive 1:

dd if=backup.dd of=/dev/fha1 bs=30b count=80

See Also
ASCII, commands, conv, cp, tape, tr

Diagnostics
The command reports the number of full and partial buffers read and written upon completion.

Notes
Because of differing interpretations of EBCDIC, especially for certain more exotic graphic characters such as braces
and backslash, no one conversion table will be adequate for all applications. The ebcdic table is the American
Standard of the Business Equipment Manufacturers Association. The ibm table seems to be more practical for line
printer codes at many IBM installations.

decvax_d() — General Function (libc)
Convert a double from IEEE to DECVAX format
int
decvax_d(ddp, idp)
double *ddp, *idp;

decvax_d() converts a double from IEEE format to DECVAX format. idp points to the IEEE-format double to
convert. ddp points to a destination for the converted DECVAX value; ddp may be identical to idp for in-place
conversion.

decvax_d() returns zero on success, -1 on underflow, or one on overflow.

For a description of the IEEE and DECVAX formats for floating-point numbers, see the Lexicon article for float.

See Also
decvax_f(), float, ieee_d(), ieee_f(), libc,

decvax_f() — General Function (libc)
Convert a float from IEEE to DECVAX format
int
decvax_f(dfp, ifp)
float *dfp, *ifp;

decvax_f() converts a float from IEEE format to DECVAX format. ifp points to the IEEE-format float to convert.
dfp points to a destination for the converted DECVAX value; dfp may be identical to ifp for in-place conversion.

decvax_f() returns zero on success, -1 on underflow, or one on overflow.

For a description of the IEEE and DECVAX formats for floating-point numbers, see the Lexicon article for float.

See Also
decvax_d(), float, ieee_d(), ieee_f(), libc

default — C Keyword
Default label in switch statement

default is a prefix used in switch statement. If none of the case labels match the parameter in the switch
statement, then the default label is used. A switch is not required to have a default case, but it is good
programming practice to use one.
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See Also
C keywords, case, switch
ANSI Standard, §6.6.4.2

defined — Preprocessor Operator
Perform an action if a macro is defined

The preprocessor directive defined determines whether a symbol is defined to the #if preprocessor directive. For
example,

#if defined(SYMBOL)

or

#if defined SYMBOL

is equivalent to

#ifdef SYMBOL

except that it can be used in more complex expressions, such as

#if defined FOO && defined BAR && FOO==10

defined is recognized only in lines beginning with #if or #elif.

See Also
#elif, #if, #ifdef, cpp, C preprocessor
ANSI Standard, §6.8.1

Notes
Note that defined is a preprocessor operator, not a preprocessor directive or a C keyword. The difference lies in the
fact that you could write a function called defined() without any complaint from the C compiler; and if defined
does not appear within an #if or #elif directive, the preprocessor ignores it.

deftty.h — Header File
Define default tty settings
#include <sys/deftty.h>

deftty.h defines the default tty settings.

See Also
header files

delete() — DBM Function (libgdbm)
Delete a record from a DBM data base
#include <dbm.h>
int delete (key)
datum key;

Function delete() deletes the record with key from the currently opened data base. The data base must first have
been opened by a call to dbminit().

If all goes well, delete() returns zero. If an error occurs, it returns a negative value.

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

deroff — Command
Remove text formatting control information
deroff [-w] [-x] [file ...]

deroff removes text formatting control information from each input text file, or from the standard input if no file is
specified. It regards all lines that begin with ‘.’ or ‘’’ as being nroff or troff commands and deletes them. deroff

LEXICON

532 defined — deroff



also recognizes some additional control lines. It deletes eqn information (between .EQ and .EN lines), tbl
information (between .TS and .TE lines), and macro definitions. It also deletes embedded .eqn requests. It
expands source file inclusion with .so and .nx requests, with the proviso that no input file is read twice. It also
deletes some troff escape sequences, such as those for font and size change.

When the -x flag is present, deroff uses some additional knowledge about the nroff -ms macro package.

When the -w flag is present, deroff divides the remaining text into words and prints them to the standard output,
one per line. A word comprises a sequence of letters, digits, and apostrophes that commences with a letter. deroff
strips apostrophes from the output. All other characters between words are not printed. The spelling checking
programs spell and typo use this option.

See Also
commands, nroff, spell, troff, typo

detab — Command
Replace tab characters with spaces
detab [tabsize]

The command detab reads the standard input, replaces every tab character with spaces, and writes the result to
the standard output.

detab assumes that a tab stop occurs every tabsize, which must be an integer greater than one and less than 257.
If you do not supply a tabsize, detab assumes that a tab stop occurs every eight characters. You can also override
the default tab size by setting the environmental variable TABSIZE to a value other than eight.

See Also
commands

device drivers — Overview
A device driver is a program that controls the action of one of the physical devices attached to your computer
system. The following table lists the device drivers included with the COHERENT system. The first field gives the
device’s major device number; the second gives its name; and the third describes it. If a major number does not
appear in this table, that number is available for a driver yet to be written.

0: clock System clock
0: cmos System CMOS
0: freemem Amount of memory that is free at any given moment
0: idle System idle time
0: kmem Device to manage kernel memory
0: kmemhi
0: mem Interface to memory and null device
0: null The ‘‘bit bucket’’
0: ps Processes currently being executed
1: ct Controlling terminal device (/dev/tty)
2: console Video module for console (/dev/console)
2: vtkb Non-configurable keyboard driver, virtual consoles
2: vtnkb Configurable keyboard driver, virtual consoles
2: mm The video driver
3: lp Parallel line printer
4: fd Floppy-disk drive
4: fdc 765 diskette and floppy-tape controller
4: ft Floppy-tape drive
5: asy Serial driver
6: tr Trace driver
8: rm Dual RAM disk
9: pty Pseudoterminals

11: at AT hard disk
13: hai Host adapter-independent SCSI driver
14: cdu31 Sony CD-ROM drives
16: mcd Mitsumi CD-ROM drives
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Please note that the devices with major number 0 are not portable, and non-DDI/DKI. Also note that in future
releases of COHERENT, the hai driver will be divided into several optional SCSI host-bus adapters (HBAs) and target
devices.

It is not unusual for one major number to admit several driver service modules. Instances of this include the
following major numbers:

0 This number is for a number of system-dependent drivers.

2 This number supports the console, both its keyboard modules and its video modules.

4 This describes varieties of floppy-disk and floppy-tape controllers and drives.

13 This describes a number of SCSI host modules, HBA modules, and target modules.

Major and Minor Numbers
COHERENT uses a system of major and minor device numbers to manage devices and drivers. In theory, COHERENT

assigns a unique major number to each type of device, and a unique minor number to each instance of that type.
In practice, however, a major number describes a device driver (rather than a device per se). The individual devices
serviced by that driver are identified by a minor number. Sometimes, certain parts of the minor number specify
configuration. For example, bits 0 through 6 of the minor number for COHERENT RAM disks indicate the size of
the allocated device.

Optional Kernel Components
The kernel also contains the following optional components:

em87 Emulate hardware floating-point routines
msg Perform System V-style message operations
sem Perform System V-style semaphore operations
shm Perform System V-style shared-memory operations
streams Perform STREAMS operations

These components resemble device drivers, in that that they perform discreet work and can be linked into or
excluded from the kernel, as shown below. However, they do not perform I/O with a device, and so are not true
drivers. For details on these modules, see their entries in the Lexicon.

Configuring Drivers and the Kernel
Beginning with release 4.2, COHERENT lets you tune kernel and driver variables, enable or disable drivers, and
easily build a new bootable kernel that incorporates your changes.

The command idenable lets you enable or disable a driver within the kernel. The command idtune lets you set a
user-modifiable variable within the kernel. Finally, the command idmkcoh generates a new kernel that
incorporates all changes you have made with the other three commands. Changes are entered with idenable and
idtune do not take effect until you invoke idmkcoh to generate a new kernel, and boot the new kernel. Scripts
/etc/conf/*/mkdev simpify the choices of idenable and idtune during installation and reconfiguration: they
invoke idtune and idenable For details, see these commands’ entries in the Lexicon.

Adding a New Device Driver
The commands described above make it easy for you to add a new device driver to your COHERENT kernel.

The following walks you through the processing of adding a new driver. We will add the driver foo, which enables
the popular ‘‘widget’’ device. Please note that this example has the user modify the files mtune and stune by
hand. It is not a good idea for you to do this; however, we describe how to do this to show how these files fit into
the process of building a new kernel:

1. To begin, log in as the superuser root.

2. The next step is to create a directory to hold the driver’s sources and object. Every driver must have its own
directory under directory /etc/conf; and the sources must be held in directory src in that driver’s directory.
In this case, create directory /etc/conf/foo; then create directory /et/conf/foo/src.

3. Copy the sources for the driver into its source directory; in this case, copy them into /etc/conf/foo/src.

4. Create a Makefile in your driver’s source directory, e.g., /etc/conf/foo/src/makefile. The easiest way to see
what is required is to review several of the driver Makefiles shipped in the COHERENT driver kit. You can
perform a test compilation of your driver by running make with the driver’s src directory as the current
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directory. This should create one object file that has the suffix .o. Copy this file in the driver’s home
directory, and name it Driver.o. In this case, the object for the driver should be in file
/etc/conf/foo/Driver.o. In some rare cases, a driver compile into more than one object. You should store all
of these objects into one archive; name the archive Driver.a and store it in the driver’s home directory. The
COHERENT commands that build the new kernel know how to handle archives correctly. The main idea is that
files Space.c (if one exists) and Driver.o or Driver.a be placed in the driver directory, i.e., the parent of the src
directory.

5. Add an entry to file /etc/conf/sdevice for this driver. sdevice, as described above, names the drivers to be
included in the kernel. The entries for practically every entry are identical; you need to note only that the
second column marks whether to include the driver in the kernel. In this case, the entry for the driver foo
should read as follows:

foo Y 0 0 0 0 0x0 0x0 0x00x0

For details on what each column means, read the comments in file /etc/conf/sdevice.

6. Add an entry to file /etc/conf/mdevice for the new driver. This file is a little more complex than sdevice; in
particular, it distinguishes between STREAMS-style drivers and ‘‘old-style’’ COHERENT drivers. In most cases,
you can simply copy an entry for an existing driver of the same type, and modify it slightly. In this case, the
entry for foo should read as follows:

# full func misc code block char minor minor dma cpu
# name flags flags prefix major major min max chan id
foo - CGo foo 15 15 0 255 -1 -1

In almost every case, the full name and the code prefix are identical. The code prefix also names the directory
that holds the driver’s object. Function flags are always always a hyphen, and miscellaneous flags almost
always CGo. The block-major and character-major numbers again are almost always identical. The major
number is usually assigned by the creator of the device driver. In future releases of the kernel, these will be
assigned dynamically by the kernel itself; poorly written drivers that depend upon the driver having a magic
major-device number will no longer work. Finally, the last four columns for non-STREAMS drivers are almost
always 0, 255, -1, and -1, respectively. See the comments in file /etc/conf/mdevice.

7. If the driver has tunable variables, these should be set in the file Space.c, which should be stored in the
driver’s home directory. As it happens, foo does not need a Space.c file. For examples of such files, look in
the various sub-directories of /etc/conf.

8. Type the command idmkcoh to build a new kernel. If necessary, move the new kernel into the root directory;
you cannot boot it until it is in the root directory.

9. Save the old kernel and link the newly build kernel to /autoboot. You want save the old kernel, just in case
the new one doesn’t work. For directions on how to boot a kernel other than /autoboot, see the Lexicon entry
for booting.

10. Back up your files! With a new driver in your kernel, it’s best to play it safe.

11. Reboot your system to invoke the new kernel. If all goes well, you will now be enjoying the services of the new
device driver.

For scripts on how to add or remove individual drivers from your kernel, see the article of the driver in question.

See Also
Administering COHERENT, asy, at, boot, console, ct, em87, floppy disk, hard disk, idle, kernel, lp, mboot,
mdevice, mem, msg, mtune, null, pty, sdevice, sem, sgtty, shm, STREAMS, stty, stune, tape, termio

Notes
Note that in future releases of COHERENT, major numbers will not be static, as they are in the above table. Rather,
they will be assigned by the config script when you install COHERENT onto your system. This scheme will allow
more flexible arrangements of drivers, and will also allow COHERENT to support more than 32 drivers at once. If
you write code to work with device drivers, you should not make any assumptions about a given driver’s major or
minor number.

See the Release Notes for your release of COHERENT for a full list of supported devices and device drivers.

Source code for almost all COHERENT device drivers is published in the COHERENT Device-Driver Kit. The only
except is the source for ft, which includes proprietary information from manufacturers. Experienced writers of
device drivers will find the driver kit a good tool for writing or importing drivers for devices that COHERENT does not
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yet support.

df — Command
Measure free space on disk
df [-fiv] [-tfilesys] (default format)

df measures the amount of space left free on the file system filesys. The file system being measured can reside on a
hard disk, floppy disk, or RAM disk. For example, to check the amount of space left on file system x, type:

df /x

If you do not name a filesys, df prints information only about the file system that you in.

By default, df prints three statistics: the number of disk blocks free on this device, the total number of disk blocks
in the device, and the percent of total disk blocks that is free. Note that a disk block is 512 bytes (1/2 kilobyte).

df recognizes the following command-line options:

-f Suppress i-node information.

-i Give the percentage of i-nodes available used.

-v Give the percentage of blocks used.

See Also
commands, mkfs

dial — System Administration
File that tells UUCP how to dial a system
/usr/lib/uucp/dial

The file /usr/lib/uucp/dial holds information about dialers. A dialer is a device, usually a modem, through which
uucico or cu ‘‘dials’’ another computer system. The daemon uucico and the command cu use the information in
this file to talk to dialers.

dial consists of a series of descriptions, each of which describes one dialer. A description consists of one or more
commands; each command defines an aspect of how to manipulate the dialer. Descriptions must be separated by
one blank line.

The following describes the commands you can use in a description:

dialer name
Name the dialer being described. Each description must begin with a dialer command. For example, the
command

dialer trailblazer

introduces the description for the device named trailblazer. (A name need not be technical: you can also
use names like joe or junk_modem.)

chat from_modem to_modem ... from_modem
This command gives the chat script with which uucico and cu initialize the dialer and have it dial a remote
system. chat can have any number of arguments: the odd-numbered strings are received from the
modem, and the even-numbered ones sent to it. Strings are separated by space character; therefore, no
string can contain a literal space character. To represent a space character in a string, use the escape
sequence \s.

If, at a given point in the conversation, nothing is expected from the modem or is to be sent to it, then use
an empty pair of quotation marks as a placeholder.

Please note that unlike the chat script used in file sys, the chat script in dial contains only the information
by which the modem is accessed: it does not contain information about how to log into the remote
computer system.

A chat script can contain the following escape sequences:
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\D Telephone number of the remote system
\T Telephone number plus dialcode translation
\M Do not require carrier
\m Require carrier, fail if not present
\s Represent a space character

uucico and cu use the command phone in file /usr/lib/uucp/sys to expand the escape sequence \D.

The following gives an example chat script:

chat "" ATQ0V1E1L2M1DT\D CONNECT\s2400

The pair of quotation marks tells uucico (or cu) to expect nothing from the modem, and to send
immediately the string ATQ0V1E1L2M1DT followed by the telephone number of the remote system. This
is a typical send string for a Hayes-compatible, 2400-baud modem. The string also sets certain registers
within the modem: Q0V1 turns on verbal result codes, E1 turns on echoing, and L2M1 sets the duration
and volume of the modem’s speaker.

The last string in the chat script gives the expect string. This is the string that the modem sends when it
has succeeded in connecting with the remote computer system. In this example, if the modem does not
send

CONNECT 2400

then the attempt to call the remote system has failed. This example shows, as noted above, that no string
to the command chat (or any other command used in dial) can contain a space character. To represent a
space character within a string, use the escape sequence \s.

chat-timeout seconds
This command gives the number of seconds to await the expect string from the modem. For example, the
command

chat-timeout 10

tells uucico to wait ten seconds for the expected string.

chat-fail failure_string
This command defines the string that, when received from the modem, indicates that a connection attempt
has failed. uucico and cu abort when they receive failure_string. A dialer’s description can have multiple
chat-fail commands (after all, a call can fail for many different reasons). For example, the commands

chat-fail BUSY
chat-fail NO\sCARRIER

tell uucico and cu to abort when they receive either the strings BUSY or NO CARRIER.

chat-seven-bit true|false
If true, strip all bits to seven bits before comparing them with the expect string within the chat script.

chat-program program [ arguments ]
Run program before executing the chat script. The optional arguments are passed to program. The
following escape sequences can be embedded within arguments:

\Y Name of the port device
\S Speed of the port
\\ A literal backspace character

uucico expands these escape sequences before it passes arguments to command.

dialtone stirng
string is the code sequence that tells the modem to wait for a dial tone (e.g., if you must dial ‘9’ and then
pause briefly to get an outside line). uucico outputs string whenever it encounters a ‘=’ within a telephone
number. The default code is a comma.

pause string
string is the code sequence that tells the modem to pause for one second. uucico outputs string whenever
it encounters a ‘-’ within a telephone number. The default code is a comma.
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carrier true|false
true indicates that the dialer supports the modem carrier signal, and uucico therefore will require that
that carrier be on. false indicates that the dialer does not support the modem carrier signal, and uucico
therefore will not wait for it.

carrier-wait seconds
Wait seconds for the carrier signal. The default is 60.

dtr-toggle true|false [ true|false ]
If the first argument is true, toggle DTR before using the modem. If the second argument is true, sleep for
one second after toggling DTR.

complete-chat string ... string
complete-chat-timeoutnumber
complete-chat-fail failure_string
complete-chat-seven-bit true|false
complete-chat-programprogram [ arguments ]

These commands define a chat script to be run after the UUCP session has run to completion. They are
exactly like their chat counterparts described above.

abort-chat string ... string
abort-chat-timeout number
abort-chat-fail failure_string
abort-chat-seven-bit true|false
abort-chat-program program [ arguments ]

These commands define a chat script to be run if the UUCP session has aborted. They are exactly like their
chat counterparts described above.

complete string
abort string

These are simplified of the complete- and abort- chat scripts described above. The former sends string to
the dialer after a call has completed successfully; the latter sends its string after a call has aborted.

protocol-parameter protocol parameter
Set a protocol parameter. This command is exactly the same as its counterpart used in file sys. For
details, see the Lexicon entry for sys.

seven-bit true|false
When your system negotiates the protocol to use with the remote system, force your system to accept only
a protocol that works over seven-bit connection.

reliable true|false
When your system negotiates the protocol to use with the remote system, force your system to accept only
a protocol that works over an unreliable connection.

half-duples true|false
If true, then the dialer supports only half-duplex connections. This forces your system to avoid
bidirectional protocols during protocol negotiation.

Example
The following gives the entry for a 9600-baud Trailblazer modem:

dialer tbfast
chat "" AT\sE0\sQ4\sV1\sS7=60\sS50=255\sS51=255\sS66=0 \

\sS111=30\sDP\D CONNECT\sFAST
chat-timeout 60
chat-fail BUSY
chat-fail NO\sCARRIER
chat-fail NO\sANSWER
abort-chat "" \d+++\dATH0\sV0\sE0\sQ1\sS0=1
abort-chat "" \d+++\dATH0\sV0\sE0\sQ1\sS0=1

Most of the commands in this example are optional. A dialer entry could work with only the first two commands.
The following describes each command in detail:
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dialer Give the dialer the name tbfast.

chat Give the chat script with which uucico converses with the modem. It sets a number of ‘S’
registers, turns echoing off, puts the modem into verbose mode, dials the remote system, and
indicates that the signal for success is the string CONNECT FAST. Note that normally the chat
script must be one unbroken string; this example is broken into two lines so it will fit onto the
page. For information on the commands from which you would construct a chat script, see the
documentation that comes with your modem.

chat-timeout Tells uucico how long to wait before it times out. In this case, wait 60 seconds.

chat-fail Define a string with which the modem indicates failure. In this case, there are three such
commands, each naming a different message.

abort-chat
abort-chat These give the strings to send to the modem in the case of, respectively, the successful completion

of call or an aborted call. For this entry, the same string is send in either case: it turns off echoing
and verbose mode, and turns on auto-answering.

See Also
Administering COHERENT, port, sys, UUCP

Notes
Only the superuser root can edit /usr/lib/uucp/dial.

The file dial supports many commands in addition to the ones described here. This article describes only those
commands that might be used in typical UUCP connections. For more information, see the original Taylor UUCP

documentation, which is in the archive /usr/src/alien/uudoc104.tar.Z.

dialups — System Administration
Name every device that may need an additional password
/etc/dialups

The COHERENT system lets you force classes of users who log in through particular devices to enter an extra
password. This helps you protect your system against people who may be try to penetrate it via modem.

The file /etc/dialups names every device that may require an additional password. Each device must be named
on its own line; for example:

/dev/com1l
/dev/com3l
/dev/com3r

When a device is named in /etc/dialups, login looks in file d_passwd to see if a password has been linked to
user’s default shell. This permits you, for example, to ask for an extra password for all users who attempt to log in
remotely and who have an interactive shell, while letting UUCP accounts enter without the extra password. For
examples, see the Lexicon entry for d_passwd.

See Also
Administering COHERENT, d_passwd, login

diff — Command
Compare two files
diff [-bdefh] [-c symbol] file1 file2

diff compares file1 with file2, and prints a summary of the changes needed to turn file1 into file2.

Two options involve input file specification. First, the standard input may be specified in place of a file by entering
a hyphen ‘-’ in place of file1 or file2. Second, if file1 is a directory, diff looks within that directory for a file that has
the same name as file2, then compares file2 with the file of the same name in directory file1.

The default output script has lines in the following format:

1,2 c 3,4

The numbers 1,2 refer to line ranges in file1, and 3,4 to ranges in file2. The range is abbreviated to a single number
if the first number is the same as the second. The command c was chosen from among the ed commands ‘a’, ‘c’,
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and ‘d’. diff then prints the text from each of the two files. Text associated with file1 is preceded by ‘< ’, whereas
text associated with file2 is preceded by ‘>’.

The following summarizes diff’s options.

-b Ignore trailing blanks and treat more than one blank in an input line as a single blank. Spaces and tabs are
considered to be blanks for this comparison.

-c symbol
Produce output suitable for the C preprocessor cpp; the output contains #ifdef, #ifndef, #else, and #endif
lines. symbol is the string used to build the #ifdef statements. If you define symbol to the C preprocessor
cpp, it will produce file2 as its output; otherwise, it will produce file1. This option does not work for files that
already contain #ifdef, #ifndef, #else, and #endif statements.

-e Create an ed script that will convert file1 into file2.

-f Produce a script in the same manner as the -e option, but with line numbers taken directly from the two
input files. This will work properly only if applied from end to beginning; it cannot be used directly by ed.

-h Compare large files that have a minimal number of differences. This option uses an algorithm that is not
limited by file length, but may not discover all differences.

-d Select the -h algorithm only for files larger than 25,000 bytes; otherwise, use the normal algorithm.

Example
For an example of a script that uses this command, see the Lexicon entry for trap.

See Also
ed, egrep, commands, zdiff

Diagnostics
diff’s exit status is zero when the files are identical, one when they are different, and two if a problem was
encountered (e.g., could not open a file).

Notes
diff cannot handle files with more than 32,000 lines. Handing diff a file that exceeds that limit will cause it to fail,
with unpredictable side effects.

diff3 — Command
Summarize differences among three files
diff3 [-ex3] file1 file2 file3

diff3 summarizes the differences among three text files. Each difference encountered is headed by one of the
following separators, which categorizes how many of the three input files differ in a given range. The headers are
as follows

==== All of the files are different.

====n Only the nth file differs, where n may be 1, 2, or 3.

For each set of changes marked as above, the actual change is indicated for each file using a notation similar to
commands to ed. For each filen the following is printed:

n: la Text is to be appended after line l in filen.

n: l,mc The text from line l to line m is to be changed for filen. The original text from filen follows this line. If
this text is identical for two of the files, only the latter (higher numbered) of the two is printed.

Options are available to print a script of commands to ed. Option -e tells diff3 to generate a script that makes all
changes between file2 and file3 to file1. This script is based upon all changes flagged with the separators ==== or
====3, as described above.

The option -x prints only those changes where all three files differ, i.e., those flagged with ====.

The option -3 requests only those changes where file3 differs.
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Example
The following command sequence produces a script, applies it to file1, and sends the result to the standard output.

(diff3 -e file1 file2 file3; echo ’1,$p’) | ed - file1

Files
/tmp/d3*
/usr/lib/diff3

See Also
commands, diff, ed

Diagnostics
An exit status of zero indicates all three files were identical, one indicates differences, and two indicates some other
failure.

difftime() — Time Function (libc)
Calculate difference between two times
#include <time.h>
double difftime(newtime, oldtime)
time_t newtime, oldtime;

difftime() subtracts oldtime from newtime, and returns the difference in seconds. Both arguments are of type
time_t, which is defined in the header time.h.

Example
This example uses difftime() to show an arbitrary time difference.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main()
{

time_t t1, t2;

time(&t1);
printf("Press enter when you feel like it.\n");
getchar();
time(&t2);

printf("You waited %f seconds\n", difftime(t2, t1));
return(EXIT_SUCCESS);

}

See Also
clock(), libc, mktime(), time [overview]
ANSI Standard, §7.12.2.2

directors — System Administration
Describe how to resolve local mail addresses
/usr/lib/mail/directors

The program smail reads file /usr/lib/mail/directors for the rules on how to resolve addresses on your local host.
Please note that under COHERENT, the default configuration of smail does not use this file; however, if you wish,
you can create it to change smail’s default rules for resolving local addresses.

Structure of Configuration Files
smail can use five varieties of configuration files:

• One or two configuration files, which perform global configuration of smail— including naming the other
configuration files.

• One directors file, which describes how to deliver mail on your local system.
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• One routers file, which describes resolve the addresses of remote systems.

• One transports file, which describes how to move mail from your system to selected remote systems.

• One methods file, which matches hosts with methods of transporting mail.

smail permits you to name these files as you choose; under COHERENT, they are named as follows:

/usr/lib/mail/config
/usr/lib/mail/directors
/usr/lib/mail/methods
/usr/lib/mail/routers
/usr/lib/mail/transports

Each is described in its own Lexicon entry. However, the directors, routers, and transports file all have the same
format; the following describes it.

Each file consists of a set of entries; each entry, in turn, describes the attributes of one director, router, or
transport. The order of entries in director and router is important, in that the directors and routers are invoked
in the order stated in the file. The order of entries in the transport file is not important.

An entry in one of these files defines the following:

• A name by which that entry is known.

• A driver that implements the function for that entry.

• A set of generic attributes from a set that can be applied to any entry in the file.

• A set of driver-specific attributes, from a set that can be applied only to entries that use the specified driver.

For example, directorsu specifies the attributes for a director that reads aliases from a file
/private/usr/lib/aliases:

# read aliases from a file private to one machine on the network
private_aliases:

driver=aliasfile, owner=owner-$user ;
file=/private/usr/lib/aliases

This entry is named private_aliases, and depends upon the low-level director driver routine named aliasfile.
Errors found while processing addresses found by this director are sent to an address formed by prefixing the
string owner- to the name of the alias; these aliases are stored in file /private/usr/lib/aliases. The director-driver
aliasfile implements a general mechanism for looking up aliases stored in a data base. By default, aliases are kept
in a DBM-style data base that is built from the text file /usr/lib/mail/aliases. For details on this file and its
format, see the Lexicon entry for aliases. For details on how DBM-style data bases, see the Lexicon entry for
libgdbm.

The separation between generic attributes and driver-specific attributes mirrors the internal design of smail. Above
the driver level, routines exist that implement aspects of drivers, routers, and transports but do not depend upon
the specific means for performing the operation. These higher-level functions can be manipulated through the
generic attributes. On the other hand, the drivers that actually perform these operations accept a different set of
attributes to control their behavior. In the case of a driver thats read or writes to a file, a file attribute usually
exists. In the case of a driver that executes a program, a cmd attribute usually exists to specify how that program
is to be invoked.

Attributes of a Director
The following the generic attributes can be used in an entry in directors. Each attribute is followed by its type
(Boolean or string). To set a string attribute, its name should be followed by an ‘=’, then the value to which you are
setting it. To set a Boolean attribute, prefix it with a ‘+’; to unset a Boolean attribute, prefix it with a ‘-’.

caution (Boolean)
If set, then be cautious of the addresses this director produces. If the attribute nobody is not set, then
reject file, shell-command, or :include:filename-style mailing-list addresses.

default_group (string)
If the driver does not associate a group to an address returned by it, then associate the group identifier for
this group name. This will override the group identifier set by the attribute default_user.
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default_home (string)
If the driver does not associate a home directory with an address returned by it, then use this directory as
the default home directory. smail expands the value of this attribute to form the directory path name. At
present, variable $user is not available for this expansion. If the string expansion fails, smail ignores it.

default_user (string)
If the driver does not associate a user or group to an address returned by it, then associate the user
identifier and group identifier of this user.

driver (string)
This attribute names the set of low-level functions that do the work of directing local mail. This attribute
is required.

nobody (Boolean)
If set, then smail accesses files or runs shell commands as the user specified by its attribute nobody, for
addresses flagged with caution by either the caution generic attribute or by the driver. Association of
nobody with an address overrides the attributes default_user, default_group, set_user, and set_group.
This attribute is set by default.

owner (string)
This names the address to be sent mail if an error occurs while smail is processing the addresses
produced by this director. This string is expanded with the variable $user set to the local-form address
passed to the director. By deafault, the value owner-$user. If this string expansion fails, smail ignores it.

sender_okay (Boolean)
If set, then it is always okay for this attribute to produce an address equal to the sender. This effectively
turns on the ‘‘me too’’ flag for this director. This should generally be set for forwarding directors and
should not be set for aliasing and mailing-list directors.

set_group (string)
Associate this group’s identifier with the addresses that the driver returns. This overrides any group
identifier set by the attribute set_user.

set_home (string)
Associate this home directory with all addresses returned by the driver. This will be expanded in the same
manner as default_home.

set_user (string)
Associate the user and group identifiers for this user with addresses that the driver returns. This overrides
any values set by the driver.

smail requires that two addresses exist: Postmaster and Mailer-Daemon. To avoid the necessity of an alias for
these two users, smail contains two implicit directors embedded into the directing code; it uses them as a last
resort. The first such director maps the address Mailer-Daemon onto the address Postmaster; and the second
maps Postmaster onto the address root.

The Preloaded Directors
If smail does not find a copy of file directors in directory /usr/lib/mail (which is the case by default under
COHERENT), it uses its the default configuration. The default director configuration supports the following
directors:

Include Files
smail expands local addresses of the form :include:filename into a list of addresses contained in the ASCII
file filename. The files to which these addresses refer are called mailing list files. This form of local address
can appear in any alias file, forward file, or mailing-list file. A user cannot supply such an address himself.

Alias Files
This director scans for entries in an DBM-style data base that is built from text file /usr/lib/mail/aliases.
If this data base does not exist, smail ignores it — its absence does not trigger an error condition. If smail
encounters an error while it is resolving an address produced by an alias, it mails an error message to an
address that has the string ‘‘owner-’’ prefixed to the name of the alias, if such a local address is defined.

Forward Files
A user may have a file named .forward in his home directory. If such a file exists, smail scans it for
addresses. If a user has such a file in his home directory, smail directs all mail sent to that user to the
address or addresses it contains. The file can contain addresses that specify other files or shell commands
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as recipients.

If the .forward file is owned by root or by the user himself, then deliveries to any shell commands or files
are performed under the user’s user and group identifiers. If smail enters an error while it is resolving this
list of addresses, it mails an error message to your system’s postmaster.

In the .forward file for the user root, deliveries to shell commands and file addresses are performed under
an unprivileged user and group identifier (by default, user nobody). The same is true for forward files that
were not owned by root or by the given user. Finally, shell command and file addresses are not allowed at
all in .forward files that are directories that can accessed by remote systems.

Mailbox Forwarding
As an alternate way to forward mail, the mailbox file for a user may contain a line of the form:

Forward to address, address ...

Onlyone line is read from this file, so addresses cannot be placed across multiple lines. The comments
that apply to a .forward file also apply to this use of a mailbox file, except that smail assumes that a
mailbox is not accessible by users on other systems.

A user is matched by name, either in upper or lower case, with delivery to that user being performed using
a transport by the name of local. A user can also be matched by name if the user name is prefixed by real-
. Delivery is performed by a transport named local.

Mailing Lists
Mailing list files can be created under a mailing-list directory — by default, directory /usr/lib/mail/lists.
To create a new mailing list, create a file in this directory that contains a list of addresses. The basename
of this file determines the local address that smail expands into this list of addresses. For example, a file
named info-smail could be created, that contains a list of recipient addresses for a mailing list named
‘‘info-smail’’. smail then forwards any mail message mailed to address info-smail to every address in file
/usr/lib/mail/lists/info-smail.

If smail encounters an error as it is attempting to deliver a mail message to an address within a list file, it
mails an error message to a local address comprised of the base name of the list file prefixed with the
string ‘‘owner-’’, if such an address is defined.

The Smart User
If smail cannot match a local address by any other means, it can forward that mail to another system —
one that presumably has a more complete data base — via the director smartuser.

To declare another system to be a ‘‘smart user,’’ set the attribute smart_user within file
/usr/lib/mail/config. For example, attribute forwards mail to the host mwc.com:

smart_user = $user@mwc.com

If you do not set this attribute, then smail ignores the smart-user director.

Example Entries
The order of entries within directors determines the order in which operations are attempted. If a director
matches an address, then smail calls no other director to expand or resolve that address. The following gives a
version of directors that is equivalent to the default configuration:

# aliasinclude - expand ":include:filename" addresses
# produced by alias files
aliasinclude:

driver = aliasinclude, # use this special-case driver
nobody; # associate nobody user with addresses

# when mild permission violations
# are encountered

copysecure, # get permissions from alias director
copyowners # get owners from alias director

# forwardinclude - expand ":include:filename" addresses
# produced by forward files
forwardinclude:

driver = forwardinclude, # use this special-case driver
nobody;
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copysecure, # get perms from forwarding director
copyowners # get owners from forwarding director

# aliases - search for alias expansions stored in a database
aliases:

driver = aliasfile, # general-purpose aliasing director
-nobody, # all addresses are associated

# with nobody by default, so setting
# this is not useful.

owner = owner-$user; # problems go to an owner address

file = /usr/lib/aliases,
modemask = 002,
optional, # ignore if file does not exist
proto = lsearch

# dotforward - expand .forward files in user home directories
dotforward:

driver = forwardfile, # general-purpose forwarding director
owner = Postmaster, # problems go to the user’s mailbox
nobody,
sender_okay; # sender never removed from expansion

file = ~/.forward, # .forward file in home directories
checkowner, # the user can own this file
owners = root, # or root can own the file
modemask = 002, # it should not be globally writable
caution = daemon:root, # don’t run things as root or daemon

# be extra careful of remotely
# accessible home directories

unsecure = "~ftp:~uucp:~nuucp:/tmp:/usr/tmp"

# forwardto - expand a "Forward to " in user mailbox files
#
# This emulates the V6/V7/System-V forwarding mechanism which uses a
# line of forward addresses stored at the beginning of user mailbox
# files prefixed with the string "Forward to "
forwardto:

driver = forwardfile,
owner = Postmaster, nobody, sender_okay;

file = /usr/mail/${lc:user}, # the mailbox file for System V
forwardto, # enable "Forward to " function
checkowner, # the user can own this file
owners = root, # or root can own the file
modemask = 0002, # under System V, group mail can write
caution = daemon:root # don’t run things as root or daemon

# user - match users on the local host with delivery to their mailboxes
user: driver = user;# driver to match usernames

transport = local # local transport goes to mailboxes

# real_user - match usernames when prefixed with the string "real-"
#
# This is useful for allowing an address which explicitly delivers to
# a user’s mailbox file. For example, errors in a .forward file
# expansion can be delivered here, or forwarding loops between
# multiple machines can be resolved by using a real-username address.
real_user:

driver = user;

transport = local,
prefix = "real-" # for example, match real-root
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# lists - expand mailing lists stored in a list directory
#
# mailing lists can be created simply by creating a file in the
# /usr/lib/smail/lists directory.
lists: driver = forwardfile,

caution, # flag all addresses with caution
nobody, # and then associate the nobody user
owner = owner-$user; # system V sites may wish to use

# o-$user, as owner-$user may be
# too long for a 14-char filename.

# map the name of the mailing list to lower case
file = lists/${lc:user}

# smart_user - a partially specified smartuser director
#
# If the config file attribute smart_user is defined as a string such
# as "$user@domain-gateway" then users not matched otherwise will be
# sent off to the host "domain-gateway".
#
# If the smart_user attribute is not defined, this director is ignored.
smart_user:

driver = smartuser; # special-case driver

# do not match addresses which cannot be made into valid
# RFC822 local addresses without the use of double quotes.

well_formed_only

See Also
Administering COHERENT, config [smail], .forward, mail [overview], routers, smail, transports

Notes
Copyright  1987, 1988 Ronald S. Karr and Landon Curt Noll. Copyright  1992 Ronald S. Karr.

For details on the distribution rights and restrictions associated with this software, see file COPYING, which is
included with the source code to the smail system; or type the command: smail -bc.

directory — Definition
A directory is a table that maps names to files; in other words, it associates the names of a file with their locations
on the mass storage device. Under some operating systems, directories are also files, and can be handled like a
file.

Directories allow files to be organized on a mass storage device in a rational manner, by function or owner.

See Also
file, Using COHERENT
POSIX Standard, §5.1.2

dirent.h — Header File
Define directory-related data elements
#include <dirent.h>

dirent.h defines the data type DIR and the structure dirent. It is used with the portable directory-manipulation
routines closedir(), getdents(), opendir(), readdir(), rewinddir(), and telldir().

See Also
closedir(), getdents(), header files, opendir(), readdir(), rewinddir(), telldir()
POSIX Standard, §5.1.1

dirname — Command
Extract a directory name
dirname string

The command dirname extracts a directory name from a file’s full path name. In effect, it is the complement of the
command basename.
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If string contains one or more slashes ‘/’ plus text, then dirname prints out the portion of string up to (but not
including) the last slash. For example, if string points to /bin/sh, then dirname will return /bin.

If string does not contain a slash or is empty (that is points to the current directory), dirname prints a single period
‘.’. For example, if string points to myprogram, then dirname returns a period.

Finally, if string consists only of one slash (that is, indicates the root directory), then dirname returns /.

See Also
basename, commands, cut, paste

dirs — Command
Print the contents of the directory stack
dirs

The COHERENT shell sh maintains an internal ‘‘directory stack’’, which is a stack of names of directories. You can
manipulate this stack should you, for any reason, wish to traverse a number of directories quickly and efficiently.

The command dirs prints the current contents of the directory stack.

See Also
commands, popd, pushd, sh

disable — Command
Disable a port
/etc/disable port...

disable tells the COHERENT system not to create a login process for each given asynchronous port. For example, the
command

/etc/disable com1r

disables port /dev/com1r. disable changes the entry for each given port in the terminal characteristics file
/etc/ttys, and signals init to rescan the ttys file.

The command enable enables a port. The command ttystat checks whether a port is enabled or disabled.

Files
/etc/ttys — Terminal characteristics file

See Also
asy, commands, enable, login, ttys, ttystat

Diagnostics
disable normally returns one if it disables the port successfully and zero if not. If more than one port is specified,
disable returns the success or failure status of the last port it finds. It returns -1 if it cannot find any given port.
An exit status of -2 indicates an error.

div() — General Function (libc)
Perform integer division
#include <stdlib.h>
div_t div(numerator, denominator)
int numerator, denominator;

div() divides numerator by denominator. It returns a structure of the type div_t, which is structured as follows:

typedef struct {
int quot;
int rem;

} div_t;

div() writes the quotient into quot and the remainder into rem.

The sign of the quotient is positive if the signs of the arguments are the same; it is negative if the signs of the
arguments differ. The sign of the remainder is the same as the sign of the numerator.
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If the remainder is non-zero, the magnitude of the quotient is the largest integer less than the magnitude of the
algebraic quotient. This is not guaranteed by the operators / and %, which merely do what the machine
implements for divide.

See Also
ldiv(), libc, stdlib.h
ANSI Standard, §7.10.6.2

Notes
The ANSI Standard includes this function to permit a useful feature found in most versions of FORTRAN, where the
sign of the remainder will be the same as the sign of the numerator. Also, on most machines, division produces a
remainder. This allows a quotient and remainder to be returned from one machine-divide operation.

If the result of division cannot be represented (e.g., because denominator is set to zero), the behavior of div() is
undefined. Caveat utilitor.

do — C Keyword
Introduce a loop

do is a C control statement that introduces a loop. Unlike for and while loops, the condition in a do loop is
evaluated after the operation is performed. do always works in tandem with while; for example

do {
puts("Next entry? ");
fflush(stdout);

} while(getchar() != EOF);

prints a prompt on the screen and waits for the user to reply. The do loop is convenient in this instance because
the prompt must appear at least once on the screen before the user replies.

See Also
break, C keywords, continue, while
ANSI Standard, §6.6.5.2

domain — System Administration
Set your system’s mail domain
/etc/domain

The file /etc/domain sets the domain that the COHERENT mail system uses to create your fully qualified domain
name. Your fully qualified domain name is created by appending the contents of /etc/domain to the contents of
/etc/uucpname, with an intervening ‘.’. Unless you have a registered domain name, the contents of this file
should be UUCP.

For information on registering in the United States catch-all domain .us, send mail to:

us-domain-request@venera.isi.edu

UUNET Communications Services of Falls Church, Virginia, will help you set up your own domain for a modest fee.
Contact info@uunet.uu.net for more information; or telephone them at 703-876-5050.

See Also
Administering COHERENT, mail, paths, uucpname

dos — Command
Manipulate files on MS-DOS file systems
dos [-]dFflrtx[flags] [device] [file ...]

The command dos allows the COHERENT user to manipulate an MS-DOS file system, which may be either a hard-
disk partition or a floppy disk. It can build an empty MS-DOS file system, label it, list the files in it, transfer files
between it and COHERENT, or delete files from it.

The given device must be a special file that specifies an MS-DOS file system, such as floppy-disk drive /dev/fha0 or
hard-disk partition /dev/at0a. The default device is /dev/dos, which the system administrator should link to the
most commonly used device name.
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dos converts between the differing file-name conventions of COHERENT and MS-DOS. An MS-DOS file argument may
be specified in lower or upper case, using ‘/’ as the path-name separator. When transferring files from MS-DOS to
COHERENT, dos converts an MS-DOS file name to a COHERENT file name in lower case only. If the MS-DOS file name
contains no extension, the COHERENT file name contains no ‘.’. When transferring files from COHERENT to MS-DOS,
dos converts all alphabetic characters in a COHERENT file name to upper case; if a period ‘.’ appears at the
beginning or end of a file name, dos converts it to ‘_’. dos truncates the part of the file name before the last ‘.’ to a
maximum of eight characters and truncates the extension to a maximum of three characters.

The command line must specify exactly one of the following functions.

d Delete each file from the MS-DOS file system. This option also allows the user to delete empty directories.

F Create an empty MS-DOS file system on a formatted diskette. This option is analogous to the COHERENT

command /etc/mkfs. The COHERENT commands /etc/fdformat and /etc/mkfs initialize a COHERENT

diskette in two steps. The MS-DOS command format initializes an MS-DOS diskette by performing both the
physical and logical formatting operations with one command. To initialize an MS-DOS diskette under
COHERENT, use the command /etc/fdformat -v devicename, followed by the command dos F devicename.
If file is named, dos copies it to the boot block of the file system. The dos command cannot build a file
system on a hard-disk partition.

f Force removal of readonly files on the MS-DOS side.

l Label the MS-DOS file system. The command line must specify exactly one file argument, which gives the
label.

r Replace each file on the MS-DOS file system with the COHERENT file of the same name. If a given file
argument specifies a COHERENT directory, dos replaces its subdirectories recursively to the MS-DOS file
system unless the s flag is used. If no file is specified, dos copies all files in the current directory to the
MS-DOS file system.

t List the files on the MS-DOS file system. If no file argument is given, dos lists the entire MS-DOS file
system; otherwise, it lists each file. If a file argument specifies an MS-DOS subdirectory, dos lists its
contents. dos lists directories first in alphabetical order, then ordinary files in alphabetical order.

x Extract each file from the MS-DOS file system to a COHERENT file of the same name. If a given file
argument specifies an MS-DOS subdirectory, dos extracts its contents recursively unless the s flag is used.
If no file is given, dos extracts all files from the MS-DOS file system to the current COHERENT directory.

The following flags are available.

a Perform ASCII newline conversion on file transfer. When moving files from COHERENT to MS-DOS, this
option converts each COHERENT newline character ‘\n’ (ASCII LF) to an MS-DOS end-of-line (ASCII CR and
LF); when moving files from MS-DOS to COHERENT, it does the opposite. By default, dos performs binary
file transfer, without newline conversion.

k Keep the file modification time (mtime) on extract and replace operations. By default, dos gives extracted
or replaced files the current time. With this option, dos gives the extracted or replaced file the same time
as the original file.

n List files in order of creation (newest file last) rather than in alphabetical order. This option applies only to
the table-of-contents function. dos always lists directories before files, with or without the n option.

p Perform a piped extract or replace (for use in pipelines). The command line must specify exactly one file
argument. For extract, dos reads the given file and writes it to the standard output. For replace, dos
reads the standard input and writes it to the given file.

s Suppress extraction or replacement of subdirectories. By default, dos extracts or replaces subdirectories
recursively.

v Verbose option. Provide additional information about each function performed.

[1-9] A digit specifies a logical drive number on an extended MS-DOS partition. For example, dos tv2 /dev/at0c
lists the directory of the second logical drive on extended MS-DOS partition /dev/at0c.

dos Commands
dos is an obsolete command. It has largely been superceded by the following family of COHERENT commands that
manipulate MS-DOS file systems:
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doscat Concatenate a file on an MS-DOS file system.
doscp Copy files to/from an MS-DOS file system
doscpdir Copy a directory to/from an MS-DOS file system
dosdel Delete a file from an MS-DOS file system
dosdir List contents of an MS-DOS directory
dosformat Build an MS-DOS file system on a floppy disk
doslabel Label an MS-DOS floppy disk
dosls List files on an MS-DOS file system
dosmkdir Create a directory in an MS-DOS file system
dosrm Remove a file from an MS-DOS file system
dosrmdir Remove a directory from an MS-DOS file system

For details, see these commands’ entries within the Lexicon.

Examples
The first example copies all files located in directories sources and include, as well as any subdirectories, from
floppy drive /dev/fva1 to correspondingly named subdirectories in the current COHERENT directory:

dos xavk /dev/fva1 sources include

Note that fva1 is a high-density, 3.5-inch floppy disk in floppy-disk drive 1 (a.k.a., drive B:). The files will be
copied with ASCII newline conversion and will retain the time and date that they had under MS-DOS.

The next example copies a file from an MS-DOS partition on your hard disk. Suppose that C: is the primary MS-

DOS partition on your first hard drive. The following command copies file C:\AUTOEXEC.BAT to /autoexec.bat in
your COHERENT root partition:

dos xa /dev/at0a /autoexec.bat

You will want to use the a switch any time you are transferring a text file.

Suppose that the second partition on your first hard drive (COHERENT device /dev/at0b) is an extended MS-DOS

partition with two logical drives, D: and E:. To copy a COHERENT text file /tmp/foo to D:\TMP\FOO, use the
command

dos ra1 /dev/at0b /tmp/foo

To copy non-text file frotz in the current COHERENT directory to MS-DOS file E:\DBF\AX\FROTZ, use the
command

dos rp2 /dev/at0b dbf/ax/frotz < frotz

See Also
commands, fdformat, mkfs, MS-DOS

Notes
dos is an obsolete command. It has been retained for compatibility with earlier versions of COHERENT. We urge
you to use the other members in the dos family of commands, which have a cleaner syntax and are much easier to
use.

dos does not check for unusual characters in a COHERENT file name or for file names that differ from other file
names only in case.

The dos family of commands now support large file systems, such as those created by MS-DOS versions 4.0 and
5.0.

The COHERENT system’s dos family of commands do not understand compressed MS-DOS file systems created by
programs such as Stacker or MS-DOS 6.0 dblspace. If you are running MS-DOS with file compression, you must
copy files to an uncompressed file system (for example, to an uncompressed floppy disk or to the uncompressed
host for a compressed file system) to make them accessible to the COHERENT dos commands.

doscat — Command
Concatenate a file on an MS-DOS file system
doscat device:[/directory/]file
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doscat concatenates file that is in directory on an MS-DOS file system. device names the floppy-disk or hard-disk
device that holds the file system to be modified, e.g., /dev/fha0. You can also build a file of aliases so that you can
access the drives as a:, b:, etc. For details, see the Lexicon entry for doscp, which explains how to set up defaults
for the dos family of commands.

file can name either a single file, or can contain a wildcard character to name more than one file. For example, the
command

doscat a:foo.c

concatenates file foo.c which is on the file system contained in device whose alias is a: (as defined in file
/etc/default/msdos). Likewise, the command

doscat ’c:/dirname/*.txt’

concatenates all files with the suffix .txt in directory dirname, which, in turn, is on the file system contained in
device whose alias is c: (as defined in file /etc/default/msdos). In this form of the command, doscat concatenates
the files in the alphabetical order of their names. Note that the tail of the command must be enclosed within
apostrophes, or the shell will expand the ‘*’ before it is read by doscat.

Files
/etc/default/msdos — Setup file

See Also
cat, commands, dos

Notes
doscat does not understand compressed MS-DOS file systems created by programs such as Stacker or MS-DOS 6.0
dblspace. If you are running MS-DOS with file compression, you must copy files to an uncompressed file system (for
example, to an uncompressed floppy disk or to the uncompressed host for a compressed file system) to make them
accessible to the doscat.

doscp — Command
Copy files to/from an MS-DOS file system
doscp [-abkmrv] src dest

doscp copies files between MS-DOS and COHERENT file systems. The MS-DOS file system can reside either on a
floppy disk, or on an MS-DOS partition of a hard disk.

src names the file being copied and the file system where it resides; dest names the file system and directory into
which the file is copied. The operating system that owns the src file is implied by the name of the file system on
which it resides. An MS-DOS file system must be named using the device that holds it, such as floppy-disk drive
/dev/fha0 or hard-disk partition /dev/at0a. You can also build a file of aliases so that you can access the drives
as a, b, etc. For details, see the section entitled Configuring the dos Commands, below.

doscp converts a file’s name from one operating system’s conventions to the other’s. An MS-DOS file argument may
be specified in lower or upper case, using ‘/’ as the path-name separator. When transferring files from MS-DOS to
COHERENT, doscp converts an MS-DOS file name to a COHERENT file name in lower case only. If the MS-DOS file
name contains no extension, the COHERENT file name contains no ‘.’. When transferring files from COHERENT to
MS-DOS, doscp converts all alphabetic characters in a COHERENT file name to upper case; if a period ‘.’ appears at
the beginning or end of a file name, doscp converts it to ‘_’. doscp truncates the portion of the file name to the left
of the ‘.’ to a maximum of eight characters and portion to the right of the ‘.’ to a maximum of three characters.

doscp recognizes the following options:

a Perform ASCII newline conversion on file transfer. When moving files from COHERENT to MS-DOS, this option
converts each COHERENT newline character ‘\n’ (ASCII LF) to an MS-DOS end-of-line (ASCII CR and LF). When
moving files from MS-DOS to COHERENT, it does the opposite. By default, doscp performs ASCII conversion on
files that have an ASCII extention. See Setup, below.

b Do not perform any newline conversion on file transfers.

k Keep: give the copied file the same time stamp as its original. By default, doscp gives copied files the current
time.
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m Same as a, described above

r Same as b, described above.

v Verbose. Provide additional information about each action performed.

Configuring the dos Commands
The dos family commands read the file /etc/default/msdos before they begin to interpret arguments. By
modifying this file, you can establish defaults that let COHERENT’s dos commands resemble their counterparts
under MS-DOS. You can set up two classes of defaults: device defaults and file defaults.

A device default lets you declare an alias for a device that holds an MS-DOS file system. This device can be a
floppy-disk drive, a partition on a hard disk, or an extended partition on a hard disk. The alias must consist of one
or two letters. No letter can serve as an alias for more than one device. For example, the following declaration:

c=/dev/at0a

specifies that the hard-disk partition accessed via device /dev/at0a is a ‘‘Primary MS-DOS’’ partition, and that its
alias is c. Hereafter, the dos commands will interpret c as being equivalent to /dev/at0a.

The declaration

d=/dev/at0b;1

specifies the first ‘‘Extended MS-DOS’’ partition on the partition accessed via device /dev/at0b. Bumping the
number from 1 to 2 would specify the second extended MS-DOS partition within partition /dev/at0b, as in:

e=/dev/at0b;2

Notice how the device names (c, d, and e) can correspond to the same drive names as under MS-DOS, whether or
not they are primary or extended partitions.

File declarations, on the other hand, simply declare that all files with a given suffix are text files and should always
have their newline characters converted from COHERENT to MS-DOS format (or vice versa). For example, placing the
line

.c

in /etc/default/msdos tells all of the dos commands that all files with the suffix .c are text files and should have
their newline characters converted by default. You can have any number of file defaults in /etc/default/msdos.

Examples
The first example copies all C source files from floppy drive /dev/fva1 to correspondingly named files in the
current COHERENT directory, preserves the time stamp, and performs newline conversion upon them:

doscp -akv /dev/fva1:source/\*.c .

Note that you must quote wildcard characters with a backslash to keep the shell from interpreting them. Also note
that /dev/fva1 is a high-density, 3.5-inch floppy disk in floppy-disk drive 1. So, if your default file contained the
entry

b=/dev/fva1
.c

you could also have typed:

doscp -kv b:source/\*.c .

The next example copies a file from an MS-DOS partition on your hard disk to a COHERENT file system. Suppose
that C is the primary MS-DOS partition on your first hard drive. The following command copies file
C:\AUTOEXEC.BAT to /tmp/autoexec.bat in your COHERENT partition:

doscp /dev/at0a:autoexec.bat /tmp

If your /etc/default file contains the entry

c=/dev/at0a

then you can also type:

doscp c:autoexec.bat /tmp
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Files
/etc/default/msdos — Setup file

See Also
commands, cp, dos

Notes
For a discussion of the error message

Probably not a DOS disk

see the notes to the Lexicon entry for doscp. doscp does not check for unusual characters in a COHERENT file
name or for file names that differ from other file names only in case.

Beware of using doscp to create impossible files, e.g., com1. Such files create serious problems; for example, if you
try to TYPE or otherwise perform MS-DOS operations on com1, you will attack the MS-DOS device driver instead of
the file. Be sure to rename all such files when you copy them from a COHERENT to an MS-DOS file system.

doscp does not understand compressed MS-DOS file systems created by programs such as Stacker or MS-DOS 6.0
dblspace. If you are running MS-DOS with file compression, you must copy files to an uncompressed file system (for
example, to an uncompressed floppy disk or to the uncompressed host for a compressed file system) to make them
accessible to the doscp.

doscpdir — Command
Copy a directory to/from an MS-DOS file system
doscpdir [-akmv] src dest

doscpdir copies a directory and its contents between an MS-DOS file system and a COHERENT file system. The MS-

DOS file system can reside either on a floppy disk, or on the MS-DOS segment of a hard disk on your system.

src names the directory being copied and the file system where it resides; dest names the file system and directory
into which the file is copied. The operating system that owns the src file is implied by the name of the file system
on which it resides. An MS-DOS file system must be named using the device that holds it, such as floppy-disk drive
/dev/fha0 or hard-disk partition /dev/at0a. You can also build a file of aliases so that you can access the drives
as a, b, etc. For details, see the Lexicon entry for doscp, which explains how to set up defaults for the dos family
of commands.

doscpdir converts a file’s name from one operating system’s conventions to the other’s. An MS-DOS file argument
may be specified in lower or upper case, using ‘/’ as the path-name separator. When transferring files from MS-

DOS to COHERENT, doscpdir converts an MS-DOS file name to a COHERENT file name in lower case only. If the MS-

DOS file name contains no extension, the COHERENT file name contains no ‘.’. When transferring files from
COHERENT to MS-DOS, doscpdir converts all alphabetic characters in a COHERENT file name to upper case; if a
period ‘.’ appears at the beginning or end of a file name, doscpdir converts it to ‘_’. doscpdir truncates the part of
the file name before the last ‘.’ to a maximum of eight characters and truncates the extension to a maximum of
three characters.

doscpdir recognizes the following options:

a Perform ASCII newline conversion on file transfer. When moving files from COHERENT to MS-DOS, this
option converts each COHERENT newline character ‘\n’ (ASCII LF) to an MS-DOS end-of-line (ASCII CR and
LF). When moving files from MS-DOS to COHERENT, it does the opposite. By default, doscpdir performs
ASCII conversion on files that have an ASCII extention.

k Keep: give the copied file the same time stamp as its original. By default, doscpdir gives copied files the
current time.

m Same as a, described above

v Verbose. Provide additional information about each action performed.

Example
The following command copies COHERENT directory /usr/src to directory /mydir on the MS-DOS file system. It
assumes that you have set c as a default for a hard-disk device:

doscpdir -va /usr/src c:/mydir
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Files
/etc/default/msdos — Setup file

See Also
commands, cpdir, dos

Notes
doscpdir does not check for unusual characters in a COHERENT file name or for file names that differ from other
file names only in case.

doscpdir does not understand compressed MS-DOS file systems created by programs such as Stacker or MS-DOS

6.0 dblspace. If you are running MS-DOS with file compression, you must copy files to an uncompressed file system
(for example, to an uncompressed floppy disk or to the uncompressed host for a compressed file system) to make
them accessible to the doscpdir.

dosdel — Command
Delete a file from an MS-DOS file system
dosdel [-fv] device:/dir/file

dosdel deletes file that lives on MS-DOS file-system device. The MS-DOS file system can reside either on a floppy
disk, or on the MS-DOS segment of a hard disk on your system. The MS-DOS file system must be named using the
device that holds it, such as floppy-disk drive /dev/fha0 or hard-disk partition /dev/at0a. You can also build a
file of aliases so that you can access the drives as a, b, etc. For details, see the Lexicon entry for doscp, which
explains how to set up defaults for the dos family of commands.

dosdel takes the following options:

f Force removal of readonly files.

v Verbose output: provide additional information about each action.

Example
The following command deletes myfile. It assumes that you have defined c to be a default for a device upon which
you have set an MS-DOS file system:

dosdel c:/mydir/myfile

Files
/etc/default/msdos — Setup file

See Also
commands, dos

Notes
dosdel does not understand compressed MS-DOS file systems created by programs such as Stacker or MS-DOS 6.0
dblspace. If you are running MS-DOS with file compression, you must copy files to an uncompressed file system (for
example, to an uncompressed floppy disk or to the uncompressed host for a compressed file system) to make them
accessible to the dosdel.

dosdir — Command
List contents of an MS-DOS directory
dosdir [-nv] device:[dir/][file]

dosdir lists the contents of a directory that lives on an MS-DOS file system. The MS-DOS file system can reside
either on a floppy disk, or on the MS-DOS segment of a hard disk on your system. The MS-DOS file system must be
named using the device that holds it, such as floppy-disk drive /dev/fha0 or hard-disk partition /dev/at0a. You
can also build a file of aliases so that you can access the drives as a, b, etc. For details, see the Lexicon entry for
doscp, which explains how to set up defaults for the dos family of commands.

dosdir recognizes the following options:

n Newest: List the files in the order in which they were last modified, from newest to oldest. By default,
dosdir lists files in alphabetical order.
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v Verbose. Provide additional information about each action performed.

Example
The following command lists the contents of mydir. It assumes that you have defined c as a default for a device on
which is set an MS-DOS file system:

dosdir c:/mydir

Files
/etc/default/msdos — Setup file

See Also
commands, dos, dosls, ls

Notes
If you see the error

dosdir: Probably not a DOS disk (media descriptor 0x00)

dosdir cannot find a valid boot block on a partition. It happens when you try to access an extended DOS partition
as though it were a primary partition. Check the line in /etc/default/msdos to see how dosdir is accessing that
partition.

For example, if are trying to access device h: and the entry for that device reads

h=/dev/sd1a

this device may in fact be an extended partition. It sometimes happens with removable media, such as removable
SCSI disks, have extended partitions built on them without the operator’s knowledge. To test whether this
partition is in fact an extended partition, type the command:

dosdir -v /dev/sd1a;1

If you then see the contents of the partition, you know that you are on the right track. Change the entry for device
h to read

h=/dev/sd1a;1

and all should be well.

dosdir does not understand compressed MS-DOS file systems created by programs such as Stacker or MS-DOS 6.0
dblspace. If you are running MS-DOS with file compression, you must copy files to an uncompressed file system (for
example, to an uncompressed floppy disk or to the uncompressed host for a compressed file system) to make them
accessible to the dosdir.

dosformat — Command
Build an MS-DOS file system
dosformat [-v] device:

dosformat builds an MS-DOS file system on a floppy disk. The disk must first have been formatted with the
command fdformat -v. device names the floppy-disk drive that holds the disk to receive the file system, such as
/dev/fha0. See the Lexicon entry floppy disks for a table of the COHERENT floppy-disk devices. You can also build
a file of aliases so that you can access the drives as A, B, etc. For details, see the Lexicon entry for doscp, which
explains how to set up defaults for the dos family of commands. Note that the device name must always be
suffixed with a colon ‘:’, just like an MS-DOS device name.

The option -v, tells dosformat to provide additional information about each action it performs.

Example
The following example formats a disk. It assumes that you have defined a as a default for a device upon which is
set an MS-DOS file system:

dosformat a:

Files
/etc/default/msdos — Setup file
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See Also
commands, dos, fdformat

Notes
To create a double-sided, double-density formatted floppy disk in drive 0 (drive A), use /dev/fqa0 for 3.5-inch
disks, or /dev/f9a0 for 5.25-inch disks.

doslabel — Command
Label an MS-DOS floppy disk
doslabel [-v] device: label

doslabel puts label onto an MS-DOS floppy disk. device names the floppy-disk drive that holds the disk to be
labelled, such as /dev/fha0. See the Lexicon entry floppy disks for a table of the COHERENT floppy-disk devices.
You can also build a file of aliases so that you can access the drives as a, b, etc. For details, see the Lexicon entry
for doscp, which explains how to set up defaults for the dos family of commands.

The option -v, tells doslabel to provide additional information about each action it performs.

Example
The following command labels an MS-DOS floppy disk with the string mydisk. It assumes that you have defined a
as a default for a device that holds an MS-DOS file system:

doslabel a: mydisk

Files
/etc/default/msdos — Setup file

See Also
commands, dos

dosls — Command
List files on an MS-DOS file system
dosls [-v] device:[/directory/][file]

dosls lists all files in directory on an MS-DOS file system. device names the floppy-disk or hard-disk device that
holds the file system to be modified, e.g., /dev/fha0. You can also build a file of aliases so that you can access the
drives as a, b, etc. For details, see the Lexicon entry for doscp, which explains how to set up defaults for the dos
family of commands.

The option -v tells dosls to print its output in a long format, analogous to what the command ls -l prints.

Example
The following displays the contents of directory src. It assumes that you have defined c as a default for a device on
which you have set an MS-DOS file system:

dosls -v c:/src

Files
/etc/default/msdos — Setup file

See Also
commands, dos, dosdir, ls

Notes
dosls does not understand compressed MS-DOS file systems created by programs such as Stacker or MS-DOS 6.0
dblspace.

dosmkdir — Command
Create a directory in an MS-DOS file system
dosmkdir device:directory

dosmkdir makes directory in an MS-DOS file system. device names the floppy-disk or hard-disk device that holds
the file system to be modified, e.g., /dev/fha0. You can also build a file of aliases so that you can access the drives
as a, b, etc. For details, see the Lexicon entry for doscp, which explains how to set up defaults for the dos family
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of commands.

Example
The following command creates directory mydir. It assumes that you have defined a to be a device in which is set
an MS-DOS file system:

dosmkdir a:/mydir

Files
/etc/default/msdos — Setup file

See Also
commands, dos, mkdir

Notes
dosmkdir does not understand compressed MS-DOS file systems created by programs such as Stacker or MS-DOS

6.0 dblspace.

dosrm — Command
Remove a file from an MS-DOS file system
dosrm device:[/directory/]file

dosrm removes file from directory on an MS-DOS file system. device names the floppy-disk or hard-disk device that
holds the file system to be modified, e.g., /dev/fha0. You can also build a file of aliases so that you can access the
drives as a, b, etc. For details, see the Lexicon entry for doscp, which explains how to set up defaults for the dos
family of commands.

Example
The following deletes all .c files on an MS-DOS disk. It assumes that you have defined b to be a device on which
you have set an MS-DOS file system:

dosrm ’b:*.c’

Files
/etc/default/msdos — Setup file

See Also
commands, dos, dosrmdir, rm

Notes
dosrm does not understand compressed MS-DOS file systems created by programs such as Stacker or MS-DOS 6.0
dblspace.

dosrmdir — Command
Remove a directory from an MS-DOS file system
dosrmdir device:directory

dosrmdir removes directory from an MS-DOS file system. device names the floppy-disk or hard-disk device that
holds the file system to be modified, e.g., /dev/fha0. You can also build a file of aliases so that you can access the
drives as a, b, etc. For details, see the Lexicon entry for doscp, which explains how to set up defaults for the dos
family of commands.

Example
The following command removes directory foo. It assumes that you have defined a to be a device in which you have
set a disk with an MS-DOS file system:

dosrmdir c:/foo

Files
/etc/default/msdos — Setup file

See Also
commands, dos, dosrm, rmdir
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Notes
dosrmdir does not understand compressed MS-DOS file systems created by programs such as Stacker or MS-DOS

6.0 dblspace.

double — C Keyword
Data type

A double is the data type that encodes a double-precision floating-point number. On most machines,
sizeof(double) is defined as four machine words, or eight chars. If you wish your code to be portable, do not use
routines that depend on a double being 64 bits long. The ranges of values that can be held by a COHERENT double
are set in header file float.h.

Different formats are used to encode doubles on various machines. These formats include IEEE, DECVAX, and
BCD (binary coded decimal), as described in the entry for float. COHERENT 286 uses DECVAX format; COHERENT

386 uses IEEE format.

See Also
C keywords, data formats, float, float.h, portability
ANSI Standard, §6.1.2.5

dpac — Command
De-fragment a COHERENT file system
dpac [-q] raw_device

Command dpac de-fragments the COHERENT file system on raw_device. Defragmentation leaves each file in the
file system physically contiguous. This reduces the number of seeks needed to access a file, and threfore permits
disk I/O to run at its maximum speed. The default algorithm also sorts the i-nodes by modification date and puts
the oldest ones at the beginning of the partition. This helps the file system remain un-fragmented longer.

You must umount the target file system raw_device before you run dpac on it. Failure to do so will corrupt the file
system. For example, the command

dpac /dev/rat0a

tells dpac to map the first partition on the first drive and prompt whether to continue. raw_device must be a
partition or a floppy disk rather than an entire hard drive.

dpac begins by making a map of the file system. It displays a histogram of its activity as it builds the map; this
lets you see what the kernel must do in order to access each file. When it has finished the file system map, dpac
prompts you and asks whether to quit, continue with defragmentatation using the default date sort, or to continue
but to use an unsorted method of defragmentation. dpac does not use terminfo or termcap for its display, and is
intended for use on the console’s ansipc terminal setting. This lets you run it from a bootable floppy disk.

See Also
commands, fmap, fsck, qpac, spac, upac

Notes
To see how fragmented a file system is, use the command fmap.

Note that you can also de-fragment a file system by copying it to a tape, then deleting it and restoring it from the
tape. Another method of defragmentation is to use the command cpdir to copy the file system to a spare partition
(should you have one that is large enough), then using the spare partition in place of the old partition.

Please note that if you use dpac incorrectly or without sufficient amounts of RAM or spare disk space, you can
damage or destroy your file system. Never run dpac on the partition-table device (e.g., /dev/at0x), or on the root
device. Caveat utilitor!

dpac was written by Randy Wright (rw@rwsys.wimsey.bc.ca).

drand48() — Random-Number Function (libc)
Return a 48-bit pseudo-random number as a double
double drand48()

Function drand48() generates and returns a 48-bit pseudo-random number in the form of a double.
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See Also
libc, srand48()

drvld.all — System Administration
Load loadable drivers at boot time
/etc/drvld.all

The file /etc/drvld.all holds commands to load loadable drivers into memory when you boot the COHERENT

system. It is read from the script /etc/brc, which is executed whenever the COHERENT system is rebooted into
single-user mode.

Under COHERENT 286, drvld.all (as its name implies) includes calls to the command drvld to load loadable drivers.
COHERENT 386 does not implement loadable device drivers; however, it uses drvld.all to load the keyboard table
and perform other useful work.

See Also
Administering COHERENT, brc, keyboard

du — Command
Summarize disk usage
du [-a] [-s] [directory ...]

du prints the total number of disk blocks used by each named directory. If no directory is specified, du prints the
disk usage of the current directory.

The -a (all) option causes du to print a line for every file and directory in the substructure. Normally it prints a line
only for each directory.

The -s (summary) option prints only the line for the top level directory.

du understands links; it adds a file with more than one link to it into the total only once.

See Also
commands, df, find

Notes
du does not count file-system overhead such as indirect blocks, so occasionally a directory does not fit on a file
system which appears to contain enough room for it.

dump — Command
File-system backup utility
dump [options] [argument ...]

dump dumps either all or a portion of file system argument to magnetic tape or floppy disks. File-system dumps
are in a format that permits you to restore all or some of the files to the original file system, and to select files
either by name or by i-number.

A file-system dump includes all files changed since the dump since date, plus each file’s full path name (for the
benefit of dumpdir).

options specifies both the dump-since date and the processing options. It is made up of characters from the set
0123456789bdfsSuv, which have the following meanings.

0-9 The digit gives the level number of the dump. The dump-since date is the most recent date in the dump-
date file /etc/ddate that is (1) associated with this file system and (2) has a level number less than the
current dump level. For example, if you request a level-3 dump, dump will back up all files not backed up
since the last level-2 dump. A level-0 dump by definition backs up all files in the file system.

b The next argument gives the output tape’s blocking factor . The blocking factor is the number of dumpdata
structures in each tape block. The default blocking factor is 20.

d The next argument gives the density of the output tape in bytes per inch. The default density is 1600 bytes
per inch (bpi). dump uses the density to compute the quantity of tape needed.

LEXICON

drvld.all — dump 559



f The next argument gives the path name of the output file. If no f option is given, /dev/dump is assumed.

s The next argument gives the length of the dump tape in feet. dump keeps a running total of the quantity of
tape it has written, and it asks for a new reel if it appears that the end of the reel is near. The default length
is 2,300 feet.

S The next argument gives the size of the dump output device, in blocks. This is used only if you are backing
up the file system to floppy disks or streaming cartridge tape rather than to nine-track magnetic tape.

u If the dump completes without error, update the record of successful dumps kept in file /etc/ddate. There
is an entry in this file for every file system and every dump level.

v Inform the user of the ‘dump since’ date and the length of tape used in feet. The length is useful for
computing the quantity of tape remaining if multiple dumps are written onto a single reel of tape.

If no level number is given, dump assumes the options 9u.

Files
/dev/dump — Default dump device
/etc/ddate — Dump date file

See Also
badscan, commands, dumpdate, dumpdir, restor

Diagnostics
Most errors are fatal caused by a table overflowing, or a read or write error on the input or output device.

dump requires that its output be written to disks that are free of bad sectors. If you write a dump to a disk with
bad sectors, you will not be able to restore files from that disk.

When formatting disks to be used with dump, use the command

/etc/fdformat -v device

This forces fdformat to verify the format. It takes twice as long, but it ensures that the disk is good at least at a
first level of testing. Reject any disks that have any defects — or save them for use with COHERENT file systems,
which can map out bad sectors.

Notes
Please note that dump is now regarded as being obsolete. We strongly encourage users to use cpio instead.

dumpdate — Command
Print dump dates
dumpdate [filesystem ...]

dumpdate reads through the dump date file /etc/ddate and displays the dump date records associated with each
specified filesystem.

If no filesystem is specified, the records for all file systems are displayed.

Files
/etc/ddate — Dump date file

See Also
commands, dump, dumpdir, restor

dumpdir — Command
Print the directory of a dump
dumpdir [af [argument ...] ]

dumpdir reads through a file-system dump created by the dump command, gathers up its directory blocks, and
displays the names and i-numbers of all files on the dump.

The a option causes dumpdir to display the directory entries for ‘.’ and ‘..’, which are normally suppressed.

The f option causes the next argument to be taken as the pathname of the dump device, which is otherwise
assumed to be /dev/dump.

LEXICON

560 dumpdate — dumpdir



If no options are specified, dumpdir reads from the default dump device /dev/dump and suppresses the printing
of ‘.’ and ‘..’ entries.

Files
/dev/dump — Default dump device
/tmp/ddXXXXXX — To hold directory blocks

See Also
commands, dump

Diagnostics
The dump/restore format puts a header at the beginning of the dump that includes all the information about what
lives where in the dump. dumpdir reads this header to discover what files are in the dump. If the header is too
large to fit onto one disk, dumpdir will then prompt you to insert the additional disk or disks; if this happens,
insert the requested disk and then type <return>.

Notes
dump requires that its output be written to disks that are free of bad sectors. If you write a dump to a disk with
bad sectors, you will not be able to restore files from that disk. For details on using disks with dump, see its
Lexicon entry.

dumptape.h — Header File
Define data structures used on dump tapes
#include <dumptape.h>

dumptape.h defines the data structures used on archives dumped with the command dump. Note that the
command dump is regarded as obsolete. In its place, you should use pax, tar, or cpio.

See Also
header files

Notes
This header file is obsolete, and will be dropped from a future release of COHERENT. Its use is strongly
discouraged.

dup() — System Call (libc)
Duplicate a file descriptor
#include <unistd.h>
int dup(fd) int fd;

dup() duplicates the existing file descriptor fd, and returns the new descriptor. The returned value is the smallest
file descriptor that is not already in use by the calling process.

See Also
dup2(), fopen(), fdopen(), libc, stdio.h, unistd.h
POSIX Standard, §6.2.1

Diagnostics
dup() returns a number less than zero when an error occurs, such as a bad file descriptor or no file descriptor
available.

dup2() — General Function (libc)
Duplicate a file descriptor
#include <unistd.h>
int dup2(fd, newfd) int fd, newfd;

dup2() duplicates the file descriptor fd. Unlike its cousin dup(), dup2() allows you to specify a new file descriptor
newfd, rather than having the system select one. If newfd is already open, the system closes it before assigning it
to the new file. dup2() returns the duplicate descriptor.
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See Also
dup(), libc, stdio.h, unistd.h
POSIX Standard, §6.2.1

Diagnostics
dup2() returns a number less than zero when an error occurs, such as a bad file descriptor or no file descriptor
available.
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Example

echo — Command
Repeat/expand an argument
echo [-n] [argument ...]

echo prints each argument on the standard output, placing a space between each argument. It appends a newline
to the end of the output unless the -n flag is present.

echo recognizes the following special character sequences. For each occurrence of the sequence, it substitutes the
corresponding ASCII character.

\b Backspace
\c Print line without a newline (like -n option)
\f Formfeed
\n Newline
\r Carriage return
\t Tab
\v Vertical tab
\\ Backslash
\0nnn nnn is octal value of character (sh only)
\nnn nnn is the octal value of character (ksh only)

For example, when you enter the command:

echo ’Please enter your name: \007\c’

The shell rings the bell and prints

Please enter your name:

on your screen. Note that the \007 sequence causes the terminal bell to sound, and that since the \c sequence
was specified, the cursor will be left positioned after the colon.

See Also
commands, ksh, sh

Notes
Under the Korn shell, echo is an alias for its built-in command print.

Please note that echo converts characters to spaces. If you wish to preseve tab characters in an echoed string, you
must enclose it within quotation marks. For example, the command

echo $RECORD

displays:

7 5 175 875

whereas the command

echo "$RECORD"

displays:

7 5 175 875

This is important when you use echo with programs for which the tab character is significant.

ecvt() — General Function (libc)
Convert floating-point numbers to strings
char *
ecvt(d, prec, dp, signp)
double d; int prec, *dp, *signp;

ecvt() converts d into a NUL-terminated string of numerals with the precision of prec. Its operation resembles that
of printf()’s operator %e.
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ecvt() rounds the last digit and returns a pointer to the result. On return, ecvt() sets dp to point to an integer that
indicates the location of the decimal point relative to the beginning of the string, to the right if positive, to the left if
negative. It sets signp to point to an integer that indicates the sign of d, zero if positive and nonzero if negative.

Example
The following program demonstrates ecvt(), fcvt(), and gcvt().

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* prototypes for extended functions */
extern char *ecvt();
extern char *fcvt();
extern char *gcvt();

main(void)
{

char buf[64];
double d;
int i, j;
char *s;

d = 1234.56789;
s = ecvt(d, 5, &i, &j);
/* prints ecvt="12346" i=4 j=0 */
printf("ecvt=\"%s\" i=%d j=%d\n", s, i, j);

strcpy(s, fcvt(d, 5, &i, &j));
/* prints fcvt="123456789" i=4 j=0 */
printf("fcvt=\"%s\" i=%d j=%d\n", s, i, j);

s = gcvt(d, 5, buf);
/* prints gcvt="1234.56789" */
printf("gcvt=\"%s\"\n", s);

}

See Also
libc

Notes
ecvt() performs conversions within static string buffers that it overwrites with each execution.

ed — Command
Interactive line editor
ed [-] [+cmopsv] [file]

ed is the COHERENT system’s interactive line editor.

ed is a line-oriented interactive text editor. With it, you can locate and replace text patterns, move or copy blocks
of text, and print parts of the text. ed can read text from input files and can write all or part of the edited text to
other files.

ed reads commands from the standard input, usually one command per line. Normally, ed does not prompt for
commands. If the optional file argument is given, ed edits the given file, as if the file were read with the e
command described below.

ed manipulates a copy of the text in memory rather than with the file itself. No changes to a file occur until the
user writes edited text with the w command. Large files can be divided with split or edited with the stream editor
sed.

ed remembers some information to simplify its commands. The current line is typically the line most recently
edited or printed. When ed reads in a file, the last line read becomes the current line. The current file name is the
last file name specified in an e or f command. The current search pattern is the last pattern specified in a search
specification.

ed identifies text lines by integer line numbers, beginning with one for the first line. Several special forms identify
a line or a range of lines, as follows:

LEXICON

564 ed



n A decimal number n specifies the nth line of the text.

. A period ‘.’ specifies the current line.

$ A dollar sign ‘$’ specifies the last line of the text.

+,- Simple arithmetic may be performed on line numbers.

/pattern/
Search forward from the current line for the next occurrence of the pattern. If ed finds no occurrence
before the end of the text, the search wraps to the beginning of the text. Patterns, also called regular
expressions, are described in detail below.

?pattern?
Search backwards from the current line to the previous occurrence of the pattern. If ed finds no occurrence
before the beginning of the text, the search wraps to the end of the text.

’x Lines marked with the kx command described below are identified by ’x. The x may be any lower-case
letter.

n,m Line specifiers separated by a comma ‘,’ specify the range of lines between the two given lines, inclusive.

n;m Line specifiers separated by a semicolon ‘;’ specify the range of lines between the two given lines, inclusive.
Normally, ed updates the current line after it executes each command. If a semicolon ‘;’ rather than a
comma separates two line specifiers, ed updates the current line before reading the second.

* An asterisk ‘*’ specifies all lines; it is equivalent to 1,$.

Commands
ed commands consist of a single letter, which may be preceded by one or two specifiers that give the line or lines to
which the command is to be applied. The following command summary uses the notations [n] and [n[,m]] to refer
to an optional line specifier and an optional range, respectively. These default to the current line when omitted,
except where otherwise noted. A semicolon ‘;’ may be used instead of a comma ‘,’ to separate two line specifiers.

. Print the current line. Also, a line containing only a period ‘.’ marks the end of appended, changed, or
inserted text.

[n] Print given line. If no line number is given (i.e., the command line consists only of a newline character),
print the line that follows the current line.

[n]= Print the specified line number (default: last line number).

[n]& Print a screen of 23 lines; equivalent to n,n+22p.

! line Pass the given line to the shell sh for execution. ed prompts with an exclamation point ‘!’ when execution
is completed.

? Print a brief description of the most recent error.

[n]a Append new text after line n. Terminate new text with line that contains only a period ‘.’.

[n[,m]]c
Change specified lines to new text. Terminate new text with a line that contains only a period ‘.’.

[n[,m]]d[p]
Delete specified lines. If p follows, print new current line.

e [file] Edit the specified file (default: current file name). An error occurs if there are unsaved changes. Reissuing
the command after the error message forces ed to edit the file.

E [file] Edit the specified file (default: current file name). No error occurs if there are unsaved changes.

f [file] Change the current file name to file and print it. If file is omitted, print the current file name.

[n[,m]]g/[pattern]/commands
Globally execute commands for each line in the specified range (default: all lines) that contains the pattern
(default: current search pattern). The commands may extend over several lines, with all but the last
terminated by ‘\’.
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[n]i Insert text before line n. Terminate new text with a line that contains only a period ‘.’.

[n[,m]]j[p�]
Join specified lines into one line. If m is not specified, use range n,n+1. If no range is specified, join the
current line with the next line. With optional p, print resulting line.

[n]kx Mark given line with lower-case letter x.

[n[,m]]l List selected lines, interpreting non-graphic characters.

[n[,m]]m[d]
Move selected lines to follow line d (default: current line).

o options
Change the given options. The options may consist of an optional sign ‘+’ or ‘-’, followed by one or more of
the letters ‘cmopsv’. Options are explained below.

[n[,m]][p]
Print selected lines. The p is optional.

q Quit editing and exit. An error occurs if there are unsaved changes. Reissuing the command after the
error message forces ed to exit.

Q Quit editing and exit. Throw away all changes that you have not yet saved to disk.

[n]r [file]
Read file into current text after given line (default: last line).

[n[,m]]s[k]/[pattern1]/pattern2/[g][p]
Search for pattern1 (default, remembered search pattern) and substitute pattern2 for kth occurrence
(default, first) on each line of the given range. If g follows, substitute every occurrence on each line. If p
follows, print the resulting current line.

[n[,m]]t[d]
Transfer (copy) selected lines to follow line d (default, current line).

[n]u[p] Undo effect of last substitute command. If optional p specified, print undone line. The specified line must
be the last substituted line.

[n[,m]]v/[pattern]/commands
Globally execute commands for each line in the specified range (default: all lines) not containing the pattern
(default: current search pattern). The commands may extend over several lines, with all but the last
terminated by ‘\’. The v command is like the g command, except the sense of the search is reversed.

[n[,m]]w [file]
Write selected lines (default, all lines) to file (default, current file name). The previous contents of file, if
any, are lost.

[n[,m]]W [file]
Write specified lines (default, all lines) to the end of file (default, current file name). Like w, but appends to
file instead of truncating it.

Patterns
Substitution commands and search specifications may include patterns, also called regular expressions. A non-
special character in a pattern matches itself. Special characters include the following.

^ Match beginning of line, unless it appears immediately after ‘[’ (see below).

$ Match end of line.

* Matches zero or more repetitions of preceding character.

. Matches any character except newline.

[chars] Matches any one of the enclosed chars. Ranges of letters or digits may be indicated using ‘-’.

[^chars]
Matches any character except one of the enclosed chars. Ranges of letters or digits may be indicated using
‘-’.
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\c Disregard special meaning of character c.

\(pattern\)
Delimit substring pattern for use with \d, described below.

The replacement part pattern2 of the substitute command may also use the following:

& Insert characters matched by pattern1.

\d Insert substring delimited by dth occurrence of delimiters ‘\(’ and ‘\)’, where d is a digit.

Options
The user may specify ed options on the command line, in the environment, or with the o command. The available
options are as follows:

c Print character counts on e, r, and w commands.

m Allow multiple commands per line.

o Print line counts instead of character counts on e, r, and w commands.

p Prompt with an ‘*’ for each command.

s Match lower-case letters in a pattern to both upper-case and lower-case text characters.

v Print verbose versions of error messages.

The c option is normally set, and all others are normally reset. Options may be set on the command line with a
leading ‘+’ sign. The ‘-’ command line option resets the c option.

Options may be set in the environment with an assignment, such as

export ED=+cv

Options may be set with the ‘+’ prefix or reset with the ‘-’ prefix.

See Also
commands, elvis, ex, me, sed, vi
Introduction to the ed Line Editor

Diagnostics
ed usually prints only the diagnostic ‘?’ on any error. When the verbose option v is specified, the ‘?’ is followed by
a brief description of the nature of the error.

EDITOR — Environmental Variable
Name editor to use by default
EDITOR=editor

The environmental variable EDITOR names the default editor that you wish to use. For example, mail invokes
editor when you conclude a mail message by typing a question mark ‘?’ at the beginning of a line followed by
<return>. The screen pager more invokes editor when you enter the command v while displaying a file.

See Also
environmental variables, mail, more

egrep — Command
Extended pattern search
egrep [-Abcefhily] [pattern] [file ...]

egrep is an extended and faster version of grep. It searches each file for occurrences of pattern (also called a
regular expression). If no file is specified, it searches the standard input. Normally, it prints each line matching
the pattern.

Wildcards
The simplest patterns accepted by egrep are ordinary alphanumeric strings. Like ed, egrep can also process
patterns that include the following wildcard characters:

LEXICON

EDITOR — egrep 567



^ Match beginning of line, unless it appears immediately after ‘[’ (see below).

$ Match end of line.

* Match zero or more repetitions of preceding character.

. Match any character except newline.

[chars]
Match any one of the enclosed chars. Ranges of letters or digits may be indicated using ‘-’.

[^chars]
Match any character except one of the enclosed chars. Ranges of letters or digits may be indicated using ‘-’.

\c Disregard special meaning of character c.

Metacharacters
In addition, egrep accepts the following additional metacharacters:

| Match the preceding pattern or the following pattern. For example, the pattern cat|dog matches either cat
or dog. A newline within the pattern has the same meaning as ‘|’.

+ Match one or more occurrences of the immediately preceding pattern element; it works like ‘*’, except it
matches at least one occurrence instead of zero or more occurrences.

? Match zero or one occurrence of the preceding element of the pattern.

(...) Parentheses may be used to group patterns. For example, (Ivan)+ matches a sequence of one or more
occurrences of the four letters ‘I’ ‘v’ ‘a’ or ‘n’.

Because the metacharacters ‘*’, ‘?’, ‘$’, ‘(’, ‘)’, ‘[’, ‘]’, and ‘|’ are also special to the shell, patterns that contain those
literal characters must be quoted by enclosing pattern within apostrophes.

Options
The following lists the available options:

-A Write all lines in which expression is found into a temporary file. Then, call COHERENT with its error option to
process the source file, with the contents of the temporary file serving as an ‘‘error’’ list. This option resembles
the -A option to the cc command, and lets you build a COHERENT script to make systematic changes to the
source file. To exit COHERENT and prevent egrep from searching further, <ctrl-U> <ctrl-X> <ctrl-C>.

Unlike cgrep, egrep only matches patterns that are on a single line. Some systems have a context grep
cgrep) that works like egrep but displays lines found in context. The COHERENT egrep -A not only displays
lines in context, via COHERENT, it lets you edit them.

-b With each output line, print the block number in which the line started (used to search file systems).

-c Print how many lines match, rather than the lines themselves.

-e The next argument is pattern (useful if the pattern starts with ‘-’).

-f The next argument is a file that contains a list of patterns separated by newlines; there is no pattern
argument.

-h When more than one file is specified, output lines are normally accompanied by the file name; -h suppresses
this.

-i Ignore case when matches alphabetic letter in pattern. egrep takes case into account, even with this option,
when you prefix a letter in pattern with ‘\’.

-l Print the name of each file that contains the string, rather than the lines themselves. This is useful when you
are constructing a batch file.

-n When a line is printed, also print its number within the file.

-s Suppress all output, just return exit status.

-v Print a line only if the pattern is not found in the line.
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-y Lower-case letters in the pattern match only upper-case letters on the input lines. A letter escaped with ‘\’ in
the pattern must be matched in exactly that case.

Limits
The COHERENT implementation of egrep sets the following limits on input and output:

Characters per input record 512
Characters per output record 512
Characters per field 512

See Also
awk, cgrep, commands, ed, expr, grep, lex, sed

Diagnostics
egrep returns an exit status of zero for success, one for no matches, and two for error.

Notes
For matching patterns in C programs, the command cgrep is preferred, because it is optimized to recognize C-style
expressions.

Besides the difference in the range of patterns allowed, egrep uses a deterministic finite automaton (DFA) for the
search. It builds the DFA dynamically, so it begins doing useful work immediately. This means that egrep is is
much faster than grep, often by more than an order of magnitude, and is considerably faster than earlier pattern-
searching commands, on almost any length of file.

else — C Keyword
Introduce a conditional statement

else is the flip side of an if statement: if the condition described in the if statement fails, then the statements
introduced by the else statement are executed. For example,

if (getchar() == EOF)
exit(0);

else
dosomething();

exits if the user types EOF, but does something if the user types anything else.

See Also
C keywords, if
ANSI Standard, §6.6.4.1

elvis — Command
Clone of Berkeley-standard screen editor
elvis [ options ] [ +cmd ] [ file1 ... file27 ]

elvis is a clone of vi and ex, the standard UNIX screen editors.

elvis is a modal editor whose command structure resembles the ed line editor. Modal means that a keystroke
assumes a different meaning, depending upon the mode that the editor is in. elvis uses three modes: visual-
command mode, colon-command mode, and input mode.

The following sections summarize the commands associated with each mode:

Visual-Command Mode
Visual-command mode closely resembles text-input mode. One quick way to tell the modes apart is to press the
<esc> key. If elvis beeps, then you are in visual-command mode. If it does not beep, then you were in input
mode, but pressing <esc> switched you to visual-command mode.

Most visual-mode commands are one keystroke long. The commands are in two groups: movement commands and
edit commands. The former group moves the cursor through the file being edited, and the latter group alters text.

The following sections summarize the command set for elvis’s visual-command mode.
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Visual-Mode Movement Commands
The following summarizes the visual mode’s movement commands. count indicates that the command can be
optionally prefaced by an argument that tells elvis how often to execute the command. move indicates that the
command can be followed by a movement command, after which the command is executed on the text that lies
between the point where the command was first typed and the point to which the cursor was moved. Typing the
command a second time executes the command for the entire line upon which the cursor is positioned. key means
that the command must be followed by an argument.

<ctrl-B> Move up by one screenful.
[count] <ctrl-D> Scroll down count lines (default, one-half screenful).
[count] <ctrl-E> Scroll up count lines.
<ctrl-F> Move down by one screenful.
<ctrl-G> Show file status and the current line.
[count] <ctrl-H> Move one character to the left.
[count] <ctrl-J> Move down count lines.
<ctrl-L> Redraw the screen.
[count] <ctrl-M> Move to the beginning of the next line.
[count] <ctrl-N> Move down count lines (default, one).
[count] <ctrl-P> Move up count lines (default, one).
<ctrl-R> Redraw the screen.
<ctrl-T> Pop the tag stack — that is, return to the most recently tagged position. elvis removes that

tag from the tag stack.
[count] <ctrl-U> Scroll up count lines (default, one-half screenful).
[count] <ctrl-X> Move the cursor to column count on the current line.
[count] <ctrl-Y> Scroll down count lines.
<ctrl-]> If the cursor is on a tag name, go to that tag.
<ctrl-^> Switch to the previous file.
[count] <space> Move right count spaces (default, one).
<quotation mark> key

Select which cut buffer to use next.
$ Move to the end of the current line.
% Move to the matching (){}[] character.
[count] % Move count percentage into the file. For example, the command 50% moves the cursor to the

middle of the file.
’ key Move to a marked line.
[count] ( Move backward count sentences (default, one).
[count] ) Move forward count sentences (default, one).
* Go to the next error in the error list.
[count] + Move to the beginning of the next line.
[count] , Repeat the previous f or t command, but move in the opposite direction.
[count] - Move to the beginning of the preceding line.
[count] . Repeat the previous edit command.
/ text Search forward for text, which can be a regular expression.
0 If not part of a count, move to the first character of this line.
: Switch to colon-command mode to execute one command.
[count] ; Repeat the previous f or t command.
? text Search backwards for text, which can be a regular expression.
@ key Execute the contents of a cut-buffer as vi commands.
[count] B Move backwards count words (default, one).
[count] E Move forwards count words (default, one).
[count] F key Move left to the count’th occurrence of the given character (default, first).
[count] G Move to to line count (default, last).
[count] H Move to the top of the screen.
[count] L Move to the bottom of the screen.
M Move to the middle of the screen.
N Repeat the last search, but in the opposite direction.
P Paste text before the cursor.
Q Shift to colon-command mode.
[count] T key Move left almost to the given character.
U Undo all recent changes to the current line.
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V [move...][command]
Like v, described below, except it applies to whole lines. For example, the command Vjj> first
highlights and then indents three lines. It is equivalent to >2j or 3>>.

[count] W Move forward count words (default, one).
[count] Y Copy (or ‘‘yank’’) count lines into a cut buffer (default, one).
Z Z Save the file and exit.
[ [ Move back one section.
] ] Move forward one section.
^ Move to the beginning of the current line, but after indent.
` key Move to the key character.
[count] b Move back count words.
[count] e Move forward to the end of the count’th word.
[count] f c Move rightward to the count’th occurrence of character c.
[count] h Move left count characters (default, one).
[count] j Move down count characters (default, one).
[count] k Move up count characters (default, one).
[count] l Move right count characters (default, one).
m key Mark a line or character.
n Repeat the previous search.
p Paste text after the cursor.
[count] t key Move rightward almost to the count’th occurrence of the given character (default, one).
u Undo the previous edit command.
v [move ...][command]

Highlight text as the cursor is moved, then apply command to the highlighted text. For
example, vwwwd is approximately the same as 3dw. To cancel the selection without altering
the text, press v a second time.

[count] w Move forward count words (default, one).
y move Copy (or ‘‘yank’’) text into a cut buffer.
z key Scroll the screen, repositioning the current line as follows: + indicates top of the screen, —

indicates the bottom, . indicates the middle.
[count] { Move back count paragraphs (default, one).
[count] | Move to the count’th column on the screen (leftmost, one).
[count] } Move forward count paragraphs (default, one).

If you are running elvis within an X terminal window, you can use also the mouse to reposition the cursor. To
bypass this feature (e.g., to perform the standard X cut-and-paste tasks), press <shift> while clicking a mouse
button.

Visual-Mode Edit Commands
The following describes the visual mode’s editing commands.

! [move] Run the selected text through an external filter program.
!! Replace the current line with the output of an external command.
[count] # Increment a number by count (default, one).
[count] & Repeat the previous :s// command count times (default, once).
< move Shift the enclosed text left.
=[move] Filter the affected text. The default filter is fmt, which performs simple paragraph formatting

and word wrap. To change the filter used by =, use the command :set ep=filter_name.
> move Shift the enclosed text right.
[count] A input Append input to end of the line.
C input Change text from the cursor through the end of the line.
D Delete text from the cursor through the end of the line.
[count] I input Insert text at the beginning of the line (after indentations).
[count] J Join lines the current with the following line.
K Look up the word under the cursor. The default lookup program is ref. You can change K so

as to get C language run-time library help for the word under the cursor by executing the
command:

set kp="help -f/usr/lib/helpfile -i/usr/lib/helpindex -d@"

You can write this line into file $HOME/.exrc, which elvis reads before it begins execution.
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[count] O input Open a new line above the current line.
R input Overtype.
[count] S input Change lines, like cc.
[count] X Delete count characters from the left of the cursor (default, one).
[count] a input Insert text after the cursor.
c move Change text.
d move Delete text.
[count] i input Insert text at the cursor.
[count] o input Open a new line below the current line.
[count] r key Replace count characters with text you type (default, one).
[count] s input Replace count characters with text you type (default, one).
[count] x Delete the character at which the cursor is positioned.
\ Pop up a menu of the most common operations.
[count] ~ Toggle a character between upper case and lower case.

Colon-Mode Commands
The following summarizes the set of colon-mode commands. It is no accident that these commands closely
resemble those for the ed line editor: they come, in fact, from ex, the editor upon which both vi (the UNIX visual
editor) and ed derive. For that reason, colon-command mode is sometimes called ex mode.

line indicates whether the command can be executed on one or more lines. line can be a regular expression. Some
commands can be used with an optional exclamation point; if done so, the editor assumes you know what you are
doing and suppresses the warnings and prompts it would normally issue for these commands.

Most commands can be invoked simply by typing the first one or two letters of their names.
abbr [word full_form]

Define word as an abbreviation for full_form.
and This command is used with the colon-mode command if to execute other commands

conditionally. It is never used on its own. For more information, see the section Conditional
Commands , below.

[line] append Insert text after the current line.
args [file1 ... fileN] With no arguments, print the files list on elvis’s command line. With one or more arguments,

change the name of the current file.
cc [files] Invoke the C compiler to compile files, and redirects all error messages into file errlist. After

the compiler exits, scan the contents of errlist for error messages; if one is found, jump to the
line and file indicated on the error line, and display the error message on the status line.

cd [directory] Switch the current working directory. With no argument, switch to the $HOME directory.
[line][,line] change [‘‘x]

Replace the range of lines with the contents of cut-buffer x.
chdir [directory] Same as the cd command.
color [when] [[type] color] [on color]

Set the screen’s colors. This command works only if you have an ANSI-compatible color
terminal. when defines the type of text whose color is being manipulated: normal, standout,
bold, underlined, italic, popup, and quit. The default is normal. You may use the first letter
of each as an abbreviation. color can be one of the following:

black blue green cyan
red magenta brown white
yellow gray grey

Valid color types can be one of the following: light, bright, or blinking.

The first use of color must specify both the foreground and background colors; the
background color thereafter defaults to the background color of normal text. For example, the
commands

color light cyan on blue
color b bright white

set the normal text to light cyan in the foreground and a blue background; and then set the
foreground color for bold text to bright white.

Not every valid color command works as expected on the system console, due to limitations in
the current release of the ansipc device driver.
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[line][,line] copy targetline
Copy the range of lines to after the targetline.

[line][,line] delete [‘‘x]
Move the range of lines into cut buffer x.

digraph[!] [XX [Y]] Set XX as a digraph for Y. With no arguments, display all currently defined digraphs. With
one argument, undefine the argument as a digraph.

edit[!] [file] Edit a file not named on the elvis command line.
else This command is used with the colon-mode command if to execute other commands

conditionally. For more information, see the section Conditional Commands , below.
errlist[!] [errlist] Find the next error message in file errlist, as generated through elvis’s cc or make

commands.
file [file] With an argument, change the output file to file. Without an argument, print information

about the current output file.
[line][,line] global /regexp/ command

Search the range of lines for all lines that contain the regular expression regexp, and execute
command upon each.

if This command is used to execute other commands conditionally. For more information, see
the section Conditional Commands , below.

[line] insert Insert text before the current line.
[line][,line] join Concatenate the range of lines into one line.
[line][,line] list Display the requested range of lines, making all embedded control characters explicit.
make [target] Same as the cc command, except that make is executed.
map[!] key mapped_to

Remap key to mapped_to. Normally, remapping applies just to visual-command mode; ‘!’ tells
elvis to remap the key under all modes. With no arguments, show all current key mappings.

[line] mark x Set a mark on line, and name it x.
mkexrc Save current configuration into file ./.exrc, which will be read next time you invoke elvis.
[line][,line] move targetline

Move the range of lines to after targetline.
next[!] [files] Switch to the next file on the elvis command line.
Next[!] Switch to the preceeding file on the elvis command line.
[line][,line] number Display the range of lines, with line numbers.
or This command is used with the colon-mode command if to execute other commands

conditionally. For more information, see the section Conditional Commands , below.
pop Pop the tag stack — that is, return to the most recently tagged position. elvis removes that

tag from the tag stack.
previous[!] Switch to the preceeding file on the elvis command line.
[line][,line] print Display the specified range of lines.
[line] put [‘‘x] Copy text from cut buffer x after the current line.
quit[!] Quit elvis, and return to the shell.
[line] read file Read the contents of file and insert them after line (default, the last line).
rewind[!] Switch to the first file on the elvis command line.
[line[,line]]s/oldstring/newstring/[g]

Substitute the first instance of newstring for oldstring. If no range of lines is indicated, the
substitution is performed only on the current line. To change every instance of oldline into
newline on a line, append the suffix g (‘‘global’’) to this command.

The command s with no arguments repeats the previous substitution. It is a synonym for the
command &, described below.

set [options] Set an elvis option. For details, see the section on set Options, below
shell Invoke a shell.
source file Read a set of colon-mode commands from file, and execute them.
[line][,line] substitute /regexp/replacement/[p][g][c]

For the range of lines, replace the first instance of regexp with replacement. p tells elvis to
print the last line upon which a substitution was performed. g means perform a global
substitution, i.e., replace all instances of regexp on each line with replacement. c tells elvis to
ask for confirmation before performing each substitution.

tag[!] tagname Find tagname in file tags, which records information about all tags. If found, jump to the file
and line upon which the tag is set.

then This command is used with the colon-mode command if to execute other commands
conditionally. For more information, see the section Conditional Commands , below.
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[line][,line] to targetline
Copy the range of lines to after the targetline.

unabbr word Unabbreviate word.
undo Undo the last editing command.
unmap[!] key Unmap key.
version Display the current version of elvis.
[line][,line] vglobal /regexp/ command

Search the range of lines for all lines that do not contain the regular expression regexp, and
execute command upon each.

visual Enter visual-command mode.
wq Save the changed file, and exit.
[line][,line] write[!] [[>>]file]

Write the file being edited into file. With the >> argument, append the edited text onto the end
of file.

xit[!] Same as the wq command, described above, except that it does not write files that have not
changed.

[line][,line] yank [‘‘x] Copy the range of lines into cut buffer x.
[line][,line] ! command

Execute command under a subshell, then return.
[line][,line] < Shift the range of lines left by one tabwidth.
[line][,line] = With no range of lines specified, print the number of the current line. With line arguments,

print the endpoints of the lines in question, and the number of lines that lie between them.
(Remember, line can be a regular expression as well as a number.)

[line][,line] > Shift the range of lines right by one tabwidth.
[line][,line] & Repeat the last substitution command.
@ x Read the contents of cut-buffer x as a set of colon-mode commands, and execute them. With

no arguments, list all current settings.
\@ Beginning with release 1.8, elvis replaces the escape sequence \@ by the word that the cursor

is on. This works in two special contexts: in regular expressions, and in any ex command that
also replaces ‘%’ with the current file name. This escape sequence can simplify writing certain
kinds of macros.

Conditional Commands
Beginning with release 1.8pl3, elvis supports conditional commands. Some of these commands set a conditional-
execution flag; others examine that flag and perform (or do not perform) commands if the flag is set. You cannot
nest conditional commands.

The colon-mode commands if, and, and or test for a condition. Their syntax is typical: each must be followed by
an expression, and and and or must follow an initial if command. Each command tests for a single condition.
That condition may involve examining the options set by the command set (which are described in detail in the
next section), set by termcap values, or by constants.

Colon-mode commands then and else execute commands conditionally, based upon the value of the conditional-
execution flag set by a preceding if command.

These commands most often are embedded in an initialization file, to initialize elvis properly under a variety of
conditions. The following gives an example if command that can be embedded in a user’s .exrc file. The command
correctly sets up the colors for both the system console and for an X terminal window. It works around the fact
that the console can handle color, but an X terminal window cannot:

if term="console"
then color yellow on blue | color quit white on blue
else color black on white

To disable these commands, add -DNO_IF to CFLAGS, then recompile elvis.

set Options
As noted above, the command set can set elvis’s internal options. Options come in three flavors: boolean, which
turn on or off a feature of the editor; string which define the string associated with a particular action; (e.g., the
name of a command or feature); and numeric, which set a dimension for the editor (e.g., the number of rows or
columns on the terminal screen). To turn off a boolean option, prefix it with the string ‘‘no’’.

The following lists the options that set recognizes. Assume that the boolean options are on, unless the entry says
otherwise:
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autoindent (boolean) Auto-indent during input? Default is no.
autoprint (boolean) When in ex mode, print the current line.
autotab (boolean) Can auto-indent use tabs?
autowrite (boolean) Is auto-write on when switching files? Default is no.
beautify (boolean) Should the editor strip control characters from a file? Default is no.
charattr (boolean) Interpret \fX sequences? Default is no.
cc (string) Name of the C compiler. Default is cc -c.
columns (numeric) Width of the screen. Default is 80.
digraph (boolean) Recognize digraphs? Default is no.
directory (string) Where are temporary files kept? Default is /usr/tmp.
edcompatible (boolean) Remember ‘‘:s//’’ options? Default is no.
equalprg (boolean) Program to run for the ‘=’ operator. Default is fmt.
errorbells (boolean) Beep when an error occurs.
exrc (boolean) Read the ./.exrc file? Default is no.
exrefresh (boolean) Write lines individually when in ex mode.
flash (boolean) Use visible alternative to bell.
flipcase (string) Non-ASCII chars flipped by the tilde character ‘~’. Default is the NULL string.
hideformat (boolean) Hide text formatter commands.
ignorecase (boolean) Make searches case sensitive. While in ignorecase mode, the searching mechanism does

not distinguish between an upper-case letter and its lower-case form. In noignorecase
mode, upper case and lower case are treated as being different. Default is no.

inputmode (boolean) Start vi in insert mode? Default is no.
keytime (numeric) Timeout for mapped key entry. Default is two.
keywordprg (string) Path name of program invoked by shift-K. Default is ref.
lines (numeric) Number of lines on the screen. Default is 25.
list (boolean) Display lines in list mode? Default is no.
magic (boolean) Enable the use of regular expressions in a search. While in magic mode, all meta-

characters behave as described above. In nomagic mode, only ^ and $ retain their special
meaning.

make (string) Name of the ‘‘make’’ program. Default is make.
mesg (boolean) Allow messages from other users?
modelines (boolean) Are mode lines processed? Default is no.
more (boolean) Pause between messages?
nearscroll (numeric) This governs when to scroll versus when to redraw the screen. If you move the cursor

more than the number of lines set by this option, elvis redraws the screen; otherwise, it
scrolls the screen. The default is 15 lines.

novice (boolean) Set options for ease of use? Default is no.
number (boolean) Turn on line numbering.
paragraphs (string) Names of nroff ‘‘paragraph’’ commands. Default is PPppIPLPQP.
prompt (boolean) Show ‘:’ prompt in ex mode.
readonly (boolean) Prevent overwriting of original file. Default is no.
remap (boolean) Allow key maps to call other key maps.
report (numeric) Report when a given number of changes occur. Default is five.
ruler (boolean) Display line and column numbers. Default is no.
safer Toggle elvis’ security option. This option is set temporarily during the execution of any

command from modeline or ./.exrc. It disables the following commands:

:! :Next :abbreviate :args :cc
:cd :chdir :ex :file :make
:map :mkexrc :next :pop :previous
:rewind :shell :stop :suspend :tag
:unab :unmap :visual :write

Note that set safer does not disable :wq, as this command does not let the user name the
file into which to write. :read is still allowed, but it will not let the user read from a filter.

set safer forbids the user from altering the following options:

autowrite cc directory equalprg
keywordprg make shell trapunsafe
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It also disables wildcard expansion and the visual ‘!’ command.
scroll (numeric) Set the number of lines the screen scrolls with the <ctrl-D> and <ctrl-U> commands.

Default is 12.
sections (string) Names of nroff ‘‘section’’ commands. Default is NHSHSSSEse.
shell (string) Path name of the shell. Default is /bin/sh.
showmatch (boolean) Show all matching parentheses, brackets, and braces. Default is no.
showmode (boolean) Say when editor is in input mode. Default is no.
shiftwidth (numeric) Set number of characters the < and > commands shift the screen. Default is eight.
sidescroll (numeric) Set number of columns the editor scrolls. Default is eight.
sync (boolean) Call sync() often? Default is no.
tabstop (numeric) Number of columns set by a tab character. Default is eight.
taglength (numeric) Number of significant characters in a tag name. Default is zero.
tags (string) Name the list of ‘‘tags’’ files that elvis can read.
tagstack (boolean) Enable the tagstack. Default is no.
term (string) Name of the current terminal’s termcap entry. Default is $TERM.
terse (boolean) Give shorter error messages? Default is no.
timeout (boolean) Distinguish <esc> from an arrow key?
warn (boolean) Warn if a file has been modified?
window (numeric) Number of lines to redraw after long move. Default is 24.
wrapmargin (numeric) Left margin to use when wrapping long lines in input mode. Default is zero.
wrapscan (boolean) Searches wrap from end to beginning of the file.
writeany (boolean) Let the write command :w clobber a file. Default is no.

Input-Mode Commands
Most keystrokes are interpreted as being text and inserted directly into the text; however, some keystrokes are still
interpreted as commands. Thus, you can perform an entire session of simple editing directly within input mode
without switching to either of the command modes.

The following summarizes the commands that can be executed directly within input mode:

<ctrl-A> Insert a copy of the last input text.
<ctrl-C> Send the signal SIGINT to interrupt a command.
<ctrl-D> Delete one indent character.
<ctrl-H> Erase the character before the cursor.
<ctrl-L> Redraw the screen.
<ctrl-M> Insert a newline.
<ctrl-P> Insert the contents of the cut buffer.
<ctrl-R> Redraw the screen, like <ctrl-L>.
<ctrl-T> Insert an indent character.
<ctrl-U> Move to the beginning of the line. When you are typing a command line or search pattern on

the bottom line, <ctrl-U> backspaces over all characters typed so far.
<ctrl-V> Insert the following keystroke, even if special.
<ctrl-W> Backspace to the beginning of the current word.
<ctrl-Z><ctrl-Z> Write the file and exit elvis.
<ctrl-Z> Save the file if it has been modified, but do not exit from elvis. This works only if you have set

the mode autowrite.
<esc> Shift from input mode to visual-command mode.
<del> Delete the current character.

When elvis is in input mode, you can use the keystroke <ctrl-O> to invoke some visual commands without exiting
from input mode. For example, when you are in input mode, typing <ctrl-O>J moves down a line but leaves you in
input mode.

Keyboard Macros
elvis Beginning with release 1.8, elvis can record keystokes into a cut buffer. This is equivalent to a MicroEMACS
‘‘keyboard macro’’.

The following commands manipulate keyboard macros:

[a Open a keyboard macro. elvis executes all subsequent keystrokes as normal, but also records them
within a temporary buffer.
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]a Stop recording keystrokes, and copy the keystrokes into the cut buffer.

@a To replay the recorded keystrokes.

Command-line Options
elvis lets you name up to 27 files on the command line, thus allowing you to edit up to 27 files simultaneously.
The ‘‘next file’’ and ‘‘previous file’’ commands described above allow you to shift from one file to another during the
same editing session; in this way, for example, you can cut text from one file and paste it into another.

elvis recognizes the following command-line options:

-r Recover a previous edit.
-R Invoke elvis in ‘‘read-only’’ mode. This is equivalent to invoking elvis via the link view.
-s Invoke elvis in ‘‘safer’’ mode. This is equivalent to the command set safer, described above.
-t tag Begin editing at tag.
-m [ file ]

Invoke elvis in error-handling mode. It searches through file for something that looks like an error
message from a compiler, then positions the cursor at that point for editing.

-e Begin in colon-command mode.
-v Begin in visual-command mode.
-i Begin in input mode.
-w winsize

Set the value of option window, which sets the size of the screen with which elvis works, to winsize.
window is described below.

+command
Execute command immediately upon beginning editing. For example

elvis +237 foo
causes elvis to move directly to line 237 immediately upon beginning to edit file foo.

Regular Expressions
elvis uses regular expressions for searching and substitutions. A regular expression is a text string in which some
characters have special meanings. This is much more powerful than simple text matching.

elvis’s regexp package treats the following one- or two-character strings (called meta-characters) in special ways:
\( \) Delimit subexpressions. When the regular expression matches a chunk of text, elvis remembers which

portion of that chunk matched the subexpression. The command

:s/regexp/newtext/

command makes use of this feature.
^ Match the beginning of a line. For example, to find foo at the beginning of a line, use the regular

expression /^foo/. Note that ^ is a metacharacter only if it occurs at the beginning of a regular expression;
anywhere else, it is treated as a normal character.

$ Match the end of a line. It is a metacharacter only when it occurs at the end of a regular expression;
elsewhere, it is treated as a normal character. For example, the expression /$$/ searches for a dollar sign
at the end of a line.

\< Match a zero-length string at the beginning of a word. A word is a string of one or more letters and digits;
it can begin at the beginning of a line or after one or more non-alphanumeric characters.

\> Matches a zero-length string at the end of a word. A word can end at the end of the line or before one or
more non-alphanumeric characters. For example, /\<end>/ finds any instance of the word end, but
ignores any instances of ‘‘end’’ inside another word, such as ‘‘calendar’’.

. Match any single character.
[character-list]

Match any single character from the character-list. Inside the character-list, you can denote a span of
characters by writing the first and last characters, with a hyphen between them. If the character-list is
preceded by a ^, then the list is inverted — it matches all characters not mentioned in the list. For
example, /[a-zA-Z]/ matches any letter, and /[^ ]/ matches anything other than a blank.

\{n\} Repeat the preceding expression n times. This operator can only be placed after something that matches a
single character. For example, /^-\{80\}$/ matches a line of eighty hyphens, and /\<[a-zA-Z]\{4\}\>/
matches any four-letter word.

\{n,m\} Repeat the preceding single-character expression between n and m times, inclusive. If the m is omitted
(but the comma is present) then it is taken to be infinity. For example, /"[^"]\{3,5\}"/ matches any pair of
quotation marks that enclose three, four, or five non-quotation characters.
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* Repeat the preceding single-character expression zero or more times. For example, /.*/ matches a whole
line.

/+ Repeat the preceding single-character expression one or more times. It is equivalent to \{1,\}. For
example, /.\+/ matches a whole line, but only if the line contains at least one character. It does not
match empty lines.

/? The preceding single-character expression is optional — that is, that it can occur zero or one times. It is
equivalent to \{0,1\}. For example, /no[- ]?one/ matches no one, no-one, and noone.

Anything else is treated as a normal character that must exactly match a character from the scanned text. The
special strings may all be preceded by a backslash to force them to be treated normally.

Substitutions
The command :s has at least two arguments: a regular expression and a substitution string. The text that matches
the regular expression is replaced by text that is derived from the substitution string.

Most characters in the substitution string are copied into the text literally but a few have special meaning:

& Insert a copy of the original text.
~ Insert a copy of the previous replacement text.
\1 Insert a copy of that portion of the original text that matched the first set of parentheses.
\2-\9 Do the same for the second and all subsequent pairs of parentheses.
\U Convert all characters of any later & or \# to upper case.
\L Convert all characters of any later & or \# to lower case.
\E End the effect of \U or \L.
\u Convert the first character of the next & or # to upper case.
\l Convert the first character of the next & or \# to lower case.

These may be preceded by a backslash to force them to be treated normally.

If nomagic mode is in effect, then & and ~ will be treated normally, and you must write them as \& and \~ for
them to have special meaning.

Preserving Text
Should elvis sense that it is about to die unexpectedly, it invokes the command elvprsv to save the temporary file
in which it manipulates the file you are editing. To recover this saved file, use the command elvrec. Both
commands are described in the Lexicon.

Initialization Files
When you invoke elvis, it searches for file $HOME/.exrc. If it finds that file, it reads the file and attempts to
execute its contents as a series of ex commands. (As noted earlier, ex commands simply are elvis’ set of colon-
mode commands, but without the preceding colon.)

Usually, this file is used to contain instances of the commands set and color, to set up elvis’ environment and
appearance to your taste. For example, if your .exrc file contains the commands

color white on blue
set ignorecase
set inputmode

then elvis sets the screen’s background color to blue and its foreground color to white; turn on ignorecase mode
(that is, string searches will ignore case), and come up in input mode rather than command mode.

The file $HOME/elvis.rc is a synonym for $HOME/.exrc.

When you invoke elvis, it also searches for the file $HOME/.exfilerc This file holds ex commands that elvis
executes every time it loads a text file for editing. You can embed if commands in this file so that elvis handles
special classes of files uniquely. For example, you can use an if command to tell elvis to handle files with the
suffix .c differently from other files; this lets you invoke special editing functions for C programs.

Examples
The first example changes every occurrence of ‘‘utilize’’ to ‘‘use’’:

:%s/utilize/use/g

The next example deletes all white space that occurs at the end of a line anywhere in the file. (The brackets
contain a single space and a single tab character):

LEXICON

578 elvis



:%s/[ ]+$//
The next example converts the current line to upper case:

:s/.*/U&/

The next example underlines each letter in the current line, by changing it into an underscore backspace letter
sequence. (The <ctrl-H> is entered as <ctrl-V><backspace>):

:s/[a-zA-Z]/_^H&/g

The last example locates the last colon in a line, and swaps the text before the colon with the text after the colon.
The first pair of parentheses delimits the stuff before the colon, and the second pair delimits the stuff after. In the
substitution text, \1 and \2 are given in reverse order to perform the swap:

:s/\(.*\):\(.*\)/\2:\1/

Environment
elvis reads the following environmental variables:

TERM This names your terminal’s entry in the termcap or terminfo data base.

TERMCAP
Optional. If your system uses termcap, and the TERMCAP variable is not set, then elvis reads your
terminal’s definition from /etc/termcap. If TERMCAP is set to the full path name of a file (beginning with
a ‘/’), it reads your terminal’s description from the named file instead of from /etc/termcap. If TERMCAP
is set to a value that does not begin with a ‘/’, then elvis assumes that its value is the full termcap entry
for your terminal.

TERMINFO
Optional. elvis treats this exactly like the environmental variable TERMCAP, except for the terminfo data
base.

LINES
COLUMNS

Optional. These variables, if set, override the screen-size values given in the termcap or terminfo
description of your terminal On windowing systems such as X, elvis has other ways to determine the
screen size, so you should probably leave these variables unset.

EXINIT
Optional. This variable can hold ex commands that elvis executes before it reads any .exrc files.

SHELL Optional. This variable sets the default value for the shell option, which determines which shell program
elvis uses to perform wildcard expansion in file names, and to execute filters or external programs. The
default value is /bin/sh.

HOME This variable should be set to the name of your home directory. elvis looks for its initialization file there.
If HOME is not set, then elvis does not execute the initialization file.

TAGPATH
Optional. This variable is used by the program ref. See "ref" for more information.

Bug Fixes from Release 1.7
Beginning with release 4.2.10, COHERENT includes elvis release 1.8pl3. The following describes the bugs that this
release fixes The initial release of elvis 1.8 includes the following bug fixes:

• Most screen update bugs are fixed. Most of ones that were not fixed can be avoided by :set nooptimize.

• A bug in the visual ‘@’ command was fixed. This bug can be blamed for most of elvis’ incompatibility with
fancy macro packages. elvis can now run the ‘‘Bouncing Ball,’’ ‘‘Word Completion,’’ and ‘‘Turing’’ macros with
no changes. NB, it still cannot run ‘‘Towers of Hanoi.’’

The following bug fixes are included in patch-level 1 (pl1):

• Fixed a bug that caused core dump when you use the ‘}’ command used on blank line after last paragraph in
file.

• Fixed a bug that caused loss of text with AutoIndent enabled, when two newlines are inserted into the middle
of a line.
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The following bug fixes are included in patch-level 2 (pl2):

• Fixed a security hole on some UNIX systems.

• After :w, # refers to the file just written.

• Fixed bug in tag lookup.

• The compiler error parser now allows ‘_’ in a file name.

• Fixed a bug that caused some blank lines in the file .exrc to be interpreted as :p commands.

• Increased the limit on word size for the command <ctrl-A>. The old limit was 30; the new limit is 50. If you
exceed this limit, elvis will now search for the longest possible substring; before, it would bomb. To change
the limit, add -DWSRCH_MAX=n (where n gives the limit on word size) to CFLAGS in the Makefile, then
recompile elvis.

• Increased the size of an array used while showing option settings. The old size could overflow if you did a :set
all on some systems. Now, the maximum size is calculated at compile time, and the array is declared to this
size.

• The command 5r<ctrl-M> now leaves the cursor in the right place. In earlier releases, 5r<ctrl-M> would
replace five characters with five newline characters, and leave the cursor five lines lower. Release 1.8 replaced
five characters with a single newline character, to mimic the real vi better, but still left the cursor five lines
lower. This patch finally makes it right.

The following bug fixes are included in patch-level 2 (pl2):

• Corrected bugs in :tag and :make, which caused tag addresses and error messages to be forgotten after
switching files. The .exfilerc feature interacted with these bugs, and made them pretty obnoxious. A similar
bug caused the command :e +cmd file to start misbehaving; it has been fixed, too.

• The option window now defaults to zero. Zero is a special value, which means ‘‘use as many rows as
possible.’’ Previously, this option defaulted to the maximum number of rows available when elvis started
(usually 24), which resulted in ‘@’ signs appearing on the screen if you resized the display while elvis was
running. This problem only showed up when you ran elvis in an X terminal window.

• A bug has been fixed in autoindentation. Previously, if you inserted a newline before the first non-whitespace
character on a line, then everything after the insertion point was wiped out. (This is different from the bug
that pl2 fixed. pl2’s fix addresses a bug that affected insertion of multiple newlines anywhere in a lines; this
one affects inserting a single newline before the first non-whitespace character.)

• To avoid linking problems on various systems, the variable kD has been renamed kDel, and function ioctl() in
pc.c renamed elvis_ioctl.

• A bug that caused :! to clobber the value of # (i.e., the previous file name) has been fixed.

• There is a bug that affects screen redraws after pasting (the visual p and P commands). In an attempt to work
around this bug, elvis will sometimes redraw the screen from scratch after a multi-line paste.

• Some people have reported problems using fmt on non-English text. I suspect that this is due to a faulty
implementation of isspace() in the standard C library. In release 1.8pl3, fmt does not use isspace() anymore;
it uses a built-in macro which explicitly tests for <space> or <tab>. This may solve the problem.

Files
/tmp/elv* — Temporary files
tags — Data base used by the tags command
$HOME/.exrc — File that sets personal defaults
$HOME/.exfilerc — File that sets defaults when a file is read
$HOME/elvis.rc — Same as .exrc

See Also
commands, ed, elvprsv, elvrec, ex, fmt, me, vi, view

Notes
elvis returns zero if the file being edited was updated. It returns one if the file was not updated, and a different
nonzero value if an error occurred.
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Full documentation for elvis is included with this release in compressed file /usr/src/alien/Elvis.doc.Z.

elvis is copyright  1990 by Steve Kirkendall, and was written by Steve Kirkendall (kirkenda@cs.pdx.edu or
uunet!tektronix!psueea!eecs!kirkenda), assisted by numerous volunteers. It is freely redistributable, subject to the
restrictions noted in included documentation. Source code for elvis is available through the Mark Williams
bulletin board, USENET, and numerous other outlets.

elvprsv — Command
Preserve the modified version of a file after a crash
elvprsv ["-why elvis died"] /tmp/filename...
elvprsv -R /tmp/filename...

The command elvprsv, or ‘‘elvis preserved,’’ preserves your edited text should elvis die unexpectedly. You can
later use the command elvrec to rebuild the edited buffer.

You should never need to run elvprsv from the command line. elvis automatically invokes it should it sense that
it is about to die. Script /etc/rc should also invoke elvprsv, to preserve any temporary files that may have been
left in directory /tmp when the system went down.

If elvis were to die unexpectedly while you were editing a file, elvprsv would preserve the most recent version of
your text. The preserved text is stored in a special directory; elvprsv does not overwrite your text file. elvprsv
sends mail to each user whose work it preserves. Should the preservation directory not be set up correctly,
elvprsv simply sends you a mail message that describes how to it manually.

Files

/tmp/elv*
Temporary file that elvis was using when it died.

/usr/preserve/p*
Text that is preserved by elvprsv.

/usr/preserve/Index
Text file that names all preserved files and the files in which they are preserved.

See Also
commands, elvis, elvrec

Notes
Due to the permissions on directory /usr/preserve, only the superuser root can run elvprsv.

If you were editing a nameless buffer when elvis died, elvprsv saves its contents in a file named foo.

elvprsv was written by Steve Kirkendall (kirkenda@cs.pdx.edu).

elvrec — Command
Recover the modified version of a file after a crash
elvrec [preservedfile [newfile]]

Should elvis die while you were editing a file, it automatically invokes the command elvprsv to preserve the most
recent version of your edited text. elvprsv stores the preserved text in a special directory: it does not overwrite
your text file

The command elvrec locates the preserved version of a file, and either overwrites your text file or creates a new file,
whichever you prefer. The recovered file will hold nearly all of your changes.

To see a list of all recoverable files, run elvrec with no argument. preservedfile names the file into which elvprsv
had saved the edited buffer. elvrec is very picky about file names: you must use exactly the same path name as
you did to edit the file.

newfile names the file into which elvrec writes the edited buffer. If you do not name a newfile on its command
line, elvrec overwrites your original file with the preserved, edited version.

Files
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/usr/preserve/p*
The text that was preserved when elvis died.

/usr/preserve/Index
The names of all preserved files, and the names of the files that preserve their text.

See Also
commands, elvis, elvprsv

Notes
Due to the permissions on the directory /usr/preserve, only the superuser root can run elvrec.

If you haven’t set up a directory for file preservation, then you must manually run the program elvprsv instead of
elvrec.

If you were editing a nameless buffer when elvis died, then elvrec saves the text into a file named foo.

elvrec was written by Steve Kirkendall (kirkenda@cs.pdx.edu).

em87 — Kernel Module
Perform/emulate hardware floating-point operations

The kernel module em87 performs or emulates hardware floating-point operations. Whether it performs the
operations or emulates them depends whether your computer contains a mathematics co-processor. Note that the
Intel 80486-DX processor has the co-processor built in.

em87 is called a kernel module because you can link it into the kernel or exclude it from the kernel, just like a
device driver. However, it is not a true device driver because it does not perform I/O from a peripheral device. To
install em87 into a kernel (should your kernel not already contain it), log in as the superuser root and execute the
following commands:

cd /etc/conf
em87/mkdev
bin/idmkcoh -o /kernel_name

where kernel_name is the name of the new kernel to build. When you next boot COHERENT, hardware floating
point will be enabled.

See Also
device drivers, float, kernel

emacs — Command
COHERENT screen editor
emacs [-e errorfile] [-f bindfile] [textfile ...]

emacs is a link to the COHERENT screen editor, which is a scaled-down version of the EMACS screen editor.

For details, see the Lexicon entry for me.

See Also
commands, me

enable — Command
Enable a port
/etc/enable port...

The COHERENT system is a multiuser operating system; it allows many users to use the system simultaneously.
An asynchronous communication port connects each user to the system, normally by a terminal or a modem
attached to the port. The system communicates with the port by means of a character special file in directory
/dev, such as /dev/com3r or /dev/com2l.

The COHERENT system will not allow a user to log in on a port until the system creates a login process for the port.
The enable command tells the system to create a login process for each given port. For example, the command

/etc/enable com1r
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enables port /dev/com1r.

enable changes the entry for each given port in the terminal characteristics file /etc/ttys. The baud rate specified
in /etc/ttys must be the appropriate baud rate for the terminal or modem connected to the port. See the Lexicon
entry for ttys for more information.

The command disable disables a port. The command ttystat checks whether a port is enabled or disabled.

Files
/etc/ttys — Terminal characteristics file
/dev/com* — Devices serial ports

See Also
asy, commands, disable, getty, login, ttys, ttystat

Diagnostics
enable normally returns one if it enables the port successfully and zero if not. If more than one port is specified,
enable returns the success or failure status of the last port it finds. It returns -1 if it cannot find any given port.
An exit status of -2 indicates an error.

Notes
It is not recommended that you attempt to enable a port that is already enabled. To make sure, run /etc/disable
before running /etc/enable.

endgrent() — General Function (libc)
Close group file
#include <grp.h>
endgrent()

endgrent() closes the file /etc/group. It returns NULL if an error occurs.

Files
/etc/group
<grp.h>

See Also
group, libc

endhostent() — Sockets Function (libsocket)
Close file /etc/hosts
#include <netdb.h>
void endhostent();

The function endhostent() is one of a set of functions that interrogate the file /etc/hosts to look up information
about a remote host on a network. It closes /etc/hosts upon the conclusion of searching.

See Also
gethostbyaddr(), gethostbyname(), libsocket, sethostent()

endnetent() — Sockets Function (libsocket)
Close network file
#include <netdb.h>
void endnetent();

Function endnetent() closes file /etc/networks which describes all entities on your local network, after it had
been opened by function getnetent() or setnetent().

See Also
getnetbyaddr(), getnetent(), libsocket, netdb.h, setnetent()
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endprotoent() — Sockets Function (libsocket)
Close protocols file
#include <netdb.h>
void endprotoent();

Function endprotoent() closes file /etc/protocols which describes all protocols recognized by your local network,
after it had been opened by function getprotoent() or setprotoent().

See Also
getprotobyaddr(), getprotobyname(), getprotoent(), libsocket, netdb.h, setprotoent()

endpwent() — General Function (libc)
Close password file
#include <pwd.h>
endpwent()

The COHERENT system has five routines that search the file /etc/passwd, which contains information about every
user of the system. endpwent() closes the password file. Please note that this function does not return a
meaningful value.

Example
For an example of this function, see the entry for getpwent().

Files
/etc/passwd
pwd.h

See Also
getpwent(), getpwnam(), getpwuid(), libc, pwd.h, setpwent()

endservent() — Sockets Function (libsocket)
Close protocols file
#include <netdb.h>
void endservent();

Function endservent() closes file /etc/protocols which describes the services offered by TCP/IP on your local
network. after it had been opened by function getservent() or setservent().

See Also
getservbyname(), getservbyport(), getservent(), libsocket, netdb.h, setservent()

endspent() — General Function (libc)
Close the shadow-password file
#include <shadow.h>
endspent()

The COHERENT system has four routines that search the file /etc/shadow, which contains the password of every
user of your system. endspent() closes /etc/shadow. It does not return a meaningful value.

Files
/etc/shadow
/usr/include/shadow.h

See Also
getspent(), libc, setspent(), shadow, shadow.h

endutent() — General Function (libc)
Close the login logging file
#include <utmp.h>
void endutent()
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Function endutent() closes the logging file. Usually this is the system file /etc/utmp. The file must have been
opened by a call to function getutent(), getutid(), or getutline().

For a summary of the family of functions that manipulate logging files, see the Lexicon entry for utmp.h.

See Also
getutent(), libc, utmp.h

enum — C Keyword
Declare a type and identifiers

An enum declaration is a data type whose syntax resembles those of the struct and union declarations. It lets you
enumerate the legal value for a given variable. For example,

enum opinion {yes, maybe, no} GUESS;

declares type opinion can have one of three values: yes, no, and maybe. It also declares the variable GUESS to be
of type opinion.

As with a struct or union declaration, the tag (opinion in this example) is optional; if present, it may be used in
subsequent declarations. For example, the statement

register enum opinion *op;

declares a register pointer to an object of type opinion.

All enumerated identifiers must be distinct from all other identifiers in the program. The identifiers act as
constants and can be used wherever constants are appropriate.

COHERENT assigns values to the identifiers from left to right, normally beginning with zero and increasing by one.
In the above example, the values of yes, no, and maybe are set, respectively, to one, two, and three. The values
often are ints, although if the range of values is small enough, the enum will be an unsigned char. If an identifier
in the declaration is followed by an equal sign and a constant, the identifier is assigned the given value, and
subsequent values increase by one from that value; for example,

enum opinion {yes=50, no, maybe} guess;

sets the values of the identifiers yes, no, and maybe to 50, 51, and 52, respectively.

See Also
C keywords
ANSI Standard, §6.5.2.2

ENV — Environmental Variable
File read to set environment

Whenever the Korn shell is invoked, it executes the script named in the environmental variable ENV. By custom,
this is set to ${HOME}/.kshrc, although you can name any file you wish. This script usually sets aliases and
environmental variables, and executes the set command to modify the behavior of the shell itself.

By defining ENV in your .profile, you can ensure that this file is executed whenever you invoke a shell. If you wish
to have its definitions read only by the login shell, insert the instruction

unset ENV

at the end of the script named by ENV.

See Also
environmental variables, ksh, .kshrc

env — Command
Execute a command in an environment
env [-] [VARIABLE=value ...] [command args]

The command env executes command with args, modifying the existing environment by performing the requested
assignments.
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The ‘-’ option tells env to replace the environment with the arguments of the form VARIABLE=value; otherwise the
assignments are added to the environment.

If command is omitted, the resulting environment is printed.

See Also
commands

environ — C Language
Process environment

extern char **environ;

environ is an array of strings, called the environment of a process. By convention, each string has the form

name=value

Normally, each process inherits the environment of its parent process. The shell sh and various forms of exec can
change the environment. The shell adds the name and value of each shell variable marked for export to the
environment of subsequent commands. The shell adds assignments given on the same line as a command to the
environment of the command, without affecting subsequent commands.

See Also
C language, exec, getenv(), Programming COHERENT, putenv(), sh
POSIX Standard, §3.1.2

environmental variables — Technical Information
The environment is a set of information that is read by all programs that run on your system. It consists of one or
more environmental variables that you set. For example, when you set the environmental variable PATH, you tell
COHERENT that you wish to pass this information to all programs on your system, including COHERENT itself.

By changing the environment, you can change the way a command works without rewriting any commands that
you may have embedded in batch files, scripts, or makefiles.

Your programs may request environmental variables of their own definition. COHERENT uses the following
environmental variables to set its environment. Note that the variables marked with an asterisk are used only by
the Korn shell ksh.

ASKCC . . . . . . . . . . Have mail prompt for CC names
CWD* . . . . . . . . . . . Current working directory
EDITOR . . . . . . . . . Editor used by default by mail
ENV* . . . . . . . . . . . File read to set environment
FCEDIT* . . . . . . . . . Editor used by the fc command
IFS . . . . . . . . . . . . Characters recognized as white space
HOME . . . . . . . . . . User’s home directory
KSH_VERSION*. . . . . List current version of Korn shell
LASTERROR* . . . . . . Program that last generated an error
LIBPATH . . . . . . . . . Directories that hold compiler phases and libraries
LOGNAME . . . . . . . . Name user’s identifier
MAIL . . . . . . . . . . . File that holds user’s mail messages
MLP_COPIES . . . . . . Set default number of copies to print
MLP_FORMLEN. . . . . Set default page length
MLP_LIFE . . . . . . . . Set default life for print jobs
MLP_PRIORITY. . . . . Set default priority for print spooling
MLP_SPOOL . . . . . . . Pass user-specific information to print spooler
PAGER . . . . . . . . . . User’s preferred output filter
PATH . . . . . . . . . . . Directories that hold executable files
PS1 . . . . . . . . . . . . User’s default prompt
PS2 . . . . . . . . . . . . Prompt when unbalanced quotation marks span a line
SECONDS*. . . . . . . . Number of seconds since current shell started
SHELL . . . . . . . . . . Name the default shell
TERM. . . . . . . . . . . Name the default terminal type
TIMEZONE. . . . . . . . User’s current time zone
TMPDIR . . . . . . . . . Directory that holds temporary files
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USER . . . . . . . . . . . Name user’s identifier

You can also set the following environmental variables to control the default settings of the COHERENT assembler
as, the C compiler cc, and the linker ld:

ARHEAD . . . . . . . . . Append options to beginning of ar command line
ARTAIL. . . . . . . . . . Append options to end of ar command line
ASHEAD . . . . . . . . . Append options to beginning of as command line
ASTAIL . . . . . . . . . . Append options to end of as command line
CCHEAD . . . . . . . . . Append options to beginning of cc command line
CCTAIL. . . . . . . . . . Append options to end of cc command line
CPPHEAD . . . . . . . . Append options to beginning of cpp command line
CPPTAIL . . . . . . . . . Append options to end of cpp command line
LDHEAD . . . . . . . . . Append options to beginning of ld command line
LDTAIL . . . . . . . . . . Append options to end of ld command line

See Also
get_env(), unset, Using COHERENT

Notes
To delete an environmental variable, use the command unset.

envp — C Language
Argument passed to main()
char *envp[];

envp is an abbreviation for environmental parameter. It is the traditional name for a pointer to an array of string
pointers passed to a C program’s main function, and is by convention the third argument passed to main.

Example
The following example demonstrates envp, argc, and argv.

#include <stdio.h>

main(argc, argv, envp)
int argc; /* Number of args */
char *argv[]; /* Argument ptr array */
char *envp[]; /* Environment ptr array */
{

int a;

printf("The command name (argv[0]) is %s\n", argv[0]);
printf("There are %d arguments:\n", argc-1);
for (a=1; a<argc; a++)

printf("\targument %2d:\t%s\n", a, argv[a]);

printf("The environment is as follows:\n");
a = 0;
while (envp[a] != NULL)

printf("\t%s\n", envp[a++]);
}

See Also
argc, argv, C language, environ, main()

EOF — Manifest Constant
Indicate end of a file
#include <stdio.h>

EOF is an indicator that is returned by several STDIO functions to indicate that the current file position is the end
of the file.

Many STDIO functions, when they read EOF, set the end-of-file indicator that is associated with the stream being
read. Before more data can be read from the stream, its end-of-file indicator must be cleared. Resetting the file-
position indicator with the functions fseek, fsetpos, or ftell will clear the indicator, as will returning a character to
the stream with the function ungetc.
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See Also
file, manifest constant, stream, stdio.h
ANSI Standard, §7.9.1

epson — Command
Prepare files for Epson printer
epson [ -cdfnrw8 ] [ -b head ] [ -i n ] [ -o file ] [ -s n ] [ file ... ]

epson prepares text for printing an Epson or Epson-compatible dot-matrix printer. It recognizes the nroff output
sequences for boldface and italics and converts them into the Epson codes for emphasized print and italics.

If you do not name a file on its command line, epson reads the standard input. By default, epson writes its output
to the standard output. Thus, you can use epson as a filter within an MLP backend script.

By default, epson outputs the string ‘‘\033 @ \033 t \0’’ at the beginning of each job to initialize the printer. The
sequence ‘‘\033 @’’ clears the printer and prepares it to receive new data; while the escape sequence ‘‘\033 t \0’’
makes an Epson printer’s built-in italics font available. To suppress the italics-font portion of the initialization
sequence, use the command-line option -n, described below.

epson recognizes the following command-line options:

-b head Print the given head as a double-width banner at the top of the first output page.

-c Use compressed printing mode.

-d Print boldface as double strikes. Normally, epson recognizes the sequence ‘‘c\bc’’ as boldface and prints c
in emphasized printing mode. -d is useful in conjunction with -c.

-f Do not print a formfeed character at the end of each file.

-in Indent n spaces at the start of each output line.

-n No italics: suppress the italics portion of the printer-initialization string. When you use this switch, epson
outputs the string ‘‘\033 @’’ to initialize the printer.

-o file Write output into file, instead of sending it to device /dev/lp.

-r Print all characters in Roman; do not use italics. Normally, epson recognizes the sequence ‘‘_\bc’’ as italic
and prints c in its italic character set.

-sn Print n newlines at the end of each line. n must be 1, 2, or 3; the default is 1.

-w Use double width printing mode.

-8 Print lines with vertical spacing of eight lines per inch instead of the default six lines per inch.

See Also
commands, lp, nroff, pr, printer

Notes
Prior to release 4.2.12 of COHERENT, epson wrote its output to device /dev/lp instead of to the standard output.

erand48() — Random-Number Function (libc)
Return a 48-bit pseudo-random number as a double
double erand48(xsubi)
unsigned short xsubi[3];

Function erand48() generates a 48-bit pseudo-random number, and returns it in the form of a double. The value
returned is (or should be) uniformly distributed through the range of 0.0 through 1.0. xsubi is an array of three
unsigned short integers from which the pseudo-random number is built.

See Also
libc, srand48()
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errno — Global Variable
External integer for return of error status
#include <errno.h>
extern int errno;

errno is an external integer that COHERENT links into each of its programs. COHERENT sets errno to the negative
value of any error status returned to any function that performs COHERENT system calls.

Mathematical functions use errno to indicate classifications of errors on return. errno is defined within the header
file errno.h. Because not every function uses errno, it should be polled only in connection with those functions
that document its use and the meaning of the various status values. For the names of the error codes (as defined
in errno.h, their value, and the message returned by the function perror, see errno.h.

Example
For an example of using errno in a mathematics program, see the entry for acos.

See Also
errno.h, libm, perror(), Programming COHERENT, signal()
ANSI Standard, §7.1.4
POSIX Standard, §2.4

errno.h — Header File
Error numbers used by errno()
#include <errno.h>

errno.h is the header file that defines and describes the error numbers returned in the external variable errno. The
following lists the error numbers defined in errno.h:

EPERM: Permission denied
You lack permission to perform the operation you have requested.

ENOENT: No such file or directory
A program could not find a required file or directory.

ESRCH: No such process
You are attempting to communicate with a process that does not exist.

EINTR: Interrupted system call
A COHERENT system call failed because it received a signal or an alarm expired.

EIO: I/O error
A physical I/O error occurred on a device driver. This could be a tape error, a CRC error on a disk, or a
framing error on a synchronous HDLC link.

ENXIO: No such device or address
You attempted to access a device that does not exist. It may be that a specified minor device is invalid, or
the unit is powered off. This error can also indicate that a block number given to a minor device is out of
range. If you attempt to open a pipe in write-only mode, if O_NDELAY is set, and if there are currently no
readers on this pipe, open() returns immediately and sets errno to ENXIO.

E2BIG: Argument list too long
The number of bytes of arguments passed in an exec is too large.

ENOEXEC: exec() format error
The file given to exec is not a valid executable module (probably because it does not have the magic
number at the beginning), even though its mode indicates that it is executable.

EBADF: Bad file descriptor
You passed a file descriptor to a system call for a file that was not open or was opened in a manner
inappropriate to the call. For example, a file descriptor opened only for reading may not be accessed for
writing.

ECHILD: No child processes
A process issued a wait() call when it had no outstanding children.
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EAGAIN: No more processes
The system cannot create any more processes, either because it is out of table space or because the
invoking process has reached its quota or processes.

ENOMEM: not enough memory
The system does not have enough memory available to map a process into memory. This occurs in
response to a the system calls exec() or brk().

EACCES: Permission denied
You do not have permission to perform the requested operation upon a given file.

EFAULT: Bad address
You requested an address that does not lie within the address space. Normally, this generates signal
SIGSYS, which terminates the process.

ENOTBLK: Block device required
You passed to system calls mount() and umount() the descriptor of file that is not a block-special device.

EBUSY: Mount device busy
You passed to the system call mount() the file descriptor of a device that is already mounted; or you
passed to the system call umount() the descriptor of a device that has open files or active working
directories.

EEXIST: File exists
An attempt was made to link to a file that already exists.

EXDEV: Cross-device link
You attempted to link a file on one file system with a file on another. This is not permitted.

ENODEV: No such device
You attempted to manipulate a device that does not exist.

ENOTDIR: Not a directory
You attempted to perform a directory operation upon a file that is not a directory. For example, you
passed the file descriptor of a character-special device to system calls chdir() or chroot().

EISDIR: Is a directory
You attempted to perform an inappropriate operation upon a directory. For example, you passed the file
descriptor of a directory to write().

EINVAL: Invalid argument
An argument to a system call is out of range. For example, you passed to kill() or umount() the file
descriptor of a device that is not mounted.

ENFILE: File table overflow
The COHERENT kernel uses a static table to record which files are open. This error indicates that this table
is full. Until a file is closed, thus freeing space on this table, no more files can be opened on your system.

EMFILE: Too many open files
The COHERENT kernel limits the number of files that any one process can have open at any given time; this
error indicates that you have exceeded this number. The system call sysconf() returns the number of files
that a process can open (among other items of information). For details, see its entry in the Lexicon.

ENOTTY: Not a teletypewriter (tty)
You attempted to perform a terminal-specific operation upon a device which is not a terminal.

ETXTBSY: Text file busy
The text segment of a shared load module is unwritable. Therefore, an attempt to execute it while it is
being written or an attempt to open it for writing while it is being executed will fail.

EFBIG: File too large
The block-mapping algorithm for a file fails above 1,082,201,088 bytes. Attempting to write a file larger
than this will generate this error.

ENOSPC: No space left on device
You attempt to write onto a device that is full. If the attemped write was onto a file system, either the file
system’s supply of blocks was exhausted, or its supply of i-nodes was exhausted.
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ESPIPE: Tried to seek on a pipe
It is illegal to invoke the system call lseek() on a pipe.

EROFS: Read-only file system
You attempted to write onto a file system mounted read-only.

EMLINK: Too many links
A file can have no more than 32,767 links. The attempted link operation would exceed this value.

EPIPE: Broken pipe
You attempted to invoke the system call write() on a pipe for which there are no readers. This condition is
accompanied by the signal SIGPIPE, so the error will be seen only if the signal is ignored or caught.

EDOM: Mathematics library domain error
An argument to a mathematical routine falls outside that function’s domain.

ERANGE: Mathematics library result too large
The result of a mathematical function is too large to be represented.

ENOMSG: No message of desired type
You invoked msgrcv() to read a message of a given type, but none was waiting to be read.

EIDRM: Identifier removed

EDEADLK: Deadlock condition
A process is deadlocked for some reason.

ENOLCK: No record locks available
The maximum number of record locks has been exceeded.

ENOSTR: Device not a stream
You attempted to perform a STREAMS operation on a file that is not a stream.

ENODATA: No data available

ETIME: Timer expired

ENOSR: Out of STREAMS resources

ENOPKG: Package not installed

EPROTO: Protocol error

EBADMSG: Not a data message

ENAMETOOLONG: File name too long

EOVERFLOW: Value too large for defined data type

ENOTUNIQ: Name not unique on network

EBADFD: File descriptor in bad state

EREMCHG: Remote address changed

ELIBACC: Cannot access a needed shared library
COHERENT does not yet support shared libraries.

ELIBBAD: Accessing a corrupted shared library
COHERENT does not yet support shared libraries.

ELIBSCN: .lib section in a.out corrupted

ELIBMAX: Maximum number of shared libraries exceeded
COHERENT does not yet support shared libraries.

ELIBEXEC: Cannot exec() a shared library directly
COHERENT does not yet support shared libraries.

EILSEQ: Illegal byte sequence
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ENOSYS: Operation not applicable

ELOOP: Symbolic links error.
Number of symbolic links encountered during path name traversal exceeds MAXSYMLINKS. COHERENT
does not yet support symbolic links.

EUSERS: Too many users

ENOTSOCK: Socket operation on non-socket

EDESTADDRREQ: Destination address required

EMSGSIZE: Message too long

EPROTOTYPE: Protocol wrong type for socket

ENOPROTOOPT: Protocol not available

EPROTONOSUPPORT: Protocol not supported

ESOCKTNOSUPPORT: Socket type not supported

EOPNOTSUPP: Operation not supported on transport endpoint

EPFNOSUPPORT: Protocol family not supported

EAFNOSUPPORT: Address family not supported by protocol family

EADDRINUSE: Address already in use

EADDRNOTAVAIL: Cannot assign requested address

ENETDOWN: Network is down

ENETUNREACH: Network is unreachable

ENETRESET: Network dropped connection because of reset

ECONNABORTED: Software-caused connection abort

ECONNRESET: Connection reset by peer

ENOBUFS: No buffer space available

EISCONN: Transport endpoint is already connected

ENOTCONN: Transport endpoint is not connected

ESHUTDOWN: Cannot send after transport endpoint shutdown

ETIMEDOUT: Connection timed out

ECONNREFUSED: Connection refused

EHOSTDOWN: Host is down

EHOSTUNREACH: No route to host

EALREADY: Operation already in progress

EINPROGRESS: Operation now in progress

ESTALE: Stale NFS file handle
COHERENT does not yet support nonproprietary file systems.

See Also
errno, header files, perror(), signal()
ANSI Standard, §7.1.3
POSIX Standard, §2.4
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eval — Command
Evaluate arguments
eval [token ...]

The shell normally evaluates each token of an input line before executing it. During evaluation, the shell performs
parameter, command, and file-name pattern substitution. The shell does not interpret special characters after
performing substitution.

eval is useful when an additional level of evaluation is required. It evaluates its arguments and treats the result as
shell input. For example,

A=’>file’
echo a b c $A

simply prints the output

a b c >file

because ‘>’ has no special meaning after substitution, but

A=’>file’
eval echo a b c $A

redirects the output

a b c

to file. Similarly,

A=’$B’
B=’string’
echo $A
eval echo $A

prints

$B
string

In the first echo the shell performs substitution only once.

The shell executes eval directly.

See Also
commands, ksh, sh

ex — Command
Berkeley-style line editor
ex [ options ] [ +cmd ] [ file1 ... file27 ]

ex is a link to elvis, which is a clone of the UNIX vi/ex set of editors. Invoking elvis through this link forces it to
operate solely in colon-command mode, just as the UNIX ex editor operates.

For information on how to use this version of ex, see the Lexicon page for elvis.

See Also
commands, ed, elvis, me, vi, view

Notes
elvis is copyright  1990 by Steve Kirkendall, and was written by Steve Kirkendall (kirkenda@cs.pdx.edu or
...uunet!tektronix!psueea!eecs!kirkenda), assisted by numerous volunteers. It is freely redistributable, subject to
the restrictions noted in included documentation. Source code for elvis is available through the Mark Williams
bulletin board, USENET, and numerous other outlets.

Please note that elvis is distributed as a service to COHERENT customers, as is. It is not supported by Mark
Williams Company. Caveat utilitor.
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exec — Command
Execute command directly
exec [command]

The shell normally executes commands through the system call fork(), which creates a new process. The shell
command exec directly executes the given command through one of the exec() functions instead. Normally, this
terminates execution of the current shell.

If the command consists only of redirection specifications, exec redirects the input or output of the current shell
accordingly without terminating it. If the command is omitted, exec has no effect.

See Also
commands, execution, fork(), ksh, sh, xargs
POSIX Standard, §3.1.2

execl() — General Function (libc) (libc)
Execute a load module
#include <unistd.h>
execl(file, arg0, arg1, ..., argn, NULL)
char *file, *arg0, *arg1, ..., *argn;

The function execl() calls the COHERENT system call execve() to execute a program. It specifies arguments
individually, as a NULL-terminated list of arg parameters. For more information on file execution, see execution.

See Also
execution, execve(), getuid(), libc, unistd.h
POSIX Standard, §3.1.2

Diagnostics
execl() does not return if successful. It returns -1 for errors, such as file being nonexistent, not accessible with
execute permission, having a bad format, or too large to fit in memory.

execle() — General Function (libc) (libc)
Execute a load module
#include <unistd.h>
execle(file, arg0, arg1, ..., argn, NULL, env)
char *file, *arg0, *arg1, ..., *argn, char *env[];

The function execle() calls the COHERENT system call execve() to execute a program. It first initializes the new
stack of the process to contain a list of strings that are command arguments. It specifies arguments individually,
as a NULL-terminated list of arg parameters. The argument envp points to an array of pointers to strings that
define file’s environment. For more information on program execution and environments, see execution.

See Also
environ, execution, execve(), libc, unistd.h
POSIX Standard, §3.1.2

Diagnostics
execle() does not return if successful. It returns -1 for errors, such as file being nonexistent, not accessible with
execute permission, having a bad format, or being too large to fit into memory.

execlp() — General Function (libc)
Execute a load module
#include <unistd.h>
execlp(file, arg0, arg1, ..., argn, NULL)
char *file, *arg0, *arg1, ..., *argn;

The function execlp() calls the COHERENT system call execve() to execute a program. It initializes the new stack of
the process to contain a list of strings that are command arguments. It specifies arguments individually, as a
NULL-terminated list of arg parameters. Unlike the related function execl(), execlp() searches for file in all
directories named in the environmental variable PATH. For more information on program execution, see
execution.
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See Also
environ, execution, execve(), libc, unistd.h
POSIX Standard, §3.1.2

Diagnostics
execlp() does not return if successful. It returns -1 for errors, such as file not existing in the directories named in
PATH, not accessible with execute permission, having a bad format, or too large to fit in memory.

execlpe() — General Function (libc)
Execute a load module
execlpe(file, arg0, arg1, ..., argn, NULL, env)
char *file, *arg0, *arg1, ..., *argn;
char *env[];

The function execlpe() calls the COHERENT system call execve() to execute a program. It initializes the new stack
of the process to contain a list of strings that are command arguments. It specifies arguments individually, as a
NULL-terminated list of arg parameters.

The argument env points to an array of pointers to strings that define file’s environment.

Unlike the related function execl(), execlpe() searches for file in all directories named in the environmental variable
PATH— that is, the current PATH, not the one contained within the environmented pointed to by env.

For more information on program execution, see execution.

See Also
environ, execution, execl(), execvep(), libc

Diagnostics
execlpe() does not return if successful. It returns -1 for errors, such as file not existing in the directories named in
PATH, not accessible with execute permission, having a bad format, or too large to fit in memory.

execlpe() is not part of the SVID specification. Therefore, it may not be present on non-COHERENT operating
systems.

execution — Definition
Program execution under COHERENT is governed by the various forms of the COHERENT system call exec(). This call
allows a process to execute another executable file (or load module). This is described in coff.h.

The code, data and stack of file replace those of the requesting process. The new stack contains the command
arguments and its environment, in the format given below. Execution starts at the entry point of file.

During a successful call to exec(), the system deactivates profiling, and resets any caught signals to SIG_DFL.

Every process has a real-user id, an effective-user id, a saved-effective user id; and a real-group id, an effective-
group id, and a saved-effective group id. These identifiers are defined in the Lexicon entries for, respectively,
setuid() and setgid(). For most load modules, exec() does not change any of these. However, if the file is marked
with the set user id or set group id bit (see stat()), exec() sets the effective-user id (effective-group id) of the process
to the user id (group id) of the file owner. In effect, this changes the file access privilege level from that of the real
id to that of the effective id. The owner of file should be careful to limit its abilities, to avoid compromising file
security.

exec() initializes the new stack of the process to contain a list of strings, which are command arguments. execl(),
execle(), execlp(), and execlpe() specify arguments individually, as a NULL-terminated list of arg parameters.
execv(), execve(), execvp(), and execvpe() specify arguments as a single NULL-terminated array argv of
parameters.

The main() function of a C program is invoked in the following way:

main(argc, argv, envp)
int argc;
char *argv[], *envp[];

argc is the number of command arguments passed through exec(), and argv is an array of the actual argument
strings. envp is an array of strings that comprise the process environment. By convention, these strings are of the
form variable=value, as described in the Lexicon entry environ. Typically, each variable is an exported shell
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variable with the given value.

execl() and execv() simply pass the old environment, referenced by the external pointer environ.

execle(), execlpe(), execve(), and execvpe() pass a new environment env explicitly.

execlp(), execlpe(), execvp(), and execvpe() search for file in each of the directories indicated by the shell variable
$PATH, in the same way that the shell searches for a command. These calls execute a shell command file. Note
that execlpe() and execvpe() search the current PATH, not the PATH contained within the environment pointed to
by env.

Files
/bin/sh — To execute command files

See Also
environ, exec(), execl(), execle(), execlp(), execlpe(), execv(), execve(), execvp(), execvpe(), fork(), ioctl(),
Programming COHERENT, signal(), stat(), xargs

Diagnostics
None of the exec() routines returns if successful. Each returns -1 for an error, such as if file does not exist, is not
accessible with execute permission, has a bad format, or is too large to fit in memory.

Notes
Each exec() routine now examines the beginning of an executable file for the token #!. If found, it invokes the
program named on that line and passes it the rest of the file. For example, if you wish to ensure that a given script
is executed by the by the Bourne shell /bin/sh, begin the script with the line:

#!/bin/sh

execv() — General Function (libc)
Execute a load module
#include <unistd.h>
execv(file, argv)
char *file, *argv[];

The function execv() calls the COHERENT system call execve() to execute a program. It specifies arguments as a
single, NULL-terminated array of parameters, called argv. execv() passes the environment of the calling program to
the called program. For more information on program execution, see execution.

See Also
environ, execution, execve(), libc, unistd.h
POSIX Standard, §3.1.2

Diagnostics
execv() does not return if successful. It returns -1 for errors, such as file being nonexistent, not accessible with
execute permission, having a bad format, or too large to fit in memory.

execve() — System Call (libc)
Execute a load module
#include <unistd.h>
execve(file, argv, env)
char *file, *argv[], *env[];

The function execve() executes a program. It specifies arguments as a single, NULL-terminated array of
parameters, called argv. The argument env is the address of an array of pointers to strings that define file’s
environment. This allows execve() to pass a new environment to the program being executed. For more
information on program execution, see execution.

Example
The following example demonstrates execve(), as well as tmpnam(), getenv(), and path(). It finds all lines with
more than LIMIT characters and calls MicroEMACS to edit them.
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#include <stdio.h>
#include <path.h>
#include <sys/stat.h>
#include <stdlib.h>
#include <unistd.h>

#define LIMIT 70

extern **environ, *tempnam();

main(argc, argv)
int argc; char *argv[];
{

/* me -e tmp file */
char *cmda[5] = { NULL, "-e", NULL, NULL, NULL };
FILE *ifp, *tmp;
char line[256];
int ct, len;

if ((NULL == (cmda[3] = argv[1])) ||
(NULL == (ifp = fopen(argv[1], "r")))) {
fprintf(stderr, "Cannot open %s\n", argv[1]);
exit(EXIT_FAILURE);

}

if ((cmda[0] = path(getenv("PATH"), "me", X_OK)) == NULL) {
fprintf(stderr, "Cannot locate me\n");
exit(EXIT_FAILURE);

}

if (NULL == (tmp = fopen((cmda[2] = tempnam(NULL, "lng")), "w"))) {
fprintf(stderr, "Cannot open tmpfile\n");
exit(EXIT_FAILURE);

}

for (ct = 1; NULL != fgets(line, sizeof(line), ifp); ct++)
if (((len = strlen(line)) > LIMIT) ||

(’\n’ != line[len -1]))
fprintf(tmp, "%d: %d characters long\n", ct, len);

fclose(tmp);
fclose(ifp);

if (execve(cmda[0], cmda, environ) < 0) {
fprintf(stderr, "cannot execute me\n");
exit(EXIT_FAILURE);

}
}

See Also
environ, execution, libc, unistd.h
POSIX Standard, §3.1.2

Diagnostics
execve() does not return if successful. It returns -1 for errors, such as file being nonexistent, not accessible with
execute permission, having a bad format, or too large to fit in memory.

execvp() — General Function (libc)
Execute a load module
#include <unistd.h>
execvp(file, argv)
char *file, *argv[];

The function execvp() calls the COHERENT system call execve() to execute a program. It specifies arguments as a
single, NULL-terminated array of parameters, called argv. Unlike the related call execv(), execvp() searches for file
in all of the directories named in the environmental variable PATH. For more information on program execution,
see execution.
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See Also
environ, execution, execve(), libc, unistd.h
POSIX Standard, §3.1.2

Diagnostics
execvp() does not return if successful. It returns -1 for errors, such as file being nonexistent, not accessible with
execute permission, having a bad format, or too large to fit in memory.

execvpe() — General Function (libc)
Execute a load module
execvp(file, argv, env)
char *file, *argv[], *env[];

The function execvpe() calls the COHERENT system call execve() to execute a program. It specifies arguments as a
single, NULL-terminated array of parameters, called argv. The argument env is the address of an array of pointers
to strings that define file’s environment. This allows execvpe() to pass a new environment to the program being
executed.

Unlike the related call execv(), execvpe() searches for file in all of the directories named in the environmental
variable PATH— that is, the current PATH, not the one contained within the environmented pointed to by env.

For more information on program execution, see execution.

See Also
environ, execution, execv(), execve(), libc

Diagnostics
execvp() does not return if successful. It returns -1 for errors, such as file being nonexistent, not accessible with
execute permission, having a bad format, or too large to fit in memory.

execvpe() is not part of the SVID specification. Therefore, it may not be present on non-COHERENT operating
systems.

exit — Command
Exit from a shell
exit [status]

exit terminates a shell. If the optional status is specified, the shell returns it; otherwise, the previous status is
unchanged. From an interactive shell, exit sets the status if specified, but does not terminate the shell. The shell
executes exit directly.

See Also
commands, ksh, sh

exit() — General Function (libc)
Terminate a program gracefully
#include <stdlib.h>
void exit(status) int status;

The library function exit() is the normal method to terminate a program directly. status information is passed to
the parent process. By convention, an exit status of zero indicates success, whereas an exit status greater than
zero indicates failure. If the parent process issued a wait() call, it is notified of the termination and is passed the
least significant eight bits of status. As exit() never returns, it is always successful. Unlike the system call _exit(),
exit() does extra cleanup, such as flushing buffered files and closing open files.

Example
For an example of this function, see the entry for fopen().

See Also
_exit(), atexit(), close(), EXIT_FAILURE, EXIT_SUCCESS, libc, stdlib.h, wait()
ANSI Standard, §7.10.4.3
POSIX Standard, §8.1
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Notes
If you do not explicitly set status to a value, the program returns whatever value happens to have been in the
register EAX. You can set status to either EXIT_SUCCESS or EXIT_FAILURE.

EXIT_FAILURE — Manifest Constant
Indicate program failed to execute successfully
#include <stdlib.h>

EXIT_FAILURE is a manifest constant that is defined in the header stdlib.h. It is used as an argument to the
function exit() to indicate that the program failed to execute successfully.

See Also
exit(), manifest constant, stdlib.h
ANSI Standard, §7.10.4.3

EXIT_SUCCESS — Manifest Constant
Indicate program executed successfully
#include <stdlib.h>

EXIT_SUCCESS is a manifest constant that is defined in the header stdlib.h. It is used as an argument to the
function exit(), to indicate that the program executed successfully.

See Also
exit(), manifest constant, stdlib.h
ANSI Standard, §7.10.4.3

exp() — Mathematics Function (libm)
Compute exponent
#include <math.h>
double exp(z) double z;

exp() returns the exponential of z, or e^z.

Example
The following example, called apr.c, computes the annual percentage rate (APR) for a given rate of interest.
Compile it with the command:

cc -f apr.c -lm

It is by Brent Seidel (brent_seidel@chthone.stat.com):

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

main()
{

double rate, APR;
char buffer[50];

printf("Enter interest rate in percent (e.g., 12.9): ");
fflush(stdout);

if (gets(buffer) == NULL)
exit(EXIT_FAILURE);

rate = strtod(buffer);

APR = (exp(rate/100.0) - 1) * 100.0;
printf("The APR for %g%% compounded daily is %g%%\n", rate, APR);

}

See Also
errno, frexp(), ldexp(), libm
ANSI Standard, §7.5.4.1
POSIX Standard, §8.1
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Diagnostics
exp() indicates overflow by an errno of ERANGE and a huge returned value.

export — Command
Add a shell variable to the environment
export [name ...]
export [name=value]

When the shell executes a command, it passes the command an environment. By convention, the environment
consists of assignments, each of the form name=value. For example, typing

export TERM=vt100

sets the environmental variable TERM to equal the string vt100.

A command may look for information in the environment or may simply ignore it. In the above example, a program
that reads the variable TERM (such as COHERENT) will assume that you are working on a DEC VT-100 terminal or
one that emulates it.

The shell places the name and the value of each shell variable that appears in an export command into the
environment of subsequently executed commands. It does not place a shell variable into the environment until it
appears in an export command.

With no arguments, export prints the name and the value of each shell variable currently marked for export.

The shell executes export directly.

See Also
commands, environ, exec, ksh, sh

expr — Command
Compute a command-line expression
expr argument ...

The arguments to expr form an expression. expr evaluates the expression and writes the result on the standard
output. Among other uses, expr lets the user perform arithmetic in shell command files.

Each argument is a separate token in the expression. An argument has a logical value ‘false’ if it is a null string or
has numerical value zero, ‘true’ otherwise. Integer arguments consist of an optional sign followed by a string of
decimal digits. The range of valid integers is that of signed long integers. No check is made for overflow or illegal
arithmetic operations. Floating point numbers are not supported.

The following list gives each expr operator and its meaning. The list is in order of increasing operator precedence;
operators of the same precedence are grouped together. All operators associate left to right except the unary
operators ‘!’, ‘-’, and ‘len’, which associate right to left. The spaces shown are significant - they separate the tokens
of the expression.

{ expr1, expr2, expr3 }
Return expr2 if expr1 is logically true, and expr3 otherwise. Alternatively, { expr1 , expr2 } is equivalent to {
expr1 , expr2 , 0 }.

expr1 | expr2
Return expr1 if it is true, expr2 otherwise.

expr1 & expr2
Return expr1 if both are true, zero otherwise.

expr1 relation expr2
Where relation is one of <, <=, >, >=, ==, or !=, return one if the relation is true, zero otherwise. The
comparison is numeric if both arguments can be interpreted as numbers, lexicographic otherwise. The
lexicographic comparison is the same as strcmp (see string).

expr1 + expr2

expr1 - expr2
Add or subtract the integer arguments. The expression is invalid if either expr is not a number.
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expr1 * expr2

expr1 / expr2

expr1 % expr2
Multiply, divide, or take remainder of the arguments. The expression is invalid if either expr is not
numeric.

expr1 : expr2
Match patterns (regular expressions). expr2 specifies a pattern in the syntax used by ed. It is compared to
expr1, which may be any string. If the \(...\) pattern occurs in the regular expression the matching
operator returns the matched field from the string; if there is more than one \(...\) pattern the extracted
fields are concatenated in the result. Otherwise, the matching operator returns the number of characters
matched.

len expr
Return the length of expr. It behaves like strlen (see string). len is a reserved word in expr.

!expr Perform logical negation: return zero if expr is true, one otherwise.

-expr Unary minus: return the negative of its integer argument. If the argument is non-numeric the expression
is invalid.

( expr )
Return the expr. The parentheses allow grouping expressions in any desired way.

The following operators have special meanings to the shell sh, and must be quoted to be interpreted correctly: { } ( )
< > & | *.

See Also
commands, ed, ksh, sh, test

Notes
expr returns zero if the expression is true, one if false, and two if an error occurs. In the latter case an error
message is also printed.

extern — C Keyword
Declare storage class

extern indicates that a C element belongs to the external storage class. Both variables and functions may be
declared to be extern. Use of this keyword tells the C compiler that the variable or function is defined outside of
the present file of source code. All functions and variables defined outside of functions are implicitly extern unless
declared static.

When a source file references data that are defined in another file, it must declare the data to be extern, or the
linker will return an error message of the form:

undefined symbol name

For example, the following declares the array tzname:

extern char tzname[2][32];

When a function calls a function that is defined in another source file or in a library, it should declare the function
to be extern. In the absence of a declaration, extern functions are assumed to return ints, which may cause
serious problems if the function actually returns a 32-bit pointer (such as on the 68000 or i8086 LARGE model), a
long, or a double.

For example, the function malloc appears in a library and returns a pointer; therefore, it should be declared as
follows:

extern char *malloc();

If you do not do so, the compiler assumes that malloc returns an int, and generate the error message

integer pointer pun

when you attempt to use malloc in your program.
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See Also
auto, C keywords, pun, register, static, storage class
ANSI Standard, §6.5.1
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fabs() — Mathematics Function (libm)
Compute absolute value
#include <math.h>
double fabs(z) double z;

fabs() implements the absolute value function. It returns z if z is zero or positive, or -z if z is negative.

Example
For an example of this function, see the entry for ceil().

See Also
abs(), ceil(), floor(), frexp(), libm
ANSI Standard, §7.5.6.2
POSIX Standard, §8.1

factor — Command
Factor a number
factor [ number ... ]

factor computes and prints the prime factorials for each of a list of given numbers. If no numbers are given on the
command line, factor reads numbers from the standard input.

See Also
commands

false — Command
Unconditional failure
false

false does nothing. It is guaranteed to fail. It can be useful in shell scripts, to force certain situations to occur.

See Also
commands, ksh, sh, true

Notes
Under the Korn shell, false is an alias for its built-in command let.

fc — Command
Edit and re-execute one or more previous commands
fc [-e editor] [-ln] [first [last]]

fc, the ‘‘fix command’’, is a command built into the Korn shell ksh. It permits you to edit and re-execute one or
more commands that have been executed previously.

fc selects commands first through last and inserts them into a text editor. You can edit the commands in the
editor; exiting from the editor re-executes the commands. first and last can be addressed either by the command’s
number (the first command issued to the shell is number one, the second is number two, and so on), or by a string
that matches the beginning of the command. When called without a last variable, the command selects just first.
Option -l prints the commands on the standard output rather than buffering the commands for editing and re-
execution. Option -n suppresses the default command numbers.

LEXICON

fabs() — fc 603



fc uses the editor named in the environmental variable FCEDIT; if this variable is not set, it uses MicroEMACS. The
option -e lets you select another editor.

See Also
commands, FCEDIT, ksh

FCEDIT — Environmental Variable
Editor used by fc command

The Korn shell’s command fc reads the environmental variable FCEDIT to see which editor it should use to edit
commands.

See Also
environmental variables, ksh

fclose() — STDIO Function (libc)
Close a stream
#include <stdio.h>
int fclose(fp) FILE *fp;

fclose() closes the stream fp. It calls fflush() on the given fp, closes the associated file, and releases any allocated
buffer. The function exit() calls fclose() for open streams.

Example
For examples of how to use this function, see the entries for fopen() and fseek().

See Also
libc
ANSI Standard, §7.9.5.1
POSIX Standard, §8.1

Diagnostics
fclose() returns EOF if an error occurs.

fcntl() — System Call (libc)
Control open files
#include <fcntl.h>
int fcntl(fd, command, arg)
int fd, cmd, arg;

The COHERENT system call fcntl() manipulates an open file.

fd is the file descriptor; this description must have been obtained from a call to creat(), dup(), fcntl(), open(), or
pipe().

command identifies the task that you want fcntl() to perform. The value fcntl() returns varies, depending on what
command you ask it to perform. arg is an argument specific to the given command.

fcntl() commands F_GETLK, F_SETLK, and F_SETLKW (described in detail below) implement file-record locking.
File-record locks use the flock structure, which is defined in header file <fcntl.h> as follows:

typedef struct flock {
short l_type; /* F_RDLCK, F_WRLCK, or F_UNLCK*/
short l_whence; /* SEEK_SET, SEEK_CUR, SEEK_END */
long l_start; /* location */
long l_len; /* 0 is through EOF */
short l_sysid; /* system id of lock (for GETLK) */
short l_pid; /* process id of owner (for GETLK) */

};

You can lock a section of a file for reading (excluding subsequent write locks) or for writing (excluding all
subsequent locks). The locked section begins at the specified location l_start and can extend backwards (when
l_len is negative) or forwards (when it is positive). If l_len is zero, the lock extends to the end of the file. A lock
may extend past the current end of file, but may not extend to before the beginning of the file.
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fcntl() Commands
fcntl() recognizes the following commands:

F_DUPFD Duplicate file descriptor fd onto the first available file descriptor greater than or equal to arg. fcntl()
returns the new file descriptor.

F_GETFD Get the current value of the close-on-exec flag FD_CLOEXEC for the file. If the low-order bit of the
return value of fcntl() is zero, the file descriptor remains open if the process uses exec() to execute
another process, If the low-order bit of the return value is one, the file descriptor is closed upon
exec().

F_GETFL Get the file flags for the file specified by fd. With this option, fcntl() returns the file flags.

F_GETLK arg must point to a struct flock that describes a section of the file to lock. If the system does not
have any locks on the specified section, fcntl() sets the lock type of arg to F_UNLCK and leaves the
other members unchanged. Otherwise, it sets the contents of arg to the first existing lock that blocks
the requested lock.

F_SETFD Set the close-on-exec flag of the file to the value of the low bit of arg.

F_SETFL Set file flags for file descriptor fd to the value specified by arg. Here, fcntl() returns the new file flags.

F_SETLK Set or clear a file-record lock. arg must point to a struct flock. Set member l_type to F_RDLCK to
request a read lock, to F_WRLCK to request a write lock, or to F_UNLCK to unlock a previously
locked section. If the requested lock cannot be set, fcntl() returns with an error value of -1 and sets
errno to EACCES.

F_SETLKW is just like F_SETLK unless the requested lock is not available, in which case F_SETLKW causes the
current process to sleep until the requested lock becomes available. If sleeping would cause a
deadlock, fcntl() returns -1 and sets errno to EDEADLK.

Upon failure, each cmd returns -1 and sets errno to an appropriate value. Possible errno values include the
following:

EAGAIN Section already locked.

EBADF Bad file desciptor.

EINVAL Invalid command.

EMFILE Too many files open.

ENOLCK No more locks available.

EDEADLK Deadlock would result.

See Also
close(), creat(), dup(), exec(), fcntl.h, file, file descriptor, libc, lockf(), open(), pipe()
POSIX Standard §6.5.2

Notes
Use fcntl() with the unbuffered I/O routines (open(), write(), and so on) rather than with standard I/O library
routines (fopen(), fprintf(), fwrite(), and so on). The buffering used by the standard I/O library may cause
unexpected behavior with file locking.

fcntl.h — Header File
Manifest constants for file-handling functions
#include <fcntl.h>

fcntl.h declares manifest constants that are used by the file-handling functions open(), creat(), and fcntl().

See Also
header files
POSIX Standard, §6.5.1
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fcvt() — General Function (libc)
Convert floating-point numbers to strings
char *
fcvt(d, w, *dp, *signp)
double d; int w, *dp, *signp;

fcvt() converts floating point numbers to ASCII strings. Its operation resembles that of printf()’s operator %f.

fcvt() converts d into a NUL-terminated string of decimal digits. The argument w sets the precision of the string,
i.e., the number of characters to the right of the decimal point.

fcvt() rounds the last digit and returns a pointer to the result. On return, fcvt() sets dp to point to an integer that
indicates the location of the decimal point relative to the beginning of the string: to the right if positive, and to the
left if negative. Finally, it sets signp to point to an integer that indicates the sign of d: zero if positive, and nonzero
if negative. fcvt() rounds the result to the FORTRAN F-format.

Example
For an example of this function, see the entry for ecvt().

See Also
libc

Notes
fcvt() performs conversions within static string buffers that it overwrites on each execution.

fd — Device Driver
Floppy disk driver

The files /dev/f* and /dev/rf* are entries for the floppy-disk driver fd. Each entry is assigned major device
number 4, is accessed as a block-special device, and has a corresponding character-special device entry. fd
handles up to four 5.25-inch floppy-disk drives, each in one of several formats.

The least-significant four bits of an entry’s minor device number identify the type of drive. The next least-
significant two bits identify the drive.

The following table summarizes the name, minor device number, sectors per track, partition sector size,
characteristics, and addressing method for each device entry of floppy-disk drive 0.

9 sectors/track
fqa0 13 9 1440 DSQD cylinder (3.25 inch — 720K)
f9a0 12 9 720 DSDD cylinder (5.25 inch — 360K)

15 sectors/track
fha0 14 15 2400 DSHD cylinder (5.25 inch — 1.2MB)

18 sectors/track
fva0 15 18 2880 DSHD cylinder (3.5 inch — 1.44MB

Prefixing an r to a device name given above gives the name of the corresponding character-device entry.
Corresponding device entries for drives 1, 2, and 3 have minor numbers with offsets of 16, 32, and 48 from the
minor numbers given above, and have 1, 2, or 3 in place of 0 in the names given above.

For device entries whose minor number’s fourth least-significant bit is zero (minor numbers 0 through 7 for drive
0), the driver uses surface addressing rather than cylinder addressing. This means that it increments tracks before
heads when computing sector addresses and the first surface is used completely before the second surface is
accessed. For devices whose minor number’s fourth least significant bit is 1 (minor numbers 8 through 15 for
drive 0), the driver uses cylinder addressing.

For a floppy disk to be accessible from the COHERENT system, a device file must be present in directory /dev with
the appropriate type, major and minor device numbers, and permissions. The command mknod creates a special
file for a device.

The following table gives the all floppy-disk devices that COHERENT recognizes, by minor number. Note that some
specialized devices skip the first cylinder on the disk, to support some third-party program that requires this
feature:
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Minor
Number Drive Diameter Density Cylinders
0 0 Both Any 1-39/79
1 0 Both Any 0-39/79
4 0 5.25’’ 360KB 1-39
5 0 3.5’’ 720KB 1-79
6 0 5.25’’ 1.2MB 1-79
7 0 3.5’’ 1.44MB 1-79
12 0 5.25’’ 360KB 0-39
13 0 3.5’’ 720KB 0-79
14 0 5.25’’ 1.2MB 0-79
15 0 3.5’’ 1.44MB 0-79
16 1 Both Any 1-39/79
17 1 Both Any 0-39/79
20 1 5.25’’ 360KB 1-39
21 1 3.5’’ 720KB 1-79
22 1 5.25’’ 1.2MB 1-79
23 1 3.5’’ 1.44MB 1-79
28 1 5.25’’ 360KB 0-39
29 1 3.5’’ 720KB 0-79
30 1 5.25’’ 1.2MB 0-79
31 1 3.5’’ 1.44MB 0-79

Example
The following program examines a COHERENT floppy-disk device and prints its size in bytes. It was written by
Sanjay Lal (sanjayl@tor.comm.mot.com):

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>

#define BLOCK 512

struct FDATA {
int fd_size; /* Blocks per diskette */
int fd_nhds; /* Heads per drive */
int fd_trks; /* Tracks per side */
int fd_offs; /* Sector base */
int fd_nspt; /* Sectors per track */
char fd_GPL[4]; /* Controller gap param (indexed by rate) */
char fd_N; /* Controller size param */
char fd_FGPL; /* Format gap length */

};

/* Parameters for each kind of format */
struct FDATA fdata [] = {
/* 8 sectors per track, surface by surface seek. */

{ 320, 1, 40, 0, 8, { 0x00, 0x20, 0x20 }, 2, 0x58 }, /* Single sided */
{ 640, 2, 40, 0, 8, { 0x00, 0x20, 0x20 }, 2, 0x58 }, /* Double sided */
{ 1280, 2, 80, 0, 8, { 0x00, 0x20, 0x20 }, 2, 0x58 }, /* Quad density */

/* 9 sectors per track, surface by surface seek. */
{ 360, 1, 40, 0, 9, { 0x00, 0x20, 0x20 }, 2, 0x50 }, /* Single sided */
{ 720, 2, 40, 0, 9, { 0x00, 0x20, 0x20 }, 2, 0x50 }, /* Double sided */
{ 1440, 2, 80, 0, 9, { 0x00, 0x20, 0x20 }, 2, 0x50 }, /* Quad density */

/* 15 sectors per track, surface by surface seek. */
{ 2400, 2, 80, 0, 15, { 0x1B, 0x00, 0x00 }, 2, 0x54 }, /* High capacity */

/* 18 sectors per track, surface by surface seek. */
{ 2880, 2, 80, 0, 18, { 0x1B, 0x00, 0x00 }, 2, 0x6C }/* 1.44 3.5" */

};
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#define funit(x) (minor(x) >> 4) /* Unit/drive number */
#define fkind(x) (minor(x) & 0x7) /* Kind of format */

static int ctrl;

int main(argc, argv)
int argc; char **argv;
{

int size;
struct stat sbuf;
struct FDATA *fdp;

if (argc!=2) {
fprintf(stderr, "usage : %s /dev/fd...\n",argv[0]);
exit(EXIT_FAILURE);

}

if (strcmp(argv[1], "conv")==0) {
/*special case*/
size = getchar() + getchar() * 256;
printf("%ld\n", (long)((long)size * (long)512) );
return (EXIT_SUCCESS);

}

if (ctrl = stat(argv[1], &sbuf)) {
fprintf (stderr,"%s : error stating %s.\n", argv[0], argv[1]);
exit(EXIT_FAILURE);

}

fdp = & fdata [fkind (sbuf.st_rdev)];
printf("%ld\n", (long)((long)fdp->fd_size * (long)512) );

return (EXIT_SUCCESS);
}

Files
<fdioctl.h> — Driver command header file
/dev/fd* — Block-special files
/dev/rfd* — Character special files

See Also
device drivers, fdformat, floppy disk, ft, mkfs, mknod

Diagnostics
The driver reports any error status received from the controller and retries the operation several times before it
reports an error to the program that initiated an operation.

Notes
The floppy-tape driver ft also works through major-device number 4.

fd assumes that the disk is formatted with eight, nine, 15, or 18 sectors of 512 bytes each per track, depending
upon the /dev entry. Cylinder addressing is the norm for COHERENT.

Programs that use the raw device interface must read whole sectors into buffers that do not straddle DMA
boundaries.

fd.h — Header File
Declare file-descriptor structure
#include <sys/fd.h>

fd.h declares the file-descriptor structure fd, plus associated constants.

See Also
header files

LEXICON

608 fd.h



fdformat — Command
Low-level format a floppy disk
/etc/fdformat [ option ... ] special

fdformat formats a floppy disk. The given special should be the name of the special file that correspond to the
floppy disk drive.

fdformat recognizes the following options:

-a Print information on the standard output device during format. As it formats a cylinder, it will print a line
of the form

hd=0 cyl=25

on your screen.

-i number
Use number (0 through 7) as the interleave factor in formatting. Note that the default interleave is six.

-o number
Use number (default, 0) as the skew factor for sector numbering.

-v Verify formatting and verify data written with the -w option.

-w file Format the floppy disk and then copy file to it track by track. The raw device should be used.

The command mkfs builds a COHERENT file system on a formatted floppy disk. The command dosformat builds a
DOS file system on a formatted floppy disk. The command mount mounts a floppy disk containing a file system to
allow access to it through the COHERENT directory structure. The command umount unmounts a floppy disk.

Examples
The following command formats a 2880-block (1.44-megabyte), 3.5-inch floppy disk in drive 1 (otherwise known as
drive B):

/etc/fdformat -v /dev/rfva1

The following command formats a 2400-block (1.2-megabyte), 5.25-inch floppy disk in drive 0 (otherwise known
known as drive A):

/etc/fdformat -v /dev/rfha0

Note that using the raw device (/dev/rfha0) speeds up formatting noticeably.

See Also
commands, dosformat, fd, mkfs, mount, umount

Diagnostics
When errors occur on floppy-disk devices the driver prints on the system console an error message that describes
the error.

Notes
fdformat formats a track at a time. fdformat can be interrupted between tracks, which may result in a partially
formatted floppy disk.

fdioctl.h — Header File
Control floppy-disk I/O
#include <sys/fdioctl.h>

fdioctl.h declares constants and structures used to control floppy-disk I/O.

See Also
header files
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fdisk — Command
Hard-disk partitioning utility
/etc/fdisk [-r] [-c] [-b mboot] xdev ...

The command fdisk lets you view how a hard disk is partitioned, alter how it is partitioned, and mark a partition
so that the COHERENT bootstrap will automatically boot the operating system it contains. If you wish, you can use
fdisk to assign partitions to different operating systems, e.g., MS-DOS, CP/M, Windows NT, COHERENT, and XENIX.

fdisk recognizes the following command-line options:

-b Use the first 446 bytes of the file mboot to replace the bootstrap information in xdev. Use this option to
overwrite the COHERENT bootstrap with another bootstrap.

-c Specify the disk geometry (i.e., number of cylinders, heads, sectors) for disk drives that your system’s BIOS
does not support.

-r Read-only access. fdisk reads the partition table and displays its contents, but does not let you change how a
disk is partitioned. This is the ‘‘safe’’ option.

-V Display the version number of fdisk. PP When you invoke fdisk, it reads the first block from the special device
xdev, which holds the partitioning information for that disk. xdev is the device whose name ends in x; for
example, if you have one SCSI hard disk and one AT-style hard disk installed in your machine, xdev would be
either /dev/sd0x or /dev/at0x. If you use fdisk with a device other than the x device (e.g., with device
/dev/at0a), fdisk displays values for your partitions that are totally bogus — and probably quite alarming.

After you invoke fdisk, it displays a warning message, then the layout of the disk whose partition-table device you
named on the command line. The following gives an example layout, for a 33-megabyte AT disk:

Drive 0 Currently has the following logical partitions:
[In Cylinders] [ In Tracks ]

Number Type Start End Size Start End Size Mbyte Blocks Name
0 Boot MS-DOS 0 149 150 0 899 900 7.83 15300 /dev/at0a
1 EXT-DOS 150 614 464 900 3684 2784 24.28 47430 /dev/at0b
2 UNUSED 0 0 0 0 0 0 0 0 /dev/at0c
3 UNUSED 0 0 0 0 0 0 0 0 /dev/at0d

In this example, partition 1 (which is accessed via device /dev/at0a) holds an MS-DOS file system. It is marked as
the ‘‘Boot’’ partition, which means that the COHERENT bootstrap will boot its operating system automatically when
you reboot your computer. The other columns show the size of each partition, and its beginning and end points in
both cylinders and tracks.

If you invoked fdisk with its option -r, the program exits at this point. If you did not invoke it with option -r, it
displays the following menu of actions:

Possible actions:
0 = Quit
1 = Change active partition (or make no partition active)
2 = Change one logical partition
3 = Change all logical partitions
4 = Delete one logical partition
5 = Change drive characteristics
6 = Display drive information
7 = Proceed to next drive

The following describes each action in detail:

0. Quit fdisk.

1. Change which partition is the active partition. You can also say that your system has no active partition. If
you do so, the COHERENT bootstrap will prompt you at boot time to enter the number of the partition whose
operating system you wish to boot. fdisk will let you set only one active partition at a time.

2. Change the dimensions (i.e., the size, beginning point, or end point) of one partition. Doing this destroys the
data on that partition.

3. Change the dimensions of every partition. Doing this destroys the data on your hard disk.
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4. Delete a partition.

5. Change the parameters of the drive. Use this option if COHERENT somehow has a faulty notion of your disk’s
size. You should never have to use this option; using it will wipe out all data on your hard disk.

6. Give summary information about the disk — that is, re-display the table shown above.

7. This option appears only if you have more than one hard disk drive. Use this option to display information
about another hard disk on your system.

Before you change the dimensions of any partition on your system, read the warnings given in the notes below.
When you have finished modifying your disk, fdisk then writes your changes into xdev.

Files
<fdisk.h>

See Also
commands, hard disk, ideinfo

Notes
If you change a device’s partition table, reboot your system. Most device drivers will not recognize the revised
partition information until a reboot occurs.

As the -r and -b options are contradictory, attempting to use them together triggers an error message.

Note that many operating systems implement a program named fdisk. Each manipulates a hard disk’s partition
table, but not all respect the fact that a disk may hold more than one operating system. In particular, the MS-DOS
edition of fdisk can rearrange the order of entries in the partition table. If this happens, you may lose the ability to
run COHERENT until the table is restored to its previous order. A sign of this problem is seeing the prompt AT
boot? when you try to start COHERENT after running any fdisk program, and not being able to get past it.

Computer systems that use older releases of a BIOS may report incorrect disk parameters. Users of such systems
should change the CMOS setup values if possible, but the BIOS on some older systems will not allow you to specify
arbitrary values for disk parameters. Users with such systems can use the option fdisk -c option instead.

If you plan to install and run COHERENT and MS-DOS on the same hard disk, note the following:

• If you wish to install COHERENT and MS-DOS on the same hard drive, you must run the MS-DOS fdisk first!

• If you plan on running both operating systems, you must install MS-DOS first and leave some free cylinders on
the disk for COHERENT as well as a free partition. You can have both primary as well as extended MS-DOS
partitions on the same drive as COHERENT, but COHERENT cannot use a sub-partition of the MS-DOS extended
partition. COHERENT must have one of the four real partitions. Failure to observe these rules will result in
loss of data! Caveat utilitor.

fdisk.h — Header File
Fixed-disk constants and structures
#include <sys/fdisk.h>

fdisk.h declares structures and constants used to manipulate a fixed (hard) disk.

See Also
header files

fdopen() — STDIO Function (libc)
Open a stream for standard I/O
#include <stdio.h>
FILE *fdopen(fd, type) int fd; char *type;

fdopen() allocates and returns a FILE structure, or stream, for the file descriptor fd, as obtained from open(),
creat(), dup(), or pipe(). type is the manner in which you want fd to be opened, as follows:

r Read a file
w Write into a file
a Append onto a file
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Example
The following example obtains a file descriptor with open(), and then uses fdopen() to build a pointer to the FILE
structure.

#include <ctype.h>
#include <stdio.h>

void adios(message)
char *message;
{

fprintf(stderr, "%s\n", message);
exit(1);

}

main(argc, argv)
int argc; char *argv[];
{

extern FILE *fdopen();
FILE *fp;
int fd;
int holder;

if (--argc != 1)
adios("Usage: example filename");

if ((fd = open(argv[1], 0)) == -1)
adios("open failed.");

if ((fp = fdopen(fd, "r")) == NULL)
adios("fdopen failed.");

while ((holder = fgetc(fp)) != EOF) {
if ((holder > ’\177’) || (holder < ’ ’))

switch(holder) {
case ’\t’:
case ’\n’:

break;
default:

fprintf(stderr, "Seeing char %d\n", holder);
exit(1);

}
fputc(holder, stdout);

}
}

See Also
creat(), dup(), fopen(), libc, open()
POSIX Standard, §8.2.2

Diagnostics
fdopen() returns NULL if it cannot allocate a FILE structure. Currently, only 20 FILE structures can be allocated
per program, including stdin, stdout, and stderr.

feof() — STDIO Function (libc)
Discover stream status
#include <stdio.h>
int feof(fp) FILE *fp;

feof() tests the status of the argument stream fp. It returns a number other than zero if fp has reached the end of
file, and zero if it has not. One use of feof() is to distinguish a value of -1 returned by getw() from an EOF.

Example
For an example of how to use this function, see the entry for fopen().

See Also
EOF, libc
ANSI Standard, §7.9.10.2
POSIX Standard, §8.1
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ferror() — STDIO Function (libc)
Discover stream status
#include <stdio.h>
int ferror(fp) FILE *fp;

ferror() tests the status of the file stream fp. It returns a number other than zero if an error has occurred on fp.
Any error condition that it discovers persists until you either close the stream or call clearerr() to clear it. For
write routines that employ buffers, call fflush() before you call ferror(), in case an error occurs on the last block
written.

Example
This example reads a word from one file and writes it into another.

#include <stdio.h>

main()
{

FILE *fpin, *fpout;
int inerr = 0;
int outerr = 0;
int word;
char infile[20], outfile[20];

printf("Name data file you wish to copy:\n");
gets(infile);
printf("Name new file:\n");
gets(outfile);

if ((fpin = fopen(infile, "r")) != NULL) {
if ((fpout = fopen(outfile, "w")) != NULL) {

for (;;) {
word = fgetw(fpin);
if (ferror(fpin)) {

clearerr(fpin);
inerr++;

}

if (feof(fpin))
break;

fputw(word, fpout);
if (ferror(fpout)) {

clearerr(fpout);
outerr++;

}
}

} else {
printf

("Cannot open output file %s\n",
outfile);

exit(1);
}

} else {
printf("Cannot open input file %s\n", infile);
exit(1);

}

printf("%d - read error(s) %d - write error(s)\n",
inerr, outerr);

exit(0);
}

See Also
libc
ANSI Standard, §7.9.10.3
POSIX Standard, §8.1
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fetch() — DBM Function (libgdbm)
Fetch a record from a DBM data base
#include <dbm.h>
datum fetch (key)
datum key;

Function fetch() retrieves the record with key from the currently opened DBM data base. The data base must first
have opened by a call to function dbminit().

fetch() returns a pointer to the retrieved record. If no record is available, or if an error occurred, field dptr within
the returned record is initialized to NULL.

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

fflush() — STDIO Function (libc)
Flush output stream’s buffer
#include <stdio.h>
int fflush(fp) FILE *fp;

fflush() flushes any buffered output data associated with the file stream fp. The file stream stays open after fflush()
is called. fclose() calls fflush(), so there is no need for you to call it when normally closing a file or buffer.

Example
This example demonstrates fflush(). When run, you will see the following:

Line 1
-----
Line 1
-----
Line 1
Line 2
-----

The call

fprintf(fp, "Line 2\n");

goes to a buffer and is not in the file when file foo is listed. However if you redirect the output of this program to a
file and list the file, you will see:

Line 1
Line 1
Line 1
Line 2
-----
-----
-----

because the line

printf("-----\n");

goes into a buffer and is not printed until the program is over and all buffers are flushed by exit().

Although the COHERENT screen drivers print all output immediately, not all operating systems work this way, so
when in doubt, fflush().

#include <stdio.h>

main()
{

FILE *fp;
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if (NULL == (fp = fopen("foo", "w")))
exit(1);

fprintf (fp, "Line 1\n");
fflush (fp);
system ("cat foo"); /* print Line 1 */

printf("-----\n");
fprintf(fp, "Line 2\n");
system("cat foo"); /* print Line 1 */
printf("-----\n");

fflush(fp);
system("cat foo"); /* print Line 1 Line 2 */
printf("-----\n");

}

See Also
fclose(), libc, setbuf(), write()
ANSI Standard, §7.9.5.2
POSIX Standard, §8.1

Diagnostics
fflush() returns EOF if it cannot flush the contents of the buffers; otherwise it returns a meaningless value.

Note, also, that all STDIO routines are buffered. fflush() should be used to flush the output buffer if you follow a
STDIO routine with an unbuffered routine.

ffs() — Sockets Function (libsocket)
Translate a bit mask into an integer value
int mask (mask);

Function ffs() translates the bit mask mask into an integer value. It returns the integer value of the first bit to be
turned on (i.e., one, two, three, etc.). If no bit is turned on within mask, it returns zero.

See Also
libsocket

Notes
This function is used by a number of X programs that manipulate fonts. COHERENT includes it for compatibility
with X11R6.

fgetc() — STDIO Function (libc)
Read character from stream
#include <stdio.h>
int fgetc(fp) FILE *fp;

fgetc() reads characters from the input stream fp. In general, it behaves the same as the macro getc(): it runs more
slowly than getc(), but yields a smaller object module when compiled.

Example
This example counts the number of lines and ‘‘sentences’’ in a file.

#include <stdio.h>

main()
{

FILE *fp;
int filename[20];
int ch;
int nlines = 0;
int nsents = 0;

printf("Enter file to test: ");
gets(filename);
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if ((fp = fopen(filename,"r")) == NULL) {
printf("Cannot open file %s.\n", filename);
exit(1);

}

while ((ch = fgetc(fp)) != EOF) {
if (ch == ’\n’)

++nlines;

else if (ch == ’.’ || ch == ’!’ || ch == ’?’) {
if ((ch = fgetc(fp)) != ’.’)

++nsents;

else
while((ch=fgetc(fp)) == ’.’)

;
ungetc(ch, fp);

}
}

printf("%d line(s), %d sentence(s).\n",
nlines, nsents);

}

See Also
getc(), libc
ANSI Standard, §7.9.7.1
POSIX Standard, §8.1

Diagnostics
fgetc() returns EOF at end of file or on error.

fgetpos() — STDIO Function (libc)
Get value of file-position indicator
#include <stdio.h>
int
fgetpos(fp, position)
FILE *fp; fpos_t *position;

fgetpos() copies the value of the file-position indicator for the file stream pointed to by fp into the area pointed to
by position. position is of type fpos_t, which is defined in the header stdio.h.

The function fsetpos() can use the information written into position to return the file-position indicator to where it
was when fgetpos() was called.

fgetpos() returns zero if all went well. If an error occurred, it returns nonzero and sets errno to an appropriate
value.

Example
This example seeks to a random line in a very large file.

#include <math.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void
fatal(message)
char *message;
{

fprintf(stderr, "%s\n", message);
exit(1);

}
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main(argc, argv)
int argc; char *argv[];
{

int c;
long count;
FILE *ifp, *tmp;
fpos_t loc;

if (argc != 2)
fatal("usage: fscanf inputfile\n");

if ((ifp = fopen(argv[1], "r")) == NULL)
fatal("Cannot open %s\n", argv[1]);

if((tmp = tmpfile()) == NULL)
fatal("Cannot build index file");

/* seed random-number generator */
srand ((unsigned int)time(NULL));

for (count = 1;!feof(ifp); count++) {
/* for monster files */
if (fgetpos(ifp, &loc))

fatal ("fgetpos error");

if (fwrite(&loc, sizeof(loc), 1, tmp) != 1)
fatal("Write fail on index");

rand();
while(’\n’ != (c = fgetc(ifp)) && EOF != c)

;
}

count = rand() % count;
fseek(tmp, count * sizeof(loc), SEEK_SET);

if(fread(&loc, sizeof(loc), 1, tmp) != 1)
fatal("Read fail on index");

fsetpos(ifp, &loc);
while((c = fgetc(ifp)) != EOF) {

if(c ==’@’)
putchar(’\n’);

else
putchar(c);

if(c == ’\n’)
break;

}
}

See Also
fseek(), fsetpos(), ftell(), libc, rewind()
ANSI Standard, §7.9.9.1

Notes
The ANSI Standard introduced fgetpos() and fsetpos() to manipulate a file whose file-position indicator cannot be
stored within a long. Under COHERENT fgetpos() behaves the same as the function ftell().

fgets() — STDIO Function (libc)
Read line from stream
#include <stdio.h>
char *fgets(s, n, fp)
char *s; int n; FILE *fp;

fgets() reads characters from the stream fp into string s until either n-1 characters have been read, or a newline or
EOF is encountered. It retains the newline, if any, and appends a null character at the end of of the string. fgets()
returns the argument s if any characters were read, and NULL if none were read.

Example
This example looks for the pattern given by argv[1] in standard input or in file argv[2]. It demonstrates the
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functions pnmatch(), fgets(), and freopen().

#include <stdio.h>
#define MAXLINE 128
char buf[MAXLINE];

void fatal(s) char *s;
{

fprintf(stderr, "pnmatch: %s\n", s);
exit(1);

}

main(argc, argv)
int argc; char *argv[];
{

if (argc != 2 && argc != 3)
fatal("Usage: pnmatch pattern [ file ]");

if (argc==3 && freopen(argv[2], "r", stdin)==NULL)
fatal("cannot open input file");

while (fgets(buf, MAXLINE, stdin) != NULL) {
if (pnmatch(buf, argv[1], 1))

printf("%s", buf);
}

if (!feof(stdin))
fatal("read error");

exit(0);
}

See Also
fgetc(), gets(), libc
ANSI Standard, §7.9.7.2
POSIX Standard, §8.1

Diagnostics
fgets() returns NULL if an error occurs, or if EOF is seen before any characters are read.

fgetw() — STDIO Function (libc)
Read integer from stream
#include <stdio.h>
int fgetw(fp) FILE *fp;

fgetw() reads an integer from the stream fp.

Example
For an example of this function, see the entry for ferror().

See Also
fputw(), libc

Notes
fgetw() returns EOF on errors. A call to feof() or ferror() may be necessary to distinguish this value from a genuine
end-of-file signal.

field — Definition
A field is an area that is set apart from whatever surrounds it, and that is defined as containing a particular type
of data. In the context of C programming, a field is either an element of a structure, or a set of adjacent bits within
an int.

See Also
bit map, data formats, Programming COHERENT, structure
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file — Definition
The way to access bits

The term file is used throughout the world of computing. Because there are several distinct types of COHERENT
‘‘files,’’ understanding what COHERENT means by a ‘‘file’’ can help you grasp how COHERENT works.

A file is a mass of bits that is given a name and is stored on some physical medium (e.g., floppy disk, hard disk,
RAM disk, or CD-ROM). These bits may represent data (e.g., ASCII or EBCDIC characters) or machine-executable
instructions. COHERENT defines a number of different types of files. A file’s type defines its behavior. Some
common file types include the following:

regular This file points to a location on a disk, which can be read or written. The location pointed to can contain
data (e.g., text) or executable instructions in the form of shell commands or binary instructions. Regular
files are sometimes called ordinary files.

directory
A directory holds the names and addresses of other files, including other directories.

special Special files designate COHERENT devices. A device can represent a physical device, such as a floppy disk
drive, a printer port, or a serial port. It can also represent a part of a physical device, such as a RAM disk
(representing part of memory) or one partition of a hard disk. It can also represent a logical device that
has no physical counterpart, like the bit bucket /dev/null.

Special files come in two flavors: character special and block special. The former access data in streams
(that is, one character at a time), and so access devices like tape drives and serial ports. The latter access
one block at a time, and so access disk drives and other devices that return their data in block-sized
chunks. (COHERENT defines a block as being 512 characters.)

FIFO This is a variety of regular file that contains semantics to hook together two processes, just like a pipe ‘|’ in
the COHERENT shell. See the Lexicon article named pipe for details on this variety of file.

process
This kind of file corresponds one-to-one with the existence of a process on a system. It tends to be short-
lived.

Files live with a file system, which organizes the files hierarchically within directories. The Lexicon entry for the
command mkfs gives some technical information on how a file system is constructed. The Lexicon entry for the
command mount gives some information on how a file system relates to device on which it lives, and how different
file systems from different partitions are hooked together to form one large file system for the entire computer.

The same file can have (and be accessed by) more than one name. The Lexicon entry for the command ln shows
how you can link additional names to a file. The entry for the system call unlink() gives some details on the
relationship between a file and its names.

Finally, a file has permissions associated with it. Every file is owned by someone; and the owner can restrict access
to the file if she wishes. The Lexicon entry for the command ls describes what permissions are available for a file.
The entry for the command chmod shows how you can change permissions on a file. The entry for the command
umask shows how you can change the permissions that COHERENT gives by default to any files that you create.

See Also
chgrp, chmod, chown, directory, FILE, device drivers, ls, mkfs, named pipe, open(), Programming
COHERENT, stream, umask, Using COHERENT
ANSI Standard §4.9.3

file — Command
Guess a file’s type
file file ...

file examines each file and takes an educated guess as to its type. file recognizes the following classes of text files:
files of commands to the shell; files containing the source for a C program; files containing yacc or lex source; files
containing assembly language source; files containing unformatted documents that can be passed to nroff; and
plain text files that fit into none of the above categories.

file recognizes the following classes of non-text or binary data files: the various forms of archives, object files, and
link modules for various machines, and miscellaneous binary data files.
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See Also
commands, ls, size

Notes
Because file only reads a set amount of data to determine the class of a text file, mistakes can happen.

FILE — Definition
Descriptor for a file stream
#include <stdio.h>

FILE describes a file stream which can be either a file on disk or a peripheral device through which data flow. It is
defined in the header file stdio.h.

A pointer to FILE is returned by fopen(), freopen(), fdopen(), and related functions.

The FILE structure is as follows:

typedef struct FILE
{

unsigned char *cp,
*dp,
*bp;

int cc;
int (*gt)(),

(*pt)();
int ff;
char fd;
int uc;

} FILE;

cp points to the current character in the file. dp points to the start of the data within the buffer. bp points to the
file buffer. cc is the number of unprocessed characters in the buffer. gt and pt point, respectively, to the
functions getc() and putc(). ff is a bit map that holds the various file flags, as follows:

_FINUSE 0x01 Unused
_FSTBUF 0x02 Used by macro setbuf()
_FUNGOT 0x04 Used by ungetc()
_FEOF 0x08 Tested by macro feof()
_FERR 0x10 Tested by macro ferror()

fd is the file descriptor, which is used by low-level routines like open(); it is also used by reopen(). Finally, uc is
the character that has been ‘‘ungotten’’ by the function ungetc(), should it be used.

See Also
fopen(), freopen(), Programming COHERENT, stdio.h, stream
ANSI Standard, §7.9.1

file descriptor — Definition
A file descriptor is an integer that indexes an area in COHERENT’s internal list of file descriptors. COHERENT
system calls, including open(), close(), and lseek(), use it to describe a file.

Please note that a file descriptor is not the same as a FILE structure, which is used by the STDIO routines fopen(),
fclose(), or fread().

See Also
file, FILE, Programming COHERENT

fileno() — STDIO Function (libc)
Get file descriptor
#include <stdio.h>
int fileno(fp) FILE *fp;

fileno() returns the file descriptor associated with the file stream fp. The file descriptor is the integer returned by
open() or creat(); it corresponds to a FILE structure, as returned by the STDIO function fopen().
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Example
This example reads a file descriptor and prints it on the screen.

#include <stdio.h>

main(argc,argv)
int argc; char *argv[];
{

FILE *fp;
int fd;

if (argc !=2) {
printf("Usage: fd_from_fp filename\n");
exit(0);

}

if ((fp = fopen(argv[1], "r")) == NULL) {
printf("Cannot open input file\n");
exit(0);

}

fd = fileno(fp);
printf("The file descriptor for %s is %d\n",

argv[1], fd);
}

See Also
FILE, file descriptor, libc
POSIX Standard, §8.2.1

filsys.h — Header File
Structures and constants for super block
#include <sys/filsys.h>

filsys.h declares structures and constants used by functions that manipulate a file system’s super block.

See Also
header files

filter — Definition
A filter is a program that reads a stream of input, transforms it in a precisely defined manner, and writes it to
another stream. Two or more filters can be coupled with pipes to perform a complex transformation on a stream of
input.

See Also
pipe, Using COHERENT

find — Command
Search for files satisfying a pattern
find directory ... [expression ...]

find traverses each given directory, testing each file or subdirectory found with the expression part of the command
line. The test can be the basis for deciding whether to process the file with a given command.

If the command line specifies no expression or specifies no execution or printing (-print, -exec, or -ok), by default
find prints the pathnames of the files found.

In the following, file means any file: directory, special file, ordinary file, and so on. Numbers represented by n may
be optionally prefixed by a ‘+’ or ‘-’ sign to signify values greater than n or less than n, respectively.

find recognizes the following expression primitives:

-atime n Match if the file was accessed in the last n days.

-ctime n Match if the i-node associated with the file was changed in the last n days, as by chmod.
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-exec command
Match if command executes successfully (has a zero exit status). The command consists of the
following arguments to find, terminated by a semicolon ‘;’ (escaped to get past the shell). find
substitutes the current pathname being tested for any argument of the form ‘{}’.

-group name
Match if the file is owned by group name. If name is a number, the owner must have that group
number.

-inum n Match if the file is associated with i-number n.

-links n Match if the number of links to the file is n.

-mtime n Match if the most recent modification to the file was n days ago.

-name pattern
Match if the file name corresponds to pattern, which may include the special characters ‘*’, ‘?’, and ‘[...]’
recognized by the shell sh. The pattern matches only the part of the file name after any slash (‘/’)
characters.

-newer file Match if the file is newer than file.

-nop Always match; does nothing.

-ok command
Same as -exec above, except prompt interactively and only executes command if the user types
response ‘y’.

-perm octal Match if owner, group, and other permissions of the file are the octal bit pattern, as described in
chmod. When octal begins with a ‘-’ character, more of the permission bits (setuid, setgid, and sticky
bit) become significant.

-print Always match; print the file name.

-size n Match if the file is n blocks in length; a block is 512 bytes long.

-type c Match if the type of the file is c, chosen from the set bcdfmp (for block special, character special,
directory, ordinary file, multiplexed file, or pipe, respectively).

-user name Match if the file is owned by user name. If name is a number, the owner must have that user number.

exp1 exp2 Match if both expressions match. find evaluates exp2 only if exp1 matches.

exp1 -a exp2
Match if both expressions match, as above.

exp1 -o exp2
Match if either expression matches. find evaluates exp2 only if exp1 does not match.

! exp Match if the expression does not match.

( exp ) Parentheses are available for expression grouping.

Examples
A find command to print the names of all files and directories in user fred’s directory is:

find /usr/fred

The following, more complicated find command prints out information on all core and object (.o) files that have not
been changed for a day. Because some characters are special both to find and sh, they must be escaped with ‘\’ to
avoid interpretation by the shell.

find / \( -name core -o -name \*.o \) -mtime +1 \
-exec ls -l {} \;

Finally, the following example implements a simple tool for keeping files on two COHERENT systems in synch with
each other. find reads directory src and passes to uucp the names of all files that are newer than file last_upload.
It then uses the command touch to update the date on last_upload, to use it as a marker of when the last upload
was performed.
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find $HOME/src -type f -newer last_upload | while read filename
do

uucp -r -nyou $filename yoursystem!~/
echo Queued file $filename to yoursystem ...

done | mail somebodyorother
touch last_upload

See Also
chmod, commands, ls, sh, srcpath, test

findmouse — Command
Examine a port to see if a mouse is plugged into it
/usr/local/bin/findmouse port

The command findmouse opens port so you can examine whether a mouse is plugged into it.

port must be the full path name of the local, polled, serial-port device. For example, to check whether a mouse is
plugged into serial port 1, use the command:

/usr/local/bin/findmouse /dev/com1pl

When you invoke findmouse, it opens port, then asks you to ‘‘wiggle’’ your mouse. As you move the mouse around
your desk, findmouse polls the port and display on the screen any data read from it. You should see the mouse
data on your screen in the form of two-digit hexadecimal numbers.

To exit from findmouse, press any key.

findmouse prints an error message an exits should use incorrect command syntax, or if it cannot open a requested
port.

See Also
asy, commands, poll()

firstkey() — DBM Function (libgdbm)
Retrieve the first record from a DBM data base
#include <dbm.h>
datum firstkey()

Function firstkey() retrieves the first record from the currently open DBM data base. The data base must have
been opened by a call to function dbminit().

firstkey() returns a pointer to the retrieved record. If no record is available (i.e., the data base is empty), or if an
error occurred, field dptr within the returned record is initialized to NULL.

Please note that the hashing algorithm used the DBM functions dictates which record is ‘‘first’’ within the data
base. A loop that uses this function plus the function nextkey() will retrieve every record from the data base;
however, the records probably will not be in the order you expect.

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

fixterm() — terminfo Function
Set the terminal into program mode
#include <curses.h>
fixterm()

COHERENT comes with a set of functions that let you use terminfo descriptions to manipulate a terminal.
fixterm() restores the terminal to its internal conditions, as set by the curses/terminfo library. Your program
should call fixterm() after it returns from a shell escape.

See Also
curses.h, resetterm(), terminfo
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float — C Keyword
Data type

Floating point numbers are a subset of the real numbers. Each has a built-in radix point (or ‘‘decimal point’’) that
shifts, or ‘‘floats’’, as the value of the number changes. It consists of the following: one sign bit, which indicates
whether the number is positive or negative; bits that encode the number’s exponent; and bits that encode the
number’s fraction, or the number upon which the exponent works. In general, the magnitude of the number
encoded depends upon the number of bits in the exponent, whereas its precision depends upon the number of bits
in the fraction.

The ranges of values that can be held by a COHERENT float are set in header file float.h.

The exponent often uses a bias. This is a value that is subtracted from the exponent to yield the power of two by
which the fraction will be increased.

Floating point numbers come in two levels of precision: single precision, called floats; and double precision, called
doubles. With most microprocessors, sizeof(float) returns four, which indicates that it is four chars (bytes) long,
and sizeof(double) returns eight.

Several formats are used to encode floats, including IEEE, DECVAX, and BCD (binary coded decimal).

The following describes DECVAX, IEEE, and BCD formats, for your information.

DECVAX Format
The 32 bits in a float consist of one sign bit, an eight-bit exponent, and a 24-bit fraction, as follows. Note that in
this diagram, ‘s’ indicates ‘‘sign’’, ‘e’ indicates ‘‘exponent’’, and ‘f‘ indicates ‘‘fraction’’:

ffff  ffff

seee  eeee

efff  ffff

ffff  ffff

Byte 4

Byte 3

Byte 2

Byte 1

The exponent has a bias of 129.

If the sign bit is set to one, the number is negative; if it is set to zero, then the number is positive. If the number is
all zeroes, then it equals zero; an exponent and fraction of zero plus a sign of one (‘‘negative zero’’) is by definition
not a number. All other forms are numeric values.

The most significant bit in the fraction is always set to one and is not stored. It is usually called the ‘‘hidden bit’’.

The format for doubles simply adds another 32 fraction bits to the end of the float representation, as follows:

ffff  ffff

seee  eeee

ffff  ffff

efff  ffff

ffff  ffff

ffff  ffff

ffff  ffff

ffff  ffff

ffff  ffff Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

Byte 8

IEEE Format
The IEEE encoding of a float is the same as that in the DECVAX format. Note, however, that the exponent has a
bias of 127, rather than 129.
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Unlike the DECVAX format, IEEE format assigns special values to several floating point numbers. Note that in the
following description, a tiny exponent is one that is all zeroes, and a huge exponent is one that is all ones:

• A tiny exponent with a fraction of zero equals zero, regardless of the setting of the sign bit.

• A huge exponent with a fraction of zero equals infinity, regardless of the setting of the sign bit.

• A tiny exponent with a fraction greater than zero is a denormalized number, i.e., a number that is less than
the least normalized number.

• A huge exponent with a fraction greater than zero is, by definition, not a number. These values can be used
to handle special conditions.

An IEEE double, unlike DECVAX format, increases the number of exponent bits. It consists of a sign bit, an 11-bit
exponent, and a 53-bit fraction, as follows:

ffff  ffff

seee  eeee

ffff  ffff

ffff  ffff

ffff  ffff

ffff  ffff

ffff  ffff

ffff  ffff Byte 1

Byte 2

Byte 3

Byte 4
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Byte 6

Byte 7

Byte 8

eeee  ffff

The exponent has a bias of 1,023. The rules of encoding are the same as for floats.

BCD Format
The BCD format (‘‘binary coded decimal’’, also called ‘‘packed decimal’’) is used to eliminate rounding errors that
alter the worth of an account by a fraction of a cent. It consists of a sign, an exponent, and a chain of four-bit
numbers, each of which is defined to hold the values zero through nine.

A BCD float has a sign bit, seven bits of exponent, and six four-bit digits. In the following diagrams, ‘d’ indicates
‘‘digit’’:

Byte 4seee  eeee

Byte 3

Byte 2

Byte 1

dddd  dddd

dddd  dddd

dddd  dddd

A BCD double has a sign bit, 11 bits of exponent, and 13 four-bit digits, as follows:
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Byte 3
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dddd  dddd

Passing the hexadecimal numbers A through F in a digit yields unpredictable results.

The following rules apply when handling BCD numbers:

• A tiny exponent with a fraction of zero equals zero.

• A tiny exponent with a fraction of non-zero indicates a denormalized number.

• A huge exponent with a fraction of zero indicates infinity.

• A huge exponent with a fraction of non-zero is, by definition, not a number; these non-numbers are used to
indicate errors.

COHERENT Floating Point
COHERENT 286 uses DECVAX floating-point format. COHERENT 386 uses IEEE floating-point format. Please note
that this does not mean that the COHERENT-386 floating-point software fully implements the IEEE standard; for
example, it does not support denormals.

To allow you to convert binary data from one floating-point format to another, COHERENT comes with four
functions with which you can convert DECVAX-format floating-point numbers to IEEE format, and vice versa.
They are as follows:

decvax_d() Convert an IEEE double to DECVAX format.

decvax_f() Convert an IEEE float to DECVAX format.

ieee_d() Convert a DECVAX double to IEEE format.

ieee_f() Convert a DECVAX float to IEEE format.

For details, see their respective entries in the Lexicon.

See Also
C keywords, data formats, decvax_d, decvax_f, double, ecvt(), em87, fcvt(), float, float.h, gcvt(), ieee_d, ieee_f
The Art of Computer Programming, vol. 2, page 180ff
ANSI Standard, §6.1.2.5

Notes
The COHERENT-386 preprocessor implicitly defines the macro _IEEE, whereas the COHERENT-286 preprocessor
implicitly defines the macro _DECVAX. These can be used to conditionally include code that applies to a specific
edition of COHERENT. If you were writing code that intensively used floating-point numbers and you want to
compile the code under both editions of COHERENT, you can write code of the form:

#ifdef _DECVAX
...

#elif _IEEE
...

#endif

The C preprocessor under each edition of COHERENT will ensure that the correct code is included for compilation.
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float.h — Header File
Define constants for floating-point numbers

The header file float.h defines the following manifest constants, which mark the limits for computation of floating-
point numbers. The prefixes DBL, FLT, and LDBL refer, respective, to double, float, and long double:

DBL_DIG
Number of decimal digits of precision.

DBL_EPSILON
Smallest possible floating-point number x, such that 1.0 plus x does not test equal to 1.0.

DBL_MANT_DIG
Number of digits in the floating-point mantissa for base FLT_RADIX.

DBL_MAX
Largest number that can be held by type double.

DBL_MAX_EXP
Largest integer such that the value of FLT_RADIX raised to its power minus one is less than or equal to
DBL_MAX.

DBL_MAX_10_EXP
Largest integer such that ten raised to its power is less than or equal to DBL_MAX.

DBL_MIN
Smallest number that can be held by type double.

DBL_MIN_EXP
Smallest integer such that the value of FLT_RADIX raised to its power minus one is greater than or equal
to DBL_MIN.

DBL_MIN_10_EXP
Smallest integer such that ten raised to its power is greater than or equal to DBL_MAX.

FLT_DIG
Number of decimal digits of precision.

FLT_EPSILON
Smallest floating-point number x, such that 1.0 plus x does not test equal to 1.0.

FLT_MANT_DIG
Number of digits in the floating-point mantissa for base FLT_RADIX.

FLT_MAX
Largest number that can be held by type float.

FLT_MAX_EXP
Largest integer such that the value of FLT_RADIX raised to its power minus one is less than or equal to
FLT_MAX.

FLT_MAX_10_EXP
Largest integer such that ten raised to its power is less than or equal to FLT_MAX.

FLT_MIN
Smallest number that can be held by type float.

FLT_MIN_EXP
Smallest integer such that the value of FLT_RADIX raised to its power minus one is greater than or equal
to FLT_MIN.

FLT_MIN_10_EXP
Smallest integer such that ten raised to its power is greater than or equal to FLT_MIN.

FLT_RADIX
Base in which the exponents of all floating-point numbers are represented.
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FLT_ROUNDS
Manner of rounding used by the implementation. The ANSI Standard defines the rounding codes as
follows:

-1 Indeterminable, i.e., no strict rules apply
0 Toward zero, i.e., truncation
1 To nearest, i.e., rounds to nearest representable value
2 Toward positive infinity, i.e., always rounds up
3 Toward negative infinity, i.e., always rounds down

COHERENT uses type-1 rounding.

LDBL_DIG
Number of decimal digits of precision.

LDBL_EPSILON
Smallest floating-point number x, such that 1.0 plus x does not test equal to 1.0.

LDBL_MANT_DIG
Number of digits in the floating-point mantissa for base FLT_RADIX.

LDBL_MAX
Largest number that can be held by type long double.

LDBL_MAX_EXP
Largest integer such that the value of FLT_RADIX raised to its power minus one is less than or equal to
LDBL_MAX.

LDBL_MAX_10_EXP
Largest integer such that ten raised to its power is less than or equal to LDBL_MAX.

LDBL_MIN
Smallest number that can be held by type long double. Must be no greater than 1E-37.

LDBL_MIN_EXP
Smallest integer such that the value of FLT_RADIX raised to its power minus one is greater than or equal
to LDBL_MIN.

LDBL_MIN_10_EXP
Smallest integer such that ten raised to its power is greater than or equal to LDBL_MIN.

See Also
double, float, header files
ANSI Standard, §5.2.4.2.2

Notes
COHERENT’s C compiler does not yet implement type long double.

floor() — Mathematics Function (libm)
Set a numeric floor
#include <math.h>
double floor(z) double z;

floor() sets a numeric floor. It returns a double-precision floating point number whose value is the largest integer
less than or equal to z.

Example
For an example of this function, see the entry for ceil().

See Also
abs(), ceil(), fabs(), frexp(), libm
ANSI Standard, §7.5.6.3
POSIX Standard, §8.1
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floppy disks — Technical Information
The COHERENT system lets you read or write to floppy disks, using a variety of different formats. You can choose
the format that best suits the task at hand.

Disks Supported
COHERENT lets you use either 3.5-inch or 5.25-inch disks, in either high or low density; what you use depends
upon the type of hardware that you have. The following table gives some commonly used diskette device names
and formats. The minor number of each device is also given; note that all floppy-disk devices have the major
number of 4:

Device Name Sectors/Track Heads Sectors Bytes Format Minor Number
/dev/f9a0 9 2 720 360 KB 5.25" 12
/dev/f9a1 9 2 720 360 KB 5.25" 28
/dev/fqa0 9 2 1440 720 KB 3.5" 13
/dev/fqa1 9 2 1440 720 KB 3.5" 29
/dev/fha0 15 2 2400 1.2 MB 5.25" 14
/dev/fha1 15 2 2400 1.2 MB 5.25" 30
/dev/fva0 18 2 2880 1.44 MB 3.5" 15
/dev/fva1 18 2 2880 1.44 MB 3.5" 31

Device names ending in ‘0’ indicate drive A:, names ending in ‘1’ indicate drive B:. For a fuller description of
COHERENT’s floppy-disk devices, see the Lexicon entry for fd.

MS-DOS Format
COHERENT lets you read or write to floppy disks that contain MS-DOS file systems. Both tasks use the commands
doscp or doscpdir. These commands are discussed in full in their respective Lexicon entries.

To read files from an MS-DOS disk, use doscp with the name of the appropriate for the floppy-disk device that you
will be using (as given in the above table). For example, to copy binary file fred.exe to the current directory from a
low-density, 5.25-inch MS-DOS floppy disk in drive A, use the following command:

doscp /dev/f9a0:fred.exe .

The following command copies to the current directory all files on a high-density, 5.25-inch MS-DOS floppy disk in
drive B:

doscp /dev/fha1:\* .

To write a file to a preformatted MS-DOS floppy disk, again use the doscp command, but invert the order of the
arguments. For example, to write file fred.ms, which contains text, to a low-density, 5.25-inch MS-DOS floppy disk
in drive A, use the following command:

doscp -a fred.ms /dev/f9a0:

Note that the ‘a’ flag in the command line tells COHERENT to convert linefeeds to the linefeed/carriage return
combination, as used by MS-DOS. You will want to use this flag only when transferring text files to or from an MS-
DOS floppy disk.

The following command copies all files in the current directory to a high-density, 3.5-inch MS-DOS floppy disk in
drive B:

doscpdir . /dev/fva1:

Note that when you copy a file to an MS-DOS floppy disk, COHERENT observes the MS-DOS file-name conventions: it
permits only eight characters to the left of the period, and only three characters to the right of it.

(It should be noted in passing that you can use the doscp or doscpdir to read files from or write files to an MS-DOS
partition on your hard disk. All that is necessary is to replace the name of floppy-disk device with that of the hard-
disk device for the partition in question. See the Lexicon entry for at for a list of hard-disk devices; see the entry
for fdisk for information on how to read the layout of your hard disk; and see the entries for doscp and doscpdir
for details of how to use these commands.)

Finally, COHERENT lets you format a floppy disk and create an MS-DOS file system on it. To do so, you must use
the commands fdformat and dosformat. fdformat is described in detail in its Lexicon article.

To format a high-density, 5.25-inch floppy disk in drive B and write an MS-DOS file system onto it, use the following
commands:
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/etc/fdformat -av /dev/fha1
dosformat /dev/fha1:

COHERENT Format
If you wish, you can create a COHERENT file system on a floppy disk, mount it, and use standard COHERENT
commands to manipulate the files on it. This illustrates well the fact that to COHERENT a file system is a file
system, whether it resides on a hard, a floppy disk, or any other mass-storage device. You can use such
mountable floppy disks as an easy method of backing up files, or as a flexible extension to any other file system
that you have currently mounted.

To create a COHERENT file system on a floppy disk, you must use the commands fdformat and mkfs. Each is
described in detail in its own Lexicon article. The following example creates a COHERENT file system on a high-
density, 3.5-inch floppy disk placed in drive B:

/etc/fdformat -av /dev/rfva1
/etc/mkfs /dev/fva1 2880

In this example, command fdformat formatted the disk. The option -v tells fdformat to use its verification mode.
This takes longer, but ensures that the disk is good. If this command fails, it means that the floppy disk has a bad
block or sector: throw it away and try again.

Command mkfs builds a COHERENT file system on the disk. The file system has 2,880 blocks (1.44 megabytes) of
space, which is appropriate for a high-density, 3.5-inch floppy disk.

Now that the file system is created on the disk, you must mount it. To do so, use the script mount; this is
described in its Lexicon entry. This mounts the file system on directory /f0 if the disk drive is drive 0 (A:); or f1 if
the disk drive is drive 1 (B:).

While it is customary to mount file systems under directory ‘/’, you are not required to do it. For example, if your
login identifier is fred and your home directory is /usr/fred, you can mount the floppy disk’s file system onto a
subdirectory of /usr/fred and so make the floppy disk, in effect, an extension of your home directory. To mount a
floppy on a directory other than its default, use the command /etc/mount. The following command does this for
the 3.5-inch disk we formatted in the above example:

/etc/mount /dev/fva1 /usr/fred/temp

Now, all files you copy into directory /usr/fred/temp using the cp command will be written directly onto the
floppy disk. Note that you may need to log in as the superuser root and use the command chown to ensure that
fred owns the file system on that floppy disk. For details on chown, see its entry in the Lexicon. For details on
shorthand notations for mount, see its entry in the Lexicon.

One important point about mounting file systems: before you remove a COHERENT-formatted floppy disk from its
drive, you must first use the command /etc/umount to unmount its file system. If you do not, all data that
COHERENT has stored in its buffers will not be written to the disk, and may be lost. Worse, if you remove one
COHERENT disk and insert another without unmounting the old disk and mounting the new one, COHERENT will
write all data in its buffers onto the new disk without regard for what that disk contains; in all likelihood, this will
trash the file system on the new disk and render its data unreadable. So, the lesson is: always unmount a floppy
disk before you remove it!. To unmount the floppy disk we used in our previous example, use the command:

/etc/umount /dev/fva1

By the way, that’s not a misprint: the command is umount, not ‘‘unmount’’.

Finally, please note that you can mount only a COHERENT file system. You cannot mount a file system created with
MS-DOS, XENIX, or any other operating system.

You can, however import a set of files — including their directory structure — from UNIX, XENIX, or any other UNIX-
like operating system by using the utilities. cpio or tar. Each of these utilities uses a backup algorithm that is
implemented on many operating systems. To import files from another operating system, go to the machine that
holds the files you want and use its version of cpio or tar to back up the files or directories to a set of floppy disks
or cartridge tape. Then bring the floppy disks back to your COHERENT system and use COHERENT’s
implementation of cpio to read the back-up disks. The following section gives directions on how to do this; or see
the Lexicon entries for cpio and tar for more information.

Raw Format
Finally, COHERENT lets you use floppy disks in their raw form as a backup medium, much as you would use
magnetic tape on a larger computer. You must first use the command /etc/fdformat with the -v option to format
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the floppy disks you will be using; it is also wise to label and number the disks so you can keep them in some
reasonable order. Then you can use any of COHERENT’s archiving utilities, such as tar or cpio, to archive
directories or entire file systems onto the disks. It is recommended that you format a generous supply of floppy
disks before you begin; if you run short of disks while archiving your files, you will have to abort, format more
disks, and begin again. For details on how to use the archiving programs, see their respective entries in the
Lexicon.

Interleave
The ‘‘interleave’’ of a disk device refers to the pattern with which blocks are scattered around a disk cylinder. It can
have a drastic effect on the speed with which data are read from and written to a disk.

The interleave is set by the file system written onto that disk. Thus, under COHERENT the interleave is set by the
command /etc/mkfs. By default, this command sets the interleave pattern to six. You can request a different
interleave pattern; however, the proper interleave for a floppy disk can vary wildly, depending upon what disk
drives you have, your CPU speed, amount of RAM, and several other variables. The best way to discover the
interleave pattern is to experiment.

The following script, by Fred Smith (fredex%fcshome@merk.merk.com), formats a floppy disk to a specified set of
factors, generates a file system, and runs a program to exercise it. By running this program with a number of
different settings, you can find which is best for your system. You will find this to be especially helpful if you work
frequently with floppy disks:

# usage: doit <interleave> <skew> <device name> <tracks (not sectors) per drive>
# for a 3.5dshd in drive 1: sh doit 3 6 fva1 2880
# for a 5.25dshd in drive 0: sh doit 3 6 fha0 2400
# assumes that iozone is in the current directory, and that there is a
# subdirectory named ’test’, over which the floppy can be mounted.

echo /etc/fdformat -a -i $1 -o $2 /dev/r$3
/etc/fdformat -a -i $1 -o $2 /dev/r$3
/etc/badscan -v -o flop /dev/$3 $4

# in case you want to modify the permissions of the new file system.
# if you don’t want to do the vi, then run this as root.
#vi flop

/etc/mkfs /dev/$3 flop
/etc/mount /dev/$3 ./test
cd test
../iozone
cd ..
/etc/umount /dev/$3

Debugging Floppy-Disk Problems
The COHERENT floppy-disk driver has been used frequently by tens of thousands of users over a number of years,
and has been found to be sound. However, from time to time a problem can arise. This usually occurs when users
install new equipment into their systems. If you continually see error messages that indicate a problem with the
floppy-disk drive, e.g., door open, try the following steps to diagnose the problem:

1. Is CMOS configured for the floppy-disk drives? The CMOS on your machine may have been ‘‘clobbered’’ by an
event that has nothing to do with COHERENT — e.g., a power surge.

To check your CMOS, you can reboot your system; the BIOS on practically every computer includes a program
for reading and resetting the CMOS. Or, you can read the output of device /dev/cmos. The Lexicon entry
cmos describes how to interpret the output of this device.

2. If you have switched hard drives, did you change IDE controllers or alter any jumpers? If the same card
controls both floppy and hard drives, you may have moved a jumper wrongly. It may also be that the new
controller has a bug.

3. Try using the command /etc/conf/bin/idtune to change the value of variable FL_DSK_CH_PROB; then use
the command /etc/conf/bin/idmkcoh to link a new kernel, and boot the new kernel. To check the current
value of that variable (or of any tunable variable), use the command idtune -p.

4. Is any other equipment conflicting with the drive in question, such as a QIC-80 or QIC-40 tape drive? Try
pulling the device in question, and see if that makes the problem go away.
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5. Check that all cables are secure and all cards seated properly. If your machine is loaded with equipment, its
interior can be a rat’s nest of cables and connectors; and while installing new equipment, it is easy to loosen a
cable or jar a card so that it no longer works.

6. Try the following command with a floppy disk in place, just after you have booted COHERENT and before any
other access to the drive:

dd if=/dev/rdev of=/dev/null count=2 bs=30b

dev is names the floppy-disk device in question, e.g., fha0 or fva1. This command may help if the driver is not
getting the recalibration status it expects.

7. If all else fails, try swapping out the controller or drive. It may be that the device simply has failed.

See Also
Administering COHERENT, badscan, cpio, doscp, doscpdir, dosformat, fd, fdformat, gtar, mkfs, mount,
umount

Notes
You can create a version of the COHERENT operating system that runs from a floppy disk. Such a version of
COHERENT can be used to create test or backup systems for device drivers or other applications. For directions on
how to make a version of COHERENT that boots from a floppy disk, see the Lexicon entry booting.

fmap — Command
Measure fragmentation of the free list
fmap device

Command fmap tests how fragmented the free list is on COHERENT file system device. It briefly displays its results
and returns an exit status that is equivalent to the percent of fragmentation found on device.

You can use the amount of fragmentation of the free list to decide whether to de-fragment device. When the freelist
is fragmented, writing a file creates a file that is not physically contiguous; and this, in turn, slows disk I/O.

device must be a partition on your hard disk or a floppy disk rather than an entire hard drive. It can be either the
raw or the ‘‘cooked’’ (block) device. For example, the command

fmap /dev/rat0a

tells fmap to map the free list on the first partition on the first drive.

Because fmap returns an exit status equal to the integer portion of the percentage of fragmentation found, you can
use it in a shell script to alert the system administrator when the file system needs attention. For example, the
following shell script tests the level of fragmentation on the device given as an argument; if the fragmentation
exceeds 5%, it sends mail to the superuser root:

fmap /dev/$1
a=$?
if expr $a > 5
then

echo -n "fmap of " >/tmp/rootmail
echo -n $1 >>/tmp/rootmail
echo -n " shows " >>/tmp/rootmail
echo -n $a >>/tmp/rootmail
echo " percent fragmentaion" >>/tmp/rootmail
echo -n $a >>/tmp/rootmail
echo " is greater than 5" >>/tmp/rootmail
echo -n "therefore, it is time to defrag " >>/tmp/rootmail
echo $1 >>/tmp/rootmail
echo "bye" >>/tmp/rootmail
mail root </tmp/rootmail
rm /tmp/rootmail

fi
exit 0

See Also
commands, dpac, fsck, qpac, upac
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Notes
fmap was written by Randy Wright (rw@rwsys.wimsey.bc.ca).

fmod() — Mathematics Function (libm)
Calculate modulus for floating-point number
#include <math.h>
double
fmod(number, divisor)
double number, divisor;

The mathematics function fmod() divides number by divisor and returns the remainder. If divisor is nonzero, the
return value will have the same sign as divisor. If divisor is zero, however, the COHERENT implementation of fmod()
returns 0.0 and sets errno EDOM.

See Also
ceil(), fabs(), floor(), libm
ANSI Standard, §7.5.6.4
POSIX Standard, §8.1

fmt — Command
Adjust the length of lines in a file of text
fmt [-width] [textfile ... textfile]

The command fmt reads each textfile named on its command line, and adjusts it so that each line is approximately
width characters long. It preserves indentation and word spacing.

If you name no textfile on its command line, fmt reads the standard input. If you do not name a width on the
command line, fmt adjusts each line to be approximately 72 characters long.

See Also
commands, elvis

Notes
fmt is part of the elvis package. Users usually do not run it on its own.

fnkey — Command
Set/print function keys for the console
fnkey [ n [ string ] ]

The console keyboard of a COHERENT system includes ten programmable function keys, labeled F1 through F10.
Initially, these are programmed to send the escape sequences set by the nkb keyboard driver.

The command fnkey programs function key Fn to send string, where n is a number from one through ten. If no
string is given, fnkey resets Fn to send nothing.

With no argument, fnkey prints the current string for each programmed function key.

fnkey also lets you change the default bindings for other special or function keys. See Lexicon articles keyboard
tables and nkb for details.

Example
To set function key F2 to execute the COHERENT command date, use the following command:

fnkey 2 ’date
’

If you type fnkey without any arguments, it displays the binding of all function keys including the following:

F2: date\n

Files
/dev/console
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See Also
commands, keyboard, vtnkb

Diagnostics
fnkey prints

cannot open /dev/console

if you lack permission to open /dev/console.

fnmatch() — String Function (libc)
Match a string with a normal expression
#include <fnmatch.h>
int fnmatch(pattern, string, flags)
const char *pattern, *string; int flags;

The function fnmatch() checks whether the string to which string points matches the normal expression to which
pattern points. A normal expression is one that uses wildcard characters to broaden the range of strings that it
matches. For more information, see the Lexicon entry for wildcards.

flags is a bit map whose bits are defined in the header file <fnmatch.h>. fnmatch() recognizes any or all of
following flags:

FNM_NOESCAPE
Disable recognizing the backslash as an escape character.

If this flag is not set, then prefixing a character in pattern with a backslash ‘\’ matches that same
character in string. For example, the pair ‘\*’ in pattern matches a literal ‘*’ in string; and the pair ‘\\’ in
pattern matches ‘\’ in string.

FNM_PATHNAME
A slash ‘/’ in string matches only a slash in pattern. If this flag is set, then a ‘/’ in string will not match a
wildcard character in pattern.

FNM_PERIOD
A leading period ‘.’ in string must be matched exactly by a period in pattern. If FNM_PATHNAME is set,
then a ‘‘leading’’ period is one that occurs either at the beginning of string or immediately following a slash;
if it is not set, then a ‘‘leading’’ period is one that appears at the beginning of string. If FNM_PERIOD is not
set, then fnmatch() places no special restrictions on matching a period.

If string matches pattern, fnmatch() returns zero. If it does not match, fnmatch() returns FN_NOMATCH. If an
error occurs, fnmatch() returns a value other than zero or FN_NOMATCH.

See Also
libc, pnmatch(), string.h, wildcards

fnmatch.h — Header File
Constants used with function fnmatch()
#include <fnmatch.h>

The header file fnmatch.h defines manifest constants used with the function fnmatch().

See Also
fnmatch(), header files

fopen() — STDIO Function (libc)
Open a stream for standard I/O
#include <stdio.h>
FILE *fopen (name, type)
char *name, *type;

fopen() allocates and initializes a FILE structure, or stream; opens or creates the file name; and returns a pointer
to the structure for use by other STDIO routines. name refers to the file to be opened.

type is a string that consists of one or more of the characters ‘‘rwa’’, to indicate the mode of the string, as follows:
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r Read; error if file not found
w Write; truncate if found, create if not found

a Append to end of file; no truncation, create if not found
r+ Read and write; no truncation, error if not found

w+ Write and read; truncate if found, create if not found
a+ Append and read; no truncation, create if not found

The modes that contain ‘a’ set the seek pointer to point at the end of the file; all other modes set it to point at the
beginning of the file. Modes that contain ‘+’ both read and write; however, a program must call fseek or rewind
before it switches from reading to writing or vice versa.

Example
This example copies argv[1] to argv[2] using STDIO routines. It demonstrates the functions fopen(), fread(),
fwrite(), fclose(), and feof().

#include <stdio.h>
#include <stdlib.h>
/* BUFSIZ is defined in stdio.h */
char buf[BUFSIZ];

void fatal(message)
char *message;
{

fprintf(stderr, "copy: %s\n", message);
exit(1);

}

main(argc, argv)
int argc; char *argv[];
{

register FILE *ifp, *ofp;
register unsigned int n;

if (argc != 3)
fatal("Usage: copy source destination");

if ((ifp = fopen(argv[1], "r")) == NULL)
fatal("cannot open input file");

if ((ofp = fopen(argv[2], "w")) == NULL)
fatal("cannot open output file");

while ((n = fread(buf, 1, BUFSIZ, ifp)) != 0) {
if (fwrite(buf, 1, n, ofp) != n)

fatal("write error");
}

if (!feof(ifp))
fatal("read error");

if (fclose(ifp) == EOF || fclose(ofp) == EOF)
fatal("cannot close");

exit(0);
}

See Also
fclose(), fdopen(), freopen(), libc
ANSI Standard, §7.9.5.3
POSIX Standard, §8.1

Diagnostics
fopen() returns NULL if it cannot allocate a FILE structure, if the type string is nonsense, or if the call to open() or
creat() fails.

The header file stdio.h defines the manifest constant FOPEN_MAX, which sets the maximum number of FILE
structures that you can allocate per program, including stdin, stdout, and stderr. For release 4.2, FOPEN_MAX is
set to 60.
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Notes
Many operating systems recognize a ‘b’ modifier to the type argument; this indicates that the file contains binary
information, and lets the operating system handle ‘‘funny characters’’ correctly. COHERENT has no need of such a
modifier, so if you append ‘b’ to type, it will be ignored. This modifier, however, is recognized by numerous other
operating systems, including MS-DOS, OS/2, and GEMDOS. If you expect to port developed code to any of these
operating systems, files should append the ‘b’ to type.

for — Command
Execute commands for tokens in list
for name [in token ...] do sequence done

The shell command for controls a loop. It assigns to the variable name each successive token in the list, and then
executes the commands in the given sequence. If the in clause is omitted, for successively assigns name the value
of each positional parameter to the current script (‘$@’). Because the shell recognizes a reserved word only as the
unquoted first word of a command, both do and done must either occur unquoted at the start of a command or be
preceded by ’;’.

The shell commands break and continue may be used to alter control flow within a for loop.

The shell executes for directly.

See Also
break, commands, continue, ksh, sh

for — C Keyword
Control a loop
for(initialization; endcondition; modification)

for is a C keyword that introduces a loop. It takes three arguments, which are separated by semicolons ‘;’.
initialization is executed before the loop begins. endcondition describes the condition that ends the loop.
modification is a statement that modifies variable to control the number of iterations of the loop. For example,

for (i=0; i<10; i++)

first sets the variable i to zero; then it declares that the loop will continue as long as i remains less than ten; and
finally, increments i by one after every iteration of the loop. This ensures that the loop will iterate exactly ten times
(from i==0 through i==9). The statement

for(;;)

will loop until its execution is interrupted by a break, goto, or return statement. Also, either or both of
initialization and modification may consist of multiple statements that are separated by commas. For example,

for (i=0, j=0; i<10; i++, j++)

initializes both i and j, and increments both with each iteration of the loop.

See Also
break, C keywords, continue, while
ANSI Standard, §6.6.5.3

fork() — System Call (libc)
Create a new process
#include <unistd.h>
fork( )

In the COHERENT system, many processes may be active simultaneously. fork() creates a new process; the new
process is a duplicate of the requesting process. In practice, the new process often issues a call to execute yet
another new program.

The process that issues the fork() call is termed the parent process, and the newly forked process is termed the
child process. fork() returns the process id of the newly created child to the parent process, and returns zero to the
child process. The parent may call wait() to suspend itself until the child terminates.

The following parts of the environment of a process are exactly duplicated by a fork() call:
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• Open files and their seek positions

• Current working and root directories

• The file creation mask

• The values of all signals

• The alarm clock setting

• Code, data, and stack segments

The system normally makes a fresh copy of the code, data, and stack segments for the child process. One
advantage of shared text processes is that they do not need to copy the code segment. It is write protected, and
therefore may be shared.

Example
For examples of how to use this call, see msgget(), pipe(), and signal().

See Also
alarm(), execl(), exit(), libc, sh, umask(), unistd.h, wait()
POSIX Standard, §3.1.1

Diagnostics
fork() returns -1 on failure, which usually involves insufficient system resources. On successful calls, fork()
returns zero to the child and the process id of the child to the parent.

fortune — Command
Print randomly selected, hopefully humorous, text
/usr/games/fortune [ file ]

fortune prints a message that is randomly selected from the contents of a text file. fortune reads file if it is named
on the command line; otherwise, it reads the default file /usr/games/lib/fortunes.

Files
/usr/games/lib/fortunes — Default fortunes

See Also
commands

Notes
The fortunes included in /usr/games/lib/fortunes were selected mainly because they would not give offense to
anyone. We encourage you to update this file with your favorite witticisms.

.forward — System Administration
Set a forwarding address for mail

The file $HOME/.forward lets you automatically redirect your incoming mail. You can redirect mail to one or more
other users, who are located either on your local machine or on a remote site; or you can redirect your mail to one
or more programs on your local machine, for further processing; or both. As you can see, this feature of the mail
system included with COHERENT gives you great flexibility in processing your mail.

For example, you may wish to forward to another user any mail that is sent to the superuser root, so you can
handle it immediately. (If you don’t, it will languish in root’s mailbox until someone logs in as root, which may not
happen for days.) To forward root’s mail to user fred, place the following line into file /.forward:

fred

Thereafter, whenever mail is sent to root, it will be forwarded automatically to user fred.

For another example, suppose that you are going on vacation, and you want your mail to be forwarded both to user
fred and to user anne. To do so, insert the following instruction into file $HOME/.forward:

fred, anne

Thereafter, the route-mail program rmail will send a copy of every mail message you receive to fred and to anne.
Please note that rmail will not insert a copy into your mailbox: if you forward your mail, you will not see it.
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For another example, suppose that user fred has an account on each of two systems: one called acme.com and
the other zenith.com. Suppose, further, that he logs into acme.com regularly, but he logs into zenith.com only
now and again. This user probably would want to route any mail he receives on zenith.com to acme.com, so he
will see it immediately. To do so, he would put the following instruction into file $HOME/.forward on zenith.com:

fred@acme.com

Thereafter, all mail sent to address fred@zenith.com will be forwarded automatically to fred@acme.com.

Please note that it is illegal to include in .forward the name of the user whose mail is being forwarded, because it
causes an infinite loop in the mail system. For example, writing

fred, anne, root

into root’s .forward file causes any message sent to root to be forwarded to fred, anne, and root; the copy
forwarded to root is again forwarded to fred, anne, and root; and so on, ad infinitum.

You can also embed the name of a program with your .forward file. All mail sent to your account will be handed to
this program for processing. For example, the elm mailer includes a program called filter, which a user can
program to read his mail and throw away unwanted messages. If you have installed elm onto your system, you
can turn on filter by embedding the following command into file $HOME/.forward:

"|/usr/local/bin/filter"

Note that the command must be preceded by a ‘|’ symbol; this is because filter receives its input from the
standard input, which is the standard method for programs that filter text or mail. Note, too, that the entire
command must be enclosed within quotation marks.

See Also
Administering COHERENT, mail [overview], smail

fpathconf() — System Call (libc)
Get a file variable by file descriptor
#include <unistd.h>
long fpathconf(fd, fd)
int fd, name;

fpathconf() returns the value of a limit or option associated with the open file whose the file descriptor is fd. name
is the symbolic constant (defined in <unistd.h>) that represents the limit or option to be returned. The value that
fpathconf() returns depends upon the type of file that fd identifies.

fpathconf() can return information about the following constants:

_PC_LINK_MAX
The maximum value of a file’s link count. If fd identifies a directory, the value returned applies to the
directory itself.

_PC_MAX_CANON
The number of bytes in a terminal’s canonical input queue. Behavior is undefined if fd does not identify a
terminal file.

_PC_MAX_INPUT
The number of bytes for which space will be available in a terminal’s input queue. Behavior is undefined if
fd does not identify a terminal file.

_PC_NAME_MAX
The number of bytes in a file name. The behavior is refined if fd does not identify a directory. The value
returned applies to the file names within the directory.

_PC_PATH_MAX
The number of bytes in a path name. Behavior is undefined if fd does not identify a directory. If fd
identifies the current working directory, fpathconf() returns the maximum length of a relative path name.

_PC_PIPE_BUF
The number of bytes that can be written atomically when writing to a pipe. If fd identifies a pipe or FIFO,
the value returned applies to the FIFO itself. If fd identifies a directory, the value returned applies to any
FIFOs that exist or can be created within that directory. If fd identifies any other type of file, behavior is
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undefined.

_PC_CHOWN_RESTRICTED
chown() can be used only by a process with appropriate privileges, and only to change the group ID of a
file to either that process’s effective group ID or one of its supplementary group IDs. If fd identifies a
directory, the value returned applies to any file, other than a directory, that exists or can be created within
the directory.

_PC_NO_TRUNC
Path-name components longer than NAME_MAX generate an error. The behavior isundefined if fd does
not identify a directory. The value returned applies to the file names within the directory.

_PC_VDISABLE
If this value is defined, terminal-special characters can be disabled. Behavior is undefined if fd does not
identify a terminal file.

The value of the system limit or option that name specifies does not change during the lifetime of the calling
process.

fpathconf() fails and returns -1 if name is not set to a recognized constant. It fails, returns -1, and sets errno to
an appropriate value if either of the following is true:

• fd is not a valid file descriptor. fpathconf() sets errno to EBADF.

• name is an invalid value. fpathconf() sets errno to EINVAL.

See Also
libc, pathconf(), unistd.h
POSIX Standard, §5.7.1

fperr.h — Header File
Constants used with floating-point exception codes
#include <fperr.h>

fperr.h declares constants used by routines that handle floating-point exceptions. It also defines the error
messages they use.

See Also
header files

fprintf() — STDIO Function (libc)
Print formatted output into file stream
#include <stdio.h>
int fprintf(fp, format, [arg1, .... argN])
FILE *fp; char *format;
[data type] arg1, ... argN;

fprintf() formats and prints a string. It resembles the function printf(), except that it writes its output into the
stream pointed to by fp, instead of to the standard output.

fprintf() uses the format to specify an output format for arg1 through argN.

See printf() for a description of fprintf()’s formatting codes.

If it wrote the formatted string correctly, fprintf() returns the number of characters written. Otherwise, it returns a
negative number.

Example
For an example of this routine, see the entry for fscanf().

See Also
libc, printf(), sprintf(), vfprintf()
ANSI Standard, §7.9.6.1
POSIX Standard, §8.1
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Notes
Because C does not perform type checking, it is essential that an argument match its specification. For example, if
the argument is a long and the specification is for a short, fprintf() will peel off the first word of that long and
present it as an short.

fputc() — STDIO Function (libc)
Write character into file stream
#include <stdio.h>
int fputc(c, fp)
char c; FILE *fp;

fputc() writes the character c into the file stream pointed to by fp. It returns c if c was written successfully.

Example
The following example uses fputc to write the contents of one file into another.

#include <stdio.h>

void fatal(message)
char *message;
{

fprintf(stderr, "%s\n", message);
exit(1);

}

main()
{

FILE *fp, *fout;
int ch;
int infile[20];
int outfile[20];

printf("Enter name to copy: ");
gets(infile);
printf("Enter name of new file: ");
gets(outfile);

if ((fp = fopen(infile, "r")) == NULL)
fatal("Cannot write input file");

if ((fout = fopen(outfile, "w")) != NULL)
fatal("Cannot write output file");

while ((ch = fgetc(fp)) != EOF)
fputc(ch, fout);

}

See Also
libc
ANSI Standard, §7.9.7.3
POSIX Standard, §8.1

Diagnostics
fputc() returns EOF when a write error occurs, e.g., when a disk runs out of space.

fputs() — STDIO Function (libc)
Write string into file stream
#include <stdio.h>
int fputs(string, fp)
char *string; FILE *fp;

fputs() writes string into the file stream pointed to by fp. Unlike its cousin puts(), it does not append a newline
character to the end of string.

fputs() returns a nonnegative value on success and EOF if a write error occurs.
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Example
For an example of this function, see the entry for freopen().

See Also
libc, puts()
ANSI Standard, §7.9.7.4
POSIX Standard, §8.1

fputw() — STDIO Function (libc)
Write an integer into a stream
#include <stdio.h>
int fputw(word, fp)
int word; FILE *fp;

fputw() writes word into the file stream pointed to by fp, and returns the value written.

Example
For an example of this function, see the entry for ferror().

See Also
fgetw(), libc

Diagnostics
fputw() returns EOF when an error occurs. A call to ferror() or feof() may be needed to distinguish this value from
a valid end-of-file signal.

fread() — STDIO Function (libc)
Read data from file stream
#include <stdio.h>
int fread(buffer, size, n, fp)
char *buffer; unsigned size, n; FILE *fp;

fread() reads n items, each being size bytes long, from file stream fp into buffer.

Example
For an example of how to use this function, see the entry for fopen().

See Also
fwrite(), libc
ANSI Standard, §7.9.8.1
POSIX Standard, §8.1

Diagnostics
fread() returns zero upon reading EOF or on error; otherwise, it returns the number of items read.

free() — General Function (libc)
Return dynamic memory to free memory pool
#include <stdlib.h>
void free(ptr) char *ptr;

free() helps you manage the arena. It returns to the free memory pool memory that had previously been allocated
by malloc(), calloc(), or realloc(). free() marks the block indicated by ptr as unused, so the malloc() search can
coalesce it with contiguous free blocks. ptr must have been obtained from malloc(), calloc(), or realloc().

Example
For an example of how to use this routine, see the entry for malloc().

See Also
libc
ANSI Standard, §7.10.3.2
POSIX Standard, §8.1
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Diagnostics
free() prints a message and calls abort() if it discovers that the arena has been corrupted. This most often occurs
by storing data beyond the bounds of an allocated block.

freemem — Device
Device that indicates amount of memory that is free
/dev/freemem

/dev/freemem is the device from which you can read the system’s free memory at any given moment. It has
major device 0, the same as /dev/null and /dev/cmos; and minor number 12.

This non-portable device node is used exclusively for tracking the amount of free memory in the system. Its driver
recognizes the system calls open(), close(), read(), and ioctl(), but not write().

Example
The following program prints the amount of free memory in your system.

#include <fcntl.h>
#include <sys/null.h>
#include <stdlib.h>

main()
{

FREEMEM freemem;
int fm_fd;

fm_fd = open("/dev/freemem", O_RDONLY);

if (fm_fd >= 0) {
ioctl (fm_fd, NLFREE, &freemem);
close (fm_fd);
printf ("Available memory: %d kilobytes\n", freemem.avail_mem);
printf ("Free memory: %d kilobytes\n", freemem.free_mem);

} else
printf("Cannot open /dev/freemem\n");

}

See Also
device drivers, hmon, ioctl(), null

freopen() — STDIO Function (libc)
Open file stream for standard I/O
#include <stdio.h>
FILE *freopen (name, type, fp)
char *name, *type; FILE *fp;

freopen() reinitializes the file stream fp. It closes the file currently associated with it, opens or creates the file
name, and returns a pointer to the structure for use by other STDIO routines. name names a file.

type is a string that consists of one or more of the characters ‘‘rwa’’ (for, respectively, read, write, and append) to
indicate the mode of the stream. For further discussion of the type variable, see the entry for fopen(). freopen()
differs from fopen() only in that fp specifies the stream to be used. Any stream previously associated with fp is
closed by fclose(). freopen() is usually used to change the meaning of stdin, stdout, or stderr.

Example
This example, called match.c, looks in argv[2] for the pattern given by argv[1]. If the pattern is found, the line
that contains the pattern is written into the file argv[3] or to stdout.

#include <stdio.h>
#define MAXLINE 128
char buffer[MAXLINE];
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void fatal(message)
char *message;
{

fprintf(stderr, "match: %s\n", message);
exit(1);

}

main(argc,argv)
int argc; char *argv[];
{

FILE *fpin, *fpout;

if (argc != 3 && argc != 4)
fatal("Usage: match pattern infile [outfile]");

if ((fpin = fopen(argv[2], "r")) == NULL)
fatal("Cannot open input file");

fpout = stdout;
if (argc == 4)

if ((fpout = freopen(argv[3], "w", stdout)) == NULL)
fatal("Cannot open output file");

while (fgets(buffer, MAXLINE, fpin) != NULL) {
if (pnmatch(buffer, argv[1], 1))

fputs(buffer, stdout);
}
exit(0);

}

See Also
fopen(), libc
ANSI Standard, §7.9.5.4
POSIX Standard, §8.1

Diagnostics
freopen() returns NULL if the type string is nonsense or if the file cannot be opened. Currently, only 20 FILE
structures can be allocated per program, including stdin, stdout, and stderr.

frexp() — General Function (libc)
Separate fraction and exponent
#include <math.h>
double frexp(real, ep)
double real; int *ep;

frexp() breaks double-precision floating point numbers into fraction and exponent. It returns the fraction m of its
real argument, such that 0.5 <= m < 1 or m=0, and stores the binary exponent e in the location pointed to by ep.
These numbers satisfy the equation real = m * 2e.

Example
This example prompts for a number, then uses frexp() to break it into its fraction and exponent.

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

main()
{

double real, fraction;
int ep;

char string[64];

for (;;) {
printf("Enter number: ");
if (gets(string) == NULL)

break;
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fraction = frexp(real, &ep);
printf("%lf is the fraction of %lf\n",

fraction, real);
printf("%d is the binary exponent of %lf\n",

ep, real);
}

}

See Also
atof(), ceil(), fabs(), floor(), ldexp(), libc, modf()
ANSI Standard, §7.5.4.3
POSIX Standard, §8.1

from — Command
Generate list of numbers, for use in loop
from start to stop [ by incr ]

from prints a list of integers on the standard output, one per line. It prints beginning with start, and then prints
successive numbers incrementing by incr (default, one) the previous number. It continues until the generated
value matches or exceeds stop. Each of start, stop, and optional incr is a decimal integer with an optional leading ‘-’
sign.

Typical uses of from include generating a file of numbers and generating a loop index for the shell. The following
example creates special files for eight terminal ports:

for i in `from 0 to 7`
do

/etc/mknod /dev/hs0$i c 7 $i
done

See Also
commands, ksh, sh

Diagnostics
from prints an error message if the generated list is empty.

fscanf() — STDIO Function (libc)
Format input from a file stream
#include <stdio.h>
int fscanf(fp, format, arg1, ... argN)
FILE *fp; char *format;
[data type] *arg1, ... *argN;

fscanf() reads the file stream pointed to by fp, and uses the string format to format the arguments arg1 through
argN, each of which must point to a variable of the appropriate data type.

fscanf() returns either the number of arguments matched, or EOF if no arguments matched.

For more information on fscanf()’s conversion codes, see scanf().

Example
The following example uses fprintf() to write some data into a file, and then reads it back using fscanf().

#include <stdio.h>

main ()
{

FILE *fp;
char let[4];

/* open file into write/read mode */
if ((fp = fopen("tmpfile", "wr")) == NULL) {

printf("Cannot open ’tmpfile’\n");
exit(1);

}
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/* write a string of chars into file */
fprintf(fp, "1234");

/* move file pointer back to beginning of file */
rewind(fp);

/* read and print data from file */
fscanf(fp, "%c %c %c %c",

&let[0], &let[1], &let[2], &let[3]);
printf("%c %c %c %c\n",

let[3], let[2], let[1], let[0]);
}

See Also
libc, scanf(), sscanf()
ANSI Standard, §7.9.6.2
POSIX Standard, §8.1

Notes
Because C does not perform type checking, it is essential that an argument match its specification. For that
reason, fscanf() is best used only to process data that you are certain are in the correct data format, such as data
previously written out with fprintf().

fsck — Command
Check and repair file systems interactively
/etc/fsck [ -fnqsSy ] [ -t tempfile ] [ filesystem ... ]

fsck checks and interactively repairs file systems. If all is well, fsck merely prints the number of files used, the
number of blocks used, and the number of blocks that are free. If the file system is found to be inconsistent in one
of the aspects outlined below, fsck asks whether it should fix the inconsistency and waits for you to reply yes or
no.

The following file system aspects are checked for consistency by fsck:

• If a block is claimed by more than one i-node, by an i-node and the free list, or more than once in the free list.

• Whether an i-node or the free list claims blocks beyond the file system’s range.

• Link counts that are incorrect.

• Whether the directory size is not aligned for 16 bytes.

• Whether the i-node format is correct.

• Whether any blocks are not accounted for.

• Whether a file points to an unallocated i-node.

• Whether a file’s i-node number is out of range.

• Whether the super block refers to more than 65,536 i-nodes.

• Whether the super block assigned more blocks to the i-nodes than the system contains.

• Whether the format of the free block list is correct.

• Whether the counts of the total free blocks and the free i-nodes are correct.

fsck prints a warning message when a file name is null, has an embedded slash ‘/’, is not null-padded, or if ‘.’ or ‘..’
files do not have the correct i-node numbers.

When fsck repairs a file system, any file that is orphaned (that is, allocated but not referenced) is deleted if it is
empty, or copied to a directory called lost+found, with its i-node number as its name. The directory lost+found
must exist in the root of the file system being checked before fsck is executed, and it must have room for new
entries without requiring that new blocks be allocated.

fsck recognizes the following options:
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-f Fast check. fsck only checks whether a block has been claimed by more than one i-node, by an i-node and
the free list, or more than once in the free list. If necessary, fsck will reconstruct the free list.

-n No option: a default reply of no is given to all of fsck’s questions.

-q Quiet option: run quietly. fsck automatically removes all unreferenced pipes, and automatically fixes list
counts in the super block and the free list. File-name warning messages are suppressed, but fsck still prints
the number of files used, the number of blocks used, and the number of blocks that remain free.

-s Sort the free lists, both free blocks and free i-nodes, based on the interleave number. This is useful in
reducing fragmentation of a file system. This option ignores mounted file systems.

-S Same as -s, except that it also works on mounted file systems. Not recommended for the faint of heart.

-t Name the temporary file used by fsck.

-y Yes option: a default reply of yes is given to all of fsck’s questions.

If you do not name a file system in fsck’s command line, fsck checks the file systems named in the file
/etc/checklist.

Files
/etc/checklist

See Also
clri, commands, icheck, ncheck, ram, sync, umount

Diagnostics
The following describes fsck’s error messages and questions. The error messages fall into two categories:
warnings, which describe something possibly wrong with a file; and fatals, which indicate that something has gone
wrong with a file system, or with fsck itself, with which fsck cannot cope. Each question describes the condition
in question; here, it is followed by advice on what is probably the correct response.

Bad action in virtual system (fatal)
Bad block number, i-number = number (warning)
Number Bad blocks in Free List (warning)

Bad/Dup blocks in i-node type file name (Clear i-node) [yes/no] (question)
The given i-node contains bad or duplicately referenced blocks. You are asked if you would like to clear
the i-node completely. If you answer yes, then the file will be lost forever.

Bad entry in block number in directory name/i-node (warning)

Bad Free List (SALVAGE) [yes/no] (question)
fsck is asking if you want it to salvage the free list automatically. This is almost certainly a good thing to
do.

Bad or Dup blocks in directory/file (Remove) [yes/no] (question)
The given file’s i-node references bad or duplicately referenced blocks. fsck is asking if you wish to remove
file from the directory.

Bad Super Block: number (warning)
Number Blocks missing (warning)

***** BOOT Coherent (NO SYNC!) ***** (message)
Do as the message says: reboot COHERENT without running the command sync.

Cannot close Ram Disk Close /dev/rram1close (fatal)
Cannot create temp file name (fatal)
Cannot open Ram Disk Close /dev/rram1close (fatal)
Cannot open read/write Ram Disk /dev/rram1 (fatal)

Can not Read: Blk num: number (CONTINUE) [yes/no] (question)
The given action could not be performed. If you choose to not continue, fsck will abort. If you choose to
continue, the results may be unpredictable.
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Can not Seek: Blk num: number (CONTINUE) [yes/no] (question)
The given action could not be performed. If you choose to not continue, fsck will abort. If you choose to
continue, the results may be unpredictable.

Can not Write: Blk num: number (CONTINUE) [yes/no] (question)
The given action could not be performed. If you choose to not continue, fsck will abort. If you choose to
continue, the results may be unpredictable.

Can’t access ram disk /dev/rram1, use the -t option (fatal)
Can’t malloc memory, phase 2 (fatal)
Can’t malloc space for interleave table. Free-block list is not rebuilt. (warning)
Can’t open: file system (warning)
Can’t open checklist file: /etc/checklist (fatal)
Can’t stat: file system (warning)
Can’t stat temp file name (fatal)

Count = count, should be count (Adjust) [yes/no] (question)
The given i-node claims to have a different number of links than was actually found in the file system. You
are asked if you wish to adjust the count found in the i-node. If you answer yes, then fsck will correct the
i-node count.

Directory Misaligned i-number = number (warning)
Dir i-number = number connected. Parent was i-number = number (warning)
Dir i-number = number connected. It has bad/dup blocks. (warning)
Dir i-number = number connected. It has no .. entry. (warning)

Dup/Bad blocks in root i-node (Continue) [yes/no] (question)
The root i-node has bad or duplicate blocks. This may require a guru to fix properly. fsck is asking
whether you want it to continue. If not, then fsck will abort.

Dup Block number, i-number = number (warning)
Number Dup blocks in Free List (warning)

DUP Table Overflow (Continue) [yes/no] (question)
The table of duplicately referenced disk blocks has overflowed. You can continue with the fsck (as best as
it is able), or abort.

Embedded slashes in entry in block number in directory name/i-node (warning)
Error seeking tmp file (fatal)
Error writing tmp file (fatal)
Error writing to tmp file (fatal)

Excessive Bad Blocks i-number = number (Continue) [yes/no] (question)
The specified i-node references an excessive number of bad blocks. You can continue with the fsck (at the
next i-node), or abort.

Excessive Dup Blocks i-number = number (Continue) [yes/no] (question)
The specified i-node references an excessive number of duplicate blocks. You can continue with the fsck
(at the next i-node), or abort.

Excessive bad/dup blocks in free list (Continue) [yes/no] (question)
This indicates that there are excessive bad or duplicately referenced blocks in the free list off of the
superblock. This is a very bad condition. You should choose to continue, which will fall to phase 6 to
salvage the free list. If you answer no, then fsck will abort.

Expect roughly number missing blocks next time fsck is run as a result of i-nodes being cleared. (message)

file is not a block or character device; OK? [yes/no]: (question)
You are attempting to fsck a file that is not a block or character device. If you are certain it is a file
system, then answer yes to continue.

File System Read-Only (NO WRITE) (fatal)
***** File System system was modified ***** (message)
Number files number blocks number free (message)
Fixblock error. (fatal)
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Free Block count wrong in superblock. (FIX) [yes/no] (question)
The free block count in the superblock is incorrect. You should allow fsck to repair it unless you are a
guru and have reason to believe that fsck should not use the redundancy in the file system (via all
previously reported messages) to repair this crucial piece of data in the superblock.

Free i-node count wrong in superblock. (FIX) [yes/no] (question)
The free i-node count in the superblock is incorrect. You should allow fsck to repair it unless you are a
guru and have reason to believe that fsck should not use the redundancy in the file system (via all
previously reported messages) to repair this crucial piece of data in the superblock.

Inconsistent . entry in block number in directory name/i-node (warning)
Inconsistent .. entry in block number in directory name/i-node (warning)
i-number = number is in a bad inode block. (warning)

I-number is out of range I=file name (Remove) [yes/no] (question)
file has an i-node number that is out of range. fsck is asking if you wish to remove the stated file (which,
after all, does not exist).

I-node number is a multiply referenced directory i-node. (warning)
internal linktable corruption. (fatal)
Invalid interleave factors in superblock. Default free-block list spacing assumed. (warning)
Invalid Response (fatal)
Link count discrepancy in i-node type file name
file system mounted on point as of time (message)
Name too long. (warning)
Non null padded entry in block number in directory name/i-node (warning)
Null name entry in block number in directory name/i-node (warning)

Out of Range Block number: number (CONTINUE) [yes/no] (question)
The given action could not be performed. If you choose to not continue, fsck will abort. If you choose to
continue, the results may be unpredictable.

Possible Directory Size Error i-number = number (warning)
Possible File Size Error i-number = number (warning)
Possible file system on ram disk /dev/rram1, use the -t option (fatal)
Ram disk close /dev/rram1close not mknoded properly (fatal)
Ram disk /dev/rram1 not mknoded properly (fatal)

Root i-node is not a directory (FIX) [yes/no] (question)
The root i-node must be a directory. fsck is asking whether you wish to fix this. If not, then fsck will
abort.

Root i-node is unallocated. Terminating (fatal)
Size check: fsize blocks isize first non-i-node block (warning)
Sorry. No lost+found directory. (warning)
Sorry. No space in lost+found directory. (warning)
Temp File must not be on file system to fsck (fatal)
Too many file systems in checklist file: /etc/checklist (fatal)
Too large free block count (warning)
Too large free i-node count (warning)
Too many links in i-node number (fatal)
Tried to checkpath i-node number which is not dir. (fatal)

Unallocated file (Remove) [yes/no] (question)
file’s i-node is unallocated. fsck is asking if you wish to remove the stated file (which, after all, does not
exist).

Unknown File Type i-number = number (Clear) [yes/no]: (question)
The mode field in the specified i-node is unknown. If you wish, you can clear the named i-node.

file system unmounted. Last mounted on point. (message)

Unref Dir name (Reconnect) [yes/no] (question)
The given directory’s i-node is unreferenced. You are asked if you would like to reconnect the stated
directory. If you answer yes, then the directory will be reconnected in directory /lost+found in the given
file system. If not, it will remain unreferenced and you will be asked later if you would like to remove it.
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Unref i-node type file name (Reconnect) [yes/no] (question)
The given i-node is unreferenced. fsck is asking if you wish to reconnect it to the stated file. If you answer
yes, then the file will be reconnected in directory /lost+found in the given file system. If not, it will remain
unreferenced and you will be asked later if you would like to remove it.

Unref i-node type file name (Clear i-node) [yes/no] (question)
The given i-node is unreferenced. fsck asks if you wish to clear the i-node completely. If you answer yes,
the file is lost forever. You have already decided not to reconnect it, so there seems to be no reason to keep
it anyway.

Notes
The correction of file systems almost always involves the destruction of data.

You should run fsck only when the COHERENT system is in single-user mode.

fsck cannot modify a file system during its work. This rule was adopted to prevent fsck from attempting to modify
a corrupt file system, and so making matters worse. However, this means that fsck cannot change the size of
directory lost+found. Thus, if more files are detached from the file system than lost+found can hold, fsck must
delete them outright. If you are running an application that uses large numbers of transient files (e.g., a news
system), you should increase the size of lost+found so that it has a fighting chance of holding all detached files
that fsck finds. To do so, use the command /etc/mklost+found. For details, see its entry in the Lexicon.

fseek() — STDIO Function (libc)
Seek on file stream
#include <stdio.h>
int fseek(fp, where, how)
FILE *fp; long where; int how;

fseek() changes where the next read or write operation will occur within the file stream fp. It handles any effects
the seek routine might have had on the internal buffering strategies of the system. The arguments where and how
specify the desired seek position. where indicates the new seek position in the file. It is measured from the start of
the file if how equals SEEK_SET (zero), from the current seek position if how equals SEEK_CUR (one), and from
the end of the file if how equals two SEEK_END (two).

fseek() differs from its cousin lseek() in that lseek() is a COHERENT system call and takes a file number, whereas
fseek() is a STDIO function and takes a FILE pointer.

Example
This example opens file argv[1] and prints its last argv[2] characters (default, 100). It demonstrates the functions
fseek(), ftell(), and fclose().

#include <stdio.h>
extern long atol();

void fatal(message)
char *message;
{

fprintf(stderr, "tail: %s\n", message);
exit(1);

}

main(argc, argv)
int argc; char *argv[];
{

register FILE *ifp;
register int c;
long nchars, size;

if (argc < 2 || argc > 3)
fatal("Usage: tail file [ nchars ]");

nchars = (argc == 3) ? atol(argv[2]) : 100L;
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if ((ifp = fopen(argv[1], "r")) == NULL)
fatal("cannot open input file");

/* Seek to end */
if (fseek(ifp, 0L, 2) == -1)

fatal("seek error");

/* Find current size */
size = ftell(ifp);
size = (size < nchars) ? 0L : size - nchars;

/* Seek to point */
if (fseek(ifp, size, 0) == -1)

fatal("seek error");
while ((c = getc(ifp)) != EOF)

/* Copy rest to stdout */
putchar(c);

if (fclose(ifp) == EOF)
fatal("cannot close");

exit(0);
}

See Also
fsetpos(), ftell(), libc, lseek()
ANSI Standard, §7.9.9.2
POSIX Standard, §8.1

Diagnostics
For any diagnostic error, fseek() returns -1; otherwise, it returns zero. If fseek() goes beyond the end of the file, it
will not return an error message until the corresponding read or write is performed.

fsetpos() — STDIO Function (libc)
Set file-position indicator
#include <stdio.h>
int
fsetpos(fp, position)
FILE *fp; fpos_t *position;

fsetpos() resets the file-position indicator. fp points to the file stream whose indicator is being reset. position is a
value that had been returned by an earlier call to fgetpos(). It is of type fpos_t, which is defined in the header
stdio.h.

Like the related function fseek(), fsetpos() clears the end-of-file indicator and undoes the effects of a previous call
to ungetc(). The next operation on fp may read or write data.

fsetpos() returns zero if all goes well. If an error occurred, it returns nonzero and sets errno to an appropriate
value.

Example
For an example of this function, see fgetpos().

See Also
fgetpos(), fseek(), ftell(), libc, rewind()
ANSI Standard, §7.9.9.3

Notes
The ANSI Standard designed fsetpos() to be used with files whose file position cannot be represented within a long.
Under COHERENT, it behaves the same as fseek().

If you wish to use fsetpos(), you should first call the function fgetpos() to obtain value of the file-position indicator.

You can also use the functions ftell() and fset(), respectively, to read and set the file-position indicator. However,
code that uses these function may not be portable to operating systems other than COHERENT or UNIX.
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fstat() — System Call (libc)
Find attributes of an open file
#include <sys/stat.h>
int fstat(fd, statptr)
int fd; struct stat *statptr;

fstat() examines the attributes of an open file. fd is the descriptor of the open file or pipe you wish to examine.
statptr points to a structure of type stat, which is defined in the header file <stat.h>; fstat() writes into it the
attributes of the file or pipe to which fd points, including protection information, file type, and file size.

fstat() returns zero if all goes well. If an error occurs (e.g., fd is not found or statptr is invalid), it returns -1.

Example
For an example of how to use this function, see the Lexicon entry for pipe().

See Also
chmod(), chown(), libc, ls, open(), stat(), stat.h
POSIX Standard, §5.6.2

Notes
fstat() differs from the related function stat() mainly in that it accesses a file through its descriptor, which was
returned by a successful call to open(), whereas stat() takes the file’s path name and opens the file itself before it
checks its status.

fstatfs() — System Call (libc)
Get information about a file system
#include <sys/types.h>
#include <sys/statfs.h>
int fstatfs (filedes, buffer, length, fstype)
int filedes;
struct statfs *buffer;
int length, fstype;

The COHERENT system call fstatfs() returns information about a file system, either mounted or unmounted.

buffer points to a structure of type statfs, which contains the following members:

short f_fstyp; /* type of the file system */
short f_bsize; /* block size */
short f_frsize; /* fragment size */
long f_blocks; /* number of blocks in the file system */
long f_bfree; /* number of free blocks */
long f_files; /* number of file nodes */
long f_ffree; /* number of free file nodes */
char f_fname[6]; /* name of the volume */
char f_fpack[6]; /* name of the pack */

length is the length of the area into which fstatfs() can write its output. Always set this to sizeof(struct statfs).

filedes and fstype identify the file system. If the file system is unmounted, then filedes should give the file
descriptor for the device by which the file system is accessed, as returned by a call to creat(), dup(), open(), or
pipe(); and fstype contains the type of the file system. If the file system is mounted, then filedes should give the
file descriptor of a file on the file system in question, and fstype must be set to zero.

fstatfs() returns zero if all went well. If something went wrong, it returns -1 and sets errno to an appropriate
value.

See Also
libc, mkfs, statfs(), statfs.h, types.h, ustat()
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ft — Device Driver
Floppy-tape driver
/dev/ft

The device driver ft supports floppy-tape drives. It has major number 4. Minor-number assignments are
documented in the header file /usr/include/sys/ft.h.

ft works with QIC-40 and QIC-80 drives from Colorado, Archive, Mountain, and Summit. It offers the following
features:

• It uses the bad-block bitmap that is written into the first two 32-kilobyte segments of tape at format time.

• It uses standard QIC-40/QIC-80 Reed-Solomon error-correcting code (ECC). This technique uses three of
every 32 blocks for error checking. A tape block is one kilobyte long.

• It supports no-rewind-on-close. This feature permits you to concatenate several archives onto a single tape
cartridge.

• It performs auto-configuration for users who do not know if their drives use soft select A or soft select B, or
hard select on unit 0, 1, 2, or 3, with manual override.

• It lets you configure the size of the tape buffer, from 64 through 4,064 kilobytes.

• It reads from and writes to buffer space rather than going to tape whenever possible.

• It works with partially formatted tapes. Some formatting utilities let you select the number of tape tracks to
format, in case you do not want to take the time to format an entire cartridge.

• It recognizes both 205-foot and 307.5-foot tapes.

• It works with the COHERENT command tape with the following arguments: rewind, retension, seek, status,
and tell.

Please note that release 1.0 of ft has the following limitations:

• It does not format tapes. For now, we suggest that you buy pre-formatted tapes, or use formatting utilities
available under other operating systems.

• It does not support the QIC-80 formats for MS-DOS or UUCP file systems on tape. These features do not need
to be part of the device driver, and can be implemented by user-level applications.

• It does not perform data compression, as documented in QIC-122. Other forms of data compression are
presently available under COHERENT, such as the -z option supported by the tape-archive command gtar.

• The device driver is character-only: there is no corresponding block device for floppy tape.

• It does not support 1,100-foot tapes. Although the QIC-80 standard mentions this length, it is not in common
use.

• You cannot access a floppy-disk drive from COHERENT while a floppy-tape drive is in use. Likewise, if a floppy
disk is in use — for example, if it is mounted — you cannot access the floppy-tape drive.

• Although a QIC-80 drive can read a tape that was formatted for QIC-40, it cannot write to such a tape. The
cartridge must be reformatted for QIC-80 before a QIC-80 drive can write to it.

See Also
device drivers, fd, ftbad, gnucpio, gtar, tape

Notes
ft reports any error that may affect integrity of the data. If the same block number appears repeatedly in ft’s
warning messages, it is a problem on the tape and the block should be in the bad block list. Because the Reed-
Solomon ECC used in ft allows the physical medium to spoil up to three of every 32 one-kilobyte blocks yet recover
all data, your data set may still be recoverable despite these errors; but you should consider using the command
ftbad to add such blocks to your cartridge’s list of bad blocks before you again write data onto that cartridge.

The message:

Get Reference Burst Failed
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can occur if you attempt to back up to an unformatted tape, or one who’s format is unrecognizable. If a backup
fails with this message, try using another, formatted cartridge.

Systems with a very slow CPU (e.g., a 16-megahertz 80386SX) may have trouble running ft in multi-user mode.
The reason is that floppy-tape hardware does not have much intelligence built into it, so the driver must consume
many CPU cycles. In such instances, we suggest that you back up your system while in single-user mode (which
is a good idea in any case).

ftbad — Command
Manipulate bad-block list on a floppy-tape cartridge
ftbad [-rw] [device]

The command ftbad lets you manipulate the list of bad blocks on a floppy-tape cartridge. It recognizes the
following options:

-r Read the list of bad blocks from floppy-tape cartridge, and write them to the standard-output device. The
output will appear something like the following:

557
1033
89640

-w Read a list of bad blocks from the standard-input device, and write it onto the floppy-tape cartridge.

device
The floppy-tape device to manipulate. If you do not name a device on ftbad’s command line, by default it uses
/dev/ft, which rewinds the tape upon close. For a list of tape devices that you can use the Lexicon entry for
tape.

Example
To modify the bad block list for a cartridge, do the following:

• First, use the command:

ftbad -r > badlist

This reads the list of bad blocks and writes it into file badlist.

• Second, edit badlist. Each line in this file will name only one bad block, in decimal notation.

• Finally, write the edited list back onto the tape cartridge with the command:

ftbad -w < badlist

See Also
commands, ft, tape

Notes
Do not change the bad block list of a tape that contains data you wish to retrieve. You should use ftbad only when
you see repeated I/O errors at the same block on a tape and wish to mark that block as being bad before you reuse
the tape. Caveat utilitor!

ftell() — STDIO Function (libc)
Return current position of file pointer
#include <stdio.h>
long ftell(fp) FILE *fp;

ftell() returns the current position of the seek pointer. Like its cousin fseek(), ftell() takes into account any
buffering that is associated with the stream fp.

Example
For an example of how to use this function, see the entry for fseek().

See Also
fgetpos(), fseek(), libc, lseek(), rewind()
ANSI Standard, §7.9.9.4
POSIX Standard, §8.1
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ftime() — System Call (libc)
Get the current time from the operating system
#include <sys/timeb.h>
int ftime(tbp)
struct timeb *tbp;

ftime() fills the structure timeb, which is pointed to tbp, with COHERENT’s representation of the current time.
Header file timeb.h defines timeb as follows:

struct timeb {
time_t time;
unsigned short millitm;
short timezone;
short dstflag;

}

The member time is the number of seconds since January 1, 1970, 0h00m00s GMT. millitm is a count of
milliseconds. timezone and dstflag are obsolete; they have been replaced by the environmental variable
TIMEZONE.

ftime() does not return a meaningful value.

See Also
date, libc, time, timeb.h, TIMEZONE, types.h

Notes
The ANSI Standard eliminates ftime() from the set of standard time functions. COHERENT includes it only to
support existing software. Users are well advised to modify their time routines to eliminate ftime().

ftok() — General Function (libc)
Generate keys for interprocess communication
#include <sys/types.h>
#include <sys/ipc.h>
key_t ftok(filename, procid)
char *filename;
char procid;

The COHERENT system implements three methods by which one process can communicate with another:
semaphores, messages, and shared memory. In each case, a process must use a key of type key_t (which is
defined in header file <sys/types.h>) to identify itself.

One problem is that each process generates its own key, by its own method. Therefore, two processes could
independently generate the same key, which could create serious problems for interprocess communication.

The function ftok() generates keys for processes that perform interprocess communication. filename is the full
path name of a file. This can be the full path name of the file in which the program resides on disk. The file
named in filename must exist and be accessible for the system call stat(), or ftok() will fail. procid is a one-
character identifier with which this process distinguishes itself from all other processes that are pegged to filename.
How a process generates procid is up to the program itself.

For example, the program myproc can generate a unique key for itself with the call:

key_t mykey;
mykey = ftok("/usr/bin/myproc", ’A’);

Note the following caveats:

• Because ftok() generates its key from a file’s i-node major and minor numbers rather than its name, it
generates the same key for two files that are linked. For example, if files /usr/henry/foo and
/usr/henry/bar are linked to each other, then the calls

ftok("/usr/henry/foo", ’A’);

and

ftok("/usr/henry/bar", ’A’);
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will generate the same key.

• If the file named by filename is destroyed and then recreated, the call to ftok() generates a different key than it
did before filename was destroyed.

• If the file named by filename does not exist, ftok() returns (key_t) -1.

Example
For an example of this function, see the entry for msgget().

See Also
ipc.h, libc, msgget(), semget(), shmget()

function — Definition
A function is the C term for a portion of code that is named, can be invoked by name, and that performs a task.
Many functions can accept data in the form of arguments, modify the data, and return a value to the statement
that invoked it.

See Also
data types, library, portability, Programming COHERENT

fwrite() — STDIO Function (libc)
Write into file stream
#include <stdio.h>
int fwrite(buffer, size, n, fp)
char *buffer; unsigned size, n; FILE *fp;

fwrite() writes n items, each of size bytes, from buffer into the file stream pointed to by fp.

Example
For an example of how to use this function, see the entry for fopen().

See Also
fread(), libc
ANSI Standard, §7.9.8.2
POSIX Standard, §8.1

Diagnostics
fwrite() normally returns the number of items written. If an error occurs, the returned value will not be the same
as n.

fwtable — Command
Build font-width table
fwtable [ -ptv ] [ infile [ outfile ] ]

For the typesetting program troff to use a font, it must know the width of each character in the font, and it must
know how to tell the printer to select the font. All of this information is built into a font-width table, which troff
reads when you run it.

COHERENT comes with font-width tables for a selected set of fonts: for a handful of scalable fonts that are included
with standard PostScript cartridges, for a few bit-mapped fonts, and for some fonts that are built into the Hewlett-
Packard LaserJet III. For a list of the font-width tables that are included with COHERENT, and for further
information on how to manage fonts, see the Lexicon entry for troff.

The command fwtable can read a font, and build a new font-width table for it. It reads the font information from
infile (or the standard input) and writes a font-width table for the font to outfile (or the standard output). It can
understand fonts in the following formats:

• PCL (Printer Control Language) bitmap fonts, which have the suffix .usp.

• Fonts that are built into the Hewlett-Packard LaserJet III and IV, which have the suffix .tfm.

• AFM (Adobe Font Metric) descriptions of PostScript fonts, which have the suffix .afm.

fwtable recognizes the following command-line options:
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-p infile is an AFM (Adobe Font Metric) description for a PostScript font. By default, fwtable assumes that infile
is a a bit-mapped soft font (that is, a font with the suffix .usp).

Please note that if the AFM font you will be using is downloadable rather than built into a cartridge, you must
also use the command PSfont to ‘‘cook’’ that font’s .pfb file into downloadable form. For more information,
see the Lexicon entry PSfont.

-t infile is a Hewlett-Packard .tfm file, which describes a font that is built into the Hewlett-Packard LaserJet III,
rather than a bit-mapped soft font.

-v Print a brief font description to the standard error file.

Files
/usr/lib/roff/troff_pcl/fwt/ — Directory for PCL font-width tables
/usr/lib/roff/troff_ps/fwt/ — Directory for PostScript font-width tables

See Also
commands, hpr, PSfont, troff

Notes
fwtable does not understand Intellifont scalable fonts, or TrueType fonts.
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gawk — Command
Pattern-scanning and -processing language
gawk [ POSIX or GNU style options ] -f program-file [ -- ] file ...
gawk [ POSIX or GNU style options ] [ -- ] program-text file ...

gawk is the GNU Project’s implementation of the AWK programming language. It conforms to the definition of the
language in the POSIX Standard 1003.2 Command Language and Utilities Standard. This version in turn is based
on the description in The AWK Programming Language, by Aho, Kernighan, and Weinberger, with the additional
features defined in the System V Release 4 version of awk. gawk also provides some GNU-specific extensions.

The command line consists of options to gawk itself, the AWK program text (if not supplied via the options -f or --
file), and values to be made available in the predefined AWK variables ARGC and ARGV.

Command-line Options
gawk options may be either the traditional POSIX one-letter options, or the GNU style long options. POSIX
Standard-style options begin with a single ‘-’, whereas GNU long options begin with ‘‘--’’. GNU-style long options
are provided for both GNU-specific features and for POSIX mandated features. Other implementations of the AWK
language are likely to only accept the traditional one-letter options.

Following the POSIX Standard, gawk-specific options are supplied via arguments to the -W option. Multiple -W
options may be supplied, or multiple arguments may be supplied together if they are separated by commas, or
enclosed in quotation marks and separated by white space. Case is ignored in arguments to the -W option. Each -
W option has a corresponding GNU style long option, as detailed below.

gawk recognizes the following command-line options:

-F fs
--field-separator=fs

Use fs for the input field separator (the value of the predefined variable FS).

-v variable=value
--assign=variable=value

Assign value to variable before executing the program. value is available to the BEGIN block of an AWK
program.

-f program-file
--file=program-file

Read the AWK program’s source from file program-file, instead of from the first command-line argument.
The awk command line can contain more than one -f or --file options.

-W compat
--compat

Run in compatibility mode. In compatibility mode, gawk behaves identically to UNIX awk; it recognizes
none of the GNU-specific extensions are recognized. These extensions are described below.

-W copyleft
-W copyright
--copyleft
--copyright

Print the short version of the GNU copyright information message on the standard error.

-W help
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-W usage
--help
--usage Print a relatively short summary of the available options on the standard error.

-W lint
--lint Provide warnings about constructs that are dubious or non-portable to other implementations of AWK.

-W posix
--posix This turns on compatibility mode, with the following additional restrictions:

• The ‘\x’ escape sequences are not recognized.

• The synonym func for the keyword function is not recognized.

• The operators ‘‘**’’ and ‘‘**=’’ cannot be used in place of ‘^’ and ‘‘^=’’.

-W source=program-text

--source=program-text
Use program-text as the AWK program’s source code. This option allows the easy intermixing of library
functions (used via the options -f and --file) with source code entered on the command line. It is intended
primarily for medium to large AWK programs used in shell scripts. The -W source= form of this option
uses the rest of the command line argument for program-text; no other options to -W will be recognized in
the same argument.

-W version
--version

Print version information for this particular copy of gawk on the standard error. This is useful mainly for
knowing if your copy of gawk is up to date with what the Free Software Foundation is distributing.

-- Signal the end of options. This is useful to allow further arguments to the AWK program itself to start with
a ‘-’. This is mainly for consistency with the argument parsing convention used by most other POSIX
Standard programs.

All other options are flagged as illegal and ignored.

AWK Program Execution
An AWK program consists of a sequence of pattern/action statements, plus optional function definitions:

pattern { action statements }
function name(parameter list) { statements }

gawk first reads the program source from the program file (or files) if specified, or from the first non-option
argument on the command line. The option -f may be used multiple times on the command line. gawk reads the
program text as if all the program-files had been concatenated. This is useful for building libraries of AWK
functions, without having to include them in each new AWK program that uses them. To use a library function in
a file from a program typed in on the command line, specify /dev/tty as one of the program files, type your
program, and end it with a <ctrl-D>.

The environment variable AWKPATH specifies a search path to use when finding source files named with the
option -f. If this variable does not exist, the default path is:

.:/usr/lib/awk:/usr/local/lib/awk

If a file name given to the -f option contains a ‘/’ character, gawk does not perform a path search.

gawk executes AWK programs in the following order:

1. gawk compiles the program into an internal form.

2. All variable assignments specified via the -v option are performed.

3. gawk executes the code in the BEGIN block (or blocks), should there be any.

4. gawk then proceeds to read each file named in the ARGV array. If no files are named on the command line,
gawk reads the standard input.

If a file name on the command line has the form variable=value, gawk treats it as a variable assignment, and
assigns value to variable. (This happens after every BEGIN block has been run.) Command-line assignment of
variables is most useful when you wish to assign values dynamically to the variables AWK uses to control how
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input is broken into fields and records. It is also useful for controlling the state of program execution if multiple
passes are needed over a single data file.

If the value of a particular element of ARGV is empty (""), gawk skips it.

For each line in the input, gawk tests to see if it matches any pattern in the AWK program. It tests the patterns in
the order they occur in the program. For each pattern that the line matches, awk executes action associtaed with
that pattern.

Finally, after all the input is exhausted, gawk executes the code in every END block.

Variables and Fields
AWK variables are dynamic: they come into existence when they are first used. Their values are floating-point
numbers, strings, or both, depending upon how they are used. AWK also has one dimensional arrays: multiply
dimensioned arrays can be simulated. Several pre-defined variables are set as a program runs; these are described
as needed and summarized below.

Fields

As it reads a line of input, gawk splits that line into fields. The variable FS defines how fields are separated:

• If FS is a single character, fields are separated by that character.

• If FS is longer than one character, it must be a regular expression. In this case, the value of variable
IGNORECASE (described below) also affects how fields are split. FS is a regular expression.

• In the special case that FS is a single space character, fields are separated by a number of space characters or
tab characters.

If variable FIELDWIDTHS is set to a space-separated list of numbers, each field is expected to have a fixed width:
gawk splits up the record using the specified widths, and ignores the value of FS. Assigning a new value to FS
overrides the use of FIELDWIDTHS, and restores the default behavior.

Each field in the input line can be referenced by its position: $1, $2, and so on. $0 is the whole line.

The value of a field may be assigned to as well. Fields need not be referenced by constants. For example, the AWK
expression

n = 5
print $n

prints the fifth field in the input line. The variable NF holds the total number of fields in the input line.

References to non-existent fields (i.e., fields after $NF) produce the null string. However, assigning to a nonexistent
field (e.g., $(NF+2) = 5) increases the value of NF; creates any intervening fields, with the null string as the value of
each; and causes the value of $0 to be recomputed, with the fields being separated by the value of OFS.

Built-in Variables

The following variables are built into AWK:

ARGC The number of command-line arguments. Note that this does not include options to gawk, or the program
source.

ARGIND
The index in ARGV of the file now being processed.

ARGV Array of command-line arguments. The array is indexed from through to ARGC minus one. Dynamically
changing the contents of ARGV can control the files used for data.

CONVFMT
The conversion format for numbers — by default, ‘‘%.6g’’.

ENVIRON
An array containing the values of the current environment. The array is indexed by the environment
variables, each element being the value of that variable (e.g., ENVIRON["HOME"] might be /u/arnold).
Changing this array does not affect the environment seen by programs which gawk spawns via redirection
or the function system(). (This may change in a future version of gawk.)
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ERRNO
If a system error occurs while performing redirection for getline(), during a read for getline(), or during a
close, ERRNO contains a string describing the error.

FIELDWIDTHS
A white-space separated list of fieldwidths. When set, gawk parses the input into fields of fixed width,
instead of using the value of the variable FS as the field separator. The fixed field-width facility is still
experimental; expect the semantics to change as gawk evolves over time.

FILENAME
The name of the current input file. If no files are specified on the command line, the value of FILENAME is
‘-’. However, FILENAME is undefined within the BEGIN block.

FNR The number of the record within the current input file that is now being processed.

FS The input field separator. By default, this is a blank.

IGNORECASE
Tell gawk’s pattern-matching features to ignore the case when they compare text with a pattern. When
IGNORECASE is set to a nonzero function, the following features of gawk are affected:

• Pattern-matching within rules

• Fieldsplitting with FS.

• Regular expression matching with ‘~’ and ‘‘!~’’.

• The operation of the pre-defined gawk functions gsub(), index(), match(), split(), and sub().

Thus, if IGNORECASE is not equal to zero, pattern

/aB/

matches all of the following:

ab
aB
Ab
AB

As with all AWK variables, the initial value of IGNORECASE is zero, so all regular expression operations
are normally case-sensitive.

NF The number of fields in the current input record.

NR The total number of input records seen so far.

OFMT The output format for numbers — by default ‘‘%.6g’’.

OFS The output-field separator — by default a space character.

ORS The output-record separator — by default a newline.

RS The input record separator — by default a newline. RS is exceptional in that only the first character of its
string value is used to separate records. (This will probably change in a future release of gawk.) If RS is
set to the null string, then records are separated by blank lines. When RS is set to the null string, then
the newline character always acts as a field separator, in addition to whatever value FS may have.

RSTART
The index of the first character matched by the gawk function match(): zero if no match.

RLENGTH
The length of the string matched by match(): -1 if no match.

SUBSEP
The character used to separate multiple subscripts in array elements — by default ‘‘ 34’’.

Arrays

Arrays are subscripted with an expression between square brackets (‘[’ and ‘]’). If the expression is an expression

list (expr, expr ...)
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then the array subscript is a string consisting of the concatenation of the (string) value of each expression,
separated by the value of the variablen SUBSEP. This facility simulates multi-dimensional arrays. For example,

i = "A" ; j = "B" ; k = "C"
x[i, j, k] = "hello, world\n"

assigns the string

"hello, world\n"

to the element of the array x which is indexed by the string

"A\034B\034C".

All arrays in AWK are associative, i.e., indexed by string values.

The special operator in may be used in an if or while statement to see if an array has an index that consists of a
particular value:

if (val in array)
print array[val]

If the array has multiple subscripts, use (i, j) in array.

You can also use the construct in within a for loop to iterate through all the elements of an array.

An element can be deleted from an array using the statement delete.

Variable Typing And Conversion

Variables and fields can be floating-point numbers, strings, or both. How the value of a variable is interpreted
depends upon its context. If a variable or field is used in a numeric expression, gawk treats it as a number; if used
as a string, gawk treats it as a string. To force a variable to be treated as a number, add zero to it; to force it to be
treated as a string, concatenate it with the null string.

When a string must be converted to a number, the conversion is accomplished by the library function atof(). A
number is converted to a string by using the value of CONVFMT as a format string for sprintf(), with the numeric
value of the variable as the argument. However, even though all numbers in AWK are floating point, integral
values are always converted as integers. Thus, given

CONVFMT = "%2.2f"
a = 12
b = a ""

the variable b has a value of 12, not 12.00.

gawk performs comparisons as follows:

• If two variables are numeric, they are compared numerically.

• If one value is numeric and the other has a string value that is a ‘‘numeric string,’’ then comparisons are also
done numerically.

• Otherwise, the numeric value is converted to a string and a string comparison is performed.

Two strings are compared, of course, as strings. According to the POSIX Standard, even if two strings are numeric
strings, a numeric comparison is performed; however, this is clearly incorrect, and gawk does not do this.

Uninitialized variables have the numeric value zero and the string value "" (the null, or empty, string).

Patterns and Actions
AWK is a line-oriented language: the pattern comes first, and then the action. Action statements are enclosed in ‘{’
and ‘}’. Either the pattern may be missing, or the action may be missing, but (of course) not both. If the pattern is
missing, AWK executes the action for every line of input. A missing action is equivalent to

{ print }

which prints the entire line.

Comments begin with the character ‘#’, and continue to the end of the line. Blank lines can be used to separate
statements. Normally, a statement ends with a newline; however, this is not the case for lines ending in any of the
following characters:
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, { ? : && ||

Lines that end in one of the above characters have their statements automatically continued on the following line.
In other cases, a line can be continued by ending it with a ‘\’, in which case the newline will be ignored.

Multiple statements may be put on one line by separating them with a ‘;’. This applies to both the statements
within the action part of a pattern/action pair (the usual case), and to the pattern/action statements themselves.

Patterns

AWK patterns may be one of the following:

BEGIN
END
/regular expression/
relational expression
pattern && pattern
pattern || pattern
pattern ? pattern : pattern
(pattern)
! pattern
pattern1, pattern2

BEGIN and END are two special patterns that are not tested against the input. The action parts of all BEGIN
patterns are merged as if all the statements had been written in a single BEGIN block. They are executed before
any of the input is read. Likewise, gawk merges all the END patterns and executes them when all the input is
exhausted (or when an exit statement is executed). BEGIN and END patterns cannot be combined with other
patterns in pattern expressions. BEGIN and END patterns must have action parts.

For

/regular expression/

patterns, the associated statement is executed for each input line that matches the regular expression. Regular
expressions are the same as those described in the Lexicon entry for the shell sh, and are summarized below.

A relational expression may use any of the operators defined below in the section on actions. These generally test
whether certain fields match certain regular expressions.

The operators &&, ||, and ! are logical AND, logical OR, and logical NOT, respectively, as in C. They do short-
circuit evaluation, also as in C, and are used for combining more primitive pattern expressions. As in most
languages, parentheses may be used to change the order of evaluation.

The operator ?: is like the same operator in C. If the first pattern is true then the pattern used for testing is the
second pattern, otherwise it is the third. Only one of the second and third patterns is evaluated.

The

pattern1, pattern2

form of an expression is called a ‘‘range pattern’’. It matches all input records starting with a line that matches
pattern1, and continues until it reads a record that matches pattern2, inclusive. It does not combine with any
other sort of pattern expression.

Regular Expressions

Regular expressions are the extended kind found in the shell sh. They are composed of characters, as follows:

c Match the non-meta-character c.

\c Match the literal character c.

. Match any character except newline.

^ Match the beginning of a line or a string.

$ Match the end of a line or a string.

[abc...] Character class: Match any of the characters abc....
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[^abc...]
Negated character class: Match any character except abc... and newline.

r1|r2 Alternation: match either r1 or r2.

r1r2 Concatenation: Match r1, then r2.

r+ Match one or more r’s.

r* Match zero or more r’s.

r? Match zero or one r’s.

(r) Grouping: match r.

The escape sequences that are valid in string constants (see below) are also legal in regular expressions.

Actions

Action statements are enclosed in braces, ‘{’ and ‘}’. Action statements consist of the usual assignment,
conditional, and looping statements found in most languages. The operators, control statements, and
input/output statements available are patterned after those in C.

Operators

The following gives AWK’s operators, in order of increasing precedence:

= += -=
*= /= %= ^= = (assignment)

Both absolute assignment (var = value) and operator-assignment (the other forms) are supported.

This has the form

expr1 ? expr2 : expr3

If expr1 is true, the value of the expression is expr2; otherwise it is expr3. Only one of expr2 and expr3 is
evaluated.

|| — logical OR
&& — logical AND
~ — Regular expression match
!~ — Negated match

Do not use a constant regular expression (/foo/) on the left-hand side of a ‘~’ or ‘!~’. Only use one on the
right-hand side. The expression

/foo/ ~ exp

has the same meaning as:

(($0 ~ /foo/) ~ exp)

This is usually not what was intended.

< >
<= >=
!=
== The regular relational operators.

<blank>
String concatenation.

+
- Addition and subtraction.

*
/
% Multiplication, division, and modulus.

+
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-
! Unary plus, unary minus, and logical negation.

^ Exponentiation. The operator ‘**’ may also be used, and ‘**=’ for the assignment operator.

++
-- Increment and decrement, both prefix and suffix.

$ Field reference.

Control Statements

The control statements are as follows:

if (condition) statement [ else statement ]
while (condition) statement
do statement while (condition)
for (expr1; expr2; expr3) statement
for (var in array) statement
break
continue
delete array[index]
exit [ expression ]
{ statements }

I/O Statements

AWK recognizes the following input/output statements:

close(filename)
Close file or pipe.

getline Set $0 from next input record. This statement also sets the built-in variables NF, NR, and FNR.

getline <file
Set $0 from next record of file. This statement also sets the built-in variable NF.

getline var
Set var from next input record. This statment also sets the built-in variables NF and FNR.

getline var <file
Set var from next record of file.

next Stop processing the current input record. The next input record is read and processing starts over with
the first pattern in the AWK program. If the end of the input data is reached, each END block is executed.

next file
Stop processing the current input file. The next input record read comes from the next input file.
FILENAME is updated, FNR is reset to one, and processing starts over with the first pattern in the AWK
program. If the end of the input data is reached, every END is executed.

print Print the current record.

print expr-list
Print each expression in expr-list.

print expr-list >file
Print expressions on file.

printf fmt, expr-list
Format and print.

printf fmt, expr-list >file
Format and print into file.

system(cmd-line)
Execute the command cmd-line, and return its exit status.

Other input/output redirections are also allowed. For print and printf, >>file appends output onto file, whereas a
‘|’ command writes onto a pipe. Likewise, command |getline pipes into getline. getline returns zero when it
reads EOF, and -1 if an error occurs.
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The printf Statement

The AWK statement printf and the function sprintf() (see below) accept the following conversion specification
formats:

%c An ASCII character. If the argument used for %c is numeric, it is treated as a character and printed.
Otherwise, the argument is assumed to be a string, and the only first character of that string is printed.

%d A decimal number (the integer part).

%i Just like %d.

%e A floating-point number of the form [-]d.ddddddE[+-]dd.

%f A floating-point number of the form [-]ddd.dddddd.

%g Use ‘e’ or ‘f’ conversion, whichever is shorter, with nonsignificant zeros suppressed.

%o An unsigned octal number (again, an integer).

%s A character string.

%x An unsigned hexadecimal number (an integer).

%X Like %x, but using ‘‘ABCDEF’’ instead of ‘‘abcdef’’.

%% A single ‘%’ character; no argument is converted.

There are optional, additional parameters that may lie between the ‘%’ and the control letter:

- The expression should be left-justified within its field.

width The field should be padded to this width. If the number has a leading zero, then the field will be padded
with zeroes; otherwise, it is padded with blanks.

.prec A number that indicates the maximum width of the string or digit to the right of the decimal point.

The dynamic width and precision capabilities of the ANSI C printf() routines are supported. A ‘*’ in place of either
the width or precision specification causes AWK to take its value from the argument list to printf or sprintf().

Special File Names

When doing I/O redirection from either print or printf into a file, or via getline from a file, gawk recognizes certain
special file names internally. These file names allow access to open file descriptors inherited from gawk’s parent
process (usually the shell). Other special file names provide access information about the running gawk process.
The file names are as follows:

/dev/pid
Reading this file returns the identfier of the current process, in decimal, terminated with a newline.

/dev/ppid
Reading this file returns the identifier of the current’s process’s parent, in decimal, terminated with a
newline.

/dev/pgrpid
Reading this file returns the current process’s group identifier, in decimal, terminated with a newline.

/dev/user
Reading this file returns a single record terminated with a newline. The fields are separated with blanks.
$1 is the value of the system call getuid(); $2 is the value of the system call geteuid() ; $3 is the value of
the system call getgid(); and $4 is the value of the system call getegid(). If there are any additional fields,
they are the group identifiers returned by getgroups().

/dev/stdin
The standard input.

/dev/stdout
The standard output.

/dev/stderr
The standard error output.
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/dev/fd/n
The file associated with the open-file descriptor n.

These are particularly useful for error messages. For example, these files let you use the statement

print "You blew it!" > "/dev/stderr"

where otherwise you would have had to say:

print "You blew it!" | "cat 1>&2"

These file names may also be used on the command line to name data files.

Numeric Functions

AWK contains the following pre-defined arithmetic functions:

atan2(y, x)
Return the arctangent of y/x, in radians.

cos(expr)
Returns the cosine, in radians.

exp(expr)
The exponential function.

int(expr)
Truncate to integer.

log(expr)
The natural-logarithm function.

rand() Returns a random number between zero and one.

sin(expr)
Return the sine in radians.

sqrt(expr)
The square-root function.

srand(expr)
Use expr as a new seed for the random number generator. If no expr is provided, the time of day will be
used. The return value is the previous seed for the random number generator.

String Functions

AWK has the following pre-defined string functions:

gsub(r, s, t)
For each substring matching the regular expression r in the string t, substitute the string s and return the
number of substitutions. If t is not supplied, use $0.

index(s, t)
Return the index of the string t in the string s, or zero if t is not present.

length(s)
Return the length of the string s, or the length of $0 if s is not supplied.

match(s, r)
Return the position in s where the regular expression r occurs, or zero if r is not present, and set the
values of RSTART and RLENGTH.

split(s, a, r)
Split the string s into the array a on the regular expression r, and return the number of fields. If r is
omitted, use FS instead.

sprintf(fmt, expr-list)
Print expr-list according to fmt, and return the resulting string.

sub(r, s, t)
Just like gsub(), but only the first matching substring is replaced.
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substr(s, i, n)
Return the n-character substring of s starting at i. If n is omitted, the rest of s is used.

tolower(str)
Return a copy of the string str, with all the upper-case characters in str translated to their corresponding
lower-case counterparts. Non-alphabetic characters are left unchanged.

toupper(str)
Return a copy of the string str, with all the lower-case characters in str translated to their corresponding
upper-case counterparts. Non-alphabetic characters are left unchanged.

Time Functions

Because one of the primary uses of AWK programs is processing log files that contain time stamp information,
gawk provides the following two functions for obtaining time stamps and formatting them.

systime()
Return the current time of day as the number of seconds since 00:00:00 hours on January 1, 1970 GMT.

strftime(format, timestamp)
Format timestamp according to the specification within format. timestamp should be of the same form as
returned by systime(). If timestamp is missing, the current time of day is used. See the Lexicon entry for
strftime() for the format conversions that are guaranteed to be available.

String Constants

String constants in AWK are sequences of characters enclosed between quotation marks ‘"’. Within a string, the
following escape sequences are recognized:

\\ Literal backslash
\a The BEL character
\b Backspace
\f Form-feed
\n New line
\r Carriage return
\t Horizontal tab
\v vertical tab.
\xXX Character with hexadecimal value XX
\OOO Character represented by octal digits OOO
\c The literal character c

The escape sequences may also be used within constant regular expressions (e.g., /[\t\f\n\r\v]/ matches
whitespace characters).

Functions
AWK defines a function as follows:

function name(parameter list) { statements }

AWK executes a function when it is called from within the action part of a regular pattern/action statement. The
parameters supplied in the function call are used to instantiate the formal parameters declared within the
function. Arrays are passed by reference, other variables are passed by value.

Because functions were not originally part of the AWK language, the provision for local variables is rather clumsy:
they are declared as extra parameters in the parameter list. The convention is to separate local variables from real
parameters by extra spaces in the parameter list. For example:

function f(p, q, a, b) { # a & b are local
.....

}

/abc/ { ...
; f(1, 2) ; ...
}

The left parenthesis in a function call is required to immediately follow the function name, without any intervening
white space. This is to avoid a syntactic ambiguity with the concatenation operator. This restriction does not
apply to the built-in functions listed above.
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Functions may call each other and may be recursive. Function parameters used as local variables are initialized to
the null string and the number zero upon function invocation.

The word func may be used in place of function.

Examples
Print and sort the login names of every user on your system:

BEGIN { FS = ":" }
{ print $1 | "sort" }

Count lines in a file:

{ nlines++ }
END { print nlines }

Precede each line by its number in the file:

{ print FNR, $0 }

Concatenate and line number (a variation on a theme):

{ print NR, $0 }

Compatibility
A primary goal for gawk is compatibility with the POSIX Standard, as well as with the latest version of UNIX awk. To
this end, gawk incorporates the following user-visible features that are not described in the AWK book, but are part
of awk in System V Release 4, and are in the POSIX Standard:

• The option -v for assigning variables before program execution starts is new. The book indicates that
command line variable assignment happens when awk would otherwise open the argument as a file, which is
after the BEGIN block is executed. However, in earlier implementations, when such an assignment appeared
before any file names, the assignment would happen before the BEGIN block was run. Applications came to
depend on this ‘‘feature.’’ When awk was changed to match its documentation, this option was added to
accomodate applications that depended upon the old behavior. (This feature was agreed upon by both the
AT&T and GNU developers.)

• The option -W for implementation specific features is from the POSIX Standard.

• When processing arguments, gawk uses the special option ‘‘--’’ to signal the end of arguments, and warns
about, but otherwise ignores, undefined options.

• The AWK book does not define the return value of srand(). The System V Release 4 version of UNIX awk (and
the POSIX Standard standard) has it return the seed it was using, to allow keeping track of random number
sequences. Therefore, srand() in gawk also returns its current seed.

• Other new features include the following: use of multiple -f options (from MKS awk); the ENVIRON array; the
escape sequences \a and \v (done originally in gawk and fed back into AT&T’s); the built-in functions
tolower() and toupper() (from AT&T); and the ANSI-C conversion specifications in printf (done first in AT&T’s
version).

GNU Extensions
gawk has some extensions to POSIX Standard awk. They are described in this section. All the extensions described
here can be disabled by invoking gawk with the command-line option -W compat. The following features of gawk
are not available in POSIX Standard awk:

• The escape sequence \x.

• The functions systime() and strftime().

• The special-file names available for I/O redirection.

• The variables ARGIND and ERRNO are not special.

• The variable IGNORECASE and its side-effects are not available.

• The variable FIELDWIDTHS and fixed-width field splitting.
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• No path search is performed for files named via the option -f. Therefore, the environmental variable AWKPATH
is not special.

• The use of next file to abandon processing of the current input file.

The AWK book does not define the return value of the function close(). gawk’s close() returns the value from
fclose() or pclose() when closing a file or pipe, respectively. When gawk is invoked with the option -W compat, if
the fs argument to option -F is ‘t’, then FS will be set to the tab character. Because this is a rather ugly special
case, it is not the default behavior. This behavior also does not occur if -Wposix has been specified.

Historical Features
There are two features of historical AWK implementations that gawk supports. First, it is possible to call the
length() built-in function not only with no argument, but even without parentheses! Thus

a = length

is the same as either of

a = length()
a = length($0)

This feature is marked as ‘‘deprecated’’ in the POSIX Standard standard, and gawk will issue a warning about its
use if option -Wlint is specified on the command line.

The other feature is the use of the continue statement outside the body of a while, for, or do loop. Traditional
AWK implementations have treated such usage as equivalent to the next statement. gawk supports this usage if -
Wposix has not been specified.

See Also
awk, commands, Programming COHERENT
Introduction to the awk Language, tutorial.
Aho, Alfred V.; Kernighan, Brian W.; Weinberger, Peter J.: The AWK Programming Language. Englewood Cliffs, NJ,
Addison-Wesley, Inc., 1988 (ISBN 0-201-07981-X).
The GAWK Manual, ed 0.15. Boston, The Free Software Foundation, 1993.

Notes
The option -F option is not necessary given the command line variable assignment feature; it remains only for
backwards compatibility.

If your system actually has support for /dev/fd and the associated /dev/stdin, /dev/stdout, and /dev/stderr
files, you may get different output from gawk than you would get on a system without those files. When gawk
interprets these files internally, it synchronizes output to the standard output with output to /dev/stdout, while
on a system with those files, the output is actually to different open files. Caveat utilitor.

This man page documents gawk, version 2.15. Please note that with this version, gawk no longer recognizes the
command-line options -c, -V, -C, -a, and -e that had been recognized by version 2.11.

The original version of UNIX awk was designed and implemented by Alfred Aho, Peter Weinberger, and Brian
Kernighan of AT&T Bell Laboratories. Brian Kernighan continues to maintain and enhance it.

Paul Rubin and Jay Fenlason, of the Free Software Foundation, wrote gawk to be compatible with the original
version of awk distributed in UNIX version 7. John Woods contributed a number of bug fixes. David Trueman,
with contributions from Arnold Robbins, made gawk compatible with the new version of UNIX awk.

Brian Kernighan of AT&T Bell Laboratories provided valuable assistance during testing and debugging. The
authors thank him.

Finally, please note that gawk and its associated documentation (including this manual page) is protected by the
Free Software Foundation’s ‘‘copyleft’’. For details on your rights and obligations, see the file COPYING in the
source code for gawk, which is available through the Mark Williams BBS and other public-domain systems.

gcd() — Multiple-Precision Mathematics (libmp)
Set variable to greatest common divisor
#include <mprec.h>
void gcd(a, b, c)
mint *a, *b, *c;
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gcd() sets c to the greatest common divisor of a and b.

See Also
libmp

gcvt() — General Function (libc)
Convert floating-point numbers to strings
char *
gcvt(d, prec, buffer)
double d; int prec; char *buffer;

gcvt() converts floating-point number d into a NUL-terminated string. Its operation resembles that of printf()’s
operator %g.

Argument prec gives the precision of the string i.e., the number of numerals to the right of the decimal point.
Unlike its cousins ecvt() and fcvt(), gcvt() uses a buffer that is defined by the caller. buffer must point to a buffer
large enough to hold the result; 64 characters will always be sufficient. When generating its output, gcvt() mimics
fcvt() if possible. Otherwise, it mimics ecvt().

gcvt returns buffer.

Example
For an example of this function, see the entry for ecvt().

See Also
libc

gdbm.h — Header File
Header file for GDBM routines
#include <gdbm.h>

Header file <gdbm.h> declares functions, data types, and global variables used by the GDBM set of routines:

gdbm_close() . . . . . . . . . . . . . . . . Close a GDBM data base
gdbm_delete(). . . . . . . . . . . . . . . . Delete a record from a GDBM data base
gdbm_exists() . . . . . . . . . . . . . . . . Check whether a GDBM data base contains a given record
gdbm_fetch() . . . . . . . . . . . . . . . . Retrieve a record from a GDBM data base
gdbm_firstkey(). . . . . . . . . . . . . . . Return the first record from a GDBM data base
gdbm_nextkey() . . . . . . . . . . . . . . Return the next record from a GDBM data base
gdbm_open(). . . . . . . . . . . . . . . . . Open a GDBM data base
gdbm_reorganize() . . . . . . . . . . . . . Reorganize a GDBM data base
gdbm_setopt(). . . . . . . . . . . . . . . . Set GDBM options
gdbm_store() . . . . . . . . . . . . . . . . Add records to a GDBM data base
gdbm_strerror(). . . . . . . . . . . . . . . Translate a GDBM error code into text
gdbm_sync(). . . . . . . . . . . . . . . . . Flush buffered GDBM data into its data base

This header file also defines two structures that the GDBM routines use. The first, datum, defines the structure of
a data element, either a key or its associated data set:

typedef struct {
char *dptr;
int dsize;

} datum;

The other structure, GDBM_FILE, holds the information that the GDBM routines use to access a GDBM data base:

typedef struct {int dummy[10];} *GDBM_FILE;

Error codes are written into global variable gdbm_errno, and are defined in header file <gdbmerrno.h>.

See Also

Notes
For a statement of copyright and permissions on this header file, see the Lexicon entry for libgdbm.
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gdbm_close() — GDBM Function (libgdbm)
Close a GDBM data base
#include <gdbm.h>
void gdbm_close (database)
GDBM_FILE database;

Function gdbm_close() closes the data base to which database points. database must have been returned by a
call to gdbm_open().

See Also

Notes
If database were opened into mode GDBM_FAST, gdbm_close() automatically calls gdbm_sync() to flush buffered
data into the data base before it closes database.

For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

gdbm_delete() — GDBM Function
Delete a record from a GDBM data base
#include <gdbm.h>
int gdbm_delete (database, key)
GDBM_FILE database;
datum key;

Function gdbm_delete() deletes a the record with key from the data base to which database points. database
must have been returned by a call to gdbm_open().

If all goes well, gdbm_delete() returns zero. It returns -1 if database did not contain a record with key, or if
database were opened into read-only mode.

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

gdbm_exists() — GDBM Function (libgdbm)
Check whether a GDBM data base contains a given record
#include <gdbm.h>
int gdbm_exists(database, key)
GDBM_FILE database;
datum key;

Function gdbm_exists() checks whether the GDBM data base to which database points contains a record with the
key to which key points. database must have been returned by a call to gdbm_open().

If database contains key, gdbm_exists() returns a value other than zero; otherwise, it returns zero.

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

gdbm_fetch() — GDBM Function (libgdbm)
Retrieve a record from a GDBM data base
#include <gdbm.h>
datum gdbm_fetch (database, key)
GDBM_FILE database;
datum key;

Function gdbm_fetch() retrieves the record with key from the database to which database points. database must
have been returned by a call to gdbm_open().

gdbm_fetch() returns the record that contains key. If database does not contains such a record, gdbm_fetch()
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returns a record whose field dptr is set to NULL.

gdbm_fetch() calls malloc() to allocate the memory to hold the data it retrieves from database. It is your
responsibility to free this memory; to do so, call free() and pass it field dptr in the record that gdbm_fetch()
returns.

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

gdbm_firstkey() — GDBM Function (libgdbm)
Return the first record from a GDBM data base
#include <gdbm.h>
datum gdbm_firstkey(database)
GDBM_FILE database;

Function gdbm_firstkey() returns the first record from the data base to which database points. database must
have been returned by a call to gdbm_open().

gdbm_firstkey() returns the first record within database. Note that that the first record is dictated by the
algorithm that the GDBM routines use to hash the keys within the data base, and so may not be what you expect.
If database is empty, gdbm_firstkey() returns a record whose field dptr is set to NULL.

gdbm_firstkey() calls malloc() to allocate the memory to hold the data it retrieves from database. It is your
responsibility to free this memory; to do so, call free() and pass it field dptr in the record that gdbm_firstkey()
returns.

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

gdbm_nextkey() — GDBM Function (libgdbm)
Return the next record from a GDBM data base
#include <gdbm.h>
datum gdbm_nextkey(database, key)
GDBM_FILE database;
datum key;

Function gdbm_nextkey() retrieves the next record from the data base to which database points. If database
contains no more records, it returns a record whose field dptr is set to NULL.

database must have been returned by a call to gdbm_open(). The call to gdbm_nextkey() must follow a call to
gdbm_firstkey().

Please note that gdbm_nextkey() returns records in the order dictated by the algorithm with which the GDBM
routines hash the data base’s keys. If called within a loop, it is guaranteed to retrieve every record within
database, although the order in which the records are retrieved may not be what you expect.

gdbm_nextkey() calls malloc() to allocate the memory to hold the data it retrieves from database. It is your
responsibility to free this memory; to do so, call free() and pass it field dptr in the record that gdbm_nextkey()
returns.

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.
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gdbm_open() — GDBM Function (libgdbm)
Open a GDBM data base
#include <gdbm.h>
GDBM_FILE gdbm_open(database, block_size, read_write, mode, bailout)
char *database;
int block_size, read_write, mode;
void (*bailout)();

Function gdbm_open() opens a GDBM data base. It takes the following parameters:

database
This gives the complete name of the data base. Please note that a data base actually consists of two files:
one, called database.dir, holds the hashed index; the other, called database.pag, holds the data. The
GDBM routines manage the manipulation of these files; you need not worry about them yourself. (For
more details on how GDBM works, see the Lexicon entry for libgdbm.)

block_size
This gives the size of a single transfer from disk to memory. gdbm_open() ignores this parameter is unless
database is new. The minimum size is 512. If you set block_size to less than 512, the GDBM routines use
a block size of BSIZE. (This constant gives the size of a block under COHERENT; it is set in header file
<sys/buf.h>.

read_write
This parameter indicates whether you are opening the data base into read mode or write mode. If a
process opens database only to read records within it, it is called a ‘‘reader’’. If, however, a process can
also add records to database, remove record from it, or modify records within it, it is called a ‘‘writer’’.
database can be opened by multiple readers simultaneously, or by a single writer; it cannot be opened by
multiple writers simultaneously, or by a reader and a writer simultaneously. This rule prevents a writer
from modifying a data base while it is being read, and so confusing the readers; and to prevent multiple
writers from ‘‘clobbering’’ each other’s changes.

read_write can be one of the following values:

GDBM_READER
The process opening database is a reader.

GDBM_WRITER
The process opening database is a writer.

GDBM_WRCREAT
The process opening database is a writer; if the data base database does not exist, create it.

GDBM_NEWDB
The process opening database is a writer; create database as a new data base, regardless of
whether it already exists.

GDBM_FAST
If this constant is OR’d onto GDBM_WRITER, GDBM_WRCREAT, or GDBM_NEWDB, the GDBM
routines write the data base without disk-file syncronization. This speeds writing to the data base;
however, if the writer dies unexpectedly, some data may be lost. To flush buffered data to disk,
call function gdbm_sync().

mode This is a bitwise OR of the modes into which database is created. For a list of the flags that can be
incorporated into this argument, see the Lexicon entry stat.h. gdbm_open() ignores this argument unless
read_write is set to GDBM_WRCREAT or GDBM_NEWDB.

bailout This points to the function that gdbm_open() calls should a fatal error occur. This function must take
only one argument, a string that holds an error message. If you set bailout to NULL, the GDBM routines
use a default function.

If all goes well, gdbm_open() returns a pointer to a record of type GDBM_FILE. All other GDBM functions need this
record to manipulate the data base in database. If an error occurs, gdbm_open() returns NULL and sets global
variable gdbm_errno and errno to appropriate values. For information on interpreting the contents of errno, see
the Lexicon entry for errno.h; for information on interpreting the contents of gdbm_errno, see the entry for
gdbmerrno.h.
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See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

gdbm_reorganize() — GDBM Function (libgdbm)
Reorganize a GDBM data base
#include <gdbm.h>
int gdbm_reorganize(database)
GDBM_FILE database;

Function gdbm_reorganize() reorganizes the contents of the data base to which database points. database must
have been returned by a call to gdbm_open().

When you delete a record from a GDBM data base, the GDBM routines to not close up the space within the data
base, because doing so would make the GDBM routines unacceptably slow. Thus, if you delete many records from
within a data base, its file will be much larger than it need be. In this case, you should call gdbm_reorganize() to
close up the ‘‘holes’’ in it.

gdbm_reorganize() returns zero if all went well. If something went wrong, it returns a value other than zero and
sets the global variables errno and gdbm_errno to appropriate values. (For information on how to interpret the
contents of these variables, see the Lexicon entries for errno.h and gdbmerrno.h).

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

gdbm_setopt() — GDBM Function (libgdbm)
Set GDBM options
#include <gdbm.h>
int gdbm_setopt(database, option, value, size)
GDBM_FILE database;
int option, *value, size;

Function gdbm_setopt() sets an option on an open GDBM data base. You should call gdbm_setopt() after you call
gdbm_open(), but before you read the data base or write to it.

database points to the data base being manipulated; it must have been returned by a call to gdbm_open().

value is the value to which option is being set. It is specified as a pointer to an integer.

option specifies the option to set, as follows:

GDBM_CACHESIZE
Set the size of the internal bucket cache. This option may only be set once on each data base. Upon the
first access to the data base, the GDBM routines by default set the cache size to 100. Set value to the size
of the cache.

GDBM_FASTMODE
Turn on or turn off fast mode of access. If fast mode is turned on, the GDBM routines do not synchronize
disk updates with changes to the data base. This speeds modifications to the data base, but runs the risk
of losing data should the ‘‘writer’’ process die unexpectedly. Set value to TRUE or FALSE.

size gives the size of the data to which value points.

For example, the following call sets a data base to use a cache of ten:

int value = 10;
ret = gdbm_setopt( dbf, GDBM_CACHESIZE, &value, sizeof(int));

If all goes well, gdbm_setopt() returns zero. If something goes wrong, it returns -1 and sets global variables errno
and gdbm_errno to appropriate values. For information on how to interpret the contents of these variables, see
the Lexicon entries errno.h and gdbmerrno.h.
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See Also

Notes
The use of variables value and size may seem overly complex; however, this will permit the GDBM routines to
recognize a larger range of options in the future.

For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

gdbm_store() — GDBM Function (libgdbm)
Add records to a GDBM data base
#include <gdbm.h>
int gdbm_store (database, key, content, flag)
GDBM_FILE database;
datum key, content;
int flag;

Function gdbm_store() writes data into a GDBM data base.

database points to the data base into which data are written. It must have been returned by a call to
gdbm_open().

key gives the key for the record being written. content gives the data to be associated with key.

flag indicates how data should be written; it can be either of the following:

GDBM_INSERT
Insert only. If database already contains a record with key, generate an error.

GDBM_REPLACE
Update. If database already contains a record with key, replace it with with contents.

If all goes well, gdbm_store() returns zero. If database was opened into read-only mode, it returns -1. If flag is set
to GDBM_INSERT and database already contains key, it returns one.

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

gdbm_strerror() — GDBM Function (libgdbm)
Translate a GDBM error code into text
#include <gdbm.h>
#include <gdbmerror.h>
char *gdbm_strerror(errno)
gdbm_error errno;

Function gdbm_strerror() converts a GDBM error code into an error message that can be read by a human being.

errno is the error code. This usually is the global variable gdbm_errno, which a GDBM routine sets should an
error occur while manipulating a GDBM data base.

If an error occurs, gdbm_strerror() returns NULL. Otherwise, it returns a pointer to the string that holds the
message.

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

gdbm_sync() — GDBM Function (libgdbm)
Flush buffered GDBM data into its data base
#include <gdbm.h>
void gdbm_sync(database)
GDBM_FILE database;
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Function gdbm_sync() flushes buffered data into its data base. It is the GDBM analogue of the system call sync().
You should call this function periodically if you are writing data into a data base that had been opened with flag
GDBM_FAST.

database points to the data base being manipulated. It must have been returned by a call to gdbm_open().

gdbm_sync() does not return until all the buffers are flushed onto disk. gdbm_close() automatically calls
gdbm_sync() to flush data-base buffers before it closes a GDBM data base.

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

gdbmerrno.h — Header File
Define error messages used by GDBM routines
#include <gdbmerrno.h>

Header file <gdbmerrno.h> defines the error codes that the GDBM routines can write into global variable
gdbm_errno, as follows:

GDBM_NO_ERROR
All is well.

GDBM_MALLOC_ERROR
The GDBM routines call malloc() to allocate memory for each record that they retrieve from a data base.
This message indicates that a call to malloc() failed.

GDBM_BLOCK_SIZE_ERROR
You tried to set an illegal block size when you created a new data base.

GDBM_FILE_OPEN_ERROR
A data-base file could not be opened, for whatever reason.

GDBM_FILE_WRITE_ERROR
A process could not write into a data-base file. This probably indicates a problem with permissions.

GDBM_FILE_SEEK_ERROR
A GDBM routine could not move a data-base file’s seek pointer to a place where the data base’s hash table
indicates a given record was stored. The data base may well be corrupt; check this error seriously.

GDBM_FILE_READ_ERROR
A process could not read a data-base file. This probably indicates a problem with permissions.

GDBM_BAD_MAGIC_NUMBER
When the GDBM function gdbm_open() create a new data base, it stamps the file with a ‘‘magic number,’’
which indicates that that file is, in fact, a GDBM data base. This error indicates that the file you’re
attempting to read is not a GDBM a data base.

GDBM_EMPTY_DATABASE
The GDBM data base contains no data.

GDBM_CANT_BE_READER
You failed in an attempt to open a GDBM data base into read mode. The data base may have already been
opened into write mode.

GDBM_CANT_BE_WRITER
You failed in an attempt to open a GDBM data base into write mode. The data base may have already been
opened into write mode by another process.

GDBM_READER_CANT_DELETE
You opened a GDBM data base into read mode, but then attempted to delete a record. This is illegal.

GDBM_READER_CANT_STORE
You opened a GDBM data base into read mode, but then attempted to write a record into it. This is illegal.

GDBM_READER_CANT_REORGANIZE
You opened a GDBM data base into read mode, but then attempted to reorganize it. This is illegal.

GDBM_UNKNOWN_UPDATE
You attempted to update a record within a data base, but the data base does not contain a record with the
given key.

GDBM_ITEM_NOT_FOUND
You attempted to read a record from a data base, but the data base does not contain a record with the
given key.
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GDBM_REORGANIZE_FAILED
An attempted reorganization of a file failed. The data base may be corrupt.

GDBM_CANNOT_REPLACE
You attempted to write a new record into a data base, but the data base already contains a record with the
given key.

GDBM_ILLEGAL_DATA
You attempted to write a record into a data base, but the record contains illegal data (e.g., the field dptr is
NULL).

GDBM_OPT_ALREADY_SET
You called gdbm_setopt() to set an option on a data base, but that option is already set.

GDBM_OPT_ILLEGAL
You called gdbm_setopt() to set an option on a data base, but the requested option is illegal or
unrecognized.

Function gdbm_strerror() translates a GDBM error code into a string that you can display.

See Also

Notes
For a statement of copyright and permissions on this header file, see the Lexicon entry for libgdbm.

getc() — STDIO Function (libc)
Read character from file stream
#include <stdio.h>
int getc(fp)
FILE *fp;

getc() is a function that reads a character from the file stream fp, and returns an int.

Example
The following example creates a simple copy utility. It opens the first file named on the command line and copies
its contents into the second file named on the command line.

#include <stdio.h>

void fatal(string)
char *string;
{

printf("%s\n", string);
exit (1);

}

main(argc, argv)
int argc; char *argv[];
{

int foo;
FILE *source, *dest;

if (--argc != 2)
fatal("Usage: copy [source][destination]");

if ((source = fopen(argv[1], "r")) == NULL)
fatal("Cannot open source file");

if ((dest = fopen(argv[2], "w")) == NULL)
fatal("Cannot open destination file");

while ((foo = getc(source)) != EOF)
putc(foo, dest);

}

See Also
fgetc(), getchar(), libc, putc()
ANSI Standard, §7.9.7.5
POSIX Standard, §8.1
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Diagnostics
getc() returns EOF at end of file or on read fatal.

Notes
Because getc() is a macro, arguments with side effects probably will not work as expected. Also, because getc() is
a complex macro, its use in expressions of too great a complexity may cause unforeseen difficulties. Use of the
function fgetc() may avoid this.

getchar() — STDIO Function (libc)
Read character from standard input
#include <stdio.h>
int getchar()

getchar() reads a character from the standard input. It is equivalent to getc(stdin).

Example
The following example gets one or more characters from the keyboard, and echoes them on the screen.

#include <stdio.h>

main()
{

int foo;
while ((foo = getchar()) != EOF)

putchar(foo);
}

See Also
getc(), libc, putchar()
ANSI Standard, §7.9.7.6
POSIX Standard, §8.1

Diagnostics
getchar() returns EOF at end of file or on read error.

If you wish to receive characters from the keyboard immediately, without waiting for the enter key, see the example
in the entry for pipe().

getcwd() — General Function (libc)
Get current working directory name
#include <unistd.h>
char *getcwd(buffer, size)
char *buffer;
int size;

The current working directory is the directory from which file-name searches commence when a path name does
not begin with ‘/’. getcwd() returns the name of the current working directory. It is useful for processes like
spoolers and daemons, which must generate full path names for files.

If buffer is not NULL, getcwd() writes the path of the current working directory into it. The expected path name
must not be longer than two characters less than size. In this case, getcwd() returns buffer.

If buffer is NULL, getcwd() malloc()’s size bytes. getcwd() returns a pointer to this block of memory. You can
free() it later.

If you do not have permission to search all levels of the directory hierarchy above the current directory, getcwd()
cannot obtain the directory name for you.

See Also
chdir(), libc, pwd, unistd.h
POSIX Standard §5.2.2

Diagnostics
getcwd() returns NULL and sets errno to an appropriate value if an error occurs. Possible errors include the
following:

LEXICON

678 getchar() — getcwd()



EPERM Could not read one of the parent directories.

EINVAL size is zero.

ENOMEM Memory could not be malloc()’d for the buffer.

ERANGE The path name is too long to fit into size minus two bytes.

Notes
If getcwd() fails, the working directory cannot be restored to its initial value.

getdents() — System Call (libc)
Read directory entries
#include <dirent.h>
int getdents (fd, buffer, num)
int fd;
char *buffer;
unsigned num;

The COHERENT system call getdents() is one of a set of COHERENT routines that manipulate directories in a device-
independent manner. It reads an entry from a directory file and writes it into a structure of type dirent.

fd is the file descriptor for the directory file; it must be a file descriptor opened by a call to open() or dup(). buffer
points to the area where getdents() writes its output. num gives the size of the area pointed to by buffer;
getdents() returns no more than num bytes of information.

getdents() writes its output into a structure of type dirent, which is defined in the header file dirent.h. It has the
following structure:

struct dirent {
long d_ino;
long d_off;
unsigned short d_reclen;
char d_name[1];

};

Field d_name is a NUL-terminated string of indefinite length. Because this structure does not have a fixed size,
you must tell getdents() the maximum number of bytes it can output.

getdents() automatically increments the offset pointer associated with fd to point to the next entry within the
directory file. This lets you within a loop to read the entire contents of a directory file.

If all goes well, getdents() returns the number of bytes it wrote into buffer. It returns zero if it has reached the end
of the directory file. If something went wrong (for example, you tried to use it to read a file other than a directory
file), it returns -1 and sets errno to an appropriate value.

See Also
dirent.h, closedir(), libc, opendir(), readdir(), rewinddir(), telldir()

Notes
This system call is designed to support directory-access library routines. It should not be called by user programs.

The COHERENT implementation of getdents() was written by D. Gwynn.

getdtablesize() — Sockets Function (libsocket)
Get the number of files a process can open
int getdtablesize()

Function getdtablesize() returns the number of file descriptors (and hence, the number of files) that a process can
have open at any one time. It is meant to be an operating-system independent means of determining this value;
under COHERENT, it returns the value of the manifest constant OPEN_MAX.

See Also
libsocket
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getegid() — System Call (libc)
Get effective group identifier
#include <unistd.h>
getegid()

Every process has two different versions of its group identifier, called the real group identifier and the effective
group identifier. The group identifiers determine eligibility to access files and use system privileges. Normally,
these two identifiers are identical. However, for a set group identifier load module (see exec), the real group
identifier is that of the group’s current group, whereas the effective group identifier is that of the load module
owner. This distinction allows system programs to use files which are protected from groups that invoke the
program.

getegid() returns the effective group identifier.

See Also
access, exec, geteuid(), getgid(), getuid(), libc, login, setuid(), unistd.h
POSIX Standard, §4.2.1

getenv() — General Function (libc)
Read environmental variable
#include <stdlib.h>
char *getenv(VARIABLE) char *VARIABLE;

A program may read variables from its environment. This allows the program to accept information that is specific
to it. The environment consists of an array of strings, each having the form VARIABLE=VALUE. When called with
the string VARIABLE, getenv() reads the environment, and returns a pointer to the string VALUE.

Example
This example prints the environmental variable PATH.

#include <stdio.h>
#include <stdlib.h>

main()
{

char *env;
extern char *getenv();

if ((env = getenv("PATH")) == NULL) {
printf("Sorry, cannot find PATH\n");
exit(1);

}
printf("PATH = %s\n", env);

}

See Also
environmental variables, envp, exec, libc, putenv(), sh, stdlib.h
ANSI Standard, §7.10.4.4
POSIX Standard, §4.6.1

Diagnostics
When VARIABLE is not found or has no value, getenv() returns NULL.

geteuid() — System Call (libc)
Get effective user identifier
#include <unistd.h>
geteuid()

Every process has two different versions of its user id, called the real user id and the effective user id. The user ids
determine eligibility to access files or employ system privileges. Normally, these two ids are identical. However, for
a set user id load module (see exec), the real user id is that of the user, whereas the effective user id is that of the
load module owner. This distinction allows system programs to use files which are protected from the user who
invokes the program.
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geteuid() returns the effective user identifier

Example
For an example of this call, see the entry for getpwent().

See Also
access(), exec, getegid(), getgid(), getuid(), libc, login, setuid(), unistd.h
POSIX Standard, §4.2.1

getgid() — System Call (libc)
Get real group identifier
#include <unistd.h>
getgid()

Every process has two different versions of its user id, called the real user id and the effective user id. The user ids
determine eligibility to access files or employ system privileges. Normally, these two ids are identical. However, for
a set user id load module (see exec), the real user id is that of the user, whereas the effective user id is that of the
load module owner. This distinction allows system programs to use files which are protected from the user who
invokes the program.

getgid() returns the real group id.

See Also
access(), exec, getegid(), geteuid(), getuid(), libc, login, setuid(), unistd.h
POSIX Standard §4.2.1

getgrent() — General Function (libc)
Get group file information
#include <grp.h>
struct group *getgrent();

getgrent() returns the next entry from file /etc/group. It returns NULL if an error occurs or if the end of file is
encountered.

Files
/etc/group
<grp.h>

See Also
group, initgroups(), libc

Notes
All structures and information returned are in a static area internal to getgrent(). Therefore, information from a
previous call is overwritten by each subsequent call.

getgrgid() — General Function (libc)
Get group file information, by group id
#include <grp.h>
struct group *getgrgid(gid);
int gid;

getgrgid() searches file /etc/group for the first entry with a numerical group id of gid. It returns a pointer to the
entry if found; it returns NULL if an error occurs or if the end of file is encountered.

Files
/etc/group
<grp.h>

See Also
group, libc
POSIX Standard, §9.2.1

LEXICON

getgid() — getgrgid() 681



Notes
All structures and information returned are in a static area internal to getgrgid(). Therefore, information from a
previous call is overwritten by each subsequent call.

getgrnam() — General Function (libc)
Get group file information, by group name
#include <grp.h>
struct group *getgrnam(gname);
char *gname;

getgrnam() searches file /etc/group for the first entry with a group name of gname. It returns a pointer to the
entry for gname if it is found; it returns NULL for any error or if the end of the file is encountered.

Files
/etc/group
<grp.h>

See Also
group, libc
POSIX Standard, §9.2.1

Notes
All structures and information returned are in a static area internal to getgrnam(). Therefore, information from a
previous call is overwritten by each subsequent call.

getgroups() — System Call (libc)
Read the supplemental group-access list
#include <unistd.h>
int getgroups(gidsetsize, grouplist)
int gidsetsize; gid_t *grouplist;

The ‘‘supplemental group-access list’’ is the list of group identifiers that are used in addition to the effective group
identifier when determining the level of access that a process has to a file. getgroups() reads the identifiers from
the current process’s supplemental group-access list, and writes them into the array to which grouplist points.

grouplist has gidsetsize entries, and must be large enough to contain every entry from the list. The list cannot have
more than NGROUPS_MAX entries. If gidsetsize equals zero, getgroups() returns the number of groups to which
the calling process belongs without modifying the array to which grouplist points.

If all goes well, getgroups() returns the number of supplementary-group identifiers set for the calling process. It
fails and returns -1 if gidsetsize is greater than zero but less than the number of supplementary-group identifiers
set for the calling process, or if grouplist points to an illegal address. In the former instance, it sets errno to
EINVAL; in the latter, it sets errno to EFAULT.

See Also
libc, setgroups(), unistd.h
POSIX Standard, §4.2.3

gethostbyaddr() — Sockets Function (libsocket)
Retrieve host information by address
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <sys/socket.h>
struct hostent *gethostbyaddr(addr, len, type)
char *host;
int len, type;

Function gethostbyaddr() interrogates file /etc/hosts and returns information about a given host on a network.

addr gives the address at which the host’s Internet address resides in memory. length gives the number of
characters in its name. type gives the type of address this is. If it is anything other than type AF_INET,
gethostbyaddr() returns NULL.
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If it could find information about the host in question, gethostbyaddr() returns the address in a instance of
structure hostent, which is defined in header file <netdb.h>. If it could not, it returns NULL.

See Also
endhostent(), gethostbyname(), libsocket, sethostent()

Page 2

gethostbyname() — Sockets Function (libsocket)
Retrieve a host IP address by name
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <sys/socket.h>
struct hostent *gethostbyname(host)
char *host;

Function gethostbyname() interrogates file /etc/hosts for information about a host on a network. host gives the
address where the name of the host resides in memory.

If it could find the address of host, gethostbyname() returns the address in a instance of structure hostent, which
is defined in header file <netdb.h>. If it could not, or if host points to a spurious host name, it returns NULL.

See Also
endhostent(), gethostbyaddr(), libsocket, sethostent()

gethostname() — Sockets Function (libsocket)
Get the name of the local host
#include <sys/utsname.h>
int gethostname (name, length)
char *name;
int length;

Function gethostname() reads the name of your local host.

name points to the chunk of memory into which gethostname() is to write the name of the local host. length gives
the length of that chunk of memory.

gethostname() returns -1 if it could not read the name of the local host. Otherwise, it returns zero.

See Also
libsocket

Notes
name must point to enough memory to hold the name of your local host. If it does not, the behavior of this
function is undefined (and probably unwelcome). Caveat utilitor.
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getlogin() — General Function (libc)
Get login name
#include <unistd.h>
char *getlogin()

The name corresponding to the current user id is not always the same as the name under which a user logged into
the COHERENT system. For example, the user may have issued a su command, or there may be several login
names associated with a user id. getlogin() returns the login name found in the file /etc/utmp.

In cases where getlogin() fails to produce a result, getpwuid() (described in getpwent()) is normally used to
determine the user name for a process.

Files
/etc/utmp login names

See Also
getpwent(), getuid(), libc, su, ttyname(), unistd.h, utmp.h, who
POSIX Standard, §4.2.4

Diagnostics
getlogin() returns NULL if the login name cannot be determined.

Notes
getlogin() stores the returned name in a static area that is destroyed by subsequent calls.

getmap — Command
De-archive Usenet map articles
/usr/lib/mail/getmap [-b batchfile] [-m mapdir] [-n newsgroup] [-u username] [-w workdir]

The script getmap de-archives Usenet map articles. The articles must be in the form of a shell archive (or ‘‘shar’’
file). De-archived articles are copied into directory /usr/spool/uumaps.

getmap recognizes the following command-line arguments:

-b batch
De-archive batch, which is a shell archive of file names. If batch is ‘-’, getmap reads the standard input.
By default, getmap reads file /usr/spool/uumaps/work/batch.

-m mapdir
Copy articles into mapdir, instead of the default directory /usr/spool/uumaps.

-n newsgroups
Read articles from newsgroup.

-u user Mail errors to user. If user is ‘-’, write errors to the standard output. By default, getmap mails errors to
user postmaster.

-w workdir
Keep logs and batch files in workdir. By default, logs and batch files are kept in directory
/usr/spool/uumaps/work.

See Also
commands, mail [overview]

getmsg() — System Call (libc)
Get the next message from a stream
#include <stropts.h>
int getmsg (fd, ctlptr, dataptr, flagsp)
int fd; struct strbuf *ctlptr, dataptr; int *flagsp;

getmsg() retrieves a message from a STREAMS file, and writes it into the buffer or buffers that you specify. The
message must contain a data part, a control part, or both. getmsg() writes each part into its own buffer, as
described below. The STREAMS module that generated the message defines the semantics of each part.
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fd gives the file descriptor that references the stream whose message is being retrieved. ctlptr and dataptr each
point to a structure of type strbuf, which contains the following members:

int maxlen; Maximum buffer length
int len; Length of data
void *buf; Pointer to buffer

ctlptr holds the message’s control part, and dataptr its data part. buf points to the buffer into which the data or
control information is to be written, and maxlen gives the maximum number of bytes the buffer can hold.
getmsg() initializes len to the number of bytes of data or control information that it actually wrote into buf. It sets
len to zero if the part in question has a length of zero; and it sets len to -1 if the message does not contain the part
in question.

flagsp points to an integer that indicates the type of messages you can receive; this is discussed in detail below.

getmsg() has special behaviors, corresponding to the settings of ctlptr and dataptr, and of the structures to which
they point:

• If either ctlptr or dataptr is NULL, or if maxlen equals -1, getmsg() does not process the corresponding part of
the message. The message is left on the stream head’s read queue.

• If ctlptr or dataptr is not NULL, but the message does not have a corresponding part, getmsg() sets len to -1.

• If maxlen equals zero and there is a zero-length control or data part, getmsg() removes the zero-length part
from the read queue and sets len to zero If maxlen equals zero and the corresponding section contains more
than zero bytes of information, getmsg() leaves that information on the read queue and sets len to zero.

• If maxlen is less than than the corresponding part of the message (the control part for ctlptr and the data part
for dataptr), getmsg() retrieves maxlen bytes. It leaves the remainder of the message on the stream head’s
read queue and returns and a non-zero return value. Details are given below.

Flags
The following summarizes what flags are available, and what they mean.

• By default, getmsg() processes the first available message on the stream head’s read queue. However, you can
choose to retrieve only a high-priority message: just insert RS_HIPRI into the integer to which flagsp points.
In this case, getmsg() processes the next message only if it is a high-priority message.

• If the integer to which flagsp points equals zero, getmsg() retrieves any message available on the stream
head’s read queue. In this case, if getmsg() retrieves a high-priority message, it sets to the integer to which
flagsp points to RS_HIPRI; if the message does not have high priority, it sets that integer to zero.

• If flags O_NDELAY and O_NONBLOCK are not set as part of the global settings for fd (for details, see the
Lexicon entry for open()), getmsg() blocks execution of your program until a message of the type specified by
flagsp is available on the stream head’s read queue. If either O_NDELAY or O_NONBLOCK has been set and a
message of the specified type is not at the top of the queue, getmsg() fails and sets errno to EAGAIN.

If a hangup occurs on the stream from which messages are to be retrieved, getmsg() operates normally until the
stream head’s read queue is empty. Thereafter, it returns zero in the len fields of both ctlptr and dataptr.

Return Values
If all goes well, getmsg() returns a non-negative value. Zero indicates that a full message was read successfully.

MORECTL and MOREDATA indicate, respectively, that more control information or more data are awaiting
retrieval; whereas MORECTL | MOREDATA indicates that more of both types information remain in the queue, to
be retrieved by subsequent calls to getmsg(). However, if a message of higher priority has come into the stream
head’s read queue, the next call to getmsg() retrieves that higher-priority message and the information remaining
from the partially retrieved message remains on the queue.

Errors
getmsg() fails if any of the following conditions are true:

• Either of the flags O_NDELAY or O_NONBLOCK is set but no message is available. getmsg() sets errno to
EAGAIN.
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• fd is not a valid file descriptor. getmsg() sets errno to EBADF.

• The next message in the read queue is not valie for getmsg() to read. getmsg() sets errno to EBADMSG.

• ctlptr, dataptr, or flagsp contains an illegal address. getmsg() sets errno to EFAULT.

• A signal was caught as getmsg() was executing. getmsg() sets errno to EINTR.

• flagsp holds an unrecognized value, or the stream referenced by fd is linked under a multiplexor. getmsg()
sets errno to EINVAL.

• fd does not describe a stream. getmsg() sets errno to ENOSTR.

getmsg() also fails if the stream header receives a STREAMS error message before getmsg() tries to read it. getmsg()
then returns the value in the STREAMS error message.

See Also
libc, putmsg(), STREAMS, stropts.h

getnetbyaddr() — Sockets Function (libsocket)
Get a network entry by address
#include <netdb.h>
struct netent *getnetbyaddr(network, type)
long network; int type;

getnetbyaddr() fetches a network entry. It opens and searches file /etc/network, which describes all entities on
your local network, for the entry with address. /etc/networks must have been opened by function setnetent().
type is the type of network; at present, getnetbyaddr() recognizes only type AF_INET.

getnetbyaddr() returns a pointer to an object of type netend, which is defined in header file <netdb.h>:

struct netent {
char *n_name; /* official name of net */
char **n_aliases; /* alias list */
int n_addrtype; /* net number type */
unsigned long n_net; /* net number */

};

The following describes the members:

n_name
The official name of the network.

n_aliases
This points to a zero-terminated list of alternate names for the network.

n_addrtype
The type of the network number returned; currently, only type AF_INET is recognized.

n_net The network’s number. Network numbers are returned in the machine’s byte order.

getnetent() returns a pointer to the netent structure it built. It returns NULL if something went wrong or if it
cannot find an entry with address.

See Also
endnetent(), getnetent(), getnetbyname(), libsocket, netdb.h, setnetent()

getnetbyname() — Sockets Function (libsocket)
Get a network entry by address
#include <netdb.h>
struct netent *getnetbyname(name)
char *name;

getnetbyname() fetches a network entry. It opens and searches file /etc/networks, which describes all entities on
your local network, for the entry with name. /etc/networks must have been opened by function setnetent().

getnetbyname() returns a pointer to an object of type netend, which is defined in header file <netdb.h>:
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struct netent {
char *n_name; /* official name of net */
char **n_aliases; /* alias list */
int n_addrtype; /* net number type */
unsigned long n_net; /* net number */

};

The following describes the members:

n_name
The official name of the network.

n_aliases
This points to a zero-terminated list of alternate names for the network.

n_addrtype
The type of the network number returned; currently, only type AF_INET is recognized.

n_net The network’s number. Network numbers are returned in the machine’s byte order.

getnetent() returns a pointer to the netent structure it built. It returns NULL if something went wrong or if it
cannot find an entry with address.

See Also
endnetent(), getnetent(), getnetbyaddr(), libsocket, netdb.h, setnetent()

getnetent() — Sockets Function
Fetch a network entry
#include <netdb.h>
struct netent *getnetent();

getnetent() fetches a network entry. It reads the next line of file /etc/network, which describes all entities on
your local network; if necessary, it opens this file.

getnetent() returns a pointer to an object of type netend, which is defined in header file <netdb.h>:

struct netent {
char *n_name; /* official name of net */
char **n_aliases; /* alias list */
int n_addrtype; /* net number type */
unsigned long n_net; /* net number */

};

The following describes the members:

n_name
The official name of the network.

n_aliases
This points to a zero-terminated list of alternate names for the network.

n_addrtype
The type of the network number returned; currently, only type AF_INET is recognized.

n_net The network’s number. Network numbers are returned in the machine’s byte order.

getnetent() returns a pointer to the netent structure it built. It returns NULL if something went wrong or if it has
reached the end of /etc/networks. You must call function endnetent() to close /etc/networks.

See Also
getnetbyaddr(), getnetbyname(), endnetent(), libsocket, netdb.h, setnetent()
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getopt() — General Function (libc)
Get option letter from argv
#include <unistd.h>
int getopt(argc, argv, optstring)
int argc;
char **argv;
char *optstring;
extern char *optarg;
extern int optind;

getopt() returns the next option letter in argv that matches a letter in optstring. optstring is a string of recognized
option letters. If a letter is followed by a colon, the option must have an argument, which may or may not be
separated from it by white space. optarg points to the start of the option argument on return from getopt().

getopt() writes into optind the argv index of the next argument to be processed. Because optind is external, it is
normally initialized to one automatically before the first call to getopt().

When all options have been processed (i.e., up to the first non-option argument), getopt() returns EOF. The
special option ‘‘--’’ may be used to delimit the end of the options: getopt() returns EOF and skip ‘‘--’’.

See Also
libc

Diagnostics
getopt() prints an error message and returns a question mark when it encounters an option letter not included in
optstring.

Notes
It is not obvious how ‘-’ standing alone should be treated. This version treats it as a non-option argument, which
is not always right.

Option arguments are allowed to begin with ‘-’. This is reasonable, but reduces the amount of error checking
possible.

getopt() returns the parsed letter option in the external int optopt, which is overwritten by each call to getopt().
When getopt() returns ‘?’, it can be helpful to examine the contents of this variable.

getopts — Command
Parse command-line options
getopts optstring name [ opt ]

The command getopts parses a command’s options and check their legality. optstring must contain the options
letters that the command using getopts will recognize. If a letter is followed by a colon ‘:’, that option must have
an argument that is separated from it by whitespace.

Each time it is invoked, getopts places the next option into the shell variable name and the index of the next
argument to be processed into the shell variable OPTIND, which is initialized by default to one. When an option
requires an argument, getopts copies it into the shell variable OPTARG. If getopts encounters an error, it
initializes variable name to ?.

When it encounters the end of the options, getopts exits with non-zero status. The special option ‘‘--’’ can be used
to delineate the end of options.

Example
The following example processes a command that takes options a, b, and o; the last option requires an argument:
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while getopts abo: c
do

case $c in
a|b) FLAGS=$FLAGS$c;;
o) OARG=$OPTARG;;
\?) echo $USAGE 1>&2

exit 2;;
esac

done
shift OPTIND-1

This code will accept any of the following as equivalent:

cmd -a -b -o"xxx z yy" file
cmd -a -b -o"xxx z yy" -- file
cmd -ab -o"xxx z yy" file
cmd -ab -o"xxx z yy" -- file

Note that no space is required between -o and its argument.

See Also
commands, getopt(), ksh

getpass() — General Function (libc)
Get password with prompting
char *getpass(prompt)
char *prompt;

getpass() first prints the prompt. Then it disables echoing of input characters on the terminal device (either the file
/dev/tty or the standard input), reads a password from it, and restores echoing on the terminal. It returns the
given password.

Files
/dev/tty

See Also
crypt(), libc, login, passwd, su

Notes
The password is stored in a static location that is overwritten by successive calls. This static buffer is 50
characters long; any password longer than that can cause problems of one sort or another.

getpeername() — Sockets Function (libsocket)
Get name of connected peer
int getpeername(socket, name, namelen)
int socket, *namelen; struct sockaddr *name;

getpeername() returns the name of the ‘‘peer socket’’ that is connected to socket.

name points to the space into which getpeername() writes the name of the peer. namelen points to an integer that
gives the amount of space to which name points. getpeername() re-initializes it to the length, in bytes, of the peer
name that it has written at name.

If all goes well, getpeername() returns zero. If an error occurs, it returns -1 and sets errno to an appropriate
value. The following lists the errors that can occur, by the value to which getpeername() sets errno:

EBADF socket is not a valid descriptor.

ENOTSOCK
socket describes a file, not a socket.

ENOTCONN
socket is not connected.
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ENOBUFS
The system lack resources to perform the operation.

EFAULT
name contains an illegal address.

See Also
accept(), bind(), getsockname(), libsocket, socket()

getpgrp() — System Call (libc)
Get process-group identifier
#include <sys/types.h>
#include <unistd.h>
pid_t getpgrp();

getpgrp() returns the identifier of the calling process’s process group. It always succeeds.

See Also
libc, types.h, unistd.h
POSIX Standard, §4.3.1

getpid() — System Call (libc)
Get process identifier
#include <unistd.h>
getpid()

Every process has a unique number, called its process id. fork() returns the process id of a created child process to
the parent process.

getpid() returns the process id of the requesting process. Typically a process uses getpid() to pass its process id to
another process which wants to send it a signal, or to generate a unique temporary file name.

Example
For an example of using this system call in a C program, see signal().

See Also
fork(), getppid(), kill, libc, mktemp, unistd.h
POSIX Standard, §4.1.1

getppid() — System Call (libc)
Get process identifier of parent process
#include <unistd.h>
getppid()

Every process has a unique number, called its process id. fork() returns the process id of a created child process to
the parent process.

getppid() returns the process id of the requesting process’s parent process. In this way, a wayward child process
can discover the identity of its parent.

See Also
fork(), getpid(), kill, libc, mktemp, unistd.h
POSIX Standard, §4.1.1

getprotobyname() — Sockets Function (libsocket)
Get protocol entry by protocol name
#include <netdb.h>
struct protoent *getprotobyname(name);
char *name;

getprotobyname() searches file /etc/protocols, which holds information about all protocols recognized by your
local network, for the protocol named name. /etc/protocols has to have been opened by a call to setprotoent().

getprotobyname() returns a pointer to an object of type protoent, which is defined in header file netdb.h:
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struct protoent {
char *p_name; /* official name of protocol */
char **p_aliases; /* alias list */
int p_proto; /* protocol number */

};

The following details each member:

p_name
The official name of the protocol.

p_aliases
This points to a zero-terminated list of alternate names for the protocol.

p_proto
The number of the protocol.

getprotobyname() returns NULL if an error occurs, or if it encounters the end of the file.

See Also
endprotoent(), getprotobynumber(), getprotoent(), libsocket, netdb.h, setprotoent()

Notes
This function uses a static data space. If your application needs to save these data, it must copy them before any
subsequent calls overwrite them.

At present, only the Internet protocols are understood.

getprotobynumber() — Sockets Function (libsocket)
Get protocol entry by protocol number
#include <netdb.h>
struct protoent *getprotobynumber(protocol);
int protocol;

getprotobynumber() searches file /etc/protocols, which holds information about all protocols recognized by your
local network, for the protocol identified by number. /etc/protocols has to have been opened by a call to
setprotoent().

getprotobynumber() returns a pointer to an object of type protoent, which is defined in header file netdb.h:

struct protoent {
char *p_name; /* official name of protocol */
char **p_aliases; /* alias list */
int p_proto; /* protocol number */

};

The following details each member:

p_name
The official name of the protocol.

p_aliases
This points to a zero-terminated list of alternate names for the protocol.

p_proto
The number of the protocol.

getprotobynumber() returns NULL if an error occurs, or if it encounters the end of the file.

See Also
endprotoent(), getprotobyname(), getprotoent(), libsocket, netdb.h, setprotoent()

Notes
This function uses a static data space. If your application needs to save these data it must copy them before any
subsequent calls overwrite them.

At present, only the Internet protocols are understood.
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getprotoent() — Sockets Function (libsocket)
Get protocol entry
#include <netdb.h>
struct protoent *getprotoent();

getprotoent() reads the next entry from file /etc/protocols, which holds information about all protocols
recognized by your local network. If necessary, it opens the file. It returns a pointer to an object of type protoent,
which is defined in header file <netdb.h>:

struct protoent {
char *p_name; /* official name of protocol */
char **p_aliases; /* alias list */
int p_proto; /* protocol number */

};

The following details each member:

p_name
The official name of the protocol.

p_aliases
This points to a zero-terminated list of alternate names for the protocol.

p_proto
The number of the protocol.

To close /etc/protocols, call function endprotoent().

getprotoent() returns NULL if an error occurs, or if it encounters the end of the file.

See Also
endprotoent(), getprotobyname(), getprotobynumber(), libsocket, netdb.h, setprotoent()

Notes
This function uses a static data space. If your application needs to save these data, it must copy them before any
subsequent calls overwrite them.

At present, only the Internet protocols are understood.

getpw() — General Function (libc)
Search password file
getpw(uid, line)
short uid;
char *line;

getpw() searches the password file /etc/passwd for the first entry with numerical user id uid. If found, line
receives the corresponding line from the password file.

Files
/etc/passwd

See Also
getpwent(), getuid(), libc, passwd

Diagnostics
getpw() returns a nonzero value on error.

getpwent() — General Function (libc)
Get password file information
#include <pwd.h>
struct passwd *getpwent()

The COHERENT system has five routines that search the file /etc/passwd, which contains information about every
user of the system. The returned structure passwd is defined in the header file pwd.h. For a description of this
structure, see pwd.h.
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getpwent() returns the next entry from /etc/passwd.

Example
The following example demonstrates getpwent(), getpwnam(), getpwuid(), setpwent(), and endpwent().

#include <pwd.h>
#include <stdio.h>
#include <unistd.h>

main()
{

int euid, /* Effective user id */
ruid; /* Real user id */

struct passwd *pstp;
int i;

/* Print out all users and home directories */
i = 0;
setpwent(); /* Rewind file /etc/passwd */
while ((pstp = getpwent()) != NULL)

printf("%d: user name is %s, home directory is %s.\n",
++i, pstp->pw_name, pstp->pw_dir);

/* Find real user name.
* NOTE: functions getpwuid and getpwnam rewind /etc/passwd
* by calling setpwent().
*/

ruid = getuid();
if ((pstp = getpwuid(ruid)) == NULL) {

/* If this message appears, something’s wrong */
fprintf(stderr, "Cannot find user with id number %d\n", pstp);
exit (EXIT_FAILURE);

} else
printf("User’s real name is %s\n", pstp->pw_name);

/* Find the user id for superuser root */
((pstp = getpwnam("root")) == NULL) ?

fprintf(stderr, "Do you have user root on your system?\n") :
printf("root id is %d\n", pstp->pw_uid);

/* Check if the effective process id is the superuser id.
*
* NOTE: if you wish to see how to enable the root
* privileges, you can run this command:
* cc pwfun.c
* su root chown root pwfun
* su root chmod 4511 pwfun
*/

euid = geteuid(); /* Get effective user id. */
printf("Process ");
(euid == pstp->pw_uid) ? printf("has ") : printf("doesn’t have ");
printf("the root privileges\n");
exit(EXIT_SUCCESS);

}

Files
/etc/passwd
pwd.h

See Also
endpwent(), getpwnam(), getpwuid(), libc, pwd.h, setpwent()

Diagnostics
getpwent() returns NULL for any error or on end of file.
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Notes
All structures and information returned are in static areas internal to getpwent(). Therefore, information from a
previous call is overwritten by each subsequent call.

If your system has implemented shadow passwords, you must use the shadow-password routine getspent() to
retrieve records that contain passwords. For details, see this function’s entry in the Lexicon.

getpwnam() — General Function (libc)
Get password file information, by name
#include <pwd.h>
struct passwd *getpwnam(uname)
char *uname;

The COHERENT system has five routines that search the file /etc/passwd, which contains information about every
user of the system. The returned structure passwd is defined in the header file pwd.h. For a description of this
structure, see pwd.h.

getpwnam() attempts to find the first entry with a name of uname.

Example
For an example of this function, see the entry for getpwent().

Files
/etc/passwd
pwd.h

See Also
libc
POSIX Standard, §9.2.2

Diagnostics
getpwnam() returns NULL for any error or on end of file.

Notes
All structures and information returned are in static areas internal to getpwnam(). Therefore, information from a
previous call is overwritten by each subsequent call.

If your system has implemented shadow passwords, you must use the shadow-password routine getspnam() to
retrieve records that contain passwords. For details, see this function’s entry in the Lexicon.

getpwuid() — General Function (libc)
Get password file information, by id
#include <pwd.h>
struct passwd *getpwuid(uid)
int uid;

The COHERENT system has five routines that search the file /etc/passwd, which contains information about every
user of the system. The returned structure passwd is defined in the header file pwd.h. For more information on
this structure, see pwd.h.

getpwuid() attempts to find the first entry with a numerical user id of uid.

Example
For an example of this function, see the entry for getpwent().

Files
/etc/passwd
pwd.h

See Also
libc
POSIX Standard, §9.2.2
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Diagnostics
getpwuid() returns NULL for any error or on end of file.

Notes
All structures and information returned are in static areas internal to getpwuid(). Therefore, information from a
previous call is overwritten by each subsequent call.

gets() — STDIO Function (libc)
Read string from standard input
#include <stdio.h>
char *gets(buffer)
char *buffer;

gets() reads characters from the standard input into a buffer pointed at by buffer. It stops reading as soon as it
detects a newline character or EOF. gets() discards the newline or EOF, appends NUL onto the string it has built,
and returns another copy of buffer.

Example
The following example uses gets() to get a string from the console; the string is echoed twice to demonstrate what
gets() returns.

#include <stdio.h>

main()
{

char buffer[80];

printf("Type something: ");

fflush(stdout);
printf("%s\n%s\n", gets(buffer), buffer);

}

See Also
buffer, fgets(), getc(), libc
ANSI Standard, §7.9.7.7
POSIX Standard, §8.1

Diagnostics
gets() returns NULL if an error occurs or if EOF is seen before any characters are read.

Notes
gets() stops reading the input string as soon as it detects a newline character. If a previous input routine left a
newline character in the standard input buffer, gets() will read it and immediately stop accepting characters; to the
user, it will appear as if gets() is not working at all.

For example, if getchar() is followed by gets(), the first character gets() will receive is the newline character left
behind by getchar(). A simple statement will remedy this:

while (getchar() != ’\n’)
;

This throws away the newline character left behind by getchar(); gets() will now work correctly.

getservbyname() — Sockets Function (libsocket)
Get a service entry by name
#include <netdb.h>
struct servent *getservbyname(name, protocol);
char *name, *protocol;

Function getservbyname() searches file /etc/services, which describes the services offered by TCP/IP on your
local network, for the services offered by name. If protocol is not NULL, the search must also match the protocol it
names. /etc/services must first have been opened by a call to setservent().

getservbyname() returns a pointer to a structure of type servent, which is defined in header file <netdb.h>:
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struct servent {
char *s_name; /* official name of service */
char **s_aliases; /* alias list */
int s_port; /* port service resides at */
char *s_proto; /* protocol to use */

};

The following details each member:

s_name
The official name of the service.

s_aliases
This points to a zero-terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers are returned in network byte order.

s_proto
The name of the protocol to use when contacting the service.

To close /etc/services, call function endservent().

getservbyname() returns NULL if an error occurs, or if it encounters the end of the file.

See Also
endservent(), getservent(), getservbyport(), libsocket, netdb.h, setservent()

Notes
This function uses a static data space. If your application needs to save these data, it must copy them before any
subsequent calls overwrite them.

getservbyport() — Sockets Function (libsocket)
Get a service entry by port number
#include <netdb.h>
struct servent *getservbyport(port, protocol);
int port; char *protocol;

Function getservbyport() searches file /etc/services, which describes the services offered by TCP/IP on your local
network, for the services offered by port. If protocol is not NULL, the search must also match the protocol it names.
/etc/services must first have been opened by a call to setservent().

getservbyport() returns a pointer to a structure of type servent, which is defined in header file <netdb.h>:

struct servent {
char *s_name; /* official name of service */
char **s_aliases; /* alias list */
int s_port; /* port service resides at */
char *s_proto; /* protocol to use */

};

The following details each member:

s_name
The official name of the service.

s_aliases
This points to a zero-terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers are returned in network byte order.

s_proto
The name of the protocol to use when contacting the service.

To close /etc/services, call function endservent().

getservbyport() returns NULL if an error occurs, or if it encounters the end of the file.
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See Also
endservent(), getservbyname(), getservent(), libsocket, netdb.h, setservent(),

Notes
This function uses a static data space. If your application needs to save these data, it must copy them before any
subsequent calls overwrite them.

getservent() — Sockets Function (libsocket)
Get a service entry
#include <netdb.h>
struct servent *getservent();

Function getservent() reads the next entry from file /etc/services, which describes the services offered by TCP/IP
on your local network. If necessary, it opens the file. It returns a pointer to a structure of type servent, which is
defined in header file <netdb.h>:

struct servent {
char *s_name; /* official name of service */
char **s_aliases; /* alias list */
int s_port; /* port service resides at */
char *s_proto; /* protocol to use */

};

The following details each member:

s_name
The official name of the service.

s_aliases
This points to a zero-terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers are returned in network byte order.

s_proto
The name of the protocol to use when contacting the service.

To close /etc/services, call function endservent().

getservent() returns NULL if an error occurs, or if it encounters the end of the file.

See Also
endservent(), getservbyname(), getservbyport(), libsocket, netdb.h, setservent()

Notes
This function uses a static data space. If your application needs to save these data, it must copy them before any
subsequent calls overwrite them.

getsockname() — Sockets Function (libsocket)
Get the name of a socket
int getsockname(socket, name, namelen)
int socket, *namelen; struct sockaddr *name;

Function getsockname() returns the current name that is bound to socket.

socket is a file descriptor that identifies the socket in question. name points to a space into which getsockname()
can write the socket name. namelen points to an integer that holds the number of bytes to which name points.
getsockname() re-initializes this integer to the number of bytes in the name that it writes at address name.

If all goes well, getsockname() returns zero. If a problem occurs, it returns -1 and sets errno to an appropriate
value. The following lists the errors that can occur, by the value to which getsockname() sets errno:

EBADF socket is not a valid file descriptor.

ENOTSOCK
socket identifies a file, not a socket.
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ENOBUFS
The system lacks sufficient resources to perform the operation.

EFAULT
name contains an illegal address.

See Also
bind(), libsocket, socket()

getsockopt() — Sockets Function (libsocket)
Read a socket option
#include <sys/types.h>
#include <sys/socket.h>
int getsockopt(socket, level, option, buffer, length)
int socket, level, option;
char *buffer;
int *length;

Function getsockopt() reads the options that are set on a socket.

socket gives the identifier of the socket, as returned by the function socket().

level gives the level at which the options are set. To retrieve options set on the socket level, set level to
SOL_SOCKET whereas to retrieve options set the TCP level, set level to the number of the TCP protocol.

option gives the number of the option whose setting interests you. For a list of options that are recognized at the
socket level, see header file <sys/socket.h>. Options at other levels are set by their respective protocols.

buffer gives the address of the buffer into which the retrieve information will be written. length gives the address of
an integer that gives the length of buffer, in bytes. If getsockopt() succeeds in retrieving the value of the requested
option, it writes the option into buffer and re-initializes the int to which length points to give the length of the
material it wrote into buffer.

If all goes well, getsockopt() returns zero. If something goes wrong, it returns -1 and sets errno to one of the
following values:

EBADF socket does not identify a valid socket.

ENOMEM
The available user memory was insufficient to complete the operation.

ENOPROTOOPT
option gives an unknown option.

ENOTSOCK
socket identifies a file, not a socket.

See Also
libsocket, setsockopt()

getspent() — General Function (libc)
Get a shadow-password record
#include <shadow.h>
struct spwd *getspent()

The COHERENT system has four routines that search the file /etc/shadow, which contains the password of every
user of the system. getspent() returns a record from this file. If a program has already read entries from
/etc/shadow, getspent() returns the next entry; otherwise, it returns the first entry.

If an error occurs, getspent() returns NULL. Otherwise, it returns the address of an object with the structure spwd
which is defined in header file <shadow.h>. For a description of this structure, see the Lexicon entry for shadow.h.

See Also
endspent(), libc, setspent(), shadow, shadow.h
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Notes
All structures and information returned are in static areas internal to getspent(). Therefore, information from a
previous call is overwritten by each subsequent call.

getspnam() — General Function (libc)
Get a shadow-password record, by user name
#include <shadow.h>
struct spwd *getspnam(uname)
char *uname;

The COHERENT system has four routines that search the shadow-password file /etc/shadow, which contains the
password of every user of your system. getspnam() returns the first entry for the user with a given login identifier.
uname points to the login identifier of the user whose password you wish to retrieve.

If an error occurs, getspnam() returns NULL. Otherwise, it returns the address of an object with the structure
spwd, which is defined in the header file <shadow.h>. For a description of this structure, see the Lexicon entry for
shadow.h.

Files
/etc/shadow
shadow.h

See Also
getspent(), libc, shadow, shadow.h
POSIX Standard, §9.2.2

Notes
All structures and information returned are in static areas internal to getspnam(). Therefore, information from a
previous call is overwritten by each subsequent call.

gettimeofday() — Sockets Function (libsocket)
Berkeley time function
#include <sys/time.h>
#include <time.h>
void gettimeofday (timeval, zone)
struct timeval *timeval;
char *zone;

Function gettimeofday() writes the current system time (i.e., the number of seconds since January 1, 1970 GMT)
into timeval->tv_sec. It also initializes field timeval->tv_usec to zero.

gettimeofday() ignores argument zone. It returns nothing.

See Also
libsocket, time [overview]

getty — System Administration
Terminal initialization
/etc/getty type

The initialization process init invokes getty for each device indicated in the file /etc/ttys. getty tries to read a
user name from the terminal which is the standard input, adapting its mode settings accordingly. Then getty
invokes login with the name read. This process may set delays, mapping of upper to lower case, speed, and
whether the terminal normally uses carriage return or linefeed to terminate input.

If the terminal baud rate is wrong, the login message printed by getty will appear garbled. If the specified type
indicates variable speeds, as described below, hitting BREAK will try the next speed.

init passes the third character in a line of the file /etc/ttys as the type argument to getty. type conveys
information about the terminal port. An upper-case letter in the range A to S specifies a hard-wired baud rate, as
indicated in the header file <sgtty.h>. Other characters specify a range of speeds suitable to a dial-in modem. The
following variable-speed settings are recognized:
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0 Cycles through speeds 300, 1200, 150, and 110 baud, in that order. This is a good default setting for dial-in
ports.

- Teletype model 33, fixed at 110 baud.

1 Teletype model 37, fixed at 150 baud.

2 9600 baud with delays (e.g., Tektronix 4104).

3 Cycles between 2400, 1200, and 300 baud. This is used with 2400-bps modems.

4 DECwriter (LA36) with delays.

5 Like 3, but starts at 300 baud.

getty recognizes the following fixed-speed settings, for hard-wired terminals:

A 50 baud
B 75 baud
C 110 baud
D 134 baud
E 150 baud
F 200 baud
G 300 baud
H 600 baud
I 1200 baud
J 1800 baud
K 2000 baud
L 2400 baud
M 3600 baud
N 4800 baud
O 7200 baud
P 9600 baud
Q 19200 baud
R EXT
S EXT

Files
/etc/tty
<sgtty.h>

See Also
Administering COHERENT, init, ioctl(), login, sgtty.h, stty, ttys

getuid() — System Call (libc)
Get real user identifier
#include <unistd.h>
int getuid()

Every process has two different versions of its user id, called the real user id and the effective user id. The user ids
determine eligibility to access files or employ system privileges. Normally, these two ids are identical. However, for
a set user id load module (see exec()), the real user id is that of the user, whereas the effective user id is that of the
load module owner. This distinction allows system programs to use files which are protected from the user who
invokes the program.

getuid() returns the real user id.

Example
For an example of this call, see the entry for getpwent().

See Also
access(), exec, getegid(), geteuid(), getgid(), libc, login, setuid(), unistd.h
POSIX Standard, §4.2.1
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getutent() — General Function (libc)
Read an entry from a login logging file
#include <utmp.h>
struct utmp *getutent()

getutent() reads the next entry from the file that holds login information. If the file is not open, getutent() opens
it. By default, getutent() reads file /etc/utmp. To change this, call utmpname().

getutent() returns the address of the record it has read from the login file. This object has type utmp, which is
defined in header file <utmp.h>; for a detailed description of this structure, see the Lexicon entry for utmp.h.
getutent() returns NULL if it cannot open the login file, or when it attempts to read past the end of the file.

See Also
libc, utmp.h

Notes
getutent() writes its utmp record into a static portion of memory, which it overwrites the next time it is called.
Therefore, if you wish to save utmp record, you must copy it into a portion of memory that you define before you
again call getutent().

getutid() — General Function (libc)
Find a record in login logging file by login identifier
#include <utmp.h>
struct utmp *getutid(id)
struct utmp *id;

Function getutid() searches a login file for a record with a given type, or for a user with a given login identifier.

id is the address of an object type utmp, which is a structure whose fields describe a login event. (For a detailed
description of this structure, see the Lexicon entry for utmp.h). Before you call getutid(), initialize id’s fields as
follows:

• Set field id.ut_type to the type of record you wish to retrieve. The type can be one of the following:

EMPTY An empty entry
RUN_LVL Run level
BOOT_TIME Boot time
OLD_TIME
NEW_TIME
INIT_PROCESS Process spawned by init
LOGIN_PROCESS A getty waiting for a login
USER_PROCESS A user process
DEAD_PROCESS
ACCOUNTING

• If you initialize field id.ut_type to INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS,
initialize field id.ut_id to the identifier of the user whose login event you are seeking. Note that this must be
the identifier as set by /etc/init, not the login identifier that the user types to log into your system.

If you initialize field ut_type to INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS,
getutid() seeks the first record that matches both the type and the identifier that you set in id. If you initialize field
ut_type to any other type, it seeks the first record that matches the type you requested.

If it finds a record that matches your request, getutid() copies it into a static portion of memory and returns the
address of that memory. It returns NULL if it fails to find a record of the type you requested, or if it cannot open
the login file.

By default, getutid() reads records from /etc/utmp. If you wish to read records from another file, call utmpname()
before you call getutid().

See Also
libc, utmp.h
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getutline() — General Function (libc)
Find a record in login logging file by device
#include <utmp.h>
struct utmp *getutline(line)
struct utmp *line;

Function getutline() seeks a record for a login that occurred for a given line.

line points to an object of type utmp, which is a structure whose fields describe a login event. (For a detailed
description of this structure, see the Lexicon entry for utmp.h.) Before you call getutline(), you must initialize field
line.ut_line to the name of the device that interests you.

If it finds a record that matches your request, getutline() copies it into a static portion of memory and returns the
address of that memory. It returns NULL if it fails to find a record for the device you named, or if it cannot open
the login file.

By default, getutline() reads records from /etc/utmp. If you wish to read records from another file, call
utmpname() before you call getutid().

See Also
libc, utmp.h

getw() — STDIO Function (libc)
Read word from file stream
#include <stdio.h>
int getw(fp) FILE *fp;

getw() reads a word (an int) from the file stream fp.

getw() differs from getc() in that getw() gets and returns an int, whereas getc() returns either a char promoted to
an int, or EOF. To detect EOF while using getw(), you must use feof().

See Also
canon, getc(), libc

Notes
getw() returns EOF on errors.

getw() assumes that the bytes of the word it receives are in the natural byte ordering of the machine. This means
that such files might not be portable between machines.

GMT — Definition
GMT is an abbreviation of Greenwich Mean Time, the time recorded at the Greenwich Observatory in England,
where by international convention the Earth’s zero meridian is fixed.

By definition, COHERENT fixes system time in GMT. It calculates local time as an offset of GMT; for example, the
time zone for Chicago is six hours (360 minutes) behind Greenwich, so the local time for Chicago is calculated by
subtracting 360 minutes from GMT.

See Also
gmtime(), localtime, Programming COHERENT, time, time.h, TIMEZONE

Notes
The ANSI Standard replaces GMT with UTC (universel temps coordonne or universal coordinated time) for C
programming. The change is mainly one of terminology rather than substance, as some signatories to
international conventions object to naming the standard for global time after a suburb of London.

Under international convention, there are two UTC standards: UTC1 is based on solar time and is identical to
current GMT; and UTC2, which uses atomic clocks that are corrected by comparison with pulsars. These
standards drift apart as the earth’s rotation slows; thus, ‘‘leap seconds’’ are inserted periodically into UTC1 to
bridge the difference.
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gmtime() — Time Function (libc)
Convert system time to calendar structure
#include <time.h>
#include <sys/types.h>
tm *gmtime(timep)
time_t *timep;

gmtime() converts the internal time from seconds since midnight January 1, 1970 GMT, into fields that give
integer years since 1900, the month, day of the month, the hour, the minute, the second, the day of the week, and
yearday. It returns a pointer to the structure tm, which defines these fields, and which is itself defined in the
header file time.h. Unlike its cousin, localtime(), gmtime() returns Greenwich Mean Time (GMT).

Example
For an example of how to use this function, see asctime().

See Also
GMT, libc, localtime(), time [overview], TIMEZONE
ANSI Standard, §7.12.3.3
POSIX Standard, §8.1

Notes
gmtime() returns a pointer to a statically allocated data area that is overwritten by successive calls.

gnucpio — Command
Archiving/backup utility
Copy-in mode: cpio {-o|--create} [-0acvABLV] [-C bytes] [-H format] [-M message] [-O [[user@]host:]archive] [-F
[[user@]host:]archive] [--file=[[user@]host:]archive] [--format=format] [--message=message] [--null] [--reset-access-
time] [--verbose] [--dot] [--append] [--block-size=blocks] [--dereference] [--io-size=bytes] [--version] < name-list [>
archive]

Copy-out mode: cpio {-i|--extract} [-bcdfmnrtsuvBSV] [-C bytes] [-E file] [-H format] [-M message] [-R
[user][:.][group]] [-I [[user@]host:]archive] [-F [[user@]host:]archive] [--file=[[user@]host:]archive] [--make-
directories] [--nonmatching] [--preserve-modification-time] [--numeric-uid-gid] [--rename] [--list] [--swap-bytes]
[--swap] [--dot] [--unconditional] [--verbose] [--block-size=blocks] [--swap-halfwords] [--io-size=bytes] [--pattern-
file=file] [--format=format] [--owner=[user][:.][group]] [--no-preserve-owner] [--message=message] [--version]
[pattern...] [< archive]

Copy-through mode: cpio {-p|--pass-through} [-0adlmuvLV] [-R [user][:.][group]] [--null] [--reset-access-time] [--
make-directories] [--link] [--preserve-modification-time] [--unconditional] [--verbose] [--dot] [--dereference] [--
owner=[user][:.][group]] [--no-preserve-owner] [--version] destination-directory < name-list

gnucpio is the GNU version of the archive utility cpio. It copies files into or out of a cpio or tar archive, which is a
file that contains other files plus information about them, such as their pathname, owner, timestamps, and access
permissions. The archive can be another file on the disk, a magnetic tape, or a pipe.

gnucpio has three operating modes.

Copy-out Mode
gnucpio copies files into an archive. It reads a list of file names, one per line, from the standard input,
and writes the archive onto the standard output.

Copy-in Mode
gnucpio copies files from an archive or lists the archive’s contents. It reads the archive from the standard
input. Any non-option command-line arguments are shell wild-card patterns; only files in the archive
whose names match one or more of those patterns are copied from the archive. Unlike in the shell, an
initial ‘.’ in a file name does match a wildcard at the start of a pattern, and a ‘/’ in a file name can match
wildcards. If the command line contains no pattern, gnucpio extracts all files.

Copy-pass Mode
gnucpio copies files from one directory tree to another. This combines the copy-out and copy-in steps
without actually using an archive. It reads the list of files to copy from the standard input; the directory
into which it copies them is given as a non-option argument.
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gnucpio supports the following archive formats: binary, old ASCII, new ASCII, crc, old tar, and POSIX.1 tar. The
binary format is obsolete because it encodes information about the files in a way that is not portable between
different machine architectures. The old ASCII format is portable between different machine architectures, but
should not be used on file systems with more than 65536 i-nodes. The new ASCII format is portable between
different machine architectures and can be used on any size file system, but is not supported by all versions of
cpio; currently, it is only supported by GNU and UNIX System V R4. The crc format resembles the new ASCII
format, but also contains a checksum for each file that gnucpio calculates when creating an archive and verifies
when the file is extracted from the archive.

tar format is provided for compatability with the command tar. It can not be used to archive a file whose name
exceeds 100 characters, and cannot be used to archive block or character devices. The POSIX.1 tar format can not
be used to archive a file whose name exceeds 255 characters (less unless it has a ‘/’ in just the right place).

By default, gnucpio creates binary archives, for compatibility with older cpio programs. When extracting from
archives, gnucpio automatically recognizes the kind of archive it is reading, and can read archives created on
machines with a different byte-order.

Options
gnucpio recognizes the following command-line options. Not every option applies to every mode. You can prefix
the long-named options with an ‘+’ as well as with an ‘--’, for compatibility with previous releases. Eventually,
support for ‘+’ will be removed, because it is incompatible with the POSIX Standard.

-0
--null In copy-out and copy-pass modes, read a list of file names terminated by a null character instead of a

newline. This permits gnucpio to archive files whose names contain newlines.

-a
--reset-access-time

Reset the access times of files after reading them, so that it does not look like they have just been read.

-A
--append

Append to an existing archive. Only works in copy-out mode. The archive must be a disk file specified
with the options -O or -F.

-b
--swap In copy-in mode, swap both halfwords of words and bytes of halfwords in the data. Equivalent to the

option -sS. Use this option to convert 32-bit integers between big-endian and little-endian machines.

-B Set the I/O block size to 5,120 bytes. Initially, the block size is 512 bytes.

--block-size=blocks
Set the block size to blocks×512 bytes.

-c Use the old portable (ASCII) archive format.

-C size

--io-size=size
Set the I/O block size to size bytes.

-d
--make-directories

Create leading directories where needed.

-E file
--pattern-file=file

In copy-in mode, read from file additional patterns that specify file names to extract or list. gnucpio treats
the lines of file as if they had been non-option arguments to gnucpio.

-f
--nonmatching

Copy only the files that do not match any of the given patterns.

-F
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--file=archive
Read to or write from archive instead of the standard input or output. When you use this option, you do
not have to specify the output device for each volume of a multi-volume backup.

--force-local
With options -F, -I, or -O, take the archive file name to be a local file even if it contains a colon (which
ordinarily names a remote host).

-H format
--format=format

Use archive format format. The valid formats are listed below; gnucpio also recognizes these names if given
in capital letters. The default in copy-in mode is to detect automatically the archive format, and in copy-
out mode is bin.

bin The obsolete binary format.

odc The old (POSIX.1) portable format.

newc The new (SVR4) portable format, which supports file systems that have more than 65536 i-nodes.

crc The new (SVR4) portable format with a checksum added.

tar The old tar format.

ustar The POSIX.1 tar format. Also recognizes GNU tar archives, which are similar but not identical.

-i
--extract

Run in copy-in mode.

-I archive
Archive file name to use instead of standard input.

-k This option exists only for compatibility with other versions of cpio. It is ignored.

-l
--link Whenever possible, link files instead of copying them.

-L
--dereference

Dereference symbolic links — that is, copy the files that they point to instead of copying the links.

-m
--preserve-modification-time

Retain previous file-modification times when creating files.

-M message
--message=message

Print message when gnucpio reaches the end of a volume of the back-up medium (such as a tape or a
floppy disk), to prompt the user to insert a new volume. If message contains the string %d, gnucpio
replaces that string with the number of the current volume (starting at one).

-n
--numeric-uid-gid

In the verbose table of contents listing, show the numeric UID and GID instead of translating them into
names.

--no-preserve-owner
In copy-in and copy-pass modes, do not change the ownership of the files: leave them owned by the user
who extracts them. This is the default for non-root users, so that users on System-V UNIX do not
inadvertantly give away files.

-o
--create

Run in copy-out mode.

-O archive
Write output into archive instead of to the standard output.
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-p
--pass-through

Run in copy-pass mode.

-r
--rename

Interactively rename files.

-R [user][:.][group]
--owner [user][:.][group]

In copy-out and copy-pass modes, set the ownership of all files created to user and group. Either the user
or the group, or both, must be present. If the group is omitted but the ‘:’ or ‘.’ separator is given, gnucpio
uses the user’s login group. Only the super-user can change files’ ownership.

-s
--swap-bytes

In copy-in mode, swap the bytes of each halfword (pair of bytes) in the files.

-S
--swap-halfwords

In copy-in mode, swap the halfwords of each word (four bytes) in the files.

-t
--list Print a table of contents of the input.

-u
--unconditional

Replace all files, without asking whether to replace existing newer files with older files.

-v
--verbose

List the files processed. When used with the option -t, give a listing that resembles the output of the
command ls -l. In a verbose table of contents of a ustar archive, user and group names in the archive that
do not exist on the local system are replaced by the names that correspond locally to the numeric UID and
GID stored in the archive.

-V --dot
Print a ‘.’ for each file processed.

--version
Print the number of the version of gnucpio that you are now running, and exit.

Examples
The following command copies all files and directories listed by the command find and copies them into the archive
newfile.cpio:

find . -print | cpio -oc > ../newfile.cpio

The following command reads the cpio archive newfile.cpio and extracts all files whose names match the patterns
memo/al or memo/b*:

cpio -icdv "memo/al" "memo/b*" <../newfile.cpio

Note that the -d option forces cpio to create the sub-directory memo and write the files into it. Otherwise, the files
would have been written into the current directory. Option -v causes cpio to display each file name as it is
extracted from the archive.

The following commands perform a multi-volume backup of all files on mounted filesystem /v to the character-
special (i.e., ‘‘raw’’) floppy device /dev/rfha0:

su root
cd /v
find . -print | cpio -ocv >/dev/rfha0

If the cpio archive exceeds one floppy disk, you will be prompted to insert another.

See Also
commands, cpio, gtar

LEXICON

706 gnucpio



Notes
COHERENT does not yet support networking. The above descriptions of host addressing do not yet apply.

gnucpio is released under the conditions of the Free Software Foundation’s ‘‘copyleft’’. Full source code is available
through the Mark Williams bulletin board.

goto — C Keyword
Unconditionally jump within a function

A goto command jumps to the area of the program introduced by a label. A program can goto only within a
function; to jump across function boundaries, you must use the functions setjmp() and longjmp().

In the context of C programming, the most common use for goto is to exit from a control block or go to the top of a
control block. It is used most often to write ‘‘ripcord’’ routines, i.e., routines that are executed when a major error
occurs too deeply within a function for the program to disentangle itself correctly. Note that in most instances,
goto is a bad solution to a problem that can be better solved by structured programming.

Example
The following example demonstrates how to use goto.

#include <stdio.h>

main()
{

char line[80];

getline:
printf("Enter line: ");
fflush(stdout);
gets(line);

/* a series of tests often is best done with goto’s */
if (*line == ’x’) {

printf("Bad line\n");
goto getline;

} else if (*line == ’y’) {
printf("Try again\n");
goto getline;

} else if (*line == ’q’)
goto goodbye;

else
goto getline;

goodbye:
printf("Goodbye.\n");
exit(0);

}

See Also
C keywords
ANSI Standard, §7.6.6.1

Notes
The C Programming Language describes goto as ‘‘infinitely-abusable’’: caveat utilitor.

grep — Command
Pattern search

grep searches each file for occurrences of the pattern (sometimes called a regular expression). If no file is specified,
grep searches the standard input. The pattern is given in the same manner as to ed. Normally, grep prints each
line matching the pattern.

grep recognizes the following command-line options:

-b With each output line, print the block number in which the line started (used to search file systems).
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-c Print the count of matching lines rather than the lines.

-e The next argument is pattern (useful if the pattern starts with ‘-’).

-f The next argument is a file that contain a list of patterns separated by newlines; there is no pattern
argument.

-h When more than one file is specified, output lines are normally accompanied by the file name; -h suppresses
this.

-i Ignore case when matching letters in pattern. For example, an ‘a’ in pattern matches either ‘a’ or ‘A’ in file;
likewise, an ‘A’ in pattern matches either ‘a’ or ‘A’.

-l Print the name of each file containing matching lines rather than the lines.

-n The line number in the file accompanies each line printed.

-s Suppress all output, just return status.

-v Print a line if the pattern is not found in the line.

-x Print the line only if it is exactly the same as the pattern; treat wildcards in the pattern as plain text.

-y Lower-case letters in pattern match only upper-case letters within the input lines.

Limits
The COHERENT implementation of grep sets the following limits on input and output:

Characters per input record 512
Characters per output record 512
Characters per field 512

See Also
cgrep, commands, ed, egrep, zgrep

Diagnostics
grep returns an exit status of zero for success, one for no matches, two for error.

Notes
cgrep is a version of grep that is optimized for handling C-style expressions.

egrep is an extended and faster version of grep.

group — System Administration
Define groups of users

The group file /etc/group describes the user groups that have been defined on your COHERENT system. This
allows users to control the access that members of their group have to certain files. /etc/group contains the
information to map any ASCII group name to the corresponding numerical group identifier, and vice versa. It also
contains, in ASCII, the names of the members of each group. This information is used by, among others, the
command newgrp.

Each group has an entry in the file /etc/group one line per entry. Each line consists of four colon-separated
ASCII fields, as follows:

group_name : password : group_number : member[,member...]

Passwords are encrypted with crypt, so the group file is generally readable.

The COHERENT system has five system calls that manipulate /etc/group, as follows:

endgrent() Close /etc/group.

getgrent() Return the next entry from /etc/group.

getgrnam() Return the first entry with a given group name.

getgrgid() Return the first entry with a given group identifier.
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setgrent() Rewind /etc/group, so that searches can begin again from the beginning of the file.

The calls getgrent(), getgrid(), and getgrnam() each return a pointer to structure group, which the header file
grp.h defines as follows:

struct group {
char *gr_name; /* Group name */
char *gr_passwd; /* Group password */
int gr_gid; /* Numeric group id */
char **gr_mem; /* Group members */

};

A user can belong to more than one group. His ‘‘main’’ group, however, is the one that is named is in his entry in
the file /etc/passwd. When a user creates a file, that file by default is ‘‘owned’’ by the user’s main group.

For example, consider user joe, who has the following entry in /etc/passwd:

joe:*:10:5:Joe Smith:/usr/joe:/usr/bin/ksh

The fourth field, which in this example has the value 5, gives the number of the user’s main group. (For details on
what the other fields mean, see the Lexicon entry for passwd.) Looking in /etc/group, we see the following entry
for group 5:

user::5:

Thus, whenever joe creates a file, by default it will be ‘‘owned’’ by group user. Any member of group user will be
granted that file’s group-level permissions on that file.

A user can use the command chmod to change the group-level permissions on any file he owns. The superuser
root can use the command chgrp to changes the group ownership for any file. For details on how to use these
commands, see their entries in the Lexicon.

Files
/etc/group

See Also
Administering COHERENT, chgrp(), chmod, chown, endgrent(), getgrent(), getgrgid(), getgrnam(), grp.h,
newgrp, passwd, setgrend()

Notes
At present the group password field cannot be set directly (no command similar to passwd exists for groups). One
alternative is to set the password in the /etc/passwd file for a user with the passwd command, then transcribe the
password into the group file manually.

grp.h — Header File
Declare group structure
#include <grp.h>

The header file grp.h declares the structure group, which is composed as follows:

struct group (
char *gr_name; /* group name */
char *gr_passwd; /* group password */
int gr_gid; /* numeric group id */
char **gr_mem; /* group members */

};

This structure holds information about the group to which a given user belongs, as defined in the file /etc/group.
It is used by the functions endgrent(), getgrent(), getgrgid(), getgrnam(), and setgrent().

See Also
header files
POSIX Standard, §9.2.1

LEXICON

grp.h 709



gtar — Command
Archiving/backup utility
gtar options

gtar is the GNU version of the archiving utility tar. It copies files into or out of a tar archive, reads the contents of
a tar archive, and replaces files within an archive. It can also perform additional tasks such as compressing files
as they are added to an archive, or uncompressing them as they are read out.

gtar works in either of two modes:

Copy-in Mode
gtar copies files from an archive or lists the archive’s contents. By default, it reads the archive from the
standard input; you can also use the option -f (described below) to name the file or device that holds the
archive you want read.

gtar regards any non-option argument as a shell wild-card pattern; and it copies from the archive only
those files whose names match one or more of those patterns. Unlike the shell, an initial ‘.’ in a file name
matches a wildcard at the start of a pattern, and a ‘/’ in a file name can match a wildcard. If the command
line contains no pattern, gtar extracts all files.

Copy-out Mode
gtar copies files into an archive. By default, gtar reads a list of file names, one per line, from the standard
input. However, if the command line contains non-option arguments, gtar regards each as a shell wild-
card pattern that names one or more files to copy into the archive. If an argument names a directory, then
gtar recursively copies all files within that directory into the archive.

By default, gtar writes its newly built archive to the standard output. However, you can use the option -f
(described below) to name the file or device into gtar writes the new archive.

gtar normally writes into the local directory all files that it reads from an archive. If files were archived
using absolute path names, gtar by default drops the leading ‘/’ from the path name; to suppress this
behavior, use the option -P, described below. If a file being extracted resides within a directory that does
not exist in the current directory, gtar will create that directory. gtar will fail, of course, if you do not have
write permission in the current directory.

Options
gtar recognizes the following options. Please note that not every option applies to both modes.

Please note, too, that some options have more than one name. Every option has a multi-character name that
begins with with two hyphens --; some commonly used options also have a one-character name that begins with a
single hyphen. This convention may appear clumsy, but it does permit option names to have hyphens embedded
within them.

The following command-line options govern the mode in which gtar works:

-A
--catenate
--concatenate

Append files onto an archive.

-c
--create

Create a new archive.

-d
--diff
--compare

Find the differences between the files in an archive and the identically named files in the file system. This
is very useful in verifying that a new archive was built correctly.

--delete
Delete files from the archive. Do not for use this option with an archive that is on a magnetic tape.

-r
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--append
Replace files within an archive. If a file does not exist within an archive, append it onto the archive.

-t
--list List the contents of an archive.

-u
--update

Append a file onto an archive only if it is younger than the identically named file within the archive.

--use-compress-program
Specify the compression program to use. By default, gtar invokes gzip to compress files.

-x
--extract
--get Extract files from the archive.

The following options modify other aspects of gtar’s behavior:

--atime-preserve
Do not change the access times on files, whether copying into or out of an archive.

-b N
--block-size N

Use a block size of N×512 bytes. By default, gtar uses an N of 20 — that is, a block size of ten kilobytes.

-B
--read-full-blocks

Tell gtar to reblock as it reads. This is required for reading pipes under Berkeley UNIX release 4.2, and
does not apply to COHERENT.

--block-compress [compress|gzip]
Block the output of the compression program for tapes. You must name one of the compression options to
use: either compress or gzip.

-C directory
--directory directory

Change to directory.

--checkpoint
Print directory names while reading the archive.

--exclude file
Do not include file when archiving or de-archiving files. file can be a regular expression.

-f file
--file file

Read the input from, or write the output to, file. file can name an ordinary file or a device. File name ‘-’
indicates the standard input or standard output (depending upon whether an archive is being read or
written). When this option is not used, gtar by default reads from the standard input and writes to the
standard output.

--force-local
The archive file is local even if its name contains a colon. gtar usually interprets a file name that contains
a colon as naming a file on a remote system that is connected via a network.

-F script
--info-script script
--new-volume-script script

At the end of each tape (or disk), run script. Note that this option implies that you are also using option -M.

-G [file ...]
--incremental

Create, list, or extract every file that is in an archive written in the format of the old GNU incremental
backup. If no file is named, all gtar extracts all files.
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-g
--listed-incremental

Create, list, or extract files that are in an archive written in the format of the new GNU incremental
backup. create/list/extract new GNU-format incremental backup

-i
--ignore-zeros

Ignore blocks of zeros in archive.

--ignore-failed-read
gtar normally exits with non-zero status when it encounters an unreadable file. With this option, gtar
ignores the unreadable file and continues to work.

-k
--keep-old-files

If a file being extracted from an archive has an identically named analogue in the file system, gtar normally
overwrites the file in the file system with the file withdrawn from the archive. This option tells gtar to
rename the file that is in the file system, rather than overwrite it.

-K file
--starting-file file

Keep option: begin work with file in the archive.

-l
--one-file-system

Stay in the local file system when creating an archive.

-L N
--tape-length N

Change tapes after writing N×1,024 bytes. gtar normally reads or writes until it reaches the end of the
medium, then prompts for the name of the next device. This option, of course, normally does not apply to
archives being written to or read from disk.

-m
--modification-time

Do not extract file modified time.

-M
--multi-volume

Create, list, or extract a multi-volume archive. You can use this option with multiple -f options. gtar uses
the output devices in sequence, then wraps around to the beginning. This lets you, say, write output to
two different tape drives or floppy-disk drives; you can loading blank media into one while gtar is writing
to the other. Note that if you are using this option to create an archive, be very careful to label disks or
tapes correctly to note the order in which they were written.

-N date
--after-date date
--newer date

Only store files newer than date.

-o
--old-archive
--portability

Write a V7-format archive, rather than an ANSI-format archive.

-O
--to-stdout

Write files to the standard output.

-p
--same-permissions
--preserve-permissions

Preserve the permissions that the file had originally.

-P
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--absolute-paths
Do not strip leading ‘/’s from file names.

--preserve
This option is identical to -p plus -s.

-R
--record-number

Show record number within archive with each message.

--remove-files
Remove files after adding them to the archive.

-s
--same-order
--preserve-order

Sort the list of names to extract to match their order within the archive.

--same-owner
Create extracted files with the same ownership they had within the archive.

-S
--sparse

Handle sparse files efficiently. For a description of what a sparse file is, see the Lexicon entry for chsize().

--show-omitted-dirs
Print the names of directories omitted from the archive.

-T file
--files-from file

Read from file the names of all files to archive or extract.

--null Modify option -T so that it reads null-terminated names. This option disables option -C.

--totals Print the number of bytes written with option -c.

--use-compress-programprogram
Filter the archive through program. Note that program must accept option -d.

-v
--verbose

Write the names of all files archived or extracted. When you also use the option -f, gtar writes the names
to the standard output; however, when you do not use -f, it writes them to the standard error.

-V name
--label name

Name the archive name. When used with the option --extract, name can be a regular expression.

--version
Print the version of gtar that you are using.

--volno-file file
Read from file the volume number used when prompting the user. Note that gtar does not use the
contents of file when it records volume identifiers on the archive.

-w
--interactive
--confirmation

Ask the user to confirm every action.

-W
--verify Attempt to verify the archive after writing it.

-X file
--exclude-from file

Do not archive or de-archive all of the files named in file.

LEXICON

gtar 713



-Z
--compress
--uncompress

Filter files being archived or de-archived through compress.

-z
--gzip
--ungzip

Filter files being archived or de-archived through gzip.

Examples
The first example archives piggy, into archive piggy.tar:

gtar -cf piggy.tar piggy

To simultaneously compress piggy with the utility gzip, use the command:

gtar -czf piggy.gtz piggy

Note that the suffix .gtz is used by convention to mark archives whose contents are compressed. This is not
required, but it is a good idea to use this or some similar suffix to mark compressed archives: if you do not
remember to use the -z option to de-archive a compress archive, gtar will fail. So, to extract file piggy from its
compressed archive, use the command:

gtar -xzf piggy.gtz piggy

The -z is recommended: it speeds archiving of large files or file systems, and increases their accuracy — because
the archives are smaller, there are fewer opportunities for errors to occur.

To write an archive onto a device, use the option -f to name that device instead of a file. You must, of course, have
write permission on that device. If you are writing onto a floppy disk, the disk must have been formatted with the
command fdformat, but does not need to have a COHERENT file system on it; in fact, gtar will overwrite all file-
system information that may reside on a disk. For example, to write file piggy onto a high-density, 5.25-inch,
formatted floppy disk in drive 0, use the following command:

gtar -czf /dev/fha0 piggy

To copy piggy back from this archive, use the command:

gtar -xzf /dev/fha0

As noted above, you must remember to use the -z option to de-archive files from a compressed archive.

As noted above, if you name a directory on gtar’s command line, gtar will archive or de-archive that directory and
all files that it contains, including its sub-directories and their contents. For example, to archive all of your
personal files, use the command:

gtar -cvzf backup.gtz $HOME

The option -v tells gtar to name every file that it is copying into its archive. Note, too, that gtar is smart enough
not to copy an archive into itself, so you can execute the above command while still within your home directory.

The following backs up your personal files onto a high-density, 3.5-inch disk in drive 0:

gtar -cvzf /dev/fva0 $HOME

NB, if you are backing up a directory that will require more than one floppy disk, you should consider using the
utility cpio instead: it is somewhat easier to use when you are handling multiple-volume archives.

To copy directory src to the SCSI tape device with SCSI identifier 2, use the command:

tar cvzf /dev/rStp2 src

To archive src to a tape and then confirm it, use the command

tar cvzf /dev/rStp2 src ; tar dvzf /dev/rStp2 src

Note that this can be time consuming, but will confirm the integrity of backups of vital files. To restore src from its
tape, use the command:

tar xvzf /dev/rStp2
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gtar by default saves files with their original ownerships and permissions; however, when it restores files, it may
modify them. To restore files with their original permissions, use the option -p. For example, to restore src and
restore the original ownership and permissions of its files, use the command:

tar xvpzf /dev/rStp2

See Also
commands, compression, gnucpio, tar
POSIX Standard, §10.1.1

Notes
COHERENT does not yet support networking. The above descriptions of host addressing do not yet apply.

gtar is released under the conditions of the Free Software Foundation’s ‘‘copyleft’’. Full source code is available
through the Mark Williams bulletin board.

gtty() — System Call (libc)
Device-dependent control
#include <sgtty.h>
int gtty(fd, sgp)
int fd; struct sgttyb *sgp;

gtty() gets attributes of a terminal. It is shorthand notation for ioctl calls with a command argument of
TIOCGETP.

Example
For examples of this system call, see pipe() and stty().

See Also
exec, libc, ioctl(), open(), read(), sgtty.h, stty(), write()

guess — Command
Extraordinarily amusing guessing game
/usr/games/guess

The COHERENT game guess plays a guessing game with you. When you first invoke it, it will ask you to think of an
object. As you go through the guessing game, it will ask you for questions by which that object can be
distinguished from other objects. guess gets ‘‘smarter’’ over time (assuming you don’t lie to it), so it over time
develops a fighting chance of actually guessing something.

See Also
commands

Notes
guess is not for the impatient.

gunzip — Command
GNU utility to uncompress files
gunzip [ -cfhLrtvV ] [ file ... ]

gunzip is the GNU command that uncompresses each file named on its command line.

Whenever possible, gunzip replaces each file whose name ends with .z or .Z (and which begins with the correct
magic number) with an uncompressed file without the original suffix. gunzip also recognizes the special
extensions .tgz and .taz as shorthands for .tar.z or .tar.Z.

gunzip can currently decompress files created by the COHERENT commands gzip or compress, or by the UNIX
commands zip or pack. It automatically detects the format by which the file is compressed and applies the correct
algorithm to uncompress it.

When uncompressing the formats used by gzip and zip, gunzip checks a 32-bit CRC. For files compressed by
pack, gunzip checks the uncompressed length.

The format used by compress was not designed to allow consistency checks. However, gunzip can sometimes
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detect a corrupted .Z file. If you get an error when uncompressing a .Z file, do not assume that the .Z file is correct
simply because the COHERENT command uncompress does not complain. This generally means that most
implementations of uncompress do not check their input, and happily generate garbage output.

Command-Line Options
gunzip recognizes the following command-line options:

-c Write output to standard output, and do not change the original file. If the command line names more
than one file, gzip writes to the standard output a sequence of independently compressed members. To
obtain better compression, concatenate the files before compressing them.

-f force compression or decompression, even if file has multiple links or the corresponding file already exists.
Without this option, and when not running in the background, gzip prompts to verify whether it should
overwrite an existing file.

-h Help: display a screenful of information on how to run this program.

-L Display the gzip license.

-r Recurse: if a file is a directory, compress or uncompress all files within it.

-t Test: check the integrity of a compressed file.

-v Verbose: display the name and percentage reduction for each file as it is compressed.

-V Display the version of this command, and the options by which it was compiled.

See Also
commands, compress, compression, gzip, unpack

Diagnostics
gunzip returns zero if all went well. It returns one if an error occurred and it returns two if it had to issue a
warning message.

gunzip can issue the following warning messages:

file: not in gzip format
A file named on the command line was not compressed.

The compressed file has been damaged. If the data were compressed by the program compress, they can
be recovered up to the point of damage by using the program zcat to concatenate the file into another file.

file: compressed with XX bits, can only handle YY bits
file was compressed by a program that could deal with more bits than the decompress code on this
machine. Recompress the file with gzip, which compresses better and uses less memory.

file: already has z suffix -- no change
file has the suffix .z or .Z; therefore, gunzip assumes that it is compressed already.

file already exists; do you wish to overwrite (y or n)?
Respond ‘y’ if you want the output file to be replaced; ‘n’ if not.

gunzip: corrupt input
gunzip detected a SIGSEGV violation, which usually means that the input file has been corrupted.

Notes
gzip is released under the conditions of the Free Software Foundation’s ‘‘copyleft’’. Full source code is available
through the Mark Williams bulletin board.

gzip — Command
GNU utility to compress files
gzip [ -cdfhLrtvV19 ] [ file ... ]

The command gzip is the GNU command that compresses file named on its command line. It will only attempt to
compress regular files.

Whenever possible, gzip replaces each file with one that has the suffix .gz, while preserving its ownership and
times of last access and last modification. If the name of file is longer than 12 characters (which prevents gzip

LEXICON

716 gzip



from attaching the suffix .gz), gzip truncates it and keeps its original name within the compressed file.

If its command line names no file, gzip compresses what it reads from from the standard input, and writes it to the
standard output.

To restore a compressed file, filter it thorugh the command gunzip.

gzip uses the Lempel-Ziv algorithm to perform compression. Under most circumstances, this algorithm
compresses files more tightly than do most other commonly used techniques, such as the LZW algorithm, Huffman
coding, or adaptive Huffman coding. The amount of compression obtained depends upon the size of the input and
the distribution of common substrings; in general, it reduces text by 60% to 70%.

gzip always compresses its input, even if the compressed file is slightly larger than the original. The worst-case
expansion is a few bytes for the gzip file header, plus five bytes for every 32-kilobyte block.

Command-Line Options
gzip recognizes the following command-line options:

-c Write output to standard output, and do not change the original file. If the command line names more
than one file, gzip writes to the standard output a sequence of independently compressed members. To
obtain better compression, concatenate the files before compressing them.

-d Decompress each file.

-f force compression or decompression, even if file has multiple links or the corresponding file already exists.
Without this option, and when not running in the background, gzip prompts to verify whether it should
overwrite an existing file.

-h Help: display a screenful of information on how to run this program.

-L Display the gzip license.

-q Suppress all warning messages.

-r Recurse: if a file is a directory, compress or uncompress all files within it.

-t Test: check the integrity of a compressed file.

-v Verbose: display the name and percentage reduction for each file as it is compressed.

-V Display the version of this command, and the options by which it was compiled.

1-9 Regulate the speed of compression, on a scale of from 1 to 9. 1 performs the fastest but most superficial
compression, whereas 9 performs the slowest but most thorough compression. -fast is a synonym for -1,
whereas -best is a synonym for -9. The default compression level is -5.

Advanced Usage
You can concatenate multiple compressed files. In this case, gunzip extracts all members at once. For example:

gzip -c file1 > foo.gz
gzip -c file2 >> foo.gz
gunzip -c foo

is equivalent to:

cat file1 file2

In case of damage to one member of a .gz file, other members can still be recovered (if the damaged member is
removed). However, you can get better compression by compressing all members at once:

cat file1 file2 | gzip > foo.gz

compresses better than:

gzip -c file1 file2 > foo.gz

If you want to recompress concatenated files to get better compression, type:

zcat old.gz | gzip > new.gz
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Environment
gzip reads the environment variable GZIP for its default options. It interprets these options first; you can override
them by setting other options on the gzip command line.

See Also
commands, compress, compression, gunzip, uncompress, unpack, zcmp, zdiff, zforce, zgrep, zmore, znew

Diagnostics
If all went well, gzip returns zero upon exiting. If an error occurred, it returns one; if it issued a warning message,
it returns two.

gzip can issue the following warning messages:

Usage: gzip [-cdfhLrtvV19] [file ...]
The gzip command line contained an option that gzip does not recognize.

file: already has z suffix -- no change
file already has the suffix .gz; therefore, gzip assumes that it already is compressed.

file not a regular file or directory: ignored
A file is not a regular file or directory. gzip does not attempt to compress devices, pipes, or other special
files.

file has XX other links: unchanged
file has more than one link. By default, gzip does not compress a file that has multiple links.

Notes
gzip is released under the conditions of the Free Software Foundation’s ‘‘copyleft’’. Full source code is available
through the Mark Williams bulletin board.
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hai — Device Driver
Host adapter-independent SCSI driver

hai is a host adapter-independent device driver that supports various SCSI devices. It supports the Adaptec 154x
host adapter, and compatibles; and all host adapters built around the Future Domain TMC-950/9C50 chip set.
With a supported host adapter, hai can support any mix of up to seven SCSI hard disks (either fixed or removable
media), CD-ROM drives, and tape drives.

hai has major-device number 13. It can access devices either in block mode or character mode. The minor
number specifies the device and partition number for disk-type devices; this allows the use of up to eight SCSI
identifiers (SCSI-ID’s), with up to four logical unit numbers (LUNs) per SCSI-ID and up to four partitions per LUN.
Tape and other special devices decode the minor number to perform special operations such as ‘‘rewind on close’’
or ‘‘no rewind on close’’. The first open() call on a SCSI disk device allocates memory for the partition table and
reads it into memory.

hai is a modular driver that you can configure to suit your system’s suite of SCSI hardware. To build the driver,
you must link the main hai module with the appropriate module for your system’s SCSI host-adapter card, and a
module for each type of SCSI device you have (hard disk, CD-ROM, or tape). Each of hai modules is described
below. Usually, you will configure hai when you install COHERENT onto your system, but you can reconfigure hai
at any time should you wish to add or modify your system’s suite of SCSI devices. The script
/etc/conf/hai/mkdev walks you through this process. Once you have reconfigured hai, run the program
/etc/conf/bin/idmkcoh to build a new kernel; then reboot your system to invoke the newly built kernel and
you’re back in business.

Extending hai
hai is designed to be extendable to other host adapters and other SCSI devices. It is easy to extend hai to work
with new hardware. It is possible to extend hai either to support a new host adapter, or to support new peripheral
device, or both.

To adapt hait to a new a host adapter, you must write a handful of routines to initialize and access the host
adapter. A host-adapter module must be able to do the following:

• Initialize the host adapter and ready it for future requests.

• Start a SCSI command and call a notification function when that command completes or times out.

• Abort a SCSI command in progress.

• Reset a device on the SCSI bus.

• Reset the SCSI bus.

It is easier to write a module for a peripheral device: you only need to send the appropriate SCSI commands to
access the device as required by the COHERENT device-driver interface — i.e., open(), close(), read(), write(), and
ioctl(). To do this, use the routines provided by the host-adapter module, when neccessary, to access the SCSI bus
and the device.

The following sections of this article discuss each of hai’s constituent modules.

hai154x — Adaptec Host-Adapter Module
hai154x is the hai host-adapter module for the Adaptec 154x and compatible host adapters. This module lets you
run any combination of SCSI hard disks, tape drives, or CD-ROM drives through any Adaptec AHA-154x host
adapter.
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The Adaptec AHA-154x is an intelligent ISA bus mastering SCSI host adapter. Its on-board processor and DMA
controllers handle the SCSI bus protocol and the DMA transfer of SCSI data into the PC’s main memory. hai154x
uses port I/O, a DMA channel, and an interrupt line, which are configured through the following tunable variables:

HAI154X_BASE Base port
HAI154X_INTR Interrupt level
HAI154X_DMA DMA channel

The following tunable parameters let you set the DMA transfer speed, the bus-on time, and the bus-off time on the
SCSI bus:

HAI154X_XFERSPEEDDMA transfer speed, from the table below
HAI154X_BUSOFFTIMEHost-adapterbus-on time for DMA transfers
HAI154X_BUSONTIMEHost-adapterbus-off time for DMA transfers

Variable HAI154X_XFERSPEED must be set to one of the values given in the following table.

Setting Speed, megabytes/second
0 5.0
1 6.7
2 8.0
3 10.0
4 5.7

The default setting is ‘4’.

You can use these parameters to tune the performance of the SCSI bus for your system. For most installations,
the default settings should be work well.

haiss — Seagate Host-Adapter Module
haiss is the host-adapter module for host adapters built around the Future Domain TMC-950 or TMC-9C50 chip
sets. It works with the following controllers:

Seagate ST01 or ST02
Future Domain TMC-845, 850, 860, 875, or 885
Future Domain TMC-840, 841, 880, or 881

Through this host-adapter module, you can run any combination of SCSI hard disks, tape drives, or CD-ROM
drives through any of the above host adapters.

These host adapters map the SCSI bus data and signal lines onto memory addresses on the PC bus. haiss then
uses standard memory-read and -write operations to access the state of the SCSI bus and the data on it. By
default, this controller uses the Intel block-move instruction to transfer data between the device’s buffer and the
SCSI data-address range. This mode of transfer may be too fast for certain SCSI devices, in which case data can be
transferred byte by byte. You can set how haiss transfers data; this is described below.

haiss can be used through the following tunable kernel variables:

HAISS_TYPE
The type of the card, as follows:

Type Controller
0 Seagate ST01/02
1 Future Domain TMC-845/850/860/875/885
2 Future Domain TMC-840/841/880/881

HAISS_INTR
The interrupt vector to which the card is set. Although MS-DOS permits you to use this card without
interrupts, COHERENT requires that you use interrupts.

HAISS_BASE
The real-mode segment address for the start of the card’s RAM area. On all Future Domain and Seagate
host adapters with an eight-kilobyte ROM, this is also the base address that is jumpered onto the card.
On Seagate host adapters with a 16-kilobyte ROM, this is the base address jumpered on the card plus
0x0200.
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HAISS_SLOWDEV
A bitmask of the target identifiers of all SCSI devices whose rate of data transfer is slower than the default
transfer mode that the host adapter supports.

These variables are set automatically by the script /etc/conf/hai/mkdev, when you use it to configure hai for
your system; or you can use the command /etc/conf/bin/idtune to tune them individually.

haict — Tape Device Module
haict is the device module that controls SCSI tape drives. It works a number of popular quarter-inch and DAT
SCSI tape drives

SCSI tape-drive configuration is controlled by the tunable variables HAI_TAPE_SPEC and HAICT_CACHE.

HAI_TAPE_SPEC is a bitmap of the SCSI identifiers that identify tape drives on your system. For example, if a
system has only one SCSI tape drive, and it is assigned SCSI identifier two, then you would set HAI_TAPE_SPEC to
0x04, which flips on bit two of that mask. (If you are versed in converting binary values into bit masks, note that
the script /etc/conf/hai/mkdev handles that conversion for you — all you have to do is tell it what SCSI
identifiers are set to which devices, and it does the rest.)

Variable HAICT_CACHE sets the size of block of memory that hai uses to buffer data that it writes to or reads from
the tape drive. You can set this anywhere from zero to 256 kilobytes. The default is 16 kilobytes, which should
works well with most tape drives. To tune this variable, use either the command /etc/conf/bin/idtune or the
script /etc/conf/hai/mkdev. Please note that larger tape caches may not necessarily improve tape performance.
For example, the program cpio for example uses a 5,120-byte buffer that limits the effectiveness of any tape-
buffering scheme.

haicd — CD-ROM Device Module
haicd is the device module that controls SCSI CD-ROM drives. It permits you to read data from both audio CDs
and CD-ROM that hold an ISO 9660 file system.

Configuration of haicd is controlled by the variable HAI_CDROM_SPEC, which is a bitmap of the SCSI identifiers
that identify CD-ROM drives on your system. For example, if a system has only one SCSI CD-ROM drive, and it is
assigned SCSI identifier three, then you would set HAI_TAPE_SPEC to 0x08, which flips on bit three of that mask.
(If you are versed in converting binary values into bit masks, note that the script /etc/conf/hai/mkdev handles
that conversion for you — all you have to do is tell it what SCSI identifiers are set to which devices, and it does the
rest.)

As of this writing (September 1994), haicd has been tested with SCSI CD-ROM drives from Toshiba and NEC. The
CD-ROM functions work with both makes of CD-ROM. Please note, however, that the audio functions of the NEC
CDR-74 and CDR-84 CD-ROM drives deviate from the SCSI-2 specification considerably; therefore, the audio
functions of haicd do not work on these drives.

haisd — Hard Disk Device Module
haisd is the hai device module that controls SCSI disk drives. Because hai allows multiple, overlapping,
simultaneous access to the system’s SCSI host adapter, the disk drives that hai controls operate independently of
each other. haisd also chains ‘‘like’’ requests for multiple contiguous sectors, which reduces the overhead of
starting SCSI commands and thereby inproves performance.

haisd is configured through the tunable kernel variable HAI_DISK_SPEC, which is a bitmap of the SCSI identifiers
that identify hard-disk drives on your system. For example, if a system has two SCSI disk drives, one with SCSI
identifier zero and the other with SCSI identifier one, HAI_DISK_SPEC to 0x03, which flips on bits 0 and 1 of that
mask. (If you are versed in converting binary values into bit masks, note that the script /etc/conf/hai/mkdev
handles that conversion for you — all you have to do is tell it what SCSI identifiers are set to which devices, and it
does the rest.)

haisd determines partitioning information from the device’s minor number as follows:

Bit: 7 6 5 4 3 2 1 0
S I-I-I L-L P-P

The ‘S’ field is the ‘‘special’’ bit: it distinguishes SCSI disk drives from tape drives. The ‘P’ fields are a binary value
of the partition-table entry for this device, from 0 through 3. If the special bit is set and the partition fields are not
0, then haisd assumes that this device is not a disk drive and will not allow access to the device. The ‘I’ fields give
the binary value of the SCSI identifier for this device, from zero through seven. This convention is used for all SCSI
devices. Finally, the ‘L’ fields set the logical-unit number field, from 0 through 3. (If you are not skilled at setting
bit maps by hand, do not despair: the configuration script /etc/conf/hai/mkdev automatically builds an
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appropriate device node for each SCSI disk.)

Files
/dev/sd* — Block-special SCSI-disk devices
/dev/Stp* — Block-special SCSI-tape devices
/dev/Scdrom* — Block-special SCSI CD-ROM devices
/dev/rsd* — Character-special SCSI-disk devices
/dev/rStp* — Character-special SCSI-tape devices
/dev/rScdrom* — Character-special SCSI CD-ROM devices

See Also
CD-ROM, device drivers, hai154x, haiss, haicd, haict, haisd, hard disk, tape

Notes
For a list of the block-special files via which you can access the devices that hai supports, see the Lexicon entries
for hard disk and tape.

If you are using an Adaptec AHA-1540, AHA-1542C, or AHA-1542CF SCSI host adapter with a drive larger than
one gigabyte and extended BIOS support turned on, then you must override the default number of heads to 255
and the number of sectors per track to 63. Note that when you run the script /etc/conf/hai/mkdev (or install
COHERENT onto your system), ‘‘255’’ appears as the default choice for the number of heads; however, the default
choice for number of sectors is 32. Therefore, when you run /etc/conf/hai/mkdev or install COHERENT for a
system that has one of the above-named SCSI controllers, you must select the default setting for the number of
heads, but you must type ‘‘63’’ when asked for the number of sectors per track.

hai supercedes the older COHERENT device drivers aha and ss, which were specific to the Adaptec and Future-
Domain controllers, and which controlled only SCSI disk drives.

hai was written by Chris Hilton (hilton@mwc.com).

hard disk — Technical Information
The hard disk is the primary means of storing and accessing data under the COHERENT system. This article
introduces some aspects of the COHERENT system that affect the care and feeding of your hard disk.

Device Drivers
The COHERENT system comes with two drivers for hard disks: the at drivers, for AT-style hard disks (i.e., IDE,
ESDI, MFM, or RLL disks); and hai, for the SCSI family of hard disks. hai is a host adapter-independent SCSI
driver and also supports SCSI devices other than hard disks, e.g., SCSI tape. which is the old-style driver for
Adaptec SCSI devices. For details on each driver, see its entry in the Lexicon.

The following describes how to enable or disable a given hard-disk driver in your kernel. To disable a hard-drive
controller, log in as the superuser root and then execute the following commands:

cd /etc/conf
bin/idenable -d disk_driver
bin/idmkcoh -o /kernel_name

where kernel_name is the name you wish to give to the new kernel, and disk_driver is one of at, aha, ss, or hai.

To enable a hard disk, again log in as root; then type the following commands:

cd /etc/conf
bin/idenable -e disk_driver
# if you are installing the hai driver:
# hai/mkdev
bin/idmkcoh -o /kernel_name

where disk_driver is one of at, aha, ss, or hai.

Partitioning
The COHERENT command fdisk displays information about how your hard disk is currently configured. You can
also use it to repartition your hard disk and reassign partitions from MS-DOS to COHERENT, or vice versa.

This is an extremely powerful command, with which you can create much mayhem on your system. Like any
powerful tool, it should be treated carefully and with respect. See the article on fdisk in the Lexicon for details on
how to use this command.
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Partitioning your hard drive can be an uncomplicated procedure. We offer these guidelines in an effort to make it
as simple as possible. Before attempting any partitioning you should first back-up all the data currently on your
hard drive. If you do not do this you risk losing data permanently. You should also know the correct physical
parameters of your hard drive. This information can be obtained from your machine documentation or from the
drive manufacturer. It is best not to rely on the parameters given in the BIOS: these may be translation
parameters.

If your drive is formatted for MS-DOS, it is advisable to run MS-DOS fdisk before you start to install COHERENT. If
the whole drive is taken up by DOS partitions, you must use MS-DOS fdisk to create a non-DOS area on the drive.
It is not sufficient to have an empty MS-DOS logical drive set aside for COHERENT. COHERENT does not recognize
MS-DOS logical drives, it only sees the whole partition. The following diagram shows the way the MS-DOS fdisk sees
your drive:

And the following diagram shows the way the COHERENT fdisk sees your drive:

DOS Extended Partition

DOS Root Partition

If you use COHERENT fdisk to repartition MS-DOS space, you risk causing MS-DOS fdisk to hang. One further word
of warning. If you have an automated disk formatting and partitioning utility on your MS-DOS partition such as
Disk Manager or Speedstor, you should operate it in ‘‘manual’’ mode, not in ‘‘automatic’’.

Some hard drives have more than 1,024 cylinders. COHERENT can only recognize a drive up to this limit. You may
have a utility such as Speedstor that allows you to place MS-DOS partitions beyond that boundary. COHERENT will
not see those partitions, but you can still access them as usual through MS-DOS.

When partitioning a drive with more than 1,024 cylinders, be sure to run the partitioning utility before you start to
install COHERENT. You should create a non-DOS partition that falls completely within the 1,022-cylinder
boundary. Your next MS-DOS partition should start no sooner than the 1,026th cylinder.

Adding a COHERENT Partition
The following describes how to add a new COHERENT partition on your hard disk.

During your initial installation of COHERENT, the installation program handled the details of preparing your hard
disk for COHERENT. Adding a partition after the system is installed is not difficult, but it requires that you
understand the operation of the following commands: badscan, chmod, chown, fdisk, fsck, mkfs, and mount.
See the Lexicon articles for each of these commands for further information before you attempt to add a partition.

In general, the following steps are required when creating a partition for use by COHERENT. Please note that you
must not change the size of your existing root partition, or you may no longer be able to boot COHERENT from the
hard disk.

1. Completely back up all partitions on your hard disk. Be sure to back up the COHERENT partitions, as well as
any non-COHERENT partitions (e.g., those for MS-DOS or OS/2). Verify that your backups are readable and
correct.

2. Log in as the superuser root. Make sure all other users are off the system; then invoke the command
/etc/shutdown. This shuts down COHERENT and returns the system to single-user mode. Type the
command sync to flush all buffers.

3. Invoke the COHERENT command fdisk and add the COHERENT partition to your disk, as described above. Be
sure to write down the device name associated with your new partition (e.g., /dev/at0c) and its size.

4. The command badscan checks the device for bad blocks. If your partition resides on a non-SCSI device, run
the command badscan as follows:
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/etc/badscan -v -o /conf/proto.device raw_device xdevice

where device specifies the four-character block-special device name for the partition (e.g., at0c), raw_device is
the full device path name for the character-special device associated with the partition (e.g., /dev/rat0c), and
xdevice names the partition-table device for the disk drive (e.g., /dev/at0x).

5. Invoke the command mkfs to create a COHERENT file system on the new partition, as follows:

/etc/mkfs /dev/device /conf/proto.device

This invocation forces mkfs to use the contents of the ‘‘proto’’ file that badscan created when it built the
bad_block list for the new partition.

6. If need be, use the command mkdir to create a directory to use as a mount point for the newly created file
system. The mount point is the directory onto which this directory’s file system will be appended. Usually,
this directory is located under ‘/’, also called the root directory. You can, however, mount a file system onto
any directory that already exists. If you create a new directory (e.g., /w or /mydir), use the commands chown
and chmod to set an appropriate ownership and mode for for the directory.

7. Edit the file /etc/mount.all and add a line of the following form:

/etc/mount device /mount_point

where device is the full path name of the device that specifies your new partition (e.g., /dev/at0c), and
mount_point is the name of the directory that you created in the earlier step.

8. Finally, edit the file /etc/checklist and add the character special device name (e.g., /dev/rat0c) of the new
COHERENT partition to it. This will ensure that COHERENT will automatically run fsck on that partition’s file
system whenever you boot the system. This can be vital in recovering from a system crash.

Adding Another Hard Disk
If you wish to add another hard disk to your system, you may have to run some low-level routines that are
hardware specific. See the documentation that accompanies your hardware for details.

In brief, when you install the hard disk, you must partition it, as you did your original hard disk when you first
installed COHERENT. If you wish to add non-COHERENT operating systems to one or more partitions, do so first;
then add COHERENT to the remaining partitions, as described above.

Changing the Size of the Root Partition
Changing the size of your root file system requires that you reinstall COHERENT. It is strongly advised that you
back up all partitions of your system before you attempt to do this. In addition, to reduce the time involved in
restoring your data files, make an additional backup of all directories and files that have changed form your
original COHERENT installation. The command find will help you locate all such files; see its Lexicon entry for
details.

You should then follow the directions given in the release notes for installing COHERENT. Note that when you
attempt to install COHERENT over an existing COHERENT partition, COHERENT will ask you if you are sure you know
what you’re doing before the installation procedure creates a new file system on the partition. Be sure to request
that a new file system be created, or the installation will fail.

After installing the COHERENT distribution onto your new root partition, restore any data files and directories from
the second set of backups that you performed.

See Also
Administering COHERENT, at, badscan, chmod, chown, fdisk, fsck, hai, ideinfo, mkfs, mount

Notes
For information on how an IDE drive is configured, use the command ideinfo. For details on how to use this
command, see its entry in the Lexicon.

Some users have attempted to use Norton Utilities or similar tools to rearrange the partition table, only to find that
COHERENT no longer boots. That is because the kernel has embedded within it the name of the partition on which
it and its root file system live. By using Norton Utilities to shuffle the partition table, the kernel will no longer be
able to find any of the files or utilities it needs to boot your system. If you still wish to shuffle your disk’s partition
table, be sure to change the name of the root device within the kernel before you change the partition table.
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hash — Command
Add a command to the shell’s hash table
hash [-r] [command ... ]

The command hash lets you manipulate the Korn shell’s hashing facility. A hashed command can be accessed
instantly by the shell, without the delay of searching the directories in the PATH environmental variable.

When called with an argument, hash prints all hashed commands. When called with one or more command
arguments, it adds command to its hash table. The option -r removes command from the hash table.

Note that before you can use hashing, you must use the set command to turn it on. For more information on the
Korn shell’s hashing feature, see the Lexicon entry for ksh.

See Also
commands, ksh

hdioctl.h — Header File
Control hard-disk I/O
#include <sys/hdioctl.h>

Header file <sys/hdioctl.h> declares constants and structures used to control hard-disk I/O.

Structure ide_info is used by the command ideinfo to hold information about IDE drives. It is defined as follows:

typedef struct ide_info {
unsigned short ii_config; /* Configuration */
unsigned short ii_cyl; /* Cylinders (default translation mode) */
unsigned short ii_reserved; /* reserved */
unsigned short ii_heads; /* heads (default translation mode */
unsigned short ii_bpt; /* bytes per track (unformatted) */
unsigned short ii_bps; /* bytes per sector (unformatted) */
unsigned short ii_spt; /* sectors per track (default translation mode) */
unsigned short ii_vendor1[3]; /* vendor’s unique data */
unsigned short ii_serialnum[10]; /* serial number in ASCII */
unsigned short ii_buffertype; /* buffer type */
unsigned short ii_buffersize; /* buffer size in 512-byte sectors */
unsigned short ii_eccbyteslong; /* ecc bytes for r/w long */
unsigned short ii_firmrev[4]; /* firmware revision in ASCII */
unsigned short ii_modelnum[20]; /* model number in ASCII */
unsigned short ii_doublewordio; /* double word transfer flag */
unsigned short ii_capabilities; /* capabilities */
unsigned short ii_reserved2; /* reserved */
unsigned short ii_piomode; /* PIO data transfer timing mode */
unsigned short ii_dmamode; /* DMA data transfer timing mode */
unsigned short ii_reserved3[75]; /* reserved */
unsigned short ii_vendor2[32]; /* vendor unique data */
unsigned short ii_reserved4[96]; /* reserved */

} ide_info_t;
Field ii_config is a set of flags that describes how the drive is configured, as follows:

bit 0 Not used.
bit 1 Disk is hard sectored.
bit 2 Disk is soft sectored.
bit 3 Disk is not MFM encoded.
bit 4 Disk’s head switch time is less than 15 microseconds.
bit 5 Spindled motor control option is implemented.
bit 6 Fixed drive.
bit 7 Not used.
bit 8 Disk’s transfer rate is less than five megabytes per second.
bit 9 Disk’s transfer rate exceeds five megabytes per second but less than or equal to 10 megabytes per second.
bit 10 The disk’s transfer rate exceeds ten megabytes per second.
bit 11 The rotational’s speed tolerance is greater than 0.5%.
bit 12 The data strobe offset option is available.
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bit 13 The track offset option is available.
bit 14 The format speed-tolerance gap required.
bit 15 Not used.

Structure hdparm_s holds the drive’s attributes. It is configured for binary compatibility with ROM data.

typedef struct hdparm_s {
unsigned char ncyl[2]; /* number of cylinders */
unsigned char nhead; /* number heads */
unsigned char rwccp[2]; /* reduced write curr cyl */
unsigned char wpcc[2]; /* write pre-compensation cyl */
unsigned char eccl; /* max ecc data length */
unsigned char ctrl; /* control byte */
unsigned char fill2[3];
unsigned char landc[2]; /* landing zone cylinder */
unsigned char nspt; /* number of sectors per track */
unsigned char hdfill3;

} hdparm_t;

See Also
hard disk, header files, ideinfo

head — Command
Print the beginning of a file
head [+n[bcl]] [file]
head [-n[bcl]] [file]

head copies the first part of file, or of the standard input if none is named, to the standard output.

The given number tells head where to begin to copy the data. Numbers of the form +number measure the starting
point from the beginning of the file; those of the form -number measure from the end of the file.

A specifier of blocks, characters, or lines (b, c, or l, respectively) may follow the number; the default is lines. If no
number is specified, a default of +4 is assumed.

See Also
commands, dd, egrep, sed, tail

Notes
Because head buffers data measured from the end of the file, large counts may not work.

header files — Overview
A header file is a file of C code that contains definitions, declarations, and structures commonly used in a given
situation. By tradition, a header file always has the suffix ‘‘.h’’. Header files are invoked within a C program by the
command #include, which is read by cpp, the C preprocessor; for this reason, they are also called ‘‘include files’’.

Header files are one of the most useful tools available to a C programmer. They allow you to put into one place all
of the information that the different modules of your program share. Proper use of header files will make your
programs easier to maintain and to port to other environments.

COHERENT includes the following header files:

a.out.h . . . . . . . . . . Include all COFF header files
acct.h. . . . . . . . . . . Format for process-accounting file
ar.h . . . . . . . . . . . . Format for archive files
assert.h . . . . . . . . . Define assert()
sys/buf.h . . . . . . . . Buffer header
sys/cdrom.h . . . . . . Definitions for CD-ROM drives
coff.h . . . . . . . . . . . Format for COHERENT objects
sys/con.h . . . . . . . . Configure device drivers
sys/core.h. . . . . . . . Declare structure of a core file
ctype.h . . . . . . . . . . Header file for data tests
curses.h . . . . . . . . . Declare/define curses routines
dbm.h . . . . . . . . . . Header file for DBM routines
sys/deftty.h. . . . . . . Default tty settings
dirent.h . . . . . . . . . Define constant dirent
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errno.h . . . . . . . . . . Error numbers used by errno()
fcntl.h . . . . . . . . . . Manifest constants for file-handling functions
sys/fd.h . . . . . . . . . Declare file-descriptor structure
sys/fdioctl.h . . . . . . Control floppy-disk I/O
sys/fdisk.h . . . . . . . Fixed-disk constants and structures
sys/filsys.h . . . . . . . Structures and constants for super block
float.h . . . . . . . . . . Define constants for floating-point numbers
fnmatch.h . . . . . . . . Constants used with function fnmatch()
fperr.h . . . . . . . . . . Constants used with floating-point exception codes
gdbm.h . . . . . . . . . . Header file for GDBM routines
gdbmerrno.h . . . . . . Define error messages used by GDBM routines
grp.h . . . . . . . . . . . Declare group structure
sys/hdioctl.h . . . . . . Control hard-disk I/O
sys/ino.h . . . . . . . . Constants and structures for i-nodes
sys/inode.h . . . . . . . Constants and structures for memory-resident i-nodes
sys/io.h . . . . . . . . . Constants and structures used by I/O
sys/ipc.h. . . . . . . . . Declarations for interprocess communication
sys/kb.h . . . . . . . . . Define keys for loadable keyboard driver
l.out.h . . . . . . . . . . Format for COHERENT-286 objects
limits.h . . . . . . . . . Define numerical limits
sys/lpioctl.h . . . . . . Definitions for line-printer I/O control
math.h . . . . . . . . . . Declare mathematics functions
mnttab.h. . . . . . . . . Structure for mount table
mon.h . . . . . . . . . . Read profile output files
sys/mount.h . . . . . . Define the mount table
mprec.h . . . . . . . . . Multiple-precision arithmetic
sys/msg.h . . . . . . . . Definitions for message facility
mtab.h . . . . . . . . . . Currently mounted file systems
sys/mtioctl.h . . . . . . Magnetic-tape I/O control
mtype.h . . . . . . . . . List processor code numbers
n.out.h . . . . . . . . . . Define n.out file structure
ndbm.h. . . . . . . . . . Header file for NDBM routines
netdb.h. . . . . . . . . . Define structures used to describe networks
path.h . . . . . . . . . . Define/declare constants and functions used with path
poll.h . . . . . . . . . . . Define structures/constants used with polling devices
sys/proc.h. . . . . . . . Define structures/constants used with processes
sys/ptrace.h . . . . . . Perform process tracing
pwd.h . . . . . . . . . . . Define password structure
regexp.h . . . . . . . . . Header file for regular-expression functions
sys/sched.h . . . . . . . Define constants used with scheduling
sys/seg.h . . . . . . . . Definitions used with segmentation
sys/sem.h . . . . . . . . Definitions used by semaphore facility
setjmp.h . . . . . . . . . Define setjmp() and longjmp()
sgtty.h . . . . . . . . . . Definitions used to control terminal I/O
shadow.h. . . . . . . . . Definitions used with shadow passwords
sys/shm.h . . . . . . . . Definitions used with shared memory
signal.h . . . . . . . . . Define signals
socket.h . . . . . . . . . Define constants and structures with sockets
sys/stat.h . . . . . . . . Definitions and declarations used to obtain file status
stdarg.h . . . . . . . . . Declare/define routines for variable arguments
stddef.h . . . . . . . . . Declare/define standard definitions
stdio.h . . . . . . . . . . Declarations and definitions for I/O
stdlib.h. . . . . . . . . . Declare/define general functions
sys/stream.h . . . . . . Definitions for message facility
string.h . . . . . . . . . Declare string functions
stropts.h . . . . . . . . . User-level STREAMS routines
termio.h . . . . . . . . . Definitions used with terminal input and output
termios.h . . . . . . . . Definitions used with POSIX extended terminal interface
time.h . . . . . . . . . . Give time-description structure
sys/timeb.h . . . . . . . Define timeb structure
sys/times.h . . . . . . . Definitions used with times() system call
sys/tty.h. . . . . . . . . Define flags used with tty processing
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sys/types.h . . . . . . . Define system-specific data types
ulimit.h . . . . . . . . . Define manifest constants used by system call ulimit()
unctrl.h . . . . . . . . . Define macro unctrl()
unistd.h . . . . . . . . . Define constants for file-handling routines
sys/uproc.h . . . . . . . Definitions used with user processes
utime.h . . . . . . . . . Declare system call utime()
utmp.h . . . . . . . . . . Login accounting information
sys/utsname.h . . . . . Define utsname structure
varargs.h. . . . . . . . . Declare/define routines for variable arguments
sys/wait.h . . . . . . . . Define wait routines

Compilation Environments and Feature Tests
The COHERENT header files are designed to let you invoke any of several ‘‘compilation environments’’. Each
environment offers its own features; in this way, you can easily import code that conforms to the POSIX or ANSI
standards, compile device drivers, or otherwise fine tune how your programs are compiled. To invoke a given
compilation environment, you must set a feature test.

As discussed in the Lexicon article name space, the ISO Standard reserves for the implementation every identifier
that begins with a single underscore followed by an upper-case letter. The POSIX Standards define several symbols
in this name space that the implementation can use as ‘‘feature tests’’ — that is, as symbols that you can use in
your source code to determine the presence or absence of a particular feature or combination of features. Note that
a feature test applies to an implementation of C, rather than to an operating system. A feature test combines
aspects of the host system and the language translator: some tests apply to the operating system, some purely to
the C translator.

The operating system’s header files can define them (for example, _POSIX_SAVED_IDS) to control compilation of
user code or to deal with optional features, or you can define them (e.g., _POSIX_C_SOURCE) to control how the
system’s header files declare or define constants, types, structures, and macros.

In general, a feature test must either be undefined or have an integer value. It must not be defined as having no
expansion text, or expand into a string. For example,

# CORRECT
cc -D_POSIX_C_SOURCE=1 foo.c

is correct, as is:

# CORRECT
cc -U_POSIX_C_SOURCE foo.c

However,

# WRONG
cc -D_POSIX_C_SOURCE foo.c

is incorrect, as is:

# WRONG
cc -D_POSIX_C_SOURCE="yes" foo.c

This is to permit the constants to be tested with expressions like

#if _POSIX_C_SOURCE > 1

where an integer value is required. (If the symbol is used in a #if test and is undefined, cpp replaces it with zero,
which is still an integer value). This permits the implementation to use different values of the feature test to invoke
different feature sets; and it simplifies testing for complex combinations of feature tests.

Although nearly all feature tests behave as shown above, there are a few exceptions, namely _POSIX_SOURCE and
_KERNEL. These symbols are not defined as having a specific value, so many users do not supply a value. To deal
with this, the COHERENT header files check whether these constants have expansion text. If they do not, the
header files redefine these constants with value 1, so that they can be used like the other feature tests that the
COHERENT header files define.

The following describes the feature tests used in the COHERENT header files, and briefly describes the compilation
environment each invokes. Because we are continually adding new features to the kernel, this list is not
guaranteed to be complete.
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_DDI_DKI
Invoke the environment for compiling device drivers. This environment makes visible all DDI/DKI function
prototypes and data definitions, and defines all fundamental data types and structures as mandated by
UNIX System V, Release 4.

Please note that this feature test is an COHERENT extension, and is not portable to other operating
systems.

_KERNEL
Invoke the environment for compiling the kernel or a device driver. This environment gives code full access
to system’s private header files. Under COHERENT, this option is equivalent to defining _DDI_DKI to value
1, because COHERENT only supports compiling DDI/DKI driver source code from System V, Release 4.
This means that the definitions of many fundamental data types such as pid_t are changed to the System
V, Release 4 definitions rather than the System V, Release 3 definitions used by user code. (This is a
System V convention.)

_POSIX_SOURCE
_POSIX_C_SOURCE

Select a ‘‘clean’’ compilation environment, in which the headers defined in the POSIX.1 or POSIX.2
standards define no symbols other than the ones that those environments require. Defining
_POSIX_C_SOURCE with value 1 selects the POSIX.1 environment, as defined in the POSIX.1 standard.
Defining _POSIX_C_SOURCE with value 2 selects the POSIX.2 environment, as defined in the POSIX.2
standard. Defining _POSIX_SOURCE has the same effect as defining _POSIX_C_SOURCE with value 1.

_STDC_SOURCE
Select a ‘‘clean’’ compilation environment. In this environment, the headers that the ANSI C standard
defines define no symbols other than those that the standard requires. This feature test is designed to let
you compile conforming Standard C programs that themselves define functions or macros that the
COHERENT header files defined in addition to those described in the ANSI standard.

Please note that this feature test is an COHERENT extension, and is not portable to other operating
systems.

_SUPPRESS_BSD_DEFINITIONS
This feature test invokes a compilation environment that excludes all definitions that are included for
compatibility with Berkeley UNIX. As of this writing, this feature test affects only the header file
<string.h>, and prevents it from defining the macros bcopy(), bzero(), index(), and rindex(). Note that
selecting a POSIX or Standard C environment also suppresses these definitions.

Please note that this feature test is an COHERENT extension, and is not portable to other operating
systems.

_SYSV3
This feature test invokes a compilation environment in which all fundamental types and data structures
have the definitions mandated by UNIX System V, Release 3.

_SYSV4
This feature test invokes a compilation environment in which all fundamental types and data structures
have the definitions mandated by UNIX System V, Release 4. As of this writing, this facility is incomplete
and used mainly to develop device drivers and extensions to the kernel.

Please note that this feature test is an COHERENT extension, and is not portable to other operating
systems.

See Also
#include, C language, cpp, portability

help — Command
Print concise description of command
help [-dc] [-ffile] [-ifile] [-r] [command]...

help prints a concise description of the options available for each specified command. If command is omitted, help
prints a simple description of itself, followed by information about the command given by $LASTERROR, which is
the last command returning a nonzero exit status.

help provides more information than the usage message printed by a command, but less than the detailed
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description given by the man command. The primary purpose of help is to refresh your memory if you have
forgotten an option to command.

help looks in /usr/lib/helpfile for system information and the file named in environmental variable $HELP for
user-specific information. Information about a command begins with a line

#command

and ends with the next line beginning with ‘#’ in /usr/lib/helpfile or $HELP.

help recognizes the following options:

-dc Use c as the delimiting character within the helpfile, instead of the default #.

-ffile Read the help entries from file instead from the default, /usr/lib/helpfile.

-ifile Read the helpfile’s index from file instead of from the default, /usr/lib/helpindex. help uses the index to
speed its retrieval of an entry, and does not work without it.

-r Rebuild the index. If you modify a helpfile, you must rebuild its index, or help will no longer retrieve items
correctly.

Example
The following shows how to rebuild the index for helpfile myhelp, using @ as the delimiting character:

help -d@ -fmyhelp -imyindex -r

Files
/usr/lib/helpfile — Additional system information
/usr/lib/helpindex — Index for helpfile
$HELP — User information
$LASTERROR — Default command help

See Also
apropos, commands, man, Using COHERENT

hmon — Command
Monitor the COHERENT System
hmon

The command hmon continually displays a summary of your system’s activity. It uses an interactive display with
which you can easily send a signal to a selected process.

When you invoke hmon, it displays a display that resembles the following:
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Last PID=91 Total Mem=15684K Free Mem=7844K (50.01%)
Total=20 Running=1 Zombies=0 Locked=0 Waiting=5 Sleeping=14
PID=91 Idle=75.68% User= 8.11% Sys=16.22%
Load= 1.60 Load Averages: 1:3.38 5:1.01 20:0.27

PID PPID Username Ksize User Sys %User %Sys Flag tty S Command
91 89 fred 148 00:04 00:01 5.41 1.80 4001 ttyp1 R hmon
89 88 fred 129 00:00 00:00 0.00 0.00 6001 ttyp1 W ksh
88 1 root 735 00:04 00:19 0.00 1.80 4001 null S xterm
86 80 fred 208 00:00 00:00 0.00 0.00 6001 ttyp0 S me
80 78 fred 129 00:00 00:00 0.00 0.00 6001 ttyp0 W ksh
79 76 fred 284 00:00 00:07 0.90 9.01 4001 null S fvwm
78 76 root 727 00:00 00:01 0.00 0.00 4001 null S xterm
76 64 fred 79 00:00 00:00 0.00 0.00 6001 null S sh
70 64 root 2423 00:15 00:11 1.80 3.60 6001 console S X
64 54 fred 105 00:00 00:00 0.00 0.00 6001 color0 W xinit
56 1 root 28 00:00 00:00 0.00 0.00 4001 com2l S getty
55 1 root 28 00:00 00:00 0.00 0.00 4001 com3l S getty
54 1 fred 129 00:00 00:00 0.00 0.00 6001 color0 W ksh
53 1 root 28 00:00 00:00 0.00 0.00 4001 color1 S getty
52 1 root 28 00:00 00:00 0.00 0.00 4001 color2 S getty
51 1 root 28 00:00 00:00 0.00 0.00 4001 color3 S getty
47 1 daemon 55 00:00 00:00 0.00 0.00 1 null S lpsched
45 1 root 36 00:00 00:00 0.00 0.00 1 null S cron

The first four lines

Last PID=91 Total Mem=15684K Free Mem=7844K (50.01%)
Total=20 Running=1 Zombies=0 Locked=0 Waiting=5 Sleeping=14
PID=91 Idle=75.68% User= 8.11% Sys=16.22%
Load= 1.60 Load Averages: 1:3.38 5:1.01 20:0.27

summarize your system’s status. The lines that follow summarize each process. Each line contains the following
information:

PID The identifier of the process.

PPID The process identifier its parent process. Note that process 1, init, has no parent process. For more
details on init, see its entry in the Lexicon

Username
The login identifier of the user who owns this process.

Ksize The process’s size, in kilobytes. Note that this does not include memory that the process allocates for
itself.

User The amount of user time that this process has consumed.

Sys The amount of system time that this process has consumed.

%User The percent of user time this process has consumed.

%Sys The percent of system time this process has consumed.

Flag The process’s flag bits OR’d together, as follows:
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PFCORE 00001 Process is in core
PFLOCK 00002 Process is locked in core
PFSWIO 00004 Swap I/O in progress
PFSWAP 00010 Process is swapped out
PFWAIT 00020 Process is stopped (not waited)
PFSTOP 00040 Process is stopped (waited on)
PFTRAC 00100 Process is being traced
PFKERN 00200 Kernel process
PFAUXM 00400 Auxiliary segments in memory
PFDISP 01000 Dispatch at earliest convenience
PFNDMP 02000 Command mode forbids dump
PFWAKE 04000 Wakeup requested

For example, process 8460 has flag ‘‘4001’’. This means that the process is swapped out and and that a
wakeup has been requested. This is consistent with the ‘S’ status, which means that it is sleeping. Note
that the flags for swapping do not contain useful information as COHERENT does not yet support demand
paging.

tty The port from which the process was launched. This can be the console, a pseudo-tty, or a serial port.

S The process’s status, as follows:

R Ready to run (waiting for CPU time)
S Stopped for other reasons (I/O completion, pause, etc.)
T Process is being traced by another process
W Waiting for an existent child
Z Zombie (dead, but parent not waiting)

Command
The name of the program that this process represents.

One of the process lines will be highlighted. You can shift the line of highlighting by pressing the keys (ª) and
(º). When a process line is highlighted, you can send that process a signal simply by pressing a key, as follows:

1 Send signal HUP. Equivalent to typing kill -1.

2 Send signal INTR. Equivalent to typing kill -2.

3 Send signal QUIT. Equivalent to typing kill -3.

9 Send signal KILL. Equivalent to typing kill -9.

Whether the signal has any effect will, of course, depend upon the degree of control you have over that process.

To refresh the hmon screen, type L. To quit, type Q.

See Also
commands, ps

Notes
hmon reads the free memory from /dev/freemem. If this device does not exist on your system, create it as follows:

mknod /dev/freemem c 0 12
chmog 444 sys sys /dev/freemem

hmon uses curses to manage its display. Your screen will not appear properly if the environmental variable TERM
is not set correctly for the display device you are using, or if its terminfo entry is not correct.

hmon was written by Harry C. Pulley, IV (hpulley@uoguelph.ca).
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HOME — Environmental Variable
User’s home directory
HOME=home directory

The environmental variable HOME name’s the user’s home directory. Some commands use this name by default if
they require the name of a directory and none is supplied. For example, if you type the change directory command
cd without an argument, it will change the current directory to the one named by the HOME.

See Also
environmental variables

hosts — System Administration
Names and addresses of hosts on the local network
/etc/hosts

The file /etc/hosts gives the name and Internet-protocol (IP) address of remote hosts with which your system can
communicate via a network.

Each line within hosts describes one host on the network. A description of a host begins with that host’s IP
address, in normal ‘‘dot’’ notation. This is followed by its name and any aliases it has — that is, other names that
also refer to that host. For example, consider the following:

666.16.16.27 accounting acct beancounters
666.16.16.2 president boss
666.16.3.5 engineering

As you can see, a given host can have more than one alias. Aliases need not be terse; however, you should not use
an alias name that you would not want the users of that host to see.

An IP address can appear on more than one line. For example, entry

137.229.10.39 raven raven.alaska raven.alaska.edu

can also be rendered as:

137.229.10.39 raven
137.229.10.39 raven.alaska
137.229.10.39 raven.alaska.edu

You may find this to be more legible. However, if you need to change this host’s IP address, you must be careful to
change every entry, or trouble will result.

/etc/hosts must include the following standard entries:

127.1 localhost
127.0.0.1 loopback

When you specify only two parts of an Internet address, the second part represents the final three bytes of that
address. Thus, the addresses 127.1 and 127.0.0.1 are, in fact, the same address.

The address 127.1 by convention names the local host. Packets sent to this address return to the local host: they
do not go onto the Ethernet. This feature is useful in debugging software. The host names localhost and
loopback are also conventional names for your local host.

/etc/hosts should also contain a separate entry for your local host’s Internet address and name. You set the
name for your system when you installed COHERENT. To change your system’s name, edit the file
/etc/uucpname.

See Also
Adminstering COHERENT, hosts.equiv, inetd.conf, networks, protocols, services, uucpname

hosts.equiv — System Maintenance
Name equivalent hosts
/etc/hosts.equiv

File /etc/hosts.equiv names every host on your network whose users are equivalent those on your system.
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For example, if system mwc names system lepanto in its copy of /etc/hosts.equiv, then mwc assumes that user
fred on lepanto is the same person as user fred on mwc.

See Also
Administering COHERENT, hosts inetd.conf, networks, protocols, services

hosts.lpd — System Administration
Local system name and domain
/etc/hosts.lpd

File hosts.lpd gives your system’s name and domain, using dot notation. For example:

lepanto.mwc.com

Your system’s name should be the same as that set in file /etc/uucpname, and its domain should be the same as
that set in file /etc/domain.

See Also
Adminstering COHERENT, domain, hosts, hosts.equiv, inetd.conf, networks, protocols, services, uucpname

hp — Command
Prepare files for Hewlett-Packard LaserJet printer
hp [ -acflr ] [ -imarg ] [ -ttop ] [ -plines ] [ file ... ]

The command hp translates nroff font specifications into the correct escape sequences for an HP LaserJet
compatible printer. It also allows the user to set indentation, page length, landscape mode, and so on. Because
some LaserJet printers stack pages in reverse order as they are printed, hp can put pages out in reverse order.

hp recognizes the following options:

-f Print pages in the normal order. This is the default.

-imarg Set the page indentation to marg.

-l Print pages in landscape mode.

-plines Set the page length to lines.

-r Print pages in reverse order (for LaserJet I).

-ttop Set the top margin to top.

Example
To generate listings of all C programs in the current directory, enter the command

pr *.c | hp | hpr -B

See Also
commands, hpd, printer

hpd — System Administration
Spooler daemon for laser printer
/usr/lib/hpd

hpd is the daemon that prints jobs spooled by the command hpr. All jobs are printed on the printer that is
accessed through device /dev/hp. For information on this device, and on printer management in general, see the
Lexicon entry printer.

The command hpr invokes hpd automatically. If there is no printing to do, or if another daemon is already
running (as indicated by the file dpid), hpd exits immediately. Otherwise, it searches the spool directory for control
files of listings to print. A control file contains the names of files to print, the user name, banner pages, and files to
be removed upon completion.

hpd does not print listings in any particular order. There is no prioritization of printing, either by size or by
requester.
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The command hpskip aborts or restarts printing of the job currently being printed by hpd.

Files
/dev/rhp — Raw device for LaserJet printer
/usr/spool/hpd — Spool directory
/usr/spool/hpd/cf* — Control files
/usr/spool/hpd/df* — Data files
/usr/spool/hpd/dpid — Lock and process id

See Also
Administering COHERENT, despooler, hpr, hpskip, init, lpd, printer

Notes
Beginning with release 4.2, COHERENT also includes the printer daemon despooler, which prints files spooled with
the command lp. For details on how COHERENT manages printing, see the Lexicon entry for printer.

hpr — Command
Spool a job for printing on the laser printer
hpr [-Bcemnr] [-b banner] [ -f fontnum] [file ...]

The command hpr spools each file for printing on the Hewlett-Packard LaserJet printer. If no file is named on the
command line, hpr spools what it reads from the standard input.

hpr recognizes the following options:

-B Suppress printing of a banner page. Note that hpr outputs its banner in plain text; therefore, if you
have a PostScript printer, you must use this option. If you do not, your printer will hang.

-b banner Print banner on the banner page. The default banner is the user’s login identifier.

-c Copy each file into the spooling directory, instead of reading the file from its home directory. This option
lets you edit a file before it has finished printing.

-e Erase all ‘‘soft fonts’’ from the printer’s memory.

-f fontnum file1 ... fileN
Load the Hewlett-Packard ‘‘soft fonts’’ stored in files file1 through fileN into the printer’s memory; set the
font identifiers to begin at fontnum.

-m Write a message on the user’s terminal when printing completes.

-n Do not send a message (default).

-r Remove the files when they have been spooled.

The command hpskip aborts or restarts printing of the file that is currently being printed. The command hp
converts nroff output into a form usable by the LaserJet.

Examples
To print the file foo on the LaserJet, type:

hpr -B foo

The following example loads the soft fonts in files foo, bar, and baz into the printer’s memory, and sets their font
identifiers to begin at 15:

hpr -f 15 foo bar baz

Files
/dev/rhp — Raw device for LaserJet printer
/usr/lib/hpd — Line-printer daemon for LaserJet printer
/usr/spool/hpd — Spool directory for LaserJet printer
/usr/spool/hpd/dpid — Daemon lockfile

See Also
commands, hp, hpd, hpskip, printer
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Notes
Beginning with release 4.2, COHERENT also includes the lp print spooler. lp offers a more sophisticated way to
manage printers, especially on machines that support multiple printers of the same type. For details, see the
Lexicon entries for printer and lp.

hpskip — Command
Abort/restart current job on Hewlett-Packard LaserJet
hpskip [-r]

The command hpskip aborts or restarts the job being printed on the printer plugged into device /dev/hp. The job
must have been spooled with the command hpr.

By default, hpskip aborts the job and prints a message on the user’s terminal. When invoked with the -r option, it
restarts the printing of the current job. This is useful when a printing is spoiled due to, say, a paper jam.

Files
/usr/lib/hpd — LaserJet printer daemon
/usr/spool/hpd — Spool directory
/usr/spool/hpd/dpid — Daemon lockfile

See Also
commands, hpd, hpr, lpskip, printer

Notes
To cancel jobs spooled with the command lpr, use the command lpskip. To cancel or reprint jobs spooled with the
command lp, use the commands cancel and reprint. See the Lexicon entry printer for details.

hypot() — Mathematics Function (libm)
Compute hypotenuse of right triangle
#include <math.h>
double hypot(x, y) double x, y;

hypot() computes the hypotenuse, or distance from the origin, of its arguments x and y. The result is the square
root of the sum of the squares of x and y.

Example
The following example demonstrates the functions hypot() and atan2(). It converts an X/Y pair of rectangular
coordinates into polar coordinates. Thus, an X/Y pair of 1,1 produces a range of 1.41 and 45˚; and an X/Y pair of
3,4 would produce a range of five and 36.87˚. The following sketch illustrates this:

X AXIS

RANGE

ANGLE

Y AXIS

X/Y POINT

This example was written by Brent Seidel (brent_seidel@chthone.stat.com):
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#include <stdio.h>
#include <math.h>

main()
{

double x, y, angle, range;
char buffer[100];

printf("Enter the X/Y pair: ");
fflush(stdout);
gets(buffer);
sscanf(buffer, "%lf,%lf", &x, &y);

range = hypot(x, y);
angle = atan2(x, y);
printf("The range is %f\n", range);
printf("The angle is %f radians or %f degrees.\n",

angle, angle * 180.0/PI);
}

See Also
cabs(), libm
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i-node — Definition
COHERENT system file identifier

Each file on a COHERENT file system is identified by a unique number, called an i-node number or i-number. Each i-
node contains information about a file: its mode, link count, user identifier, group identifier, size, location on the
file system, access time, modify time, and creation time.

The user refers to a file by a file name, stored in a directory; the directory entry identifies the file by its i-node
number. A device and i-node number together uniquely specify a file. The headers ino.h and i-node.h define,
respectively, disk i-nodes and memory i-nodes.

See Also
Using COHERENT

icheck — Command
i-node consistency check
icheck [-s] [-b N ...] [ -v ] filesystem ...

Each block in a file system must be either free (i.e., in the free list) or allocated (i.e., associated with exactly one i-
node). icheck examines each specified filesystem, printing block numbers that are claimed by more than one i-
node, or claimed by both an i-node and the free list. It also checks for blocks that appear more than once in the
block list of an i-node or in the free list.

The option -v (verbose) causes icheck to print a summary of block usage in the filesystem. The option -s causes
icheck to ignore the free list, to note which blocks are claimed by i-nodes, and to rebuild the free list with the
remainder. A list of block numbers may be submitted with the -b flag; icheck prints the data structure associated
with each block as the file system is scanned.

The raw device should be used, and the filesystem should be unmounted if possible. If this is not possible (e.g., on
the root file system) and the -s option is used, the system must be rebooted immediately to expunge the obsolete
superblock.

The exit status bits for a bad return are as follows:

0x01 Miscellaneous error (e.g. out of space)
0x02 Too hard to fix without human intervention
0x04 Bad free block
0x08 Missing blocks
0x10 Duplicates in free list
0x20 Bad block in free list

See Also
clri, commands, dcheck, fsck, ncheck, sync, umount

Diagnostics
The message ‘‘dups in free’’ indicates a block is in the free list more than once. ‘‘bad freelist’’ indicates the presence
of bad blocks on the free list. A ‘‘bad’’ block is one that lies outside the bounds of the file system. A ‘‘dup’’
(duplicated) block is one associated with the free list and an i-node, or with more than one i-node. All the errors
above must be corrected before the file system is mounted. ‘‘bad ifree’’ means allocated i-nodes are on the free i-
node list; this is inconsequential.

This command has largely been replaced by fsck.
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id — Command
Print user and group IDs and names
id

The command id prints the user’s real user ID and group ID. It also prints the effective IDs if they differ from the
real IDs.

See Also
commands, getuid(), geteuid(), getgid(), getegid()

idbld — Command
Reconfigure the COHERENT kernel
/etc/conf/bin/idbld [ -o kernelname ]

The command /etc/conf/bin/idbld lets you reconfigure the entire COHERENT kernel. It systematically invokes all
mkdev scripts in the subdirectories of /etc/conf. Each mkdev script, in turn, walks you through the task of
formatting of one COHERENT’s device drivers. This duplicates much of the work you performed when you first
installed COHERENT onto your system.

After all of the mkdev scripts have been run, idbld invokes command /etc/conf/bin/idmkcoh to create a new
kernel. Option -o tells idbld to name the new kernel kernelname. If you do not name this option, idbld by default
names the new kernel /coherent.

See Also
commands, idenable, idmkcoh, idtune

ideinfo — Command
Display information of an IDE hard-disk drive
ideinfo [-c] /dev/at??

The command ideinfo displays information about device /dev/at??, which names a partition on an IDE hard disk.
For example, command

ideinfo /dev/at0a

displays information about the first IDE drive on your system (drive 0). Among other things, this command
displays the disk’s manufacturer, the number of cylinders, header, sectors, and the number of bytes per sector on
the disk.

Option -c tells ideinfo also to display how the device is partitioned.

See Also
at [device driver], commands

Notes
This command fails if the device is not an IDE hard drive.

idenable — Command
Enable or disable a device driver
/etc/conf/bin/idenable [-f file] [-de] driver

The command idenable lets you enable or disable a device driver within the COHERENT kernel. driver is the device
driver to enable or disable

The flag -e tells idenable to enable driver. This is the default.

The flag -d tells idenable to disable it.

For example, to enable STREAMS and disable the pseudo-tty driver pty, use the following commands:

/etc/conf/bin/idenable streams
/etc/conf/bin/idenable -d pty

idenable’s command line can name more than one driver. For example, the command
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/etc/conf/bin/idenable streams -d pty

is the equivalent of the two commands given above. The command line is parsed from left to right, so whatever you
say last about a driver is what ultimately happens.

The option -f forces idenable to enable a driver. If idenable is directed to enable a device that will conflict with
another enabled device in some way, it normally reports the conflict and not make the change. -f directs idtune to
‘‘force’’ the driver to be enabled by simply shutting off all other drivers with which a conflict occurs. For example,
this is used with keyboard drivers, only one of which can occupy a major number at a time.

To implement your changes, you must then invoke the command /etc/conf/bin/idmkcoh to build a new kernel,
which will reflect your changes, and then boot the new kernel.

idenable works by modifying the file /etc/conf/sdevice. It consists of a series of lines with the following format:

streams N 0 0 0 0 0x0 0x0 0x0 0x0
console Y 0 0 0 0 0x0 0x0 0x0 0x0
cohmain Y 0 0 0 0 0x0 0x0 0x0 0x0

The first column names the driver in question. The second column indicates whether it is incorporated into the
kernel. The other columns give ‘‘magic cookies’’ that describe how the driver works.

You can read /etc/conf/sdevice to see how your kernel is currently configured. Note, however, that you must
never modify sdevice by hand. idenable performs consistency checking to ensure, for example, that you do not
load two competing keyboard drivers or hard-disk drivers. If you modify sdevice by hand, you run the risk of
building a kernel that that will not boot or will trash your file system.

See Also
cohtune, commands, device drivers, idmkcoh, idtune, vtkb, vtnkb

idle — Device
Device that returns system’s idle time
/dev/idle

/dev/idle is the device from which you can read the system’s idle time. It has major device 0, the same as
/dev/null and /dev/cmos; and has minor number 11. This non-portable device node is used exclusively for
tracking system load. Its driver recognizes the system calls open(), ioctl(), and close(), but not read() or write().

The only available ioctl() for /dev/idle writes a pair of longs to an address that you supply. The long at the lower
address contains the number of system idle clock ticks (or, more precisely, the number of ticks at the end of which
the system was idle) that have occurred since system startup. The long at the higher address contains the total
number of clock ticks that have occurred since system startup. To estimate system load during a specific interval
of time, perform the ioctl() for /dev/idle at the start and end of an interval.

Example
The following program prints system load over a five-second interval. To see a nonzero load percentage, run it
concurrently with a CPU-intensive process.

#include <sys/null.h>

main()
{

long x[2]; /* tick values at start of interval */
long y[2]; /* tick values at end of interval */

long delta_idle, delta_lbolt;
int fd;

/* We need to open a device before we can ioctl it. */
fd = open("/dev/idle", 0);

/* Get tick values at start of interval. */
ioctl(fd, NLIDLE, x);

/* Sleep during the interval. */
sleep(5);
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/* Get tick values at end of interval. */
ioctl(fd, NLIDLE, y);

/* Compute number of system idle ticks during the interval. */
delta_idle = y[0] - x[0];

/* Compute total number of clock ticks during the interval. */
delta_lbolt = y[1] - x[1];

/* System is loaded when it isn’t idle, so system load factor
* is 100% minus the percentage of system idle time.
*/

printf("system load = %ld%%\n",
100L - (100L * delta_idle)/delta_lbolt);

close(fd);
}

See Also
device drivers, ioctl(), null

idmkcoh — Command
Build a new kernel
idmkcoh [ -o kernelfile ]

The command idmkcoh creates a new bootable kernel. The kernel incorporates any changes that you may have
made with the commands idenable, idtune, or cohtune. For details on how to use these commands, see their
entries in the Lexicon. The changes you have made will take effect as soon as you boot the kernel that idmkcoh
creates.

By default, idmkcoh writes the new kernel into file /coherent. The option -o tells idmkcoh to write the kernel into
file kernelfile instead.

See Also
cohtune, commands, idbld, idenable, idtune, mdevice, mtune, sdevice, stune

idtune — Command
Set a tunable system value
/etc/conf/bin/idtune [-fm] switch value

The command idtune lets you ‘‘tune’’ a variable in the COHERENT kernel. It also performs some sanity checking, to
help ensure that you do not set a value to an impossible value. It and the related command cohtune largely
replace the need for the command patch.

To use idtune, simply invoke it along with the variable you wish to modify and the value to which you wish to set
it. For example, to change the maximum size of a shared-memory segment to 128,000 bytes, type the command:

/etc/conf/bin/idtune SHMMAX 128000

For the new setting to come into effect, you must use the command /etc/conf/bin/idmkcoh to build a new
kernel, and then boot the newly built kernel.

idenable recognizes the following two command-line options:

-f idtune by default will ask you if you are sure that you want to make a given change. This option
suppresses that behavior.

-m Check that the value of switch is no less than value. If the value switch is less than value, then idtune
raises it to value; otherwise, it leaves the value of switch alone.

idtune works by modifying the file /etc/conf/stune, which holds the values of system variables that users can
set. stune consists of a series of entries like the following:

LOOP_COUNT 16
DUMP_USERS 2
MONO_COUNT 0
VGA_COUNT 4
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The allowed range of values for a given variable is set in file /etc/conf/mtune, which consists of a series like the
following:

STREAMS_HEAP 8192 32768 131072
MONO_COUNT 0 4 8
VGA_COUNT 0 4 8
NBUF_SPEC 0 0 5000
NHASH_SPEC 0 1021 5000
NINODE_SPEC 0 128 1024
NCLIST_SPEC 0 64 1024

The first column gives the variable, the second gives its minimum allowable value, the third gives its default value,
and the last its maximum value.

You can read mtune and stune to see what kernel variables you can set, and to find the range of values allowed for
each. Note, however, that you must never modify stune or mtune by hand. If you do so, you may build a kernel
that is unbootable or that trashes your file system.

See Also
cohtune, commands, idenable, idmkcoh

ieee_d() — General Function (libc)
Convert a double from DECVAX to IEEE format
int
ieee_d(idp, ddp)
double *idp, *ddp;

ieee_d() converts a double from DECVAX format to IEEE format. ddp points to a DECVAX-format double to
convert. idp points to a destination for the converted IEEE value. idp may be identical to ddp for in-place
conversion. The DECVAX significand is truncated, not rounded.

ieee_d() always returns zero, because the conversion always succeeds.

For a description of the IEEE and DECVAX formats for floating-point numbers, see the Lexicon article for float.

See Also
decvax_d(), decvax_f(), float, ieee_f(), libc

ieee_f() — General Function (libc)
Convert a float from DECVAX to IEEE format
int
ieee_f(ifp, dfp)
float *ifp, *dfp;

ieee_f() converts a float from DECVAX format to IEEE format. dfp points to a DECVAX-format float to convert. ifp
points to a destination for the converted IEEE value. ifp may be identical to dfp for in-place conversion. The
DECVAX significand is truncated, not rounded.

ieee_f() always returns zero, because the conversion always succeeds.

For a description of the IEEE and DECVAX formats for floating-point numbers, see the Lexicon article for float.

See Also
decvax_d(), decvax_f(), float, ieee_d(), libc

if — Command
Execute a command conditionally
if sequence1 then sequence2 [elif sequence3 then sequence4] ... [else sequence5] fi

The shell construct if executes commands conditionally, depending on the exit status of the execution of other
commands.

First, if executes the commands in sequence1. If the exit status is zero, it executes the commands in sequence2
and terminates. Otherwise, it executes the optional sequence3 if given, and executes sequence4 if the exit status is
zero. It executes additional elif clauses similarly. If the exit status of each tested command sequence is nonzero, it
executes the optional else part sequence5.
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Because the shell recognizes a reserved word only as the unquoted first word of a command, each then, elif, else,
and fi must either occur unquoted at the start of a line or be preceded by ‘;’.

The shell executes if directly.

Example
For an example of this command, see the entry for trap.

See Also
commands, ksh, sh, test

if — C Keyword
Introduce a conditional statement

if is a C keyword that introduces a conditional statement. For example,

if (i==10)
dosomething();

will dosomething only if i equals ten.

if statements can be used with the statements else if and else to create a chain of conditional statements. Such a
chain can include any number of else if statements, but only one else statement.

See Also
C keywords, else
ANSI Standard, §6.6.4.1

IFS — Environmental Variable
Characters recognized as white space

The environmental variable IFS lists the characters that the shell recognizes as white space.

See Also
environmental variables, ksh, sh

index() — String Function (libc)
Find a character in a string
#include <string.h>
char *index(string, c) char *string; char c;

index() scans the given string for the first occurrence of the character c. If c is found, index() returns a pointer to it.
If it is not found, index() returns NULL.

Note that having index() search for a NUL character will always produce a pointer to the end of a string. For
example,

char *string;
assert(index(string, 0)==string+strlen(string));

will never fail.

Example
For an example of this function, see the entry for strncpy().

See Also
libc, pnmatch(), strchr(), string.h, strrchr(), string.h

Notes
You must include header file string.h in any program that uses index(), or that program will not link correctly.

index() is now obsolete. You should use strchr() instead.
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inet_addr() — Sockets Function (libsocket)
Transform an IP address from text to binary
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/types.h>
ulong inet_addr(ip_address)
char *ip_address;

The function inet_addr() translates an Internet-protocol (IP) address from text into binary format. ip_address gives
the address where the string that holds the IP address resides in memory.

If all goes well, inet_addr() returns the binary address that it built from ip_address. If, however, ip_address points
to a malformed Internet address, inet_addr() returns -1.

An IP address consists of four bytes. The four bytes normally are written as four numbers that are separated by
periods; for example, ‘‘199.3.32.100’’. This way of rendering an IP address is called dot notation. Each byte can as a
written as a decimal, octal, or hexadecimal number. By default, a numbers is written in decimal; a leading ‘‘0x’’ or
‘‘0X’’ indicates hexadecimal, and a leading ‘0’ indicates octal.

When inet_addr() translates an IP address from text into binary, it simply transforms the four numbers as written
into four bytes, which it writes into the four bytes of an unsigned long (32-bit) integer, from left to right, without
regard to the machine’s byte ordering. This means, among other things, that you cannot perform arithmetic on the
address that inet_addr() returns — not even to increment or decrement it.

The IP address to which ip_address points can have any of the following four forms:

first.second.third.fourth
first.second.third
first.second
first

When the string to which ip_address points specifies all four parts of the Internet address, inet_addr() writes all
four, from left to right, into the long integer that it returns.

When ip_address points to a three-part address, inet_addr() interprets the last (third) part as a 16-bit value, which
it writes into into the rightmost two bytes of the network address. When ip_address points to a two-part address,
inet_addr() interprets the second part as a 24-bit, which it writes into the rightmost three bytes of the network
address.

When ip_address points to a one-part address, inet_addr() simply transforms it into an integer without shuffling
any bytes.

See Also
inet_network(), libsocket

Notes
Because COHERENT does not yet support networking, inet_addr() is a dummy function that always returns zero.

inet_network() — Sockets Function (libsocket)
Transform an IP address from text to an integer
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/types.h>
ulong inet_network(ip_address)
char *ip_address;

Function inet_network() translates an Internet-protocol (IP) address from text into a long integer. ip_address gives
the address where the string that holds the IP address resides in memory.

If all goes well, inet_network() returns the integer that it built from ip_address. If, however, ip_address points to a
malformed Internet address, inet_network() returns -1.

An IP address consists of four bytes. The four bytes normally are written as four numbers that are separated by
periods; for example, ‘‘199.3.32.100’’. This way of rendering an IP address is called dot notation. Each byte can as a
written as a decimal, octal, or hexadecimal number. By default, a numbers is written in decimal; a leading ‘‘0x’’ or
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‘‘0X’’ indicates hexadecimal, and a leading ‘0’ indicates octal.

Unlike the function inet_addr(), inet_network() translates ip_addr into an unsigned long (32-bit) integer. This is
the form suitable for a network address.

See Also
inet_addr(), libsocket

inetd.conf — System Administration
Configure the Internet daemons

File /etc/inetd.conf holds information that configures the Internet daemons on your system.

See Also
Administering COHERENT, hosts, hosts.equiv, inetd networks protocols services

infocmp — Command
De-compile a terminfo file
infocmp [file ... ]

infocmp reads a set of compiled terminal information, decodes its contents, and writes the decoded information to
the standard output. It does its best to recreate the terminfo source from which the set of information had been
compiled.

file must hold compiled terminfo information. If no file is named on the command line, infocmp reads the
standard input.

infocmp first seeks file in the directory named by the environmental variable TERMINFO. If this variable has not
been set, it seeks file in the default directory /usr/lib/terminfo. Thus, you can type the command

infocmp ansipc

in any directory and infocmp builds the appropriate path on its own.

In case of emergency, the output of infocmp can be piped to the terminfo compiler tic.

See Also
commands, term, tic, terminfo

Notes
infocmp was written by Pavel Curtis of Cornell University. It was ported to COHERENT by Udo Munk, with
additional changes by Mark Williams Company.

init — System Administration
System initialization
/etc/init

COHERENT invokes processes in special order. The kernel invokes the command init as the initial process in the
system. init runs as long as the system remains up. init is the first process that the kernel starts. The kernel
always gives this process identifier 1.

init has two primary tasks: First, it guides the system through the latter stages of booting and entering multi-user
mode. Second, it launches the appropriate processes so that users can log in and log out of COHERENT correctly.
The rest of this article describes how init performs these tasks.

Booting and Entering Multi-user Mode
The following that init performs as it guides the system through entering multi-user mode.

First, if file /usr/adm/wtmp exists, init records there the date and time at which the system is being booted.

init then executes the shell script /etc/brc. This script usually loads the keyboard table and invokes the
command fsck to check the file systems for errors If this script returns zero, then init enters multi-user mode; if
not, it spawns the single-user shell.

When the user at the console terminates the single-user shell (usually by typing <ctrl-D>), init executes script
/etc/rc and brings the system up to the multiuser state. /etc/rc performs such chores as setting the time zone,
removing stale temporary files and lock files, and initializing the modem. If you wish, it can invoke the command
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accton to enable process accounting.

init then reads file /etc/ttys. For every local, enabled line, init spawns the command getty with two arguments:
the name of the port, and its speed (as given in /etc/ttys). Before it spawns a getty, init sets the group number
for a new process group.

For a remote line, init spawns another copy of itself, which waits for carrier detect. Each init process spawned for
a remote line also spawns getty when it detects a carrier signal on its port. (Note that this use of a second init
process is unique to COHERENT.)

init then waits for the termination of its child processes. If one of the getty processes terminates, init respawns it.
If another process terminates, init waits to receive its return value, so the process does not become a ‘‘zombie’’.

Logging In Users
The following describes how init logs users in.

As mentioned in the previous section, init invokes process getty for each enabled device on the system. getty and
passes it as arguments the speed and the device upon which it should run. getty waits until someone tries to log
in. Under COHERENT, getty sets the tty’s line speed and local-edit characters and prompts the user to log in. It
then locks the port, and invokes login with what the user has typed.

At this point, the command login takes over the task of logging in the user. login first asks the user for his
password. It then reads the encrypted password from file /etc/passwd. If the password consists of one asterisk ‘*’,
login then reads the encrypted password from file /etc/shadow. It then compares the retrieved password with
what the user has typed.

If the user has entered his password correctly, login executes various ‘‘housekeeping’’ tasks needed to get the user
up and running under COHERENT. These include It records in file /usr/adm/utmp the fact of the user’s logging
in, which lets the system keep a running talley of who is logged into the system. For details on how login manages
the task of logging in, see its entry in the Lexicon.

As its last action, login invokes the program named in /etc/passwd. This usually is an interactive shell (i.e., sh or
ksh), but can also be another program (e.g., uucico). If login invokes an interactive shell, it does so with the first
character of its argv[0] set to ‘-’, so that the shell knows that it is a login shell. (For example, if login invokes ksh,
its argv[0] is -ksh.)

The shell first executes file /etc/profile, then $HOME/.profile. Once these are executed, the shell displays its
command-line prompt, and the user is ready to begin issuing commands to COHERENT

When the login shell terminates, init removes its record from file /usr/adm/utmp. Then it reopens the appropriate
terminal and invokes getty, as described above. The device is now ready to receive another login.

Signals
init accepts two signals. When it receives SIGQUIT, it re-reads /etc/ttys, spawns gettys on newly enabled
devices, and stops gettys on disabled devices. The command

kill quit 1

sends SIGQUIT to the init process. When init receives SIGHUP, it sends SIGKILL to every process and brings the
system down to single-user mode. The command

kill -1 1

sends SIGHUP to the init process.

Files
/dev/console — Console terminal
/dev/tty?? — Terminal devices
/etc/rc — initialization command file
/etc/brc — Boot command file
/etc/ttys — Active terminals
/etc/utmp — Logged in users
/usr/adm/wtmp — Login accounting data
/usr/spool/uucp/LCK..* — Terminal locks
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See Also
Administering COHERENT, getty, kill, ksh, login, sh, ttys

initgroups() — General Function (libc)
Initialize the supplementary group-access list
#include <sys/types.h>
#include <grp.h>
int initgroups(user, basegid)
const char *user; gid_t basegid;

The ‘‘supplemental group-access list’’ is the list of group identifiers that are used in addition to the effective group
identifier when determining the level of access that a process has to a file. The function initgroups() initializes the
supplemental group-access list to the groups to which user belongs.

user is the login identifier of the user in question. basegid identifies that user’s base group, as set in the file
/etc/passwd. initgroups() calls the library function getgrent() to read from /etc/group all of the groups to which
user belongs (in addition to her base group). It then calls setgroups() to initialize the supplementary group-access
list to user’s base group and the additional groups returned by getgrent().

If all goes well, initgroups() modifies the supplementary group-access list returns zero. Otherwise, it does not
modify the list, returns -1, and sets errno to an appropriate value.

See Also
getgrent(), libc, setgroups()

Notes
If user belongs to more than NGROUPS_MAX groups, initgroups() reads only the first NGROUPS_MAX groups
from /etc/group and ignores all of the others. Note that NGROUPS_MAX is a limit set by the POSIX Standard. For
a fuller discussion of these limits, see the Lexicon entries for sysconf() and limits.h.

Only the superuser root can use initgroups().

initialization — Definition
The term initialization refers to setting a variable to its first, or initial, value.

Rules of Initialization
Initializers follow the same rules for type and conversion as do assignment statements.

If a static object with a scalar type is not explicitly initialized, it is initialized to zero by default. Likewise, if a static
pointer is not explicitly initialized, it is initialized to NULL by default. If an object with automatic storage duration
is not explicitly initialized, its contents are indeterminate.

Initializers on static objects must be constant expressions; greater flexibility is allowed for initializers of automatic
variables. These latter initializers can be arbitrary expressions, not just constant expressions. For example,

double dsin = sin(30.0);

is a valid initializer, where dsin is declared inside a function.

To initialize an object, use the assignment operator ‘=’. The following sections describe how to initialize different
classes of objects.

Scalars
To initialize a scalar object, assign it the value of a expression. The expression may be enclosed within braces;
doing so does not affect the value of the assignment. For example, the expressions

int example = 7+12;

and

int example = { 7+12 };

are equivalent.

Unions and Structures
The initialization of a union by definition fills only its first member.
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To initialize a union, use an expression that is enclosed within braces:

union example_u {
int member1;
long member2;
float member3;

} = { 5 };

This initializes member1 to five. That is to say, the union is filled with an int-sized object whose value is five.

To initialize a structure, use a list of constants or expressions that are enclosed within braces. For example:

struct example_s {
int member1;
long member2;
union example_u member3;

};

struct example_s test1 = { 5, 3, 15 };

This initializes member1 to five, initializes member2 to three, and initializes the first member of member3 to 15.

Strings
To initialize a string pointer,
use a string literal.

The following initializes a string:

char string[] = "This is a string";

The length of the character array is 17 characters: one for every character in the given string literal plus one for the
null character that marks the end of the string.

If you wish, you can fix the length of a character array. In this case, the null character is appended to the end of
the string only if there is room in the array. For example, the following

char string[16] = "This is a string";

writes the text into the array string, but does not include the concluding null character because there is not
enough room for it.

A pointer to char can also be initialized when the pointer is declared. For example:

char *strptr = "This is a string";

initializes strptr to point to the first character in This is a string. This declaration automatically allocates exactly
enough storage to hold the given string literal, plus the terminating null character.

Arrays
To initialize an array, use a list of expressions that is enclosed within braces. For example, the expression

int array[] = { 1, 2, 3 };

initializes array. Because array does not have a declared number of elements, the initialization fixes its number of
elements at three. The elements of the array are initialized in the order in which the elements of the initialization
list appear. For example, array[0] is initialized to one, array[1] to two, and array[2] to three.

If an array has a fixed length and the initialization list does not contain enough initializers to initialize every
element, then the remaining elements are initialized in the default manner: static variables are initialized to zero,
and other variables to whatever happens to be in memory. For example, the following:

int array[3] = { 1, 2 };

initializes array[0] to one, array[1] to two, and array[2] to zero.

The initialization of a multi-dimensional array is something of a science in itself. The ANSI Standard defines that
the ranks in an array are filled from right to left. For example, consider the array:

int example[2][3][4];
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This array contains two groups of three elements, each of which consists of four elements. Initialization of this
array will proceed from example[0][0][0] through example[0][0][3]; then from example[0][1][0] through
example[0][1][3]; and so on, until the array is filled.

It is easy to check initialization when there is one initializer for each ‘‘slot’’ in the array; e.g.,

int example[2][3] = {
1, 2, 3, 4, 5, 6

};

or:

int example[2][3] = {
{ 1, 2, 3 }, { 4, 5, 6 }

};

The situation becomes more difficult when an array is only partially initialized; e.g.,

int example[2][3] = {
{ 1 }, { 2, 3 }

};

which is equivalent to:

int example[2][3] = {
{ 1, 0, 0 }, { 2, 3, 0 }

};

As can be seen, braces mark the end of initialization for a ‘‘cluster’’ of elements within an array. For example, the
following:

int example[2][3][4] = {
5, { 1, 2 }, { 5, 2, 4, 3 }, { 9, 9, 5 },
{ 2, 3, 7 } };

is equivalent to entering:

int example[2][3][4] = {
{ 5, 0, 0, 0 },
{ 1, 2, 0, 0 },
{ 5, 2, 4, 3 },

{ 9, 9, 5, 0 },
{ 2, 3, 7, 0 },
{ 0, 0, 0, 0 }

};

The braces end the initialization of one cluster of elements; the next cluster is then initialized. Any elements
within a cluster that have not yet been initialized when the brace is read are initialized in the default manner.

See Also
array, C language, Programming COHERENT, struct, union
ANSI Standard, §3.5.7

ino.h — Header File
Constants and structures for disk i-nodes
#include <sys/inode.h>

inode.h declares structures and constants that are used to describe i-nodes.

See Also
i-node, header files

inode.h — Header File
Constants and structures for memory-resident i-nodes
#include <sys/inode.h>

inode.h declares structures and constants for memory-resident i-nodes.
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See Also
header files, i-node

install — Command
Install a software update onto COHERENT
/etc/install [-c] id device ndisks

The command install installs an update of the COHERENT system onto your hard disk. id identifies the update to
be installed. device is the device from which the update disks will be read. ndisks is the number of disks that
comprise the update.

Option -c tells install to uncompress compressed files directly from the installation disks, rather than copy the
compressed files onto disk and uncompress them there. install reads information about compression formats and
options from file /etc/install.u. This switch permits software packages other than COHERENT to use compressed
files.

Third-Party Software
install also provides a standard mechanism by which software developers can install their software onto systems
that run COHERENT. The rest of this article discusses how to prepare a software release so that it can be installed
using install.

For install to be able to install a software distribution, the distribution must consist of a set of mountable floppy
disks, each holding a COHERENT file system created by mkfs. This keeps the disks independent of each other and
also lets the user to insert the disks in any order. install records the fact that it has read a given disk from the
distribution, thus preventing the user from attempting to read a given disk more than once during an installation
session.

Floppy disks should be built using mkfs. Each disk in the distribution must hold in its root directory a file whose
name is of the form:

/id.sequence

Here, id identifies the release, as described above. Note that id must be formed from the set of upper- and lower-
case letters, digits, the period ‘.’, and the underscore character ‘_’, and not exceed nine characters in length.
sequence indicates which disk in the distribution this disk is, from one through the total number of disks.

install uses the command cpdir to copy each of the distribution disks to directory / on the current system.
Therefore, every disk should be ‘‘root based’’ (i.e., full path names should be used). Because install is run by the
superuser, cpdir preserves the date and time for each file, and preserves ownership and modes. To keep file
ownership consistent with COHERENT conventions, make files that are neither setuid nor setgid owned by user bin
and group bin. install recreates on your hard disk all directories that it finds on the distribution disks, as needed.
Be careful when choosing the ownership and mode of directories because you could inadvertently compromise the
security of your users’ systems.

Preprocessing
When you load a disk, install seeks a file named id.disk.pre upon that disk. If it finds such a file, install assumes
that that file is a script, copies it into directory /conf, and executes it from there before it copies any files from the
disk onto your system. If you are installing COHERENT, it uses the command:

id.disk.pre id.disk.arch

If you are updating a package rather than installing it, install uses the command:

id.disk.pre -u id.disk.arch

install always gives the same argument to the .pre script. As its suffix .arch indicates, the argument usually
names a file whose contents name files that should be archived install copies the contents of the disk onto your
system. install merely passes the name of the .arch file that might exist on the installation disk to the .pre script:
it is up to the .pre script to check for the existence of the .arch file, read it, and perform the archiving. Of course,
the .pre script can ignore this argument should it choose.

For example, if you are installing X Windows onto your COHERENT system, the identifier is CohX. When you load
the first disk into your system, install looks for file CohX.1.pre on that disk. If it finds that file, install copies it
into directory /conf on your root file system, and invokes it with the command:

LEXICON

750 install



/conf/CohX.1.pre CohX.arch

All of this occurs before install copies any files from that disk onto your system. In this way, files can be archived
or otherwise backed up before they are overwritten by the package you are installing onto your system.

One last behavior should be noted: if install finds a .pre file on the first disk of the installation kit, it also seeks on
that disk a file that has the suffix .supp on that disk. The suffix .supp stands for ‘‘suppression’’: normally, it
names files that are not to be copied from the release onto your system. It is the flip side of the .arch file.

Note that you can mount the disks of a release and edit these .arch and .supp files before you install the package
onto your system. In this way, you can protect your system from being damaged by installing new software onto
your system.

Postprocessing
After all disks in a distribution have been successfully copied by the user, install checks for the existence of a file
of the form

/conf/id.post

where id matches the id field found on the install command line. If found, install executes this file to allow special
‘‘postprocessing,’’ such as installing manual pages into directory /usr/man or executing installation-specific
commands.

Before an installation procedure completes its postprocessing, it should remove any id files of the following form
from the target system:

/conf/id.post
/id.sequence

Adding Manual-Page Entries
As part of building a distribution, you usually must generate pre-processed or ‘‘cooked’’ manual-page entries for
distribution with your upgrade or add-on package. These should be inserted into the subdirectories of /usr/man,
with the name of the subdirectory being specific to your product. This naming convention avoids name-space
collisions, should multiple applications use the same name for a manual-page entry.

If you install new or additional manual pages, you must update the index file used by the man command to locate
manual entries. File /usr/man/man.index on the target file system contains index entries for all manual pages
on the system. As part of postprocessing, you must append index information for your manual pages to the end of
the existing index file. In addition, file /usr/man/man.help contains the man command’s help message. This
includes a list of valid topics and some explanatory text. You should also append to this file a brief list of the
manual page entries that you have added. For further information on manual pages, see the Lexicon entry for the
command man.

Logging
install logs all partial as well as completed installations in file /etc/install.log. This information includes
date/time stamps and the command-line arguments to install.

Example
The following installs COHERENT update coh.301, which consists of one disk, from a high-density 5.25-inch floppy
drive:

/etc/install coh.301 /dev/fha0 1

Files
/etc/install.log

See Also
commands, man, mkfs

int — C Keyword
Data type

An int is the most commonly used numeric data type, and is normally used to encode integers. Under COHERENT

386, an int is the same size as a long; sizeof int equals 4 (31 bits plus a sign bit), and can hold any value from
-2,147,483,647 to 2,147,483,647. Under COHERENT 286, an int is the same size as a short; that is, sizeof int
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equals 2 (15 bits plus a sign bit), and can hold any value from from -32768 to +32767.

An int normally is sign extended when cast to a larger data type; an unsigned int, however, will be zero extended.

See Also
C keywords, data formats, data types, long, short
ANSI Standard, §6.1.2.5

interrupt — Definition
An interrupt is an interruption of the sequential flow of a program. It can be generated by the hardware, from
within the program itself, or from the operating system.

See Also
Programming COHERENT, signal()

io.h — Header File
Constants and structures used by I/O
#include <sys/io.h>

io.h declares constants and structures used by various I/O routines.

See Also
header files

ioctl() — System Call (libc)
Device-dependent control
#include <unistd.h>
#include <header.h>
ioctl(fd, command, arg)
int fd, command; char *arg;

ioctl() lets you interact directly with a device driver. You can use it to set or retrieve parameters for devices (line
printers, communications lines, terminals), and non-standard spacing operations for tape drives.

ioctl() acts upon the block-special file or character-special file associated with the file descriptor fd. command
points to the specific request.

header names the header file that defines symbolic commands for the device you wish to manipulate. Using the
symbolic command definitions from the header files promotes device independence within each device type. A
complete list of symbolic commands appears below.

arg passes a buffer of information (defined by structures in the appropriate header files) to the driver. For any
command not needing additional information, this argument should be NULL.

Some ioctl() requests work on all files, and are not passed to any driver.

ioctl() returns -1 on errors, such as a bad file descriptor. Because the call is device dependent, almost any other
error could be returned.

Commands
The following gives the commands that can be used with ioctl(), as extracted from COHERENT’s header files. Please
note the following caveats:

• New drivers are being added continually to COHERENT, both by Mark Williams Company and by users and
third-party vendors. You should regard the following list as being tentative at best.

• Because the commands and arguments with with ioctl() are unique to COHERENT’s suite of device drivers,
ioctl() is one of the least portable of all system calls. If you want your code to run on multiple operating
systems, you should use ioctl() judiciously.

<sys/cdrom.h>
Header file used to manipulate a CD-ROM device. Unless otherwise noted, arg is ignored:

CDROMPAUSE Pause playing an audio CD.
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CDROMRESUME Resume playing an audio CD.
CDROMPLAYMSF Play an audio CD at a given minute-second frame (MSF) address. arg points to an

array of six bytes that give the MSF address.
CDROMPLAYTRKIND Play a track on an audio CD. arg points to an array of four bytes that give,

respectively, the start track, the start index, the end track, and the end index of the
track to be played.

CDROMREADTOCHDR Read the CD’s table-of-contents header. arg points to a structure of type
cdrom_tochdr into which the header is written.

CDROMREADTOCENTRY
Read an entry from the table-of-contents header. arg points to a structure of type
cdrom_tocentry into which the entry is written.

CDROMSTOP Spin down the CD-ROM drive’s motor.
CDROMSTART Turn on the CD-ROM drive’s motor.
CDROMEJECT Eject the CD-ROM. Note that this does not work on every variety of CD-ROM drive.
CDROMVOLCTRL Control the volume on an audio CD. arg points to an array of four bytes that,

respectively, set the the volume on channels zero through three.
CDROMSUBCHNL Read data about a sub-channel. arg points to a structure of type cdrom_subchnl

into which the information about the sub-channel is written.
CDROMREADMODE1 Read type-1 data. arg points to a structure into which the data are written.
CDROMREADMODE2 Read type-2 data. arg points to a structure into which the data are written.

<sys/fdioctl.h>
This header file is used with the floppy-disk drive:

FDFORMAT Format a track on a floppy disk. arg points to a two-byte array that identifies,
respectively, the cylinder and head to format.

<sys/hdioctl.h>
This header file is used with AT-style hard-disk drives (i.e., IDE, ESDI, MFM, or RLL disks). arg gives the
address in user memory where drive attributes reside, or to which they should be written:

HDGETA Get drive attributes.
HDSETA Set drive attributes.
HDGETIDEINFO Get the attributes of an IDE drive. arg should point to a copy of the structure

ide_info; this call to ioctl() initializes the structure with the requested information.

<sys/null.h>
This header file defines ioctls that examine system memory:

NLFREE Read the amounts of memory on your system that are available and free. arg gives
the address of an object of type FREEMEM, which is defined in header file <null.h>.
This type is an array of two longs: the first receives the amount of available memory,
and the second the amount of free memory. For an example of a program that uses
this ioctl(), see the Lexicon entry for freemem.

NLIDLE Read the system’s idle time. arg points to an array of two longs. The first long
receives system’s idle ticks; the second, the number of ticks since system startup.
From reading these values repeatedly, you can compute the changes in system idle
time and time since startup, and so see what the system’s load is. For an example of
how to this call to ioctl(), see the Lexicon entry for idle.

<sys/sdioctl.h>
The commands defined in this header file are passed to the driver aha, which manipulates Adaptec SCSI
disks. None does anything.

<sgtty.h>
The following commands are used with the sgtty method of controlling terminal devices. They are
documented in more detail in the Lexicon entry for sgtty. arg points to a structure of type sgttyb, which is
defined in that header file:

TIOCHPCL Hang up on last close.
TIOCGETP Get modes (old gtty).
TIOCSETP Set modes (old stty).
TIOCSETN Set modes without delay or flush.

LEXICON

ioctl() 753



TIOCEXCL Set exclusive use.
TIOCNXCL Set non-exclusive use.
TIOCFLUSH Flush I/O queues.
TIOCSETC Set characters.
TIOCGETC Get characters.

<stropts.h>
STREAMS commands. arg points to a STREAMS control block that will be used to generate an M_IOCTL
message.

I_NREAD Get message length, count.
I_PUSH Push named module.
I_POP Pop topmost module.
I_LOOK Get name of the topmost module.
I_FLUSH Flush read/write side.
I_SRDOPT Set stream head read mode.
I_GRDOPT Get stream head read mode.
I_STR Send ioctl() message downstream.
I_SETSIG Register for signal SIGPOLL.
I_GETSIG Return registered event mask.
I_FIND Locate named module on stream.
I_LINK Link two streams.
I_UNLINK Unlink two streams.
I_RECVFD Receive file descriptor from pipe.
I_PEEK Examine stream head data.
I_SENDFD Send file descriptor to pipe.

The following commands are not covered by iBCS2:

I_SWROPT Set stream write mode.
I_GWROPT Get stream write mode.
I_LIST Get name of all modules/drivers.
I_PLINK Create persistent link.
I_PUNLINK Undo persistent link.
I_FLUSHBAND Flush priority band.
I_CKBAND Check for existence of priority band.
I_GETBAND Get band of first message.
I_ATMARK Check whether current message is marked.
I_SETCLTIME Set drain timeout for stream.
I_GETCLTIME Get the current close timeout.
I_CANPUT Check if band is writeable.

<sys/tape.h>
Header file for interfacing with magnetic-tape devices. arg points to an area in user space that holds
additional information for the tape device. A tape driver may recognize any of the following ioctl() commands:

T_ERASE Erase tape.
T_LOAD Load. Not used.
T_RDSTAT Read status.
T_RST Reset.
T_RETENSION Retension tape.
T_RWD Rewind tape.
T_SBB Space block backward — move backward by arg blocks. Not used.
T_SBF Space Block Forward — move forward by arg blocks. Not used.
T_SBREC Not used.
T_SFB Space Filemark Backward — move backwards by arg files.
T_SFF Space Filemark Forward — move forward by arg files.
T_SFREC Not used.
T_TINIT Not used.
T_UNLOAD Unload. Not used.
T_WRFILEM Write file marks. Not used.
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<termio.h>
The following commands are used with the termio method of controlling a terminal. They are documented in
more detail in the Lexicon entry for termio. arg points to a structure of type sgttyb, which is described above.

TCGETA Get terminal parameters.
TCSETA Set terminal parameters.
TCSETAW Wait for drain, set parameters.
TCSETAF Wait for drain, flush input, set parms.
TCSBRK Send 0.25-second break.

The following commands also take arguments when called via ioctl():

TCXONC Start/stop control: An argument of zero suspends output; an argument of one
restarts suspended output.

TCFLSH Flush queues: An argument of zero flushes the input queue; an argument of one
flushes the output queue; and an argument of two flushes both queues.

<sys/vtkd.h>
This header file defines commands used with the keyboard driver. arg points to a structure of type sgttyb,
which is defined in header file sgtty.h.

KDMAPDISP Map the display into user space.
KDSKBMODE Toggle the scan code xlate.
KDMEMDISP Dump a byte of virtual or physical memory.
KDGKBSTATE Get the keyboard’s shift state.
KIOCINFO Determine the workstation of the virtual terminal.
KIOCSOUND Start sound generation.
KDGETLED Get the state of the keyboard’s LEDs.
KDSETLED Set the state of the LEDs.

The following four ioctl() commands allow user programs to perform I/O instructions directly, rather than
going through the system-call interface and having the kernel perform the I/O. The most common need for
these functions is in window managers and similar applications, where the usual kernel interface would be
unacceptably slow.

Normally, any user program that attempts to execute I/O instructions directly to hardware will get an
immediate SIGSEGV and be terminated. Use of the commands below allow user-level programs to perform
I/O without being terminated. The I/O operations are available through functions inb(), outb(), etc., which
are present in the kernel-support library /etc/conf/lib/k386.a and are documented in the manual to the
COHERENT Device Driver Kit.

Access to any of these functions may be restricted to the superuser on some systems:

KDENABIO Allow the user process permission to perform input/output operations to all available
I/O addresses. The third argument to ioctl() is ignored.

KDDISABIO Prohibit user processes from performing input/output operations to all available I/O
addresses. The third argument to ioctl() is ignored. It is normal for direct I/O to
ports to be disallowed at user level. The main reason for this call is to undo the effect
of preceding KDENABIO or KDADDIO calls.

KDADDIO Allow user-level I/O to a port. The third argument to ioctl() is an unsigned short
that gives the single address value of the port.

KDDELIO Disallow user-level I/O to a port. The third argument to ioctl() is an unsigned short
that gives the single address value of the port.

It is normal for direct I/O to ports to be disallowed at user level. The main reason for
this call is to undo the effect of preceding KDADDIO calls.

Example
The following program, by Udo Munk, demonstrates how to use ioctl() to read a mouse plugged into a serial port.
It takes one argument, the name of the port you wish to check.
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#include <fcntl.h>
#include <poll.h>
#include <signal.h>
#include <stdlib.h>
#include <stdio.h>
#include <termio.h>

char *mouse;
int mouse_fd;
struct termio old_tty, new_tty;

/* do the right thing by signals */
sig_handler()
{

ioctl(mouse_fd, TCSETAF, &old_tty);
exit(EXIT_SUCCESS);

}

/* cry and die */
void fatal(message)
char *message;
{

fprintf (stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

/* run the whole shebang */
main(argc, argv)
int argc; char **argv;
{

struct pollfd fds[1];

if (argc != 2)
fatal ("Usage: findmouse /dev/com[1-4]pl");

if (strncmp(argv[1], "/dev/com1pl", 11) &&
strncmp(argv[1], "/dev/com2pl", 11) &&
strncmp(argv[1], "/dev/com3pl", 11) &&
strncmp(argv[1], "/dev/com4pl", 11))

fatal ("Usage: findmouse /dev/com[1-4]pl");

mouse = argv[1];

signal(SIGINT, sig_handler);
signal(SIGQUIT, sig_handler);
signal(SIGHUP, sig_handler);

fprintf(stdout, "Trying to open %s ...\n", mouse);
if ((mouse_fd = open(mouse, O_RDONLY)) < 0)

fatal ("Cannot open this device.");
fprintf(stdout, "Success.\n");

fprintf(stdout, "Trying to read line mode of %s ...\n", mouse);
if (ioctl(mouse_fd, TCGETA, &old_tty) < 0)

fatal ("Cannot read this device’ss line mode.");
fprintf(stdout, "Success.\n");

new_tty = old_tty;
new_tty.c_cflag &= ~(CBAUD | HUPCL);
new_tty.c_cflag |= CLOCAL | B1200;
new_tty.c_iflag = IGNBRK;
new_tty.c_oflag = new_tty.c_lflag = 0;

/*
* VMIN = 0, VTIME = 0 has the same effect as setting O_NDELAY on the
* input line.
*/

new_tty.c_cc[VMIN] = 0;
new_tty.c_cc[VTIME] = 0;
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/* Set up to poll the input line. */
fds->fd = mouse_fd;
fds->events = POLLIN;

fprintf(stdout, "Trying to set new line mode for %s ...\n", mouse);
if (ioctl(mouse_fd, TCSETAF, &new_tty) < 0)

fatal ("Cannot set new tty line mode");
fprintf(stdout, "Success.\n");

fprintf(stdout, "\nI’m reading from %s. To exit, type <ctrl-C>.\n",
mouse);

fprintf(stdout,
"If you see stuff on the screen when you move the mouse,\n");

fprintf(stdout,
"then you have found the mouse port.\n");

fprintf(stdout, "\nNow wiggle your mouse:\n");

for (;;) {
size_t read_count;
unsigned char mousebuf [128];

/* Block waiting for mouse input. */
if (poll (fds, 1, -1) < 0)

break;

/* Drain input in large chunks until it becomes time to block. */
while ((read_count = read (mouse_fd, mousebuf,

sizeof (mousebuf))) != 0) {
unsigned char * scan = mousebuf;

do
printf ("%02x ", * scan ++);

while (-- read_count != 0);

fflush (stdout);
}

}
}

See Also
device drivers, exec, getty, header files, libc, open(), read(), sgtty, stty(), termio

Notes
The type of the arg to ioctl() is declared as char * mainly to improve portability. In most cases, the actual
argument type will be something like struct sgttyb *, depending on the device and command. The actual
argument should be cast to type char * to ensure cross-machine portability.

Under COHERENT 286, the main header file for ioctl() is <sgtty.h>. This header file is also included with COHERENT

386 for compatibility with older applications.

ipc.h — Header File
Definitions for interprocess communications
#include <sys/ipc.h>

ipc.h defines constants and structures used by functions that perform interprocess communications.

See Also
header files, msgget(), semget(), shmget()

ipcrm — Command
Remove an interprocess-communication memory item
ipcrm [-mqs id] [-MQS key]

The command ipcrm removes a memory item used for interprocess communication: either shared-memory
segment, message queue, or semaphore set. You can use this command either with an id, which is the identifying
number assigned by the function that created the memory item in question; or with a key, which is the identifier
used by the application that requested the memory item.
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ipcrm recognizes the following options:

m id Remove the shared-memory segment with an identifier of id.

q id Remove the message queue with an identifier of id.

s id Remove the semaphore set with an identifier of id.

M key Remove the shared-memory segment with a key of key.

Q key Remove the message queue with a key of key.

S key Remove the semaphore set with a key of key.

To find the identifiers and keys for for the IPC resources that are currently allocated, use the command ipcs.

See Also
commands, ipcs, msgget(), semget(), shmget()

Notes
ipcrm does not remove a shared-memory segment until all processes attached to it are removed by calls to the
function shmat().

Any user can run ipcrm; however, a user can remove only those memory items that he ‘‘owns’’, as noted in the
control structure for the item. The superuser root can, of course, remove all memory items, no questions asked.

ipcs — Command
Display a snapshot of interprocess communications
ipcs [-abcmopst] [-N kernel]

The command ipcs prints information about interprocess communication (IPC) objects.

Options
ipcs recognizes the following command-line options:

-a ‘‘All’’ print option; i.e., combine the options -b, -c, -o, -p, and -t.

-b ‘‘Biggest’’ option: Display the maximum size that the kernel allows for each kind of IPC object.

-c Display the login name and group name of the user who created each IPC object.

-m Display information about shared-memory segments. By default, ipcs displays information about all IPC
objects.

-N kernel
Read kernel-specific information from kernel instead of from the default kernel /autoboot.

-o ‘‘Outstanding usage’’ option: Display the number of messages currently queued and their total size in bytes,
and the number of processes attached to each shared-memory segment.

-p Display the process identifiers of the following:

• The last process to send a message.
• The last process to receive a message on each message queue.
• Each creating process.
• The last process to attach to or detach from each shared-memory segment.

-q Display information about message queues. By default, ipcs displays information about all IPC objects.

-s Display information about sets of semaphores. By default, ipcs displays information about all IPC objects.

-t Display the following information about times:

• When functions msgsnd() and msgrcv() were last executed for each message queue.

• When the functions shmat() and shmdt() were last executed for each shared-memory segment.

• When the function semop() was last executed for each set of semaphores.
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Format of Displayed Information
The following names and describes each column of information that ipcs can display for each IPC object. The
letters in parentheses name the command-line options tell ipcs to display this column; all means that ipcs always
displays this column:

ATIME (-at)
The last time a process attached itself to this shared-memory segment.

CBYTES (-ao)
The total number of bytes in this message queue.

CGROUP (-ac)
The name of the group to which the creator of this IPC object belongs.

CPID (-ap)
The identifier of the process that created this shared-memory segment.

CREATOR (-ac)
The login identifier of the user who created this IPC object.

CTIME (-at)
The time when this IPC object was created or last changed.

DTIME (-at)
The most recent time a process detached itself from this shared-memory segment.

GROUP (all)
The name of the group to which the owner of this IPC object belongs.

ID (all) The numeric identifier of this IPC object.

KEY (all)
The key that names this IPC object. Applications use this key to identify and manipulate the IPC object.

LPID (-ap)
The identifier of the last process to have attached itself to or detached itself from this shared-memory
segment.

LRPID (-ap)
The identifier of the last process to have received a message from this message queue.

LSPID (-ap)
The identifier of the last process to have sent a message to this message queue.

MODE (all)
The IPC object’s mode. The mode is a string of 11 characters that interprets the value of field mode in the
structure ipc_perm, which is part of each IPC object. (For more information on this structure, see the
Lexicon entries msgget(), semget(), and shmget().) The first two mode characters are as follows:

R A process is waiting for msgrcv().
S A process is waiting for msgsnd().
D The associated shared-memory segment has been removed.
C The associated shared-memory segment will be cleared when the first process attaches itself to it.
- The corresponding flag is not set.

The last nine characters of the mode give the permissions on the IPC object — three sets of three
characters each. In each set, the first character marks whether read permission is granted, the second
whether permission to write or alter is granted, and the third is unused. The first set gives the
permissions of the user who created the object (its ‘‘owner’’); the second, the permissions of other users in
the owner’s group; and the third, the permissions of all other users.

NATTCH (-ao)
The number of processes attached to this shared-memory segment.

NSEMS (-ab)
The number of semaphores in this set.
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OTIME ( ...... t)
The last time a semaphore operation was completed on this set.

OWNER (all)
The login identifier of the user who ‘‘owns’’ this IPC object.

QBYTES (-ab)
The number of bytes left available to the messages in this queue.

QNUM (-ao)
The number of messages in this queue.

RTIME (-at)
The last time a message was received from this queue.

SEGSZ (-ab)
The size of this shared-memory segment.

STIME (-at)
The last time a message was sent to this queue.

T (all) The type of IPC object this is, as follows:

m Shared-memory segment
q Message queue
s Set of semaphores

See Also
commands, ipcrm, msgget(), semget(), shmget()

Notes
ipcs gives information about the way interprocess communications are at the moment you run it. The data it
returns can change even as you read them.

IRQ — Technical Information
Interrupts on the IBM PC

The term IRQ stands for ‘‘interrupt request’’. The IBM PC has 16 interrupts channels built into it. Some are
reserved for system hardware; most are available for cards and peripheral devices. The following gives the default
assignments for IRQs:

IRQ Device
0 System timer
1 Keyboard controller
2 Second IRQ controller
3 Serial port (COM) 2
4 COM1
5 Line printer (LPT) 2 or LPT3
6 Floppy-disk controller
7 LPT1
8 Real-time clock
9 Re-directed IRQ2
10 Available
11 Available
12 Motherboard mouse port (available if no mouse)
13 Mathematics coprocessor
14 Hard-disk (AT) controller
15 Available

As you can see, there are two banks of interrupt controllers, each of which controls eight interrupts, with IRQ2
latched to the first port on the second chip, IRQ9.

Channel 5 handles two parallel ports — LPT2 and LPT3. If you install three serial ports onto your system, be
careful on how you jumper the card, or you will confuse your system.

Due to the design of the PC, IRQ 7 can display spurious interrupts when a device signals an IRQ line other than 7,
then cancels the signal before the interrupt controller figures out which line the IRQ occurred on. Thus, you
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should not assign other devices to IRQ 7, if at all possible.

Three interrupt channels are available for user hardware: channels 10, 11, and 15. Channel 12 is also available if
you do not have a bus mouse.

Only two interrupts are available for serial ports, COM1 and COM2. Note that COM3 and COM4 are ‘‘linked’’ to
COM1 and COM2, respectively. For this reason, if you have both COM1 and COM3 your system, or both COM2
and COM4, only one of the pair can be interrupt driven; the other port of the pair must be polled.

See Also
Administering COHERENT

isalnum() — ctype Function (libc)
Check if a character is a number or letter
#include <ctype.h>
int isalnum(c) int c;

isalnum() tests whether the argument c is alphanumeric (0-9, A-Z, or a-z). It returns a number other than zero if c
is of the desired type, and zero if it is not. isalnum() assumes that c is an ASCII character or EOF.

Example
For an example of how to use this macro, see the entry for ctype.h.

See Also
ASCII, libc
ANSI Standard, §7.3.1.1
POSIX Standard, §8.1

isalpha() — ctype Function (libc)
Check if a character is a letter
#include <ctype.h>
int isalpha(c) int c;

isalpha() tests whether the argument c is a letter (A-Z or a-z). It returns a number other than zero if c is an
alphabetic character, and zero if it is not. isalpha() assumes that c is an ASCII character or EOF.

Example
For an example of this macro, see the entry for ctype.h.

See Also
ASCII, libc
ANSI Standard, §7.3.1.2
POSIX Standard, §8.1

isascii() — ctype Function (libc)
Check if a character is an ASCII character
#include <ctype.h>
int isascii(c) int c;

isascii() tests whether c is an ASCII character (0 <= c <= 0177). It returns a number other than zero if c is an
ASCII character, and zero if it is not. Many ctype macros fail if passed a non-ASCII value other than EOF.

Example
For an example of how to use this function, see the entry for ctype.h.

See Also
ASCII, libc

Notes
Please note that isascii() is not part of the ANSI standard. Programs that use it may not be portable to all
implementations of C.
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isatty() — General Function (libc) (libc)
Check if a device is a terminal
#include <unistd.h>
int isatty(fd) int fd;

isatty() checks to see if a device is a terminal. It returns one if the file descriptor fd describes a terminal, and zero
otherwise.

Files
/dev/* — Terminal special files
/etc/ttys — Login terminals

See Also
ioctl(), libc, tty, ttyname(), ttyslot(), unistd.h
POSIX Standard, §4.7.2

iscntrl() — ctype Function (libc)
Check if a character is a control character
#include <ctype.h>
int iscntrl(c) int c;

iscntrl() tests whether the argument c is a control character (including a newline character) or a delete character.
It returns a number other than zero if c is a control character, and zero if it is not. iscntrl() assumes that c is an
ASCII character or EOF.

Example
For an example of how to use this macro, see the entry for ctype.h.

See Also
libc
ANSI Standard, §7.3.1.3
POSIX Standard, §8.1

isdigit() — ctype Function (libc)
Check if a character is a numeral
#include <ctype.h>
int isdigit(c) int c;

isdigit() tests whether the argument c is a numeral (0-9). It returns a number other than zero if c is a numeral,
and zero if it is not. isdigit() assumes that c is an ASCII character or EOF.

Example
For an example of how to use this macro, see the entry for ctype.h.

See Also
ASCII, libc
ANSI Standard, §7.3.1.4
POSIX Standard, §8.1

isgraph() — ctype Function (libc)
Check if a character is printable
#include <ctype.h>
int isgraph(int c);

isgraph() tests whether c is a printable letter within the ASCII character set, but excluding the space character.
The ANSI Standard defines a printable character as any character that occupies one printing position on an output
device. c must be a value that is representable as an unsigned char or EOF.

isgraph() returns nonzero if c is a printable character (except for space), and zero if it is not.

LEXICON

762 isatty() — isgraph()



See Also
ASCII, libc
ANSI Standard, 7.3.1.5
POSIX Standard, §8.1

islower() — ctype Function (libc)
Check if a character is a lower-case letter
#include <ctype.h>
int islower(c) int c;

islower() tests whether the argument c is a lower-case letter (a-z). It returns a number other than zero if c is is a
lower-case letter, and zero if it is not. islower() assumes that c is an ASCII character or EOF.

Example
For an example of how to use this macro, see the entry for ctype.h.

See Also
ASCII, libc
ANSI Standard, §7.3.1.6
POSIX Standard, §8.1

ispos() — Multiple-Precision Mathematics (libmp)
Return if variable is positive or negative
#include <mprec.h>
int ispos(a)
mint *a;

ispos() returns true (nonzero) if a is not negative, false (zero) if a is negative.

See Also
libmp

isprint() — ctype Function (libc)
Check if a character is printable
#include <ctype.h>
int isprint(c) int c;

isprint() is a macro that tests if c is printable, i.e, if it is neither a delete nor a control character. It returns a
number other than zero if c is a printable character, and zero if it is not. isprint() assumes that c is an ASCII
character or EOF.

Example
For an example of how to use this macro, see the entry for ctype.h.

See Also
ASCII, libc
ANSI Standard, §7.3.1.7
POSIX Standard, §8.1

ispunct() — ctype Function (libc)
Check if a character is a punctuation mark
#include <ctype.h>
int ispunct(c) int c;

ispunct() tests whether the argument c is a punctuation mark, i.e., neither an alphanumeric character nor a
control character. It returns a number other than zero if the character tested is a punctuation mark, and zero if it
is not. ispunct() assumes that c is an ASCII character or EOF.

Example
For an example of how to use this macro, see the entry for ctype.h.
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See Also
ASCII, libc
ANSI Standard, §7.3.1.8
POSIX Standard, §8.1

isspace() — ctype Function (libc)
Check if a character prints white space
#include <ctype.h>
int isspace(c) int c;

isspace() tests whether the argument c is a space, tab, newline, carriage return, or form-feed character. It returns
a number other than zero if c is a white-space character, and zero if it is not. isspace() assumes that c is an ASCII
character or EOF.

Example
For an example of how to use this macro, see the entry for ctype.h.

See Also
ASCII, libc
ANSI Standard, §7.3.1.9
POSIX Standard, §8.1

isupper() — ctype Function (libc)
Check if a character is an upper-case letter
#include <ctype.h>
int isupper(c) int c;

isupper() tests whether the argument c is an upper-case letter (A-Z). It returns a number other than zero if c is an
upper-case letter, and zero if it is not. isupper() assumes that c is an ASCII character or EOF.

Example
For an example of how to use this macro, see the entry for ctype.h.

See Also
ASCII, libc
ANSI Standard, §7.3.1.10
POSIX Standard, §8.1

isxdigit() — ctype Function (libc)
Check if a character is a hexadecimal numeral
#include <ctype.h>
int isxdigit(c)
int c;

isxdigit() tests whether c is a hexadecimal numeral — that is, any of the characters ‘0’ through ‘9’, any of the
letters ‘a’ through ‘d’, or any of the letters ‘A’ through ‘D’. c must be a value that is representable as an unsigned
char or EOF.

isxdigit() returns nonzero if c is a hexadecimal numeral, and zero if it is not.

See Also
ASCII, libc
ANSI Standard, §7.3.1.11
POSIX Standard, §8.1
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itom() — Multiple-Precision Mathematics (libmp)
Create a multiple-precision integer
#include <mprec.h>
mint *itom(n)
int n;

itom() creates a new multiple-precision integer (or mint), initializes it to the signed integer value n, and returns a
pointer to it. You can use the function mintfr() to reclaim the storage used by the mint created by itom().

See Also
libmp
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j0() — Mathematics Function (libm)
Compute Bessel function
#include <math.h>
double j0(z)
double z;

j0() computes the Bessel function of the first kind for order 0 for its argument z.

Example
This example, called bessel.c, demonstrates the Bessel functions j0(), j1(), and jn(). Compile it with the following
command line

cc -f bessel.c -lm

to include floating-point functions and the mathematics library.

#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define display(x) dodisplay((double)(x), #x)

dodisplay(value, name)
double value; char *name;
{

if (errno)
perror(name);

else
printf("%10g %s\n", value, name);

errno = 0;
}

main()
{

extern char *gets();
double x;
char string[64];

for(;;) {
printf("Enter number: ");
if(gets(string) == NULL)

break;
x = atof(string);

display(x);
display(j0(x));
display(j1(x));
display(jn(0,x));

display(jn(1,x));
display(jn(2,x));
display(jn(3,x));

}
}
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See Also
j1(), jn(), libm

j1() — Mathematics Function (libm)
Compute Bessel function
#include <math.h>
double j1(z) double z;

j1() takes z and computes the Bessel function of the first kind for order 1.

Example
For an example of this function, see the entry for j0().

See Also
j0(), jn(), libm

jn() — Mathematics Function (libm)
Compute Bessel function
#include <math.h>
double jn(n, z) int n; double z;

jn() takes z and computes the Bessel function of the first kind for order n.

Example
For an example of this function, see the entry for j0().

See Also
j0(), j1(), libm

jobs — Command
Print information about jobs
jobs

The command jobs is used with the Korn shell’s job-control feature. It prints information about all background
jobs. The information printed is in the following format:

%num [+-] pid status command

num indicates the job number, + indicates that the job is the ‘‘current job’’; - indicates that it is the ‘‘previous job’’.
pid gives the process identifier of the job. status indicates the status of the job. command gives the job’s command
line.

For details about job control, see the Lexicon entry for ksh.

See Also
commands, ksh

join — Command
Join two data bases
join [-a [n] ] [-e string ] [-j[n] keyf] [-o n.m ...] [-tc] file1 file2

join processes the text files file1 and file2, each of which contains a relational data base. If either file name is ‘-’,
the standard input is used for that file.

For the purposes of join, a data base file contains a set of records, one per input line. Each record contains a
number of fields. One field is differentiated as key field for each file. Each file must be sorted by key field, for
example with sort.

By default, the key field is the first field in each record. The -j option changes the key field number to keyf for the
desired file. In this and other options below, the optional file number n must be 1 to indicate file1 or 2 to indicate
file2. If no n is given, both file1 and file2 are assumed.

Normally, fields are separated by any amount of white space (blanks or tabs). Leading blanks or tabs are not
considered part of the fields. With the -t option, the separator character is c. With this option zero-length fields are
possible; every occurrence of the separator ends the previous field and starts a new one.
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Output consists only of records for which the key field occurs in both files. As a consequence of the sorted order of
the input, the output is also sorted by the key field. Each output record has first the key field, then each field from
the file1 record but the key field, and then each field from the file2 record but the key field. Fields are separated in
the output with the specified field character, or with a space character if no -t option was given. Output records
are always terminated with a newline. Under the -e option, string is printed for each empty field.

The -a option enables printing of records found in only file n. If n is missing, unpaired records are printed from
both input files. To output only certain fields, the -o option precedes a list of desired fields to print. Each element
is of the form n.m where n is the file number and m is the field number.

For example,

join -t: -j1 3 -o 1.3 2.4 1.4 1.1 2.2 filea fileb

joins filea and fileb which have fields separated by the colon (‘:’) character. The join field number is 3 for filea and
1 (by default) for fileb. The selected five fields are produced in the output.

See Also
awk, comm, commands, sort, uniq

jrand48() — Random-Number Function (libc)
Return a 48-bit pseudo-random number as a long integer
long jrand48(xsubi)
unsigned short xsubi[3];

Function jrand48() generates a 48-bit pseudo-random number, and returns its upper 32 bits in the form of a long.
The value returned is (or should be) uniformly distributed throughout the range of -2^31 through 2^31. xsubi is
an array of three unsigned short integers from which the pseudo-random number is built.

See Also
libc, srand48()
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kb.h — Header File
Define keys for loadable keyboard driver
#include <sys/kb.h>

The header file kb.h defines macros and manifest constants that are used with nkb, the user-configurable
keyboard driver. It is included with the C programs that the user can modify and compile to remap her keyboard.
See the Lexicon entries nkb and keyboard tables for more information.

nkb is also used with COHERENT system of virtual consoles. kb.h sets default definitions for function keys, as
follows:

vt0 — vt15
Switch to logical session 0 through 15, respectively.

color0 — color15
Switch to color session 0 through 15, respectively.

mono0 — mono15
Switch to monochrome session 0 through 15, respectively.

vtn Switch to next higher-numbered open session.

vtp Switch to next lower-numbered open session.

vtt Toggle to most recently used open session

See Also
header files, virtual console, vtkb, vtnkb

kernel — Technical Information
Master program of the COHERENT system

The kernel is the master program of the COHERENT system. It manages the file systems, processes, devices, and
users.

When you boot COHERENT on your system, the COHERENT bootstrap automatically loads and runs the program
/autoboot. This file usually is linked to the kernel that you build when you installed COHERENT onto your
computer.

Your system may have multiple kernels on it. For example, when you update COHERENT, often the old kernel is
saved; and you can also build customized versions of the kernel. The COHERENT bootstrap lets you boot other
versions of the kernel besides the one that is linked to file /autoboot. For details on how to do this, see the Lexicon
article booting.

For information on the file system that the kernel supports, see the Lexicon entry for file.

The Lexicon entry coff.h describes the format of programs that the kernel can execute.

The COHERENT system comes with a set of system calls, which you can call from within user application to obtain
kernel services. See the Lexicon entry libc summarizes the calls that the kernel offers.

The function ulimit() returns and sets some limits for the current process. For details, see its entry in the Lexicon.

The Lexicon article device drivers describes the suite of drivers that come with the COHERENT system. It gives the
major and minor numbers of each, plus information on how to access and manipulate each driver.
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Modifying the Kernel
Beginning with release 4.2, COHERENT contains a System V-style mechanism for modifying the kernel and building
a new bootable kernel.

File /etc/conf/mtune defines the suite of ‘‘tunable variables’’ available within the kernel and its drivers. These
variables define many of the kernel’s default behaviors. For a complete list of these variables and notes on what
each does, see /etc/conf/mtune.

File /etc/conf/stune sets the values of the variables actually used in your kernel. To modify the values of these
variable, you can edit stune by hand, or you can use the commands /etc/conf/bin/cohtune and
/etc/conf/bin/idtune. The former command lets you set or modify the values of variables used by device drivers;
the latter command lets you set or modify variables used in the kernel itself.

File /etc/conf/mdevice names the drivers that are available for inclusion in your kernel. File /etc/conf/sdevice
names the drivers that actually are included in your kernel. To include or exclude a driver, you can modify
sdevice by hand; or you can use the command /etc/conf/bin/idenable.

Command /etc/conf/bin/idmkcoh builds a new bootable kernel that incorporates any changes you have made.
For your changes to become effective, you must build a new kernel that incorporates your changes, and then boot
it.

Finally, command /etc/conf/bin/idbld walks you the configuration of every device drivers in the kernel, then
invokes idmkcoh to link a new kernel. In effect, this command lets you reconfigure the entire kernel.

Each of the above commands and files is described in its own Lexicon entry.

Two other files are of interest if you wish to modify the kernel.

• Header file <sys/devices.h> gives the major-device numbers for every driver in your kernel. It is read when
drivers are compiled. If you are adding a new driver, you must add its name and major-device number to this
header file.

• Normally, when you build a new kernel, the symbol table is stripped from it and kept in file
/kernel_name.sym. The symbols in this file are used to decipher kernel tracebacks, and can be read by the
debugger db. However, if you wish to hot-patch a kernel variable, that variable’s symbol (or name) must be
kept in the binary itself. File /etc/conf/install_conf/keeplist names the variables (or, more properly, the
symbols) that are left in the binary after it is linked. You can then use the command /conf/patch to hot-
patch these variables. We discourage you from doing this unless it is absolutely necessary.

Example
The Lexicon entry device drivers gives an example of how to add a new driver to the kernel. The following example
walks you through the process of changing the size of the buffer cache on your system.

The buffer cache is a reserved portion of memory in which the kernel stores data recently read from the disk or to
be written to the disk. When you invoke a command from your command line, the kernel checks its buffer cache.
If you had invoked the command recently, the kernel should find it within the buffer cache; and it can then call up
the command from memory rather than reading it from the disk. This speeds up your system noticeably.

Like everything else in life, the buffer cache involves a tradeoff: the larger the buffer cache, the faster your system
will run, but the less memory will be available for running your programs. By default, COHERENT sets aside a
portion of memory for the buffer cache; the more memory you have, the more is set aside for the cache. However,
you can set the size of the cache by hand. Usually, this is done to limit the size of the cache, which is necessary if
your system has limited amounts of memory and you want to run large user programs (e.g., the X Window
System).

The following walks you through the process of modifying the kernel to reduce the size of the buffer cache.

1. Log in as the superuser root. cd to directory /etc/conf.

2. Edit file /etc/conf/stune and add the following lines:

NBUF_SPEC 100
NHASH_SPEC 97

NBUF_SPEC sets the size of the buffer, in blocks. Here, we’re setting it to 100 blocks (50 kilobytes), which is
very small. NASH_SPEC sets the number of hash lists in the kernel; this must be the first prime number
smaller than the number of blocks in the cache (in this case, 97). This, too, is very small.
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3. Build a new kernel with the following command:

/etc/conf/bin/idmkcoh -o /cohtest

This builds a new kernel named cohtest, which incorporates your changes.

4. Shut down your system and boot the new kernel. For information on how to shut the system down, see the
Lexicon entry for shutdown. For details on how to boot a kernel other than the default kernel, see the Lexicon
entry for booting.

That’s all there is to it. If you wish to make these variables patchable, so you can change them without going to
the bother of building a new kernel, do the following:

1. In the file /etc/conf/install_conf/keeplist,change

echo ’-I SHMMNI:SEMMNI:NMSQID’
to

echo ’-I SHMMNI:SEMMNI:NMSQID:NBUF:NHASH’

2. Build a new kernel as described above.

Then, to change limit the size of the buffer cache to 50 kilobytes, use the command:

/conf/patch /testcoh NBUF=100 NHASH=97

Then, boot the patched kernel. As noted above, you should not use /conf/patch unless you absolutely must.

Files
/autoboot — The default kernel
/etc/conf — Directory that holds configuration files
/etc/conf/mdevices — Suite of available device drivers
/etc/conf/mtune — Suite of legal patchable variables
/etc/conf/sdevices — Drivers included in kernel
/etc/conf/stune — Patchable variables included in kernel
/etc/conf/install_conf/keeplist— Symbols kept in kernel

See Also
Administering COHERENT, booting, coff.h, COHERENT, device drivers, file, idmkcoh, libc, mtune, stune,
ulimit()

Diagnostics
The kernel can produce the following error messages. Most are meaningful only to Mark Williams Company. If you
encounter these errors, contact MWC and describe the circumstances during which you saw the error. MWC
Support will try to solve this problem for you.

Arena number too small (hardware)

Bad block number (alloc) (hardware)
The kernel attempted to allocate a block of memory, only to find that there was something physically wrong
with it.

Bad block number (free) (hardware)
The kernel attempted to free a block of memory, only to find that there was something physically wrong
with it.

Bad free number (hardware)

Bad freelist (halt)
The freelist is a list of free blocks on the disk. The COHERENT system maintains this list so it can see
where it can write data on the disk. This message indicates that the freelist has been corrupted somehow.
To fix this problem, run /etc/shutdown to return to single-use mode; use sync to flush the buffers; use
umount to unmount the affected file system; and then run fsck to repair the file system.

Bad segment count (hardware)
Bus error at number (hardware)
Cannot allocate stack (hardware)
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Cannot create process (hardware)
Corrupt arena (hardware)
Illegal instruction at number (hardware)
Inode number busy (hardware)
Inode table overflow (hardware)
Not a separate I/D machine (hardware)

Out of i-nodes (halt)
A COHERENT file system has one i-node for each file it maintains. The number of i-nodes is set when the
file system is created. If you have numerous small files on a file system, it is possible to exhaust that file
system’s resources even though the command df shows that space remains on the file system. To get
around this problem, you must delete files, one file for each i-node needed; or you must use ar to archive a
mass of files. To do this, first use /etc/shutdown to return the system to single-user mode, as described
above. Delete files, or use ar as described above. Then use sync to flush all buffers, and use the
command umount to unmount the affected file system. Then run fsck on the affected file system before
rebooting. fsck checks COHERENT file systems and fixes them if necessary. Consult the Lexicon entry on
fsck before you use this program for the first time.

Out of space (m,n) (halt)
When this error message appears, your file system still has i-nodes but the alloted disk space has been
exhausted; perhaps you have a few large files that are eating up disk space. To get around this problem,
you must delete or compress files to clear up disk space. First, use /etc/shutdown to return to single-
user mode, as described above; then delete files or compress them as described above until enough space
has been cleared to allow you to continue your work. Use sync to flush buffer, use umount to unmount
the affected file system, and run fsck on the affected file system. Then reboot.

Random trap (hardware)
Raw I/O from non user (hardware)
System too large (hardware)

keyboard — Technical Information
How COHERENT handles the console keyboard

COHERENT comes with two device drivers for the keyboard, as follows:

vtkb Non-configurable driver
vtnkb Configurable driver

To change the keyboard driver you are using, or to modify the behavior of the driver vtnkb, log in as the superuser
root and type:

cd /etc/conf
console/mkdev

The script /etc/conf/console/mkdev walks you through the process of configuring your console: you can switch
keyboard drivers from load to non-loadable (or vice-versa), change the number of virtual consoles you use, or
change the keyboard-translation table you use by default.

Once you have configured the console, type the following command:

bin/idmkcoh -o /kernel_name

where kernel_name is the what you wish to name the newly built kernel. This builds a new kernel that
incorporates the changes you requested. To invoke these changes, simply reboot and invoke kernel kernel_name in
the usual manner.

See Also
Administering COHERENT, vtkb, vtnkb

kill — Command
Signal a process
kill [- signal ] pid ...

COHERENT assigns each active process a unique process id, or pid, and uses the pid to identify the process. kill
sends signal to each pid. signal must be one of the numbers described in the header file <signal.h>. The signal can
be given by number or by name, as defined in these header files. By default, signal is SIGTERM, which
terminates a given process.
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If pid is zero, kill signals each process in the same process group (that is, every process started by the same user
from the same tty).

If pid is negative (but not -1), kill signals every process in the process group whose ID equals the absolute value of
pid.

If pid is -1, kill signals each process that you own. If you are logged in as the superuser root, this signals every
process except processes 0 (the kernel) and 1 (init).

The shell prints the process id of a process if the command is detached. The command ps prints a list of all active
processes, with process ids and command-line arguments.

A user can kill only the processes he owns; the superuser, however, can kill anything. A process cannot ignore or
catch SIGKILL.

See the Lexicon article for signal() for a table of the signals and what each means.

Files
<signal.h> — Signals

See Also
commands, getpid(), init, kill(), ksh, ps, sh, signal()

kill() — System Call (libc)
Kill a system process
#include <signal.h>
kill(pid, sig)
int pid, sig;

kill() is the COHERENT system call that sends a signal to a process. pid is the process identifier of the process to be
signalled, and sig identifies the signal to be sent, as set in the header file signal.h. This system call is most often
used to kill processes, hence its name.

See the Lexicon article for signal() for a table of the signals and what each means. If sig is zero, kill() performs
error checking, but sends no signal. You can use this feature to check the validity of pid.

Example
For an example of using this system call in a C program, see signal().

See Also
libc, signal(), signal.h
POSIX Standard, §3.3.2

ksh — Command
The Korn shell
ksh token ...

The COHERENT system offers two command interpreters: sh, the Bourne shell; and ksh, the Korn shell. sh is the
default COHERENT command interpreter. The shell tutorial included in this manual describes the Bourne shell in
detail.

This article describes ksh, the Korn shell. ksh is a superset of the Bourne shell, and contains many features that
you may well find useful. These include MicroEMACS-style editing of command lines; command hashing; a full-
featured aliasing feature; and a job-control facility.

Invoking ksh
To invoke ksh from within the Bourne shell, simply type ksh at the command-line prompt. To use ksh as your
default shell, instead of sh, append the command /usr/bin/ksh to the end of your entry in the file /etc/passwd.
(See the Lexicon entry for passwd for more information on this file.)

You can invoke ksh with one or more built-in options; these are described below.

Commands
A command consists of one or more tokens. A token is a string of text characters (i.e., one or more alphabetic
characters, punctuation marks, and numerals) delineated by spaces, tabs, or newlines.
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A simple command consists of the command’s name, followed by zero or more tokens that represent arguments to
the command, names of files, or shell operators. A complex command will use shell constructs to execute one or
more commands conditionally. In effect, a complex command is a mini-program that is written in the shell’s
programming language and interpreted by ksh.

Shell Operators
The shell includes a number of operators that form pipes, redirect input and output to commands, and let you
define conditions under which commands are executed.

command | command
The pipe operator: let the output of one command serve as the input to a second. You can combine
commands with ‘|’ to form pipelines. A pipeline passes the standard output of the first (leftmost) command
to the standard input of the second command. For example, in the pipeline

sort customers | uniq | more

ksh invokes sort to sort the contents of file customers. It pipes the output of sort to the command uniq,
which outputs one unique copy of the text that is input into it. ksh then pipes the output of uniq to the
command more, which displays it on your terminal one screenful at a time. Note that under COHERENT,
unlike MS-DOS, pipes are executed concurrently: that is, sort does not have to finish its work before uniq
and more can begin to receive input and get to work.

command ; command
Execute commands on a command line sequentially. The command to the left of the ‘;’ executes to
completion; then the command to the right of it executes. For example, in the command line

a | b ; c | d

first execute the pipeline a | b then, when a and b complete, execute the pipeline c | d.

command &
Execute a command in the background. This operator must follow the command, not precede it. It prints
the process identifier of the command on the standard output, so you can use the kill command to kill
that process should something go wrong. This operator lets you execute more than one command
simultaneously. For example, the command

/etc/fdformat -v /dev/fha0 &

formats a high-density, 5.25-inch floppy disk in drive 0 (that is, drive A); but while the disk is being
formatted, ksh returns the command line prompt so you can immediately enter another command and
begin to work. If you did not use the ‘&’ in this command, you would have to wait until formatting was
finished before you could enter another command.

ksh also prints a message on your terminal when a command that you are running in the background
finishes processing. It does not check these ‘‘child’’ processes very often, however, so a command may
have finished some time before ksh informs you of the fact. See the Lexicon article for the command ps for
information on all processes; also see the description of the built-in command jobs, below.

command && command
Execute a command upon success. ksh executes the command that follows the token ‘&&’ only if the
command that precedes it returns a zero exit status, which signifies success. For example, the command

cd /etc
fdformat -v /dev/fha0 && badscan -o proto /dev/fha0 2400

formats a floppy disk, as described above. If the format was successful, it then invokes the command
badscan to scan the disk for bad blocks; if it was not successful, however, it does nothing.

command || command
Execute a command upon failure. This is identical to operator ‘&&’, except that the second command is
executed if the first returns a non-zero status, which signifies failure. For example, the command

/etc/fdformat -v /dev/fha0 || echo "Format failed!"

formats a floppy disk. If formatting failed, it echoes the message Format failed! on your terminal;
however, if formatting succeeds, it does nothing.

Note that the tokens newline, ‘;’ and ‘&’ bind less tightly than ‘&&’ and ‘||’. ksh parses command lines
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from left to right if separators bind equally.

>file Redirect standard output. The standard input, standard output, and standard error streams are normally
connected to the terminal. A pipeline attaches the output of one command to the input of another
command. In addition, ksh includes a set of operators that redirect input and output into files rather than
other commands.

The operator ‘>’ redirects output into a file. For example, the command

sort customers >customers.sort

sorts file customers and writes the sorted output into file customers.sort. It creates customers.sort if it
does not exist, and destroys its previous contents if it does exist.

>>file Redirect output into a file, and append. If the file does not exist, this operator creates it; however, if the
file already exists, this operator appends the output to that file’s contents rather than destroying those
contents. For example, the command

sort customers.now | uniq >>customers.all

sorts file customers.now, pipes its output to command uniq, which throws away duplicate lines of input,
and appends the results to file customers.all.

<file Redirect standard input. Here, ksh reads the contents of a file and processes them as if you had typed
them from your keyboard. For example, the command

ed textfile <edit.script

invokes the line-editor ed to edit textfile; however, instead of reading editing commands from your
keyboard, the shell passes ed the contents of edit.script. This command would let you prepare an editing
script that you could execute repeatedly upon files rather than having to type the same commands over
and over.

<< token
Prepare a ‘‘here document’’. This operator tells ksh to accept standard input from the shell input until it
reads a line that contains only token. For example, the command

cat >FOO <<\!
Here is some text.

!

redirects all text between ‘<<\!’ and ‘!’ to the cat command. The ‘>’ in turn redirects the output of cat into
file FOO. ksh performs parameter substitution on the here document unless the leading token is quoted;
parameter substitution and quoting are described below.

command 2> file
Redirect the standard error stream into a file. For example, the command

nroff -ms textfile >textfile.p 2>textfile.err

invokes the command nroff to format the contents of textfile. It redirects the output of nroff (i.e., the
standard output) into textfile.p; it also redirects any error messages that nroff may generate into file
textfile.err.

Note in passing that a command may use up to 20 streams. By default, stream 0 is the standard input;
stream 1 is the standard output; and stream 2 is the standard error. ksh lets you redirect any of these
streams individually into files, or combine streams into each other.

<&n ksh can redirect the standard input and output to duplicate other file descriptors. (See the Lexicon article
file descriptor for details on what these are.) This operator duplicates the standard input from file
descriptor n.

>&n Duplicate the standard output from file descriptor n. For example,

2>&1

redirects file descriptor 2 (the standard error) to file descriptor 1 (the standard output).

Note that each command executed as a foreground process inherits the file descriptors and signal traps (described
below) of the invoking shell, modified by any specified redirection. Background processes take input from the null
device /dev/null (unless redirected), and ignore interrupt and quit signals.
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File-Name Patterns
The shell interprets an input token that contain any of the special characters ‘?’, ‘*’, or ‘[’ as a file name pattern.

? Match any single character except newline. For example, the command

ls name?

will print the name of any file that consists of the string name plus any one character. If name is followed by
no characters, or is followed by two or more characters, it will not be printed.

* Match a string of non-newline characters of any length (including zero).

ls name*

prints the name of any file that begins with the string name, regardless of whether it is followed by any other
characters. Likewise, the command

ls name?*

prints the name of any file that consists of the string name followed by at least one character. Unlike name*,
the token name?* must be followed by at least one character before it will be printed.

~name
Replace the name of user name with his $HOME directory. For example, the command

ls -l ~norm/src

lists the contents of the src subdirectory located under the $HOME directory for user norm. This spares you
from having to know where a given user’s HOME directory is located.

The character ‘~’ on its own is a synonym for the home directory of whoever is running the command. For
example, the command

/usr/lib/uucp FOO mwcbbs:~

copies file FOO into directory /usr/spool/uucppublic on system mwcbbs. In this instance, ‘~’ expands into
/usr/spool/uucppublic because the command uucico invokes setuid() to change the ownership of the process to
user uucp, whose home directory is /usr/spool/uucppublic.

[!xyz] Exclude characters xyz from the string search. For example, the command

ls [!abc]*

prints all files in the current directory except those that begin with a, b, or c.

[C-c] Enclose alternatives to match a single character. A hyphen ‘-’ indicates a range of characters. For
example, the command

ls name[ABC]

will print the names of files nameA, nameB, and nameC (assuming, of course, that those files exist in the
current directory). The command

ls name[A-K]

prints the names of files nameA through nameK (again, assuming that they exist in the current directory).

When ksh reads a token that contains one of the above characters, it replaces the token in the command line with
an alphabetized list of file names that match the pattern. If it finds no matches, it passes the token unchanged to
the command. For example, when you enter the command

ls name[ABC]

ksh replaces the token name[ABC] with nameA, nameB, and nameC (again, if they exist in the current directory),
so the command now reads:

ls nameA nameB nameC

It then passes this second, transformed version of the command line to the command ls.

Note that the slash ‘/’ and leading period ‘.’ must be matched explicitly in a pattern. The slash, of course,
separates the elements of a path name; while a period at the begin of a file name usually (but not always) indicates
that that file has special significance.
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Pattern Matching in Prefixes and Suffices
Special constructs let you match patterns in the prefixes and suffices of a string:

{#parameter}
This operator gives the number of characters in parameter. For example:

foo=BAZZ
echo ${#foo} -> 4

{parameter%word}
This returns the shortest string in which the suffix of parameter matches word. For example, given that
xyzzy=usr/bin/cpio, then the command

echo ${xyzzy%/*}

echoes the string usr/bin.

{parameter%%word}
This returns the longest string in which the suffix of parameter matches word. For example, given that
xyzzy=usr/bin/cpio, then the command

echo ${xyzzy%/*}

echoes the string usr.

{parameter#word}
This returns the shortest string in which the prefix of parameter matches word. For example, given that
plugh=usr/bin/cpio, the command

echo ${plugh#*/}

echoes bin/cpio.

{parameter##word}
This returns the longest string in which the prefix of parameter matches word. For example, given that
plugh=usr/bin/cpio, the command

echo ${plugh##*/}

echoes cpio.

The following shows how to use these expressions to implement the command basename:

basename () {
set $(echo ${1##*/}) $2
echo ${1%$2}

}

Quoting Text
From time to time, you will want to ‘‘turn off’’ the special meaning of characters. For example, you may wish to
pass a token that contains a literal asterisk to a command; to do so, you need a way to tell ksh not to expand the
token into a list of file names. Therefore, ksh includes the quotation operators ‘\’, ‘"’, and ‘’’; these ‘‘turn off’’ (or
quote) the special meaning of operators.

The backslash ‘\’ quotes the following character. For example, the command

ls name\*

lists a file named name*, and no other.

The shell ignores a backslash immediately followed by a newline, called a concealed newline. This lets you give
more arguments to a command than will fit on one line. For example, the command

cc -o output file1.c file2.c file3.c \
file4.c file5.c file19.c

invokes the C compiler cc to compile a set of C source files, the names of which extend over more than one line of
input. You will find this to be extremely helpful, especially when you write scripts and makefiles, to help you write
neat, easily read commands.

A pair of apostrophes ’ ’ prevents interpretation of any enclosed special characters. For example, the command
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find . -name ’*.c’ -print

finds and prints the name of any C-source file in the current directory and any subdirectory. The command find
interprets the ‘*’ internally; therefore, you want to suppress the shell’s expansion of that operator, which is
accomplished by enclosing that token between apostrophes.

A pair of quotation marks " " has the same effect. Unlike apostrophes, however, ksh will perform parameter
substitution and command-output substitution (described below) within quotation marks. Note that everything
between quotation marks will be a single argument, even if there are spaces between the tokens. For example, the
command

grep "x y" *.c

calls the string-search command grep to look for the string x<space>y.

Scripts
Shell commands can be stored in a file, or script. The command

ksh script [ parameter ... ]

executes the commands in script with a new subshell ksh. Each parameter is a value for a positional parameter, as
described below.

If you have used the command chmod to make script executable, then it is executed under the Bourne shell sh,
without requiring the ksh command. Because all executable scripts are executed by the Bourne shell by default,
not the Korn shell, you should avoid constructions that are unique to the Korn shell.

To ensure that a script is executed by ksh, begin the script with the line:

#!/usr/bin/ksh

Parameters of the form ‘$n’ represent command-line arguments within a script. n can range from zero through
nine; $0 always gives the name of the script. These parameters are also called positional parameters.

If no corresponding parameter is given on the command line, the shell substitutes the null string for that
parameter. For example, if the script format contains the following line:

nroff -ms $1 >$1.out

then invoking format with the command line:

format mytext

invokes the command nroff to format the contents of mytext, and writes the output into file mytext.out. If,
however, you invoke this command with the command line

format mytext yourtext

the script will format mytext but ignore yourtext altogether.

Reference $* represents all command-line arguments. If, for example, we change the contents of script format to
read

nroff -ms $* >$1.out

then the command

format mytext yourtext

will invoke nroff to format the contents of mytext and yourtext, and write the output into file mytext.out.

Commands in a script can also be executed with the . (dot) command. It resembles the ksh command, but the
current shell executes the script commands without creating a new subshell or a new environment; therefore, you
cannot use command-line arguments.

Variables
Shell variables are names that can be assigned string values on a command line, in the form

name=value

The name must begin with a letter, and can contain letters, digits, and underscores ‘_’. Note that no white space
can appear around the ‘=’, or the assignment will not work.
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In shell input, ‘$name’ or ‘${name}’ represents the value of the variable. For example:

TEXT=mytext

nroff -ms $TEXT >$TEXT.out

Here, ksh expands $TEXT before it executes the nroff command. This technique is very useful in large, complex
scripts: by using variables, you can change the behavior of the script by editing one line, rather than having to edit
numerous variables throughout the script.

Note that if an assignment precedes a command on the same command line, the effect of the assignment is local to
that command; otherwise, the effect is permanent. For example,

kp=one testproc

assigns variable kp the value one only for the execution of the script testproc.

ksh sets the following variables by default:

# The number of actual positional parameters given to the current command.

@ The list of positional parameters ‘‘$1 $2 ...’’.

* The list of positional parameters ‘‘$1’’ ‘‘$2’’ ... (the same as ‘$@’ unless some parameters are quoted).

- Options set in the invocation of the shell or by the set command.

? The exit status returned by the last command.

! The process number of the last command invoked with ‘&’.

$ The process number of the current shell.

Environmental Variables
ksh references the following environmental variables:

ENV If this variable is set at start-up, after all .profile files have been executed, the expanded value is used as
the shell’s start-up file. It typically defines environmental variables and aliases.

FCEDIT
This sets the editor used by the command fc.

HOME Initial working directory; usually specified in the password file /etc/passwd.

IFS Delimiters for tokens; by default space, tab, and newline.

KSH_VERSION
The current version of the Korn shell that you are using.

MAIL ksh check the file this names, at intervals specified by environmental variable MAILCHECK. If the file
specified by this variable is new since last checked, the shell prints ‘‘You have mail.’’ on the your terminal.
If the file has increased in size since the last check, ksh prints ‘‘You have new mail.’’ on your terminal.

Note that by default, ksh does not check MAIL when you log in. If you want it to do so, add the following
lines to file /etc/.kshrc:

# The following lines emulate the mail notification of the Bourne Shell.
if [ -s $MAIL ]
then

echo "You have mail."
fi

MAILCHECK
Specifies the number of seconds between checking for new mail. If not specified, MAILCHECK defaults to
600 seconds (ten minutes).

PATH Colon-separated list of directories searched for commands.

PS1 First prompt string, usually ‘$’. Note that in this variable and PS2, ksh expands the symbol ! into the
current number of the command line. For example, the prompt ksh !> prints the prompt ksh NN> with
every command, where NN is the number of the current command. This is useful when you have enabled
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the history feature, as described below.

To print a prompt that includes your local site name, include the variable $PWD (described below) in the
definition of PS1. For example,

PS1=’$PWD>’

prints the current directory as your prompt, just like MS-DOS does. To include your system’s name, read
the contents of file /etc/uucpname, as follows:

SITE=`cat /etc/uucpname`
PS1=’$SITE!!$PWD>’

This form of the prompt is quite useful when you are working on networked machines and may not always
be sure just what system you are working on. Note that two exclamation points are necessary; as noted
above, ksh expands one ‘!’ into the number of the current command.

Finally, to include the command number with site name and current directory, do the following:

SITE=`cat /etc/uucpname`
PS1=’$SITE!!$PWD !>’

This will give you a very long prompt, but one with much information in it.

PS2 Second prompt string, usually ‘>’. ksh prints it when it expects more input, such as when an open
quotation-mark has been typed but a close quotation-mark has not been typed, or within a shell construct.

PWD The present working directory, i.e., the directory within which you are now working.

SECONDS
The number of seconds since the current shell was started.

SHELL The full path name of the shell that you are now executing.

TERM The name of the type of terminal you are now using, as used by various programs for reading the file
/etc/termcap.

TIMEZONE
The current timezone you are located in, as set in your .profile. This is an interesting and powerful
variable; see its entry in the Lexicon for details.

USER The login-identifier of the user, i.e., you.

The following special forms substitute parameters conditionally:

${name-token}
Substitite name if it is set; if it is not, substitute token.

${name=token}
Substitute name if it is set; if it is not set, substitute token and set name to equal token.

${name+token}
Substitute token if name is set.

${name?token}
Substitute name if it is set; if it is not, print token and exit from the shell.

To unset an environmental variable, use the command unset.

Command Output Substitution
ksh can use the output of a command as shell input (as command arguments, for example) by enclosing the
command in grave characters ` `. For example, to list the contents of the directories named in file dirs, use the
command

ls -l `cat dirs`

Constructs
ksh lets you control the execution of programs through the following constructs. It recognizes a construct only if it
occurs unquoted as the first token of a command. This implies that a separator must precede each reserved word
in the following constructs; for example, newline or ‘;’ must precede do in the for construct.
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break [n]
Exit from for, until, or while. If n is given, exit from n levels.

case token in [ pattern [ | pattern ] ...) sequence;; ] ... esac
Check token against each pattern, and execute sequence associated with the first matching pattern.

continue [n]
Branch to the end of the nth enclosing for, until, or while construct.

for name [ in token ... ] do sequence done
Execute sequence once for each token. On each iteration, name takes the value of the next token. If the in
clause is omitted, $@ is assumed. For example, to list all files ending with .c:

for i in *.c
do

cat $i
done

if seq1 then seq2 [ elif seq3 then seq4 ] ... [ else seq5 ] fi
Execute seq1. If the exit status is zero, execute seq2; if not, execute the optional seq3 if given. If the exit
status of seq3 is zero, then execute seq4, and so on. If the exit status of all tested sequences is nonzero,
execute seq5.

time sequence
Time how long it takes sequence to execute. When sequence has finished executing, the time is displayed
on the standard output.

while sequence1 [ do sequence2 ] done
Execute sequence2 as long as the execution of sequence1 results in an exit status of zero.

(sequence)
Execute sequence within a subshell. This allows sequence to change the current directory, for example,
and not affect the enclosing environment.

{sequence}
Braces simply enclose a sequence.

Built-in Commands
ksh executes most commands via the fork system call, which creates a new process. See the Lexicon articles on
fork() and exec for details on these calls. ksh also has the following commands built into itself.

. script Read and execute commands from script. Positional parameters are not allowed. ksh searches the
directories named in the environmental variable PATH to find the given script.

: [token ...]
A colon ‘:’ indicates a ‘‘partial comment’’. ksh normally ignores all commands on a line that begins with a
colon, except for redirection and such symbols as $, {, ?, etc.

# A complete comment: if # is the first character on a line, ksh ignores all text that follows on that line.

alias [name=value ...]
When called without arguments, alias prints all aliases and their values. When called with a name but no
associated value, then it prints the value of name. When called with a name and value combination, it
associated value with name.

For example, the command

alias logout=’exit’

binds the token logout to the command exit: hereafter, whenever you type logout, it will be as if you typed
the exit command.

Note that when you define an alias, you should be careful not to write one that is self-referring, or ksh will
go into an infinite loop when it tries to expand the alias. For example, the definition:

# DO NOT DO THIS!
alias ls=’ls -CF’

will send ksh into an infinite loop, as it tries infinitely to replace ls with ls. Rather, use the definition:
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# THIS IS CORRECT
alias ls=’/bin/ls -CF’

or

# THIS TOO IS CORRECT
alias ls=’ ls -CF’

In the latter example, note the spaces between the first grave character and the ls.

ksh has a number of aliases set by default. See the section Aliases, below, for details.

bind [-m] [key_sequence=binding_name ...]
When called without arguments, list the current set of key bindings for MicroEMACS-style editing of
command lines. When called with arguments, bind the key_sequence to binding_name.

For example, the command

bind ’^[^H’=delete-word-backward

binds the editing command delete-word-backward to the key sequence <esc><backspace>. Note that the
carat characters in this command are literally that, not the shell’s representation of a literal <esc> or
<backspace> character.

When called with the -m option, bind more than one binding_name to a given key_sequence. This lets you
build keyboard macros, to perform complex editing tasks with one or two keystrokes.

For details, see the sections below on command-line editing.

builtin command
Execute command as a built-in command.

cd dir Change the working directory to dir. If no argument is given, change to the home directory as set by the
environmental variable HOME. When invoked, it also changes the environmental variables PWD and
OLDPWD.

Using a hyphen ‘-’ as the argument causes ksh to change to the previous directory, i.e., the one indicated
by shell variable OLDPWD. In effect, this swaps OLDPWD and PWD, thus allowing you to flop back and
forth easily between two directories.

echo token ...
Echo token onto the standard output. ksh replaces the command echo with the alias echo=’print’.

eval [token ...]
Evaluate each token and treat the result as shell input.

exec [command]
Execute command directly rather than as a subprocess. This terminates the current shell.

exit [status]
Set the exit status to status, if given, then terminate; otherwise, the previous status is used.

export [name ...]
ksh executes each command in an environment, which is essentially a set of shell variable names and
corresponding string values. It inherits an environment when invoked, and normally it passes the same
environment to each command it invokes. export specifies that the shell should pass the modified value of
each given name to the environment of subsequent commands. When no name is given, ksh prints the
name of each variable marked for export.

export VARIABLE=value
This form of the export command sets VARIABLE to value, and exports it. Thus, the command

export FOO=bar

is equivalent to the commands:

FOO=bar
export FOO
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fc [-l] [-n] [first [last]]
Draw the previously executed commands first through last back for manipulation and possible execution.
first and last can be referenced either by their history numbers, or by a string with which the command in
question begins. Normally, the commands are pulled into an editor for manipulation before they are
executed; the editor is defined by the environmental variable FCEDIT (default, ed). The commands in
question are executed as soon as you exit from the editor. Option -l lists the command(s) on stdout, and
so suppresses the editing feature. Option -n inhibits the default history numbers.

function funcname { script }
Define function funcname for the shell to execute. For example the following defines function get_name
for the shell:

function get_name {
echo -n Please enter your name ...
read name
return 0

}

When ksh encounters get_name, it runs the above-defined function, rather than trying to find get_name
on the disk. Note that the return status can be any valid status and can be checked in the code that called
get_name by reading the shell variable $? (described above), or by using the function as the argument to
an if statement. This allows you to build constructs like the following:

if get_name; then
do_something

else
do_something_else

fi

To list all defined functions, type the alias functions. To receive detailed information on a defined function,
use the command type name where name is the name of the function in which you are interested.

getopts optstring name [arg ...]
Parse the args to command. See the Lexicon entry for getopts for details.

hash [-r] [name ...]
When called without arguments, hash lists the path names of all hashed commands. When called with
name hash check to see if it is an executable command, and if so adds it to the shell’s hash list. The -r
option removes name from the hash list.

kill [-l] [signal] process ...
Send signal to process. The default signal is TERM, which terminates the process. signal may either be a
number or a mnemonic as #defined in header file <signal.h>. When called with the -l option, it lists all
known types of signals. See the Lexicon entry for kill for details.

let [expression]
Evaluate each expression. This command returns zero if expression evaluates to non-zero (i.e., fails), and
returns non-zero if it evalutes to zero (i.e., succeeds). This is useful for evaluating expressions before
actually executing them.

print [-nreun] [argument ...]
Print each argument on the standard output, separated by spaces and terminated with a newline. Option -
n suppresses printing of the newline. Option -un redirects output from the standard output to file
descriptor n.

Note that each argument can contain the following standard C escape characters: \b, \f, \n, \r, \v, and
\###. See the Lexicon article on C Language for details each character’s meaning. The option -r inhibits
this feature, and the -e option re-enables it.

read name ...
Read a line from the standard input and assign each token of the input to the corresponding shell variable
name. If the input contains fewer tokens than the name list, assign the null string to extra variables. If the
input contains more tokens, assign the last name the remainder of the input.

readonly [name ...]
Mark each shell variable name as a read-only variable. Subsequent assignments to read-only variables will
not be permitted. With no arguments, print the name and value of each read-only variable.
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return [status]
Return status to the parent process.

set [-aefhkmnuvx [-o keyword] [name ...] ]
Set listed flag. The -o option sets keyword, where keyword is a shell option.

When used with one or more names, this command sets shell variables name to values of positional
parameters beginning with $1.

For example, the command

set -h -o emacs ignoreeof

performs the following: turns on hashing for all commands, turns on MicroEMACS-style command-line
editing, and turns off exiting upon EOF (that is, you must type exit to exit from the shell). set commands
are especially useful when embedded in your .profile, where they can customize ksh to your preferences.

For details of this command, see its Lexicon entry.

shift Rename positional parameter 1 to current value of $2, and so on.

test [option] [expression]
Check expression for condition option. This is a useful and complex command, with more options than
can be listed here. See its Lexicon entry for details.

times Print on the standard output a summary of processing time used by the current shell and all of its child
processes.

trap [command] [n ...]
Execute command if ksh receives signal n. If command is omitted, reset traps to original values. To ignore
a signal, pass null string as command. With n zero, execute command when the shell exits. With no
arguments, print the current trap settings.

typeset [-firx] [+firx] [name [=value] ... ]
When called without an argument, this command lists all variables and their attributes.

When called with an option but without a name, it lists all variables that have the specified attribute; - tells
typeset to list the value of each variable and + tells it not to.

When called with one or more names, it gives name to the listed attribute. If name is associated with a
value, typeset also assigns the value to it.

typeset recognizes the following attributes:

-i Store variable’s value as an integer
-f List function instead of variable
-r Make the variable read-only
-x Export variable to the environment

umask [nnn]
Set user file creation mask to nnn. If no argument is given, print the current file creation mask.

unalias name ...
Remove the alias for each name.

wait [pid]
Hold execution of further commands until process pid terminates. If pid is omitted, wait for all child
processes. If no children are active, this command finishes immediately.

whence [-v] name ...
List the type of command for each name. When called with the -v option, also list functions and aliases.

Aliases
ksh implements as aliases a number of commands that sh calls as separate executable programs. The echo alias,
for instance, does everything that /bin/echo does, but ksh does not have to fork() and exec() simply to echo a
token. Other aliases, like pwd, work by printing the contents of shell variables. The command /bin/pwd still
works should you prefer it, but you must request it by its full path name should you not wish to use the much
faster alias version.
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ksh sets the following aliases by default. If you wish, you can use the built-in command unalias to make one or all
of them go away.

echo=print
false=let
functions=typeset -f
history=fc -l
integer=typeset -i
login=exec login
newgrp=exec newgrp
pwd=print -r $PWD
true=:
type=whence -v

The alias history is especially useful when you are using the Korn shell’s history feature. When invoked with no
argument, it prints the last 13 commands you typed. When invoked with one numeric argument, it lists the
command that corresponds to that argument; for example

history 106

prints the 106th command you entered (assuming that you’ve entered that many). When used with two numeric
arguments, it prints the range of commands between the two arguments; for example

history 10 99

prints the tenth through the 99th commands you entered.

Job Control
ksh lets you manipulate and monitor background jobs via its job control commands.

The following commands manipulate background jobs:

jobs Display information about all controlled jobs. Information is in the following format:

%num [+-] pid status command

where num indicates the job number, ‘+’ indicates the current job, ‘-’ indicates the previous job, pid is the
job’s process identifier, status shows the status of the job (e.g., Running, Done, Killed), and command is
the command description. Note that ksh only checks for changes in job status when waiting for a
command to complete.

kill [-signal] pid ...
Described above.

wait [pid]
Hold execution of further commands until process pid terminates. See its Lexicon entry for details.

The following ‘%’ syntax can be used with the above commands:

%+ Select the current job.

%- Select the previous job.

%num Select the job with job number num.

%string Select the most recently invoked job whose command begins with string.

%?string
Select the most recently invoked job whose command contains string.

vi-Style Command-line Editing
ksh, has built into it an editing feature that lets you recall and edit commands using vi-style editing commands.
When you have finished editing, simply typing (¢) dispatches the command for re-execution.

To turn on vi-style editing, use the command

set -o vi
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The following table gives each input-mode command:

\ Escape the next erase or kill character.

<ctrl-D> This character (EOF) terminates ksh if the current line is empty. Note that the command

alias logout=’exit’

neutralizes this effect of EOF.

<ctrl-H> Delete previous character — that is, the character to the left.

<ctrl-V> Quote the next character. You can use this to embed editing and kill characters within a command.

<ctrl-W> Delete the previous word. A ‘‘word’’ is any clump of text delineated by white space.

<ctrl-J>
<ctrl-M>
(¢) Execute this line.

The following table gives each editing-mode command:

[count] k
[count] - Get previous command from the history buffer.

[count] j
[count] + Get next command from the history buffer.

[count] G Get command count from the history buffer. Default is the least recently entered command.

/string Search the history buffer for the most recently entered command that contains string. If string is
NULL, use the previous string. string. must be terminated by <ctrl-M> or <ctrl-J>.

?string Same as /, except that ksh seeks the least recently entered command.

n Repeat the previous search.

N Repeat the last search, but in the opposite direction.

[count] l Move right count characters (default, one).

[count] w Move forward count alphanumeric words (default, one).

[count] W Move forward count blank-separated words (default, one).

[count] e Move forward to the end of the count’th word.

[count] E Move forward to the end of the count’th blank-separated word.

[count] h Move left count characters (default, one).

[count] b Move back count words.

[count] B Move back count blank-separated words.

0 Move cursor to start of line.

^ Move cursor to start of line.

$ Move cursor to end of line.

[count] f c Move rightward to the count’th occurrence of character c.

[count] B c Move leftward to the count’th occurrence of character c.

[count] t c Move rightward almost to the count’th occurrence of character c (default, one). Same as fc followed by
h.

[count] T c Move leftward almost to the count’th occurrence of character c (default, one). Same as Fc followed by l.

; Repeats the last f, F, t, or T command.
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, Reverse of ;.

a Enter input mode and enter text after the current character.

A Append text to the end of the line; same as $a.

[count]cc
c[count]c Delete current character through character c and then execute input line.

s Same as cc.

[count]dmotion
d[count]c Delete current character through the character c.

D Delete current character through the end of line. Same as d$.

i Enter input mode and insert text before the current character.

I Enter input mode and insert text before the first word on the line.

[count]P Place the previous text modification before the cursor.

[count]p Place the previous text modification after the cursor.

R Enter input mode and overwrite characters on the line.

rc Replace the current character with character c.

[count]x Delete the current character.

[count]X Delete the preceding character.

[count]. Repeat the previous text modification command

~ Invert the case of the current character and advance the cursor.

[count]_ Append the count’th word from the previous command and enter input mode (default, last word).

* Attempt file-name generate on the current word. If a match is found, replace the current word with
the match and enter input mode.

u Undo the last text-modification command.

U Restore the current line to its original state.

[count]v Execute command

fc -e ${VISUAL:-${EDITOR:-vi}}

<ctrl-L> Line feed and print the current line.

<ctrl-J>
<ctrl-M>
(¢) Execute the current line.

# Same as I#<return>.

Command Completion
ksh supports command completion. This feature permits you to invoke a command by typing only a fraction of it;
ksh fleshes out the command, based on what commands you have already entered.

To invoke command completion, set the following in .profile or .kshrc:

set -h -o emacs

or:

set -h -o vi

This turns on hashing and tracking. It also turn on command-line editing: the former command turns on
MicroEMACS-style editing, whereas the latter turn on vi-style editing.

As an example, say that you type the following commands:
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compress foo.tar
ps alx
df -t

With MicroEMACS-style editing, if you type <ctrl-X>?, you then see the commands you typed in alphabetical order:

compress df ps

If you want to re-invoke the compress command without having to type all of it, you can use either type <ctrl-R>
followed by ‘c’ to use the shell’s reverse-search capabilities; or you can type ‘c’ followed by <esc><esc> to have the
shell’s command-completion facility complete the command.

If you use the reverse-incremental search, you get the entire command line as you had typed it. Additional uses of
<ctrl-R> while already in search mode tell ksh to search further back in its history list of commands.

If, however, you use the command completion, you get only the command. So, to continue the example, if you type
the letter ‘c’ followed by <esc><esc> ksh displays the word compress, followed by a <space>, and awaits more
input.

In general, the reverse-search is better if you wish to re-execute an entire command; but command completion is
better if you want just the command name.

Under vi-style editing, you can also use command completion. To complete a command, type ‘*’ while in edit
mode; or type <esc>* while in input mode.

File-Name Completion
ksh also lets you ‘‘complete’’ file names and directory names, just like you complete command names. With
MicroEMACS-style editing, the file-completion command is <esc><esc>; with vi-style editing, the file-completion
command is ‘*’ (in edit mode) or <esc>* (in input mode).

If you are entering a file name and have specified enough of the name in order to specify a unique file, typing the
file-completion command completes the file name or directory name. If you have not typed enough, ksh remains
silent; type more characters of the file name, then again try the file-completion command. If you enter a bogus file
name or directory name, ksh beeps to indicate that it cannot complete the given name. When ksh completes a file
name, it then prints a space character. This indicates that the string names a file (rather than a directory); the
space character lets you begin immediately to type the next argument. When ksh completes a directory name, it
appends a slash (‘/’) instead of a space character, and waits for you to type the next part of the path name.

For example, if you type

ls -l /usr/spool/uucp

followed by <esc><esc>, nothing happens because of the ambiguity between directory names /usr/spool/uucp/
and /usr/spool/uucppublic/.

If you then type the letter ‘p’, the command now appears:

ls -l /usr/spool/uucpp

Typing <esc><esc> now expands it out to

ls -l /usr/spool/uucppublic/

which is the name you desire. Note that ksh appends the trailing slash and waits for more.

A file-name completion example is:

more /usr/lib/uucp/P

followed by <esc><esc>; this yields:

more /usr/lib/uucp/Permissions

which saves you eight keystrokes.

.profile and .kshrc
When a user of the Korn shell logs into COHERENT, ksh first executes the script /etc/profile. This sets up default
environmental variables for every user on the system, such as the default PATH and the default TERM variables.

Next, ksh executes the script .profile in the user’s home directory. You can customize this file to suit your
preferences. For example, you can set up a customized PATH, define aliases, and have the shell execute some
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programs automatically (such as calendar or fortune).

Finally, ksh executes the script named in the environmental variable ENV whenever you invoke a shell. By
custom, this script is named .kshrc and is kept in your home directory, but you name it anything you wish. This
file should define how you want the shell itself to function. In this way, you can ensure that your settings will be
available to all subshells, as well as to your login shell. If you wish to hide these settings from subshells, just
conclude your .kshrc with the command:

unset ENV

For more information, see the Lexicon articles profile, .profile, and .kshrc.

Example
The following C code creates a program called splurt.c. It demonstrates numbered redirection of ksh, by writing to
five streams without opening them. Compile it with the command:

cc -o splurt splurt.c

To call it from the command line, you could type a command of the form:

splurt 3> splurt3 4> splurt4 5> splurt5 6> splurt6 7> splurt7

This will redirect the splurt’s output into files splurt3 through splurt7.

#include <stdio.h>
main()
{

int i;
char buf[50];

for(i = 3; i < 8; i++) {
sprintf(buf, "For fd %d\n", i);
write(i, buf, strlen(buf));

}
}

Files
/etc/profile — System-wide initial commands
$HOME/.kshrc — Set up user-specific environment
$HOME/.profile — User-specific initial commands
/dev/null — For background input

See Also
bind, commands, dup(), environ, exec, fork(), getopts, jobs, kill, .kshrc, login, newgrp, profile, set, sh,
signal(), test, Using COHERENT, vsh, wait

For a list of commands associated with ksh, see the Shell Commands section of the Commands Lexicon article.

Introduction to sh, the Bourne Shell, tutorial

Notes
Note that the queue of previously issued commands is stored in memory, not on disk.

This version of ksh does not support variable arrays.

The Mark Williams version of ksh is based on the public-domain version of the Korn shell, which in turn is based
on the public-domain version of the seventh edition Bourne shell written by Charles Forsyth and modified by Eric
Gisin, Ron Natalie, Arnold Robbins, Doug Gwyn, and Erik Baalbergen.

KSH_VERSION — Environmental Variable
List current version of Korn shell

The Korn shell stores its current version in environmental variable KSH_VERSION.

See Also
environmental variables, ksh
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.kshrc — System Administration
Set personal environment for Korn shell

Whenever you invoke the Korn shell ksh, it executes the script named in the environmental variable ENV. By
custom, this is usually the file ${HOME}/.kshrc.

To ensure that .kshrc is executed whenever you log in, insert the line

export ENV=${HOME}/.kshrc

into your .profile.

.kshrc should include all items that you wish to have known to all of the shells that you invoke — both the login
shell and all subshells. These should include aliases, environmental variables, and the set commands that you
use to fine-tune the operation of the shell. If you wish to define items in your login shell but hide them from
subshells, simply place them in your .profile instead of your .kshrc. For example, the command

set -o emacs

turns on MicroEMACS-style command-line editing for all of your subshells when you insert it into your .kshrc, but
turns it on only for your login shell if you insert it only into your .profile.

The following gives a sample .kshrc:

# Set the main prompt (PS1) to be the machine (i.e., site) name, the
# tty name (i.e., session name) and the current directory. The
# second-level prompt (PS2) used for multi-line commands is much simpler.
SITE=‘cat /etc/uucpname‘
TTY=‘tty | sed s/^.....//‘
PS1=’$SITE $TTY $PWD: ’
PS2=’MORE> ’

# Turn on hashing, tracking, and filename completion (-h), EMACS-like
# command-line editing, and ignore end-of-file (<ctrl-D>) as a way to
# log out.
set -h -o emacs ignoreeof

#
# Add the word "logout" as an alias for "exit".
#
alias logout=’exit’

# Add EMACS command line editing command "delete-word-backword" bound
# to the key sequence <Esc><Backspace>. Note that there are four
# characters inside the apostrophes; the shell interprets a ^
# followed by a character as meaning <Ctrl> character.
bind ’^[^H’=delete-word-backward

# Select MicroEMACS as the default editor to use with "fc" commands
FCEDIT=emacs

See Also
Administering COHERENT, ENV, ksh, profile, .profile, Using COHERENT

ktty.h — Header File
Kernel portion of tty structure
#include <sys/ktty.h>

The header file ktty.h defines the kernel’s portion of the teletypewriter (tty) structure. It also defines a set of test
macros that can be used to test for specific conditions.

See Also
header files
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l — Command
List directory’s contents in long format
l [file ...]

l is a link to the command ls -l. It prints the contents of file in long format, that is, showing its length, its owner,
the date and time it was last modified, and other useful information. If a file is a directory, l lists its contents. If
no file is named, l lists the contents of the current directory by default.

See Also
commands, lc, lf, lr, ls, lx

l.out.h — Header File
Format for COHERENT 286 objects
#include <l.out.h>

The header file l.out.h describes the l.out object format, which is produced by the compiler, assembler, and the
linker under COHERENT 286.

The assembler outputs an unlinked object module, which must be bound with any required libraries (leaving no
unresolved symbols) to produce an executable file, or load module. A call to one of the exec routines can then
execute the load module directly.

The link module begins with a header, which gives global and size information about each segment. Segments of
the indicated size follow the header in a fixed order. The header file l.out.h defines the header structure as follows:

struct ldheader {
short l_magic;
short l_flag;
short l_machine;
unsigned short l_entry;
fsize_t l_ssize[NLSEG];

};

l_magic is the magic number that identifies a link module; it always contains L_MAGIC. l_flag contains flags
indicating the type of the object. l_machine is the processor identifier, as defined in the header file mtype.h.
l_tbase is the start of the text segment. l_entry contains the machine address where execution of the module
commences. l_ssize gives the size of each segment.

Files
l.out — Default load module name
<l.out.h> — Define format of COHERENT 286 objects
<mtype.h> — Machine identifiers

See Also
as, cc, core, exec, ld, libc, mtype, nm

Notes
COHERENT 386 uses the common object file format (COFF) for its executables. See the Lexicon entry for coff.h for
information on this format.
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l3tol() — General Function (libc)
Convert file system block number to long integer
l3tol(lp, l3p, n)
long *lp;
char *l3p;
unsigned n;

To conserve space inside i-nodes in COHERENT file systems, the system stores block addresses in three bytes.
Programs that reference or maintain file systems use the functions l3tol() and ltol3() routines to convert between
the three-byte representation and long numbers.

l3tol() converts n three-byte block addresses at location l3p to an array of long integers at location lp.

See Also
libc

LASTERROR — Environmental Variable
Program that last generated an error
LASTERROR=program name

The environmental variable LASTERROR names the last program to have returned an error to the shell. For
example, if you had used the command set with an incorrect number of arguments, it would have failed to run and
would have exited with an error condition, and LASTERROR would read LASTERROR=set.

The command help reads LASTERROR to determine what the last program was for which you needed help. Thus,
if you type help without an argument, it will return information about the program named in LASTERROR.

See Also
environmental variables

.lastlogin — System Administration
Record of last login
$HOME/.lastlogin

The command login records in file $HOME/.lastlogin the date and time you last logged in. login displays the
information the next time you log in.

If this file does not exist login assumes that you are a new user, and by default executes the file
/etc/default/welcome. This provides a ‘‘friendly’’ environment for users who are using COHERENT for the first
time.

See Also
Administering COHERENT, login, Using COHERENT

Latin 1 — Definition
Standard 8859 of the International Standards Organization (ISO) defines a set of tables of eight-bit codes for the
printable characters used in various languages.

The lower seven bits of each table (i.e., values 0x20 through 0x7E) are the same as those defined in ISO Standard
646; which, in turn, are the same as those in the character set called ‘‘U.S. ASCII’’, which encodes the Latin
alphabet, plus numerals, punctuation marks, and additional characters commonly used in the United States.
Values 0xA0 through 0xFF of each table in ISO 8859 either adds additional characters used in family of languages,
or maps the characters in the Latin alphabet to the characters in another alphabet. For example, the table ISO
8859.2 (also called ISO Latin 2) adds to U.S. ASCII the characters used in the languages Albanian, Czech, Slovak,
Hungarian, Polish, Romanian, and Croatian; whereas the table ISO 8859.6 maps the Latin alphabet to the Arabic
alphabet.

Table ISO 8859.1 is also called ISO Latin 1. It adds the national characters used most Romance and Germanic
languages (i.e., English, German, Dutch, Flemish, Norwegian, Icelandic, Swedish, Danish, Spanish, French, Italian,
and Portuguese), plus Anglo-Saxon, Irish, and Finnish.

Please note that unlike U.S. ASCII, the characters in an ISO 8859 table are not in their proper order for lexical
sorting. The character tables for locale-specific sorting are kept elsewhere.
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As mentioned above, the printable characters 0x20 (space) through 0x7E (tilde) in ISO Latin 1 are the same as they
are in U.S. ASCII. The following table gives the additional printable characters that ISO Latin 1 defines, from 0xA1
through 0xFF. The table gives each character’s value in octal, decimal, and hexadecimal, and its description. Note
that our printer does cannot print every character, so in some cases the description must suffice.

0241 161 0xA1 ¡ Inverted exclamation mark
0242 162 0xA2 ¢ Cent sign
0243 163 0xA3 £ Pound sign
0244 164 0xA4 ¤ Currency sign
0245 165 0xA5 ¥ Yen sign
0246 166 0xA6 Broken bar
0247 167 0xA7 § Section symbol
0250 168 0xA8 ¨ Diaeresis
0251 169 0xA9  Copyright sign
0252 170 0xAA ª Feminine ordinal indicator
0253 171 0xAB « Left angle quotation mark
0254 172 0xAC – Not sign
0255 173 0xAD Soft hyphen
0256 174 0xAE  Registered trade mark sign
0257 175 0xAF ¯ Macron
0260 176 0xB0 ˚ Ring above or degree sign
0261 177 0xB1 ± Plus-minus sign
0262 178 0xB2 Superscript two
0263 179 0xB3 Superscript three
0264 180 0xB4 Acute accent
0265 181 0xB5 µ Micro sign (mu)
0266 182 0xB6 ¶ Pilcrow (paragraph) sign
0267 183 0xB7 Middle dot
0270 184 0xB8 ¸ Cedilla
0271 185 0xB9 Superscript one
0272 186 0xBA º Masculine ordinal indicator
0273 187 0xBB » Right angle quotation mark
0274 188 0xBC Vulgar fraction one quarter
0275 189 0xBD Vulgar fraction one half
0276 190 0xBE Vulgar fraction three quarters
0277 191 0xBF ¿ Inverted question mark
0300 192 0xC0 A with grave accent
0301 193 0xC1 A with acute accent
0302 194 0xC2 A with circumflex accent
0303 195 0xC3 A with tilde
0304 196 0xC4 A with diaeresis
0305 197 0xC5 A with ring above
0306 198 0xC6 Æ Diphthong A with E
0307 199 0xC7 Ç C with cedilla
0310 200 0xC8 E with grave accent
0311 201 0xC9 E with acute accent
0312 202 0xCA E with circumflex accent
0313 203 0xCB E with diaeresis
0310 204 0xCC I with grave accent
0311 205 0xCD I with acute accent
0312 206 0xCE I with circumflex accent
0313 207 0xCF I with diaeresis
0320 208 0xD0 Capital eth
0321 209 0xD1 N with tilde
0322 210 0xD2 O with grave accent
0323 211 0xD3 O with acute accent
0324 212 0xD4 O with circumflex accent
0325 213 0xD5 O with tilde
0326 214 0xD6 O with diaeresis
0327 215 0xD7 Multiplication sign
0330 216 0xD8 Ø O with oblique stroke
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0331 217 0xD9 U with grave accent
0332 218 0xDA U with acute accent
0333 219 0xDB U with circumflex accent
0334 220 0xDC U with diaeresis
0335 221 0xDD Y with acute accent
0336 222 0xDE Thorn
0337 223 0xDF ß Sharp s
0340 224 0xE0 à a with grave accent
0341 225 0xE1 á a with acute accent
0342 226 0xE2 â a with circumflex accent
0343 227 0xE3 ã a with tilde
0344 228 0xE4 ä a with diaeresis
0345 229 0xE5 å a with ring above
0346 230 0xE6 æ Diphthong a with e
0347 231 0xE7 ç c with cedilla
0350 232 0xE8 è e with grave accent
0351 233 0xE9 é e with acute accent
0352 234 0xEA ê e with circumflex accent
0353 235 0xEB ë e with diaeresis
0354 236 0xEC ì i with grave accent
0355 237 0xED í i with acute accent
0356 238 0xEE î i with circumflex accent
0357 239 0xEF ï i with diaresis
0360 240 0xF0 Small eth
0361 241 0xF1 ñ n with tilde
0362 242 0xF2 ò o with grave accent
0363 243 0xF3 ó o with acute accent
0364 244 0xF4 ô o with circumflex accent
0365 245 0xF5 õ o with tilde
0366 246 0xF6 ö o with diaeresis
0367 247 0xF7 Division sign
0370 248 0xF8 ø o with oblique stroke
0371 249 0xF9 ù u with grave accent
0372 250 0xFA ú u with acute accent
0373 251 0xFB û u with circumflex accent
0374 252 0xFC ü u with diaresis
0375 253 0xFD ý y with acute accent
0376 254 0xFE Small thorn
0377 255 0xFF ÿ y with diaeresis

See Also
ASCII, Programming COHERENT

lc — Command
List directory’s contents in columnar format
lc [ -1abcdfp ] [ directory ...]

lc lists the names of the files in each directory, or the current directory if no directory is named. The files are
categorized by type (files, directories, and so on) and listed in columns within each category.

The following options modify the output.

-1 List only one file name per line (do not print in columns). Please note that this is the numeral one, not a
lower-case el.

-a List all file names, including ‘.’ and ‘..’.

-b List block-special files only.

-c List character-special files only.

-d List directories only.
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-f List regular files only.

-p List pipe files only.

See Also
commands, ls

Notes
lc -lf is useful for producing a list of regular files. For example

cp `lc -lf` mydir

copies all regular files to directory mydir.

lcasep — Command
Convert text to lower case
lcasep [-f inputfile] [-o outputfile]

The command lcasep converts characters in its input stream to lower case. If you do not name an inputfile on the
command line, lcasep reads the standard input. If you do not name an outputfile, it writes it output to the
standard output.

See Also
commands, mail

Notes
The command smail uses lcasep to convert headers on mail messages to convert addresses to lower case.
Normally, users do not run it directly.

lcong48() — Random-Number Function (libc)
Initialize values from which 48-bit random numbers are computed
long lcong48(param)
unsigned short param[7];

Computation of 48-bit pseudo-random numbers uses two 48-bit integers and one 16-bit integer. One of the 48-bit
values holds the ‘‘seed’’ value from which the 48-bit pseudo-random value is computed. This seed can be set
explicitly, or is the previously computed pseudo-random number. The other 48-bit integer holds the multiplier
from which the pseudo-random number is computed; and the 16-bit integer gives holds the addend.

Function lcong48() initializes the variables used to compute 48-bit pseudo-random numbers. param is an array of
seven unsigned short integers that hold the initializers: param[0] through param[2] hold the ‘‘seed’’; param[3]
through param[5] hold the multiplier; and param[6] holds the addend.

lcong48() returns nothing.

See Also
libc, srand48()

ld — Command
Link relocatable object modules
ld [option ...] file ...

A compiler translates a file of source code into a relocatable object. This relocatable object cannot be executed by
itself, for calls to routines stored in libraries have not yet been resolved. ld combines, or links, relocatable object
files with routines stored in libraries produced by the archiver ar to construct an executable file. For this reason,
ld is sometimes called a linker, a link editor, or a loader.

ld scans its arguments in order and interprets each option as described below. Each non-option argument is
either a relocatable object file, produced by cc, as, or ld, or a library archive produced by ar. It rejects all other
arguments and prints a diagnostic message.

Each relocatable file argument is bound into the output file if its machine type matches the machine type of the
first file so bound; if it does not, ld prints a diagnostic message. The symbol table of the file is merged into the
output symbol table and the list of defined and undefined symbols updated appropriately. If the file redefines a
symbol defined in an earlier bound module, the redefinition is reported and the link continues. The last such
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redefinition determines the value that the symbol will have in the output file, which may be acceptable but is
probably an error.

Each library archive argument is searched only to resolve undefined references, i.e., if there are no undefined
symbols, the linker goes to the next argument immediately. The library is searched from first module to last and
any module that resolves one or more undefined symbols is bound into the output exactly as an explicitly named
relocatable file is bound. The library is searched repeatedly until an entire scan adds nothing to the executable
file.

The order of modules in a library is important in two respects: it will affect the time required to search the library,
and, if more than one module resolves an undefined symbol, it can alter the set of library modules bound into the
output.

A library will link faster if the undefined symbols in any given library module are resolved by a library module that
comes later in the library. Thus, the low-level library modules, those with no undefined symbols, should come at
the end of the library, whereas the higher-level modules, those with many undefined symbols, should come at the
beginning. The library module ranlib.sym, which is maintained by the ar s modifier, provides ld with a
compressed index to the symbols defined in the library. But even with the index, the library will link much faster if
the modules occur in top-down rather than bottom-up order.

A library can be constructed to provide a type of ‘‘conditional’’ linking if alternate resolutions of undefined symbols
are archived in a carefully thought-out order. For instance, libc.a contains the modules

finit.o
exit.o
_finish.o

in precisely the order given, though some other modules may intervene. finit.o contains most of the internals of
the STDIO library, exit.o contains the exit() function, and _finish.o contains an empty version of _finish(), the
function that exit() calls to close STDIO streams before process termination. If a program uses any STDIO
routines, macros, or data, then finit.o will be bound into the output with its version of finish(). If a program uses
no STDIO, then the ‘‘dummy’’ _finish.o will be bound into the output because it is the first module that defines
_finish() that the linker encounters after exit.o adds the undefined reference. This saves approximately 3,000
bytes. To set the order of routines within a library, use the archiver ar.

COFF Linking
COHERENT uses the Common Object File Format (COFF). This format renders many advantages, but it also places
special demands upon the linker. The following discussing some of the complexities that arise for linking into the
COFF format.

Under COFF, common variables are kept aligned according to their most strongly aligned contributor. If name is
linked with another module that also declares name but sets it to another length, the linker creates one such
variable and gives it the greater length of the two. ld deduces the alignment of a common variable by its length: if
the length of a common is divisible by four, it is aligned on a four-byte boundary; if it is divisible by two, it is
aligned on a two-byte boundary. Otherwise, it is assumed to be unaligned. The linker supports only three classes
of alignment: four-byte, two-byte, and unaligned. It then aligns a common variable according to its most strongly
aligned contributor.

For example, if one assembly-language module contributes a .comm (common) variable named xyz whose length is
four bytes, and another contributes another xyz whose length is five bytes, ld gives the resulting xyz a length of
eight bytes to satisfy the length requirement (at least five) and the alignment requirement (four-byte boundary).

Or in another example, if you declare a C variable char x; x is a common variable, with a length of one byte. If
another C module declares long x; the two x’s will share a length of four bytes. However, in the first module
sizeof(x) == 1 and in the second sizeof(x) == 4. These will cause warning messages to appear, which you can turn
off by using the -q option.

After ld has made its first pass, it places all common variables at the end of the .bss segment: first the four-byte-
aligned variables, then the two-byte-aligned, then the unaligned.

Options
ld recognizes the following options:

-e entry
Specify the entry point of the output module, either as a symbol or as an absolute octal address.
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-f (Force) Force link even if there are errors. Results may be undefined.

-G Suppress the common/global warning — that is, tell ld not to complain if a global variable is also used as
a common variable.

-i This option is obsolete, but is kept for compatibility purposes. If you include it in a makefile, ld will
silently ignore it.

-K Link a kernel segment.

-Ldirectory
Search directory for libraries and objects before searching the directories named in LIBPATH. Note that
you can have more than one -L option in a ld command line. For example, if LIBPATH is set to
/lib:/usr/lib, then the command line

ld -L/search/First -L/search/Next a.o -lxyz

tells ld to search for libraries libxyz.a and libc.a along the path:

/search/First:/search/Next:/lib:/usr/lib

The character that separates entries in the path is set by the macro LISTSEP. Header file path.h defines
this to be the ‘:’.

-l name An abbreviation for the library /lib/libname.a or /usr/lib/libname.a if the first is not found.

-o file Write output to file. The default is a.out.

-q Suppress all warning messages.

-Q Suppress all error messages, not just warnings.

-r Retain relocation information in the output, and issue no diagnostic message for undefined symbols. This
option builds a .o file that appears as if its pieces had been compiled together.

-s Strip the symbol table from the output. The same effect may be obtained by using the command strip.
The -s and -r options are mutually exclusive.

-u symbol
Add symbol to the symbol table as a global reference, usually to force the linking of a particular library
module.

-X Discard local compiler-generated symbols beginning .L.

-x Discard all local symbols.

ld reads the environmental variables LDHEAD and LDTAIL and appends them to, respectively, the beginning and
end of its command line. For example, to ensure that ld is always executed with the option -d, insert the following
into your .profile:

export LDHEAD=-d

Likewise, to ensure that ld always includes the mathematics library libm when it links, insert the following into
your .profile:

export LDTAIL=-lm

LIBPATH
Except when used with its -l option, ld does not know about paths: it links exactly what you tell it to link via the
cc command line. cc looks for libraries by searching the directories named in the environmental variable
LIBPATH. If you do not define LIBPATH in your environment, it searches the default LIBPATH as defined in
/usr/include/path.h. If you define LIBPATH, cc searches the directories in the order you specify. For example, a
typical definition is:

export LIBPATH=:/lib:/usr/lib

This searches the current directory ‘.’, then /lib, then /usr/lib.

Linker-defined Symbols
ld defines the following set of symbols within an executable program:
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__end_text End of the .text segment
__end_data End of the .data segment
__end_bss End of the .bss segment
__end End of the highest segment

Note that if you have a segment named .xyz, then ld will allow you to use __end_xyz.

Files
a.out — Default output
/coherent for -k option
/lib/lib*.a — Libraries
/usr/lib/lib*.a — More libraries

See Also
ar, ar.h, as, cc, cdmp, coff.h, commands, l.out.h, LIBPATH, strip

Diagnostics
The following gives the error messages returned by ld. The messages are in alphabetical order; each is marked as
to whether it is a fatal or warning condition. A fatal message usually indicates a condition that caused the
compiler to terminate execution. Warning messages point out code that is compilable, but may produce trouble
when the program is executed.

archive ’string’ is corrupt (fatal)
This archive makes no sense. You may wish to examine this with the archiver ar.

file string: module string: bad header (warning)
string does not look like a real object module.

can’t find ’string’ (fatal)
ld cannot find the requested library. Make sure that the cc command line points to the directory that
holds the archive.

cannot create ’string’ (fatal)
ld cannot create its output file.

entry point ’string’ not in .text (warning)
error reading ’string’ (fatal)

’string’ is not a COFF archive (fatal)
All files ending .a should be COFF archives. You may need to rebuild this archive.

Library must be created with ar -s option (fatal)
The option -s to ar gives libraries a symbol table for the use of ld.

No work (fatal)
There were no object files loaded.

pass 1, n errors (fatal)
At the end of pass 1 there were n errors detected. The link stopped here.

symbol ’string’ redefined in file ’string’: module ’string’ (warning)
A symbol is defined in incompatible ways in different files.

symbol ’string’ redefined in file ’string’ (warning)
A symbol is defined in incompatible ways in different files.

file string: module string: relocation out of range 0xn (warning)
A relocation record points outside the range of its segment.

symbol ’string’ severe warning symbol defined as a common and a global (warning)
A symbol was defined as a common, e.g.

int x;
and as a global, e.g.:

int x = 5;
There is no good way to fix this without reading the code and thinking about the variable usage. The
linker turned the global into an external. That is, it turned
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int x;
into

extern int x;
This matches the UNIX linker.

file string: module string: unknown r_type n in segment n record n (warning)
Unknown type on COFF relocation record.

unlikely input file name ’string’ (warning)
Input file names must end .o for object or .a for archive.

symbol ’string’ warning defined with lengths n and n (warning)
A common was defined with different lengths, while this is legal it is very unusual in C programs. This
warning may be turned off with the flag -c.

symbol ’string’ warning, redefines builtin symbol (warning)
Some symbols such as __end and __end_text are special to the linker. In general, symbols beginning ‘__’
are reserved to implementors and should be avoided by users. Your definition has been used.

write error (fatal)
ld cannot write the executable program. Check that you have permission to write into the target directory.

Notes
If you are linking a program by hand (that is, running ld independently from the cc command), be sure to include
the appropriate run-time start-up routine with the ld command line; otherwise, the program will not link correctly.

ldexp() — General Function (libc)
Combine fraction and exponent
#include <math.h>
double ldexp(f, e)
double f; int e;

ldexp() combines the fraction f with the binary exponent e to return a floating-point value real that satisfies the
equation real=m×2^e.

See Also
atof(), ceil(), fabs(), floor(), frexp(), libc, modf()
ANSI Standard, §7.5.4.3
POSIX Standard, §8.1

LDHEAD — Environmental Variable
Append options to beginning of ld command line
export LDHEAD=options

The COHERENT linker ld reads the environmental variables LDHEAD and LDTAIL before it begins its work. You
can set these variables to hold the default options that you want the linker always to use.

ld appends the options in LDHEAD to the beginning of its command line.

See Also
environmental variables, ld, LDTAIL

Notes
This environmental variable is included only to support existing code. Its use is deprecated, and it may not be
supported in future releases of COHERENT.

ldiv() — General Function (libc)
Perform long integer division
#include <stdlib.h>
ldiv_t ldiv(numerator, denominator)
long numerator, denominator;
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ldiv() divides numerator by denominator. It returns a structure of the type ldiv_t, which is structured as follows:

typedef struct {
long quot;
long rem;

} ldiv_t;

ldiv() writes the quotient into quot and the remainder into rem.

The sign of the quotient is positive if the signs of the arguments are the same; it is negative if the signs of the
arguments differ. The sign of the remainder is the same as the sign of the numerator.

If the remainder is non-zero, the magnitude of the quotient is the largest integer less than the magnitude of the
algebraic quotient. This is not guaranteed by the operators / and %, which merely do what the machine
implements for divide.

See Also
libc
ANSI Standard, §7.10.6.4

Notes
The ANSI Standard includes this function to permit a useful feature found in most versions of FORTRAN, where the
sign of the remainder will be the same as the sign of the numerator. Also, on most machines, division produces a
remainder. This allows a quotient and remainder to be returned from one machine-divide operation.

If the result of division cannot be represented (e.g., because denominator is set to zero), the behavior of ldiv() is
undefined. Caveat utilitor.

LDTAIL — Environmental Variable
Append options to end of ld command line
export LDTAIL=options

The COHERENT linker ld reads the environmental variables LDHEAD and LDTAIL before it begins its work. You
can set these variables to hold the default options that you want the linker always to use.

ld appends the options in LDTAIL to the end of its command line.

See Also
environmental variables, ld, LDHEAD

Notes
This environmental variable is included only to support existing code. Its use is deprecated, and it may not be
supported in future releases of COHERENT.

let — Command
Evaluate an expression
let [expression]

The command let is built into the Korn shell ksh. It evalutes expression; it returns zero if expression evaluates to
non-zero status, and non-zero if it evaluates to zero status.

See Also
commands, ksh

lex — Command
Lexical analyzer generator
lex [-t][-v][file]
cc lex.yy.c -ll

Many programs, e.g., compilers, process highly structured input according to rules. Two of the most complicated
parts of such programs are lexical analysis and parsing (also called syntax analysis). The COHERENT system
includes two powerful tools called lex and yacc to help you construct these parts of a program. lex converts a set
of lexical rules into a lexical analyzer, and yacc converts a set of parsing rules into a parser.

The output of lex may be used directly, or may be used by a parser generated by yacc.
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lex reads a specification from the given file (or from the standard input if none), and generates a C function called
yylex(). lex writes the generated function in the file lex.yy.c, or on standard output if you use the -t option. The -v
option prints some statistics about the generated tables.

The tutorial on lex that appear in this manual describes lex in detail. In brief, the generated function yylex()
matches portions of its input to one pattern (sometimes called a regular expression) from a set of rules, or context,
and executes associated C commands. Unmatched portions of the input are copied to the output stream. yylex()
returns EOF when input has been exhausted.

lex uses the following macros that you may replace with the preprocessor directive #undef if you wish: input()
(read the standard input stream), and output(c) (write the character c to the standard output stream). You may
also replace the following functions if you wish: main() (main function), error(...) (print error messages; takes same
arguments as printf), and yywrap() (handle events at the end of a file). If an action is desired on end of file, such
as arranging for more input, yywrap() should perform it, returning zero to keep going.

A full lex specification has the following format:

• Macro definitions, of the form:

name pattern

• Start condition declarations:

%S NAME ...

• Context declarations:

%C NAME ...

• Code to be included in the header section:

%{
anything
%}
<tab or space> anything

• Rules section delimiter (must always be present):

%%

• Code to appear at the start of yylex():

<tab or space> anything

• Rules for initial context, in any of the forms:

rule action;
rule | (means use next action)
rule {
<tab or space> action;
<tab or space> }

• For each additional context:

%C NAME
...rules for this context...

• End of rules section delimiter:

%%

• Code to be copied verbatim, such as user provided input(), output(), yywrap(), or other.

lex matches the longest string possible; if two rules match the same length string, the rule specified first takes
precedence. lex puts the matched string, or token, in the char array yytext[], and sets the variable yyleng to its
length.

Actions may use the following:

ECHO . . . . . . . . . . . Output the token
REJECT . . . . . . . . . Perform action for lower precedence match
BEGIN NAME . . . . . . Set start condition to NAME
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BEGIN 0 . . . . . . . . . Clear start condition
yyswitch(NAME) . . . . Switch to context NAME, return current
yyswitch(0) . . . . . . . Switch to initial context
yynext() . . . . . . . . . Steal next character from input
yyback(c). . . . . . . . . Put character c back into input
yyless(n) . . . . . . . . . Reduce token length to n, put rest back
yymore() . . . . . . . . . Append next token to this one
yylook() . . . . . . . . . Returns number of chars in input buffer

lex rules are contiguous strings of the form

[ <NAME,...> ][ ^ ] token [ /lookahead ][ $ ]

where brackets ‘[ ]’ indicate optional items.

<NAME,...> . . . . . . . . Match only under given start conditions
^ . . . . . . . . . . . . . . Match the beginning of a line
$ . . . . . . . . . . . . . . Match the end of a line
token . . . . . . . . . . . Pattern that a given token is to match
/lookahead. . . . . . . . Pattern that given trailing text is to match

Pattern elements:

a . . . . . . . . . . . . . . The character a
\a . . . . . . . . . . . . . The character a, even if special
. . . . . . . . . . . . . . . Any character except newline
[abx-z] . . . . . . . . . . Any of a, b, or x through z
[^abx-z] . . . . . . . . . . Any except a, b, or x through z
abc . . . . . . . . . . . . The string abc, even if any are special
{name} . . . . . . . . . . The macro definition name
(exp). . . . . . . . . . . . The pattern exp (grouping operator)

Optional operators on elements:

e? . . . . . . . . . . . . . Zero or one occurrence of e
e* . . . . . . . . . . . . . Zero or more consecutive es
e+ . . . . . . . . . . . . . One or more consecutive es
e{n} . . . . . . . . . . . . n (a decimal number) consecutive es
e{m,n}. . . . . . . . . . . m through n consecutive es

Patterns may be of the form:

e1e2. . . . . . . . . . . . Matches the sequence e1 e2
e1|e2 . . . . . . . . . . . Matches either e1 or e2

lex recognizes the standard C escapes: \n, \t, \r, \b, \f, and \ooo (octal representation). The special characters

\ ( ) < > { } % * + ? [ - ] ^ / $ . |

must be prefixed with \ or enclosed within quotation marks (excepting " and \) to be normal. Within classes, only
the characters . ^ - \ and ] are special.

Files
/usr/lib/libl.a
/usr/src/libl/* — library source code

See Also
commands, yacc
Introduction to lex, the Lexical Analyzer

Lexicon — Technical Information
Format of the COHERENT manual pages

The COHERENT manual pages use a unique format, which we call ‘‘the Lexicon.’’ Under this format, each function,
each command, and each term has its own entry in the manual. All manual entries are printed together, instead of
being divided into segments. The purpose of this format is to make it easy for you to find the manual entry for any
given command or function. Anyone who as struggled with the multiple volumes of UNIX documentation can
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appreciate this feature of the COHERENT Lexicon.

For more details on the Lexicon format, see the introduction to the Lexicon.

See Also
Administering COHERENT, Programming COHERENT, Using COHERENT

lf — Command
List directory’s contents in columnar format
lf [file ...]

lf is a link to the command ls -CF. It prints file in columnar format, like the command lc. lf, however, combines
files and directories into one listing, with directories being indicated by a slash after the file name and executable
being indicated by an asterisk. If a file is a directory, l lists its contents. If no file is named, lf lists the contents of
the current directory by default.

See Also
commands, l, lc, lr, ls, lx

libc — Library
Standard C library
/lib/libc.a

libc is the library that contains most functions linked into C programs. It contains many general-purpose
functions, as well as stubs for COHERENT system calls. The following summarizes these functions.

Binary Data
The following functions manipulate binary data types, that is, integers and floating-point numbers.

abs(). . . . . . . . . . . . Return the absolute value of an integer
decvax_d() . . . . . . . . Convert a double from IEEE to DECVAX format
decvax_f() . . . . . . . . Convert a float from IEEE to DECVAX format
div() . . . . . . . . . . . . Perform integer division
frexp() . . . . . . . . . . Separate fraction and exponent
ieee_d() . . . . . . . . . . Convert a double from DECVAX to IEEE format
ieee_f() . . . . . . . . . . Convert a float from DECVAX to IEEE format
ldexp() . . . . . . . . . . Combine fraction and exponent
ldiv() . . . . . . . . . . . Perform long integer division
modf() . . . . . . . . . . Separate integral part and fraction

Binary Data and Strings
The following functions convert binary data forms to strings, or strings to binary forms.

atof() . . . . . . . . . . . Convert ASCII strings to floating point
atoi() . . . . . . . . . . . Convert ASCII strings to integers
atol() . . . . . . . . . . . Convert ASCII strings to long integers
ecvt() . . . . . . . . . . . Convert floating-point numbers to strings
fcvt() . . . . . . . . . . . Convert floating-point numbers to strings
gcvt() . . . . . . . . . . . Convert floating-point numbers to strings
strtod() . . . . . . . . . . Convert string to floating-point number
strtol() . . . . . . . . . . Convert string to long integer
strtoul() . . . . . . . . . Convert string to unsigned long integer

ctype Functions
The ctype functions test a character’s type. Some can transform some characters into others. ‘‘ctype’’ is an
abbreviation for ‘‘character type’’; all are declared or defined in the header file <ctype.h>. They are as follows:

_tolower() . . . . . . . . Convert an upper-case character to lower case
_toupper() . . . . . . . . Convert a lower-case character to upper case
isalnum(). . . . . . . . . Test if alphanumeric character
isalpha() . . . . . . . . . Test if alphabetic character
isascii(). . . . . . . . . . Test if ASCII character
iscntrl(). . . . . . . . . . Test if a control character
isdigit(). . . . . . . . . . Test if a numeric digit
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isgraph() . . . . . . . . . Test if a graphics character
islower() . . . . . . . . . Test if lower-case character
isprint() . . . . . . . . . Test if printable character
ispunct() . . . . . . . . . Test if punctuation mark
isspace() . . . . . . . . . Test if a tab, space, or return
isupper() . . . . . . . . . Test if upper-case character
isxdigit() . . . . . . . . . Test if hexadecimal numeral
toascii() . . . . . . . . . Convert a character to ASCII
tolower() . . . . . . . . . Convert an upper-case character to lower case
toupper() . . . . . . . . . Convert a lower-case character to upper case

Files and Directories
The following functions are used to manipulate files and directories, and their names.

_getwd() . . . . . . . . . Get current working directory name
closedir(). . . . . . . . . Close a directory stream
dup2(). . . . . . . . . . . Duplicate a file descriptor
getcwd() . . . . . . . . . Get current working directory
mktemp() . . . . . . . . Generate a temporary file name
opendir() . . . . . . . . . Open a directory stream
path() . . . . . . . . . . . Build a path name for a file
readdir() . . . . . . . . . Read a directory stream
remove() . . . . . . . . . Remove a file
rewinddir(). . . . . . . . Rewind a directory stream
seekdir() . . . . . . . . . Reset the position within a directory stream
telldir() . . . . . . . . . . Return position within a directory stream

Interprocess Communication
The following functions perform interprocess communcation.

ftok() . . . . . . . . . . . Generate keys for interprocess communication
msgctl() . . . . . . . . . Control message operation
msgget() . . . . . . . . . Get a message queue
msgrcv() . . . . . . . . . Receive a message
msgsnd() . . . . . . . . . Send a message
semctl() . . . . . . . . . Control semaphore operations
semget() . . . . . . . . . Get a set of semaphores
semop(). . . . . . . . . . Perform semaphore operations
shmat() . . . . . . . . . . Attach a shared-memory segment to a process
shmctl() . . . . . . . . . Manipulate shared memory
shmdt(). . . . . . . . . . Detach a shared-memory segment from a process
shmget() . . . . . . . . . Get the shared-memory segment

Memory Management
The following functions help to manage memory.

alloca() . . . . . . . . . . Dynamically allocate space on the stack
calloc() . . . . . . . . . . Allocate dynamic memory
free() . . . . . . . . . . . Return dynamic memory to free memory pool
malloc() . . . . . . . . . Allocate dynamic memory
realloc() . . . . . . . . . Reallocate dynamic memory
sbrk() . . . . . . . . . . . Increase a program’s data space

Passwords and Groups
The following functions manipulate the system files /etc/group, /etc/password, and /etc/shadow, and uses the
information found therein.

endgrent() . . . . . . . . Close group file
endpwent() . . . . . . . Close password file
endspent() . . . . . . . . Close the shadow-password file
getgrent() . . . . . . . . Get group file information
getgrgid(). . . . . . . . . Get group file information, by group id
getgrnam(). . . . . . . . Get group file information, by group name
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getlogin(). . . . . . . . . Get login name
getpass() . . . . . . . . . Get password with prompting
getpw() . . . . . . . . . . Search password file
getpwent() . . . . . . . . Get password file information
getpwnam() . . . . . . . Get password file information, by name
getpwuid() . . . . . . . . Get password file information, by identifier
getspent() . . . . . . . . Get a shadow-password record
getspnam(). . . . . . . . Get a shadow-password record, by user name
initgroups() . . . . . . . Initialize the supplementary group-access list
setgrent() . . . . . . . . Rewind group file
setpwent() . . . . . . . . Rewind password file
setspent() . . . . . . . . Rewind the shadow-password file

Processes
The following functions execute and terminate. For information on how the exec() functions differ, see the Lexicon
entry execution.

_exit(). . . . . . . . . . . Terminate a process
abort() . . . . . . . . . . End program immediately
atexit() . . . . . . . . . . Register a function to be called when the program exits
ctermid(). . . . . . . . . Name the terminal device that controls the current process
execl() . . . . . . . . . . Execute a load module
execle() . . . . . . . . . . Execute a load module
execlp(). . . . . . . . . . Execute a load module
execlpe() . . . . . . . . . Execute a load module
execv() . . . . . . . . . . Execute a load module
execvp() . . . . . . . . . Execute a load module
execvpe(). . . . . . . . . Execute a load module
raise(). . . . . . . . . . . Let a process send a signal to itself
sleep() . . . . . . . . . . Suspend execution

Random Number
libc contains the following functions for generating pseudo-random numbers:

drand48() . . . . . . . . Return 48-bit pseudo-random number as double
erand48() . . . . . . . . Return 48-bit pseudo-random number as double
jrand48() . . . . . . . . . Return 48-bit pseudo-random number as long integer
lcong48(). . . . . . . . . Initialize values from which 48-bit random numbers are computed
lrand48() . . . . . . . . . Return 48-bit pseudo-random number as non-negative long integer
mrand48() . . . . . . . . Return 48-bit pseudo-random number as long integer
nrand48() . . . . . . . . Return 48-bit pseudo-random number as non-negative long integer
rand() . . . . . . . . . . . Generate pseudo-random numbers
seed48() . . . . . . . . . Initialize values from which 48-bit random numbers are computed
srand() . . . . . . . . . . Seed random number generator
srand48(). . . . . . . . . Seed 48-bit pseudo-random number routines

Regular Expressions
The following functions read and interpret UNIX-style regular expressions:

regcomp() . . . . . . . . Compile a regular expression into a structure
regerror(). . . . . . . . . Return an error message from a regular-expression function
regexec() . . . . . . . . . Compare a string with a regular expression
regsub(). . . . . . . . . . Use regular expression to build a string

STDIO
STDIO is an abbreviation for standard input and output. It refers to a set of standard library functions that
accompany all C compilers and that govern input and output with peripheral devices. COHERENT includes the
following STDIO routines:

clearerr() . . . . . . . . . Present status stream
fclose() . . . . . . . . . . Close a file stream
fdopen() . . . . . . . . . Open a file stream for I/O
feof() . . . . . . . . . . . Discover a file stream’s status
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ferror() . . . . . . . . . . Discover a file stream’s status
fflush() . . . . . . . . . . Flush an output buffer
fgetc(). . . . . . . . . . . Get a character
fgetpos() . . . . . . . . . Read the file-position indicator
fgets(). . . . . . . . . . . Get a string
fgetw() . . . . . . . . . . Get a word
fileno() . . . . . . . . . . Get a file descriptor from a FILE structure
fopen() . . . . . . . . . . Open a file stream
fprintf(). . . . . . . . . . Format and print to a file stream
fputc() . . . . . . . . . . Output a character
fputs() . . . . . . . . . . Output a string
fputw() . . . . . . . . . . Output a word
fread() . . . . . . . . . . Read a file stream
freopen() . . . . . . . . . Open a file stream
fscanf() . . . . . . . . . . Format and read from a file stream
fseek() . . . . . . . . . . Seek in a file stream
fsetpos() . . . . . . . . . Set the file-position indicator
ftell() . . . . . . . . . . . Return file pointer position
fwrite() . . . . . . . . . . Write to a file stream
getc() . . . . . . . . . . . Get a character
getchar() . . . . . . . . . Get a character
gets() . . . . . . . . . . . Get a string
getw() . . . . . . . . . . . Get a word
pclose(). . . . . . . . . . Close a pipe
popen() . . . . . . . . . . Open a pipe
printf() . . . . . . . . . . Print a formatted string
putc() . . . . . . . . . . . Output a character
putchar() . . . . . . . . . Output a character
puts() . . . . . . . . . . . Output a string
putw(). . . . . . . . . . . Output a word
rewind() . . . . . . . . . Reset a file pointer
scanf() . . . . . . . . . . Format and input from standard input
setbuf() . . . . . . . . . . Set alternative file-stream buffer
setvbuf() . . . . . . . . . Set alternative file-stream buffer
sprintf() . . . . . . . . . Format and print to a string
sscanf() . . . . . . . . . . Format and read from a string
tmpfile() . . . . . . . . . Create a temporary file
tmpnam() . . . . . . . . Generate a unique name for a temporary file
ungetc() . . . . . . . . . Return character to file stream
vfprintf() . . . . . . . . . Format and print to a file stream
vprintf() . . . . . . . . . Print a formatted string
vsprintf(). . . . . . . . . Format and print to a string

String Functions
The character string is a common formation in C programs. The runtime representation of a string is an array of
ASCII characters that is terminated by a null character (‘\0’). COHERENT uses this representation when a program
contains a string constant; for example:

"I am a string constant"

The address of the first character in the string is used as the starting point of the string. A pointer to a string
holds only this address. Note, too, that an array of 20 characters can hold a string of 19 (not 20) non-null
characters; the 20th character is the null character that terminates the string.

The following routines are available to help manipulate strings. The prototypes for most are declared in the header
file string.h:

bcmp() . . . . . . . . . . Berkeley function to compare two chunks of memory
bcopy() . . . . . . . . . . Berkeley function to copy memory
bzero() . . . . . . . . . . Berkeley function to initialize memory to NUL
fnmatch() . . . . . . . . Match a string with a normal expression
index() . . . . . . . . . . Search string for a character; use strchr() instead
memccpy(). . . . . . . . Copy a region of memory up to a set character
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memchr() . . . . . . . . Search a region of memory for a character
memcmp() . . . . . . . . Compare two regions of memory
memcpy() . . . . . . . . Copy one region of memory into another
memmove() . . . . . . . Copy one region of memory into another with which it overlaps
memset(). . . . . . . . . Fill a region of memory with a character
pnmatch() . . . . . . . . Match string pattern
rindex(). . . . . . . . . . Find rightmost occurrence of a character in a string
strcat() . . . . . . . . . . Concatenate two strings
strcmp() . . . . . . . . . Compare two strings
strncat() . . . . . . . . . Append one string onto another
strncmp() . . . . . . . . Compare two lengths for a set number of bytes
strcpy(). . . . . . . . . . Copy a string
strncpy() . . . . . . . . . Copy a portion of a string
strcoll(). . . . . . . . . . Compare two strings, using locale information
strcspn() . . . . . . . . . Return length one string excludes characters in another
strdup(). . . . . . . . . . Duplicate a string
strerror() . . . . . . . . . Translate an error number into a string
strlen() . . . . . . . . . . Measure a string
strpbrk() . . . . . . . . . Find first occurrence in string of character from another string
strchr() . . . . . . . . . . Find leftmost occurrence of character in a string
strrchr() . . . . . . . . . Find rightmost occurrence of character in a string
strspn(). . . . . . . . . . Return length one string includes character in another
strstr() . . . . . . . . . . Find one string within another string
strtok() . . . . . . . . . . Break a string into tokens
strxfrm() . . . . . . . . . Transform a string, using locale information

System Logs
The following functions manipulate the files /etc/utmp and /usr/adm/wtmp, which record login events on your
system. The former file records every login that is still executing (i.e., the user has logged in and has not yet
logged), and every past login.

endutent() . . . . . . . . Close the logging file.
getutent() . . . . . . . . Read the next entry from /etc/utmp.
getutid() . . . . . . . . . Find an entry in /etc/utmp by login identifier.
getutline() . . . . . . . . Find an entry in /etc/utmp by login device.
pututline() . . . . . . . . Write a record into /etc/utmp.
setutent() . . . . . . . . Rewind the input stream that is reading /etc/utmp
utmpname() . . . . . . . Manipulate a file other than /etc/utmp.

Terminals
The following functions help you cope with terminals.

isatty() . . . . . . . . . . Check if a device is a terminal
ttyname() . . . . . . . . Identify a terminal
ttyslot() . . . . . . . . . Return a terminal’s line number

Standard Time Functions
libc includes the following functions to manipulate time:

asctime(). . . . . . . . . Convert time structure to ASCII string
clock() . . . . . . . . . . Get processor time
ctime() . . . . . . . . . . Convert system time to an ASCII string
difftime(). . . . . . . . . Return difference between two times
gmtime() . . . . . . . . . Convert system time to calendar structure
localtime() . . . . . . . . Convert system time to calendar structure
mktime() . . . . . . . . . Turn broken-down time into calendar time
strftime(). . . . . . . . . Format locale-specific time
tzset(). . . . . . . . . . . Set local time zone

System Calls
The COHERENT kernel makes many services available to the C programmer. A programmer can use a COHERENT
service through a system call. libc includes intefaces to the following system calls:
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access(). . . . . . . . . . Check if file can be accessed in given mode
acct() . . . . . . . . . . . Enable/disable process accounting
alarm() . . . . . . . . . . Set an alarm
brk(). . . . . . . . . . . . Change size of data area
chdir() . . . . . . . . . . Change working directory
chmod() . . . . . . . . . Change file protection modes
chown(). . . . . . . . . . Change ownership of a file
chroot(). . . . . . . . . . Change process’s root directory
chsize(). . . . . . . . . . Change the size of a file
close() . . . . . . . . . . Close a file
creat() . . . . . . . . . . Create/truncate a file
dup() . . . . . . . . . . . Duplicate a file descriptor
execve() . . . . . . . . . Execute a load module
exit() . . . . . . . . . . . Terminate a program gracefully
fcntl() . . . . . . . . . . . Manipulate an open file
fork() . . . . . . . . . . . Create a new process
fpathconf(). . . . . . . . Get a file variable by file descriptor
fstat() . . . . . . . . . . . Get information about a file system
fstatfs(). . . . . . . . . . Get information about a file system
ftime() . . . . . . . . . . Get current system time
getdents() . . . . . . . . Read directory entries
getegid() . . . . . . . . . Get effective group id
geteuid() . . . . . . . . . Get effective user id
getgid() . . . . . . . . . . Get real group id
getgroups() . . . . . . . Read the supplemental group-access list
getmsg() . . . . . . . . . Get the next message from a stream
getpgrp() . . . . . . . . . Get process-group identifier
getpid() . . . . . . . . . . Get process id
getppid() . . . . . . . . . Get process id of parent process
getuid(). . . . . . . . . . Get real user id
gtty() . . . . . . . . . . . Get terminal modes
ioctl() . . . . . . . . . . . Device-dependent control
kill(). . . . . . . . . . . . Send a signal to a process
link() . . . . . . . . . . . Create a link
lseek() . . . . . . . . . . Set read/write position
mkdir() . . . . . . . . . . Create a directory
mkfifo(). . . . . . . . . . Create a FIFO
mknod() . . . . . . . . . Create a special file
mount() . . . . . . . . . Mount a file system
nap() . . . . . . . . . . . Sleep briefly
open(). . . . . . . . . . . Open a file
pathconf() . . . . . . . . Get a file variable by path name
pause() . . . . . . . . . . Wait for signal
pipe() . . . . . . . . . . . Create a pipe
poll() . . . . . . . . . . . Query several I/O devices
ptrace(). . . . . . . . . . Trace process execution
putmsg() . . . . . . . . . Place a message onto a stream
read() . . . . . . . . . . . Read from a file
rename() . . . . . . . . . Rename a file
rmdir() . . . . . . . . . . Remove a directory
setgid() . . . . . . . . . . Set group id and user id
setgroups(). . . . . . . . Set the supplemental group-access list
setpgid() . . . . . . . . . Set the process-group identifier
setpgrp() . . . . . . . . . Make a process a process-group leader
setsid() . . . . . . . . . . Set session identifier
setuid() . . . . . . . . . . Set user id
sigaction() . . . . . . . . Perform detailed signal management
sigaddset(). . . . . . . . Add a signal to a set of signals
sigdelset() . . . . . . . . Delete a signal from a set
sigemptyset() . . . . . . Initialize a set of signals
sigfillset() . . . . . . . . Initialize a set of signals
sighold() . . . . . . . . . Place a signal on hold
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sigignore() . . . . . . . . Tell the system to ignore a signal
sigismember(). . . . . . Check if a signal is a member of a set
signal() . . . . . . . . . . Specify action to take upon receipt of a given signal
sigpause() . . . . . . . . Pause until a given signal is received
sigpending() . . . . . . . Examine signals that are blocked and pending
sigprocmask(). . . . . . Examine or change the signal mask
sigrelse() . . . . . . . . . Release a signal for processing
sigset() . . . . . . . . . . Specify action to take upon receipt of a given signal
sigsuspend(). . . . . . . Install a signal mask and suspend process
stat() . . . . . . . . . . . Find file attributes
statfs() . . . . . . . . . . Get information about a file system
stime() . . . . . . . . . . Set the time
stty() . . . . . . . . . . . Set terminal modes
sync() . . . . . . . . . . . Flush system buffers
sysconf() . . . . . . . . . Get configurable system variables
sysi86(). . . . . . . . . . Identify parts within Intel-based machines
time() . . . . . . . . . . . Get current system time
times() . . . . . . . . . . Obtain process execution times
ulimit() . . . . . . . . . . Get/set limits for a process
umask(). . . . . . . . . . Set file creation mask
umount(). . . . . . . . . Unmount a file system
uname() . . . . . . . . . Get name and version of COHERENT
unlink(). . . . . . . . . . Remove a file
ustat() . . . . . . . . . . Get statistics on a file system
utime() . . . . . . . . . . Change file access and modification times
wait() . . . . . . . . . . . Await completion of child process
waitpid() . . . . . . . . . Wait for a process to terminate
write() . . . . . . . . . . Write to a file

Miscellaneous
The following functions do not fit neatly into any of the above categories.

bsearch() . . . . . . . . . Search an array
coffnlist() . . . . . . . . Symbol table lookup
crypt() . . . . . . . . . . Encryption using rotor algorithm
getenv() . . . . . . . . . Read environmental variable
getopt(). . . . . . . . . . Get a command-line option
l3tol() . . . . . . . . . . . Convert file system block number to long integer
lockf(). . . . . . . . . . . Lock a file or a section of a file
longjmp(). . . . . . . . . Perform a non-local goto
ltol3() . . . . . . . . . . . Convert long integer to file system block number
mtype(). . . . . . . . . . Return symbolic machine type
perror() . . . . . . . . . . System call error messages
putenv() . . . . . . . . . Add a string to the environment
qsort() . . . . . . . . . . Sort arrays in memory
setjmp() . . . . . . . . . Save machine state for non-local goto
siglongjmp() . . . . . . . Perform a non-local goto and restore signal mask
sigsetjmp(). . . . . . . . Save machine state and signal mask for non-local jump
shellsort() . . . . . . . . Sort arrays in memory
swab(). . . . . . . . . . . Swap a pair of bytes
system() . . . . . . . . . Pass a command to the shell for execution
tempnam(). . . . . . . . Generate a unique name for a temporary file

See Also
libraries

Notes
You do not need to link libc explicitly into your programs. The command cc always includes it by default.

The macro offsetof() is not described above because it does not ‘‘live’’ in libc; however, it is a useful, general-
purpose entity. For details, see its Lexicon entry.
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libcurses — Library
Library of screen-handling functions

libcurses is the library that holds the curses screen-handling functions. With curses, you can perform
rudimentary graphics, even on dumb terminals; the range of routines includes mapping portions of the screen,
drawing pop-up windows, creating forms with fields for data entry, and highlighting portions of text.

Implementations of curses
COHERENT uses the Cornell edition of curses. This implementation of curses reads the terminfo data base. It
uses eight-bit characters; thus, the COHERENT edition of curses can display characters with accents and diacritical
marks. Library libcurses contains the functions needed to read terminfo capability codes; thus, to compile the
program curses_ex.c, use the following command line:

cc curses_ex.c -lcurses

Programs that wish to use curses must not link in both libcurses and libterm; doing so will cause collisions
among library routines. Rather, these programs must link in only libcurses. On the other hand, if you wish to
use the functions that read terminfo descriptions, you must link library libcurses into your program, even if you
are not using any curses routines.

If you have special terminal descriptions under termcap, the command captoinfo converts a termcap description
into its terminfo analogue.

See the Lexicon entries for termcap and terminfo for more information on this rather confusing topic.

How curses Works
curses organizes the screen into a two-dimensional array of cells, one cell for every character that the device can
display. It maintains in memory an image of the screen, called the curscr. A second image, called the stdcur, is
manipulated by the user; when the user has finished a given manipulation, curses copies the changes from the
stdcur to the curscr, which results in their being displayed on the physical screen. This act of copying from the
stdscr to the curscr is called refreshing the screen. curses keeps track of where all changes have begun and ended
between one refresh and the next; this lets it rewrite only the portions of the curscr that the user has changed, and
so speed up rewriting of the screen.

curses records the position of a ‘‘logical cursor’’, which points to the position in the stdscr that is being
manipulated by the user, and also records the position of the physical cursor. Note that the two are not
necessarily identical: it is possible to manipulate the logical cursor without repositioning the physical cursor, and
vice versa, depending on the task you wish to perform.

Most curses routines work by manipulating a WINDOW object. WINDOW is defined in the header curses.h.

curses defines WINDOW as follows:

#define WINDOW _win_st
struct _win_st {

short _cury, _curx;
short _maxy, _maxx;
short _begy, _begx;
short _flags;
chtype _attrs;
bool _clear;
bool _leave;
bool _scroll;
bool _idlok;
bool _use_keypad;/* 0=no, 1=yes, 2=yes/timeout */
bool _use_meta;/* T=use the meta key */
bool _nodelay;/* T=don’t wait for tty input */
chtype **_line;
short _firstchar;/* First changed character in the line */
short *_lastchar;/* Last changed character in the line */
short *_numchngd;/* Number of changes made in the line */
short _regtop;/* Top and bottom of scrolling region */
short _regbottom;

};
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Type bool is defined in curses.h; an object of this type can hold the value of true (nonzero) or false (zero).

The following describes selected WINDOW fields in detail.

_cury, _curx Give the Y and X positions of the logical cursor. The upper left corner of the window is, by
definition, position 0,0. Note that curses by convention gives positions as Y/X (row/column)
rather than X/Y, as is usual elsewhere.

_maxy, _maxx Width and height of the window.

_begy, _begx Position of the upper left corner of the window relative to the upper left corner of the physical
screen. For example, if the window’s upper left corner is five rows from the top of the screen and
ten columns from the left, then _begy and _begx will be set to ten and five, respectively.

_flags One or more of the following flags, logically OR’d together:

_SUBWIN — Window is a sub-window
_ENDLINE — Right edge of window touches edge of the screen
_FULLWIN — Window fills the physical screen
_SCROLLWIN — Window touches lower right corner of physical screen
_FULLINE — Window extends across entire physical screen
_STANDOUT — Write text in reverse video
_INSL — Line has been inserted into window
_DELL — Line has been deleted from window

_ch_off Character offset.

_clear Clear the physical screen before next refresh of the screen.

_leave Do not move the physical cursor after refreshing the screen.

_scroll Enable scrolling for this window.

_y Pointer to an array of pointers to the character arrays that hold the window’s text.

_firstch Pointer to an array of integers, one for each line in the window, whose value is the first character
in the line to have been altered by the user. If a line has not been changed, then its corresponding
entry in the array is set to _NOCHANGE.

_lastch Same as _firstch, except that it indicates the last character to have been changed on the line.

_nextp Point to next window.

_orig Point to parent window.

When curses is first invoked, it defines the entire screen as being one large window. The programmer has the
choice of subdividing an existing window or creating new windows; when a window is subdivided, it shares the
same curscr as its parent window, whereas a new window has its own stdscr.

Multiple Terminals
Some applications need to display text on more than one terminal, controlled by the same process. curses can
handle this, even if the terminals are of different types. The following describes how curses output to multiple
terminals.

All information about the current terminal is kept in a global variable struct screen *SP. Although the screen
structure is hidden from the user, the C compiler will accept declarations of variables which are pointers. The user
program should declare one screen pointer variable for each terminal it wishes to handle.

The function newterm() sets up a new terminal of the given terminal type that is accessed via file-descriptor fp. To
use more than one terminal, call newterm() for each terminal and save the value returned as a reference to that
terminal.

To switch to a different terminal, call set_term(). It returns the current contents of SP. Do not assign directly to
SP because certain other global variables must also be changed.

All curses routines always affect the current terminal. To handle several terminals, switch to each one in turn
with set_term(), and then access it. Each terminal must first be set up with newterm(), and closed down with
endwin().
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Video Attributes
curses lets you display any combination of video attributes on any terminal. Each character position on the screen
has 16 bits of information associated with it. Seven bits are the character to be displayed, leaving bits for nine
video attributes. These bits are used for the following modes respectively: standout, underline, reverse video, blink,
dim, bold, blank, protect, and alternate-character set. Standout is whatever highlighting works best on the
terminal, and should be used by any program that does not need specific or combined attributes. Underlining,
reverse video, blink, dim, and bold are the usual video attributes. Blank means that the character is displayed as a
space, for security reasons. Protected and alternate character set depend on the terminal. The use of these last
three bits is subject to change and not recommended.

The routines to use these attributes include attron(), attroff(), attrset(), standend(), standout(), wattroff(),
wattron(), wattrset(), wstandend(), and wstandout(). All are described below.

Attributes, if given, can be any combination of A_STANDOUT, A_UNDERLINE, A_REVERSE, A_BLINK, A_DIM,
A_BOLD, A_INVIS, A_PROTECT, and A_ALTCHARSET, OR’d together. These constants are defined in curses.h. If
the particular terminal does not have the particular attribute or combination requested, curses will attempt to use
some other attribute in its place. If the terminal has no highlighting, all attributes are ignored.

Function Keys
Many terminals have special keys, such as arrow keys, keys to erase the screen, insert or delete text, and keys
intended for user functions. The particular sequences these terminals send differs from terminal to terminal.
curses lets you handle these keys.

A program using function keys should turn on the keypad by calling keypad() at initialization. This causes special
characters to be passed through to the program by the function getch(). These keys have constants that are
defined in curses.h. They have values starting at 0401, so they should not be stored in a char variable, as
significant bits will be lost.

A program that uses function keys should avoid using the <esc> key: most sequences start with <esc>, so an
ambiguity will occur. curses sets a one-second alarm to deal with this ambiguity, which will cause delayed
response to the <esc> key. It is a good idea to avoid <esc> in any case, because there is eventually pressure for
nearly any screen-oriented program to accept arrow-key input.

Scrolling Region
Most terminals have a user-accessible scrolling region. Normally, this is set to the entire window, but the calls
setscrreg() and wsetscrreg() set the scrolling region for stdscr or the given window to any combination of top and
bottom margins. If scrolling has been enabled with scrollok(), scrolling takes place only within that window.

TTY Mode Functions
In addition to the save/restore routines savetty() and resetty(), curses contains routines for going into and out of
normal tty mode.

The normal routines are resetterm(), which puts the terminal back in the mode it was in when curses was started,
and fixterm(), which undoes the effects of resetterm(), that is, restores the ‘‘current curses mode’’. endwin()
automatically calls resetterm(). These routines are also available at the terminfo level.

No-Delay Mode
curses offers the call nodelay(), which puts the terminal into ‘‘no-delay mode’’. While in no-delay mode, any call to
getch() returns -1 if nothing is waiting to be read. This is useful for programs that require real-time behavior,
where the user watches action on the screen and presses a key when he wants something to happen. For example,
the cursor can be moving across the screen, and the user can press an arrow key to change direction. This mode
is especially useful for games.

Portability
curses contains several routines to improve portability. Because these routines do not directly relate to terminal
handling, their implementation differs from system to system, and the differences can be isolated from the user
program by including them in curses.

Functions erasechar() and killchar() return the characters that, respectively, erase one character and kill the
entire input line. The function baudrate() returns the current baud rate, as an integer. (For example, at 9600
baud, baudrate() returns the integer 9600, not the value B9600 from <sgtty.h>.) The routine flushinp() throws
away all typeahead. call resetterm() to restore the tty modes. After the shell escape, fixterm() can be called to set
the tty modes back to their internal settings. These calls are now required, because they perform system-
dependent processing.
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curses Routines
The following table summarizes the functions and macros that comprise the curses library. These routines are
declared and defined in the header file curses.h.

addch(ch) char ch;
Insert a character into stdscr.

addstr(str) char *str;
Insert a string into stdscr.

attroff(at) int at;
Turn off video attributes on stdscr.

attron(at) int at;
Turn on video attributes on stdscr.

attrset(at) int at;
Set video attributes on stdscr.

baudrate()
Return the baud rate of the current terminal.

beep() Sound the audible bell.

box(win, vert, hor) WINDOW *win; char vert, hor;
Draw a box. vert is the character used to draw the vertical lines, and hor is used to draw the horizontal
lines. The call

box(win, 0, 0)

draws a box with solid lines. The call

box(win, ’|’, ’-’);

draws a box around window win, using ‘|’ to draw the vertical lines and ‘-’ to draw the horizontal lines. Do
not use non-ASCII characters unless you are very sure of the output terminal’s identity.

cbreak()
Turn on cbreak mode.

clear() Clear the stdscr.

clearok(win,bf) WINDOW *win; bool bf;
Set the clear flag for window win. This will clear the screen at the next refresh, but not reset the window.

clrtobot()
Clear from the position of the logical cursor to the bottom of the window.

clrtoeol()
Clear from the logical cursor to the end of the line.

crmode()
Turn on control-character mode; i.e., force terminal to receive cooked input.

delch() Delete a character from stdscr; shift the rest of the characters on the line one position to the left.

deleteln()
Delete all of the current line; shift up the rest of the lines in the window.

delwin(win) WINDOW *win;
Delete window win.

doupdate()
Update the physical screen.

echo() Turn on both physical and logical echoing; i.e., characters are automatically inserted into the current
window and onto the physical screen.
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endwin()
Terminate text processing with curses.

erase() Erase a window; do not clear the screen.

char *erasechar()
Return the erase character of the current terminal.

flash() Execute the visual bell.

flushinp()
Flush input from the current terminal.

getch() Read a character from the terminal.

getstr(str) char *str;
Read a string from the terminal.

getyx(win,y,x) WINDOW *win; short y,x;
Read the position of the logical cursor in win and store it in y,x. Note that this is a macro, and due to its
construction the variables y and x must be integers, not pointers to integers.

idlok(win, flag) WINDOW *win; int flag;
Enable insert/delete line operations for window win. flag must contain the OR’d operations you desire.

inch() Read the character pointed to by the stdscr’s logical cursor.

WINDOW *initscr()
Initialize curses. Among other things, this function initializes the global variables LINES and COLS, which
give, respectively, the number of lines and the number of columns on your screen.

This is of most use under X Windows. When you change the size of an xterm or xvt window, the
command

eval ‘resize‘

resets these variables. The next time you invoke a curses-based program, its size will reflect new the
dimensions of window.

insch(ch) char ch;
Insert character ch into the stdscr.

insertln()
Insert a blank line into stdscr, above the current line.

keypad(win,flag) WINDOW *win; int flag;
Enable keypad-sequence mapping.

char *killchar()
Return the kill character for the current terminal.

leaveok(win,bf) WINDOW *win; bool bf;
Set win->_leave to bf. If set to TRUE, refresh will leave the cursor after the last character changed by
refresh. This makes sense if you want to minimize the commands sent to the screen and it does not
matter where the cursor is.

char *longname(termbuf, name) char *termbuf, *name;
Copy the long name for the terminal from termbuf into name.

meta(win, flag) WINDOW *win; int flag;
Enable use of the meta key.

move(y,x) short y,x;
Move logical cursor to position y,x in stdscr.

mvaddbytes(y,x,da,count) int y,x; char *da; int count;
Move to position y,x and print count bytes from the string pointed to by da.

mvaddch(y,x,ch) short y,x; char ch;
Move the logical cursor to position y,x and insert character ch.
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mvaddstr(y,x,str) short y,x; char *str;
Move the logical cursor to position y,x and insert string str.

mvcur(y_cur,x_cur,y_new,x_new) int y_cur, x_cur, y_new, x_new;
Move cursor from position y_cur,x_cur to position y_new,x_new.

mvdelch(y,x) short y,x;
Move to position y,x and delete the character found there.

mvgetch(y,x) short y,x;
Move to position y,x and get a character through stdscr.

mvgetstr(y,x,str) short y,x; char *str;
Move to position y,x, get a string through stdscr, and copy it into string.

mvinch(y,x) short y,x;
Move to position y,x and get the character found there.

mvinsch(y,x,ch) short y,x; char ch;
Move to position y,x and insert a character into stdscr.

mvwaddbytes(win,y,x,da,count) WINDOW *win; int y,x; char *da; int count;
Move to position y,x and print count bytes from the string pointed to by da into window win.

mvwaddch(win,y,x,ch) WINDOW *win; int y,x; char ch;
Move to position y,x and insert character ch into window win.

mvwaddstr(win,y,x,str) WINDOW *win; short y,x; char *str;
Move to position y,x and insert string str.

mvwdelch(win,y,x) WINDOW *win; int y,x;
Move to position y,x and delete character ch from window win.

mvwgetch(win,y,x) WINDOW *win; short y,x;
Move to position y,x and get a character.

mvwgetstr(win,y,x,str) WINDOW *win; short y,x; char *str;
Move to position y,x, get a string, and write it into str.

mvwin(win,y,x) WINDOW *win; int y,x;
Move window win to position y,x.

mvwinch(win,y,x) WINDOW *win; short y,x;
Move to position y,x and get character found there.

mvwinsch(win,y,x,ch) WINDOW *win; short y,x; char ch;
Move to position y,x and insert character ch there.

struct screen *newterm(type, fd) char *type; int fd;
Initialize the new terminal type, which is accessed via file-descriptor fd.

WINDOW *newwin(lines, cols, y1, x1)
int lines, cols, y1, x1;

Create a new window. The new window is lines lines high, cols columns wide, with the upper-left corner at
position y1,x1. It returns a pointer to the WINDOW structure that defines the newly created window.

nl() Turn on newline mode; i.e., force terminal to output <newline> after <linefeed>.

nocbreak()
Turn off cbreak mode.

nocrmode()
Turn off control-character mode; i.e., force terminal to accept raw input.

nodelay(win, flag) WINDOW *win; int flag;
Make getch() non-blocking.

noecho()
Turn off echo mode.
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nonl() Turn off newline mode.

noraw()
Turn off raw mode.

overlay(win1,win2) WINDOW *win1, win2;
Copy all characters, except spaces, from their current positions in win1 to identical positions in win2.

overwrite(win1,win2) WINDOW *win1, win2;
Copy all characters, including spaces, from win1 to their identical positions in win2.

printw(format[,arg1,...argN]) char *format; [data type] arg1,..argN;
Print formatted text on the standard screen.

raw() Turn on raw mode; i.e., kernel does not process what is typed at the keyboard, but passes it directly to
curses. In normal (or cooked) mode, the kernel intercepts and processes the control characters <ctrl-C>,
<ctrl-S>, <ctrl-Q>, and <ctrl-Y>. See the entry for stty for more information.

refresh()
Copy the contents of stdscr to the physical screen.

resetty()
Reset the terminal flags to values stored by earlier call to savetty.

saveterm()
Save the current state of the terminal.

savetty()
Save the current terminal settings.

scanw(format[,arg1,...argN]) char *format; [data type] arg1,..argN;
Read the standard input; translate what is read into the appropriate data type.

scroll(win) WINDOW *win;
Scroll win up by one line.

scrollok(win,bf) WINDOW *win; bool bf;
Permit or forbid scrolling of window win, depending upon whether bf is set to true or false.

setscrreg(top, bottom) int top, bottom;
Set the scrolling region on stdscr.

setterm(name) char *name;
Set term variables for name.

struct screen *set_term(new) struct screen *new;
Switch output to terminal new. It returns a pointer to the previously used terminal.

standend()
Turn off standout mode.

standout()
Turn on standout mode for text. Usually, this means that text will be displayed in reverse video.

WINDOW *subwin(win, lines, cols, y1, x1)
int win,lines,cols,y1,x1;

Create a sub-window in window win. The new sub-window is lines lines high, cols columns wide, and is
fixed at position y1,x1. Note that the position is relative to the upper-left corner of the physical screen.
This function returns a pointer to the WINDOW structure that defines the newly created sub-window.

touchwin(win) WINDOW *win;
Copy all characters in window win to the screen.

traceoff()
Turn off debugging output.

traceon()
Turn on debugging output
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unctrl(ch) char ch;
Output a printable version of the control-character ch.

waddch(win,ch) WINDOW *win; char ch;
Add character ch to window win.

waddstr(win,str) WINDOW *win; char *str;
Add the string pointed to by str to window win.

wattroff(win,att) WINDOW *win; int att;
Turn off video attributes att for the window pointed to by win.

wattron(win,att) WINDOW *win; int att;
Turn on video attributes att for the window pointed to by win.

wattrset(win,at) WINDOW *win; int att;
Set the video attributes att for the window pointed to by win.

wclear(win) WINDOW *win;
Clear window win. Move cursor to position 0,0 and set the screen’s clear flag.

wclrtobot(win) WINDOW *win;
Clear window win from current position to the bottom.

wclrtoeol(win) WINDOW *win;
Clear window win from the current position to the end of the line.

wdelch(win) WINDOW *win;
Delete the character at the current position in window win; shift all remaining characters to the right of
the current position one position left.

wdeleteln(win) WINDOW *win;
Delete the current line and shift all lines below it one line up.

werase(win) WINDOW *win;
Clear window win. Move the cursor to position 0,0 but do not set the screen’s clear flag.

wgetch(win) WINDOW *win;
Read one character from the standard input.

wgetstr(win,str) WINDOW *win; char *str;
Read a string from the standard input; write it in the area pointed to by str.

winch(win) WINDOW *win;
Force the next call to refresh() to rewrite the entire screen.

winsch(win,ch) WINDOW *win; char ch;
Insert character ch into window win at the current position. Shift all existing characters one position to
the right.

winsertln(win) WINDOW *win;
Insert a blank line into window win at the current position. Move all lines down by one position.

wmove(win,y,x) WINDOW *win; int y, x;
Move current position in the window win to position y,x.

wnoutrefresh(win) WINDOW *win;
Copy the window pointed to by win to the virtual screen; do not refresh the real screen.

wprintw(win,format[,arg1,...argN])
WINDOW *win; char *format;
[data type] arg1,..argN;

Format text and print it to the current position in window win.

wrefresh(win) WINDOW *win;
Refresh a window.

wscanw(win,format[,arg1,...argN])
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WINDOW *win; char *format;
[data type] arg1,..argN;

Read standard input from the current position in window win, format it, and store it in the indicated
places.

wstandend(win) WINDOW *win;
Turn off standout (reverse video) mode for window win.

wstandout(win) WINDOW *win;
Turn on standout (reverse video) mode for window win.

wsetscrreg(win,top,bottom)WINDOW *win; int top, bottom;
Set the scrolling region on the window pointed to by win.

Color Support
Beginning with release 4.2, COHERENT’s implementation of curses supports color. curses defines colors as a video
attribute, like any other. It actually handles pairs of colors — one for the foreground and one for the background.
You must initialize a color pair and given it a unique identifying number; then pass the identifier of the color pair
to the function wattron() to turn on, like any other video attribute.

The header file <terminfo.h> defines the following colors, which curses recognizes:

COLOR_BLACK
COLOR_RED
COLOR_GREEN
COLOR_YELLOW
COLOR_BLUE
COLOR_MAGENTA
COLOR_CYAN
COLOR_WHITE

Header file <curses.h> defines the variables COLORS, which holds the maximum number of colors that your
console or terminal recognizes; and COLOR_PAIRS, which holds the maximum number of color pairs that your
console or terminal recognizes. The function start_color() initializes both variables.

The following gives the functions and macros with which you can manipulate colors:

can_change_colors()
This function returns TRUE if you can change the definition of a color on your device, and FALSE if you
cannot. You should call this function before you invoke the function init_color(), described below.

color_content(color,r,g,b); int color,*r,*g,*b;
Read the RGB settings for color and write them at the addresses given by r, g, and b.

COLOR_PAIR(pairnum); int pairnum;
Return the definition of the color pair identified by pairnum. The color pair must have been initialized by a
call to init_pair().

has_colors()
Return TRUE if your console or terminal supports color and FALSE if it does not.

init_color(color,r,g,b); int color,r,g,b;
Initialize color to the RGB values r, g, and b. color must be greater than zero and less than COLORS. r,’ g,
and b must each be between zero and 1,000. Not every console or terminal permits you to reset its colors.
Call can_change_colors() to see if you can alter your device’s colors.

init_pair(pairnum,fc,bc) int pairnum, fc, bc;
Initialize the color pair pairnum to the foreground color fc and the background color bc. pairnum must be
greater than zero and less than COLOR_PAIRS. fc and bc must be greater than -1 and less than COLORS.

pair_content(pairnum,fc,bc) int pairnum,*fc,*bc;
Read the foreground and background colors represented by color pair pairnum and write them into the
areas pointed to by fg and bg.

start_color()
Turn on color processing. This function must precede all other color routines; usually, it immediately
follows the function initscr().
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A brief example of how to colors appears in the Examples section, below.

terminfo Routines
As noted above, curses reads terminal descriptions from terminfo rather than termcap. The library libcurses also
holds the following functions, with which you can read a terminfo description:

fixterm() . . . . . . . . . Set the terminal into program mode
putp() . . . . . . . . . . . Write a string into stdwin
resetterm() . . . . . . . Reset the terminal into a saved mode
setupterm() . . . . . . . Initialize terminal capabilities
tparm() . . . . . . . . . . Output a parameterized string
tputs() . . . . . . . . . . Process a capability string
vidattr() . . . . . . . . . Set the terminal’s video attributes
vidputs() . . . . . . . . . Set video attributes into a function

For more information on these routines, see the Lexicon entry terminfo, or see each routine’s entry in the Lexicon.

If you define the environment variable TERMINFO, curses checks for the terminal definition in the directory that
TERMINFO names rather than in the standard directory /usr/lib/terminfo. For example, if you set the
environmental variable TERM is set to vt100, then the compiled terminfo definition is kept in directory
/usr/lib/terminfo/v/vt100. However, if you define TERMINFO to be $HOME/testterm, curses first checks
$HOME/testterm/v/vt100; if that fails, it then checks /usr/lib/terminfo/v/vt100. This is useful when you are
debugging a terminfo entry.

Structure of a curses Program
To use the curses routines, a program must include the header file curses.h, which declares and defines the
functions and macros that comprise the curses library.

Before a program can perform any screen operations, it must call the function initscr() to initialize the curses
environment.

As noted above, curses manipulates text in a copy of the screen that it maintains in memory. After a program has
manipulated text, it must call refresh() to copy these alterations from memory to the physical screen. (This is done
because writing to the screen is slow; this scheme permits mass alterations to be made to copy in memory, then
written to the screen in a batch.)

Finally, when the program has finished working with curses, it must call the function endwin(). This frees memory
allocated by curses, and generally closes down the curses environment gracefully.

Examples
The first example shows what modes and characters are visible on your system.

#include <curses.h>
#define A_ETX 0x03

main()
{

int c, y = 0, x = 0, attr = A_NORMAL, mask, state = 0, hibit = 0;

initscr();
noecho();
raw();

erase();
move(y, 0);
addstr(

"+ sets - clears Normal Bold Underline blInk Reverse Standout Altmode");
move(++y, 0);
refresh();

for (;;) {
if (!state) {

switch (c = getch()) {
case ’+’:

state = 1;
break;
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case ’-’:
state = 2;
break;

case ’\b’:
if (!x)

break;
move(y, --x);
addch(’ ’);
move(y, x);
refresh();
break;

case ’\r’:
case ’\n’:

move(++y, x = 0);
refresh();
break;

case A_ETX:
noraw();
echo();
endwin();
exit(0);

default:
x++;
addch(c | hibit);
refresh();

}

} else {
switch (c = getch()) {
case ’A’: /* turn on high bit of input */

hibit = (state & 1) << 7;
state = 0;
continue;

case ’B’:
mask = A_BOLD;
break;

case ’U’:
mask = A_UNDERLINE;
break;

case ’I’:
mask = A_BLINK;
break;

case ’R’:
mask = A_REVERSE;
break;

case ’S’:
mask = A_STANDOUT;
break;

case ’N’: /* normal is an absence of bits */
if (state == 1) {

attr = A_NORMAL;
hibit = state = 0;
continue;

}

default:
beep();
continue;

}
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if (state == 1)
attr |= mask;

else
attr &= ~mask;

attrset(attr);
state = 0;

}
}

}

The next example demonstrates how to use colors in a curses program. It selects colors randomly, builds color
pairs, and displays a 40-character text string to demonstrate the newly build color pair.

#include <curses.h>
#include <stdlib.h>

void goodbye()
{

move(23, 0);
noraw();
echo();
endwin();
exit(EXIT_SUCCESS);

}

main()
{

int x, y, i;

initscr();
start_color();
noecho();
raw();

srand(time(NULL));
erase();
if (!has_colors())

goodbye();

for (x = 0, y = 0, i = 1; i < COLOR_PAIRS; i++, y++) {
if (y == 23) {

x = 40;
y = 0;

}

move(y, x);
init_pair(i, (rand() % COLORS), (rand() % COLORS));
attrset(COLOR_PAIR(i));
addstr("Pack my box with five dozen liquor jugs.");

}

refresh();
goodbye();

}

The next example shows how to read function keys under curses:

#include <curses.h>
void text();

main()
{

int input;

initscr();
raw();
noecho();
keypad(stdscr, TRUE);
refresh();
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while (TRUE) {
input = wgetch(stdscr);
switch (input) {
case ’q’:
case ’Q’:

endwin();
exit(0);

case KEY_UP:
text("cursor up");
break;

case KEY_DOWN:
text("cursor down");
break;

case KEY_LEFT:
text("cursor left");
break;

case KEY_RIGHT:
text("cursor right");
break;

case KEY_F(1):
text("function key 1");
break;

case KEY_F(2):
text("function key 2");
break;

default:
text("some other key");
break;

}
}

}

void text(s)
register char *s;
{

move(0, 0);
clrtoeol();
printw("Your input was: %s", s);
refresh();

}

See Also
curses.h, libraries, termcap, terminfo
Strang J: Programming with curses. Sebastopol, Calif, O’Reilly & Associates Inc., 1986.

Notes
The implementation of curses used by the COHERENT system was written by Pavel Curtis of Cornell University. It
was ported to COHERENT by Udo Munk.

libedit — Library
Routines to gather and edit user input
/usr/lib/libedit.a

libedit.a is a library of routines that implement a simple tool for entering and editing lines of data. The includes
two routines that can be called from a user-level program:

readline()
Read a line of input from the standard input, and let the user edit it.

add_history()
Add a line of edited input into a history buffer, from which the user can retrieve it for further editing and
use.
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Each is described in its own Lexicon entry.

These routines implement a simple, EMACS-like line-editing interface, much like the one available under the Korn
shell ksh. To include these routines in an application, just call them as you would any other library function, and
link the library libedit.a into the executable.

See Also
add_history(), libraries, readline()

Notes
libedit was written by Simmule R. Turner <uunet.uu.net!capitol!sysgo!simmy> and Rich Salz <rsalz@osf.org>.

libgdbm — Library
Library for GNU DBM functions
/usr/lib/libgdbm.a

Archive libgdbm contains GNU data-base management (DBM) library of functions. These functions implement a
version of the standard UNIX DBM functions, which let you create and manipulate a simple hashed data base.

What is a Hashed Data Base?
A hashed data base consists of a set of records. Each record, in turn, has two elements: a key that uniquely
identifies the record, and a mass of data. For example, if you were creating a data base of the persons who have
accounts on your system, the key would be the user’s login identifier (because that must be unique), and the data
could be the user’s full name.

When the GDBM routines add a record to a data base, they do the following:

1. They write the record within a file.

2. They note the size of the record, and its offset within the file.

3. They ‘‘hash’’ each key into a unique number, then write that hash index within a separate index file, along
with the offset and size of its associated record. (For a further explanation of hashing and an example
implementation, see the Lexicon entry for strtoul().)

By indexing a text file in this manner, a program can find a record much more quickly than it could by simply
reading the file from beginning to end. For example, when you mail a message via the mail program smail, that
program reads a set of aliases to ensure that the message is sent to the right person. If the aliases were kept in a
text file, smail would have to open the file and read its entire contents every time you sent a mail message; and on
a busy system that has a large number of aliases, this can cause a noticeable delay in dispatching a message. By
keeping its aliases within a hashed index data base, smail greatly reduces the time needed to look up an alias, and
so speeds the dispatching of your mail.

Sets of Routines
Library libgdbm contains three sets of functions.

• The ‘‘GNU DBM’’ (GDBM) routines. Each of these functions has the prefix gdbm_, and is declared in the
header file <gdbm.h>.

• DBM routines. These re-implement the original UNIX DBM routines. They are declared in header file
<dbm.h>.

• ‘‘New DBM’’ (NDBM) routines. These re-implement the extended version of the UNIX DBM routines. Each of
these functions has the prefix dbm_, and is declared in the header file <ndbm.h>.

Each set implements a hashed data base, but each has a different provenance, and somewhat different properties
and syntax. This library includes all three sets to support the widest possible range of third-party software. If you
are writing new software, however, we urge you to use the GDBM routines.

Note that you cannot mix routines from the three sets — you must pick one set, and stick with it. Please note, too,
that although this library re-creates the DBM and NDBM sets of routines with regard their calling conventions and
return values, internally these re-creations work somewhat different than the UNIX originals; thus, you cannot
expect programs compiled with these routines to read binary data bases created by the UNIX originals.

LEXICON

libgdbm 823



GDBM Routines
The following summarizes the GDBM routines:

gdbm_close() . . . . . . Close a GDBM data base
gdbm_delete(). . . . . . Delete a record from a GDBM data base
gdbm_exists() . . . . . . Check whether a GDBM data base contains a given record
gdbm_fetch() . . . . . . Retrieve a record from a GDBM data base
gdbm_firstkey(). . . . . Return the first record from a GDBM data base
gdbm_nextkey() . . . . Return the next record from a GDBM data base
gdbm_open(). . . . . . . Open a GDBM data base
gdbm_reorganize() . . . Reorganize a GDBM data base
gdbm_setopt(). . . . . . Set GDBM options
gdbm_store() . . . . . . Add records to a GDBM data base
gdbm_strerror(). . . . . Translate a GDBM error code into text
gdbm_sync(). . . . . . . Flush buffered GDBM data into its data base

As noted above, these routines are declared in header file <gdbm.h>. This header file also defines two structures
that the GDBM routines use. The first, datum, defines the structure of a data element, either a key or its
associated data set:

typedef struct {
char *dptr;
int dsize;

} datum;

This structure lets you have a key and a data element of unlimited length. This is a departure from the orthodox
UNIX DBM functions, in which the sizes of the key and the datum are both static.

The other structure, GDBM_FILE, holds the information that the GDBM routines use to access a GDBM data base:

typedef struct {int dummy[10];} *GDBM_FILE;

Error codes are written into global variable gdbm_errno, and are defined in header file <gdbmerrno.h>.

DBM Routines
The following summarizes the DBM routines:

dbmclose(). . . . . . . . Close a DBM data base
dbminit(). . . . . . . . . Open a DBM data base
delete() . . . . . . . . . . Delete a record from a DBM data base
fetch() . . . . . . . . . . Fetch a record from a DBM data base
firstkey() . . . . . . . . . Retrieve the first record from a DBM data base
nextkey(). . . . . . . . . Retrieve the next record from a DBM data base
store() . . . . . . . . . . Write a record into a DBM data base

As noted above, these routines are declared in header file <dbm.h>. It also defines the structure datum, which
holds a data element, either a key or its associated data set:

typedef struct {
char *dptr;
int dsize;

} datum;

The sizes of the key and its datum together cannot exceed BSIZE bytes — that is, the size of one file-system block.
BSIZE is defined in header file <sys/buf.h>; at present, it equals 512 bytes.

Please note that the function dbmclose() is non-standard. Programs that use it cannot be recompiled on an
orthodox UNIX system.

NDBM Routines
The following summarizes the NDBM routines:

dbm_close() . . . . . . . Close an NDBM data base
dbm_delete() . . . . . . Delete records from an NDBM data base
dbm_dirfno() . . . . . . Return the file descriptor for an NDBM .dir file
dbm_fetch() . . . . . . . Fetch a record from an NDBM data base
dbm_firstkey() . . . . . Retrieve the first key from an NDBM data base
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dbm_nextkey() . . . . . Retrieve the next key from an NDBM data base
dbm_open() . . . . . . . Open an NDBM data base
dbm_pagfno() . . . . . . Return the file descriptor for an NDBM .pag file
dbm_rdonly() . . . . . . Set an NDBM data base into read-only mode
dbm_store() . . . . . . . Store a record into an NDBM data base

As noted above, these routines are declared in header file <ndbm.h>. This header file also defines two structures
that the NDBM routines use. The first, datum, defines the structure of a data element, either a key or its
associated data set:

typedef struct {
char *dptr;
int dsize;

} datum;

This structure lets you have a key and a data element of unlimited length.

The other structure, DBM, holds the information that the NDBM routines use to access a NDBM data base:

typedef struct {int dummy[10];} DBM;

See Also
libraries, Programming COHERENT

Notes
libgdbm was written by Philip A. Nelson of the Computer Science Department, Western Washington University,
Bellingham (phil@cs.wwu.edu). This Lexicon entry is based on an info file written by Pierre Gaumond. libgdbm
and its documentation are copyright  1989-1993 by the Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim
copying, provided also that the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

For a full statement of the rights and obligations attached to libgdbm, see the file COPYING that accompanies the
source code to this library.

libm — Library
COHERENT mathematics library
/lib/libm.a

The COHERENT mathematics library libm contains the following useful mathematics functions:

acos() . . . . . . . . . . . Calculate inverse cosine
asin() . . . . . . . . . . . Calculate inverse sine
atan() . . . . . . . . . . . Calculate inverse tangent
atan2() . . . . . . . . . . Calculate inverse tangent of quotient
cabs() . . . . . . . . . . . Calculate complex absolute value
ceil() . . . . . . . . . . . Set numeric ceiling
cos(). . . . . . . . . . . . Calculate cosine
cosh() . . . . . . . . . . . Calculate hyperbolic cosine
exp() . . . . . . . . . . . Calculate exponent
fabs() . . . . . . . . . . . Calculate absolute value function
floor() . . . . . . . . . . . Calculate floor function
fmod() . . . . . . . . . . Calculate modulus for floating-point number
hypot() . . . . . . . . . . Calculate hypotenuse
j0() . . . . . . . . . . . . Calculate Bessel function, order 0
j1() . . . . . . . . . . . . Calculate Bessel function, order 1
jn() . . . . . . . . . . . . Calculate Bessel function, order n
log() . . . . . . . . . . . . Calculate natural logarithm
log10() . . . . . . . . . . Calculate common logarithm
pow() . . . . . . . . . . . Calculate power
sin() . . . . . . . . . . . . Calculate sine
sinh() . . . . . . . . . . . Calculate hyperbolic sine
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sqrt() . . . . . . . . . . . Calculate square root
tan(). . . . . . . . . . . . Calculate tangent
tanh() . . . . . . . . . . . Calculate hyperbolic tangent

See Also
libmp, libraries, math.h

Hart, J.F., et al.: Computer Approximations. New York, John Wiley & Sons, 1968.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C. New York, Cambridge
University Press, 1988. Highly recommended.

Notes
When programs that contain mathematics routines are compiled, you must explicitly name the mathematics
library on the cc command line. For example, to compile the example presented under the entry for acos(), use the
following cc command line:

cc -f acos.c -lm

The -f option links in the floating point routines for printf(), while the -lm option links in the mathematics
libraries. Note that the -lm option must come last on the cc command line, or the library will not be searched
properly.

The related library libmp performs multi-precision arithmetic. With these routines, you can perform arithmetic on
extremely large numbers, to an extremely fine precision. For details, see the Lexicon entry for libmp.

libmisc — Library
Library of miscellaneous functions

libmisc is a library of miscellaneous C functions. These functions perform such useful tasks as handling such
programming tasks as allocation of memory, copying strings, displaying variables from C with COBOL-like
‘‘picture’’ descriptions, and supporting virtual arrays via secondary storage.

Source code for libmisc is kept in the compressed tar archive /usr/src/misc.tar.Z. To extract the files into a new
subdirectory called misc, type the command:

zcat /usr/src/misc.tar.Z | tar xvf -

To build the library, type the following:

cd misc
make

This compiles the libmisc routines and builds the library libmisc.a.

Archive misc.tar also includes the header file misc.h which protypes these functions, and declares the global
variables and constants they use. You must include this header file in any program that uses any of the libmisc
functions.

Functions
The following summarizes the functions in libmisc.a:

char * alloc(n) unsigned n;
malloc() n bytes and initialize them to zero. Abort on failure.

int approx(a, b) double a, b;
If a and b are within epsilon, return one; otherwise, return zero. epsilon is a visable double.

char *ask(reply, msg, ...) char *reply, *msg;
Print a message and retrieve the user’s reply. msg is a printf()-style format string that formats the text
pointed to by any trailing arguments. ask() constructs the prompt message from msg and prints it on the
standard output; then reads a line from stdin, stores it in the place pointed to by reply, and returns its
address. reply must point to enough space to hold the user’s reply.

For example,

sscanf(ask(buff, "%d numbers", 3), &a, &b, &c);
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prints the message

Enter: 3 numbers

writes the user’s reply into buff, and hands its address to sscanf().

void banner(word, pad) char *word; int pad;
Print word on stdout as a banner, preceded by pad spaces. Each letter of the banner is fashioned from
many occurrences of itself. This is especially useful if you wish your listings to look like truly professional,
mainframe printouts.

bedaemon()
bedaemon() turns the calling program into a daemon. A daemon is a process that executes in the
background, without the usual connections to standard I/O streams and terminals. Examples are cron
and uuxqt. To ensure proper operation in connection with other system software, any program that you
intend to run as a daemon should call bedaemon() as its first step. This call closes all inherited, open-file
descriptors, detaches the process from its inherited process group and controlling terminal, sets current
directory to ‘/’, and sets umask to zero. For further information on daemon processes, see Unix Network
Programming by W. Richard Stevens (Englewood Cliffs, NJ, Prentice-Hall Inc, 1990), §2.6.

unsigned short crc16(p) char *p;
Compute the 16-bit cyclic redundency check (crc16) of the string pointed to by p, and return it. This
function is very useful for building hash tables or checking differences between strings.

void fatal(msg, ...) char *msg;
Print an error message and call exit(1). msg is a printf()-style format string; trailing arguments must to
point to data.

char *getline(ifp, lineno) FILE *ifp; int *lineno;
Get a line from the input file pointed to by ifp. This function returns the address of the line, or NULL to
indicate the end of file. getline() calls malloc() to acquire space for the line, and allows lines to be
continued with a \-whitespace. It also implements lineno.

getline() recognizes the following escape sequences:

# to end of line is passed
\ whitespace through end of line is passed
\n newline
\p literal ‘#’
\a alarm
\b backspace
\r carrage return
\f form feed
\t tab
\\ backslash
\ddd octal number

All other \ sequences are errors that getline() reports on stderr.

tm_t *jday_to_tm(jd) jday_t jd;
Turn a Julian date to tm (time) structure. The Julian date is the number of days since the beginning of
the Julian calendar, January 1, 4713 B.C.; it is a good way to store dates in a system-independent
manner, such as in a data base. Structure jday_t is defined in misc.h. Structure tm is defined in
<time.h>.

time_t jday_to_time(jd) jday_t jd;
Turn Julian date structure to COHERENT time. Type time_t is defined in header file <sys/types.h>.

void splitter(ofp, line, limit) FILE *ofp; char *line; int limit;
Write line into file ofp, splitting it into chunks less than limit bytes long. splitter() inserts a \ between
chunks, and attempts to do this on white-space boundaries. splitter() produces a long line rather than
split on non-whitespace. If line does not end in a newline, splitter() adds one. This is the inverse of
getline().

int is_fs(special) char *special;
Check whether special names a well-formed file system. Users should never put file systems on
/dev/ram1, but for multi-system software, like compress, it is smart to test.
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is_fs() returns -1 if special is not a device, or if open(), read(), or seek() fails. It returns zero if no file
system was found, or one if special names a legal file system.

char *lcase(st) char *str;
Convert every character in str to lower case. Note that this works only with the U.S. dialect of English; it
does not work with German or other languages that use characters in the upper half of the ASCII table.

char *match(string, pattern, fin) char *string, *pattern, **fin;
match() resembles pnmatch(), except that it returns the address of the pattern matched. fin is aimed past
the end of the pattern found; that is, match() finds a pattern and tells you where it is.

char *metaphone(word) char *word;
Translate word into a short phonetic equivalent for easy lookup. It resembles Knuth’s soundex method,
except that it uses a superior algorithm.

char *newcpy(str) char *str;
Create a NUL-terminated copy of str and return its address. Call fatal() if there is no space.

char *pathn(name, envpath, deflpath, access)
char *name, *envpath, *deflpath, *access;

pathn() looks for file name. It searches the directories named in the environmental variable envpath. If the
user has not set envpath, or if it is NULL, pathn() searches the default path deflpath. name must have
access permission. pathn() returns the full path to the file found. For example:

pathn("helpfile", "LIBPATH", "/lib", "r")

searches the directories named in LIBPATH for file helpfile, for which the user must have read
permission. If LIBPATH is not set, pathn() searches /lib for helpfile.

#include <regexp.h>
regexp *regcomp(exp) char *exp;
int regexec(prog, string) regexp *prog; char *string;
regsub(prog, source, dest) regexp *prog; char *source; char *dest;
regerror(msg) char *msg;

These functions implement a standard method for parsing regular expressions. regcomp() turns a regular
expression into a structure of type regexp and returns a pointer to it. regexec() matches string against the
regular expression in prog. It returns one if string matches exp, and zero if it does not. regsub() copies
source to dest, and makes substitutions according to the most recent regexec() performed using prog.
regerror() is called whenever an error is detected in regcomp(), regexec(), or regsub(). See regexp.doc for
details.

long randl()
Return a long random number uniformly distributed between 1 and 2,147,483,562. This comes from
Communications of the ACM, volume 31, number 6. See srandl(), below.

char *replace(s1, pat, s3, all, matcher) char *s1, *pat, *s3, (matcher)();
Replace one or all occurrences of pat in string s1 by s3, and return the result. The definition of match is
set by matcher. This calls the user-defined function

matcher(sw, pat, &fin).

The matcher must return the address of the pattern match and its end in &fin. match() is a valid example
of matcher. It replaces the first occurrence, or all occurrences of the pattern, and returns the new pattern.
The new pattern has been alloc()’d.

showflag(data, flags, output) long data; char *flags, *output;
Turn the bits in data to the flags in flags or ‘-’ in the string output, which must be as long as flags.

char *skip(s1, matcher, fin) char *s1, **fin; int (*matcher)();
Skip all initial characters in string s1 that fail when examined matcher. matcher is usually a character
function, e.g., isdigit(). It returns the first character skipped. skip() points fin at the character after the
skip.

char *span(s1, matcher, fin) char *s1, **fin; int (*matcher)();
Span all initial characters in string s1 that match when examined by matcher. matcher is usually a
character function, e.g., isdigit(). It returns the first character spanned. span() points fin at the character
after the span.
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srandl(seed1, seed2) long seed1, seed2;
randl() needs two seeds; srandl() sets them. Use it only if you need to repeat a random-number sequence.

strchtr(from, to, c, def)
char *from, *to; int c, def;

Look up the character c in the string from. Return the corresponding character in the string to if it is
found; otherwise, return the default character def.

For example, consider the call:

strchtr("ab", "xy", c, d);

If variable c equals ‘a’, then strchtr() returns ‘x’; if c equals ‘b’, then it returns ‘y’; otherwise, it returns the
value of d

strcmpl(s1, s2)
Case-insensitive string comparison. Resembles strcmp().

jday_t time_to_jday(time) time_t time;
Turn COHERENT time to Julian date structure. The Julian date is the number of days since the beginning
of the Julian calendar, January 1, 4713 B.C. The structure jday_t is defined in misc.h. Type time_t is
defined in <sys/types.h>.

jday_t tm_to_jday(tm) tm_t *tm;
Turn the time structure tm date into Julian date structure. Structure tm is defined in <time.h>.

char *trim(s) char *s;
Remove trailing whitespace from string s.

ucase(s) char *s;
Convert a string to upper case.

usage(s) char *s;
Print string s and call exit(1).

xdump(p, length) char *p;
Print on stdout a vertical hexadecimal dump of string p.

A vertical hexadecimal dump prints as three lines. The top line is the display character, or ‘.’ if the
character cannot be displayed cleanly. The next two lines are the hexadecimal numerals. The data are
blocked into groups of four bytes.

xopen(filename, acs) char *filename, *acs;
Like fopen(), but call fatal() if the open fails.

yn(question, ...) char *question;
Ask a question and retrieve a ‘Y’ or ‘N’ answer. question is a printf()-style format string; any trailing
parameters should point to data used in question. yn() returns one if the user answers ‘Y’ or ‘y’, and
returns zero if she answers ‘N’ or ‘n’.

Virtual Memory
The following functions are part of a virtual memory system for COHERENT 286. Occasionally, users port programs
like compress to COHERENT 286 that use a small number of very large arrays. Because COHERENT 286 is a
SMALL-model operating system, special provision must be made for arrays too large to fit into a 64-kilobyte data
segment. The following functions enable programs that are to be run under COHERENT 286 use very large arrays:

void vinit(filename, ram) char *filename; unsigned ram;
Initialize the virtual-memory system, using filename for work. filename may be a raw device, such as
/dev/rram1. ram is the amount of buffer space to give the system — the more, the better.

void vshutdown()
Shut the virtual-memory system, and make it restartable.

unsigned vopen(amt) unsigned long amt;
Set up a virtual-memory object. For example, if you want to emulate having a 100,000-byte array and a
50,000-byte array, use the call
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vid1 = vopen(100000L); vid2 = vopen(50000L);

This does some checking and tells the system that any reference to vid2 will be between 100,000 and
150,000 in the virtual file.

char *vfind(vid, disp, dirty)
unsigned vid, dirty; unsigned long disp;

Find a character in the virtual system, mark the block’s dirty bit if the access is to write. Given the
example in vopen(), if you want to find the 1,000th byte in vdi1, use the call:

c = *(vfind(vdi1, 1000L, 0));

To change the 2000th byte in vid2 d, use the call

*(vfind(vid2, 2000L, 1)) = d;

Note that the dirty indicator tells the system of the change so that the block will be written back before it is
read over. Blocks are 512 bytes long, so int’s or long’s can be read or written without multiple accesses to
vfind().

File Locking
libmisc holds a number of routines with which you can lock and unlock files and devices. It is adapted from the
mechanism used by the COHERENT implementation of UUCP.

Lock files are created in $SPOOLDIR. A lock file is given the name LCK..resource. It contains a decimal
representation of the process identifier (pid) of the process that created the lock.

You can provide an alternate pid by using one of the ‘n’ routines — i.e., locknrm(), lockntty(), and unlockntty().
The unlocking routines regard a pid of zero as an override — they remove the lock regardless of which process
created the lock.

For a tty device, resource is a string that consists of a decimal representation of its major number, a decimal point,
and the lower five bits of its minor number.

Each routine takes a string that names the resource to lock or unlock. The ‘‘tty’’ routines (i.e., lockntty(),
locktty(), unlockntty(), and unlocktty()) want the base name of the tty to be locked (without the /dev/ part).

Every lock routine returns zero on failure and one on success.

lockit(resource) char *resource;
Use a resource string to lock a tty.

lockexist(resource) char *resource;
Check whether a lock file exists for the tty with resource.

locknrm(resource, pid) char *resource; int pid;
Remove a lock file for a tty owned by process pid.

lockntty(tty, pid) char *tty; int pid;
Lock a tty for process pid.

lockrm(resource) char *resource;
Remove a lock file for tty with resource.

locktty(tty) char *tty;
Lock a tty.

lockttyexist(tty) char *tty;
Check whether a given tty is locked.

unlockntty(tty, pid) char *tty; int pid;
Unlock a tty for process pid. Unlocking always succeeds.

unlocktty(tty) char *tty;
Unlock a tty that the current process owns.

unlockit(resource, pid) char *resource; int pid;
Unlock something for process pid.
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Templates and Pictures
libmisc includes a function, picture(), for formatting numeric strings. It has the following syntax:

double picture(dble, format, output)
double dble; char *format, *output;

picture() performs numeric formatting under C. It resembles masking functions built into COBOL and BASIC, but
is superior to either. dble gives the number to format; format gives the format mask; and output points to the area
into which the formatted number is written. output must be at least as large as format. If dble overflows the
picture, picture() returns the overflow.

The following summarizes the values that can appear in the format string. Note that throughout, the symbol <sp>
indicates a space character, not the literal string ‘‘<sp>’’.

9 Provide a slot for a number. Passing 5.000 through a mask of 999 CR gives ‘‘005’’. Passing -5.000 through a
mask of 999 CR yields ‘‘005 CR’’. Note that picture() does not recognize the characters ‘C’ and ‘R’ as being
special. Trailing non-special characters print only if the number is negative.

Z Provide a slot for a number, but suppress leading zeroes. For example, passing 1034.000 through a mask of
ZZZ,ZZZ gives ‘‘<sp><sp>1,034’’. Note that picture() does not recognize a comma as being a special character.
picture() prints embedded non-special characters only if they are preceeded by significant digits.

J Provide a slot for a number, but shrink out leading zeros. For example, passing 1034.000 through a mask of
JJJ,JJJ yields ‘‘1,034’’.

K Provide a slot for a number, but shrink out any zeros. For example, passing 70884.000 through a mask of
K9/K9/K9 yields ‘‘7/8/84’’.

$ Float a dollar sign to the left of the displayed number. For example, passing 105.000 through a mask of
$ZZZ,ZZZ yields ‘‘<sp><sp><sp><sp>$105’’.

. Separate the number between decimal and integer portions. For example, passing 105.670 through a mask of
Z,ZZZ.999 yields ‘‘<sp><sp>105.670’’.

T Provide a slot for a number, but suppress trailing zeroes. For example, passing 105.670 through a mask of
Z,ZZ9.9TT yields ‘‘<sp><sp>105.67<sp>’’.

S Provide a slot for a number, but shrink out trailing zeroes. For example, passing 105.670 through a mask of
Z,ZZ9.9SS yields ‘‘<sp><sp>105.67’’.

- Float a negative sign in front of negitive numbers. For example, passing 105.000 through a mask of -Z,ZZZ
yields ‘‘<sp><sp><sp<105’’, whereas passing -105.000 through a mask of -Z,ZZZ yields ‘‘<sp><sp>-105’’.

( Acts like -, but prints a parenthesis. For example, passing 105.000 through a mask of (ZZZ) yields
‘‘<sp>105<sp>’’, whereas passing -5.000 through a mask of (ZZZ) yields ‘‘<sp><sp>(5)’’.

+ Float a + or - in front of the number, depending on its sign. For example, pasing 5.000 through a mask of
+ZZZ yields ‘‘<sp><sp>+5’’, whereas passing -5.000 through a mask of +ZZZ yields ‘‘<sp><sp>-5’’.

* Fill all spaces to right with asterisks. For example, passing 104.100 through a mask of *ZZZ,ZZZ.99 yields
‘‘*****104.10’’; whereas passing 104.100 through a mask of *$ZZZ,ZZZ.99 yields ‘‘*****$104.10’’. picture()
returns any overflow as a double. For example, passing -1234.000 through a mask of (ZZZ) yields ‘‘(234)’’ with
an overflow of -1.0; passing 123.400 through a mask of 99 yields ‘‘23’’ with an overflow of 1.0; and passing
1200.000 through a mask of ZZ yields ‘‘00’’ with an overflow of 12.0.

Files
/usr/src/misc.tar.Z — Compressed tar archive of sources

See Also
libraries, tar, zcat

Notes
The misc library is provided on an as-is basis only. Caveat utilitor!
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libmp — Library
Library for multiple-precision mathematics
/usr/lib/libmp.a

The COHERENT library libmp contains routines that allow you to perform multiple-precision arithmetic. These
functions manipulate a data structure called a mint, or ‘‘multiple-precision integer,’’ which the header file mprec.h
defines as follows:

typedef struct {
unsigned len;
char *val;

} mint;

You should not depend on the details of this structure, because on some machines a different representation may
be more efficient. Using the listed functions is always safe.

The following gives the multiple-precision routines:

gcd(). . . . . . . . . . . . Set variable to greatest common divisor
ispos() . . . . . . . . . . Return if variable is positive or negative
itom() . . . . . . . . . . . Create a multiple-precision integer
madd() . . . . . . . . . . Add multiple-precision integers
mcmp() . . . . . . . . . . Compare multiple-precision integers
mcopy() . . . . . . . . . Copy a multiple-precision integer
mdiv(). . . . . . . . . . . Divide multiple-precision integers
min() . . . . . . . . . . . Read multiple-precision integer from stdin
minit() . . . . . . . . . . Condition global or auto multiple-precision integer
mintfr(). . . . . . . . . . Free a multiple-precision integer
mitom() . . . . . . . . . Reinitialize a multiple-precision integer
mneg() . . . . . . . . . . Negate multiple-precision integer
mout() . . . . . . . . . . Write multiple-precision integer to stdout
msqrt() . . . . . . . . . . Compute square root of multiple-precision integer
msub() . . . . . . . . . . Subtract multiple-precision integers
mtoi() . . . . . . . . . . . Convert multiple-precision integer to integer
mtos(). . . . . . . . . . . Convert multiple-precision integer to string
mult() . . . . . . . . . . . Multiply multiple-precision integers
mvfree() . . . . . . . . . Free multiple-precision integer
pow() . . . . . . . . . . . Raise multiple-precision integer to power
rpow(). . . . . . . . . . . Raise multiple-precision integer to power
sdiv() . . . . . . . . . . . Divide multiple-precision integers
smult() . . . . . . . . . . Multiply multiple-precision integers
spow(). . . . . . . . . . . Raise multiple-precision integer to power
xgcd() . . . . . . . . . . . Extended greatest-common-divisor function
zerop() . . . . . . . . . . Indicate if multi-precision integer is zero

itom() creates a new mint, initializes it to the signed integer value n, and returns a pointer to it. Storage used by a
mint created with itom may be reclaimed using mintfr().

A mint that already exists may be reinitialized by mitom(), which sets a to the value n. If the mint was declared as
a global or automatic variable, it must be conditioned before first use by minit(), which prevents garbage values in
the mint structure from causing chaos. A mint conditioned by minit() has no value; however, it may be used to
receive the result of an operation. For mints automatic to a function, mvfree() should be used before the function
is exited to free the storage used by the val field of the mint structure. Otherwise, this storage will never be
reclaimed.

madd(), msub(), and mult() set c to the sum, difference, or product of a and b. mdiv divides a by b and writes the
quotient and remainder in q and r. b must not be zero. The results of the operation are defined by the following
conditions:

1. a=q*b+r

2. The sign of r equals the sign of q
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3. The absolute value of r < the absolute value of b.

smult() is like mult(), except the second argument is an integer in the range 0 ≤ n ≤ 127. sdiv() is like mdiv(),
except the second argument is an integer in the range 1 ≤ n ≤ 128, and the remainder argument points to an int
instead of a mint().

pow() sets c to a raised to the b power reduced modulo m. rpow() sets c to a raised to the b power. spow() is like
rpow(), except the exponent is an integer. In no case may the exponent be negative.

mcopy() sets b equal to a. mneg() sets b equal to negative a.

msqrt() sets b to the integral portion of the positive square root of a; r is set to the remainder. a must not be
negative. The result of the operation is defined by the condition

a = b * b + r

gcd() sets c to the greatest common divisor of a and b. xgcd() is an extended gcd routine that sets g to the greatest
common divisor of a and b, and sets r and s so the relation

g = a * r + b * s

holds. For xgcd(), r, s and g must all be distinct.

mints may be compared with mcmp(), which returns a signed integer less than, equal to, or greater than zero
according to whether a is less than, equal to, or greater than b. ispos() returns true (nonzero) if a is not negative,
false (zero) if a is negative. zerop returns true if a is zero, false otherwise.

mtoi() returns an integer equal to the value of a. a should be in the allowable range for a signed integer.

The external integers ibase and obase govern the I/O and ASCII conversion routines. Allowable bases run from
two to 16. Permissible digits are 0 through 9 and A through F (lower-case letters are not allowed). min reads a
mint in base ibase from the standard input and sets a to that value. Leading blanks and an optional leading
minus sign are allowed; the number is terminated by the first non-legal digit. mout() outputs a on the standard
output in base obase. mtos() performs the same conversion as mout(), but the result is placed in a character
string instead of being output; a pointer to the string is returned. The string is actually allocated by malloc(), and
may be freed by free().

mzero() and mone() point to mints with values zero and one. mminint() and mmaxint() point to mints
containing the minimum and maximum values that will fit in a signed integer. These constants should never be
used as the result of an operation.

All the necessary declarations for these constants and for the library functions are contained in the header file
mprec.h. They need not be repeated.

To link libmp modules into an executable object, use the argument -lmp at the end of the cc command.

Example
The following example converts a string into a multi-precision integer.

#include <stdio.h>
#include <mprec.h>
#include <ctype.h>

/*
* "ibase" is an int which contains the input base used by "stom".
* It should be between 2 and 16.
*/
int ibase = 10;

LEXICON

libmp 833



/*
* stom() reads in a number in base ibase from string ’a’ and returns
* pointer to multiple-precision integer.
*/
mint *stom(s)
register char *s;
{

char cval;
mint c = {1, &cval};
register int ch;
char mifl = 0; /* leading minus flag */
static mint number;

mcopy(mzero, &number); /* set number to zero */
if ((ch = *s) == ’-’) { /* skip leading ’-’ */

mifl = 1;
ch = *++s;

}

/* scan thru string ’s’, building result in "number" */
while (isascii(ch) && isdigit(ch)) {

cval = (isdigit(ch) ? ch - ’0’: ch - ’A’);
smult(&number, ibase, &number);
madd(&number, &c, &number);
ch = *++s;

}

if (mifl) /* adjust sign of a "number" */
mneg(&number, &number);

return(&number);
}

/* simple test for "stom" */
main()
{

char buffer[80];

printf("Input string ? ");
gets(buffer);
mout(stom(buffer)); /* Print in stdout multiple-precision int */

}

Files
<mprec.h>
/usr/lib/libmp.a

See Also
bc, dc, libraries, malloc(), mprec.h

Diagnostics
On any error, such as division by zero, running out of space or taking the square root of a negative number, an
appropriate message is printed on the standard error stream and the program exits with a nonzero status.

LIBPATH — Environmental Variable
Directories that hold compiler phases and libraries

LIBPATH names the directories that hold the phases of the COHERENT C compiler, the run-time start-up modules,
and libraries. cc searches these directories as it orchestrates the compiling and linking of a program written in C
or assembly-language.

A typical definition is:

export LIBPATH=:/lib:/usr/lib

This searches the current directory ‘.’, then /lib, then /usr/lib.

If you have not set LIBPATH in your .profile, cc uses the default LIBPATH that is set in header file path.h. This
definition is adequate for all standard installations of COHERENT.
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See Also
cc, environmental variables, ld

libraries — Overview
A library is an archive file of commonly used functions that have been compiled, tested, and stored for inclusion in
a program at link time.

The COHERENT system stores its libraries in two directories: /usr/lib and /lib. or their subdirectories: The
following libraries are kept in /usr/lib:

libcurses.a. . . . . . . . curses library and terminfo functions
libedit.a . . . . . . . . . Routines to gather and edit user input
libgdbm.a . . . . . . . . Library for GNU DBM functions
libl.a . . . . . . . . . . . lex library
libmp.a . . . . . . . . . . Multi-precision arithmetic library
libsocket.a. . . . . . . . sockets emulation library
libterm.a. . . . . . . . . Functions to read termcap data
liby.a . . . . . . . . . . . yacc library
lib.b . . . . . . . . . . . . bc’s function library (in bc source)

The following libraries are kept in /lib:

libc.a . . . . . . . . . . . General functions and system calls
libm.a. . . . . . . . . . . Mathematics routines

In addition, COHERENT comes with a library of miscellaneous routines, called libmisc. See the Lexicon article
libmisc for information on how to prepare this library for use.

Lexicon Articles
The following Lexicon articles introduce the library functions included with the COHERENT system:

libc
libcurses
libedit
libgdbm
libm
libmisc
libmp
libsocket
libterm

See Also
ar, C language, Programming COHERENT

libsocket — Library
Library of communications routines

libsocket is a library of routines that emulate the Berkeley sockets library. It includes the following functions:

accept(). . . . . . . . . . Accept a connection on a socket
bind() . . . . . . . . . . . Bind a name to a socket
bitcount() . . . . . . . . Count bits in a bit-mask
connect(). . . . . . . . . Connect to a socket
endhostent() . . . . . . Close file /etc/hosts
endnetent() . . . . . . . Close network file
endprotoent() . . . . . . Close protocols file
endservent(). . . . . . . Close protocols file
ffs() . . . . . . . . . . . . Translate a bit mask into an integer value
getdtablesize() . . . . . Get the number of files a process can open
gethostbyaddr(). . . . . Retrieve host information by address
gethostbyname() . . . . Retrieve host information by name
gethostname() . . . . . Get the name of the local host
getnetbyaddr() . . . . . Get a network entry by address
getnetbyname(). . . . . Get a network entry by address
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getnetent() . . . . . . . Fetch a network entry
getpeername() . . . . . Get name of connected peer
getprotobyname() . . . Get protocol entry by protocol name
getprotobynumb() . . . Get protocol entry by protocol number
getprotoent() . . . . . . Get protocol entry
getservbyname() . . . . Get a service entry by name
getservbyport() . . . . . Get a service entry by port number
getservent() . . . . . . . Get a service entry
getsockname() . . . . . Get the name of a socket
getsockopt(). . . . . . . Read a socket option
gettimeofday() . . . . . Berkeley time function
inet_addr(). . . . . . . . Transform an IP address from text to binary
inet_network() . . . . . Transform an IP address from text to an integer
listen() . . . . . . . . . . Listen for a connection on a socket
random() . . . . . . . . . Return a random number
recv() . . . . . . . . . . . Receive a message from a connected socket
recvfrom() . . . . . . . . Receive a message from a socket
select() . . . . . . . . . . Check whether sockets are ready for activity
send() . . . . . . . . . . . Send a message to a connected socket
sendto() . . . . . . . . . Send a message to a socket
sethostent() . . . . . . . Open and rewind file /etc/hosts
setnetent(). . . . . . . . Open and rewind file /etc/networks
sethostent() . . . . . . . Open and rewind file /etc/hosts
setprotoent() . . . . . . Open the protocols file
setservent() . . . . . . . Open the services file
setsockopt() . . . . . . . Set a socket option
shutdown() . . . . . . . Replace function to shut down system
SOCKADDRLEN(). . . . Return length of an address
socket(). . . . . . . . . . Create a socket
socketpair() . . . . . . . Create a pair of sockets
srandom() . . . . . . . . Seed the random-number generator
strcasecmp() . . . . . . Case-insensitive string comparison
strcasencmp(). . . . . . Case-insensitive string comparison
usleep(). . . . . . . . . . Sleep briefly

Function socket() creates a socket; the caller dictates the type of socket to be created, and the communications
protocol that it comprehends. socket() returns a descriptor, which resembles a file descriptor and which can be
passed to the system calls read() and write() to exchange information with whatever plugs itself into that socket.
(For details, see the Notes section at the end of this article.)

Function bind() binds the newly created socket to a file that you name. To await a connection with another
process, invoke the function listen(); this alerts the system to the fact that you (via your socket) await messages of
a given type. Function select() checks whether one or more sockets are ready to be written to, or hold data that
need to be read. When a message becomes available, invoke function accept() to accept communication with the
process that wishes to connect to your socket. These functions generally are used by ‘‘server’’ sockets.

Function connect() directly establishes connection with a server socket via its name (that is, via the file to which it
is bound). Once connection is established, information can be exchanged via the COHERENT system calls read()
and write().

System Files
The socket library manipulates the following files. Each is described in its own Lexicon entry:

hosts . . . . . . . . . . . Names and addresses of hosts on the local network
hosts.equiv . . . . . . . Name equivalent hosts
hosts.lpd. . . . . . . . . Local system name and domain
inetd.conf . . . . . . . . Configure the Internet daemons
networks. . . . . . . . . Name remote networks
protocols. . . . . . . . . Name supported protocols
services . . . . . . . . . List supported TCP/IP services

Example
For following gives a pair of programs that demonstrate sockets. They were written by John Dhuse
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(jdhuse@sedona.intel.com).

The example consists of two programs, server.c and client.c. Compile each with the switch -lsocket. To see how
they work, run each in its own virtual console or xterm window. Do not run them in the background; otherwise,
you will not be able to work with them interactively. Be sure to start up server first, as it creates the socket into
which client plugs itself.

Each process gives you a prompt; you can type commands into each. server recognizes the following commands:

? Print the command menu

c Call select() to check the socket. client displays the status of the socket.

s Send a string to server. client prompts for the string, reads up to 20 characters, and writes it to the socket.

r Read from the socket. client prompts for the number of bytes to read, and clips any response to a maximum
of 20.

q Close the socket and terminate the server process.

server recognizes the following commands:

? Print the command menu.

c Call select() to check the socket.

r Read from the socket. server does not prompt for the number of bytes to read, but tries to read the entire
contents of the socket, up to a maximum of 20 bytes.

e Echo the read message back to the client. The server cannot send its own message the client, just echo what
it received.

q Close the socket, terminate the server, and unlink() the socket file.

The following gives the source for server.c:

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/un.h>

main()
{

int sd, nsd, err,i,j,rdfds[2],wrtfds[2];
int efds[2],done,r;
int arg=1;
struct sockaddr_un server;
char *sock_name = "u0";
char buf[20];
char command,line[80];
struct timeval timeout;

/* clear our address */
bzero((char *)&server, sizeof(server));

/* create socket */
if ((sd = socket(AF_UNIX, SOCK_STREAM, 0)) <= 0) {

err = errno;
fprintf(stderr, "server: can’t create socket\n");
fprintf(stderr, "server: errno = %d\n", err);
exit(EXIT_FAILURE);

}

server.sun_family = AF_UNIX;
bcopy(sock_name,server.sun_path,strlen(sock_name));
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/* bind the socket */
if ((bind(sd, (struct sockaddr *)&server, sizeof(server))) != 0) {

err = errno;
fprintf(stderr, "server: can’t bind socket\n");
fprintf(stderr, "server: errno = %d\n", err);
close(sd);
exit(EXIT_FAILURE);

}

/* listen on the socket */
if ((listen(sd, 1)) != 0) {

err = errno;
fprintf(stderr, "server: can’t listen on socket\n");
fprintf(stderr, "server: errno = %d\n", err);
close(sd);
exit(EXIT_FAILURE);

}

/* accept connections on the socket */
if ((nsd = accept(sd, (struct sockaddr*)0, (int *)0)) == -1) {

err = errno;
fprintf(stderr, "server: can’t accept connection\n");
fprintf(stderr, "server: errno = %d\n", err);
close(sd);
exit(EXIT_FAILURE);

}

printf("accepted client connection fd %d\n",nsd);
/* set to non-blocking io */

ioctl(nsd,FIOSNBIO,&arg);

/* echo every message back to client, exit on terminate string */
printf("entering command loop\n");
command = ’a’;
while (command != ’q’) {

printf("server> ");
scanf("%s",line);
sscanf(line,"%c", &command);
switch (command) {

case ’c’ :
/* set up for select */
rdfds[0] = 1 << nsd; rdfds[1] = 0;
wrtfds[0] = 1 << nsd; wrtfds[1] = 0;
efds[0] = 1 << nsd; efds[1] = 0;
timeout.tv_sec = 0; timeout.tv_usec = 0;
r = select(nsd+1,rdfds,wrtfds,efds,(struct timeval *)NULL);
err = errno;

if (r < 0)
printf("select() returned errno %d\n",err);

else {
if (rdfds[0] & (1 << nsd))

printf("socket has data to be read\n");
if (wrtfds[0] & (1 << nsd))

printf("data can be written to socket\n");
if (efds[0] & (1 << nsd))

printf("select reports exception on socket\n");
}
break;
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case ’r’ :
bzero(&buf[0], sizeof(buf));

j = read(nsd,buf,sizeof(buf));
err = errno;
if (j < 0)

printf("read() returned errno %d\n",err);
else

printf("got %d bytes, msg is >%s<\n",j,buf);
break;

case ’e’ :
printf("echoing >%s< (%d bytes) to client\n",buf,j);
write(nsd,&buf[0],j);
break;

case ’q’ :
close(nsd);
close(sd);
unlink(sock_name);
break;

case ’?’ :
printf("commands:\n");
printf(" c - check the socket\n");
printf(" ? - this help message\n");
printf(" r - read from socket\n");
printf(" e - echo received message to client\n");
printf(" q - close socket and quit\n");
break;

default :
printf("\n");
break;

}
}

}

The following gives the source for client.c:

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/un.h>

main()
{

int sd, err, i, j, flags;
int arg=1;
struct sockaddr_un client;
char *address="u0";
char buf[20];
char command,line[80];
int rdfds[2],wrtfds[2];
struct timeval timeout;

/* clear our address */
memset((char *)&client,0, sizeof(client));

/* create socket */
if ((sd = socket(AF_UNIX, SOCK_STREAM, 0)) <= 0) {

err = errno;
fprintf(stderr, "client: can’t create socket\n");
fprintf(stderr, "client: errno = %d\n", err);
exit(EXIT_FAILURE);

}
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/* set to blocking so connect hangs, waiting for connect */
arg = 0;

i = ioctl(sd,FIOSNBIO,&arg);

client.sun_family = AF_UNIX;
memcpy(client.sun_path,address,2);

/* connect to the socket */
if (connect(sd, (struct sockaddr *)&client, sizeof(client))) {

err = errno;
fprintf(stderr, "client: can’t connect socket\n");
fprintf(stderr, "client: errno = %d\n", err);
close(sd);
exit(EXIT_FAILURE);

}
printf("connected socket fd = %d\n",sd);

arg = 1;
i = ioctl(sd,FIOSNBIO,&arg);

printf("entering command loop\n");
command = ’a’;

while (command != ’q’) {
printf("client> ");
scanf("%s",line);
sscanf(line,"%c",&command);

switch (command) {
case ’s’ :

printf("message to send: ");
scanf("%s",buf);
i = write(sd,buf,strlen(buf));
err = errno;
if (i < 0)

printf("write() returned errno %d\n", err);
else printf("sent >%s< (%d bytes) to server\n",

buf,strlen(buf));
break;

case ’?’ :
printf("commands:\n");
printf(" s - send a message\n");
printf(" ? - this help messge\n");
printf(" c - check the socket\n");
printf(" r - read from socket\n");
printf(" b - set to blocking I/O\n");
printf(" n - set to non-blocking I/O\n");
printf(" q - close socket and quit\n");
break;

case ’b’ :
arg = 0;

ioctl(sd,FIOSNBIO,&arg);
printf("I/O is blocking\n");
break;

case ’n’ :
arg = 1;

ioctl(sd,FIOSNBIO,&arg);
printf("I/O is non-blocking\n");
break;
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case ’c’ :
/* setup query fields */
rdfds[0] = 1 << sd; rdfds[1] = 0;

wrtfds[0] = 1 << sd; wrtfds[1] = 0;
timeout.tv_sec = 0; timeout.tv_usec = 0;
i = select(sd+1,rdfds,wrtfds,(int *)NULL,

&timeout);
err = errno;
if (i < 0)

printf("select() returned error %d\n",err);
else {

if (rdfds[0] & (1 << sd))
printf("socket has data to be read\n");

if (wrtfds[0] & (1 << sd))
printf("data can be written to socket\n");

}
break;

case ’r’ :
printf("number of bytes to read > ");
scanf("%d",&i);
if (i > sizeof(buf)) i = sizeof(buf);

memset(&buf[0],0, sizeof(buf));
j = read(sd,buf,i);
err = errno;
if (j < 0)

printf("read() returned errno %d\n",err);
else

printf("got %d bytes, msg is >%s<\n",j,buf);
break;

case ’q’ :
close(sd);
break;

default:
printf("\n");
break;

}
}
exit(EXIT_SUCCESS);

}

See Also
device driver, hosts, hosts.equiv, hosts.lpd, inetd.conf, libraries, msgget(), named pipes, networks, pipe(),
protocols, semget(), services, shmget(), STREAMS

Notes
The version of sockets included with COHERENT is not built into the kernel. Rather, it uses a library of routines
that use named pipes to emulate sockets. You should not invoke the system calls read() or write() to manipulate
directly any descriptor returned by a call to socket(), because this descriptor defines only one of a set of named
pipes required to mimic a true kernel-level socket. Header file <sys/socket.h> replaces these with the macros that
perform the task correctly. This means that in every C file where you perform a read(), write(), ioctl(), or close() on
a socket, you must include <sys/socket.h>.

This library was adapted from Berkeley sources by P.Garbha (pgd@compuram.bbt.se), and was extensively revised
by Mark Williams Company.

This product includes software developed by the University of California, Berkeley, and its contributors.

libterm — Library
Functions to read termcap descriptions

The library libterm holds the following routines, with which a program can read a termcap description:

tgetent() Read a termcap entry.
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tgetflag() Check if a given Boolean capability is present in the terminal’s termcap entry.

tgetnum() Return the value of a numeric termcap feature (e.g., the number of columns on the terminal).

tgetstr() Read and decode a termcap string feature.

tgoto() Read and decode a cursor-addressing string.

tputs() Read and decode the leading padding information of a termcap string feature.

See the Lexicon entry for each function for details.

See Also
libcurses, libraries, termcap

limits.h — Header File
Define numerical limits
#include <limits.h>

The header file <limits.h> defines macros that set the numerical limits for the translation environment.

The following table gives the macros defined in limits.h. Each value given is the macro’s minimum maximum: a
conforming implementation of C must meet these limits, and may exceed them.

CHAR_BIT
Number of bits in a char. This must be at least eight.

CHAR_MAX
Largest value representable in an object of type char. If the implementation defines a char to be signed,
then it is equal to the value of the macro SCHAR_MAX; otherwise, it is equal to the value of the macro
UCHAR_MAX.

CHAR_MIN
Smallest value representable in an object of type char. If the implementation defines a char to be signed,
then it is equal to the value of the macro SCHAR_MIN; otherwise, it is zero.

INT_MAX
Largest value representable in an object of type int; it must be at least 32,767 (0x7FFF).

INT_MIN
Smallest value representable in an object of type int; no less more -32,767.

LONG_MAX
Largest value representable in an object of type long int; it must be at least 2,147,483,647
(0x7FFFFFFFL).

LONG_MIN
Smallest value representable in an object of type long int; it must be at most -2,147,483,647.

MB_LEN_MAX
Largest number of bytes in any multibyte character, for any locale; it must be at least one.

OPEN_MAX
The maximum number of file descriptors that a process can hold at any given time.

Please note that this constant gives a ‘‘snapshot’’ of the state of COHERENT at this time. Using this
constant in a program, in particular to size an array, greatly decreases the portability of a program, and
may cause it to behave incorrectly. To determine the number of file descriptors that the operating system
permits right now, use the system call sysconf(). Caveat utilitor!

SCHAR_MAX
Largest value representable in an object of type signed char; it must be at least 127.

SCHAR_MIN
Smallest value representable in an object of type signed char; it must be at most -127.

SHRT_MAX
Largest value representable in an object of type short int; it must be at least 32,767 ((short)0x7FFF).
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SHRT_MIN
Smallest value representable in an object of type short int; it must be at most -32,767.

UCHAR_MAX
Largest value representable in an object of type unsigned char; it must be at least 255.

UINT_MAX
Largest value representable in an object of type unsigned int; it must be at least 65,535 ((unsigned
int)0xFFFF).

ULONG_MAX
Largest value representable in an object of type unsigned long int; it must be at least 4,294,967,295
((unsigned long)0xFFFFFFFFL).

USHRT_MAX
Largest value representable in an object of type unsigned short int; it must be at least 65,535 ((unsigned
short)0xFFFF).

See Also
header files
ANSI Standard, §5.2.4.2.1
POSIX Standard, §2.8

Notes
limits.h sets fixed limits. If a limit is not completely fixed, then the symbol is not defined, and a process must use
sysconf() or pathconf(), as appropriate, to find the limit’s value for the current run of the process.

lines — Command
Highly amusing board game
/usr/games/lines

lines is an interactive COHERENT version of a two-player board game by Claude Soucie called Lines of Action. The
screen displays the game board with ‘‘X’’ and ‘‘O’’ characters marking the positions of the pieces. To see the rules
of the game, type ‘‘r’’ and then press <Enter>. To see the available interactive commands, type ‘‘h’’ and press
<Enter>.

Two players can use lines to keep track of a game between them by moving with the ‘‘M’’ command. Alternatively,
one player can play against the computer by moving with the ‘‘m’’ command. The program uses a tree-search
technique to consider possible moves; the player can vary the speed of the program’s replies with commands that
change the tree search width and depth.

For a more detailed description of Lines of Action, see A Gamut of Games by Sid Sackson (New York, Random
House, 1969).

See Also
commands

link() — System Call (libc)
Create a link
#include <unistd.h>
link(old, new)
char *old, *new;

A link to a file is another name for the file. All attributes of the file appear identical among all links.

link() creates a link called new to an existing file named old.

For administrative reasons, it is an error for users other than the superuser to create a link to a directory. Such
links can make the file system no longer tree structured unless carefully controlled, posing problems for
commands such as find.

Examples
The first example, called lock.c, demonstrates how link() can be used to perform intertask locking. With this
technique, a program can start a process in the background and stop any other user from starting the identical
process.
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#include <unistd.h>
main()
{

if(link("lock.c", "lockfile") == -1) {
printf("Cannot link\n");
exit(1);

}

sleep(50); /* do nothing for 50 seconds */
unlink("lockfile");
printf("done\n");
exit(EXIT_SUCCESS);

}

The second example demonstrates how to use link() and unlink() to rename a file.

#include <stdio.h>
#include <unistd.h>
main(argc, argv) int argc; char *argv[];
{

register char *old, *new;

if (argc != 3) {
fprintf(stderr, "Usage: rename old new\n");
exit(EXIT_FAILURE);

}
old = argv[1];
new = argv[2];

if (link(old, new) == -1) {
fprintf(stderr, "rename: link(%s, %s) failed\n", old, new);
exit(EXIT_FAILURE);

} else if (unlink(old) == -1) {
fprintf(stderr, "rename: unlink(%s) failed\n", old);
exit(EXIT_FAILURE);

}
exit(EXIT_SUCCESS);

}

See Also
find, libc, ln, rename(), unlink(), unistd.h
POSIX Standard, §5.3.4

Diagnostics
link() returns zero when successful. It returns -1 on errors, e.g., old does not exist, new already exists, attempt to
link across file systems, or no permission to create new in the target directory.

Notes
Because each mounted file system is a self-contained entity, links between different mounted file systems fail.

listen() — Sockets Function (libsocket)
Listen for a connection on a socket
#include <sys/socket.h>
int listen(socket, backlog)
int socket, int backlog;

Function listen() ‘‘listens’’ for a connection on socket. It also signals the system your process’s willingness to accept
a connection on that socket. This function applies only to sockets of type SOCK_STREAM or SOCK_SEQPACKET.

socket is a file descriptor that identifies the socket in question. It must have been returned by a call to socket().
backlog defines the maximum length to which the queue of pending connections may grow. As of this writing,
backlog is limited to a maximum of five. If a connection request arrives with the queue full, the client may receive
an error with an indication of ECONNREFUSED; or if the underlying protocol supports retransmission, the request
may be ignored so that retries may succeed.

If all goes well, listen() returns zero. If an error occurs, it returns -1 and sets errno to an appropriate value. The
following lists the errors that can occur, by the value to which listen() sets errno:
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EBADF socket is not a valid descriptor.

ENOTSOCK
socket does not identify a socket.

EOPNOTSUPP
socket is not of a type that supports listen().

Example
For an example of this function, see the Lexicon entry for libsocket.

See Also
accept(), connect(), libsocket, socket()

lmail — Command
Deliver mail on your local system

Command lmail delivers mail on your local system. It receives messages from the mail-routing program smail,
and copies each into the appropriate user’s mailbox.

See Also
commands, mail (overview), mail (command), rmail, smail

ln — Command
Create a link to a file
ln [-f] oldfile newfile
ln [-f] oldfile ... directory

The COHERENT system knows a file by its i-node number. Each file is also linked to one or more file names, each
name being stored in a directory. This system means that the same file can be known by multiple names in
multiple directories. The command ln lets you create a new link to a file.

In its first form, ln links the name newfile to the file that is already named oldfile, provided that newfile does not
already exist.

In the second form, ln links oldfile with an identical name in another directory. In effect, one file will ‘‘live’’ in two
directories.

If newfile already exists, -f forces ln to unlink it and assign its name to oldfile.

See Also
commands, cp, ls, mv, rm

Notes
Links across file systems are impossible. For example, if your COHERENT system has two file systems, one
mounted on /f and the other mounted on /usr, you cannot use ln to link a file in /v to one in /usr.

Note, too, that ln lets you link a directory to another file. This feature is permitted by POSIX Standard; however,
because COHERENT does not yet support symbolic links, this feature at best is useless, and at worst is rather
dangerous. Caveat utilitor.

localtime() — Time Function (libc)
Convert system time to calendar structure
#include <time.h>
#include <sys/types.h>
struct tm *localtime(timep)
time_t *timep;

localtime() converts COHERENT’s internal time into the form described in the structure tm, which is defined in the
header file <time.h>.

timep points to the system time. It is of type time_t, which is defined in the header file <sys/types.h>.

localtime() returns a pointer to the structure tm. The function asctime() turns tm into an ASCII string.
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Unlike its cousin gmtime(), localtime() returns the local time, including conversion to daylight saving time, if
applicable. The daylight-saving time flag indicates whether daylight saving time is now in effect, not whether it is
in effect during some part of the year. Note, too, that the time zone is set by localtime() every time the value
returned by

getenv("TIMEZONE")

changes. See the Lexicon entry for TIMEZONE for more information on how COHERENT handles time zone settings.

Example
The following example recreates the function asctime(). It builds a string somewhat different from that returned by
asctime() to demonstrate how to manipulate the tm structure.

#include <time.h>
#include <sys/types.h>

char *month[] = {
"January", "February", "March", "April",
"May", "June", "July", "August", "September",
"October", "November", "December"

};

char *weekday[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

};

main()
{

char buf[20];
time_t tnum;
struct tm *ts;
int hour = 0;

time(&tnum); /* get time from system */

/* convert time to tm struct */
ts=localtime(&tnum);

if (ts->tm_hour == 0)
sprintf(buf,"12:%02d:%02d A.M.",

ts->tm_min, ts->tm_sec);

else
if(ts->tm_hour>=12) {

hour=ts->tm_hour-12;
if (hour==0)

hour=12;
sprintf(buf,"%02d:%02d:%02d P.M.",

hour, ts->tm_min,ts->tm_sec);

} else
sprintf(buf,"%02d:%02d:%02d A.M.", ts->tm_hour,

ts->tm_min,ts->tm_sec);

printf("\n%s %d %s 19%d %s\n",
weekday[ts->tm_wday], ts->tm_mday,
month[ts->tm_mon], ts->tm_year, buf);

printf("Today is the %d day of 19%d\n",
ts->tm_yday, ts->tm_year);

printf("Daylight Saving Time %s in effect\n",
ts->tm_isdst ? "is" : "is not");

}

See Also
gmtime(), libc, time [overview], TIMEZONE
ANSI Standard, §7.12.3.4
POSIX Standard, §8.1
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Notes
localtime() returns a pointer to a statically allocated data area that is overwritten by successive calls.

lockf() — General Function (libc)
Lock a file or a section of a file
#include <unistd.h>
int
lockf(fd, cmd, size)
int fd, cmd; long size;

The COHERENT library function lockf() allows a process to lock part or all of a file. If another process calls lockf()
on the same file to request a lock that conflicts with a previous lock, the later lockf() call returns an error or sleeps
until the file is unlocked by the first process.

fd gives a file descriptor of an open file; the file must have been opened with O_WRONLY or O_RDWR permission if
lockf() is to succeed.

size specifies how many bytes should be locked or unlocked. The lock begins at the current file position and
extend forward (if size is positive) or backwards (if it is negative). A size of zero locks or unlocks the entire file
starting from the current position.

cmd specifies the action lockf() is to take. lockf() recognizes the following four commands, as specified in the
header file <unistd.h>:

F_TEST Test whether a lock has already been set upon the specified section of the file.

F_LOCK Lock a section of the file, if possible. If the section cannot be locked, sleep until it becomes available
for locking.

F_TLOCK Lock a section of the file, if possible. Unlike F_LOCK, F_TLOCK does not sleep if the section cannot
be locked; rather, it returns -1 and sets errno to EAGAIN if the lock is not available.

F_ULOCK Unlock a currently existing lock.

Use lockf() with the unbuffered I/O routines (open(), write(), and so on) rather than with standard I/O library
routines (fopen(), fprintf(), fwrite(), and so on). The buffering used by the standard I/O library may cause
unexpected behavior with file locking.

See Also
creat(), fcntl(), libc, open()

Diagnostics
lockf() returns zero on success, -1 on failure. On failure, it also sets errno to an appropriate value. Possible errors
include the following:

EINVAL Invalid file descriptor.

EAGAIN Requested section is already locked.

EDEADLK A deadlock would occur if the command slept, or the system lock table is full.

Notes
See the Lexicon entry for fcntl() for a fuller description of the COHERENT system’s method of file locking.

log() — Mathematics Function (libm)
Compute natural logarithm
#include <math.h>
double log(z) double z;

log() returns the natural (base e) logarithm of its argument z.

Example
The following example is by Sanjay Lal (sanjayl@tor.comm.mot.com). It returns the amount of a quantity of
radioactive material that remains after the passage of a period of time. Use it when planning your next nuclear
dump. It takes three arguments: the amount of material, in kilograms; the half life, in years; and the time passed,
in years. These can be decimal fractions.
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#include <math.h>
#include <stdio.h>
#include <stdlib.h>

main(argc, argv)
int argc; char *argv[];
{

double num, thalf, time;

if (argc != 4) {
fprintf(stderr,"Usage: %s amount halflife time\n", argv[0]);
exit (EXIT_FAILURE);

}

num = atof (argv[1]);
thalf = atof (argv[2]);
time = atof (argv[3]);
printf("%f\n", num * exp ( -log(2.0) * (time / thalf)));

}

See Also
log10(), libm
ANSI Standard, §7.5.4.4
POSIX Standard, §8.1

Diagnostics
When a domain error occurs (z is less than or equal to zero), log() sets errno to EDOM and returns zero.

log10() — Mathematics Function (libm)
Compute common logarithm
#include <math.h>
double log10(z) double z;

log10() returns the common (base 10) logarithm of its argument z.

Example
The following example, called fact.c, uses log10() and pow() to compute an approximation of the factorial of an
integer. Compile it with the command:

cc -f fact.c -lm

It is by Brent Seidel (brent_seidel@chthone.stat.com).

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

main()
{

int num, loop, exponent;
double sum, fraction;
char buffer[50];

fprintf(stderr, "Enter number to compute factoral of: ");
fflush(stderr);
if (gets(buffer) == NULL)

exit(EXIT_FAILURE);

num = atoi(buffer);
for (sum = 0, loop = 2; loop <= num; loop++) {

sum += log10((double) loop);
}

exponent = (int) sum;
fraction = sum - exponent;
printf("The factoral of %d is %g X 10^%d\n",

num, pow(10.0, fraction), exponent);
}
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See Also
log(), libm
ANSI Standard, §7.5.4.5
POSIX Standard, §8.1

Diagnostics
A domain error in log10() (z is less than or equal to zero) sets errno to EDOM and returns zero.

login — Command
Log in a user
login [-p] [login_id [environ_var[=value] ...] ]

The command login allows a user to identify himself to your system. A user can invoke it as a command, or the
system itself can invoke it (usually through the command getty) when a user attempts to log in.

You can invoke login as a command. To do so, return to your lowest-level (login) shell, then type either

login

or:

exec /bin/login

This invocation replaces the shell with login, and so ensures a smooth transition from one user account to
another.

If the user does not supply a login_id on the login command line, login prompts him for the login identifier to use.
If the account for login_id is protected by a password, login then asks the user to enter that password. If possible,
login turns off echoing during the entry of the password to ensure that bystanders (or ‘‘kibitzers’’) cannot see the
password displayed on his terminal.

Switches
login executes the file /etc/default/login. This file sets switches that control login’s behavior. Each switch has
the form

SWITCH=VALUE

where SWITCH is the switch being set and VALUE is the value to which it is being set. login exports some of these
switches as environmental variables, to give the programs that login invokes a minimal working environment.

login recognizes the following switches by default:

ALTSHELL
If set to YES, the login shell’s name is recorded in the environment. If set to NO, it is not. By default,
login sets this to YES.

CONSOLE
The allowable terminal devices (from /dev) from which the superuser root can log into your system. If this
names more than one device, you must separated them with colons. If this variable is not set, then root
can log in from any device. A device name can also include the wildcard character ‘?’.

HZ Your computer’s clock tick frequency, in Hertz. login does not set a default. login exports this switch as
an environmental variable.

IDLEWEEKS
The number of weeks before a login is disabled for lack of use. login does not set this variable.

NEWUSER
This switch gives a shell command that is to be executed when the file $HOME/.lastlogin does not exist.
By default, it displays a warning message is displayed. The installation script for COHERENT typically
creates a setting for you that executes the file /etc/default/welcome instead. This works with the
command /etc/newusr to provide a ‘‘friendly’’ environment for users who are using COHERENT for the first
time.

PASSREQ
If set to YES, every user must have a password. If set to NO, some users may log in without a password.
By default login sets this to YES.
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PATH This variable names the directories that an interactive shell searches for executable files. By default, login
sets this to /bin:/usr/bin. login exports this switch as an environmental variable.

SUPATH
The default path for the superuser root. By default, login sets this to /bin:/usr/bin. login exports this
switch as an environmental variable.

TIMEOUT
The time, in seconds, that login waits before it silently terminates and returns control to getty. login gives
the user five ‘‘chances’’ to log in during this time. login by default sets this to 120.

TIMEZONE
The current time zone. This variable has the same format as the COHERENT environmental variable TZ:
that is, it uses the template NSTHNDT, where NST is a three-character abbreviation for your local standard
time (e.g., CST for Central Standard Time), H gives the number of hours difference between your time zone
and Greenwich Mean Time, and NSD gives a three-character abbreviation for your local daylight-saving
time. login exports this switch as an environmental variable.

Note that this variable is set for the benefit of code imported from UNIX. Most COHERENT commands use
the environmental variable TIMEZONE, which much more detailed information about your local time zone.
For details on TIMEZONE, see its entry in the Lexicon.

Note, too, that the variable TZ, which is set in file /etc/timezone, should be set to exactly the same string
as /etc/default/TIMEZONE; otherwise, much confusion will result.

ULIMIT
The maximum size, in 512-byte blocks, of a file that the user can create. login does not set a default. At
present, COHERENT ignores this option.

UMASK
This gives the permissions that a shell sets by default for files that the user cretaes. login does not set a
default value for this variable. login exports this switch as an environmental variable.

Logging Failed Attempts
If the user attempts and fails five times to log in, login records the erroneous attempts in file /usr/adm/loginlog
(should that file exist), and it disables the terminal for a period of time. (Note that previous versions of COHERENT
recorded failed attempts in file /usr/adm/failed.) login does not record when the user typed only (¢) in response
to a prompt for a login identifier. If the user does not succeed in logging in within two minutes (120 seconds),
login silently disconnects the terminal and returns control of the device to getty.

Restrictions on Logging In
If the file /etc/nologin exists, login refuses to let any users login in, except for the superuser root and the
(presumably few) users named in file /etc/trustme. You can use this mechanism to stop users from logging in at
an inopportune time, e.g., when the system is about to be shut down. In response to an attempt to log in, login
displays the contents of that file, which should contain the system administrator’s explanation of why logins are
not permitted at that time.

login also reads file /etc/usrtime, if it exists. This file gives user identifiers; for each identifier, it gives the tty line
from which that user can log in, and the day of the week and time of day during which that user can log in. login
rejects the user’s login if it is from a tty line forbidden to the user, or outside the day and time permitted. If a
user’s login identifier is not in this file, login assumes that that user can log in from any line and at any time.
Additional options allow you to control globally all users, or interactive users, UUCP accounts, or SLIP users.

Passwords
login prompts the user for a password when he logs in. login takes its copy of the user’s password from file
/etc/passwd. If the password consists of a single asterisk ‘*’, then login reads the password from file
/etc/shadow. This file should be legible only by the superuser root. Once the passwords are in /etc/shadow, they
can be read only by processes that have root-level permissions, such as login. This protects the encrypted
passwords from being read by ordinary users, and perhaps decrypted by a ‘‘cracker.’’ For details, see the Lexicon
entry for shadow.

Note that if a user’s password consists of ‘*’ and file /etc/shadow does not exist, login assumes that the user’s
password encrypts to ‘*’. This effectively locks the user out of his account. The lesson is not to remove or modify
/etc/shadow capriciously.
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In addition, login reads the files /etc/dialups and /etc/d_passwd, which hold auxiliary passwords. You can set
auxiliary passwords for users on selected tty lines to provide additional security. For details, see these files’ entries
in the Lexicon.

Success In Logging In
If the user succeeds in logging in, login displays on his terminal the date and time that he last logged in, as
recorded in file $HOME/.lastlogin. login updates this file whenever the user logs in. If this file had been modified
by a process other than login, login warns the user of a possible breach in his account’s security.

login then prints the contents of the file /etc/motd, which holds the message of the day. It also sets the
environmental variable LOGNAME to the user’s login identifier.

As its last action, login invokes the user’s shell, as set in the last field of his entry in /etc/passwd. Under
COHERENT, this is either the Bourne shell sh or the Korn shell ksh. (login can also invoke a program in place of a
shell, e.g., the command uucico for a UUCP account.) If login invokes an interactive shell, it does so with the first
character of its argv[0] set to ‘-’, so that the shell knows that it is a login shell. (For example, if login invokes ksh,
its argv[0] is -ksh.)

When a shell starts up, it executes the script /etc/profile. This script executes the command umask, to set the
permissions that the shell gives by default to files that that user creates; and then sets the following environmental
variables:

HZ The default clock speed for your system. By default, COHERENT sets this to 100.
LOGNAME

The user’s login identifier.
MAIL This names the user’s mailbox. By default, it is set to /usr/spool/mail/login_id.
PAGER The command used to ‘‘page’’ through files of text. By default, COHERENT sets this to more.
PATH The directories that the shell searches for executable files. By default, COHERENT sets these to /bin and

/usr/bin.
TERM The type of terminal at which the user is working. By default, COHERENT reads file /etc/ttytype to read

the default terminal type for a given port. For details, see the description of this command in the Lexicon.

Finally, /etc/profile calls the script /etc/timezone, which sets the following environmental variables:

TZ Your time zone, as interpreted by most UNIX software.

TIMEZONE
Your time zone, as interpreted by the COHERENT system. At present, it contains considerably more
information about your time zone than does TZ. For details of this variable, see its description in the
Lexicon.

The shell then executes the script $HOME/.profile, should one exist. The COHERENT command newusr creates
this file when it installs a new user. The user can edit this file to set environmental variables, and to invoke
commands for his amusement, e.g., /usr/games/fortune.

Command-line Options
If a user invokes login as a command, he can set one or more environmental variables on login’s command line. If
environ_var contains an equal sign, then it and value are placed into the environment. If environ_var does not
contain an equal sign, then login places it into the environment with the format:

environ_var=n

where n is a number from zero through the number of environmental variables being so set.

For security reasons, login refuses to set from its command line any of the following environmental variables:

CDPATH HOME
HZ IFS
LOGNAME MAIL
PATH SHELL
TZ

login also recognizes the command-line option -p, which tells login to preserve the user’s current environment
when logging in as login_id. If it is not invoked with this option, login ‘‘empties’’ the current user’s before it
constructs the environment for user login_id. If it is invoked with this option login replaces existing environmental
variables with those it sets during the login process, but it preserves all other environmental variables set in the
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original environment.

Subsystem Logins
login supports virtual ‘‘subsystems’’ under COHERENT. If the user’s shell as specified in /etc/passwd is ‘*’, then
login makes the user’s HOME directory into the system’s root directory, informs the user that it is executing a
‘‘Subsystem login,’’ and then re-executes login. The new root directory must have its own versions of the
commands /etc/passwd, /bin/login, and /dev files. Once so logged in, the user has, in effect, his own virtual
version of the COHERENT system.

Files
/etc/d_passwd — Passwords for shells on dialup lines
/etc/default/login — Default parameters for login
/etc/dialups — List of dialup tty lines
/etc/group — File that defines user groups
/etc/nologin — Forbid all logins
/etc/passwd — Password file
/etc/profile — Script executed by sh and ksh upon invocation
/etc/shadow — Optional file of ‘‘shadow’’ passwords
/etc/trustme — Permit named users to log in despite nologin
/etc/ttytype — Default terminal type on a given tty line
/etc/utmp — Identifiers of users who are logged into your system
/etc/usrtime — Login restrictions for user login_id
/etc/wtmp — History of who has logged in, and when
/usr/adm/loginlog — Record of failed login attempts
/usr/spool/mail/name — Mailbox for user
$HOME/.lastlogin — Date of user’s last login

See Also
Administering COHERENT, commands, ksh, lastlogin, mail, sh, newgrp, newusr, welcome

Notes
This version of login no longer recognizes the remote-access account remacc. To duplicate the function of this
account, set the files /etc/dialups and /etc/d_passwd. For details, see their entries in the Lexicon.

This version of login was written by Tony Field (tony@ajfcal.cuc.ab.ca), with help from Uwe Doering
(gemini@geminix.in-berlin.de). It was ported to COHERENT by Harry Pulley (hcpiv@snowhite.cis.uoguelph.ca), with
help from Udo Munk (udo@umunk.gun.de).

login — System Administration
Set default values for logging in
/etc/default/login

The command login reads the file /etc/default/login, which gives login’s default settings. These settings dictate
some of login’s behaviors. login exports some settings as environmental variables, to help control the behavior of
some other programs within COHERENT.

For a list of the settings normally set by /etc/default/login, see the Lexicon entry for the command login.

See Also
Administering COHERENT, login

loginlog — System Administration
Log of failed login attempts
/usr/adm/loginlog

File /usr/adm/loginlog logs all failed attempts to log in. login places an entry into this log either when a login
attempt does not succeed within the number of seconds set by the environmental variable TIMEOUT (default, 120),
or fails to log in correctly with five times within that time.

See Also
Administering COHERENT, login
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Notes
Earlier implementations of login logged failed attempts in file /usr/adm/failed.

logmsg — System Administration
Hold COHERENT Login Message
/etc/logmsg

The file /etc/logmsg holds the message that COHERENT displays to prompt the user to log in. The superuser bin
can edit this message to whatever she prefers.

See Also
Administering COHERENT

Notes
The default message consists of the bell character <ctrl-G> followed by the text Coherent login:. If the bell annoys
you, simply delete the <ctrl-G> from /etc/logmsg.

LOGNAME — Environmental Variable
Name user’s identifier
LOGNAME=user_identifier

The environmental variable LOGNAME names your login identifier. For example, if your login identifier is fwb,
then by typing set you will see the entry LOGNAME=fwb. LOGNAME is set in /etc/profile.

See Also
environmental variables, ksh, login, sh, USER

long — C Keyword
Data type

A long is a numeric data type. The ANSI standard states that long is the largest integer data type. It cannot be
smaller than an int, although an int and a long can be the same size.

COHERENT defines an long to be four bytes long; that is, sizeof long equals 4 (four chars, or 31 data bits plus a
sign bit). A long can hold any value from -2,147,483,647 to 2,147,483,647.

A long normally is sign extended when cast to a larger data type; an unsigned long, however, will be zero
extended.

See Also
C keywords, data formats, int
ANSI Standard, §6.1.2.5

longjmp() — General Function (libc)
Perform a non-local goto
#include <setjmp.h>
int longjmp(env, rval)
jmp_buf env; int rval;

The function call is the only mechanism that C provides to transfer control between functions. This mechanism is
inadequate for some purposes, such as handling unexpected errors or interrupts at lower levels of a program. To
answer this need, longjmp provides a non-local goto.

longjmp() restores an environment that had been saved by a previous call to the function setjmp(). It returns the
value rval to the caller of setjmp(), just as if the setjmp() call had just returned. Note that longjmp() must not
restore the environment of a routine that has already returned. The type declaration for jmp_buf is in the header
file setjmp.h. The environment saved includes the program counter, stack pointer, and stack frame. These
routines do not restore register variables in the environment returned.

Example
For an example of this function, see the entry for setjmp().
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See Also
libc, setjmp(), siglongjmp()
ANSI Standard, §7.6.2.1
POSIX Standard, §8.1

Notes
Programmers should note that many user-level routines cannot be interrupted and reentered safely. For that
reason, improper use of longjmp() and setjmp() can result in the creation of mysterious and irreproducible bugs.
Do not attempt to use longjmp() within an exception handler.

look — Command
Find matching lines in a sorted file
look [-df] string [file]

The command look scans the sorted file and prints each line that begins with string.

The following options specify the order of the search:

-d Use dictionary order: the only characters tested are alphanumerics and blanks.

-f Convert all alphabetic characters to upper case.

If no file is specified, look uses /usr/dict/words with the -df option.

Example
For an example of how to use this command, see the entry for spell.

Files
/usr/dict/words — File of words (sorted with sort -df).

See Also
commands, sort

Notes
Because the file /usr/dict/words is quite large, you may not have installed it or uncompressed it when you
installed your COHERENT system. If this is the case, look will not work correctly.

lp — Command
Spool a file for printing
lp [-dprinter] [-t title] [-ncopies] [-R page [page]] [-Smws] file ...

The command lp spools text for printing. If you name no file on its command line, lp spools what it receives from
the standard input.

lp prefaces the spooled text with a header that describes, among other things, on what device you want to print the
text; then it copies the text into directory /usr/spool/mlp/queue, where it remains until it is removed by the
printer daemon lpsched. The spooled text, which may comprise multiple files, plus its header is called a job.

The following describes the header with which lp prefaces each file:

Offset Length Description
0 14 User who spooled the file
14 14 Name of the printer on which to print file
28 10 Type of file (application specific)
38 3 Length of output page (default, 66 lines)
41 4 Number of pages (maximum, 9,999)
45 2 Number of copies to print (default, one; maximum, 99)
47 1 Set life expectancy of job (see below)
48 1 If ‘M’, send user mail after printing
49 1 If ‘W’, write user after printing
50 14 Name of data base (application specific)
64 14 Name of program (application specific)
78 10 Date/time stamp (no. of seconds since 1/1/1970)
88 60 Description or title
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Note that the fields marked ‘‘application specific’’ are not use by lp or lpsched. Rather, they are available to
applications, such as filters, that may be used with lp to print files.

The ‘‘life expectancy’’ byte of the header defines how long the job remains alive in /usr/spool/mlp/queue. Jobs
labeled T (temporary) live for 30 minutes after being spooled; those labeled S (short-term) live for 24 hours; and
those labeled L (long-term) live for 72 hours. Once a job’s life expectancy has expired, the printer daemon lpsched
removes it. The default is life expectancy is S. To change the life expectancy of a job, use the command chreq.
You can also change the above default ‘‘lifetimes’’ by editing the file /usr/spool/mlp/controls.

When lp creates a job, it gives the job a seven-character name. The name’s first character gives the status of the
job: R indicates that the file is being printed or is pending printing, whereas r indicates that the job has already
been printed. The second character gives the job’s priority status, from 0 through 9: zero gives highest priority,
nine the lowest. The default priority is 2. The last five characters of the name give a zero-padded sequence
number. To change a job’s status or priority, use the command chreq; or the system administrator can alter either
simply by renaming the file.

lp recognizes the following options:

-R request Print a job beginning from the first page and continuing either to the second page or to the end of
the document (if no second page is specified). Note that the printer daemon lpsched identifies
pages by counting lines of input, so this feature works only with straight text. It does not work
correctly with ‘‘cooked’’ input, such as files of PostScript or PCL.

-S9 Shut down the spooler daemon lpsched.

-dprinter Print the job on printer.

-m Send mail to the user once the spooled job has been printed.

-ncopies Print copies copies of the job.

-s Silent — do not acknowlege submissions. Normally, lp writes on the standard output the
sequence number of the job you just spooled. You can use that number to remove or abort a job,
or otherwise manipulate it.

-t title Give this job title. This is the title that appears in the queue displayed by the command lpstat.

-w Write a message on the user’s screen once the job has been printed.

lp sends you mail if one of your print jobs failed due to an error.

For more information on lp and its related commands, see the Lexicon entry printer.

See Also
chreq, commands, controls, lp [device driver], lpadmin, lpsched, pclfont, printer

Notes
Because most users find banners annoying rather than helpful, lp does not print banners. It ignores the option -b,
which under orthodox implementations of lp prints a banner page. Applications that desire a banner page should
make provision for it in the individual printer’s control file. For details, see the Lexicon entry for the command
lpadmin.

If you wish to use lp to download a PCL bitmapped font to your PCL printer, you must first process the font with
the command pclfont. For details, see its Lexicon entry.

lp — Device Driver
Driver for parallel ports
/dev/lptN

The device driver lp drives the parallel ports. It has major number 3.

This driver follows the IBM PC standard in that it can only send data out the port — it cannot receive data from the
port.

The following script lets you install or de-install the parallel-port driver: To install or de-install a parallel printer,
log in as the superuser root; then execute the following script:
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cd /etc/conf
lp/mkdev
/conf/mlpconfig
bin/idmkcoh -o /kernel_name

kernel_name should name the new kernel to build. Then reboot to invoke the newly built kernel_name.

See Also
device drivers, printer

lpadmin — Command
Administer the lp print-spooler system
lpadmin [-dprinter]
lpadmin [-pprinter] [-vdevice] [-mbackend]
lpadmin [-xprinter]

The command lpadmin administers the lp print-spooling system.

Under the lp spooler, the system administrator gives each printer a name. She also establishes a script for each
class of printers; for example, she would prepare one script for all Epson printers, and another for all PostScript
printers. The script lists commands that must be executed to print the text properly, such as setting the port into
the correct mode or post-processing the text; Finally, she inserts into file /usr/spool/mlp/controls an entry that
links a printer by name with its device and its script. When a user spools a job for printing, she selects the printer
by name. (She can also use the command route establish a default printer for herself.) The print spooler lpsched
reads the information established by the administrator to ensure that printing is managed correctly.

The command lpadmin is designed to make it easy for you to perform these tasks of administration. With
lpadmin, you can add a new printer to your COHERENT system and link it to a device and a description script. You
can also add or modify a description script, or drop a printer. lpadmin recognizes the following options:

-dprinter Make printer the default printer for your system. This is the printer that is used when a user names
no printer on the lp command line and has set no default printer for herself.

-mscript Use script to preprocess all text sent to a given printer. script is stored in directory
/usr/spool/mlp/backend. This option is always used with option -p.

-pprinter Select printer for definition or change. This option is used with the options -m and -v.

-vdevice Associate device (a serial or parallel port) with the printer named in the option -p.

-xprinter Remove printer from the system.

For detailed examples of how to modify the file controls and how to build a control script for a printer, see the
Lexicon entry for controls.

See Also
commands, controls, lp, printer

lpd — System Administration
Spooler daemon for line printer
/usr/lib/lpd

lpd is the daemon that prints listings queued by the command lpr. All jobs are printed on the printer that is
accessed through device /dev/lp. For information on this device, and on printer management in general, see the
Lexicon entry printer.

lpr invokes lpd automatically. If there is no printing to do, or if another daemon is already running (indicated by
the file dpid), lpd exits immediately. Otherwise, it searches the spool directory for control files of listings to print.
A control file contains the names of files to print, the user name, banners, and files to be removed upon
completion.

lpd does not print listings in any particular order. Priority is not given to any file, either by size or by requester.

Files
/dev/lp — Printer
/usr/spool/lpd — Spool directory
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/usr/spool/lpd/cf* — Control files
/usr/spool/lpd/df* — Data files
/usr/spool/lpd/dpid — Lock and process id

See Also
Administering COHERENT, init, lpr, lpskip, printer

Notes
Beginning with release 4.2, COHERENT also includes the printer daemon despooler, which prints files spooled with
the command lp. For details on how COHERENT manages printing, see the Lexicon entry for printer.

lpioctl.h — Header File
Definitions for line-printer I/O control
#include <sys/lpioctl.h>

lpioctl.h defines constants used by routines that control I/O on the line printer.

See Also
header files

lpr — Command
Spool a job for printing on the line printer
lpr [-cmnr] [-b banner] [file ...]

The command lpr spools each file for printing on the line printer. If no file is named on the command line, lpr
spools what it reads from the standard input.

lpr recognizes the following options:

-B Suppress printing of a banner.

-b banner Print banner on the banner page. The default banner is the user’s login name.

-c Copy each file into the spooling directory, instead of reading the file from its home directory. This option
lets you change a file before it has finished printing.

-m Write a message on the user’s terminal when printing completes.

-n Do not send a message (default).

-r Remove the files when they have been spooled.

The command lpskip aborts or restarts printing of the file that is currently being printed. The command epson
converts the output of nroff into a form usable by Epson-compatible dot-matrix printers.

Files
/dev/lp — Line printer
/usr/lib/lpd — Line printer daemon
/usr/spool/lpd — Spool directory
/usr/spool/lpd/dpid — Daemon lockfile

See Also
commands, hpr, lp, lpd, lpskip, printer

Notes
Beginning with release 4.2, COHERENT also includes the lp print spooler. lp offers a more sophisticated way to
manage printers, especially on machines that support multiple printers of the same type. For details, see the
Lexicon entries for printer and lp.

lpsched — Command
Print jobs spooled with command lp; turn on printer daemon
lpsched

The daemon lpsched prints jobs spooled with the command lp.

Typing the command lpsched by itself launches the daemon. The rest of this article describes how lpsched
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manages printing.

Each file in directory /usr/spooler/mlp/queue is a print job spooled by the command lp. When lp spools a job, it
copies the input (usually a file) into the spool directory and appends to the beginning of each job a 192-byte header
that indicates how the job is to be printed. This header includes such information as the name of the printer on
which to print the job and the date and time the job was spooled. For a detailed layout of this header, see the
Lexicon entry for lp.

lp also assigned each job a seven-character name. The first character is R or r: the former indicates that the job is
either being printed or is awaiting printing; whereas the latter indicates that the job has been printed. The second
character is a digit, from zero to nine, that sets the job’s priority: zero gives highest priority, nine lowest. (The
default priority is 2.) The last five characters give a zero-padded identification number.

lpsched awakens every 30 seconds or whenever the command lp spools a job for printing. lpsched then processes
each file in /usr/spooler/mlp/queue. It reads each job each that is awaiting printing, the order being dictated
first by the priority code and then by the identification number (which indicates the order in which the jobs were
spooled).

When lpsched actually prints a job, it performs the following tasks:

• First, it opens the file that contains the job to be printed, and reads its header. The header gives the number
of the job; the name of the user who spooled the job; the name of the printer device upon which the job is to
be printed; the number of copies to print; and the title of the job, as set with the lp option -t. (NB, do not
confuse an MLP ‘‘device,’’ which is set in the file /usr/spool/mlp/controls, with the physical device into
which the printer is plugged.)

• lpsched then finds the entry in file /usr/spool/mlp/controls that describes the printer device the user
requested. An entry in controls is of the form

printer = banner, /dev/hp, make_banner

In this case, the MLP device is named banner; the output is to be printed on physical device /dev/hp; and the
output is to be filtered through backend script make_banner, which is a script kept in directory
/usr/spool/mlp/backend. (For details on how to describe an MLP printer device, see the Lexicon entry for
controls).

• If the entry for this device does not name a backend script, lpsched copies the body of the job (that is, the text
that you had spooled) without modification to the device by which the printer is accessed.

• If the entry for this device does name a backend script, lpsched invokes the script and redirects its output to
the physical device.

When lpsched invokes a backend script, it passes it four arguments: (1) the number of the job to be printed, (2) the
login identifier of the user who spooled the job, (3) the number of copies to be printed, and (4) the title of the job.
The script can ignore these arguments, or use them in its filtration process; for example, it can use the fourth
argument to construct a banner page that is printed before the job. For examples of backend script that perform
various types of sophisticated processing, see the Lexicon entry for controls.

lpsched uses a system of lock files to ensure that each device is accessed in a disciplined manner. For details on
COHERENT’s system of building lock files, see the Lexicon entries for UUCP and libmisc.

To abort the printing of a job, invoke the command cancel. Note that this only affects jobs that are being spooled
or waiting to be spooled. If a job has been downloaded to a printer, the only way to abort printing is to manipulate
the printer itself through its front panel and switches.

When a job has printed successfully, lpsched changes the status character in its name to r. A file remains in the
spool directory until its ‘‘lifetime’’ has expired. You can reprint a quiescent file by invoking the command reprint.
To change a job’s target printer, priority, or lifetime, use the command chreq. For details on these commands, see
their Lexicon entries.

lpsched awakens whenever you use the command lp to spool a job for printing. It also awakens every five
minutes, whether or not a job has been spooled, to see if anything needs to be printed and check quiescent files.

After it has processed every job that awaits printing, lpsched reads the header of every quiescent file. If a file’s
‘‘lifetime’’ has expired, lpsched removes it. A file with a temporary lifetime survives 30 minutes after spooling; one
with a short-term lifetime survives 24 hours; and one with a long-term lifetime survives 72 hours. You can change
these defaults by editing controls; for details, see its entry in the Lexicon. By default, a job is given a short-term
life expectancy. To change a job’s life expectancy, use the command chreq.
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The command lpsched turns on lpsched; and command lpshut turns it off. Jobs spooled while lpsched is turned
off remain spooled until lpsched is reawakened.

See Also
Administering COHERENT, commands, lp, lpshut, printer

lpshut — Command
Turn off the printer daemon despooler
lpshut [-d]

The command lpshut turns off the printer daemon lpsched.

The option -d tells lpshut to finish the jobs that are currently printing before it shuts down the daemon. If jobs are
interrupted while printing, the printer daemon lpsched reprints them when it restarts.

See Also
commands, lp, lpsched, printer

lpskip — Command
Abort/restart current job on line printer
lpskip [-r]

The command lpskip aborts or restarts the file being printed on the printer plugged into device /dev/lp. By
default, it aborts the job and prints a message on the user’s terminal.

When invoked with the -r option, lpskip restarts the printing of the current job. This is useful when a printing is
spoiled due to, say, a paper jam.

lpskip works only with files that have been spooled with the command lpr.

Files
/usr/lib/lpd — Line printer daemon
/usr/spool/lpd — Spool directory
/usr/spool/lpd/dpid Daemon lockfile

See Also
commands, lpd, lpr, hpskip

Notes
To cancel jobs spooled with the command hpr, use the command hpskip. To cancel or reprint jobs spooled with
the command lp, use the commands cancel and reprint. See the Lexicon entry printer for details.

lpstat — Command
Give status of printer or job
lpstat [-pprinter] [-drqstv]

The command lpstat gives information about the operation of the lp print-spooling mechanism. It recognizes the
following options:

-p printer
Give the status of printer.

-d Name the system’s default printer.

-r Give the status of the daemon lpsched.

-q Give a detailed report of jobs in the queue. The jobs are displayed in two groups, quiescent and active, with
each group ordered by their priority — which, given lp’s conventions for naming jobs, is identical with their
alphabetical order.

-s Summarize status of each request and status of each printer.
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-t Like option -s, but in somewhat more detail.

-v List all available printers and the devices associated with them.

See Also
commands, lp, printer

lr — Command
List subdirectories’ contents in columnar format
lr [file ...]

lr is a link to the command ls -CR. It prints each file in columnar format, like the command lc. If a file is a
directory, lr also prints its contents and that of each of its subdirectories. If no file is named, it lists the contents
of the current directory by default.

See Also
commands, l, lc, lf, ls, lx

lrand48() — Random-Number Function (libc)
Return a 48-bit pseudo-random number as a non-negative long integer
long lrand48();

Function lrand48() generates a 48-bit random number, then returns its high 31 bits in the form of a non-negative
long. The value returned is (or should be) uniformly distributed throughout the range of zero through 2^31.

See Also
libc, srand48()

ls — Command
List directory’s contents
ls [-abCcdFfgilmnopqRrstux] [file ... ]

The command ls prints information about each file. Normally, ls sorts its output by file name and prints only the
name of each file. If a directory name is given as an argument, ls sorts and lists its contents, not including ‘.’ and
‘..’. If no file is named, ls lists the contents of the current directory.

The following options control how ls sorts and displays its output:

-a Print all directory entries, including ‘.’, ‘..’, any hidden files, and volume ID’s.

-b Print non-graphic characters in octal.

-C Print the output in multi-column format, sorted down the columns.

-c Print the time the files’ attributes were last changed.

-d Treat directories as if they were files.

-F Print a ‘/’ after the name of each directory, and print an ‘*’ after each executable file.

-f Force each argument to be treated as a directory. This disables the -lrst options and sorting, and enables
the -a option.

-i Print the i-number of each file.

-l Print information in long format. The fields give mode bits, link count, owner uid, owner gid, size in bytes,
date, and file name. For special files, major and minor device numbers replace the size field.

-m ‘‘Stream’’ the output horizontally across the screen, with each file name separated by a comma.

-n Same as -l, except the group identifiers and user identifiers are numbers rather than names.

-o Same as -l, except that the group id is not printed.

-p Print a ‘/’ after each directory name.

-q Print non-graphics characters as ‘?’.
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-r Reverse the sense of the sort.

-R Recursively print directories.

-s Print the size in blocks of each file.

-t Sort by time, newest first.

-u Sort by the access time.

-x Print multicolumn output, sorted across the columns. This resembles the output of the command lc.

The date ls prints with the -l and -t options is the modification time, unless the -c or -u option is used as well.

The mode field in the long list format consists of ten characters. The first character will be one of the following:

- Regular file
b Block special file
c Character special file
d Directory
p Pipe
x Bad entry (remove it immediately!)

The remaining nine characters are permission bits, in three sets of three characters each. The first set pertains to
the owner of the file, the second to users from the owner’s group, and the third to users from other groups. Each
set may contain three characters from the following.

r The file can be read
s Set effective user ID or group ID on execution
t Shared text is sticky
w The file can be written
x The file is executable
- No permission is given

Links
COHERENT includes several commands that are links to ls and its options, to make it easier for you to use the
various features of ls. The following table gives each command and the form of ls to which it is linked:

l ls -l
lf ls -CF
lr ls -CR
lx ls -x

See Also
chmod, commands, l, lc, lf, lr, lx, stat

lseek() — System Call (libc)
Set read/write position
#include <unistd.h>
long lseek(fd, where, how)
int fd, how; long where;

lseek() changes the seek position, or the point within a file where the next read or write operation is performed. fd
is the file’s file descriptor, which is returned by open().

where and how describe the new seek position. where gives the number of bytes that you wish to move the seek
position. It is measured from the beginning of the file if how equals SEEK_SET (zero), from the current seek
position if how equals SEEK_CUR (one), and from the end of the file if how equals SEEK_END (two). A successful
call to lseek() returns the new seek position. For example,

position = lseek(fd, 100L, SEEK_SET);

moves the seek position 100 bytes past the beginning of the file; whereas

position = lseek(fd, 0L, SEEK_CUR);

returns the current seek position and does not change the seek position at all.
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You can create a sparse file by seeking beyond the current size of the file and writing. The ‘‘hole’’ between the end
of the file and where the write occurs is read as zero and will occupy no disk space. For example, if you lseek()
10,000 bytes past the current end of file and write a string, the data will be written 10,000 bytes past the old end
of file and all intervening matter will be considered part of the file.

lseek() differs from its cousin fseek() in that lseek() is a system call and uses a file descriptor, whereas fseek() is a
C function and uses a FILE pointer.

If all goes well, lseek() returns the new seek position. If an error occurs, such as seeking to a negative position,
lseek() returns -1L and sets errno to an appropriate value.

See Also
libc, unistd.h
POSIX Standard, §6.5.3

Notes
lseek() is permitted on character-special files, but drivers do not generally implement it. As a result, seeking a
terminal will not generate an error but will have no discernible effect.

ltol3() — General Function (libc)
Convert long integer to file system block number
ltol3(l3p, lp, n)
char *l3p;
long *lp;
unsigned n;

To conserve space inside i-nodes in COHERENT file systems, the system stores block addresses in three bytes.
Programs that reference or maintain file systems use the functions l3tol() and ltol3() to convert between the three
byte representation and long numbers.

ltol3() converts n long integers at address lp to the more compact form at address l3p.

See Also
libc

lvalue — Definition
An lvalue is an expression that designates a region of storage. The name comes from the assignment expression
e1=e2;, in which the left operand must be an lvalue.

An identifier has both an lvalue (its address) and an rvalue (its contents). Some C operators require lvalue
operands; for example, the left operand of an assignment statement must be an lvalue. Some operators give lvalue
results; for example, if e is a pointer expression, *e is an lvalue that designates the object to which e points.

A variable can be used as an lvalue, whereas a constant cannot. For example, you cannot say

6 = (foo+bar);

A pointer is a variable, and can be manipulated within limits. An array name, however, is a constant and cannot
be altered legally. Thus, the code

int foo[10];
int *bar;
foo = bar;

will generate an error message when you attempt to compile it, whereas

int foo[10];
int *bar;
bar = foo;

will not.

The following example shows the use of both an lvalue and a rvalue:
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int i, *ip;

ip = &i; /* ip is an lvalue, i and &i are rvalues */
i = 3; /* i is an lvalue, 3 is an rvalue */
*ip = 4; /* *ip is an lvalue, 4 is an rvalue */

See Also
Programming COHERENT, rvalue
ANSI Standard, §6.2.2.1

lx — Command
List directory’s contents in columnar format
lx [file ...]

lx is a link to the command ls -x. It prints each file in columnar format, like the command lc, except that
directories and file names are printed together in one listing. If a file is a directory, lx lists its contents. If no file is
named, lx lists the contents of the current directory by default.

See Also
commands, l, lc, lf, lr, ls
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m4 — Command
Macro processor
m4 [file ...]

The command m4 processes macros. It allows you to define strings for which m4 is to search, and strings to
replace them; m4 then opens file, reads its contents, replaces each macro with its specified replacement string, and
writes the results into the standard output stream.

m4 can also manipulate files, make conditional decisions, select substrings, and perform arithmetic. The tutorial
Introduction to the m4 Macro Processor introduces m4 in detail.

m4 reads its files in the order given; if no file is named, then it reads the standard input stream. The file name ‘-’
indicates the standard input.

m4 copies input to output until it finds a potential macro. A macro is a string of alphanumerics (letters, digits, or
underscores) that begins with a non-digit character and is surrounded by non-alphanumerics. If m4 does not
recognize the macro, it simply copies it to the output and continues processing. If m4 recognizes the macro and
the next character is a left parenthesis ‘(’, an argument set follows:

macro(arg1,..., argn)

The arguments are collected by processing them in the same manner as other text (thus, an arguments may itself
be another macro), and resulting output text is diverted into storage. m4 stores up to nine arguments; any more
will be processed but not saved. An argument set consists of strings of text separated by commas (commas inside
quotation marks or parentheses do not terminate an argument), and must contain balanced parentheses that are
free of quotation marks (i.e., that are unquoted). m4 strips arguments of unquoted leading space (blanks, tabs,
newline characters).

m4 then removes the macro and its optional argument set from the input stream, processes them, and replaces
them in the input stream with the resulting value. The value becomes the next piece of text to be read.

Quotation marks, of the form ‘ ’, inhibit the recognition of macro. m4 strips off one level of quotation marks when it
encounters them (quotation marks are nestable). Thus, ‘macro’ is not processed, but is changed to macro and
passed on.

m4 determines the value of a user-defined macro by taking the text that constitutes the macro’s definition and
replacing any occurrence within that text of ‘$n’ (where n is ‘0’ through ‘9’) with the text of the nth argument.
Argument 0 is the macro itself.

m4 recognizes the following predefined macros:

changequote[([openquote],[closequote])]
Changes the quotation characters. Missing arguments default to ‘ for open or ’ for close. Quotation
characters will not nest if they are defined to be the same character. Value is null.

decr[(number)]
Decrement number (default, 0) by one and returns resulting value.

define(macro,definition)
Define or redefine macro. If a predefined macro is redefined, its original definition is irrecoverably lost.
Value is null.

divert[(n)]
Redirects output to output stream n (default is zero). The standard output is zero, and one through nine
are maintained as temporary files. Any other n results in output being thrown away until the next divert
macro. Value is null.
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divnum
Value is current output stream number.

dnl Delete to newline: removes all characters from the input stream up to and including the next newline.
Value is null.

dumpdef[(macros)]
Value is quoted definitions of all macros specified, or names and definitions of all defined macros if no
arguments.

errprint(text)
Print text on standard error file. Value is null.

eval(expression)
Value is a number that is the value of evaluated expression. It recognizes, in order of decreasing
precedence: parentheses, **, unary + -, * / %, binary + -, relations, and logicals. Arithmetic is performed in
longs.

ifdef(macro,defvalue,undefvalue)
Return defvalue if macro is defined, and undefvalue if not.

ifelse(arg1,arg2,arg3...)
Compares arg1 and arg2. If they are the same, returns arg3. If not, and arg4 is the last argument, return
arg4. Otherwise, the process repeats, comparing arg4 and arg5, and so on. Like other m4 macros, this
takes a maximum of nine arguments.

include(file)
Value is the entire contents of the file argument. If file is not accessible, a fatal error results.

incr[(number)]
Increments given number (default, zero) by one and returns resulting value.

index(text,pattern)
Value is a number corresponding to position of pattern in text. If pattern does not occur in text, value is -1.

len(text)
Value is a number that corresponds to length of text.

maketemp(filenameXXXXXX)
Value is filename with last six characters, usually XXXXXX, replaced with current process id and a single
letter. Same as the COHERENT system call mktemp().

sinclude(file)
Value is the entire contents of file. If file is not accessible, return null and continue processing.

substr(text[,start[,count]])
Value is a substring of text. start may be left-oriented (nonnegative) or right-oriented (negative). count
specifies how many characters to the right (if positive) or to the left (if negative) to return. If absent, it is
assumed to be large and of the same sign as start. If start is omitted, it is assumed to be zero if count is
positive or omitted, or -1 if count is negative.

syscmd(command)
Pass command to the shell for execution. Value is null. Same as system call system.

translit(text,characters[,replacements])
Replaces characters in text with the corresponding characters from replacements. If the replacements is
absent or too short, replace characters with a null character. Value is text with specified replacements.

undefine(macro)
Remove macro definition. Value is null. If a predefined macro is redefined, its original definition is
irrecoverably lost.

undivert[(stream[,...])]
Dumps each specified stream into the current output stream. With no arguments, undivert dumps all
output streams in numeric order. m4 will not dump any output stream into itself. At the end of
processing, m4 automatically dumps all diverted text to standard output in numeric order. Value is null.
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See Also
commands, mktemp(), system
Introduction to the m4 Macro Processor

machine.h — Header File
Machine-dependent definitions
#include <sys/machine.h>

machine.h defines macros, constants, and structures that are specific to the machine upon which COHERENT is
being run.

See Also
header files

Notes
This header file is obsolete, and will be dropped from a future release of COHERENT. Its use is strongly
discouraged.

macro — Definition
A macro is a body of text that is given a name. When the name is used in a program, it is replaced with the text to
which it refers; this is called macro expansion. For example, getchar() is a macro that consists of the function call
getc(stdin). The C preprocessor recognizes two varieties of macros: object-like and function-like.

When the C compiler performs macro substitution, all escape sequences and trigraphs have been resolved. After a
macro has been expanded, the expanded text is scanned again to see if the expansion itself contains any macros
(not including the original macro that has already been expanded). This re-scanning continues until no further
replacement is possible.

Most macros are defined in C headers. The C preprocessor, however, defines some others.

See Also
#define, C preprocessor, m4, manifest constant, Programming COHERENT
ANSI Standard, §3.8.3

madd() — Multiple-Precision Mathematics (libmp)
Add multiple-precision integers
#include <mprec.h>
void madd(a, b, c)
mint *a, *b, *c;

madd() sets the multiple-precision integer (or mint) pointed to by c to the sum of the the mints pointed to by a
and b.

See Also
libmp

mail — Command
Send or read mail
mail [-mpqrv] [-f file] [user ...]

mail allows you to exchange electronic mail with other COHERENT system users, either on your own system or on
other systems via UUCP. Depending upon its form, this command can be used either to send mail to other users or
to read the mail that other users have sent to you.

Sending Mail
If you name one or more users, mail assumes that you wish to send a mail message to each user. mail first prints
the prompt

Subject:

on the screen, requesting that you give the message a title.

mail then reads what you type on the standard input. A message is terminated by <ctrl-D>, by a line that
contains only the character ‘.’, or by a line that contains only the character ‘?’. Ending with a question mark
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prompts mail to feed the message into an editor for further editing. The editor used is the one named in the
environmental variable EDITOR. If this variable is not defined, mail uses ed.

If you have defined environmental variable ASKCC to YES, mail asks you, after a message is ended, for a list of
users to whom you wish to send a copy of the message.

Finally, mail prepends the date and the sender’s name, and sends the result to each user named either on the
command line or on the carbon-copy list with the rmail command.

Each user who has received mail is greeted by the message ‘‘You have mail.’’ when she logs in. mail normally
changes the contents of the mailbox as the user works with them; however, mail has options that allow the
contents of the mailbox to remain unchanged if the user desires.

Reading Mail
If no user is named on its command line, mail reads and displays the user’s mail, message by message. If
environmental variable PAGER is defined, mail will ‘‘pipe’’ each message through the command it names. For
example, the .profile command line:

export PAGER="exec /bin/scat -1"

invokes /bin/scat for each mail message with the command-line argument -1 (the digit one).

While reading mail, the user can use any of the following commands to save, delete, or send each message to
another user interactively.

d Delete the current message and print the next message.

m [user ...]
Mail the current message to each user given (default: yourself).

p Print the current message again.

q Quit, and update mailbox file to reflect changes.

r Reverse the direction in which the mailbox is being scanned.

s [file ...]
Save the current mail message with the usual header in each file (default: $HOME/mbox).

t [user ...]
Send a message read from the standard input, terminated by an end-of-file character or by a line
containing only ‘.’ or ‘?’, to each user (default: yourself).

w [file ...]
Write the current message without the usual header in each file (default: $HOME/mbox).

x Exit without updating the mailbox file.

<newline>
Print the next message.

- Print the previous message.

EOF Quit, updating mailbox; same as q.

? Print a summary of available commands.

!command
Pass command to the shell for execution.

The following command line options control the sending and reading of mail.

-f file Read mail from file instead of from the default, /usr/spool/mail/user.

-m Send a message to the terminal of user if he is logged into the system when mail is sent.

-p Print all mail without interaction.

-q Quit without changing the mailbox if an interrupt character is typed. Normally, an interrupt character
stops printing of the current message.
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-r Reverse the order of printing messages. Normally, mail prints messages in the order in which they were
received.

-v Verbose mode. Show the version number of the mail program, and display expanded aliases.

If you wish, you can create a signature file, .signature, in your home directory. mail appends the contents of the
signature file to the end of every mail message you send, as a signature. A signature can be your system’s path
name (for uucp messages), your telephone number, an amusing bon mot, or what you will.

Files
$HOME/dead.letter — Message that mail could not send
$HOME/mbox — Default saved mail
$HOME/.signature — Signature file
/etc/domain — Name of your system’s domain
/etc/uucpname — Name of your system
/tmp/mail* — Temporary and lock files
/usr/spool/mail — Mailbox directory, filed by user name

See Also
aliases, ASKCC, commands, EDITOR, .forward, mkfnames, msg, nptx, PAGER, paths, rmail, smail, uux

Notes
Note that before you can send mail, either locally or to a remote site, you must run the program uuinstall and use
its ‘S’ option to set the name of your local site and domain. Your local system must, of course, also have
permission to log into any remote site to which you wish to send mail. See the tutorial and Lexicon articles on
UUCP for details on using UUCP to exchange mail and files with remote sites.

mail — Overview
Electronic mail system

The COHERENT system includes a full-featured, UNIX-style mail system. This system consists of commands with
which your system can send, receive, and forward mail; and configuration files, with which you can describe
potential recipients of mail, either on your system or other systems. This article describes the design of the
COHERENT mail system, and introduces the commands and files that compose it.

The COHERENT mail system has three major components: the user agent (also called the mailer); the routing agents
(the commands smail and rmail); and the delivery agents (the commands lmail and uux).

This structure may seem overly complex (you may ask why all of this functionality could not be bundled into one
program); however, experience has shown that it is best to organize each set of functions within its own program.
One advantage this gives you is that you can replace one part of the mail system with another, superior program,
without disturbing the operation of the system as a whole. For example, you may wish to replace the mailer mail
with another mailer, such as elm. Because the mailer is its program, you can replace mail with elm without
affecting the delivery or routing agents at all. You may never need to modify how the routing or delivery agents
work, but studying the overall structure of the mail system will help you to decide intelligently on whether to
replace a part of the mail system, and will also help you diagnose any problems that may crop up.

The following describes each set of agents in turn.

The User Agent
The user agent (also called the mailer) presents to you the messages that have been delivered into your mailbox. It
also collects messages from you and hands them to the routing agent for delivery. This is the program you invoke
when you wish to read mail or send a mail message.

COHERENT comes with one mailer, called mail. When you invoke it without any arguments, it reads the contents of
file /usr/spool/mail/user (where user is your login identifier), breaks its contents into individual messages, and
presents the messages to you one by one. (File /usr/spool/mail/user is also called your ‘‘mailbox’’, because that
is where the mail system deposits your messages.) You can read a mail message; then, by giving commands to
mail, you can reply to the message if you wish, then copy it into a file for archiving or throw it away.

If you wish to send mail, type the command

mail user
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where user identifies the user to whom you wish to send the message. user can either be a user on your system, or
on a remote system; if the latter, you must also name the site on which user resides. The syntax for naming a
remote sites is described in further detail below. When you invoke mail to send a mail message, mail presents the
prompt Subject:, upon which you should type the subject of the message. When you have typed the subject, press
(¢); you can then type the body of the message. Press (¢) when you come to the end of a line; the cursor jumps
to the beginning of the next line on your screen, and you can continue typing. When you have finished typing,
type <ctrl-D> or a ‘.’ at the beginning of a line; this signals mail that you have finished entering the message. mail
then passes the message to the routing agents for delivery, as described in the next section.

If, while you are typing the body of your message, you type the letter ‘?’ at the beginning of a line, mail invokes an
editor and copies your message into it. The editor it invokes is the set named by the environmental variable
EDITOR. You can then use the editor to finish typing your message. When you have finished typing your message,
exit from the editor; the message will then dispatched.

When the mail dispatches your message, it checks your home directory for a file named .signature. This is your
signature file: the mailer appends the contents of this file onto the end of your message, as your signature. A
signature can be any mass of text that you wish; usually, it gives a user’s name and e-mail address, and
sometimes includes a joke, motto, or slogan as a form of self-expression. It’s generally considered bad form to have
a signature that exceeds five lines of text, or that uses vulgar, obscene, or abusive language.

To mail a file to another user, use the shell’s redirection operator ‘<’. For example, the command

mail stephen < bug.report

mails file bug.report to user stephen. The file will be prefixed with your address, and suffixed with your mail
‘‘signature’’, should you have one.

For details on how to use the mailer and its commands, see the Lexicon entry for the command mail.

Other mailers are also available for COHERENT; the most popular one is named elm. This mailer uses a visual
interface to display the messages that are in your mailbox; you can use the arrow keys on your keyboard to move a
cursor and select the message you want. Sources and binaries for elm are available on the MWC BBS and on
other sites on the Internet.

Routing Agents
The routing agent, as term implies, figures out how to deliver a message to its destination, and dispatches it
appropriately.

The routing agent rmail (‘‘route mail’’) receives mail from another system. If the mail is intended for your local
system, rmail passes the mail to the delivery agent lmail (described below) for delivery on your system. If,
however, the mail is intended for forwarding to another system, rmail forwards it appropriately. rmail does most
of its work in the background; you will seldom if ever will need to work with it directly.

The routing agent smail (‘‘send mail’’) receives mail from you and dispatches to its target user, either on your
system or on another system. smail actually is a large, complex program that handles mail correctly under a great
variety of conditions. Under COHERENT, rmail actually is a link to smail.

When you mail a message to user, smail performs the following steps to route the message:

• smail first looks up user in the file /usr/lib/mail/aliases. For details on aliases, see the Lexicon entry
aliases.

• If smail finds user in one of these files, it substitutes the alias for user. If the alias is of the form

sys!user

or

sys! ... !user

or

user@sys[.domain]

smail treats it as a remote destination, and invokes command uux to spool the message to sys. When uux
has delivered the message, it becomes the responsibility of command uuxqt on sys to pass the message to
user.
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• If smail finds no match in /usr/lib/mail/aliases, it looks up user in the file /etc/passwd, to see if she is
a user on your local system. If smail does not find user in /etc/passwd, it throws away the message and
mails an error message to the sender.

• If smail does find user in /etc/passwd, it then looks for file .forward in user’s home directory. This file
normally contains a list of addresses to which mail is to be forwarded.

• If user’s home directory does not contain a file named .forward, smail passes the message to lmail which
writes the message into the file /usr/spool/mail/user (the user’s ‘‘mailbox’’).

• If, however, user does have file .forward in her home directory, smail reads it, and forwards the message to
the address or addresses that that file contains.

For further information on smail, and on its suite of configuration files, see the Lexicon entry for smail.

Before you can send mail to a remote site, you must have set up a UUCP connect to that site, either directly or
indirectly. That is, you must have set up UUCP to send mail to that site, or to a system that can forward the mail
to some other that may have permission to access the site in question. See the tutorial and Lexicon articles on
UUCP for details on using UUCP to exchange mail and files with remote sites.

Please note that the routing agents are the only components of the mail system that must run setuid to assume
the privilege of the superuser root.

Delivery Agents
The delivery agents actually move messages to their destination.

The delivery agent lmail (‘‘local mail’’) places messages into users’ mailboxes. To discourage the forging of mail,
lmail does not use setuid. It must be run by a privileged user (generally root) so that it will have permission to
write mail into every user’s mailbox. As a rule, lmail is invoked only by the routing agent; you seldom, if ever, will
work directly with lmail.

The UUCP uux queues commands for execution on a remote system. The mail system uses uux as a delivery agent;
in fact, on most systems, the delivery of mail is uux’s principal task. When a message is to be forwarded to a
remote site, smail invokes uux to create two files in directory /usr/spool/uucp/site (where site names the site to
which mail is being sent). One file, which has the prefix ‘C’, contains the rmail command to be executed on the
remote site; the other file, which has the prefix ‘D’, contains the body of the message that rmail is to route. The
next time your system polls site (or is polled by site), those files are copied to site, where they are executed by site’s
copy of the command uuxqt.

You can use uux directly to spool commands for execution. For details, see the Lexicon entries for uux and uuxqt.

uux uses setuid to assume the identity of user uucp in order to write into the necessary spool directories. Please
note that it is very easy to use uux to forge messages to remote systems. Keep this in mind if you plan to use
electronic mail for any kind of authorization system.

Setting Up a Mail Feed
One of the most useful tasks a personal computer can perform for you is let you exchange electronic mail with
users on remote systems. The following describes how you can set up your mail system so you can plug into the
Internet and begin to exchange mail with the outside world.

To begin, the COHERENT system at present can exchange mail with remote systems only via UUCP. To receive mail,
you must find a site that has a connection to the Internet — either direct or indirect — and is willing to act as a
UUCP feeder for you. Such a site may be a local college or university, or a commercial ‘‘Internet provider.’’

Once you have located such a site, set up a UUCP connection with that site, as described in this manual’s tutorial
on UUCP. If you do not have experience in setting up a UUCP site, read this tutorial carefully, as this can be rather
tricky.

Next, edit file /etc/domain, and set your system’s domain to the name of the system from which you will be
receiving your feed. For example, if you have purchased Internet service from site acme.com, then /etc/domain
should read:

acme.com

Finally, you must edit file /usr/lib/mail/config to tell smail to forward to the feeder system all messages that are
bound for the outside world. You must change two attributes within this file:
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domains
This attribute sets the domain name that smail writes into each mail message’s header. This is required
so that other users can reply to your messages. Set it to the name of your feeder system; it should be
identical to the name you wrote into /etc/domain. For example, if you are purchasing your Internet
service from system acme.com, then set the attribute domains to:

domains=acme.com

smart_path
Set this to the name of the remote site as you have set it in file /usr/lib/uucp/sys. For example, if you are
purchasing Internet service from site acme.com, you may have used the name acme to name the site
within file /usr/lib/uucp/sys. In this instance, you set the smail attribute smart_path as follows:

smart_path=acme

That’s all there is to it. smail’s default configurations will handle the rest. Once you have the UUCP connection
working properly, then any mail to a user who is not on your local system will be forwarded to the system that is
providing your mail feed, and from there forwarded to the remote site to which you addressed it.

For details on setting up a UUCP feed, see the UUCP tutorial that appears earlier in this manual; also see the
Lexicon entries for UUCP, sys, dial, and port. For more information on modifying smail’s configuration file, see the
Lexicon entry for config.

Mailing to Networks
The following gives directions on how to send mail to users on popular networks:

America Online
Send mail to user@aol.com.

Applelink
Send mail to user@applelink.apple.com.

ATTMail
Send mail to user@attmail.com.

BITNET
Send mail to user@host.bitnet or to user%host.bitnet@gateway.

Compuserve
Send mail to number.number@compuserve.com. Note that Compuserve addresses are usually given as
number,number; you must convert the comma to a period.

FidoNet
This network uses an unusual addressing scheme. To send mail to John Doe at 1:123/456.0, use the
following domain address:

f456.n123.z1.fidonet.org.

The z1 comes from the 1: at the front of the FidoNode address. Then, put the person’s name in front of this,
with the at-sign between them:

john.doe@f456.n123.z1.fidonet.org

If the host label does not end in .0, as in 1:123/456.4, use that digit with p prefixed to it, as follows:

john.doe@p4.f456.n123.z1.fidonet.org

MCIMail
Send mail to user@mcimail.com. MCIMail usually includes a hyphen in user’s name; be sure to remove it.

UUnet
Send mail to user@host.uucp, or to user%host.uucp@gateway, or to user@domain.

These directions assume that you have a UUCP link to another system that gives you access to the Internet or other
intelligent network. For more information on sending mail to remote systems via UUCP, see the Lexicon entry for
UUCP.

Files
$HOME/.forward — Forwarding instructions for inbound mail
$HOME/.signature — Personal signature
$HOME/dead.letter — Message that mail could not send
/etc/domain — Name of your system’s domain
/etc/passwd — User identities
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/etc/uucpname — Name of your system
/tmp/mail* — Temporary and lock files
/usr/lib/mail/aliases — Aliases of users
/usr/lib/mail/config — smail configuration file
/usr/lib/mail/fullnames — Short full name aliases of users
/usr/lib/mail/paths — Mail routing control file
/usr/lib/mail/routers — Information on routing mail to remote sites
/usr/lib/mail/transports — Information on mail-transportation programs
/usr/spool/mail — Mailbox directory, filed by user name

See Also
aliases, commands, config, cvmail, .forward, mail, mkfnames, msg, nptx, paths, rmail, smail, UUCP
Krol, E.: The Whole Internet: User’s Guide & Catalog. Sebastopol, Ca.: O’Reilly & Associates, Inc., 1992. Highly
recommended.

mailq — Command
Display information about spooled mail
mailq [-v]

Command mailq displays information about the mail currently spooled in directory /usr/spool/mail and its sub-
directories. Command-line option -v tells mailq to display a per-message transaction log for each message, which
shows what has happened to the message so far.

See Also
commands, mail [overview], smail

Notes
mailq is a link to command smail.

main() — C Language
Introduce program’s main function

A C program consists of a set of functions, one of which must be called main(). This function is called from the
runtime startup routine after the runtime environment has been initialized.

Programs can terminate in one of two ways. The easiest is simply to have the main() routine return(). Control
returns to the runtime startup; it closes all open file streams and otherwise cleans up, and then returns control to
the operating system, passing it the value returned by main() as exit status.

In some situations (errors, for example), it may be necessary to stop a program, and you may not want to return to
main(). Here, you can use the library function exit(); it cleans up the debris left by the broken program and
returns control directly to the operating system.

The system call _exit() quickly returns control to the operating system without performing any cleanup. This
routine should be used with care, because bypassing the cleanup will leave files open and buffers of data in
memory.

Programs compiled by COHERENT return to the program that called them; if they return from main() with a value or
call exit() with a value (e.g., EXIT_SUCCESS or EXIT_FAILURE), main() returns that value to the program that
invoked it (e.g., the shell). Programs that invoke other programs through the function system() check the returned
value to see if these secondary programs terminated successfully. If you exit from main() without explicitly
returning a value (e.g., by just letting main() simply conclude, or by invoking exit() without a return status, or by
invoking return without a return value), main() returns whatever random value happens to have been in the
register EAX.

See Also
_exit(), argc, argv, C language, envp, exit(), EXIT_FAILURE, EXIT_SUCCESS
ANSI Standard, §5.1.2.2.1
POSIX Standard, §3.1.2.2

LEXICON

872 mailq — main()



major number — Definition
Device numbering

A major number specifies the device driver associated with a given device name found in the directory /dev.
COHERENT uses a device’s the major number as an index into an internal table of device-driver pointers.

Every COHERENT device has a device number associated with it. This device number is of type dev_t, as defined in
<sys/types.h>. The macro major() in <sys/stat.h> extracts the major number from a given device number.

See Also
device drivers, minor number, stat.h

make — Command
Program-building discipline
make [option ...] [argument ...] [target ...]

make helps you build things that consist of more than one file of source code. A ‘‘thing’’ can be a program, a
report, a document, or anything else that is constructed out of something else.

Complex programs often consist of several object modules, each of which is the product of compiling a source file. A
source file may refer to one or more include files, which can also be changed. Some programs may be generated
from specifications given to program generators, such as yacc. Recompiling and relinking complicated programs
can be difficult and tedious.

make regenerates programs automatically. It follows a specification of the structure of the program that you write
into a file called makefile. make also checks the date and time that COHERENT has recorded for each source file
and its corresponding object module; to avoid unnecessary recompilation, make will recompile a source file only if
it has been altered since its object module was last compiled.

Options
The following lists the options that can be passed to make on its command line.

-d (Debug) Give verbose printout of all decisions and information going into decisions.

-e Force macro definitions in environment to override those in the makefile.

-f file file contains the make specification. If this option does not appear, make uses the file makefile, which is
sought first in the directories named in the PATH environmental variable, and then in the current
directory. If file is ‘-’, make uses the standard input; note, however, that the standard input can be used
only if it is piped.

-i Ignore all errors from commands, and continue processing. To invoke this behavior for an individual
action within a makefile, prefix the action with the ‘-’ flag. By default, make exits if a command returns
an error.

-k Continue to update other targets that do not depend upon the current target if a non-ignored error occurs
while executing the commands to bring a target up to date.

-n Test only; suppress execution of commands. To override this behavior for an individual action within a
makefile, prefix the action with the ‘+’ flag.

-p Print all macro definitions and target descriptions.

-q Return a zero exit status if the targets are up to date. Do not execute any commands.

-r Do not use the built-in rules that describe dependencies.

-S Terminate make if an error occurs while executing the commands to bring a target up to date. This is true
by default, and the opposite of -k.

-s Do not print command lines when executing them. Commands preceded by ‘@’ are not printed, except
under the -n option.

-t (Touch option) Force the dates of targets to be the current time, and bypass actual regeneration. However,
if the target is out-of-date, make will still execute an individual action if that action is prefixed with the ‘+’
flag.
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The Makefile
A makefile consists of three types of instructions: macro definitions, dependency definitions, and commands.

A macro definition simply defines a macro for use throughout the makefile; for example, the macro definition

FILES=file1.o file2.o file3.o

Note the use of the equal sign ‘=’.

A dependency definition names the object modules used to build the target program, and source files used to build
each object module . It consists of the target name, or name of the program to be created, followed by a colon ‘:’
and the names of the object modules that build it. For example, the statement

example: $(FILES)

uses the macro FILES to name the object modules used to build the program example. Likewise, the dependency
definition

file1.o: file1.c macros.h

defines the object module file1.o as consisting of the source file file1.c and the header file macros.h.

Finally, a command line details an action that make must perform to build the target program. Each command
line must begin with a space or tab character. For example, the command line

cc -o example $(FILES)

gives the cc command needed to build the program example. The cc command lists the object modules to be used,
not the source files.

Note that if you prefix an action with a hyphen ‘-’, make will ignore errors in the action. If the action is prefixed by
‘@’, it tells make to be silent about the action — that is, do not echo the command to the standard output. The ‘+’
flag is described below.

Finally, you can embed comments within a makefile. make ignores a pound sign ‘#’ and all text that follows it.
COHERENT’s implementation of make recognizes the presence of quotation marks, and and does not treat a ‘#’ as a
comment if it appears between apostrophes or quotation marks, or prefixed by a backslash. Many other versions of
make do not permit this, including the one specified by POSIX.2: caveat utilitor.

make searches for makefile first in directories named in the environmental variable PATH, and then in the current
directory.

make Without a Makefile
Beginning with release 4.2 of COHERENT, you can also invoke make to build an object for which no makefile
exists. In this case, make uses its default suffix rules to identify the objects it should construct and how it should
construct them. If, for example, you type

make foo

make will search the local directory for any file named foo that has any of the suffices that make recognizes by
default. If the local directory contains a file named foo.c, make invokes cc to compile it; whereas if it contains a
file named foo.o, it invokes the linker ld to link it.

Note that if no makefile exists, make by default creates an executable named after the C source file, just as the
command cc does.

Dependencies
The makefile specifies which files depend upon other files, and how to recreate the dependent files. For example, if
the target file test depends upon the object module test.o, the dependency is as follows:

test: test.o
cc -o test test.o

make knows about common dependencies, e.g., that .o files depend upon .c files with the same base name. The
target .SUFFIXES contains the suffixes that make recognizes. (Note that you can use the command makedepend
to build such a list dynamically. For details, see its entry in the Lexicon.)

make also has a set of rules to regenerate dependent files. For example, for a source file with suffix .c and a
dependent file with the suffix .o, the target .c.o gives the regeneration rule:
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.c.o:
cc -c $<

The -c option to the cc commands tells cc not to link or erase the compiled object module. $< is a macro that
make defines; it stands for the name of the file that causes the current action. The default suffixes and rules are
kept in the files /usr/lib/makemacros and /usr/lib/makeactions.

Macros
To simplify the writing of complex dependencies, make provides a macro facility. To define a macro, write

NAME = string

string is terminated by the end-of-line character, so it can contain blanks. To refer to the value of the macro, use a
dollar sign ‘$’ followed by the macro name enclosed in parentheses or braces, e.g.:

$(NAME)
${NAME}

If the macro name is one character, parentheses are not necessary. make uses macros in the definition of default
rules:

.c.o:
$(CC) $(CFLAGS) -c $<

where the macros are defined as

CC=cc
CFLAGS=-V

The built-in macros are as follows:

$* The target’s name, minus a ‘.’-delimited suffix.

$@ For regular targets, the target’s full name. For targets that are library dependencies of the form
library(object), this macro expands to the library part of the target.

$% For targets that are library dependencies of the form library(object), this macro expands to the object part
of the target.

$? This expands to prerequisite files that are newer than the target.

$< For suffix-rules, this macro expands to the name of the prerequisite file that make chose as the implicit
prerequisite of the target. Do not use this macro outside a suffix rule.

You can specify macro definitions in the makefile, in the environment, or as a command-line argument. A macro
defined as a command-line argument always overrides a definition of the same macro name in the environment or
in the makefile. Normally, a definition in a makefile overrides a definition of the same macro name in the
environment; however, with the -e option, a definition in the environment overrides a definition in the makefile.

Each command line argument should be a macro definition of the form

OBJECT=a.o b.o

Arguments that include spaces must be surrounded by quotation marks, because blanks are significant to the
shell sh.

Source File Path
make first looks for the file with the name given, which may be relative to the current directory when make was
invoked. If it does not find the file, and if the name of the file is not an absolute path name, make removes any
leading path information from the name and looks for the file in the current directory. If the file is not found in the
current directory, make then searches for the file in the list of directories specified by the macro $(SRCPATH). This
allows you to compile a program in an object directory separate from the source directory. For example

export SRCPATH=/usr/src/local/me
make

or alteratively

make SRCPATH=/usr/src/local/me
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builds objects in the current directory as specified by the makefile and sources in /usr/src/local/me. To test
changes to a program built from several source files, copy only the files you wish to change to the current
directory; make will use the local sources and find the other sources on the $(SRCPATH).

Note that $(SRCPATH) can be a single directory, as in the above example, or a ‘:’-separated list of directories, as
described in the Lexicon entry for the function path().

Macros and Environmental Variables
The environmental variable MAKEFLAGS provides an alternative method of passing parameters to make. If this
variable is defined, make processes the switches that it contains as if they were specified on the command line.
make processes MAKEFLAGS before it processes any actual command-line parameters.

Either of the following two formats can be used for MAKEFLAGS:

MAKEFLAGS="-n -d"
MAKEFLAGS=nd

Either of the above passes to make the options n and d.

After it processes the switches named in MAKEFLAGS, make processes all options set on its command line. make
then re-defines MAKEFLAGS to contain the full set of switches passed to it, and marks the macro for export. This
means that recursive invocations of make are passed the same switch settings as the highest-level invocation of
make. (See also the description of the ‘+’ flag, below.)

make takes all other environment-variable settings passed to it and uses them to set the values of corresponding
macros internally.

When make executes a command, it exports to that command all the environmental variables make imported from
the initial environment, the MAKEFLAGS environmental variable, and the macros defined on the make command
line.

Always Actions
If an action for rebuilding a target begins with the ‘+’ flag, make executes the action even if the command line
specifies the option -n. This is useful when dealing with recursive makefiles: when you pass the options -p, -d, or -
n to the top-level invocation of make, the top-level makefile can still invoke the sub-makefiles, and pass them the
same flags via the environmental variable MAKEFLAGS, as described above. This simplifies the debugging of
makefiles for complex projects. This flag mainly affects make’s usage with the options -q, -n, and -t.

Library Dependencies
make interprets targets of the form library(object) as referring to members of an archive created with the archiver
ar. make can examine the archive’s contents to determine whether the named member is present and what date it
possesses.

When building such a target, make looks for suffix rules for use in building object, but with a target suffix of .a
rather than the actual suffix of object.

For example, with the default make rules in effect, the target

libc.a(clock.o)

would be rebuilt from a source file clock.c by the suffix-rule .c.a. The default suffix rule (as supplied in file
/usr/lib/makeactions) deals with building the object file and then uses the macros AR and ARFLAGS to move the
resulting object file into the target archive.

Actions for library targets use macro definitions that differ slightly from those for normal actions. When it builds a
library target, make sets the macro $@ to the name of the library part of the target, and sets the special macro $%
(defined only for use with library targets) to the name of the object part of the target.

Single-Suffix Rules
make can use an inference rule of the form:

suffix:
actions

to infer an action from a target that does not have a suffix. When you use a target that has no explicit rule and no
known suffix, make appends onto the target every known suffix in turn, and for each suffix searches for a file or
rule for building the target. If make discovers a file that matches one of file names that it has built, it then tries to
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use a single-suffix rule to generate the target from targetsuffix, with the actions given in the single-suffix rule.

For example, the default rules for make contain a single-suffix rule:

.c:
$(CC) $(CFLAGS) $@ $<

Given the above rule and a file in the current directory or source path named clock.c, the target

clock:

results in the executable file clock being built by compiling the single source file clock.c and linking it.

Suffix-Rewriting Macro Expansion
You can use a special form of macro expansion

$(macro:suffix[=value])

to simplify the use of macros that involve long lists of files names. When you request the above form of expansion,
make searches the expansion of macro; for every word that ends in suffix it replaces suffix with the optional value.

For example, consider the following:

SOURCES = parse.c interpret.c builtin.c
OBJS = $(SOURCES:.c=.o)

This expansion of the macro OBJS is:

parse.o interpret.o builtin.o

When a makefile uses long lists of files, this facility not only saves typing, but eases maintenance because you
need to change only one list of files.

Path-Oriented Macro Expansions
The following special-macro expansion forms perform path processing on the macro’s contents:

$(special) Normal expansion
$(specialF) Expand only file-name part
$(specialD) Expand only directory part without trailing slash

where special is one of the following: @, ?, <, *, or %. These expansion forms allow rules (especially inference rules)
to deal easily with path-oriented operations, without resorting to complex shell operations involving backquoting
and the command basename. In particular, when expanding a macro with a file list such as ${?D}, make
processes all the entries in the file list as specified; otherwise, this would be extremely cumbersome.

Files
makefile
Makefile — List of dependencies and commands
/usr/lib/makeactions — Default actions
/usr/lib/makemacros — Default macros

See Also
as, cc, commands, ld, makedepend, srcpath, touch
The make Programming Discipline, tutorial

Diagnostics
make returns the following error messages:

; after target or macroname (error)
A semicolon appeared after a target name or a macro name.

Bad macro name (error)
A macro includes an illegal character, e.g., a control character.

= in or after dependency (error)
An equal sign ‘=’ appeared within or followed the definition of a macro name or target file. For example,
OBJ=atod.o=factor.o will produce this error.
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Incomplete line at end of file (error)
An incomplete line appeared at the end of the makefile.

Macro definition too long (error)
The macro definition exceeds the limited designed into the preprocessor.

Multiple actions for name (error)
A target is defined with more than one single-colon target line.

Multiple detailed actions for name (error)
A target is defined with more than one single-colon target line.

Must use ‘‘::’’ for name (error)
A double-colon target line was followed by a single-colon target line.

Newline after target or macroname (error)
A newline character appears after a target name or a macro name.

‘::’ not allowed for name (error)
A double-colon target line was used illegally; for example, after single-colon target line.

::: or : in or after dependency list (error)
A triple colon is meaningless to make, and therefore illegal wherever it appears. A single colon may be
used only in a target line (which is also called the dependency list), and nowhere else.

Out of core (adddep) (error)
This results from a system problem. Try reducing the size of your makefile.

Out of range number input. (warning)
You attempted to use a numeric value that is out of range.

Out of space (error)
System problem. Try reducing the size of your makefile.

Out of space (lookup) (error)
System problem. Try reducing the size of your makefile.

Syntax error (error)
The syntax of a line is faulty.

Too many macro definitions (error)
The number of macros you have created exceeds the capacity of your computer to process them.

= without macro name or in token list (error)
An equal sign ‘=’ can be used only to define a macro, using the following syntax: ‘‘MACRO=definition’’. An
incomplete macro definition, or the appearance of an equal sign outside the context of a macro definition,
will trigger this error message.

: without preceding target (error)
A colon appeared without a target file name, e.g., :string.

Notes
Prior to release 4.2, COHERENT’s implementation of make permitted users to use the macro $< outside of suffix
rules. This non-standard behavior is no longer supported.

The order of items in makemacros/.SUFFIXES is significant. The consequent of a default rule (e.g., .o) must
precede the antecedent (e.g., .c) in the entry .SUFFIXES. Otherwise, make will not work properly.

makeboot — Command
Create a bootable floppy disk
makeboot

The script makeboot automatically builds a bootable floppy disk. To use it, insert a scratch floppy disk into your
system’s drive 0 (drive A:), log in as the superuser root, and then type makeboot.

makeboot automatically formats the floppy disk, builds a file system on it, and copies onto the disk all files it
needs to boot COHERENT. To abort makeboot at any time, press <ctrl-C>.

Because makeboot is a script you can — and should — edit it to suit your preferences. For example, by default
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makeboot copies both the editors vi and me onto the floppy disk; you may wish to save space by copying just one
or the other.

See Also
commands, floppy disk

Notes
makeboot reads file /bin/mount to discover whether floppy-disk drive 0 is 3.5 inches or 5.25 inches. This file
was initialized when you last installed or updated COHERENT. If you have changed your A drive since then,
makeboot may think it is working with one size of floppy disk when in fact it is working with another. To correct
this error, abort makeboot, then edit /etc/mount so that it reflects your system’s true configuration of disk
drives.

makedepend — X Utility
Generate list of dependencies for a makefile
makedepend [-Dname=def] [-Dname] [-Iincludedir] [-Yincludedir] [-a] [-fmakefile] [-oobjsuffix] [-pobjprefix] [-sstring]
[-wwidth] [-v] [-m] [--otheroption ...--] sourcefile ...

makedepend reads each sourcefile, and parses it as the C preprocessor does. It processes every #include,
#define, #undef, #ifdef, #ifndef, #endif, #if, and #else directives so that it can correctly tell which #include
directives should be used in a compilation. Any #include directive can reference a file that has other #include
directives, and makedepend parses these files as well.

Every file that a sourcefile includes, directly or indirectly, is what makedepend calls a dependency. It writes these
dependencies into a makefile in such a way that make will know which object files must be recompiled when a
dependency has changed.

By default, makedepend writes its output into a file named makefile, if it exists; otherwise, it writes its output
into Makefile. You can specify an alternate makefile with the option -f. makedepend first searches the makefile for
the line

# DO NOT DELETE THIS LINE -- make depend depends on it.

or one provided with the option -s as a delimiter for the dependency output. If it finds the line, it deletes everything
after after this line to the end of the makefile, and writes its output after this line. If makedepend does not find
this line, it appends the string to the end of the makefile and writes the output after that. For each sourcefile,
makedepend writes into the makefile a line of the form

sourcefile.o: dfile ...

where sourcefile.o is the name of the sourcefile with its suffix replaced .o, and dfile is a dependency that
makedepend discovered in a #include directive as it parsed sourcefile or one of the files it includes.

Command-line Options
makedepend ignores any option it does not understand, so you can use the same arguments that you would for
cc. It does recognize the following command-line options:

-Dsymbol[=def]
Define symbol within makedepend’s internal symbol table. Without =def, makedepend defines it as 1.

-Iincludedir
Tell makedepend to prefix includedir onto the list of directories to search when it encounters a #include
directive. By default, makedepend only searches only /usr/include.

-Y[includedir]
Search includedir for header files instead of all of the standard header-file directories. If you omit to name
an includedir, this option prevents searching of the standard header-file directories.

-a Append the dependencies to the end of the file instead of replacing them.

-ffile Write output into file instead of into makefile.

-oobjsuffix
Append objectsuffix to a filename instead of the default .o.
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-pobjprefix
Prefix the name of each object file with objprefix. This usually is used to designate a different directory for
the object file. The default is the empty string.

-sstring Use string as the starting-string delimiter within a makefile.

-wwidth
Set the width of a line of output to width. By default, makedepend limits a line of output to 78 characters.

-v Verbose: tell makedepend to write onto the standard output the list of files that each input file includes.

-m Warn about multiple inclusion. This option tells makedepend to warn if any input file includes another
file more than once. In previous versions of makedepend, this was the default behavior; the default has
been changed to better match the behavior of the C compiler, which does not consider multiple inclusion
to be an error. This option is provided for backward compatibility, and to aid in debugging problems
related to multiple inclusion.

-- option ... --
makedepend ignores every option that it does not recognize and that is bracked by two hyphens ‘--’. In
this way, you can safely tell makedepend to ignore esoteric compiler arguments that might normally be
found in a CFLAGS macro. makedepend processes normally all options between the pair of double
hyphens that recognizes.

Algorithm
To speed its performance, makedepend makes two assumptions about the programs whose dependency it is
mapping: first, that all files compiled by a single makefile will be compiled with roughly the same -I and -D
options; and second, that most files in a directory include largely the same files. Given these assumptions,
makedepend expects to be called once for each makefile, with all source files that that makefile maintains
appearing on its command line.

makedepend parses each source and header file exactly once, and maintains an internal symbol table for each.
Thus, the first file on the command line will take an amount of time proportional to the amount of time that a
normal C preprocessor takes. However, on subsequent files, if makedepend encounters a header file that it has
already parsed, it does not parse it again.

For example, imagine you are compiling two files, file1.c and file2.c. Assume, further, that each includes the
header file header.h, and header.h in turn includes the files def1.h and def2.h. When you run the command

makedepend file1.c file2.c

makedepend parses file1.c and, therefore, header.h followed by def1.h and def2.h. It then decides that the
dependencies for this file are

file1.o: header.h def1.h def2.h

When makedepend parses file2.c and discovers that it, too, includes header.h, it does not re-parse that file, but
simply adds header.h, def1.h, and def2.h to the list of dependencies for file2.o.

Example
makedepend normally is used within a makefile target, so that typing the command

make depend

brings the dependencies up to date for the makefile. For example,

SRCS = file1.c file2.c ...
CFLAGS = -O -DHACK -I../foobar -xyz
depend:

makedepend -- $(CFLAGS) -- $(SRCS)

See Also
cc, commands, make
X Windows Manual: imake

Notes
makedepend was written by Todd Brunhoff of Tektronix, Inc., and MIT Project Athena.
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malloc() — General Function (libc)
Allocate dynamic memory
#include <stdlib.h>
char *malloc(size) unsigned size;

malloc() helps to manage a program’s free-space arenas. It uses a circular, first-fit algorithm to select an unused
block of at least size bytes, marks the portion it uses, and returns a pointer to it. The function free() returns
allocated memory to the free memory pool.

Each arena allocated by malloc() is rounded up to the nearest even number and preceded by an unsigned int that
contains the true length. Thus, if you ask for three bytes you get four, and the unsigned that precedes the newly
allocated arena is set to four.

When an arena is freed, its low order bit is turned on; consolidation occurs when malloc() passes over an arena as
it searches for space. The end of each arena contains a block with a length of zero, followed by a pointer to the
next arena. Arenas point in a circle.

The most common problem with malloc() occurs when a program modifies more space than it allocates with
malloc(). This can cause later malloc()s to crash with a message that indicates that the arena has been corrupted.
You can use the function memok() to isolate these problems.

Example
This example reads from the standard input up to NITEMS items, each of which is up to MAXLEN long, sorts them,
and writes the sorted list onto the standard output. It demonstrates the functions qsort(), malloc(), free(), exit(),
and strcmp().

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define NITEMS 512
#define MAXLEN 256
char *data[NITEMS];
char string[MAXLEN];

main()
{

register char **cpp;
register int count;
extern int compare();

for (cpp = &data[0]; cpp < &data[NITEMS]; cpp++) {
if (gets(string) == NULL)

break;
if ((*cpp = malloc(strlen(string) + 1)) == NULL)

exit(1);
strcpy(*cpp, string);

}

count = cpp - &data[0];
qsort(data, count, sizeof(char *), compare);

for (cpp = &data[0]; cpp < &data[count]; cpp++) {
printf("%s\n", *cpp);
free(*cpp);

}
exit(0);

}

compare(p1, p2)
register char **p1, **p2;
{

extern int strcmp();
return(strcmp(*p1, *p2));

}

See Also
alloca(), arena, calloc(), free(), libc, memok(), realloc(), setbuf(), stdlib.h
ANSI Standard, §7.10.3.3
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POSIX Standard, §8.1

Diagnostics
malloc() returns NULL if insufficient memory is available.

Notes
The function alloca() allocates space on the stack. The space so allocated does not need to be freed when the
function that allocated the space exits.

malloc.h — Header File
Definitions for memory-allocation functions
#include <sys/malloc.h>

malloc.h defines constants, structures, and macros used with COHERENT’s memory-allocation functions. Note
that this header does not declare the library’s memory-allocation functions.

See Also
header files

Notes
This header file is obsolete, and will be dropped from a future release of COHERENT. Its use is strongly
discouraged.

man — Technical Information
Manual macro package
nroff -man file ...

The macro package tmac.an formats UNIX-style manual pages. To invoke this package, use the argument -man
with either nroff or troff

tmac.an includes the following macros:

.B [string ...]
Use boldface font. If used with one or more strings, prints them in boldface. Otherwise, print all
subsequent text in boldface, up to the next explicit change of font.

.BI boldtext italictext boldtext italictext ...
This macro prints its arguments in alternating boldface and italic fonts. It takes up to six arguments.

.BR boldtext romantext boldtext romantext ... ]
This macro prints its arguments in alternating boldface and Roman fonts. It takes up to six arguments.

.CO Print the string ‘‘COHERENT’’.

.DE End a display. It is always used with the macro .DS, described below.

.DS Start a display. The text that follows, up to the macro .DE, is read into a diversion. It is not adjusted.
When the display is closed, nroff checks whether the present page has enough space left to hold the text.
If the page does not, nroff jumps to the next page and prints the text there.

.DT Set the default tab stops. tmac.an by default set a tab stop every five characters (half-inch).

.HE Help end — close a section of help messages.

.HP Hanging paragraph. The new paragraph is separated by a space from the text that came above it; however,
unlike the macro .PP, the new paragraph keeps the current level of indentation.

.HS Help start. All text from here up to the macro .HE is assumed to form a special help message, and is
ignored.

.I [string ...]
Use italic font. If used with one or more strings, prints them in italic. Otherwise, print all subsequent text
in italic, up to the next explicit change of font.

.IB italictext boldtext italictext boldtext ...
This macro prints its arguments in alternating italic and boldface fonts. It takes up to six arguments.
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.IP [string [indentation] ]
Indented paragraph. If it has no arguments, it drops a space and indents subsequent text to the current
level of indentation. If the macro has one argument, it uses that argument as a stub, and indents the
following text by another five characters (one-half inch). If it has two arguments, it uses the first as a stub,
and indents the subsequent text by the value given in the second argument.

.IR italictext romantext italictext romantext ... ]
This macro prints its arguments in alternating italic and Roman fonts. It takes up to six arguments.

.PD [distance]
Set the default interparagraph distance to distance. If invoked without an argument, it resets the
interparagraph distance to the default, which is kept in the number register PD.

.PP Paragraph. The macro inserts a space into the output, and indent subsequent text by the default amount,
which is the value kept in the number register IN.

.R Use Roman font. If used with one or more strings, prints them in Roman. Otherwise, print all subsequent
text in Roman, up to the next explicit change of font.

.RB romantext boldtext romantext boldtext ...
This macro prints its arguments in alternating Roman and boldface fonts. It takes up to six arguments.

.RE End relative indentation. Subsequent text is printed at the previous level of indentation.

.RI romantext italictext romantext italictext ...
This macro prints its arguments in alternating Roman and italic fonts. It takes up to six arguments.

.RS [indentation]
Start relative indentation. The indentation of subsequent text is increased by indentation. If invoked
without an argument, indentation is increased by the default amount, as set by the number register IN.

.SH [text]
Section heading. Set text in bold as the title of the section. If it is invoked without an argument, this
macro uses the first line of the subsequent text as the section’s title. Subsequent text is indented by the
default amount, as set by the number register IN.

.TH [first second third fourth fifth]
Header. This is the first macro to appear in any manual page. Its optional arguments are used in the
header and footer of the manual page, as follows:

first The name of the manual page. It appears in the left and right corners of each page’s header.

second This argument gives the section of the UNIX manual that holds the manual page.

third This argument appears in the center of each page’s footer. It usually names the category of item
that this manual page is documenting.

fourth This appears in the lower-left corner of each page.

fifth This appears in the center of each page’s header.

.TP [indentation]
Tagged paragraph. This macro resembles the macro .IP, except that it uses first line of subsequent text as
the paragraph’s stub.

tmac.an uses the following number registers to control its behavior. These are defined in the macro .TH; if you
wish to reset them, do so after you have invoked macro .TH:

IN The default indentation.

LL The default line length.

PD The default distance between paragraphs.

Finally, tmac.an sets the following strings:

R The registered trademark symbol. This is equivalent to the special character \(rg.

Tm The trademark symbol. This is equivalent to the special character \(tm.
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Files
/usr/lib/tmac.an — Macro package

See Also
ms, nroff, troff, Using COHERENT
nroff, The Text Processing Language, tutorial

man — Command
Display Lexicon entries
man [-dw] [page ...]

man prints each manual page onto the standard output. This normally is an entry from the COHERENT Lexicon,
although it can be a manual page from any other source as well.

When used with the option -w, it prints the path name of the file instead of printing the document itself. When
used with option -d, it dumps a list of all available manual pages to the standard output device, for your perusal.

By default, man uses the pager more to display text. To use another pager, e.g., scat, define the environmental
variable PAGER:

export PAGER="/bin/scat"

man normally searches for manual pages in the directory /usr/man. However, if the environmental variable
MANPATH is set, man searches for manual pages in each directory that it names. MANPATH must name one or
more directories, with directories separated by a colon ‘:’.

Index Files
To locate a manual page, man reads index files. It assumes that every file /usr/man/*.index is an index file; it
then opens these files, and searches them for the manual entry you have requested.

Prior to release 4.2, an index file consisted of entries that had the format:

relative-path-name article-name

where relative-path-name gave the subdirectory and file in /usr/man that held the manual-page entry,
article_name gave the name of the article as it appears in the Lexicon. Beginning with release 4.2, man uses index
entries of the form:

relative-path-name article_name description

description gives a brief summary of the article. Fields must be separated by one more white-space characters. For
example, entries

COHERENT1/bc bc Interactive calculator with arbitrary precision
LOCAL/chess chess Interactive chess program

associate manual-page file /usr/man/COHERENT1/bc with the Lexicon entry for the command bc. Likewise,
rules for the user-written chess game chess are found in file /usr/man/LOCAL/chess.

man can read index entries prepared in either the ‘‘old’’ or the ‘‘new’’ form. We encourage you to use the new form,
because this format also allows the index entries to be used by the command apropos.

Adding Manual-Page Entries
When writing new manual-page entries for COHERENT, we recommend that you place them into a subdirectory of
/usr/man. This subdirectory should be uniquely named to avoid possible name-space collisions. A good rule of
thumb is to name the subdirectory after the application with which it is associated. Also, when all manual-pages
associated with a given application reside in a specific subdirectory, you can update the manual pages easily.

You should also add a uniquely named index file to directory /usr/man that identifies each of the newly added
manual pages. This index file should use the ‘‘new’’ format described above; and its name should end with the
suffix .index.

Files
/usr/man/* — Directories that hold manual pages /usr/man/*.index — Index files
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See Also
apropos, commands, help, install, PAGER, Using COHERENT

Notes
The manual pages that are included with your release of the COHERENT system may include entries that have been
corrected and updated since your COHERENT manual was printed. If there is a discrepancy between an on-line
manual page and the printed COHERENT manual, you should assume that the on-line manual page is correct.

manifest constant — Overview
A manifest constant is a constant that is given a name so it can be defined differently under different computing
environments. An example is EOF, the end-of-file marker, which has wildly different representations under
different operating systems. Note, too, that numerals are manifest constants by definition.

The use of manifest constants in programs helps to ensure that code is portable by isolating the definition of these
elements in a single header file, where they need to be changed only once.

The header file limits.h defines a set of macros that express certain numeric limits of COHERENT’s implementation
of C.

See Also
__DATE__, __FILE__, __LINE__, __STDC__, __TIME__, C preprocessor, EOF, EXIT_FAILURE, EXIT_SUCCESS,
limits.h, macro, MB_CUR_MAX, NULL, RAND_MAX, portability, Programming COHERENT

math.h — Header File
Declare mathematics functions
#include <math.h>

math.h is the header file to be included with programs that use any of COHERENT’s mathematics routines. It
includes the following: definitions for mathematical functions; error return values, as used by the errno function;
definitions of mathematical constants, e.g., HUGE_VAL; the definition of structure cpx, which describes complex
variables; definitions of internal compiler functions; and, finally, prototypes of all mathematical functions.

See Also
header files, libm
ANSI Standard §7.5

MB_CUR_MAX — Manifest Constant
Largest size of a multibyte character in current locale
#include <stdlib.h>

MB_CUR_MAX is a manifest constant that is defined in the header stdlib.h. It expands into an expression that
indicates the maximum number of bytes contained in a multibyte character in the current locale.

See Also
manifest constant
ANSI Standard, §7.10.7

mboot — Device Driver
Master boot block for hard disk

To be bootable, a COHERENT file system must contain a boot block (either boot or mboot). In addition, all hard
disks must contain the master boot block mboot or an equivalent.

mboot is the master boot block for a hard-disk drive. It is compatible with, and therefore can replace, the IBM
master boot block installed by the MS-DOS command FDISK. It must be installed in the first sector of the hard
disk, as follows:

/etc/fdisk -b /conf/mboot /dev/at0x
/bin/sync

mboot searches its internal partition table (updated by the command fdisk) for an active partition. You can select
an alternate partition by pressing 0 through 7 before the system selects the active partition. If the selected
partition is of non-zero size with a valid partition boot block, COHERENT executes that partition’s boot block.
Otherwise, the prompt
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Select partition [0-7]

appear, and the system waits for you to select the partition you want.

Files
/conf/mboot — Hard-disk master boot block

See Also
boot, device drivers, fdisk, mkfs

mcd — Device Driver
Device driver for Mitsumi CD-ROM drives

mcd is a device driver for a Mitsumi CD-ROM drive, models FX001, FX001 high speed, FX001D, or LU005, that is
plugged into the Mitsumi controller card. It has major number 16.

Normally, this device driver is included in the kernel when you install or update COHERENT. To configure this
driver, log in as the superuser root, and execute script /etc/conf/mcd/mkdev. Then run the command

/etc/conf/bin/idmkcoh -o coh.test

to build a test kernel that includes the driver.

Files
/dev/cdrom — Device applications read for CD-ROMs by default
/dev/rmcd0 — Character-special device for accessing Mitsumi CD-ROM

See Also
CD-ROM, device drivers, hai

mcmp() — Multiple-Precision Mathematics (libmp)
Compare multiple-precision integers
#include <mprec.h>
int mcmp(a, b)
mint *a, *b;

mcmp() compares the multiple-precision integers (or mints) pointed to by a and b. It returns a signed integer less
than, equal to, or greater than zero according to whether the value pointed to by a is less than, equal to, or greater
than that pointed to by b.

See Also
libmp

mcopy() — Multiple-Precision Mathematics (libmp)
Copy a multiple-precision integer
#include <mprec.h>
void mcopy(a, b)
mint *a, *b;

mcopy() sets the multiple-precision integer (or mint) pointed to by b to the value pointed to by a.

See Also
libmp

mdevice — System Administration
Describe drivers that can be linked into kernel
/etc/conf/mdevice

File mdevice describes each device driver that can be linked into the COHERENT kernel. The command idmkcoh
uses the information in this file when it builds and configures a new kernel.

mdevice contains one line for each driver or kernel component that can be linked into the kernel. Each line, in
turn, consists of ten fields. The following describes the ten fields in order, from left to right:
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1. Name
This field gives the name of the driver or component. Each name must uniquely identify the driver or
component within the kernel. This field cannot be longer than eight characters.

2. Function Flags
This field holds a flag for each function (that is, entry point) within the driver or component. This field is
used only by drivers or components that use the STREAMS or DDI/DKI interfaces; drivers that use the
internal-kernel interface should place a hyphen ‘-’ in this field. The legal flags are as follows:

o Open
c Close
r Read
w Write
i Ioctl
s Startup
x Exit
I Init
h Halt
p Poll — that is, chpoll()

3. Miscellaneous Flags
These flags give information about the device. They are set by most varieties of driver; the only exception is
a STREAMS driver, for which only the flag S matters. The legal flags are as follows:

c Character device
b Block device
f Driver conforms to the DDI/DKI
o Driver has only one entry in /etc/conf/sdevice
r Driver is required in all configurations of the kernel
S STREAMS module; or STREAMS device when used with the ‘c’ flag
H Device driver controls hardware
C Driver uses interal-kernel (CON) interface

Note that the ‘C’ flag is unique to COHERENT, and cannot be used under other operating systems.

4. Code Prefix
This gives the ‘‘magic prefix’’ by which the kernel identifies the entry-point routines for this driver. In most
instances, this is identical with the driver’s name.

5. Block Major-Device Number
This gives the major-device number of this driver when it is accessed in block mode. In most instances,
this and the following field are identical.

6. Character Major-Device Number
This gives the major-device number of this driver when it is accessed in character (raw) mode. In most
instances, this and the preceding field are identical.

7. Minor Device Numbers, Minimum
This gives the smallest number that can be held by a minor-device number under this driver. Most drivers
set this field to the lowest legal value, which is zero.

8. Minor Device Numbers, Maximum
This gives the largest number that can be held by a minor-device number under this driver. Most drivers
set this field to the highest legal value, which is 255.

9. DMA Channel
This gives the DMA channel by which the device is accessed. Under COHERENT, this is always set to -1.

10. CPU ID
This gives the CPU that controls this driver, should the driver be running in a multiprocessor environment
and be dedicated to a particular processor. Under COHERENT, this is always set to -1.

For an example of modifying this file, see the entry for device drivers.

Example
The following gives some example entries from mdevice:
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1 2 3 4 5 6 7 8 9 10
###
# Example of an kernel components: floating-point emulator and STREAMS
###
em87 - - em87 0 0 0 0 -1 -1
streams I - streams 0 0 0 0-1 -1

###
# Example of a STREAMS driver: note flags ‘c’ and ‘S’ both set in field 3
###
echo - cSf echo 0 33 0 255 -1 -1

###
# Example DDI/DKI character driver: Note that field 2 is initialized.
###
trace ocriI cfo tr 0 34 0 255 -1 -1

###
# Example IK driver: Note flag ‘C’ in field 3
###
at - CGHo at 11 11 0 255 -1 -1

See Also
Administering COHERENT, device drivers, idmkcoh, mtune, sdevice, stune

mdiv() — Multiple-Precision Mathematics (libmp)
Divide multiple-precision integers
#include <mprec.h>
void mdiv(a, b, q, r)
mint *a, *b, *q, *r;

mdiv() divides the multiple-precision integer (or mint) pointed to by a with that pointed to by b. It writes the
quotient and remainder into, respectively, q and r. b must not be zero. The results of the operation are defined by
the following conditions:

1. a = q * b + r

2. The sign of r equals the sign of q

3. The absolute value of r is greater than the absolute value of b.

See Also
libmp

me — Command
MicroEMACS screen editor
me [-e errorfile] [-f bindfile] [textfile ...]

me is the command for MicroEMACS, the screen editor for COHERENT. With MicroEMACS, you can insert text, delete
text, move text, search for a string and replace it, and perform many other editing tasks. MicroEMACS reads text
from files and writes edited text to files; it can edit several files simultaneously, while displaying the contents of
each file in its own screen window.

Screen Layout
Before you can use MicroEMACS, you must set the environmental variable TERM in your environment. If you do
not set this variable explicitly in your .profile file, COHERENT sets it by default to ansipc. See the Lexicon entry
TERM for details.

If the command me is used without arguments, MicroEMACS opens an empty buffer. If used with one or more file
name arguments, MicroEMACS will open each of the files named, and display its contents in a window. If a file
cannot be found, MicroEMACS will assume that you are creating it for the first time, and create an appropriately
named buffer and file descriptor for it.

The last line of the screen is used to print messages and inquiries. The rest of the screen is portioned into one or
more windows in which text is displayed. The last line of each window shows whether the text has been changed,
the name of the buffer, and the name of the file associated with the window.

LEXICON

888 mdiv() — me



MicroEMACS notes its current position. It is important to remember that the current position is always to the left of
the cursor, and lies between two letters, rather than at one letter or another. For example, if the cursor is
positioned at the letter ‘k’ of the phrase ‘‘Mark Williams’’, then the current position lies between the letters ‘r’ and
‘k’.

Commands and Text
The printable ASCII characters, from ‘ ’ to ‘~’, can be inserted at the current position. Control characters and
escape sequences are recognized as commands, described below. A control character can be inserted into the text
by prefixing it with <ctrl-Q> (that is, hold down the <control> key and type the letter ‘Q’).

There are two types of commands to remove text. Delete commands remove text and throw it away, whereas kill
commands remove text but save it in the kill buffer. Successive kill commands append text to the previous kill
buffer. Moving the cursor before you kill a line will empty the kill buffer, and write the line just killed into it.

Search commands prompt for a search string terminated by <return> and then search for it. Case sensitivity for
searching can be toggled with the command <esc>@. Typing <return> instead of a search string tells MicroEMACS
to use the previous search string.

Some commands manipulate words rather than characters. MicroEMACS defines a word as consisting of all
alphabetic characters, plus ‘_’ and ‘$’. Usually, a character command is a control character and the corresponding
word command is an escape sequence. For example, <ctrl-F> moves forward one character and <esc>F moves
forward one word.

MicroEMACS can handle blocks of text as well as individual characters, words, and lines. MicroEMACS defines a
block of text as all the text that lies between the mark and the current position of the cursor. For example, typing
<ctrl-W> kills all text from the mark to the current position of the cursor; this is useful when moving text from one
file to another. When you invoke MicroEMACS, the mark is set at the beginning of the file; you can reset the mark
to the cursor’s current position by typing <ctrl-@>.

Using MicroEMACS with the Compiler
MicroEMACS can be invoked automatically by the compiler command cc to help you repair all errors that occur
during compilation. The -A option to cc causes MicroEMACS to be invoked automatically when an error occurs.
The compiler error messages are displayed in one window, the source code in the other, and the cursor is at the
line on which the first error occurred. You can correct the errors one by one. To move to the next error in the list,
type <ctrl-X>>; to move the previous error, type <ctrl-X><.

When have finished making corrections, exit from MicroEMACS by typing <ctrl-Z>, as usual; the compiler will
automatically be re-invoked to re-compile the corrected source code. If more errors are found, MicroEMACS will be
re-invoked with the new list of errors. This cycle will continue either until the file compiles without error, or until
you break the cycle by typing <ctrl-U> <ctrl-X> <ctrl-C>.

The option -e to the me command allows you to invoke the error buffer by hand. For example, the commands

cc myprogram.c 2>errorfile
me -e errorfile myprogram.c

divert the compiler’s error messages into errorfile, and then invokes MicroEMACS to let you correct them
interactively.

The MicroEMACS Help Facility
MicroEMACS has a built-in help facility. With it, you can ask for information either for a word that you type in, or
for a word over which the cursor is positioned. The MicroEMACS help file contains the bindings for all library
functions and macros included with COHERENT.

For example, consider that you are preparing a C program and want more information about the function fopen.
Type <ctrl-X>?. At the bottom of the screen will appear the prompt

Topic:

Type fopen. MicroEMACS will search its help file, find its entry for fopen, then open a window and print the
following:

Open a stream for standard I/O
#include <stdio.h>
FILE *fopen (name, type) char *name, *type;
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If you wish, you can kill the information in the help window and copy it into your program, to ensure that you
prepare the function call correctly.

Consider, however, that you are checking a program written earlier, and you wish to check the call for a call to
fopen. Simply move the cursor until it is positioned over one of the letters in fopen, then type <esc>?.
MicroEMACS will open its help window, and show the same information it did above.

To erase the help window, type <ctrl-X>1.

Options
The following list gives the MicroEMACS commands. They are grouped by function, e.g., Moving the cursor. Some
commands can take an argument, which specifies how often the command is to be executed. The default argument
is 1. The command <ctrl-U> introduces an argument. By default, it sets the argument to four. Typing <ctrl-U>
followed by a number sets the argument to that number. Typing <ctrl-U> followed by one or more <ctrl-U>s
multiplies the argument by four.

Moving the Cursor

<ctrl-A> Move to start of line.

<ctrl-B> (Back) Move backward by characters.

<esc>B Move backward by words.

<ctrl-E> (End) Move to end of line.

<ctrl-F> (Forward) Move forward by characters.

<esc>F (Forward) Move forward by words.

<esc>G Go to an absolute line number in a file. Same as <ctrl-X>G.

<ctrl-N> (Next) Move to next line.

<ctrl-P> (Previous) Move to previous line.

<ctrl-V> Move forward by pages.

<esc>V Move backward by pages.

<ctrl-X>= Print the current position.

<ctrl-X>G Go to an absolute line number in a file. Can be used with an argument; otherwise, it will prompt for
a line number. Same as <esc>G.

<ctrl-X>[ Go to matching C delimiter. For example, if the cursor is positioned under the character ‘{’, then
typing <ctrl-X>[ moves the cursor to the next ‘}’. Likewise, if the cursor is positioned under the
character }, then typing <ctrl-X>[ moves the cursor to the first preceding ‘{’. MicroEMACS recognizes
the delimiters [, ], {, }, (, ), /*, and */.

<ctrl-X>] Toggle reverse-video display of matching C delimiters. For example, if reverse-video displaying is
toggled on, then whenever the cursor is positioned under a ‘}’ MicroEMACS displays the first preceding
’{’ in reverse video (should it be on the screen). MicroEMACS recognizes the delimiters [, ], {, }, (, ), /*,
and */.

<esc>! Move the current line to the line within the window given by argument; the position is in lines from
the top if positive, in lines from the bottom if negative, and the center of the window if zero.

<esc>< Move to the beginning of the current buffer.

<esc>> Move to the end of the current buffer.

Killing and Deleting

<ctrl-D> (Delete) Delete next character.

<esc>D Kill the next word.
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<ctrl-H> If no argument, delete previous character. Otherwise, kill argument previous characters.

<ctrl-K> (Kill) With no argument, kill from current position to end of line; if at the end, kill the newline. With
argument set to one, kill from beginning of line to current position. Otherwise, kill argument lines
forward (if positive) or backward (if negative).

<ctrl-W> Kill text from current position to mark.

<ctrl-X><ctrl-O>
Kill blank lines at current position.

<ctrl-Y> (Yank back) Copy the kill buffer into text at the current position; set current position to the end of the
new text.

<esc><ctrl-H>
Kill the previous word.

<esc><DEL>
Kill the previous word.

<DEL> If no argument, delete the previous character. Otherwise, kill argument previous characters.

Windows

<ctrl-X>1 Display only the current window.

<ctrl-X>2 Split the current window into two windows. This command is usually followed by <ctrl-X>B or <ctrl-
X><ctrl-V>.

<ctrl-X>N (Next) Move to next window.

<ctrl-X>P (Previous) Move to previous window.

<ctrl-X>Z Enlarge the current window by argument lines.

<ctrl-X><ctrl-N>
Move text in current window down by argument lines.

<ctrl-X><ctrl-P>
Move text in current window up by argument lines.

<ctrl-X><ctrl-Z>
Shrink current window by argument lines.

Buffers

<ctrl-X>B (Buffer) Prompt for a buffer name, and display the buffer in the current window.

<ctrl-X>K (Kill) Prompt for a buffer name and delete it.

<ctrl-X><ctrl-B>
Display a window showing the change flag, size, buffer name, and file name of each buffer.

<ctrl-X><ctrl-F>
(File name) Prompt for a file name for current buffer.

<ctrl-X><ctrl-R>
(Read) Prompt for a file name, delete current buffer, and read the file.

<ctrl-X><ctrl-V>
(Visit) Prompt for a file name and display the file in the current window.

Saving Text and Exiting

<ctrl-X><ctrl-C>
Exit without saving text.

<ctrl-X><ctrl-S>
(Save) Save current buffer to the associated file.
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<ctrl-X><ctrl-W>
(Write) Prompt for a file name and write the current buffer to it.

<ctrl-Z> Save current buffer to associated file and exit.

Compilation Error Handling

<ctrl-X>> Move to next error.

<ctrl-X>< Move to previous error.

Search and Replace

<ctrl-R> (Reverse) Incremental search backward; a pattern is sought as each character is typed.

<esc>R (Reverse) Search toward the beginning of the file. Waits for entire pattern before search begins.

<ctrl-S> (Search) Incremental search forward; a pattern is sought as each character is typed.

<esc>S (Search) Search toward the end of the file. Waits for entire pattern before search begins.

<esc>% Search and replace. Prompt for two strings; then search for the first string and replace it with the
second.

<esc>/ Search for next occurrence of a string entered with the <esc>S or <esc>R commands; this remembers
whether the previous search had been forward or backward.

<esc>@ Toggle case sensitivity for searches. By default, searches are case insensitive.

Keyboard Macros

<ctrl-X>( Begin a macro definition. MicroEMACS collects everything typed until the next <ctrl-X>) for
subsequent repeated execution. <ctrl-G> breaks the definition.

<ctrl-X>) End a macro definition.

<ctrl-X>E (Execute) Execute the keyboard macro.

<ctrl-X>M Bind a newly created keyboard macro to a given keystroke or set of keystrokes.

Flexible Key Bindings

<ctrl-X>R Replace one binding with another.

<ctrl-X>X Rebind the prefix (meta) keys, and the multiple-execution key <ctrl-U>.

<ctrl-X>S Prompt for a file name, and write all flexible keybindings and macros into it. This command also
saves information about how you have configured MicroEMACS; for example, it notes whether you
have turned on word-wrapping.

<ctrl-X>L Prompt for a file name, and read all flexible keybindings and macros from it.

<ctrl-X>I Rebind current macro to the initialization macro.

By default, MicroEMACS checks for the existence of file $HOME/.emacs.rc and executes it if found. The -f option
lets you specify an alternate file of keybindings macros from the me command line. After loading the file,
MicroEMACS then executes the initialization macro, if one exists. For example, to load the keybindings file
bindings and edit file textfile, use the command:

me -f bindings textfile

Change Case of Text

<esc>C (Capitalize) Capitalize the next word.

<ctrl-X><ctrl-L>
(Lower) Convert all text from current position to mark into lower case.

<esc>L (Lower) Convert the next word to lower case.
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<ctrl-X><ctrl-U>
(Upper) Convert all text from current position to mark into upper case.

<esc>U (Upper) Convert the next word to upper case.

White Space

<ctrl-I> Insert a tab. Default behavior is to move the cursor to the nearest 8’s boundary; for example, if the
cursor is in the 62nd column on the screen, pressing <ctrl-I> moves it to column 64.

When used with a positive argument, change the behavior of the tab key. For example, <ctrl-
U>4<ctrl-I> commands MicroEMACS to insert enough spaces for a tab key to reach a four’s boundary.

When used with a negative argument, change the behavior of the tab character. For example, <ctrl-
U>-4<ctrl-I> says that a tab character on a file will take you to the nearest 4’s boundary. Thus, if you
have a file with tabs in it and you use ‘-4’, the appearance of the file on the screen will change; but if
you use ‘4’ the appearance of the file on the screen will not change.

To change the default size of a tab, set the environmental variable TABSIZE to a value other than
eight.

<ctrl-J> Insert a new line and indent to current level. This is often used in C programs to preserve the current
level of indentation.

<ctrl-M> (Return) If the following line is not empty, insert a new line; if empty, move to next line.

<ctrl-O> Open a blank line; that is, insert newline after the current position.

<tab> With argument, set tab fields at every argument characters. An argument of zero restores the default
of eight characters. Setting the tab to any character other than eight causes space characters to be
set in your file instead of tab characters.

Send Commands to Operating System

<ctrl-C> Suspend MicroEMACS and execute a subshell. Typing <ctrl-D> returns you to MicroEMACS and allows
you to resume editing.

<ctrl-X>! Prompt for a shell command and execute it.

These commands recognize the shell variable SHELL to determine the shell to which it should pass the command.

Setting the Mark

<ctrl-@> Set mark at current position.

<esc>. Set mark at current position.

Help Window

<ctrl-X>? Prompt for word for which information is needed.

<esc>? Search for word over which cursor is positioned.

<esc>2 Erase help window.

Miscellaneous

<ctrl-G> Abort a command.

<ctrl-L> Redraw the screen.

<ctrl-Q> (Quote) Insert the next character into text; used to insert control characters.

<esc>Q Quote a character by numeric value. When you type this command, MicroEMACS prompts you for a
numeric value, in decimal. It then inserts into your text the character whose value you type. This
command is useful when you wish to enter characters with the high bit set.

<ctrl-T> Transpose the characters before and after the current position.
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<ctrl-U> Specify a numeric argument, as described above.

<ctrl-U><ctrl-X><ctrl-C>
Abort editing and re-compilation. Use this command to abort editing and return to COHERENT when
you are using the -A option to the cc command.

<ctrl-X>H Use word-wrap on a region.

<ctrl-X>F Set word wrap to argument column. If argument is one, set word wrap to cursor’s current position.

<ctrl-X><ctrl-X>
Mark the current position, then jump to the previous setting of the mark. This is useful when moving
text from one place in a file to another.

Diagnostics
MicroEMACS prints error messages on the bottom line of the screen. It prints informational messages (enclosed in
square brackets ‘[’ and ‘]’ to distinguish them from error messages) in the same place.

MicroEMACS manipulates text in memory rather than in a file. The file on disk is not changed until you save the
edited text. MicroEMACS prints a warning and prompts you whenever a command would cause it to lose changed
text.

See Also
commands, ed, elvis, ex, sed, TERM, vi

Notes
Because MicroEMACS keeps text in memory, it does not work for extremely large files. It prints an error message if
a file is too large to edit. If this happens when you first invoke a file, you should exit from the editor immediately.
Otherwise, your file on disk will be truncated. If this happens in the middle of an editing session, however, delete
text until the message disappears, then save your file and exit. Due to the way MicroEMACS works, saving a file
after this error message has appeared will take more time than usual.

MicroEMACS is based upon the public domain editor by David G. Conroy.

mem — Device Driver
Physical memory file

The special file /dev/mem permits a program to read and write to the physical memory of the host computer, just
as it reads and writes into an ordinary file. The location where I/O will occur can be positioned to any valid byte
address by a call to lseek(). Note that ps and related commands use /dev/kmem, which manipulates the kernel’s
data space.

Commands may examine or change addresses in physical memory. Addresses to use when changing the system
itself normally are obtained from the system load module (/coherent) name list, so that they always reflect the
currently running version of the system.

Files
/dev/mem

See Also
clock, cmos, core, device drivers, lseek, ps

Diagnostics
On an error, such as nonexistent memory location, mem returns -1.

memccpy() — String Function (libc)
Copy a region of memory up to a set character
#include <string.h>
char *memccpy(dest, src, c, n)
char *dest, *src; unsigned int c, n;

memccpy() copies characters from src to dest, stopping when either it finds the first occurrence of character c or it
has copied n characters. Unlike the routines strcpy() and strncpy(), memcpy() copies from one region to another.
Therefore, it will not halt automatically when it encounters NUL.
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memccpy() returns a pointer to the first location after character c in dest, or NULL if character c was not found.

See Also
libc, memcpy(), strcpy(), strncpy(), string.h

Notes
memccpy() is not part of the ANSI Standard. Use of this library routine may restrict portability.

If dest and src overlap, the behavior of memccpy() is undefined. dest should point to enough reserved memory to
hold n bytes of data; otherwise, data corruption may result.

memchr() — String Function (libc)
Search a region of memory for a character
#include <string.h>
char *memchr(region, character, n)
char *region; int character; unsigned int n;

memchr() searches the first n characters in region for character. It returns the address of character if it is found, or
NULL if it is not.

Unlike the string-search function strchr(), memchr() searches a region of memory. Therefore, it does not stop
when it encounters a null character.

Example
The following example deals a random hand of cards from a standard deck of 52. The command line takes one
argument, which indicates the size of the hand you want dealt. It uses an algorithm published by Bob Floyd in the
September 1987 Communications of the ACM.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define DECK 52

main(argc, argv)
int argc; char *argv[];
{

char deck[DECK], *fp;
int deckp, n, j, t;

if(argc != 2 ||
52 < (n = atoi(argv[1])) ||
1 > n) {

printf("usage: memchr n # where 0 < n < 53\n");
exit(EXIT_FAILURE);

}

/* exercise rand() to make it more random */
srand((unsigned int)time(NULL));
for(j = 0; j < 100; j++)

rand();

deckp = 0;
/* Bob Floyd’s algorithm */
for(j = DECK - n; j < DECK; j++) {

t = rand() % (j + 1);
if((fp = memchr(deck, t, deckp)) != NULL)

*fp = (char)j;
deck[deckp++] = (char)t;

}

for(t = j = 0; j < deckp; j++) {
div_t card;
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card = div(deck[j], 13);
t += printf("%c%c ",

/* note useful string addressing */
"A23456789TJQK"[card.rem],
"HCDS"[card.quot]);

if(t > 50) {
t = 0;
putchar(’\n’);

}
}

putchar(’\n’);
return(EXIT_SUCCESS);

}

See Also
libc, strchr(), string.h
ANSI Standard, §7.11.5.1

memcmp() — String Function (libc)
Compare two regions
#include <string.h>
int memcmp(region1, region2, count)
char *region1; char *region2; unsigned int count;

memcmp() compares region1 with region2 character by character for count characters.

If every character in region1 is identical to its corresponding character in region2, then memcmp() returns zero. If
it finds that a character in region1 has a numeric value greater than that of the corresponding character in region2,
then it returns a number greater than zero. If it finds that a character in region1 has a numeric value less than
less that of the corresponding character in region2, then it returns a number less than zero.

For example, consider the following code:

char region1[13], region2[13];
strcpy(region1, "Hello, world");
strcpy(region2, "Hello, World");
memcmp(region1, region2, 12);

memcmp() scans through the two regions of memory, comparing region1[0] with region2[0], and so on, until it
finds two corresponding ‘‘slots’’ in the arrays whose contents differ. In the above example, this will occur when it
compares region1[7] (which contains ‘w’) with region2[7] (which contains ‘W’). It then compares the two letters to
see which stands first in the character table used in this implementation, and returns the appropriate value.

memcmp() differs from the string comparison routine strcmp() in a number of ways. First, memcmp() compares
regions of memory rather than strings; therefore, it does not stop when it encounters a NUL.

Also, you can use memcmp() to compare an int array with a char array, because memcmp() simply compares
areas of data.

See Also
libc, strcmp(), string.h
ANSI Standard, §7.11.4.1

memcpy() — String Function (libc)
Copy one region of memory into another
#include <string.h>
char *memcpy(region1, region2, n)
vaddr_t region1;
vaddr_t region2;
unsigned int n;

memcpy() copies n characters from region2 into region1. Unlike the routines strcpy() and strncpy(), memcpy()
copies from one region to another. Therefore, it will not halt automatically when it encounters NUL.
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memcpy() returns region1.

Example
The following example copies a structure and displays it.

#include <string.h>
#include <stdio.h>

struct stuff {
int a, b, c;

} x, y;

main()
{

x.a = 1;
/* this would stop strcpy or strncpy. */
x.b = 0;
x.c = 3;

/* y = x; would do the same */
memcpy(&y, &x, sizeof(y));
printf("a =%d, b =%d, c =%d\n", y.a, y.b, y.c);
return(EXIT_SUCCESS);

}

See Also
libc, strcpy(), string.h
ANSI Standard, §7.11.2.1

Notes
If region1 and region2 overlap, the behavior of memcpy() is undefined. region1 should point to enough reserved
memory to hold n bytes of data; otherwise, code or data will be overwritten.

memmove() — String Function (libc)
Copy region of memory into area it overlaps
#include <string.h>
char *memmove(region1, region2, count)
char *region1, char *region2, unsigned int count;

memmove() copies count characters from region2 into region1. Unlike memcpy(), memmove() correctly copies the
region pointed to by region2 into that pointed by region1 even if they overlap. To ‘‘correctly copy’’ means that the
overlap does not propagate, not that the moved data stay intact. Unlike the string-copying routines strcpy() and
strncpy(), memmove() continues to copy even if it encounters a NUL.

memmove() returns region1.

Example
The following example rotates a block of memory by one byte.

#include <string.h>
#include <stddef.h>
#include <stdio.h>

char *
rotate_left(region, len)
char *region; size_t len;
{

char sav;

sav = *region;
/* with memcpy this might propagate the last char */
memmove(region, region + 1, --len);
region[len] = sav;
return(region);

}
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char nums[] = "0123456789";
main(void)
{

printf(rotate_left(nums, strlen(nums)));
return(EXIT_SUCCESS);

}

See Also
libc, string.h
ANSI Standard, §7.11.2.2

Notes
region1 should point to enough reserved memory to hold the contents of region2. Otherwise, code or data will be
overwritten.

memok() — General Function (libc)
Test if the arena is corrupted
int
memok();

The library function memok() checks to see if the arena has been corrupted. It returns one if the arena is sound,
and zero if it has been corrupted.

Example
The following example purposely corrupts the arena, to demonstrate memok(). Please note that this is not a
recommended programming practice.

extern char *malloc();
main()
{

char *p;

p = malloc(2); /* get 2 bytes of memory */
printf("Arena is %s\n", memok() ? "OK" : "bad");
strcpy(p, "too long"); /* clobber memory */
printf("Arena is %s\n", memok() ? "OK" : "bad");

}

See Also
arena, calloc(), libc, malloc(), realloc()

memset() — String Function (libc)
Fill an area with a character
#include <string.h>
char *memset(buffer, character, n)
char *buffer; int character; unsigned int n;

memset() fills the first n bytes of the area pointed to by buffer with copies of character. It casts character to an
unsigned char before filling buffer with copies of it.

memset() returns the pointer buffer.

Example
The following example fills an area with ‘X’, and prints the result.

#include <stdio.h>
#include <string.h>
#define BUFSIZ 20

main()
{

char buffer[BUFSIZ];
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/* fill buffer with ’X’ */
memset(buffer, ’X’, BUFSIZ);

/* append null to end of buffer */
buffer[BUFSIZ-1] = ’\0’;

/* print the result */
printf("%s\n", buffer);
return(EXIT_SUCCESS);

}

See Also
libc, string.h
ANSI Standard, §7.11.6.1

mesg — Command
Permit/deny messages from other users
mesg [ny]

Normally, a user can communicate with other users by using the commands msg and write.

In certain situations, it is useful to suppress messages from other users. Therefore, COHERENT supplies the
command mesg, which, lets you permit or suppress messages from other users. The argument y allows messages,
whereas argument n disallows messages. With no argument, mesg tells you whether you can receive messages (as
yes or no) without changing the message state.

Files
/dev/*

See Also
commands, msg, write

Notes
The owner-execute mode bit of the user’s tty indicates whether messages are allowed.

min() — Multiple-Precision Mathematics (libmp)
Read multiple-precision integer from stdin
#include <mprec.h>
void min(a)
mint *a;

min() reads a multiple-precision integer (or mint) from the standard input and writes it at the address held by a.
The base of the mint is indicated by the value held in the external variable ibase.

min() accepts leading blanks and an optional leading minus sign; the number is terminated by the first non-legal
digit.

See Also
libmp

minit() — Multiple-Precision Mathematics (libmp)
Condition global or auto multiple-precision integer
#include <mprec.h>
void minit(a)
mint *a;

minit() helps to create a multiple-precision integer (or mint). If a new mint is declared to be global or automatic,
you must call minit() before using the variable. This prevents garbage values in the newly created mint structure
from causing chaos. A mint conditioned by minit() has no value; however, it may be used to receive the result of
an operation.

See Also
libmp
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minor number — Definition
Device numbering

A minor number specifies the device or type of device to use. COHERENT uses the minor number of a given device in
a driver-specific manner. For example, a hard-disk driver may use the minor number to select a disk drive and
partition.

Every COHERENT device has a device number associated with it. It is of type dev_t, as defined in <sys/types.h>.
The macro minor() in <sys/stat.h> extracts the minor number from a given device number.

See Also
device drivers, major number, stat.h

mintfr() — Multiple-Precision Mathematics (libmp)
Free a multiple-precision integer
#include <mprec.h>
void mintfr(a)
mint *a;

mintfr() frees the memory used by a mint.

See Also
libmp

mitom() — Multiple-Precision Mathematics (libmp)
Reinitialize a multiple-precision integer
#include <mprec.h>
void mitom(n, a)
mint *a; int n;

mitom() reinitializes the existing multiple-precision integer (or mint) pointed to by a to n.

See Also
libmp

mkdbm — Command
Build a data base for smail
/usr/lib/mail/mkdbm [-d] [-f] [-n] [-o output-file] [-v] [-y] [file ...]

The command mkdbm generates a data base for smail.

It forms the data key from the characters up to, but not including, a colon (‘:’) or white-space character. The data
after the colon or white-space character forms the value associated with the key. You can use mkdbm to produce
data-base files that can then be read by a smail router pathalias or its director alias-file. By default, the router
and director are configured to use the DBM file-access protocol. (For information on routers and directors, see the
Lexicon entries for routers and directors.)

For some data bases, you can use mkline to form single-line records whose comments and extra white space are
removed. The generated data base contains a single NUL character at the end of each key and value. It also
generates a single record that contains a ‘@’ as a key and value; it does so for compatibility with the Berkeley
sendmail command’s alias files.

mkdbm recognizes the following command-line options:

-d Suppress writing the extra ‘@’ record.

-f Fold the key to lower case before storing it within the data base.

-n Suppress writing a NUL character at the end of each line. Please note that this option is incompatible with
smail’s method of accessing the data-base file.
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-o output-file
Write output into output-file. This option also sets the name for the data base. If you do not use this option,
mkdbm names the output data base after its first file argument. If, in addition, the command line does not
name an input file, mkmf names the output file dbm.

-v Write statistics to the standard output.

-y Create an output file that is compatible with the Sun Yellow Pages (YP) system. This obviates the need for
keeping a copy of sendmail on your system to maintain a YP-alias data base.

If its command line does not name an input file, mkdbm reads the standard input. mkdbm also reads the
standard input if a file is named ‘-’; in this way, it can mix data read from the standard input with material read
from files.

Calling mkdbm with the arguments -ynd generates a data base that is compatible with regular YP data bases.
Using just the argument -y generates a data base that is compatible with the YP mail.alias data base.

As it creates the data base, mkdbm builds temporary files in the same directory in which it eventually builds the
output files. When it has completed its work, mkdbm removes all data-base files that have the target name, sleeps
for one or two seconds, then moves the newly written temporary data-base files to the target names. This method
of writing a data-base is not compatible with the locking method used by Berkeley command sendmail.

Example
As an example of the use of mkdbm consider a file named paths, which contains the routing information:

.COM sun!%s
Stargate.COM ames!cmcl2!uiucdcs!stargate!%s
ames ames!%s
.ATT.COM mtune!%s
mtune mtune!%s

Given this file, the command

mkdbm -f paths

produces a data base in the files paths.pag and paths.dir that contains the above entries but with the keys shifted
into lower case. For example, one entry will contain the key stargate.com with an associated value of:

ames!cmcl2!uiucdcs!stargate!%s

Files
dbmXXXXXX.pag
dbmXXXXXX.dir

Temporary files, created in the same directory as the output files.

See Also
commands, libgdbm, mail [overview], mkline, pathalias, smail

Notes
Copyright  1987, 1988 Ronald S. Karr and Landon Curt Noll. Copyright  1992 Ronald S. Karr.

mkdbm is part of the smail package. For a full copyright statement, see file COPYING, which is included with
source code to smail, or type smail -bc to see the distribution rights and restrictions associated with this software.

mkdir — Command
Create a directory
mkdir [ -rp ] directory

mkdir creates directory. Files or directories with the same name as directory must not already exist. directory will
be empty except for the entries ‘.’, the directory’s link to itself, and ‘..’, its link to its parent directory.

Option -r creates directories recursively. For example, the command

mkdir -r /foo/bar/baz

creates directory foo in /; then creates directory bar in the newly created directory foo; and finally creates directory
baz in the newly created directory bar.
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Option -p behaves exactly the same as -r. COHERENT includes it for use by scripts imported from other operating
systems.

See Also
commands, mkdir(), rmdir

Diagnostics
mkdir fails and prints an error message if you do not have permission to write into directory in which you are
attempting to create a new directory or if the directory in which you attempted to create a new directory does not
exist.

mkdir() — System Call (libc)
Create a directory
#include <sys/types.h>
#include <sys/stat.h>
int mkdir(path, mode)
char *path;
int mode;

The COHERENT system call mkdir() creates the directory specified by path and gives it the file mode specified by
mode. If path is relative (that is, it doesn’t begin with a ‘/’ character), mkdir() creates the directory relates to the
current directory of the process that calls mkdir(). If path is absolute (i.e., begins with a ‘/’), path specifies a
directory to be created relative to the root directory for this process. See Lexicon article chroot() for details. If path
specifies more than one directory level, all parent names specified must exist, must be accessible by the calling
process, and actually must be directories.

Argument mode is formed by logically OR’ing permissions constants found in header file <sys/stat.h>. These
constants begin with S_ and determine the permissions for the directory. See the Lexicon article stat.h for details.

If the directory is successfully created, mkdir() returns zero. If an error occurs, mkdir() returns -1 and sets errno
to an appropriate value.

See Also
libc, mkdir, rmdir, rmdir(), stat.h
POSIX Standard, §5.4.1

mkfifo() — System Call (libc)
Create a FIFO
#include <sys/types.h>
#include <unistd.h>
int mkfifo(path, mode)
const char *path; mode_t mode;

mkfifo() calls mknod() to create a FIFO. path points to the full path name of the FIFO to create. mode gives the
mode into which the FIFO is to be opened. mkfifo() ignores the bits in mode other than the file-permission bits.
The file permission bits of mode are modified by the process’s file-creation mask; for details, see the Lexicon entry
for umask().

mkfifo() sets the ownership of the file FIFO’s to the process’s effective user identifier, and sets the FIFO’s group
identifier to the process’s effective group identifier.

If all goes well, mkfifo() returns zero. If an error occurs, it returns -1 and sets errno to an appropriate value.

See Also
libc, libsocket, named pipe, pipe(), unistd.h
POSIX Standard, §5.4.2

mkfnames — Command
Generate data base of user names
/usr/bin/mkfnames [namefile ...]

The script mkfnames generates a data base of users’ names and addresses. It reads the contents of namefile,
which contains each user’s names and her e-mail address; invokes the command nptx to generate permutations of
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the users’ names; then sorts the output of nptx and writes the sorted output onto the standard output. If no
namefile is named on the command line, mkfnames reads the file /etc/passwd, and parses its contents into the
form required by command nptx.

mkfnames is usually used to generate the file /usr/lib/mail/fullnames, which the mail system uses to translate a
person’s name into her e-mail address. If more than one login account has the same part of a name (i.e., the same
last name), the first login name in alphabetical order will be used.

See Also
commands, mail [overview], nptx, smail

mkfs — Command
Make a new file system
/etc/mkfs [-b boot] [-d] [-f name] [-i inodes] [-m arg] [-n arg] [-p pack] filesystem proto

mkfs makes a new file system. filesystem names the file (normally a block special file) where the new file system
will reside. The contents of the newly created file system are described in proto. proto can be either a number or a
file name.

If proto is a number, mkfs creates an empty file system (containing only a root directory) of the size in blocks given
by proto. The number of i-nodes is calculated as a percentage of this number. The command

/etc/mkfs /dev/fha0 2400

creates a file system on a high-density, 5.25-inch diskette in drive 0. If the disk is a high-density, 3.5-inch
diskette, use the command:

/etc/mkfs /dev/fva0 2880

If proto is a file name, however, the contents of that file will be used as a prototype for modeling the new file
system. This prototype file must be laid out in the following manner:

bootstrap_file_name file_system_name device_name
no._of_blocks no._of_i-nodes n m
%b XX XX XX
...
directory_name

directory_name mode user_id group_id contents
...
$

$

Each line is described below.

The first line has three fields. Field 1, bootstrap_file_name, contains the name of a file that holds the boot strap,
which must fit into block 0 of the disk. Field 2, file_system_name, gives the name of the file system; and field 3,
device_name, gives the name of file system’s physical device (for example, /dev/hd1). Only the first six characters
in field 2 and the first 11 in field 3 are significant; all characters after them are ignored.

The second line contains four fields. Field 1, no._of_blocks, gives the size of the file system in blocks; field 2,
no_of_i-nodes, gives the number of i-nodes in the file system. Because each file or directory requires one i-node,
this number represents the limit on the number of files that may be created in the file system. A ratio of seven
blocks per i-node generally works well.

Fields 3 and 4 control free list interleaving on your disk. n is the size of a ‘‘virtual cylinder’’: fsck allocates all the
blocks on one virtual cylinder before it advances to the next virtual cylinder. The value of n must be less than or
equal to 255, and should evenly divide the actual size of a cylinder on the device. m tells the system how many
blocks to skip each time it increments a free list block number, i.e., the free list ‘‘interleave’’; n mod m must be
zero. Choosing an optimal interleave value may improve system performance for the device. The optimal values for
n and m are hardware-specific and can be determined by experimentation.

Next, the third line and following begin with %b. These list the bad blocks on your storage device. One or more
block numbers may appear on each line, separated by white space. These blocks are allocated to the bad block file
(i-node 1).

The remaining lines in the proto file define the names, modes, and contents of the directories and files in the file
system. These lines are divided into fields separated by white space (blanks or tabs) as follows:
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• The first field names the file or directory to be created. This field is missing on the first line, which describes
the root directory of the file system.

• The second field describes the mode of the file, which is six characters long. The first character gives the file
type, that is, whether the file is ordinary (‘-’), directory (‘d’), block special (‘b’), or character special (‘c’). The
second character is ‘u’ for set user id on execution, and ‘-’ otherwise. The third character is ‘g’ for set group
id on execution, and ‘-’ otherwise. Characters 4 through 6 specify permissions in octal; for example, 644
specifies read and write permission for the owner, read permission for other users from the same group, and
read permission for users from other groups.
If the above file type were a directory, subsequent files are recursively defined under that directory, until the
current level of directory is terminated by a line containing a ‘$’ character.

• The next two fields specify the owner’s numerical user id and group id.

• The last field describes file contents. For a directory, it is not needed. For an ordinary file, it is the name of a
COHERENT file that will be copied into the newly created file. For block or character-special files, there are two
fields that specify the numbers of the major and minor devices.

Finally, each directory’s description and the entire proto file must terminate with dollar signs ‘$’.

The proto file need not contain all of the above fields. However, it must contain the name of the boot block (line 1),
the number of blocks and the number of i-nodes (line 2), the list of bad blocks, the name of at least one directory,
and the dollar sign that ends the file.

Command-line Options
mkfs recognizes the following command-line options:

-b boot
Specifies the file to use as the ‘‘bootstrap’’ for the file system.

-d Preserve file dates and times on the new file system.

-f name
Label the file system with the given name. name must be less than seven characters in length.

-i inodes
Use inodes as the number of inodes for the file system.

-m arg
Set the number of blocks to skip when incrementing virtual block number. This is the same as the m option
as set on line 2 of the prototype file. You can use this option if you choose not to use a prototype file.

-n arg
Set the size of a ‘‘virtual cylinder’’. This is the same as the n option as set on line 2 of the prototype file. You
can use this option if you choose not to use a prototype file.

-p pack
Set the file system ‘‘pack name’’ to pack. pack must be less than seven characters in length.

Example
The following example specifies a proto file for a high-density, 5.25-inch floppy disk; note that this floppy disk is
faulty and contains a number of bad blocks:
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/conf/boot.fha
2400 100
%b 55
%b 185 86
d--755 3 1

coherent ---644 3 1 /coherent
tmp d--777 3 1
$
bin d--755 3 1

mail -u-755 0 1 /bin/mail
$
dev d--755 3 1

tty30 c--644 0 1 3 0
tty35 c--644 0 1 3 5
mt0 b--600 0 1 12 0

$
$

You can use the command badscan to draw up the list of bad blocks on your disk and create a skeleton proto file.

See Also
badscan, chmod, commands, fsck, mount, restor

Notes
When the command fsck checks a file system, it stores files that it cannot decypher into directory lost+found.
However, fsck cannot modify a file system during its work. This rule was adopted to prevent fsck from attempting
to modify a corrupt file system, and so making matters worse. However, this means that (among other things) fsck
cannot change the size of directory lost+found. Thus, if more files are detached from the file system than
lost+found can hold, fsck must delete them outright. If your newly created file system will hold a large number of
transient files (e.g., a news system), you should increase the size of lost+found so that it has a fighting chance of
holding all detached files that fsck finds. For example, the following script expands /lost+found so it can hold up
to 500 files:

su root
for i in `from 1 to 500`
do

touch /lost+found/$i
done
rm /lost+found/*

Run this script for each file system whose lost+found directory you wish to expand. For example, if you have a file
system mount on directory /u, run this script for directory /u/lost+found instead of for /lost+found.

mkhpath — Command
Build a pathalias data base from a hosts table
/usr/lib/mail/mkhostpath [-d] [-c cost] [-g gateway] [-n netname] [ - | filename ]

The script mkhpath reads a hosts table and constructs routes to that network. filename holds the hosts table; if it
is ‘-’, mkhpath reads the standard input. If the command line does not name a filename, mkhpath reads file
/etc/hosts.

mkhpath assumes its input to be in the format of the data-base file /etc/hosts. It ignores the first field (Internet
address) and any domain-based name (any field containing a ‘.’). It also ignores the hosts localhost and loghost,
and all comment lines (those that begin with a ‘#’).

mkhpath recognizes the following command-line options:

-c cost Set the cost of accessing the gateway to be cost. cost can be any cost expression recognized by the
command pathalias. mkhpath ignores this option if you do not also use option -n.

-d Print a line only if it contains a domain host name. This is useful for ignoring test lines.

-g gateway
Make gateway the gateway to the hosts.
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-n netname
Form a network map instead a list of path aliases, and name the network netname. If you do not use this
option, mkhpath assumes that your local host is within the network, and therefore inserts your local host
into the network list. It also assumes that the cost of routes within the network is LOCAL, unless you use
option -c to set the cost of the routes explicitly.

By default, mkhpath builds the route table in the same format as that generated by command pathalias with its
option -i. Flag -n overrides this default.

If you use neither option -g nor -n, mkhpath constructs direct routes from your local host to each remote host.

If you use option -g but do not use option -n, mkhpath prefixes every route to the network (except for the route to
the gateway) with the route gateway!.

If you use the option -n, mkhostpath builds a pathalias map to the network this option names. The format of the
map depends on whether you also use option -g.

If you use both options -g and -n, mkhpath establishes the route from your local host to gateway, and inserts the
gateway into the network list. It does not add your local host to the network list, even if it appears as a site within
the hosts table. It sets the cost of the link between your local host and the gateway is LOCAL; you can override
this by using option -c. It fixes at LOCAL the cost of routes inside the network; this is not affected by the option -c.

See Also
commands, hosts, mail [overview], smail

Notes
Please note that because COHERENT does not yet support networking, this command is never used.

mkline — Command
Fold an alias file, paths file, or mailing list into one-line records
/usr/lib/mail/mkline [-ltn] [file ... ]

Command mkline takes alias file, path file, or mailing-list file as input, and generates output records that contain
one complete entry per line, and removes all comments and white space.

mkline recognizes the following command-line options:

-l Generate a list of addresses. Use this to generate a mailing list. If you use this option, mkline ignores
options -n and -t.

-n Do not extract keys from the input. mkline passes all token through unchanged, although it still removes all
comments and as much white space as it can without creating ambiguous output.

-t Separate the key from the data with a single tab character. The default is to use a colon ‘:’.

If its command line does not name an input file, mkdbm reads the standard input. mkline also reads the
standard input if a file is named ‘-’; in this way, it can mix data read from the standard input with material read
from files.

Examples
Consider the following alias file:

Postmaster:hustead # Ted Hustead, jr.
UUCP-Postmasters: tron, chongo # namei contacts
yamato # kremvax contact
tron: tron@namei.uucp (Ronald S. Karr)
yamato: yamato@kremvax.ussr.comm (Yamato T. Yankelovich)
chongo: chongo@eek.uts.amdahl.com (Landon Curt Noll)

When it reads this file, mkline generates:

Postmaster:hustead
UUCP-Postmasters:tron,chongo yamato
tron:tron@namei.uucp
yamato:yamato@kremvax.ussr.comm
chongo:chongo@eek.uts.amdahl.com
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As an example of using mkline to compress mailing lists, consider the mailing list:

tron@namei.uucp,tron@uts.amdahl.com # Ronald S. Karr
yamato@kremvax.ussr.comm # Yamato T. Yankelovich
chongo@eek.uts.amdahl.com # Landon Curt Noll
Wilt . (the Stilt) Chamberlain@NBA.US # RFC822 doc example

The command mkline -l generates the following:

tron@namei.uucp
tron@uts.amdahl.com
yamato@kremvax.ussr.comm
chongo@eek.uts.amdahl.com
Wilt.Chamberlain@NBA.US

See Also
commands, mail [overview], mkdbm, mksort, pathalias, smail

Notes
mkline leaves one space character if the concatenation of two tokens would otherwise cause ambiguity.

mkline frequently is used with the command mksort. For an example of using these commands together, see the
Lexicon entry for mksort.

Copyright  1987, 1988 Ronald S. Karr and Landon Curt Noll. Copyright  1992 Ronald S. Karr.

mkdbm is part of the smail package. For a full copyright statement, see file COPYING, which is included with
source code to smail, or type smail -bc to see the distribution rights and restrictions associated with this software.

mklost+found — Command
Make an enlarged lost+found directory
/etc/mklost+found directory [slots]

When the command fsck checks your file system, it copies all ‘‘orphaned’’ files into directory lost+found in the root
directory of the file system being checked. Normally, this works well; however, if a great number of files are
orphaned, directory lost+found may not be able to hold them all. This is because a directory is itself a file that
holds information about the files it contains; normally, COHERENT expands the size of a directory file when it needs
more space to hold files, but because fsck is forbidden to modify any file, it cannot enlarge lost+found. Thus,
orphaned files that cannot be copied into lost+found are deleted.

Script mklost+found lets you build an enlarged lost+found directory within directory. It initializes the lost+found
directory to be able to hold slots files. If you do not specify how many files you want lost+found to be able to hold,
mklost+found initializes it to hold 250 files.

Example
The following command creates a lost+found directory that can hold 1,000 files for the file system that is mounted
on directory /news:

/etc/mklost+found /news 1000

See Also
commands, fsck

Notes
Only the superuser root can run this script.

mknod — Command
Make a special file or named pipe
/etc/mknod [ -f ] filename type major minor
/etc/mknod [ -f ] filename p

In the first form, mknod creates a special file, which provides access to a device by the filename specified. Special
files are conventionally stored in the /dev directory.

type can be either ‘b’ (for block-special file) or ‘c’ (for character-special file). Block-special files tend to be devices
such as disks or magnetic tape, upon which COHERENT uses an elaborate buffering strategy. Character-special

LEXICON

mklost+found — mknod 907



files are unstructured (character at a time) devices such as terminals, line printers, or communications devices.
Character-special files may also be random-access devices; this circumvents system buffering, allowing transfers of
arbitrary size directly between the user and the hardware.

The major device number uniquely identifies a device driver to COHERENT. The minor device number is a parameter
interpreted by the driver; it might specify the channel of a multiplexor or the unit number of a drive.

The caller must be the superuser.

In the second form, mknod creates a named pipe with the given filename. Named pipes can be used for
communication between processes.

The -f option to mknod forces the creation of a new node, even if one of the same name already exists.

Files
/dev/*

See Also
commands, mount

mknod() — System Call (libc)
Create a special file
#include <sys/ino.h>
#include <sys/stat.h>
mknod(name, mode, addr)
char *name; int mode, addr;

mknod() is the COHERENT system call that creates a special file. A special file is one through which a device is
accessed, or a named pipe.

mode gives the type of special file to be created. It can be set to IFBLK, for a block-special device, such as a disk
driver; to IFCHR, for a character-special device, such as a serial-port driver; to IFDIR, for a directory; or to IFPIPE,
for a named pipe. mode also contains permission mode bits.

address is a parameter interpreted by the driver; it might specify the channel of a multiplexor or the unit number
of a drive. Note that this is not used with named pipes.

If all goes well, mknod() returns zero. If an error occurs, it returns a negative value and sets errno to an
appropriate value.

See Also
libc, device drivers, named pipe, pipe()

Notes
Only the superuser root can use mknod(). This is a security feature.

mkpath — Command
Create a pathalias output file
/usr/lib/mail/mkpath [-v] [-V] [-x] [-e] [-n] \

[-t trace] [path_config]

The script mkpath is a wrapper for the command pathalias, which generates a set of paths among computers.

File path_config holds the data that are passed to pathalias; if it is set to ‘-’, then pathalias reads the standard
input. If no path_config is named on the command line, mkpath by default uses file
/usr/lib/mail/maps/mkpath.conf.

mkpath recognizes the following command-line options:

-e Tell mkpath to stop when it encounters a syntax error, or if a command that it invokes exits with a non-zero
status.

-n Disable the execution of any commands useful with the Bourne shell’s option -v, and disables its own options
-e, -t, -V, and -x.
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-t tracefile
Copy into tracefile all data passed to pathalias.

-V Invoke command pathalias with its option -v.

-v Verbose mode. Its commands are executed with the Bourne shell’s option -v, which echoes each command as
it is read.

-x Verbose mode. Its commands are executed with the Bourne shell’s option -x, which echoes each command as
it is executed.

See Also
commands, mail [overview], pathalias, smail

mksort — Command
Sort the standard input, allowing arbitrarily long lines
/usr/lib/mail/mksort [ -f ] [ file ... ]

The command mksort reads lines of text, sorts them by the first field in each line, then writes them to the
standard output. It usually is used by system administrators to help prepare the data files used by smail. Unlike
the COHERENT command sort, mksort can read and process an arbitrarily long line of text.

The first field within a line of input is delimited either by a white-space character or a colon ‘:’. A line can be of any
length, as long as the entire input can be stored in memory. Command-lind option -f (for ‘‘fold’’) tells mksort to
ignore case when it sorts its input; with this option, the letter ‘A’ equals the letter ‘a’, and ‘a’ is always less than ‘B’.

If its command line does not name an input file, mksort reads the standard input. A file name of ‘-’ indicates the
standard input; this permits mksort to mingle the contents of one or more files with what it reads from the
standard input.

Example
The following example demonstrates how to use mksort with mkline. Consider file aliases, which contains the
following aliasing information:

Postmaster:hustead # Ted Hustead, jr.
UUCP-Postmasters: tron, chongo # namei contacts

yamato # kremvax contact
tron: tron@namei.uucp (Ronald S. Karr)
yamato: yamato@kremvax.ussr.comm (Yamato T. Yankelovich)
chongo: chongo@eek.uts.amdahl.com (Landon Curt Noll)

Given this file, the command

mkline aliases | mksort -f

yields:

chongo:chongo@eek.uts.amdahl.com
Postmaster:hustead
tron:tron@namei.uucp
UUCP-Postmasters:tron,chongo yamato
yamato:yamato@kremvax.ussr.comm

See Also
commands, mail [overview], mkline, mkdbm, pathalias, smail

Notes
This command is not used by COHERENT’s implementation of smail.

Copyright  1987, 1988 Ronald S. Karr and Landon Curt Noll. Copyright  1992 Ronald S. Karr.

For details on the distribution rights and restrictions associated with this software, see file COPYING, which is
included with the source code to the smail system; or type the command: smail -bc.
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mktemp() — General Function (libc)
Generate a temporary file name
char *mktemp(pattern) char *pattern;

mktemp() generates a unique file name. It can be used, for example, to name intermediate data files. pattern
must consist of a string with six X’s at the end. mktemp replaces these X’s with the five-digit process id of the
requesting process and a letter that is changed for each subsequent call. mktemp returns pattern. For example,
the call

char template[] = "/tmp/sortXXXXXX";
mktemp(template);

might return the name /tmp/sort01234a.

It is normal practice to write temporary files into the directory /tmp. The start of the file name identifies the
originator of the file.

See Also
libc

Notes
Because mktemp() writes on the argument template, passing it a quoted string causes a segmentation violation.
To avoid this, either compile the module that contains the call to mktemp() with the compiler option -VPSTR (to
put the quoted string into segment .data rather than into segment .text) or, preferably, move the string into the
data segment. For example, use

char template[] = "/tmp/sortXXXXXX";
mktemp(template);

rather than:

mktemp("/tmp/sortXXXXXX");

mktime() — Time Function (libc)
Turn broken-down time into calendar time
#include <time.h>
time_t mktime(timeptr)
struct tm *timeptr;

mktime() reads broken-down time from the structure pointed to by timeptr and converts it into calendar time of
the type time_t. It does the opposite of the functions localtime() and gmtime(), which turn calendar time into
broken-down time.

mktime() manipulates the structure tm as follows:

1. It reads the contents of the structure, but ignores the fields tm_wday and tm_yday.

2. The original values of the other fields within the tm structure are not restricted. This allows you, for example,
to increment the member tm_hour to discover the calendar time one hour hence, even if that forces the value
of tm_hour to be greater than 23, its normal limit.

3. When calculation is completed, the values of the fields within the tm structure are reset to within their
normal limits to conform to the newly calculated calendar time. The value of tm_mday is not set until after
the values of tm_mon and tm_year.

4. The calendar time is returned.

If the calendar time cannot be calculated, mktime returns -1 cast to time_t.

Example
This example gets the date from the user and writes it into a tm structure.
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#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define BAD_TIME ((time_t)-1)

/* ask for a number and return it. */
int askint(msg)
char *msg;
{

char buf[20];

printf("Enter %s ", msg);
fflush(stdout);

if(gets(buf) == NULL)
exit(EXIT_SUCCESS);

return(atoi(buf));
}

main()
{

struct tm t;

for(;;) {
t.tm_mon = askint("month") - 1;
t.tm_mday = askint("day");
t.tm_year = askint("year") - 1900;
t.tm_hour = t.tm_min = t.tm_sec = 1;

if(BAD_TIME == mktime(&t)) {
printf("Invalid date\n");
continue;

}

printf("Day of week is %d\n", t.tm_wday);
break;

}
return(EXIT_SUCCESS);

}

See Also
clock(), difftime(), libc, time [overview]
ANSI Standard, §7.12.2.3
POSIX Standard, §8.1

Notes
The above description may appear to be needlessly complex. However, the Committee intended that mktime() be
used to implement a portable mechanism for determining time and for controlling time-dependent loops. This
function is needed because not every environment describes time internally as a multiple of a known time unit.

MLP_COPIES — Environmental Variable
Set default number of copies to print

When the command lp spools a job for printing, it reads the environmental variable MLP_COPIES to find how
many copies are to be printed. The default is one copy; the maximum is 99.

See Also
environmental variables, lp, lpadmin, lpsched, printer

MLP_FORMLEN — Environmental Variable
Set default page length

When the command lp spools a job for printing, it reads the environmental variable MLP_FORMLEN to find the
length, in lines, of the form on which the job is to be printed. In the United States, a line is defined to be one pica
high (that is, one sixth of an inch). The default is length 66 lines (11 inches). (NB, the COHERENT command units
gives a handy way to convert from picas or inches into metric units.)
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The printer daemon lpsched uses this information to help it count pages of input — so you can specify the range of
pages that it should print. Unfortunately, lpsched identifies a page by counting lines of input, so this feature
works only it prints ‘‘straight’’ text. It does not work correctly with ‘‘cooked’’ input, such as files of PostScript or
PCL.

See Also
environmental variables, lp, lpadmin, printer

MLP_LIFE — Environmental Variable
Set default life for print jobs

When the command lp spools a job for printing, it reads the environmental variable MLP_LIFE to set the job’s ‘‘life
expectancy’’. MLP_LIFE must be one of the following:

T Temporary: live in the queue for two hours.

S Short-term: live in the queue for 48 hours.

L Long-term: live in the queue for 72 hours.

The default life expectancy is S.

To change the default values for life-expectancies, edit the file /usr/spool/mlp/control. For details, see the
Lexicon article controls.

See Also
environmental variables, lp, lpadmin, printer

MLP_PRIORITY — Environmental Variable
Set default priority for print spooling

When the command lp spools a job for printing, it reads the environmental variable MLP_PRIORITY to find what
priority it is to give the job. MLP_PRIORITY must a numeral, from 0 to 9: 0 assigns highest priority, 9 lowest.
The default priority is 2.

See Also
environmental variables, lp, lpadmin, printer

MLP_SPOOL — Environmental Variable
Pass user-specific information to print spooler

When the command lp spools a job for printing, it reads the environmental variable MLP_SPOOL to find user-
specific information for this job. MLP_SPOOL must have the following layout:

Offset Length Description
0 10 Type of document (user-specific)
10 3 Page length, lines per page (default, 66)
13 14 Name of data base (user-specific)
28 14 Name of program (user-specific)
42 60 Title (user-specific)

With the exception of page length, lp uses none of these fields itself; rather, it makes them available to whatever
program the user (or system administrator) has selected to process text before it is printed.

See Also
environmental variables, lp, lpadmin, printer

mmu.h — Header File
Definitions for memory-management unit
#include <sys/mmu.h>

The header file mmu.h defines functions that manipulate the memory-management unit (MMU) of the Intel 80X86
family of microprocessors.

LEXICON

912 MLP_LIFE — mmu.h



See Also
header files

mneg() — Multiple-Precision Mathematics (libmp)
Negate multiple-precision integer
#include <mprec.h>
void mneg(a, b)
mint *a, *b;

mneg() negates the value of the multiple-precision integer (or mint) pointed to by a, and writes the result into the
mint pointed to by b.

See Also
libmp

mnttab — System Administration
Mount table
/etc/mnttab

File /etc/mnttab holds the COHERENT system’s mount table. It consists of an array of type mnttab, which is
defined in header file mnttab.h.

See Also
Administering COHERENT, mnttab

mnttab.h — Header File
Structure for mount table
#include <mnttab.h>

mnttab.h defines the structure for the mount table maintained by the functions /etc/mount and /etc/umount.

File /etc/mnttab is an array of these structures.

See Also
header files, mount, umount

modem — Technical Information
The word modem is an abbreviation for ‘‘modulation/demodulation device’’. With the COHERENT system, you can
attach a modem to your computer either to dial out for remote communication, to let others dial into your
COHERENT system, or both. With your modem, too, you can use COHERENT’s UUCP commands to exchange mail
and files with remote sites automatically, and to download news and files from networks.

This article gives a summary of how to connect your modem to your computer, describe it to the COHERENT
system, and set it up for UUCP connections. It also discusses some problems that may crop up when you attempt
to use your modem.

Internal vs. External Modems
You can use internal and external modems with COHERENT. You must plug an external modem into a serial port
on your system, whereas you must jumper an internal modem to use one of your system’s COM ports. Be sure to
use a COM port that is not already used on your system, or problems will result. See the Lexicon entry for asy for
details on how COHERENT handles COM ports.

It is more difficult to diagnose problems with an internal modem because you have no status lights to indicate
operation; otherwise, they operate almost identically. The rest of this article assumes that you are working with an
external modem.

Plugging in an External Modem
A modem must be hooked up to a serial port on your computer. To plug your modem into the computer, simply
take a normal serial-port cable, one with an RS-232 plug of the appropriate gender at each end, plug one end into
your modem and the other into the serial port you wish to use. The Lexicon article RS-232 describes the wiring of
the RS-232 plug in detail; but if you are not skilled with a soldering iron, you are well advised simply to purchase a
cable from your local electronics store and be done with it.
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Serial Ports
The COHERENT system supports up to four serial ports; the devices for these are named /dev/com1r through
/dev/com4r. If you are not sure which port you have plugged your modem into, perform the following test: First,
turn on the modem. Then, type the following command:

echo FOO >/dev/com1l

If the TX light on the modem blinks, then you know the modem is plugged into com1. If it does not, try the
command again for /dev/com2l, and so on through com4l until you find the appropriate port. If no command
works, check the wiring on your cable and make sure that the plugs are securely inserted.

Edit /etc/ttys
If you intend to use your modem with UUCP, you must edit file /etc/ttys to tell COHERENT how you want it to
handle that serial port. You must know (1) whether you want the port enabled or disabled; (2) the baud rate of the
port (as set by your modem); and (3) the name of the port (which you just determined).

If a port is enabled, remote users can log into the system, either via a terminal directly plugged into the port or via
a modem. COHERENT sends a login prompt to every enabled port. The COHERENT system also restricts
permissions on all enabled serial ports, so that only the superuser root can read and write to the port. This
prevents other users who may be using the system from accessing the serial port. If a port is disabled, you can
dial out or use a direct-connect UUCP connection via that disabled port. To dial out on an enabled port, you must
first use the command disable to disable the port. When you have finished dialing out, run the command enable
to re-enable the port. (Note that UUCP automatically disables and re-enables a port when it dials out to poll a
remote system.) Before you can use these commands with a port, the port must first be described in the file
/etc/ttys.

See the Lexicon article on ttys for details on how to edit this file. Note that a modem is a remote device, and must
be so described in /etc/ttys, or it will not work correctly.

After you have made your changes, type the command

kill quit 1

to make COHERENT re-read /etc/ttys and implement your changes.

Remote-Access Passwords
If you intend to let people dial into your computer, you are well advised to set the remote-access password. This
will require that people who dial in know a special password in addition to whatever password their personal
account may have.

If you wish, you can set a different remote-access password for each group of users who log into your system, as
organized by the program invoked upon logging in. For example, you can give one password to the users who log
in and invoke uucico; and another to the users who log in and use the interactive shells ksh or sh. For details on
how to do this, see the Lexicon entries for d_passwd and dialups.

Edit /usr/lib/uucp/dial
Once you have edited file /etc/ttys and have set the remote-access password, check the file /usr/lib/uucp/dial
and see if it holds a description that matches your modem. The commands cu and uucico read the descriptions in
dial to control how they talk to modems. dial already contains descriptions for many commonly used modems; but
you may find that you must edit an existing entry to match your modem’s features exactly; for example, the
existing entry may assume that you have a Touch-Tone telephone whereas you actually have a pulse telephone.
The Lexicon entry on dial will walk you through this process.

When you have completed editing this entry, write it down, for you will need to insert it elsewhere.

Edit Port
If you intend to use your modem with UUCP, you must insert an entry for it into your the file /usr/lib/uucp/port.
This file links a modem, as described in file /usr/lib/uucp/dial, with a port on your system. This arrangement
permits UUCP to use one description with several modems of the same type, each plugged into a different port.

See the Lexicon entry port for details.

Walking Through UUCP Configuration
The following description walks you through the task of configuring your modem to handle UUCP. It is adapted
from a posting to comp.os.coherent by Rob Schofield (schofld@mebv.mhs.compuserve.com).

LEXICON

914 modem



First, decide whether you want outsiders (including outside UUCP sites) to log into your COHERENT system. If you
do, then you must add to file /etc/ttys the name the incoming device — that is, the device that the remote users
will log into. If you do not want incoming logins, you do not need to have an incoming device installed in
/etc/ttys and you can safely omit it.

As described above, an entry in /etc/ttys consists of three one-character fields, followed by the name of the device:

• The first field indicates whether the device is enabled (that is, gets a login prompt) or disabled (that is, does
not get a login prompt).

• The second field indicates whether the device is in ‘‘raw’’ mode or whether it ‘‘cooks’’ its input (that is, handles
backspaces correctly, and so on). You should use ‘l’ (for cooked input).

• The third field gives the speed of the port; see the Lexicon entry /etc/ttys for a list of recognized codes.

• The device has the name /dev/com?r. The ‘?’ in this name stands for the number of the COM port into which
you’ve plugged your modem, from ‘1’ to ‘4’. The ‘r’ in the device name stands for the ‘‘remote’’ (i.e., modem)
device. If your modem is high speed (i.e., faster than 9600 baud) then use the hardware-handshaking version
of the remote device (i.e., /dev/com?fr).

For example, if you have plugged a 14.4-kilobaud modem into serial port 3, insert the following line into file
/etc/ttys:

1lQcom3fr

Once you have inserted this line into /etc/ttys, type the command:

kill quit 1

This forces COHERENT to re-read /etc/ttys and so recognize your change.

If you wish to dial out on your modem via programs cu or ckermit, or if you wish to have your UUCP system dial
other, remote sites, those systems must use the local /dev/com?l on the same port number as your modem. If it
is high speed, again use the ‘f’ version /dev/com?fl, which enables hardware handshaking. This sounds may
sound strange (after all, why use a terminal-type device on a modem?), but there’s a reason for it. When you use
the UNIX or COHERENT system call open() on a com?r port, the function call does not return until it detects a
‘‘true’’ value on DCD — and that occurs only when someone has dialed in and the modems have connected. By
using a com?r device, you are only setting up the system for a getty to detect someone dialing in; if you’re dialing
out, you do not need to detect DCD, hence the use of a terminal device. Hence, cu, UUCP, and ckermit should all
be used with the outgoing port device, and not the incoming.

Do not add this port to /etc/ttys; rather, add it to the configuration files used by the applications. In the case of
ckermit, use its command set speed. You can type this command either by hand, when you invoke ckermit; or
you can add it to file .kermrc in your home directory. For details, see the Lexicon entry for ckermit. In the case of
cu and UUCP, the device must be named in the file /usr/lib/uucp/port. For example, to dial out via our 14.4-
kilobaud modem plugged into COM 3, add the following entry to /usr/lib/uucp/port:

port exampleport
type modem
device /dev/com3fl
baud 19200
dialer exampledialer

The device is /dev/com3fl, not the device /dev/com3fr we added to /etc/ttys. The ‘r’ version of a port is used
exclusively for dialing in; the ‘l’ version for dialing out.

Last little trick is to link the device you are using to a pseudo device used by a few communication packages:

ln -f /dev/com?fl /dev/modem

Be sure to substitute the number of the port you’re using (from ‘1’ through ‘4’) for the ‘?’ in the above example.

Modem Maladies
This section discusses problems that have arisen with remote login via modem, as diagnosed by the technical
support staff of Mark Williams Company.

Difficulty in logging in from a remote site via modem can be the result of problems in one or more of the following:
cabling; enabling/disabling the port; flaws in the contents of file /etc/ttys; incorrect configuration of the modem;
and setting the port to an incorrect state. See Lexicon articles terminal and UUCP for additional information. The
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following paragraphs discuss the above-named items in detail.

RS-232 Cabling
When attaching an external modem to your computer, it is important to use a modem cable that supports
‘‘full modem control’’. COHERENT relies on modem-control signals when operating a modem for remote
access purposes. When attaching a terminal directly to a serial port, a ‘‘null modem’’ cable must be used.
When attaching a modem, a ‘‘straight through’’ cable must be used. See Lexicon articles RS-232 and
terminal for further details on cabling.

Enabled vs. Disabled Ports
A serial port can be either enabled or disabled for remote access. Enabling a port allows a user on a
remote terminal or modem to log into your COHERENT system. Disabling a port permits a user to dial out
or use a direct connect UUCP connection via that disabled port.

If a port is enabled for remote logins and you will use it to call out, you must use the command disable to
disable the port before you access the port. UUCP automatically disables and re-enables a port.

The port name supplied to an enable or disable command must exactly match the last part of a line in the
/etc/ttys file (see below). For example, for the command enable com2pr to work, there must be an entry
in the file /etc/ttys which ends with com2pr.

When a port is enabled, the first character for the port in file /etc/ttys is set to a ‘1’ (one), the permissions
for the port are changed so that only the superuser root can read and write to the port (to prevent other
users on the system from accessing the port while a remote session is in progress), and a login prompt is
sent to the port.

ttys Problems
This file should have permissions of 644 (-rw-r--r--) and belong to owner and group root. Review the
Lexicon entry for ttys to ensure that the format of your version of /etc/ttys is correct.

Leaving blanks at the end of a line in /etc/ttys usually results in error messages stating that a device
could not be found.

You do not need to edit the initial ‘0’ or ‘1’ in entries in /etc/ttys; this digit is updated by the commands
enable and disable. See the Lexicon entries for enable and disable for more information.

Constant Flickering
Another problem is a constant flickering of send/receive LEDs and an unexplained continual access of the
hard drive. This occurs when the port is enabled and the modem is set in echo mode: COHERENT sends
the login prompt to the modem, the modem echoes it back to COHERENT, COHERENT then thinks the
modem is trying to talk to it and sends the password prompt, and so on ad infinitum.

To fix this problem, place the modem into no-echo mode, and turn off the display of result codes. The
following section discusses this in more detail.

Modem Configuration
A modem that fails to answer an incoming call, hangs up before locking onto the remote carrier, becomes stuck in
a loop echoing characters sent to it from the computer, or fails to operate at the expected baud rate probably is
configured improperly. To remedy this situation, send the appropriate control string to the modem.

We offer some guidelines here for modem settings. Be warned, however, that modems from different
manufacturers usually behave differently, regardless of claims of Hayes compatibility: you must check the manual
for your modem.

• Echo should be OFF (usually by setting ‘‘E0’’).

• Result codes should be OFF (usually by setting ‘‘Q1’’).

• Modem status ‘‘DCD’’ should follow true carrier detect status, rather than being always on (usually by setting
‘‘&C1’’).

• Auto answer should be ON (usually obtained by setting register S0 to a nonzero value equal to the number of
rings before answer).

• The delay value for ‘‘Wait for Carrier/Dial Tone’’ (usually register S7) should not be too short.

The scripts below show typical initialization for a ‘‘Hayes-compatible’’ modem that runs at 2400 baud and is
plugged into port /dev/com3r. It is only an example; your modem may need something different. Please note that
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the commands sleep and stty are necessary in the first example so that the command string will be sent to the
modem at 2400 baud; otherwise, the string is sent at the default port speed, which is 9600 baud.

# initialize 2400-baud Hayes-compatible modem
sleep 3 > /dev/com3l &
stty 2400 < /dev/com3l
echo ’AT E0 Q1 V0 S0=1 &C1 M3’ > /dev/com3l
sleep 3

The following gives a similar script for a Trailblazer modem that runs at 9600 baud and is plugged into port
/dev/com2r:

# initialize 9600 baud internal Trailblazer on com2
/etc/disable com2r
sleep 3 > /dev/com2l &
stty 9600 < /dev/com2l
echo ’AT E0 T V0 X3 H0’ > /dev/com2l
echo ’AT S0=1 S7=60 S48=1 S51=252 S52=0 S54=3 S58=2’ > /dev/com2l
/etc/enable com2r

Modem Control
This section describes the modem-control protocol used by the driver asy, which COHERENT uses to control serial
ports. Modem control describes how COHERENT handles RS-232 signals other than ‘‘Receive Data’’ and ‘‘Transmit
Data’’.

Many processes can open a device at the same time. First open occurs if a process opens a device when no process
has opened the device. Last close occurs when a process closes the port and no other remaining process has the
port open. On first open, RTS and DTR are asserted by the computer, regardless of whether the specified device
used modem control. If modem control is used (the high-order bit in minor number set to zero), open() does not
complete until CD is true. Once an al[01] device has been opened with modem control, loss of CD to that port
causes SIGHUP to be sent to all processes in the group keeping the port open.

See Also
Administering COHERENT, dial, RS-232, terminal, UUCP

Notes
One final bit of hard-won wisdom: once you have something working, write down what you did, and store it in a
place where you won’t lose it.

modf() — General Function (libc)
Separate integral part and fraction
#include <math.h>
double modf(real, ip)
double real, *ip;

modf() is the floating-point modulus function. It returns the fractional part of its argument real, and stores the
integral part in the location to which ip points. These numbers satisfy the equation real = f + *ip.

Example
This example prompts for a number from the keyboard, then uses modf() to calculate the number’s fractional
portion.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

main()
{

double real, fp, ip;
char string[64];

for (;;) {
printf("Enter number: ");
if (gets(string) == 0)

break;
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real = atof(string);
fp = modf(real, &ip);
printf("%lf is the integral part of %lf\n",

ip, real);
printf("%lf is the fractional part of %lf\n",

fp, real);
}

}

See Also
atof(), ceil(), fabs(), floor(), frexp(), ldexp(), libc
ANSI Standard, §7.5.4.6
POSIX Standard, §8.1

Notes
In releases prior to version 4.0, the COHERENT implementation of modf() handled negative numbers by returning a
integral part less than real, and a positive fraction. Now, it returns an integral part greater than real, and a
negative fraction. For example, the old version of modf() would transform -1.9 into an integer of -2.0 and a fraction
of 0.1; whereas the current version transforms -1.9 into an integer of -1.0 and a fraction of -0.9.

The behavior of modf() was changed to conform to the ANSI Standard.

modulus — Definition
Modulus is the operation that returns the remainder of a division operation. For example, 12 modulus four equals
zero, because when 12 is divided by four it leaves no remainder. The term ‘‘modulo’’ also refers to the product of a
modulus operation; in the above example, the modulo is zero. In C, the modulus operation is indicated with a
percent sign ‘%’; therefore, 12 modulus 4 is written 12%4.

The modulus operation often is used to trim numbers to a preset range. For example, if you wanted to create a list
of single-digit random numbers, you would use the command:

rand()%10

This is demonstrated by the following example.

Example
This example prints a list of 20 single-digit random numbers. The random-number table is seeded with a portion
of the current system time.

#include <stdio.h>
#include <stdlib.h>

main()
{

long nowhere; /* place to put unused data */
int counter;

srand((int)time(&nowhere));
for (counter = 0; counter <20; counter++)

printf("%d\n", rand()%10);
}

See Also
operator, Programming COHERENT

Notes
The implementation of C defines how a modulus operator behaves when it operates upon numbers with different
signs. On the i8086,

10 % -4

yields -2. This is not mathematical modulus, which is +2.
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mon.h — Header File
Read profile output files
#include <mon.h>

mon.h is used with programs that read the profiling routines’ output files.

See Also
header files

moo — Command
Greatly amusing numeric guessing game
/usr/games/moo [ numdigits ]

moo is a guessing game of numbers, typically four digits, all different.

The game randomly selects a number that consists of numdigits unique digits. Obviously, numdigits cannot exceed
ten; the default is four. moo then prompts you to guess the number it has selected. When you type your guess,
moo responds with one of two possible answers. If you guess the number correctly, i.e., win, moo responds with
‘‘Right!’’. If any of the digits that you guessed were correct digits, but in the wrong place, you get a ‘‘cow.’’ If you
guess a digit correctly and in the correct place, you get a ‘‘bull.’’ If the number of ‘‘bulls’’ is the same as the number
of digits in the guess, you win. moo typically responds with a count of ‘‘bulls’’ and ‘‘cows,’’ as in:

2 bulls, 1 cow.

See Also
commands

Notes
moo is sometimes also called mastermind.

It will never replace DOOM.

more — Command
Display text one page at a time
more [ -cdflsu ] [ -window_size ] [ +line_number ] [ +/pattern ] [ file ... ] [ - ]

more is a filter for paging through text one screenful at a time. file is a text file; the operator - tells more to read
and display the standard input.

Command-line Options
more reads options from the command line and from the environmental variable MORE. In case of a conflict, the
options given on the command line take precedence. Every cluster of options must be preceded with a hyphen ‘-’,
even if passed via the environmental variable MORE.

more recognizes the following options:

-c Paint the screen from the top line down. more normally repaints the screen by scrolling from the bottom of
the screen.

-d Prompt the user at the end of each screen with the message:

[Press space to continue, ’q’ to quit.]

The default is to not issue a prompt.

-f Count actual lines from the input file rather than screen lines. This option is useful when the input contains
escape sequences that more does not recognize.

-l Do not treat the formfeed character <ctrl-L> as special. By default, more pauses at each formfeed character,
as if a full screen had been displayed.

-s Squeeze consecutive blank lines into one blank line. This is useful for looking at nroff output, such as
manual pages.
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-u Display backspaces as control characters and leave the carriage return-linefeed (CR-LF) pair alone. By
default, more displays backspaces that appear adjacent to an underscore character as underlined text;
backspaces that appear between two identical characters as emboldened text; and compresses CR-LF
sequences.

+/pattern
Search for pattern before displaying a file. pattern is a regular expression, as recognized by commands ed or
egrep. pattern should be escaped to avoid being processed by the shell.

-window_size
Set the size of the window that more displays to window_size, which is a decimal integer less than or equal to
the number of lines on your terminal. The default window size is read from the termcap description for your
terminal.

+line_number
Make line_number the beginning line to display in file. line_number is a decimal integer less than the number
of lines in file.

Commands
The following describes more’s interactive commands. These commands are based on those for the UNIX editor vi.
Some commands may optionally be preceded by a decimal number. If you enter an invalid command, more will
beep at you.

h
? Help: display a summary of these commands.

[N]<space>
Display the next N lines of text (default, one screenful).

[N]z
If N is not specified, display the next screenful. Otherwise, display N lines and set the default scrolling size to
N for all subsequent <space> and z commands.

[N]<ctrl-F>
[N]f

Scroll forward N screenfuls (default, one screenful). If N is more than the screen size, only the final screenful
is displayed.

[N]<ctrl-B>
[N]b

Scroll backward N screenfuls (default, one screenful). If N is more than the screen size, only the final
screenful is displayed.

[N]s
Skip forward N lines (default, one line) and display one screenful.

[N]<return>
[N]<enter>

Scroll forward N lines (default, one). Display all N lines, even if N is more than the screen size.

[N]<ctrl-D>
[N]d

Scroll forward N lines (default, one half of the screen size). If N is specified, it becomes the new default for
subsequent d and <ctrl-D> commands.

<ctrl-L>
Redraw the screen.

’ (Apostrophe) Return to the position in the current file where the previous search command started, or to the
beginning of the file if no search commands have occurred. This information is lost when a new file is
examined.

[N]/pattern
Search forward for the N-th line that contains pattern (default, one). pattern is a regular expression, as
recognized by ed or egrep. The search starts at the second line displayed.
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n Repeat previous search.

:f Display the name of the current file with the current line number.

[N]:n
Examine the N-th file after the current file, as given in the command line (default, the next file).

[N]:p
Examine the N-th file previous to the current file, as given in the command line (default, the previous file).

! command
:! command

Pass command to the shell specified by environment variable SHELL for execution. The default shell is
/bin/sh.

v Invoke an editor to edit the current file. The editor is set by the environment variables VISUAL and EDITOR,
in that order. If these variables are not set, use vi.

= Display the current line number.

q
:q
Q
:Q Quit.

Environment
more uses the following environment variables:

EDITOR Specify default editor.

MORE Set default options for more

SHELL Specify the shell being used (normally set at login time).

TERM Specify the type of terminal you are using. more uses this variable to read from /etc/termcap the
terminal characteristics needed to manipulate the screen.

VISUAL Specify default visual editor.

See Also
commands, egrep, scat, vi, zmore

Author
This software is derived from software contributed to Berkeley by Mark Nudleman. more is copyright  1988,1990
by The Regents of the University of California. Copyright  1988 by Mark Nudleman. All rights reserved.

motd — System Administration
File that holds message of the day
/etc/motd

The file motd holds the message of the day. Its contents are displayed by the script /etc/profile, which is
executed whenever you log in.

Only the superuser can alter the contents of this file.

See Also
Administering COHERENT, login

mount — Command
Mount a file system
/etc/mount [ device directory [ -ru ] ]

The command mount mounts a file system from device onto directory. In effect, it grafts the root directory of file
system on device onto directory.

If you invoke mount without any arguments, it displays information about the file systems that are now mounted.
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If you use option -r, mount mounts the specified file system in read-only mode. This is useful if you wish to read a
file system without changing it in any such way, such as when you are backing it up. Note, however, that when a
file system is mounted in read-only mode, COHERENT does not update file-system information, such the time a file
was last accessed.

The option -u tells mount to write an entry into the mount-table file /etc/mtab without actually mounting the file
system. When this is done, COHERENT will hereafter mount the file system automatically whenever you boot
COHERENT.

Please note that unlike every other COHERENT or UNIX command ever devised, mount requires that its options
follow the file names, rather than precede them. The COHERENT version of mount follows this convention in order
to conform to this established UNIX practice.

To un-mount a file system, use the command umount. (NB, this is not a typographical error — this command’s
name contains only one ‘n’.)

The script /bin/mount calls /etc/mount, and provides convenient abbreviations for commonly used devices. For
example,

mount f0

executes the command:

/etc/mount /dev/fha0 /f0

You should edit this script to reflect the devices that you use on your system.

Files
/etc/mtab — Mount table
/etc/mnttab — Mount table
/bin/mount — Shell script that calls /etc/mount

See Also
commands, fsck, mkfs, mknod, umount

Diagnostics
Errors can occur if device or directory does not exist or if you do not have permission to access device.

The message

/etc/mtab older than /etc/boottime

indicates that /etc/mtab has probably been invalidated by booting the system.

Attempting to mount a block-special file that does not contain a COHERENT file system (e.g., a tape device) can have
disastrous consequences. Caveat utilitor! To build a file system on a block-special device, use the command
/etc/mkfs. For details, see its entry in the Lexicon.

mount.h — Header File
Define the mount table
#include <sys/mount.h>

mount.h defines the structures and constants that comprise the COHERENT system’s mount table. It also declares
functions that are used internally by routines that manipulate the mount table.

See Also
header files, mount

mount() — System Call (libc)
Mount a file system
#include <sys/mount.h>
#include <sys/filsys.h>
int mount (device, name, flag)
char *device, *name; int flag;
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mount() is the COHERENT system call that mounts a file system. device names the physical device that through
which the file system is accessed. name names the root directory of the newly mounted file system. flag controls
the manner in which the file system is mounted, as set in header file sys/mount.h.

See Also
fd, libc, mount, mount.h

mount.all — System Administration
Mount file systems at boot time
/etc/mount.all

The file /etc/mount.all holds a set of mount commands to mount all COHERENT file systems on hard disk. It is
invoked by the script /etc/rc, which COHERENT reads and executes at boot-time.

When you add a new COHERENT partition to your system, you should insert an appropriate entry into this file, to
ensure that the new partition is mounted whenever you reboot your system. You should also insert an entry into
/etc/checklist, to ensure that the utility fsck examines and corrects the file system on this new partition before
the system mounts it.

See Also
Administering COHERENT, checklist, mount, rc

mout() — Multiple-Precision Mathematics (libmp)
Write multiple-precision integer to stdout
#include <mprec.h>
void mout(a)
mint *a;

mout() writes the multiple-precision integer (or mint) pointed to by a onto the standard output. The base of the
output is set by the value of the external variable obase.

See Also
libmp

mprec.h — Header File
Multiple-precision arithmetic
#include <mprec.h>

The header file mprec.h declares a set of routines used to perform multiple-precision arithmetic. It also declares
the structure mint, which holds multiple-precision integers.

See Also
header files, libmp

mrand48() — Random-Number Function (libc)
Return a 48-bit pseudo-random number as a long integer
long mrand48();

Function mrand48() generates a 48-bit random number, then returns its high-order 32 bits in the form of a long.
The value returned is (or should be) uniformly distributed throughout the range of -2^31 through 2^31.

See Also
libc, srand48()

ms — Technical Information
Manuscript macro package
nroff -ms file ...

The nroff macro package ms formats manuscripts. The tutorial on nroff describes the ms macros in detail.

ms includes the following macros:
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.AB Begin the abstract portion of a document’s title page.

.AE End the abstract

.AI Indicate author’s institution on a document’s title page.

.AU Name the author on the title page of a document.

.B Boldface font: set the following argument in boldface. If the argument is longer than one word, it must be
enclosed in quotation marks. Anything on the line after the argument is thrown away.

.BD Block-centered display. Take a portion of text; do not adjust it or break it between two lines, but center it
as a whole.

.BT Bottom title. This controls the printing of the footer title, should you want one. It uses three strings, all or
any of which can be defined by the user: LF, for left-hand portion; CF, for center portion; and RF, for right-
hand portion. CF has the default definition of printing the page number; the other two strings are
undefined.

.CD Centered display. Center individually every line within a display.

.DA Set the date.

.DE Mark the end of a display. Do not use after the macros .LD, .CD, or .RD.

.DS Mark the beginning of a display. Do not use for displays longer than one page.

.FE Mark the end of a footnote entry.

.FS Mark the beginning of a footnote entry.

.I Italic font. Used like .B, above.

.ID Indent a display 1/2 inch before printing.

.IP Indent a paragraph of text before printing. This macro can take two arguments: argument 1 is used as a
tag that is printed to the left of the first line of the paragraph; argument 2 indicates how far to indent the
paragraph, in characters (the default is five characters, or 1/2 inch).

.KE Indicate the end of a keep, or a portion of text that must not be broken between two pages.

.KF Start floating keep.

.KS Indicate the beginning of a keep.

.LD Set a display flush left; used with displays that are longer than one page.

.NH Set a numbered heading. This macro takes one argument: the depth of numbering. For example, a ‘4’
here would yield a number of the format ‘‘1.1.1.1’’. No number higher than five is accepted here. The
following line gives the text of the heading.

.PP Begin a new paragraph.

.QE Mark the end of a quoted paragraph.

.QP Quoted paragraph. Used like .IP, above.

.QS Mark the beginning of quoted text; text is indented by five characters (1/2 inch).

.R Roman font. Used like .B, above.

.RE Mark the end of a relative indentation.

.RS Mark the beginning of a relative indentation. A relative indentation is a block of text that is indented five
characters (1/2 inch) more than the text before it.

.SH Subheading. One line of space is inserted, and the following line of text is set boldface and flush left.

.TA Set tabs, in characters.

.TL Title: format the title entry on the cover page of a document.
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Files
/usr/lib/tmac.s

See Also
man, nroff, troff, Using COHERENT Introduction to nroff, Text Processing Language, tutorial

MS-DOS — Technical Information
That other operating system

MS-DOS is the native operating system of the IBM-AT and compatible computers. As such, it needs no introduction
to most users. Many customers have asked, however, how MS-DOS and COHERENT compare in terms of their
capabilities; and many have also asked for a chart that maps familiar MS-DOS commands to their COHERENT
equivalents. This article attempts to fulfill these requests.

MS-DOS vs. COHERENT
MS-DOS differs significantly from COHERENT in practically every aspect of its design. For example, its file system is
incompatible with COHERENT; its shell command.com differs significantly from COHERENT’s suite of shells; the
manner in which it loads and executes a program differs completely from COHERENT’s.

The most noticeable difference in design, however, is that MS-DOS is a single-user, single-process operating system,
whereas COHERENT is a multi-user, multi-tasking operating system.

Single-user means that only one user can use MS-DOS at any given time: whoever sits at the keyboard ‘‘owns’’ the
machine and all its facilities. Multi-user means, of course, that more than one user can use COHERENT at any given
time, via terminals or modems plugged into the computer’s serial ports. The number of users who can use your
COHERENT system at once is limited only by your computer’s speed, available memory, and by the number of serial
ports that can be plugged into your computer.

Single-tasking means that MS-DOS can do only one task at a time: it loads a program into memory, runs it to
completion, then awaits your request to execute another program. Multi-tasking means that COHERENT can
execute more than one program at a time.

To grasp how multi-tasking can simplify some work, consider the task of formatting floppy disks. Under MS-DOS,
you pop the floppy disk into the drive, invoke the MS-DOS program format, answer its queries, then go get a cup of
coffee while the machine grinds away. Formatting a box of high-density floppy disks ties up your machine for the
better part of an hour, which is largely wasted time for you. Under COHERENT, however, you can format a floppy
disk in the background — that is, you can tell COHERENT to execute the disk-format program unsupervised, and let
you work with another program. For example, if you wish to low-level format a 5.25-inch, high-density floppy disk
in drive 0 (that is, drive A), use the following command:

/etc/fdformat -v /dev/fha0 &

Try it. You’ll notice that the COHERENT prompt returns immediately: while COHERENT is formatting your disk for
you, you can edit a file, play a video game, dial out to a remote system, or even format a second disk in your
machine’s B drive (should you have one).

Multi-tasking also means that you can program COHERENT to execute programs untended, even while you are
away from your machine. The UUCP system is a good example of this feature. UUCP lets you exchange mail and
files with remote systems via modem; once the system is set up, it runs automatically, without requiring that you
sit at the keyboard to run it.

This discussion only gives you a taste of the advantages COHERENT enjoys over an obsolete system like MS-DOS.
The following documents contain information that MS-DOS users will find helpful:

• The tutorial Using the COHERENT System introduces COHERENT to new users. If you are new to COHERENT
and have not yet read this tutorial, you should do so before you continue any farther.

• The Lexicon articles floppy disks and hard disk discuss the in’s and out’s of using mass-storage device with
COHERENT. The article floppy disks in particular discusses in detail all the steps required to format and
manipulate MS-DOS-style floppy disks under COHERENT.

• The Lexicon articles modem, printer, and terminal discussion how to connect these devices to COHERENT,
and introduce the set of commands with which you can manipulate them under COHERENT.
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• The Lexicon article execution describes in detail how COHERENT loads and executes a program. This article
is aimed at the technically knowledgeable, but neophytes may find parts of it helpful.

• The Lexicon article commands summarizes all commands available under the COHERENT system. This article
will help you grasp the scope of COHERENT’s suite of commands, and will help you explore them
systematically.

• The following Lexicon articles describe COHERENT commands for manipulating MS-DOS files and disks:

doscp Copy files to/from an MS-DOS file system.

doscat Concatenate a file on an MS-DOS file system.

doscp Copy a file to/from an MS-DOS file system.

doscpdir Copy directories to/from an MS-DOS file system.

dosdel Delete files from an MS-DOS file system.

dosdir Show the contents of an MS-DOS directory.

dosformat Write an MS-DOS file system onto a floppy disk.

doslabel Label an MS-DOS floppy disk. The MS-DOS file system can reside on a floppy disk or an MS-DOS
portion of a hard disk.

dosls List contents of an MS-DOS file system.

dosmkdir Create a directory on an MS-DOS file system.

dosrm Remove a file on an MS-DOS file system.

dosrmdir Remove a directory from an MS-DOS file system.

COHERENT Equivalents to MS-DOS Commands
The following table lists the most commonly used MS-DOS commands, and gives COHERENT equivalents.

Note that often there is no single COHERENT command that equates to a given MS-DOS command. COHERENT often
offers several alternatives, and you can select the one that best suits your needs. Every COHERENT command has
its own article in the COHERENT Lexicon; look there first for details on how to use the command.

BACKUP
This command copies a directory’s files to a formatted floppy disk to back them up. To do so under
COHERENT, use the command:

find . -print | cpio -ocm > /dev/rfha0

Note that cpio requires a formatted, defect free floppy disk, however you do not need to create a filesystem
on the floppy disk prior to using cpio.

Note that if you want COHERENT to prompt you before it backs up a file, use the command:

find . -print | cpio -ocmr > /dev/rfha0

See the article on the archiving command cpio for details on this command — especially important if you
expect to retrieve your backed-up files.

Note, too, that the device /dev/rfha0 corresponds to a 5.25-inch, high-density floppy disk in drive 0 (drive
A). See the article floppy disks for a list of the devices that correspond to different sizes and configuration
of floppy disks.

BREAK
Abort a command. Aborting a command under COHERENT varies, depending upon whether the command
is running in the foreground or the background. The keystroke

<ctrl-c>

aborts most commands that are running in the foreground. To abort a command that is running in the
background, you must use the kill command. See its Lexicon entry for details on how to use it.
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CHDIR or CD
Change to another directory. To do so under COHERENT, use the command

cd dir

where dir is the directory to which you wish to go. The directories ‘.’ and ‘..’ are used by both COHERENT
and MS-DOS; since MS-DOS ‘‘borrowed’’ its directory structure from UNIX (of which COHERENT is an
implementation), the similarity should not be surprising.

Note that MS-DOS requires that before you can change to directory on another physical device or partition,
you must first switch to that device by typing its name before you use the chdir command. COHERENT has
no such restriction.

CHKDSK
Check the integrity of a file system. Under COHERENT, use the command:

/etc/fsck [option] [filesystem]

Read the Lexicon entry on fsck before you attempt to run it!

COMP Compare the contents of two files. To do so under COHERENT, use the following command to compare two
binary files:

cmp [option] file1 file2

cmp displays the bytes which differ between the files.

To compare the contents of two text files, use the command:

diff [option] file1 file2

COPY Copy the contents of one file into another; create the target file if it does not already exist. Under
COHERENT, say:

cp oldfilename newfilename

To copy a set of files into a directory without changing their names, use the following form of the
command:

cp file1 ... fileN directory

DATE Reset the current date and time. Under COHERENT, use the command:

date yymmddhhmm.ss

Only the superuser can reset the system’s date and time. When date is used without an argument, it
prints the date and time on the standard output.

DIR Type the contents of a directory. Under COHERENT, use the command:

ls -l

DIR/W List a directory’s contents in columnar form. Under COHERENT, use either the command:

lc

or the command:

ls -C

DISKCOPY
Copy one floppy disk track-by-track to another floppy disk. COHERENT has no exact equivalent to this
command; however, you can copy the contents of one disk to another by using the following set of
commands.

First, place a write-protect tab on your source disk; insert the disk into drive 0 (drive A), then type the
following command:

dd if=/dev/fha0 of=/tmp/filename

This copies the contents of the 5.25-inch, high-density floppy disk in drive 0 into file /tmp/filename. For
a table of devices that correspond to other sizes and configurations of floppy disks, see the Lexicon article
floppy disks.
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Second, insert formatted destination diskette into drive 0, and then type the command:

dd if=/tmp/filename of=/dev/fha0

This command copies the files in directory /tmp/filename onto the target floppy disk. Note that the target
disk must be formatted before it can receive files; see the Lexicon article floppy disks for information on
how to do this.

EDLIN Perform simple-minded editing of text files. Under COHERENT, the ed editor performs line editing, but is
much more sophisticated than edlin. COHERENT also includes the vi and MicroEMACS screen editors,
which are more useful still.

ERASE or DEL
Remove a file or a directory. To erase a file, use the command:

rm file1 [... fileN ]

To erase a directory, use the command:

rmdir directory

To erase a directory and all files and directories below it, use the command:

rm -r directory

FIND Find a pattern within a text file. Under COHERENT, use the command:

egrep [option] pattern [file ...]

egrep is an extremely useful command; see its Lexicon entry for details on how to use it.

FORMAT
Format a floppy disk. To format a floppy disk for MS-DOS, use the command dosformat. To format a
floppy disk for COHERENT, use the command fdformat. For details, see the respective Lexicon entries for
these commands. Under COHERENT, use the command

MEM Find how much space is left free on your hard disk. Under COHERENT, say:

df [options]

See the Lexicon entry on df for details.

MKDIR Create a new directory. Under COHERENT:

mkdir directory ...

MODE Set parameters for terminals and ports. Under COHERENT, use the command stty. This command comes
with many options; see its Lexicon entry for details. The default speeds of all ports and terminals reside in
file /etc/ttys. The superuser can use a text editor to edit this file to change any or all default settings.

MORE Display text a screenful at a time. Under COHERENT, use the commands more or scat.

PRINT Print files via a serial port. To print a file on a dot-matrix printer, use the command:

lpr file1 [ ... fileN ]

To print a file on a Hewlett-Packard LaserJet printer, use the command

hpr file1 [ ... fileN ]

Note that before these commands can be used, the appropriate devices must be linked to your system. See
the Lexicon article on printer for details.

Note, too, that COHERENT uses a spooling system to manage the printing of files; thus, attempting to print
a non-existent file will not hang the system.

PROMPT
Change the command.com prompt. The COHERENT shells store the prompt format within the
environmental variable PS1. This variable is usually defined in each user’s .profile file; this file holds
commands that are executed whenever the user logs in. To change the definition of your prompt, edit
.profile to define PS1 to suit your preference, then log in again.

Note that the information that can be embedded within the prompt varies between the Bourne and Korn
shells. See the Lexicon articles sh and ksh for details on those shells and their prompts.
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RENAME
Rename a file. Under COHERENT, use the command:

mv oldfile newfile

mv can also be used to move files from one directory or file system to another.

RESTORE
Restore a file saved with the BACKUP command. Under COHERENT, insert the floppy disk upon which the
cpio utility saved its backup archive; then type the command:

cpio -icv < /dev/rfha0

Note that this command assumes you are using /dev/rfha0, which describes a 5.25-inch, high-density
floppy disk in drive 0 (drive A). For a table of devices that correspond to other sizes and configurations of
floppy disks, see the Lexicon article floppy disks.

TREE List all directories on a file system. Under COHERENT, use the command:

find / -type d | more

To list all files and directories that are subordinate to the current directory, use the command:

find . | more

The COHERENT command ls -lR also lists a directory tree, in a somewhat different output format.

MS-DOS 6.0 and COHERENT
Release 6.0 of MS-DOS offers a feature of dynamic file compression that creates some difficulties for machines that
have both COHERENT and MS-DOS on their systems.

To begin, MS-DOS 6.0 assumes that it is the only operating system on your computer. When you install MS-DOS
6.0, by default it overwrites the COHERENT master boot block. If at all possible, you should install MS-DOS 6.0 onto
your system first, then install COHERENT so that its Master Bootstrap is in control of your machine.

Second, MS-DOS 6.0 offers a compression utility called dblspace, which compresses MS-DOS file systems on the fly.
The COHERENT dos commands do not understand compressed MS-DOS file systems created by the MS-DOS 6.0
utility dblspace or by such programs as Stacker. If you are running MS-DOS 6.0 with file compression, you must
copy files to an uncompressed file system (for example, to an uncompressed floppy disk or to the uncompressed
host for a compressed file system) to make them accessible to the COHERENT dos commands.

See Also
COHERENT, doscat, doscp, doscpdir, dosdel, dosdir, dosformat, doslabel, dosls, dosmkdir, dosrmdir, floppy
disks, hard disk, modem, printer, terminal, Using COHERENT

msg — Kernel Module
Kernel module for messages

The kernel module msg enables System V-style messages. It is called a kernel module because you can link it into
your kernel or exclude it, as you wish, just like a device driver; yet it is not a true device devicer because it does not
perform I/O with a peripheral device.

See Also
device drivers, kernel, msgctl()

msg — Command
Send a brief message to other users
msg user
message

The command msg prints the one-line message on the screen of user.

The message is sent as soon as you type <return> on the message line. If user is not logged in or is not known to
the system, msg prints an error message on your screen.
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See Also
commands

msg.h — Header File
Definitions for message facility
#include <sys/msg.h>

msg.h defines the structures and constants used with the COHERENT message facility.

See Also
header files, msgget()

msgctl() — General Function (libc)
Message control operations
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
int msgctl(id, command, buffer)
int id; int command; struct msqid_ds *buffer;

The function msgctl() controls the COHERENT’s system’s messaging facility. This facility permits processes to pass
messages from one another.

Each message queue is controlled by a structure of type msqid_ds, which is defined in header file <sys/msg.h>.
This structure points to the first and last messages in the queue, gives the size of the queue and the number of
messages in the queue, and names who can manipulate it and how. The messages themselves consist of a linked
list of structures of type msg, which is also defined in msg.h. When the function msgget() creates a message
queue, it assigns to that queue an identification number and returns that number to the calling process. For
details on this process, see the Lexicon entry for msgget().

id identifies the message queue to be manipulated. This value must have been returned by a call to msgget().

command names the operation that you want msgctl() to perform. msgctl() recognizes the following commands:

IPC_STAT Copy the message-queue structure identified by id into the structure pointed to by buffer. This
command lets you gather information about a message queue without actually manipulating the
queue.

IPC_SET This command sets permissions for this queue. It does so by copying fields msg_perm.uid,
msg_perm.gid, msg_perm.mode (low nine bits only), and msg_qbytes from the message-queue
structure point to by buffer to structure identified by id. Only the superuser root and the user
who owns the process that created structure id can execute this command. Note that only the
superuser can raise the value of field msg_qbytes, which gives the size of space occupied by the
queue, in bytes.

IPC_RMID Remove the structure identified by id, and destroy its queue. Only the superuser root and the
user who owns the process that created structure id do this.

If any of the following conditions occur, msgctl() returns -1 and sets error to the value in parentheses:

• id is not a valid message-queue identifier (EINVAL).

• command is not a valid command (EINVAL).

• command equals IPC_STAT, but the owner of the calling process lacks permission to execute this command
(EACCES).

• command equals IPC_RMID or IPC_SET, but the owner of the calling process lacks permission to execute the
command (EPERM).

• A process owned by someone other than the superuser root attempted to increase field msg_qbytes (EPERM).

• buffer points to an illegal address (EFAULT).

If all went well, msgctl() returns zero.
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Example
For an example of this function, see the Lexicon entry for msgget().

Files
/usr/include/sys/ipc.h
/usr/include/sys/msg.h

See Also
libc, msgget(), msgrcv(), msgsnd()

Notes
For information on other methods of interprocess communication, see the Lexicon entries for semctl(), shmctl(),
and libsocket.

msgget() — General Function (libc)
Create or get a message queue
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
msgget(key, flag)
key_t key; int flag;

The function msgget() gets or creates a message queue. If necessary, it can create a message queue and its control
structure, and link them to the identifier key.

key is an identifier that your application generates to identify its message queues. To guarantee that each key is
unique, you should use the function call ftok() to generate keys.

When it creates a message queue, msgget() also creates a copy of structure msqid_ds, which the header file
<sys/msg.h> defines as follows:

struct msqid_ds {
struct ipc_perm msg_perm; /* operation permission struct */
struct msg *msg_first; /* ptr to first message on queue */
struct msg *msg_last; /* ptr to last message on queue */
unsigned short msg_cbytes; /* current # bytes on queue */
unsigned short msg_qnum; /* # of messages on queue */
unsigned short msg_qbytes; /* max # of bytes on queue */
unsigned short msg_lspid; /* pid of last msgsnd() */
unsigned short msg_lrpid; /* pid of last msgrcv() */
time_t msg_stime; /* last msgsnd() time */
time_t msg_rtime; /* last msgrcv() time */
time_t msg_ctime; /* last change() time */

};

The messages themselves consist of a linked list of structures of type msg. Fields msg_first and msg_last point to,
respectively, the first and last messages in the list. Header file <sys/msg.h> defines structure msg as follows:

struct msg {
struct msg *msg_next; /* pointer to next message on queue */
long msg_type; /* message type */
short msg_ts; /* message text size */
short msg_spot; /* message text map address */

};

Field msg_perm is a structure of type ipc_perm, which header file <sys/ipc.h> defines as follows:

struct ipc_perm {
unsigned short uid; /* owner’s user id */
unsigned short gid; /* owner’s group id */
unsigned short cuid; /* creator’s user id */
unsigned short cgid; /* creator’s group id */
unsigned short mode; /* access modes */
unsigned short seq; /* slot usage sequence number */
key_t key; /* key */

};
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msgget() initializes msqid_ds as follows:

• It sets the fields msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid to, respectively, the
effective user ID and effective group ID of the calling process.

• It sets the low-order nine bits of msg_perm.mode to the low-order nine bits of flag. These nine bits define
access permissions: the top three bits give the owner’s access permissions (read, write, execute), the middle
three bits the owning group’s access permissions, and the low three bits access permissions for others.

• It sets msg_ctime is set to the current time.

• It sets msg_qbytes to the value of kernel variable NMSQB, which sets the maximum number of bytes available
to the message queue.

If any of the following error conditions is true, msgget() returns -1 and sets errno to the value within parentheses:

• key already has a message queue, but the owner of the process that called msgget() does not have permission
to read it (EACCES).

• key does not have a message queue associated with it, but flag is does not request that one be created (i.e.,
flag & IPC_CREAT is false) (ENOENT).

• flag requests that msgget() create a message queue, but the system’s maximum number of message queues
(as set by the kernel variable NMSQID) already exists (ENOSPC).

• key already has a message queue, but flag requests that a queue be created exclusively (i.e., (flag &
IPC_CREAT) && (flag & IPC_EXCL) is true) (EEXIST).

If all goes well msgget() returns the message-queue identifier, which is always a non-negative integer. Otherwise, it
returns -1 and sets errno to an appropriate value.

Example
The following program, samplemsg.c, gives an example of the COHERENT message facility. One server process
accepts user keyboard input, and sends it client 1 if the first character is an upper-case letter, or to client 2 if the
first character is not an upper-case letter.

#include <stdio.h>
#include <stdlib.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <sys/signal.h>
#include <sys/types.h>
#include <sys/wait.h>

/* Maximum size of messages in this example.
* The default maximum size is 2048. */
#define MAX_MSG_SIZE 80

/* template for a message */
struct my_msg {

long mtype;
unsigned char mtext[MAX_MSG_SIZE];

};

struct my_msg sndmsg; /* message we will send */
struct my_msg rcvmsg; /* message we will receive */

key_t key; /* key for getting our message queue */
int id; /* message queue id returned by msgget() */
long msgtype; /* type of the message */

main()
{

/* Generate unigue key */
if ((key = ftok("./samplemsg", ’A’)) == -1)

fprint (stderr, "samplemsg does not exist.\n");
exit(EXIT_FAILURE);

}
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/* get our message queue, abort on error */
if( -1 == (id = msgget(key, IPC_CREAT|0660))){

printf("Error obtaining message queue\n");
exit(EXIT_FAILURE);

}

printf("To end this demonstration, type ’end’.\n"
"Enter the message -> ");

fflush(stdout);
msgtype = 1; /* 1st client receives messages of type 1 */

/* fork() to produce our 1st client processes. */
if (fork()) { /* we are parent process (server) */

msgtype = 2; /* 2nd client receives messages of type 2 */
/* fork() again to produce our 2nd client processes. */
if (fork()) { /* we are parent process (server) */

send_messages(); /* server */
} else

receive_messages(); /* second client */
} else

receive_messages(); /* 1st client */
exit (EXIT_SUCCESS);

}

/* Get a message from user and send it to client or child processes */
send_messages()
{

for (;;) {
/* get our message to send */
gets(sndmsg.mtext);

/* if ’end’ was entered, send message to BOTH clients,
* as this is a flag for them to terminate themselves.
* Otherwise, just send the message.
*/

if (!strcmp(sndmsg.mtext,"end")) {
sndmsg.mtype = 1;
msgsnd(id, &sndmsg, strlen(sndmsg.mtext)+1, 0);
sndmsg.mtype = 2;
msgsnd(id, &sndmsg, strlen(sndmsg.mtext)+1, 0);
printf("Thank you. Bye.\n");
break;

}

/* Determine the type of message this will be.
* if the first character is upper case letter,
* then this is a type-1 message; otherwise,
* this is a type-2 message.
*/

if (isupper(sndmsg.mtext[0]))
sndmsg.mtype = 1L;

else
sndmsg.mtype = 2L;

if (msgsnd(id, &sndmsg, strlen(sndmsg.mtext)+1, 0) < 0) {
perror("send");
break;

}
}

while (wait(NULL) > 0) /* Wait for the children */
;

msgctl(id, IPC_RMID,0); /* remove message queue */
return;

}
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/* receive_messages(). */
receive_messages()
{

char clntbuf[20];

sprintf(clntbuf, "Client %ld", msgtype);

for (;;) {
if (msgrcv(id, &rcvmsg, MAX_MSG_SIZE, msgtype, 0) < 0) {

perror(clntbuf);
exit(EXIT_FAILURE);

}

printf("%s received: ’%s’\n", clntbuf, rcvmsg.mtext);
if (!strcmp(rcvmsg.mtext,"end"))

break;
printf("Enter next message -> ");
fflush(stdout);

}
exit(EXIT_SUCCESS);

}

Files
/usr/include/sys/ipc.h
/usr/include/sys/msg.h

See Also
ftok(), ipcrm, ipcs, libc, libsocket, msgctl(), msgrcv(), msgsnd()

Notes
Prior to release 4.2, COHERENT implemented semaphores through the driver msg. In release 4.2, and subsequent
releases, COHERENT has implemented semaphores as a set of functions that conform in large part to the UNIX
System-V standard.

msgrcv() — General Function (libc)
Receive a message
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
msgrcv(id, buffer, size, type, flag)
int id, size, flag; long *buffer; long type;

The function msgrcv() reads a message from the queue associated with identifier id, and writes it into the user-
defined chunk of memory to which buffer points. The memory to which buffer points has a layout similar to a
structure with the following members (if we pretend mtext[] is legal C):

struct msgbuf {
long mtype; /* message type */
char mtext[]; /* message text */

};

mtype gives the message’s type, as specified by the sending process. mtext gives the text of the message.

size gives the size of the message’s text, in bytes. msgrcv() silently truncates the received message to size if it more
than size bytes long and (flag & MSG_NOERROR) is true.

type gives the type of message being requested. msgrcv obeys the following rules when it reads the message
queue:

• If type equals 0L, it reads the first message in the queue.

• If type is greater than 0L, it reads the first message of type.

• If type is less than 0L, it reads the first message whose type is less than or equal to the absolute value of type.

If the message queue contains no message of the desired type, the behavior of msgrcv() is determined by the value
of flag. If flag contains the value IPC_NOWAIT (i.e., flag & IPC_NOWAIT is true) then msgrcv() sets errno to
ENOMSG and returns -1. If, however, flag does not contain IPC_NOWAIT, then msgrcv() suspends execution until
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one of the following occurs:

1. A message of the desired type appears on the queue.

2. id is removed from the system. msgrcv() sets errno to EIDRM and returns -1.

3. The calling process receives a signal. msgrcv() sets errno to EINTR and returns -1. The calling process then
resumes execution in the manner by signal received. For information on what given signals mean, see the
Lexicon entry for signal().

msgrcv() also fails and returns no message if any of the following is true:

• id is not a valid message-queue identifier. msgrcv sets errno to EINVAL.

• The calling process lacks operation permission (EACCES).

• size is less than zero (EINVAL).

• The message’s size is greater than size bytes long and (flag & MSG_NOERROR) is false (E2BIG).

• buffer points to an illegal address (EFAULT).

When msgrcv() has successfully received its message, it modifies the data structure associated with id in the
following ways:

• It decrements field msg_qnum by one.

• It sets msg_lrpid to the identifier of the process that called msgrcv().

• It sets msg_rtime to the current time.

When it completes successfully, msgrcv() returns the number of bytes written into the field mtext of the structure
pointed to by buffer.

Example
For an example of this function, see the Lexicon entry for msgget().

Files
/usr/include/sys/ipc.h
/usr/include/sys/msg.h

See Also
libc, msgctl(), msgget(), msgsnd()

msgs — Command
Read messages intended for all COHERENT users
msgs [-q] [number]

msgs selects and displays messages that are intended to be read by all COHERENT users. Messages are mailed to
the login msgs. They should contain information meant to be read once by most users of the system.

The command msgs normally is in a user’s .profile, so that it is executed every time he logs in. When invoked, it
prompts the user with the identifier of the user who sent the message and the message’s size. msgs then asks the
user if he wishes to see the rest of the message. The user should reply with one of the following:

y Display the message.
<return> Display the message.
n Skip this message and go to the next one.
- Redisplay the last message.
q Quit msgs.
number Display message number; then continue.

If environmental variable PAGER is defined, msgs will ‘‘pipe’’ each message through the command specified in
PAGER. For example, the .profile command line:

export PAGER="exec /bin/scat -1"

would invoke /bin/scat for each message with the command line argument -1 (the digit one).

msgs writes into the file $(HOME)/.msgsrc the number of the next message the user will see when he invokes
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msgs. msgs keeps all messages in the directory /usr/msgs; each message is named with a sequential number,
which indicates its message number. The file /usr/msgs/bounds contains the low and high numbers of the
messages in the directory; msgs determines whether a user has not read a message by comparing the information
in $(HOME)/.msgsrc with that in /usr/msgs/bounds. If the contents of /usr/msgs/bounds are incorrect, the
problem can be fixed by removing that file; msgs will create a new bounds file the next time it is run.

When the contents of a message are no longer needed, simply remove that message. Avoid removing the bounds
file and the highest numbered message at the same time.

msgs accepts the following command-line options:

-q Query whether there are messages; print ‘‘There are new messages’’ if there are, and ‘‘No new messages’’ if
not. The command msgs -q is often used in profile scripts.

number Start at message number rather than at the message recorded in $(HOME)/.msgsrc. If number is greater
than zero, then start with that message; if number is less than zero, then begin number messages before
the one recorded in $(HOME)/.msgsrc.

Files
/usr/spool/mail/msgs — Mail messages file
/usr/msgs/[1-9]* — Data base
/usr/msgs/bounds — File that contains message number bounds
$(HOME)/.msgsrc — Number of next message to be presented

See Also
commands, mail, PAGER, scat

msgsnd() — General Function (libc)
Send a message
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
msgsnd(id, buffer, size, flag)
int id, size, flag; long *buffer;

The function msgsnd() inserts a message into the queue associated with identifier id.

buffer points to a user-defined buffer that holds a code that defines the type of the message, and the text of the
message. buffer can be described by a structure something like the following (if we pretend mtext[] is legal C):

struct msgbuf {
long mtype; /* message type */
char mtext[]; /* message text */

};

Field mtype is a positive long integer that gives the type of message this is. Function msgrcv() examines this field
to see if this message is of the type that it seeks. The text of the message immediately follows mtype in memory,
for size bytes. size can range from zero to a maximum defined in the kernel variable NMSC.

If any of the following error conditions occurs, msgsnd() does not send the message, sets errno to the value given
in parentheses, and returns -1:

• id is not a valid message queue identifier (EINVAL).

• The calling process does not have permission to manipulate this queue (EACCES).

• Field mtype in the structure pointed to by buffer is less than one (EINVAL).

• size is less than zero or greater than the system-imposed limit (EINVAL).

• buffer points to an illegal address (EFAULT).

Sending a message may exceed a system-defined limit. There are two such limits: one limits the size of a queue,
and the other sets the total number of messages available to your system. The maximum size of this queue is
given in the field msg_qbytes of the structure msqid_ds that controls that queue. If issuing a message size bytes
long would push the total size of the queue’s messages past the value of msg_qbytes, then an error occurs.
Likewise, an error occurs if the system already holds the maximum maximum number of message available to it,
as set by the kernel variable NMSG.
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flag indicates how msgsnd() is to react to either of the above conditions. If flag is OR’d to include value
IPC_NOWAIT, then msgsnd() reacts as it does with any other error: it does not send the message, it returns -1,
and it sets errno to an appropriate value (in this case, EAGAIN). If, however, flag is not OR’d to include
IPC_NOWAIT, then msgsnd() waits until any of the following happens:

1. The error condition resolves. In this case, msgsnd() sends the message and returns normally.

2. The message queue identified by id is removed from the system. In this case, msgsnd() does not send the
message; it sets errno to EIDRM; and it returns -1.

3. The process that issued the call to msgsnd() receives a signal. In this case, msgsnd() does not send the
message, sets errno to EINTR, and returns -1. The calling process then executes the action requested by the
signal. For information on the behavior that each signal invokes, see the Lexicon entry for signal().

msgsnd() successfully sends a message, returns zero and modifies the message queue in the following manner:

• It increments by one the value in field msg_qnum.

• It sets field msg_lspid to the process ID of the calling process.

• It sets msg_stime to the current time.

Example
For an example of this function, see the Lexicon entry for msgget().

Files
/usr/include/sys/ipc.h
/usr/include/sys/msg.h

See Also
libc, msgctl(), msgget(), msgrcv()

msig.h — Header File
Machine-dependent signals
#include <signal.h>

The header file msig.h defines the machine-dependent signals that the COHERENT system uses to communicate
with its processes. The header file signal.h declares constants for the machine-independent signals, and includes
msig.h.

See Also
header files, signal.h

Notes
This header file is obsolete, and will be dropped from a future release of COHERENT. Its use is strongly
discouraged.

msqrt() — Multiple-Precision Mathematics (libmp)
Compute square root of multiple-precision integer
#include <mprec.h>
void msqrt(a, b, r)
mint *a, *b, *r;

msqrt() sets the multiple-precision integer (or mint) pointed to by b to the integral portion of the positive square
root of the mint pointed to by a. It sets the mint pointed to by r to the remainder. The value pointed to by a must
not be negative. The result of the operation is defined by the condition

a = b * b + r.

See Also
libmp
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msub() — Multiple-Precision Mathematics (libmp)
Subtract multiple-precision integers
#include <mprec.h>
void msub(a, b, c)
mint *a, *b, *c;

msub() subtracts the multiple-precision integer (or mint) pointed to by a from the mint pointed to by b, and writes
the result into the mint pointed to by c.

See Also
libmp

mtab.h — Header File
Currently mounted file systems
#include <mtab.h>

The file /etc/mtab contains an entry for each file system mounted by the command mount. This does not include
the root file system, which is already mounted when the system boots.

Both the commands mount and umount use the following structure, defined in mtab.h. It contains the name of
each special file mounted, the directory upon which it is mounted, and any flags passed to mount (such as read
only).

#define MNAMSIZ 32
struct mtab {

char mt_name[MNAMSIZ];
char mt_special[MNAMSIZ];
int mt_flag;

};

Files
/etc/mtab

See Also
header files, mount, umount

mtioctl.h — Header File
Magnetic-tape I/O control
#include <sys/mtioctl.h>

mtioctl.h defines constants and structures used by routines that control magnetic-tape I/O.

See Also
header files

mtoi() — Multiple-Precision Mathematics (libmp)
Convert multiple-precision integer to integer
#include <mprec.h>
int mtoi(a)
mint *a;

mtoi() returns an integer equal to the value of the multiple-precision integer (or mint) pointed to by a. The value
pointed to by a should be in the range allowable for a signed integer.

See Also
libmp

mtos() — Multiple-Precision Mathematics (libmp)
Convert multiple-precision integer to string
#include <mprec.h>
char *mtos(a) mint *a;

LEXICON

938 msub() — mtos()



mtos() converts the multiple-precision integer (or mint) pointed to by a to a string. It returns a pointer to the
string it creates. The string is allocated by malloc(), and may be freed by free(). The base of the string is set by the
value of the external variable obase.

See Also
libmp

mtune — System Administration
Define tunable kernel variables
/etc/conf/mtune

File mtune defines all of the tunable variables within the kernel. These variables let you configure some aspects of
your kernel, without having to modify the kernel’s drivers or recompile the kernel.

Command idmkcoh reads this file when it builds a new kernel, and uses its contents to help patch the newly build
kernel. A mkdev script (kept in a subdirectory of /etc/conf) also sets appropriate variables within this file, based
on your answers to its questions.

Each line within mtune defines one tunable parameter. A line consists of four fields, as follows:

1. Name
This field names the parameter. It cannot exceed 20 characters.

2. Minimum Value
The legal minimum value of this parameter.

3. Default Value
The default value for this parameter. This value can be overridden by an entry in file /etc/conf/stune.

4. Maximum Value
The legal maximum value of this parameter.

Note that under UNIX System V, fields 2 and 3 are reversed. A line that begins with the pound sign ‘#’ is a
comment, and is ignored by idmkcoh when it builds a new kernel.

For details on the parameters that this file sets, read the comments within this file.

See Also
Administering COHERENT, device drivers, mdevice, sdevice, stune

Notes
mtune contains comments that describe the kernel variables that you can tune. If you wish to tune the kernel,
you should read this file and modify it appropriately. The variables are documented in this file rather than in the
COHERENT manual to ensure that you have exactly accurate information about the variables that reside in the
version of the kernel on your system.

mtype() — General Function (libc)
Return symbolic machine type
#include <mtype.h>
char *mtype(type)
int type;

mtype() takes an integer machine type and returns the address of a string that contains the symbolic name of the
machine. The header file mtype.h defines the possible machine types. For example,

mtype(M_PDP11)

returns the address of the string PDP-11.

Files
<mtype.h>

See Also
libc
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Diagnostics
mtype() returns NULL to indicate that it doesn’t recognize the type of machine requested.

mtype.h — Header File
List processor code numbers
#include <mtype.h>

The header file mtype.h assigns a code number to each of the processors supported by Mark Williams C compilers
and operating systems. These include the Intel i8086, i8088, i80186, i80286, and i80386; the Zilog Z8001 and
Z8002; the DEC PDP-11 and VAX; the IBM 370, and the Motorola 68000.

See Also
header file

mult() — Multiple-Precision Mathematics (libmp)
Multiply multiple-precision integers
#include <mprec.h>
void mult(a, b, c)
mint *a, *b, *c;

mult() multiplies the multiple-precision integers (or mints) pointed to by a and b, and writes the product into the
mint pointed to by c.

See Also
libmp

mv — Command
Rename files or directories
mv [-f] oldfile [newfile]
mv [-f] file ... directory

mv renames files. In the first form above, it changes the name of oldfile to newfile. If newfile already exists, mv
replaces it with the file being moved; if not, mv creates it. If newfile is a directory, mv places oldfile under that
directory.

In the second form, mv moves each file so that it resides under directory. If a file with the new name exists but is
unwritable, mv will not delete it unless the -f option is specified.

mv will not copy directories between devices and will not remove directories that occupy the destination of the
command.

Normally, mv creates a link to the old file with the new file and then removes the old file. If it cannot create the
link (e.g., because the new file is on a different file system than the old), mv performs a copy and then removes the
old file.

See Also
commands, cp, ln, mvdir

Notes
mv tests the validity of directory moves by means of search permission. The superuser always has search
permission and thus can use mv incorrectly.

mvdir — Command
Rename a directory
/etc/mvdir olddir newdir

The COHERENT command mvdir renames directory olddir to newdir. Both can be path names.

For obvious reasons, olddir cannot be a subset of newdir. Both olddir and newdir must reside on the same file
system.

See Also
commands, mv
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Notes
mvdir is a link to mv.

mvfree() — Multiple-Precision Mathematics (libmp)
Free multiple-precision integer
#include <mprec.h>
void mvfree(a)
mint *a;

mvfree() frees the space allocated to an automatic multiple-precision integer (or mint). You should call mvfree()
before exiting the function that uses the mint, or the storage used by the val field of the mint structure will never
be reclaimed.

See Also
libmp

mwcbbs — Command
Download files from the Mark Williams bulletin board
mwcbbs [-cp] [-dpath] directory

The command mwcbbs lets you select one or more files from mwcbbs, the bulletin board maintained by Mark
Williams Company. It displays the contents of Contents files that you download from the bulletin board, lets you
select one or more files interactively, then constructs a uucp command and requests the files from Mark Williams.
If all goes well, the files will be delivered to directory /usr/spool/uucppublic on your system. mwcbbs. In this
way, you can obtain the latest versions of COHERENT software, sources for public-domain software that has been
ported to COHERENT, and exchange mail with MWC developers and support personnel.

Options
mwcbbs recognizes the following options:

-c Force uucp to telephone the Mark Williams bulletin board when you exit from mwcbbs.

-dpath Use path in place of the default receive path.

-p Print the Contents file. You can print all entries in a Contents file, or entries newer than a specified date.

mwcbbs looks for the file .mwcbbs in the current directory. This file contains the interface variables DOWNPATH
and DATAPATH. The former names names the directory into which uucp is to write the requested files; and the
latter names the directory where you keep data files. For example:

DOWNPATH=/usr/spool/uucppublic/
DATAPATH=/usr/lib/mwcbbs

Please note that path names are limited to 45 characters.

When you invoke mwcbbs, it displays a menu with the following items:

0. Contents.down
List public-domain software and shareware available for COHERENT release 3.N (COHERENT 286).

1. Contents.32bit
List public-domain software and shareware available for COHERENT release 4.N (COHERENT 386).

2. Contents.news
List news items and other informative postings from MWC.

3. Contents.UPD
List updates to COHERENT.

4. Maillist
List the mail sites available through mwcbbs.

5. Net_Maps
Show available network maps of world-wide UNIX sites.

LEXICON

mvfree() — mwcbbs 941



6. Quit Exit from mwcbbs.

Downloading Files
If you select items 0 through 3 from the main menu, mwcbbs displays the names of files, 100 at a time. These
names are read from a Contents file that is stored in a directory you name either with the option -d or the variable
DATAPATH.

You can select one or more of these files for downloading to your system. Note that when you invoke mwcbbs for
the first time, the only files displayed are those of the Contents files themselves; you must download them first,
before you can begin to download other files. This is because the Contents are continually being updated, and
also to test your UUCP with the Mark Williams bulletin board before you attempt to download a large number of
source files.

To select a file for downloading, use the arrow keys to move the cursor to that file (or use the vi cursor-movement
keys h, j, k, and l). mwcbbs lets you enter any of the following commands:

-s Select highlighted file name for more information or downloading. Pressing (¢) also selects the file.

-n Go to next screen (if there are more than 100 files).

-p Go to the previous screen.

-q Quit mwcbbs.

When you select a highlighted file, mwcbbs displays the following information about it:

• A summary of the file.

• The date it was added or last updated

• Other files that are required for compilation or use of selected file name.

• Other miscellaneous notes that may be of interest.

• The system commands to be generated to download the selected file from the Mark Williams bulletin board.

If a file is more than 50,000 bytes long, mwcbbs downloads it in parts. When a file is to be received in parts you
must concatenate the parts into one file, which should be given the name of the file you selected.

Lists and Networks
Item 4 on the main menu (Maillist) gives you information about electronic mail sites throughout the United States.
When you select this option, mwcbbs displays the names of the 50 states. When you select a state, as with the file
lists, mwcbbs displays information about the mail sites in that state.

Item 5 (Net_Maps) gives you information about networks. When you select this option, mwcbbs displays a menu
with the following items:

0. Net_Maps.WORLD
Network maps of UNIX sites across the world.

1. Net_Maps.USA
Network maps of UNIX sites in the United States, by area code.

2. Net_Maps.CAN
Network maps of UNIX sites in Canada, by area code.

3. Quit Return to main menu.

Options 0 through 2 display maps of available networks. You can select a map interactively, as with the file
options.

Printing a Contents File
When you invoke mwcbbs with its -p option, it lists the four Contents files. When you select one, mwcbbs asks
you to enter a search date. If you enter a search date, mwcbbs prints only those entries that are dated later than
that date. If you do not enter a date, it prints every entry in the Contents file entries.

Entries are printed to the file mwcbbs. When the entries have been printed, mwcbbs automatically exits to the
shell.
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See Also
commands, UUCP
COHERENT Tutorial: UUCP, Remote Communications Utility

Notes
mwcbbs does not work correctly until you have correctly configured UUCP to contact the Mark Williams bulletin
board. For details on how to do so, see the tutorial UUCP, Remote Communications Utility in the front of the
COHERENT manual.

The charges for downloading a large set of files via a long-distance telephone call can be quite heavy. Much
depends upon the speed of your modem and the time you place your call. Caveat utilitor!
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n.out.h — Header File
Define n.out file structure
#include <n.out.h>

n.out.h defines the n.out file structure. It is the same as the standard COHERENT form l.out, except that it uses
32-bit addressing. This file structure is used internally in COHERENT, but is not available under the COHERENT C
compiler or assembler.

See Also
coff.h header files, l.out.h

name space — C Language
C name-space rules
The term
name space
refers to the ‘‘list’’ where the translator records an identifier.
Each name space holds a different set of identifiers.
If two identifiers are spelled exactly the same and appear within
the same scope but are not in the same name space,
they are not considered to be identical.

The five varieties of name space, as follows:

Macro Names
Macro names introduced with #define are special. Because macro replacement happens before the
program text is scanned for the other classes of names, macro names exist in a global name space that
pays no heed to the rules below. See the description of name-space pollution, below, for more on this.

Label Names
The translator treats every identifier followed by a colon ‘:’ or that follows a goto statement as a label.

Tags A tag is the name that follows the keywords struct, union, or enum. It names the type of object so
declared.

Members
A member names a field within a structure or a union. A member can be accessed via the operators ‘.’ or ‘-
>’. Each structure or union type has a separate name space for its members.

Ordinary identifiers
These name ordinary functions and variables. For example, the expression

int example;

declares the ordinary identifier example to name an object of type int.

Name-Space Pollution
The ANSI Standard and the POSIX Standard recognize special problems that relate to the above classes of name
space and to the names supplied to the user by the translator or the #include mechanism. They provide special
rules that govern what names a program and an implementation can define.

Although the above rules are good at resolving conflict, in the context of a large programming project (which the
standard C library is, effectively) they are not always sufficient. First, there is the possibility that definitions in
library header files may conflict with each other, or with user definitions. Second, an internal definition in the
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standard library may conflict with a user definition that happens to have the same name.

The ANSI Standard defines rules that set aside some names for the implementation. The implementation can use
only these names, and user applications cannot use them. When implementations and applications both obey
these rules, a user program cannot conflict with a definition in a system header file. The rules are as follows:

• Any name that begins with an underscore followed by a capital letter or underscore is reserved for use by the
implementation. Applications should not use any symbols of this form except to define feature-test macros
(e.g., _POSIX_SOURCE, see below).

• Any name that begins with an underscore followed by a lower-case letter is reserved for use by the application
if the name is internal (such as a static symbol or a tag- or member-name). Macro names of this form are
forbidden, because they do not obey the other name-space rules above: a user-level macro definition could
cause a conflict with a private structure-member defined in a system header.

• C++ reserves for the implementation all names that contain two underscores.

• The Standard forbids external identifiers (i.e., non-static functions and variables) that match any of the
function or variable defined in the C standard.

• If a program #includes a standard library header file, it cannot use a macro definition that matches the name
of any function or variable defined in any standard library header.

These rules are supplemented with rules that govern the use of names that are defined in any library header
described in the ANSI Standard or the POSIX Standard. The following gives the rules that apply to individual header
files:

<errno.h>
The implementation can define extra macros that begin with the letter ‘E’.

<signal.h>
The implementation can define extra macros that begin with SIG_.

If an application needs to use any function that the POSIX Standard defines, it should contain the following line
before any #include directives:

#define _POSIX_SOURCE 1

This sets the _POSIX_SOURCE feature-test macro. If this is done, the POSIX Standard reserves symbols for some
header files. If an application includes one of the following header files, it must not use any of symbols reserved for
that header:

<dirent.h>
Reserved prefix: d_.

<fcntl.h>
Reserved prefixes: l_, F_, O_, and S_. Reserved symbols: SEEK_CUR, SEEK_END, and SEEK_SET.

<grp.h>
Reserved prefix: gr_.

<limits.h>
Reserved suffix: _MAX.

<pwd.h>
Reserved prefix: pw_.

<signal.h>
Reserved prefixes: sa_, SIG_, and SA_.

<sys/stat.h>
Reserved prefixes: st_ and S_.

<sys/times.h>
Reserved prefix: tms_.

If an application #includes any header described in the POSIX Standard, all symbols with the suffix _t are reserved.

Note that the symbols defined above that begin with an upper-case letter may be used by an application after the
#include directive if the application uses an #undef directive to cancel any conflicting definition supplied by the
header.
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Example
The following program illustrates the concept of name space. It shows how the identifier foo can be used
numerous times within the same scope yet still be distinguished. This is extremely poor programming style.
Please do not write programs like this.

#include <stdio.h>
#include <stdlib.h>

/* structure tag */
struct foo {

/* structure member */
struct foo *foo;
int bar;

};

main()
{

/* ordinary identifier */
struct foo *foo;
int i = 0;

foo = (struct foo *)malloc(sizeof(*foo));
foo->bar = ++i;
foo->foo = NULL;

/* label */
foo: printf("What kind of \"foo\" am I?\n");

if (foo->foo == NULL) {
foo->foo = (struct foo *)malloc(sizeof(*foo));
foo->foo->foo = NULL;
foo->foo->bar = ++i;
goto foo;

}

printf("The foo loop executed %d times\n", foo->foo->bar);
return(EXIT_SUCCESS);

}

See Also
C language
ANSI Standard, §3.1.2.3

Notes
Pre-ANSI implementations disagree on the name spaces of structure/union members. The Standard adopted the
‘‘Berkeley’’ rules, which state that every unique structure/union type has its own name space for its members. It
rejected the rules of the first edition of The C Programming Language, which state that the members of all
structures and unions reside in a common name space.

named pipe — Definition
A named pipe is a special file created with the command /etc/mknod. Unlike the block- and character-special files
created by mknod, a named pipe is not a device.

A named pipe acts like a conventional pipe set up between related processes. It differs in that it has a visible name
that can be seen in a file system. It also differs in that it has permissions (since it’s a file and has a name)
associated with it just like any other file. This allows a named pipe to be accessed by processes that are not related
to each other, and can even be used for processes that are running on behalf of different users.

The following illustrates how one process can write data into a named pipe and an unrelated process can read from
it:

/etc/mknod my_pipe p # create the named pipe
chmod 644 my_pipe
ls -lR / > my_pipe & # pump data into pipe in background
mail fred < my_pipe # read from the pipe and process

This script creates a named pipe called my_pipe and makes sure that it is readable; it then pumps a mass of data
into the pipe (in the background), and finally has a process read data from the named pipe and perform some
action on them (in this case, mail the data to user fred). In this example, the mail process could be running from
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another login and could either be in the foreground or background.

See Also
libsocket, mkfifo(), mknod, pipe, Using COHERENT
POSIX Standard, §5.4.2

nap() — System Call (libc)
Sleep briefly
long nap(interval)
long interval;

nap() sleeps for interval milliseconds, or until its process receives a signal, whichever occurs first.

If it receives no signal, nap() returns the number of milliseconds it slept. If it received a signal, it returns -1 and
sets errno to EINTR.

See Also
libc, sleep()

Notes
nap() is governed by the granularity of the system clock. Under COHERENT, the system clock ticks every ten
milliseconds; thus, the call nap(1); and the call nap(9); have the same effect. Note that nap() is guaranteed to sleep
for at least interval milliseconds; thus, the call nap(11); sleeps for two clock ticks, or 20 milliseconds.

ncheck — Command
Print file names corresponding to i-node
ncheck [ -i number ... ] [ -as ] filesystem ...

An i-number identifies an i-node. ncheck generates a list of file names by i-number for each filesystem, which
should be the name of a device special file that contains a proper COHERENT file system. Using the raw device
generally decreases the time ncheck requires to do its work.

The output is in the unsorted traversal order of the file system hierarchy. ncheck distinguishes directories from
files by suffixing ‘/.’ to directory names.

Under the -i option, ncheck prints the file name corresponding to each i-number number in the given list. Under
the -a option, ncheck prints only the names of special files and set user-ID mode files; this option allows the
system administrator to ascertain quickly whether these files represent possible security breaches.

See Also
commands, i-node

Diagnostics
ncheck appends ‘??’ to the generated file name if it cannot find the proper parent structure while retrieving the file-
name information. It represents any loops detected in the file name by the characters ‘...’. Extremely addled file
systems may generate other reasonably self-explanatory diagnostics.

ndbm.h — Header File
Header file for NDBM routines
#include <ndbm.h>

Header file <ndbm.h> declares the functions used to manipulate NDBM data bases:

dbm_clearerr() . . . . . Clear an error condition on an NDBM data base
dbm_close() . . . . . . . Close an NDBM data base
dbm_delete() . . . . . . Delete records from an NDBM data base
dbm_dirfno() . . . . . . Return the file descriptor for an NDBM .dir file
dbm_error() . . . . . . . Check a NDBM data base for an error
dbm_fetch() . . . . . . . Fetch a record from an NDBM data base
dbm_firstkey() . . . . . Retrieve the first key from an NDBM data base
dbm_nextkey() . . . . . Retrieve the next key from an NDBM data base
dbm_open() . . . . . . . Open an NDBM data base
dbm_pagfno() . . . . . . Return the file descriptor for an NDBM .pag file
dbm_rdonly() . . . . . . Set an NDBM data base into read-only mode
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dbm_store() . . . . . . . Store a record into an NDBM data base

Routines dbm_error() and dbm_clearerr() are macros that, in fact, do nothing.

This header file also defines two structures that the NDBM routines use. The first, datum, defines the structure of
a data element, either a key or its associated data set:

typedef struct {
char *dptr;
int dsize;

} datum;

This structure lets you have a key and a data element of unlimited length.

The other structure, DBM, holds the information that the NDBM routines use to access a NDBM data base:

typedef struct {int dummy[10];} DBM;

See Also

Notes
For a statement of copyright and permissions on this header file, see the Lexicon entry for libgdbm.

netdb.h — Header File
Define structures used to describe networks
#include <netdb.h>

Header file <netdb.h> defines structures into various sockets functions write information about the local network.
It also defines manifest constants and macros used by various sockets routines.

See Also
endnetent(), endprotoent(), endservent(), getnetbyaddr(), getnetbyname(), getnetent(), getprotobyname(),
getprotobynumb(), getprotoent(), getservbyname(), getservbyport(), getservent(), header files, libsocket,
setnetent(), setprotoent(), setservent()

networks — System Administration
Name remote networks
/etc/networks

The file /etc/networks names remote networks with which you can communicate, and gives information with
which your system can pass datagrams to those networks.

If you wish to communicate on the Internet, you must create this file by obtaining the official network data base
maintained by the Network Information Control Center (nic.ddn.mil). To this, add information about other
networks not listed by NIC, with which you may wish to communicate.

If you are not going to use the Internet, you can create your own version of /etc/networks. Each line within
networks describes one remote network, and consists of the following fields:

• The network’s name. A network name can contain any printable character other than white space, a newline
character, or the comment character ‘#’.

• The network’s Internet-protocol (IP) address, in standard dot notation.

• Aliases, if any, for the network’s name.

For example:

mysubnet 127.0.1 an_alias # a comment

If you create your own version of /etc/networks, be sure to set its permissions correctly. It should be owned by
the superuser root, and be executable.

See Also
Administering COHERENT, hosts, hosts.equiv, inetd.conf, protocols, services

LEXICON

948 netdb.h — networks



newaliases — Command
Build the smail aliases data base from an ASCII source file
/usr/lib/mail/newaliases

Command newaliases reads the ASCII source file for an aliases data base, and builds the aliases data base
according to the configuration information in /usr/lib/mail/config. Run this program whenever changes have
been made to the ASCII source file. If this program is not used, smail may not notice the changes that have been
made.

The aliases data base can be in a DBM data base, a sorted text file, or a plain text file. (For information about what
a DBM data base is, see the Lexicon entry for libgdbm.) In the latter case, which is the default under COHERENT,
the ASCII source file doubles as the data-base file.

To process an file, first use the command mkline to remove comments and regularize it. If you wish to build a
sorted data base, then use the command mksort with its command-line option -f to create the sorted data base. If
you wish, however, to build a DBM data base, use command mkdbm, again with option -f, to create the data base.
In either case, be careful that smail never uses a truncated or partially built data base.

For plain text data bases, newaliases displays a summary of its contents, but no changes are actually made.

Files
/usr/lib/mail/aliases

The text file that defines aliases.
/usr/lib/mail/aliases.dir
/usr/lib/mail/aliases.pag

The DBM data base that is built from the text file aliases.
/usr/lib/mail/config

The file that gives the default configuration for smail.

See Also
commands, libgdbm, mail [overview], mkdbm, mkline, mksort, smail

Notes
The name newaliases is retained for compatibility with BSD sendmail. Under smail release 3.1, this command
usually is named mkaliases.

Copyright  1987, 1988 Ronald S. Karr and Landon Curt Noll. Copyright  1992 Ronald S. Karr.

For details on the distribution rights and restrictions associated with this software, see file COPYING, which is
included with the source code to the smail system; or type the command: smail -bc.

newgrp — Command
Change to a new group
newgrp group

newgrp changes the user’s group identification to the specified group, if access is permitted. The file /etc/group
determines group access. Group access may be unrestricted, or open to all users with specific exceptions, or
restricted to certain users via a password.

The shell executes newgrp directly.

Files
/etc/group — Give group access

See Also
commands, group, ksh, sh

Diagnostics
If newgrp succeeds, no diagnostic is printed.

Notes
Interruption of newgrp can result in the user being logged off.
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Under the Korn shell, newgrp is an alias for exec newgrp.

newusr — Command
Add new user to COHERENT system
/etc/newusr login "User Name" parentdir [ shell ]

newusr adds a new user to the system. It automatically adds an entry to the file /etc/passwd, creates a home
directory for the user, installs the user in the mail system, and otherwise performs the myriad tasks required to
add a new user to your COHERENT system.

login is the login idenifier of the new user. This is a single word in lower case, by which that user is identified.
Note that each user must have a unique login identifier. Identifiers are usually the user’s first name, initials, or a
nickname. parentdir is the directory or (more usually) the file system in which newusr will create the new user’s
home directory. User Name is the name of the human for whom login is being created. shell names the shell to be
used; the default is the Bourne shell /bin/sh.

For example, the command

/etc/newusr batman "Bruce Wayne" /v /usr/bin/ksh

creates new user Bruce Wayne, with login batman, home directory /v/batman, and default shell /usr/bin/ksh.

Files
/etc/group — User groups
/etc/passwd — User passwords
/parentdir/user — User home directory
/usr/spool/mail/user — User mailbox

See Also
commands, passwd, welcome

Diagnostics
newusr complains if an entry for user already exists in the password file.

Notes
Only the superuser can add new users to the system with newusr.

nextkey() — DBM Function (libgdbm)
Retrieve the next record from a DBM data base
#include <dbm.h>
datum nextkey ()

Function nextkey() retrieves the next record from the currently open DBM data base. The data base must first
have been opened by a call to dbminit(), and the first record within the data base must have been retrieved by a
call to firstkey().

nextkey() returns a pointer to the retrieved record. If no record is available (i.e., every record has already been
retrieved), or if an error occurred, field dptr within the returned record is initialized to NULL.

You can use this function with function firstkey() to walk through the entire contents of a DBM data base. For
example:

for(key=firstkey(); key.dptr!=NULL; key=nextkey(key))

Please note that the hashing algorithm used the DBM functions dictates which record is ‘‘next’’ within the data
base. A loop that uses this function plus the function firstkey() will retrieve every record from the data base;
however, the records probably will not be in the order you expect.

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.
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nm — Command
Print a program’s symbol table
nm [ -adgnopru ] file ...

The command nm prints the symbol table of each file. It can read binary files produced by the compiler, assembler,
or linker.

When a C source file is compiled with the -c switch to the cc command, or when a file of assembly language is
assembled, the result is an object module, which is signified by the suffix .o.

The linker ld links multiple object modules to form an executable program. Frequently used object modules often
are grouped by the archiver ar into a library, which is signified by the suffix .a. nm can read all three kinds of
files: .o, .a, and fully linked executables.

Options
nm recognizes the following options:

-a (COHERENT 286 only)
Print all symbols. Normally, nm prints names that are in C-style format and ignores symbols with names
inaccessible from C programs.

-d Print only defined symbol.

-g Print only global symbols.

-n Sort numerically rather than alphabetically. nm uses unsigned compares when sorting symbols with this
option.

-o Append the file name to the beginning of each output line.

-p Print symbols in the order in which they appear within the symbol table.

-r Sort in reverse-alphabetical order.

-u Print only undefined symbols.

Output Format
The output of nm is a series of lines of the form:

segment address symbol

segment gives the segment in which the symbol appears, or UNDEF for undefined symbols. address is either the
address in hexadecimal, or the length of a common variable. symbol names the symbol.

For example, if foo.o is a relocatable object module, the output of the command nm -o foo.o would appears as
follows:

#nm foo.o
UNDEF 00000000 _canl
UNDEF 00000000 _stderr
.text 0000077C acomp
.text 00000034 acomp_old
UNDEF 00000000 alloc
.text 00000F28 archive
.comm 00000004 asw
.text 000003CC csymbol
.comm 00000004 dsw

See Also
cc, commands, ld, size, strip

nohup — Command
Run a command immune to hangups and quits
nohup command [arguments]

The command nohup tells the COHERENT shell to execute command while ignoring all hangup and quit signals.

If you do not redirect the output of command, nohup redirects both the standard output and the standard error
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into the file nohup.out. If nohup.out cannot be created in the current directory, nohup redirects all output into
the file $HOME/nohup.out.

nohup is often used to execute scripts or pipelines that would normally abort if you logged out during the middle
of execution.

Examples
If file is a shell script, then the command

nohup sh file

executes the contents of file in the foreground while ignoring all quit or hangup signals. The command

nohup sh file &

executes file in the background; you can log out safely and all the contents of file will still be executed.

See Also
commands, kill, ksh, sh, signal()

nologin — System Administration
Lock out logins
/etc/nologin

login looks for file /etc/nologin before it permits a user to login in. If this file exists, login forbids the user to log
in, and instead displays on the terminal the contents of this file — which, presumably, explain why logging in is
now forbidden.

You should create this file when you wish to ‘‘lock out’’ users during a critical time, such as when backups are
being run or when the system is about to be shut down. When the critical time has passed, be sure to remove it.

login cannot lock out the superuser root, even if nologin exists. Nor will it lock out the users named in the file
/etc/trustme, should it exist.

See Also
Administering COHERENT, login, trustme

Notes
The script /etc/rc removes /etc/nologin by default, on the assumption that after you reboot, you once again want
users to be able to log in. If this is not a sound assumption, edit /etc/rc to change this behavior.

notmem() — General Function (libc)
Check whether memory is allocated
int notmem(ptr);
char *ptr;

notmem() checks if a memory block has been allocated by calloc(), malloc(), or realloc(). ptr points to the block to
be checked.

notmem() searches the arena for ptr. It returns one if ptr is not a memory block obtained from malloc(), calloc(), or
realloc(), and zero if it is.

See Also
arena, calloc(), free(), libc, malloc(), memok(), realloc(), setbuf()

Notes
The only valid use for notmem() is in debugging code, such as in the bodies of calls to the macro assert(). We
furthermore recommend that portable code should conditionalize use of notmem() so that the code may continue
to compile on systems that lack such a facility.
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nptx — Command
Generate permutations of users’ full names
/usr/bin/nptx

The command nptx reads an address/name pair (that is, an address and a user’s full name), and prints on the
standard output as many permutations of the user’s name as it can devise, each linked to the given address. A set
of such permutations helps to relieve a user of the need to know the exact form of another user’s name when she
wishes to send mail to that user. When a set of users’ names is filtered through nptx, the mail program smail can
use the output as a ‘‘full-name data base’’.

The format of an input line is:

name<tab>address

name gives the user’s first name, last name, optional middle initial, and optional nickname in parentheses; all are
separated by space characters. address can contain any e-mail address. name and address are separated by one
<tab> character.

nptx prints all permutations of the first names and initials, with the last name appearing in each permutation.
Permutations are not necesarily unique.

Example
Given the name/address pair

LaMonte Cranston(Shadow)<tab>shadow@goodguy.com

nptx produces the following set of permutations:

Cranston shadow@goodguy.com
L.Cranston shadow@goodguy.com
LaMonte.Cranston shadow@goodguy.com
S.Cranston shadow@goodguy.com
Shadow.Cranston shadow@goodguy.com

See Also
commands, mail, mkfnames, paths, smail

Notes
nptx normally is invoked via the script mkfnames, which reads a file of names (or the file /etc/passwd and
generates a data base of names and addresses that can be used by the mail system.

nptx assumes European-style names, i.e., that the family name comes last (unlike Asian or Hungarian names, in
which the family name comes first).

nrand48() — Random-Number Function (libc)
Return a 48-bit pseudo-random number as a non-negative long integer
long nrand48(xsubi)
unsigned short xsubi[3];

Function nrand48() generates a 48-bit random number, then returns its high 31 bits in the form of a non-negative
long. The value returned is (or should be) uniformly distributed throughout the range of zero through 2^31. xsubi
is an array of three unsigned short integers from which the pseudo-random number is built.

See Also
libc, srand48()

nroff — Command
Text-formatting language
nroff [option ...] [file ...]

nroff is the COHERENT text-formatter and text-formatting language. By embedding commands within files of text,
you can instruct nroff to format text, create paragraphs, subheadings, headers, footers, and in general perform all
tasks required to format text for the printed page or for screen display.

nroff is designed to be used with character-display terminals or monospace printers. The related program troff
performs typeset-quality formatting, suitable for printing on the Hewlett-Packard LaserJet printer or any printer for
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which the PostScript language has been implemented. troff’s formatting language is a superset of that used by
nroff. Text that you have encoded for formatting by nroff will work with troff, but the reverse is not always true.
See the Lexicon entry on troff for information that applies to troff alone.

nroff Input
nroff processes each file, or the standard input if none is specified, and prints the formatted result on the standard
output. The input must contain formatting instructions as well as the text to be processed.

Basic nroff commands provide for such things as setting line length, page length, and page offset, generating
vertical and horizontal motions, indentation, filling and adjusting output lines, and centering. The great flexibility
of nroff lies in its acceptance of user-defined macros to control almost all formatting. For example, the formation
of paragraphs, header and footer areas, and footnotes must all be implemented by the user via macros.

The following summarizes the commands and options that can be used with nroff. Four types of commands and
options are described: (1) command line options; (2) nroff’s basic commands (also called primitives); (3) escape
sequences that can be used with nroff; and (4) nroff’s dedicated number registers, and what information each one
keeps.

Command-line Options
Command-line options may be listed in any order on the command line. They are as follows:

-d Debug: print each request before execution. This options is extremely useful when you are writing new
macros.

-f name
Write the temporary file in file name.

-k Keep: do not erase the temporary file.

-i Read from the standard input after reading the given files.

-mname
Include the macro file /usr/lib/tmac.name in the input stream.

-nN Number the first page of output N.

-raN Set number register a to the value N.

-rabN Set number register ab to value N. For obvious reasons, ab cannot contain a digit.

-v Return the number of your version.

-x Do not eject to the bottom of the last page when text ends. Use this option when you wish to use nroff
interactively. It, too, is useful when debugging macros.

nroff appends the contents of the environmental variable NROFF to the beginning of the list of command-line
arguments. This let you set commonly used options once in the environment, rather than retype them for each
invocation of nroff.

Primitives
The following gives the basic commands, or primitives, that are built into nroff. These primitives can be assembled
into macros, or can be written directly into the text of your document. Commands may begin either with a period
‘.’ or with an apostrophe; the former causes a break (see .br, below), the latter does not.

.ab msg
Abort: print msg on the standard error and abort processing.

.ad [bclr]
Enter adjust mode: that is, insert white space between words to create right-justified output. b adjusts for
both margins; this is the default. c adjusts and centers on the line. l adjusts, flush with the left margin.
r adjusts, flush with the right margin.

.af R X Assign format X to number register R. The assigned format may be one of the following:
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1 Arabic numerals (default)
i Lower-case Roman numerals
I Upper-case Roman numerals
a Lower-case alphabetic characters
A Upper-case alphabetic characters

.am XX Append the following to macro XX. Used like .de, below.

.as XX Append the following to string XX. Used like .ds, below.

.bp Begin a new page.

.br Break; print any fraction of a line of text that is in the input buffer before reading new text.

.c2 c Set the no-break control character to c. With no argument, reset it to the default character, which is the
apostrophe.

.cc c Set the normal control character to c. With no argument, reset it to the default character, which is the
period.

.ce N Center N lines of text (default, one).

.ch XX N
Change the location of the trap for macro XX to vertical position N on the page. Used like command .wh,
below.

.co endmark
Copy input directly to the output until endmark is seen. If no endmark is given, copy until another .co is
seen.

.cu N Underline the next N lines. When used without an argument, one line is underlined. The instruction

.cu 0

turns off underlining. Note that unlike the UNIX version of nroff, .cu does not perform continuous
underlining — it underlines words, but not spaces.

.da X Divert and append the following text into macro X. A diversion is ended by a .da command that has no
argument.

.de X Define macro X. The macro definition is ended by a line that contains only two periods ‘‘..’’.

.di X Divert the following text into macro X. Diversion is ended by a .di command that has no argument.

.ds X value
Define string X to have the given value.

.ec c Set the escape characer to c. With no argument, reset it to the default backslash character ‘\’.

.el action
Execute action when the test in an .ie command fails. This command must be used with an .ie command.

.em XX Execute macro XX when processing is completed.

.eo Escape off: turn off special handling of all escape sequences.

.ev N Change the environment. When followed by 0, 1, 2, the command pushes that environment; when used
without an argument, the command pops the present environment and returns to the previous
environment.

.ex Exit from nroff without further ado.

.fi Enter fill mode.

.fl Flush; same as .br.

.ft X Change the current font to X. nroff recognizes R, B, and I, for Roman, bold, and italic, respectively.

.ie condition action
This command tests to see if condition is true; if true, it then executes action; otherwise, it performs the
action introduced by an .el primitive. This command must be used with the .el command.
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.if condition action
This command tests to see if condition is true; if so, then action is executed; otherwise, action is ignored.
The command .if o applies if the page number is odd, and the command .if e applies if the page number is
even. The command .if n applies if the text is processed by nroff, and the command .if t applies if the text
is processed by troff. The command .if l applies in landscape mode. The command .if p applies to troff
PostScript mode. Note that the last two conditions are unique to the COHERENT implementation of nroff,
and may not be portable to other implementations.

.ig X Ignore all input until macro .X is called; if no argument is given, ignore input until two periods ‘‘..’’.

.in NX Change the normal indentation to N units of X scale. X can be u or i, for machine units or inches,
respectively. If N is used without X, nroff assumes the indentation to be given in number of character-
widths (in picas, or tenths of an inch). Default indentation is zero.

.it N XX
Set an input trap to execute macro XX after N input lines (not counting request lines).

.lc c Set the leader dot character to c. When nroff sees the escape sequence \a, it fills space to the next tab stop
with the leader dot character. lc with no argument tells nroff to use spaces to fill leaders.

.ll NX Set the line length. Used like the .in command, above.

.ls X Leave spaces; insert X vertical spaces after each line of text. Default is zero.

.lt NX Length of title. Used like the .in command, above.

.na Enter no-adjust mode. Line lengths are not changed.

.ne NX Confirm that at least N portions of X units of measure of vertical space are needed before the next trap. If
this amount of space is not available, then move the text to the top of the next page. X can be i or v, for
inches or vertical spaces, respectively. This command is used in display macros and in paragraph macros
to help prevent widows and orphans.

.nf Enter no-fill mode; no right justification is performed, although line lengths are changed to approximate
uniform line length.

.nh Turn off hyphenation. nroff hyphenates according to built-in algorithms that are correct most of the time,
but not always.

.nr X N1 N2
Set number register X to value N1; set its default increment/decrement to N2. For example, .nr X 2 3 sets
number register X to 2, and sets its default increment to 3.

The basic unit of measurement for nroff 1/120th of an inch; this is also called the machine unit. It is
indicated by the suffix u to a measurement. Unless otherwise stated, all number registers that information
about a page holds that information in nroff machine units.

Other units of measure convert into nroff units as follows:

inch: 1i = 120u
vertical line space: 1v = 20u
centimeter: 1c = 47u
em: 1m = 12u
en: 1n = 12u
pica: 1P = 20u
point: 1p = 1u

.ns No-space mode.

.nx file Terminate processing of the current input file and begin processing file instead.

.pl NX Set the page length to N. The unit of measure X can be V or i, for vertical spaces (sixths of an inch) or
inches, respectively. The default unit of measure is vertical spaces.

.pn N Set the page number to N.

.po NX Set the default page offset to N. The unit of measure X can be set to i, for inches. The default unit of
measure is number of characters.
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.rb file Read binary: read the given file and copy it directly to the output without processing.

.rd prompt
Read an insertion from the standard input after issuing the given prompt.

.rf XX YY
Rename font XX as YY. For example, to have calls to font K remapped to Roman font, use the call:

.rf K R

.rm XX Remove macro or string XX.

.rn XX YY
Change the name of a macro or string from XX to YY.

.rr X Remove register X.

.rs Restore normal space mode.

.so file Open file, read its contents, and process them. When the end of file is reached, resume processing the
contents of the present file.

.sp [|]NX
Space down N. The unit of measure X can be i, for inches, with the default unit of measure being vertical
spaces, or sixths of an inch. The optional vertical bar ‘|’ indicates that N is an absolute value; for example,
.sp |1.5i means to move to 1.5 inches below the top of the page, whereas .sp 1.5i means to move to 1.5
inches below the present position.

.sy command
Execute command under the shell. Please note that this primitive is non-standard. Macros that use it
cannot be formatted under standard AT&T nroff.

.ta NX ...
Set the tab to N. The unit of measure X can be set to i, for inches; the default unit of measure is number of
characters, or tenths of an inch. A tab setting, of course, is for an absolute, not a relative, value. If more
than one tab setting is defined, the first defines the first tabulation character on a text line, the second
defines the second tabulation character, etc. Any undefined tabulations are thrown away.

.tc X N Fill any unused space within a tabulation field with the character X. If the optional N is present, it specifies
a width for the character; for example, .tc . .1i fills tabs with dots spaced one-tenth of an inch apart.

.ti NX Temporary indent; indent only the next line. Used like the .in command, above.

.tl ’left’center’right’
Set a three-part title, with left being set flush left, center being centered on the line, and right being set
flush right. Note the use of the apostrophes to separate the fields; the apostrophes for an undefined field
must still be present, or a syntax error will be generated.

.tm message
Print message on the standard error device. This is often used with .if or .ie commands to indicate an
error condition.

.tr xy Translate character x to y on output.

.ul N This behaves the same as .cu.

.vs Np Reset the normal vertical spacing to N points p. One point equals 1/72 of an inch. The default setting one
pica, which equals is 12 points or 1/6 of an inch.

.wh NX action
Set a trap to perform action when point N is reached on every formatted page. If N is negative, it is
measured up from the bottom of the page. The unit of measure X may be i or v, for inches or number of
vertical lines, respectively; the default unit of measure is v.

Escape Sequences
The following lists nroff’s escape sequences, or commands that suspend or work around the normal operation of
nroff. Each escape sequences is introduced by the escape character, normally the backslash character ‘\’:
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\(xx Print special character xx, as defined by a .dc request. nroff reads default special character definitions
from file /usr/lib/roff/nroff/specials.r. For example, the escape sequence \(<= prints the less-than-or-
equal-to symbol ≤.

\. Print a literal period.

\’ Print a literal apostrophe. This should be used in text that will be manipulated by the \w escape sequence
or the .tl primitive.

\\ Delay interpretation of a backslash character. This normally is used to defer the interpretation of a macro
or string from the time it is processed to the time that it is called.

\- Print a minus sign.

\& Ignore what is normally a command string.

\$N Call macro argument N.

\’’ Introduce a comment within your text. All text to the right of this escape sequence will be ignored by
nroff. This sequence must read .\’’ when used at the beginning of a line.

\*S Call string S.

\*(ST Call string ST.

\a Fill the space to the next tab stop with leader dots (normally ‘.’).

\d Move down by one-half em (troff) or one-half line (nroff). Normally used to do crude subscripting, or to
undo the effect of the \u escape sequence.

\e Print the escape character in the output text — normally, a backslash.

\fX Set font to X; this can be either R, I, B, or P, for Roman, italic, bold, or previous font, respectively.

\h’[|]NX’
Move horizontally by N units of X. If N is positive, move to the right; if negative, move to the left. The unit
of measure X may be i, for inches; the default unit of measure is ems. (One em equals one pica, which is
one-sixth of an inch). When the optional vertical bar ‘|’ is used, move to an absolute position on the line.
For example \h’|1.5i’ moves to 1.5 inches to the right of the left margin, whereas \h’1.5i’ moves 1.5
inches to the right of the current position.

\kx Record the current vertical position into register x.

\l’NX’ Draw a horizontal line N units of X long. The unit of measure X may be i, for inches; the default unit of
measure is character-widths.

\L’NX’ Draw a vertical line; used like \l, above.

\nX Read the value of number register X.

\n(XY Read the value of number register XY.

\o’chars’
Overstrike the given chars, centered on the widest.

\sN Change the current size of the type to N points.

\s+N Increment the current point size by N points.

\s-N Decrement the current point size by N points.

\t Print a tab.

\u Move up by one-half em (troff) or one-half line (nroff). Normally used to do crude superscripting, or to
reverse the effect of the \d escape sequence.

\v’NX’ Vertical motion; move N units of X vertically. If N is positive, move down; if negative, move up. The unit of
measure X may be i or v, for inches or vertical spaces (sixths of an inch), respectively. The default unit of
measure is v.
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\w’argument’
Measure the width of argument. For example

\w’stuff and nonsense’

measures the width of the phrase stuff and nonsense; or

\w’\$1’

measures the width of the first argument passed to a macro, whatever that argument might happen to be.
Therefore, the command .in \w’\$1’ will indent a line by the width of argument 1.

\Xdd Output the character with hexadecimal value dd, where dd are two hexadecimal digits. Users can use this
option to encode characters that are not part of the English-language character set. The hexadecimal
values to which characters map depend upon the character set that you (or your printer) use. Please note
nroff reserves the following values for its internal use:

<Ctrl-SP> X00 Ignored
<Ctrl-A> X01 Leader dots, same as ‘‘\a’’
<Ctrl-I> X09 Tab, same as ‘‘\t’’
<Ctrl-J> X10 Newline

This escape sequence is unique to the COHERENT implementation of nroff and troff. Code that uses it will
behave differently when ported to other implementations.

\zc Print character c with zero width.

\<newline>
Ignore this <newline> character.

\{ Begin conditional commands; used after an .if, an .ie, or an .el command.

\{\ Begin conditional commands, and ignore the following carriage return.

\} End conditional commands.

Dedicated Number Registers
The following lists the number registers that are predefined in nroff. You can read or reset these registers to suit
the need of any special formats that you wish to devise.

$$ Process identifier of the current nroff process. This usually is used with the primitive .sy to name
temporary files.

.$ Number of arguments passed to a macro.

% Present page number.

.c Number of lines read from the current input file. This can be used to help set an input-line trap.

.d Current vertical position in the current diversion. If no diversion is opened, this register’s contents equal
those of the nl register, described below.

dl Maximum width of last completed diversion.

dn Height of last completed diversion.

dw Day of the week (one through seven; one indicates Sunday).

dy Day of the month, as set by COHERENT.

.F Name of input file being read. This is very useful for printing error messages. This register applies only the
COHERENT implementation of nroff. Code that uses it is not portable to other implementations.

.h Vertical position of the current line’s base-line. This number register gives you the best idea of your current
vertical position on the page.

hp Horizontal position on current input line.

.i Present amount of indentation.
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.j Current type and mode of text adjustment.

.l Present line length.

ln Current line number in the output.

mo Month, as set by COHERENT.

.n Width of the text portion of the previously printed line. Useful for underlining, shading, or otherwise
modifying the previous line of text. For example

\l’\n(.nu’

draws a line under the previously printed line of text.

nl Vertical position of the base-line of the last printed line of text.

.o Present page offset.

.p Page length.

.s Size of the type currently being printed, in points.

sb Depth to which a string hangs below its base line. This is generated by the width function.

st Height to which a string extends above its base line. This is generated by the width function.

.t Distance to the next trap. Check this register to see if the object you wish to print on a page will fit.

.v Size of a line, in points. This is set by the vs primitive.

yr Last two digits of the year, as set by COHERENT.

.z Name of the current diversion.

Printer Configuration
nroff reads several files in directory /usr/lib/roff/nroff to find printer-specific information. It reads special
character definitions from file specials.r. If file fonts.r exists, nroff reads font information from it; nroff
understands only Roman, bold and italic fonts, but .rf requests may define alternative font names. If file .pre
exists, nroff copies it at the beginning of the output. If file .post exists, nroff copies it at the end of the output. In
landscape mode, nroff looks for files .pre_land and .post_land instead. You can change these files as desired to
include printer-specific commands in nroff output.

Miscellaneous
The -ms macro package is kept in file /usr/lib/tmac.s. The macros in this package are more than sufficient for
most ordinary text processing. Beginners should work through this macro package rather than trying to deal at
once with the basic program.

The tutorial to nroff, which is included with this manual, provides a detailed introduction to nroff. Error messages
for nroff appear in the appendix to this manual.

Files
/tmp/rof* — Temporary files
/usr/lib/tmac.* — Standard macro packages
/usr/lib/roff/nroff/ — Support files directory
/usr/lib/roff/nroff/.pre — Output prefix
/usr/lib/roff/nroff/.pre_land — Output prefix, landscape mode
/usr/lib/roff/nroff/.post — Output suffix
/usr/lib/roff/nroff/.post_land — Output suffix, landscape mode
/usr/lib/roff/nroff/fonts.r — Alternative font name definitions
/usr/lib/roff/nroff/specials.r — Special character definitions

See Also
col, commands, deroff, man, ms, printer, troff
nroff, The Text-Formatting Language, tutorial

Diagnostics
nroff returns the following error messages. Most are self-explanatory.
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-f option requires file argument (fatal)
.bd not implemented yet
.co: unexpected EOF before string (error)
.dt not implemented yet
.el without .ie (error)
.fc not implemented yet
.hc not implemented yet
.hw not implemented yet
.hy not implemented yet

.ie nested more than N levels (error)
The .ie/.el combination can be nested only 15 levels deep.

.ie without matching .el (error)
Every .ie must be followed by an .el.

.lf: string, file ‘‘string’’ (error)
troff could not load a font-width table from file string.

.lf: ‘‘string’’ is not a PCL font width table (error)
troff expects a PCL font-width table, but file string is not in the PCL font-width format.

.lf: ‘‘string’’ is not a PostScript font width table (error)
troff expects a PostScript font-width table, but file string is not in the PostScript font-width format.

.lf: cannot load more than N fonts (error)
troff has a static limit on the number of font-width tables that can be loaded at one time.

.lf: cannot open file ‘‘string’’ (error)

.lf: requires fontname and filename (error)

.nm not implemented yet

.nn not implemented yet

.pi not implemented yet

.rb: cannot open file string (error)

.rb: no file specified (error)

.rf: requires name and new name (error)

\} without matching \{ (error)
Every \} must be preceded by a \{.

arguments too long (error)
attempted zero divide (error)
attempted zero modulus (error)
bad adjustment type (error)
bad argument reference (error)
bad directive N (fatal)
bad font N (fatal)
bad font N at dev_font, nfonts=N (fatal)
bad font N, nfonts=N (fatal)
bad pattern (fatal)
bad tab stop (error)
bad tab stop (error)

botch: fontname(N) (fatal)
nroff cannot handle font N and must abort processing.

botch: swdmul=N psz=N swddiv=N (fatal)
An undefined error has occurred within nroff. The printed numbers give the value of nroff’s internal
registers. If such an error occurs regularly when you process a given piece of text, please send the text in
question and a copy of the error message to Mark Williams technical support.

bracket building not implemented yet
cannot create temp file (fatal)
cannot dehyphenate (fatal)
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cannot end diversion (error)
You attempted to close a diversion without first opening one.

cannot find current file (error)

cannot find font XX (error)
Font XX has not been opened; therefore [nt]roff cannot use it. To open a font, use the load-font primitive
.lf.

cannot find font N (error)

cannot find register string (error)
You attempted to read a number register without first loading a value into it.

cannot open string (error)
cannot open file ‘‘string’’ (error)

cannot pop environment (error)
You popped an environment without first pushing one.

cannot read environment (fatal)
cannot remove string (error)
cannot reopen temp file (fatal)
cannot write environment (fatal)
delimiter argument too large (error)
diversion buffer odd alignment (fatal)
environment does not exist (error)
environments stacked too deeply (error)
field with too large (error)
file ‘‘string’’ not found (error)
flushd -- current diversion null (fatal)
font position out of range (error)

fonts.r not found (fatal)
nroff and troff read the list of fonts to use from a file named fonts.r. If you do not have such a file in your
current directory, nroff and troff read the one out of their home directories: /usr/lib/roff/nroff,
/usr/lib/roff/troff_pcl, or /usr/lib/roff/troff_ps, depending which variety of output you have requested.
This error message means that your current directory does not hold a file named fonts.r, and that [nt]roff
cannot open the fonts.r file in its appropriate home directory.

illegal hex digit (error)
The escape sequence \XNN prints a character by its literal hexadecimal value. This should be used when
processing characters that are not normally printable on the terminal screen. Digit N can be the numerals
‘0’ through ‘9’, the letters ‘a’ through ‘f’, or the letters ‘A’ through ‘F’. All other characters will trigger this
error.

illegal option: string (fatal)

incomplete macro in trap (fatal)
A trap has jumped to a macro, but that macro does not terminate, for whatever reason. Usually this
indicates that you have opened a diversion but failed to close it.

line buffer overflow (fatal)
no room for new font name XX (error)
out of space - memory string (fatal)
request ’string’ not found (error)
section N of title too large (error)
special character XX not found (error)

syntax error (error)
This message any number of errors with your nroff source. Check the line number given in the message.

temporary file write error (fatal)
nroff cannot write a temporary file, for whatever reason. This usually indicates that you lack permission
to write into the directory into which nroff is attempt to write its temporary files.
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too many tab stops (error)
nroff allows a maximum of nine tab stops in one line. It ignores all tab stops that exceed that limit.

unexpected end of file (fatal)
This error indicates that nroff is in the middle of processing a macro when the file ends. This error
usually occurs when you open a diversion and fail to close it.

unknown macro/register type N (fatal)
vertical line drawing not implemented yet (error)
word buffer overflow (fatal)

NUL — Definition
NUL is the ASCII null character ‘\0’ — i.e., the character with the value zero. Do not confuse it with the null
pointer NULL or with the empty string "". A C-language string is always terminated with a NUL. The empty string
"" is an array of chars with only one element, namely a NUL.

See Also
ASCII, NULL, Programming COHERENT

NULL — Manifest Constant
The manifest constant NULL is defined in the header file stddef.h. It is the null pointer (char *)0, which is a
pointer initialized to zero. Numerous routines return this value to indicate failure; it is useful as a return value
because it points nowhere, and so removes the possibility of accidentally destroying a section of memory after
failure.

See Also
manifest constant, NUL, pointer, stdio.h
ANSI Standard, §7.1.6

null — Device Driver
The ‘bit bucket’

All data written to the special file /dev/null are thrown away (sent to the ‘‘bit bucket’’). This is useful, for example,
when you wish to test a program’s side effects while ignoring its output.

A read from file /dev/null returns end of file (zero bytes of data). The shell sh uses /dev/null as input to
background processes.

Files
/dev/null

See Also
device drivers, idle, ksh, sh

nybble — Definition
A nybble is four bits, or half of an eight-bit byte. The term is generally used to refer to the low four bits or the high
four bits of a byte. Thus, a byte may be said to have a ‘‘low nybble’’ and a ‘‘high nybble’’. One nybble encodes one
hexadecimal digit.

See Also
bit, byte, Programming COHERENT
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object format — Definition
An object format describes the form of compiled program that still contains relocation information. The linker ld
reads file in object format to create executable files.

COHERENT creates object modules that are in the format l.out.

See Also
l.out, ld, Programming COHERENT

od — Command
Print an octal dump of a file
od [-bcdox] [file] [ [+] offset[.][b] ]

od prints the specified file as a sequence of octal numbers, or machine words. If no file is specified, od dumps the
standard input.

The following options set the format of od’s output:

-b Bytes in default base
-c Bytes in ASCII characters
-d Words in decimal
-o Words in octal
-x Words in hexadecimal

The default base is octal on the PDP-11 and hexadecimal on the i80286, Z-8001, and M68000 families of
microprocessors.

Dumping can start at position offset into the file. The specified offset is octal unless the ‘.’ suffix is present to
signify decimal. offset is in bytes unless the b suffix is present to signify 512-byte blocks.

See Also
ASCII, commands, conv, db, strings

offsetof() — General Macro (stddef.h)
Offset of a field within a structure
#include <stddef.h>
size_t offsetof(structname, fieldname);

offsetof() is a macro that is defined in the header <stddef.h>. It returns the number of bytes that the field
fieldname is offset from the beginning of the the structure structname.

offsetof() may return an offset for fieldname that is larger than the sum of the sizes of all the members that
precede it. This will be due to the fact that some implementations insert padding into a structure to ensure that
they are properly aligned.

Example
The following example displays the offset of some fields within a structure:

#include <stddef.h>
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struct foo {
char a[13];
long b;
char c[7];
short d;
char e[3];

};

main ()
{

int A, B, C, D, E;

A = offsetof(struct foo, a[0]);
B = offsetof(struct foo, b);
C = offsetof(struct foo, c[0]);
D = offsetof(struct foo, d);
E = offsetof(struct foo, e[0]);

printf ("%d %d %d %d %d\n", A, B, C, D, E);
}

When run, this program prints:

0 16 20 28 30

Note that even though field ‘a’ of structure foo is only 13 bytes long, field ‘b’ is aligned at byte 16. This is done to
conform to the requirements of COFF. For details, see the section on ‘‘COFF Linking’’ in the Lexicon entry for the
linker ld.

See Also
alignment, C language, ld, libc, stddef.h, struct
ANSI Standard, §7.1.6

open() — System Call (libc)
Open a file
#include <fcntl.h>
int open(file, type[, mode])
char *file; int type; [int mode;]

open() opens a file to receive data, or to have its data read. When it opens file, open() returns a file descriptor,
which is a small, positive integer that identifies the open file for subsequent calls to read(), write(), close(), dup(),
dup2(), or lseek(). After file is opened, reading or writing begins at byte 0.

The second argument, type, determines how the file is opened. It is a bitwise OR of flag bits taken from the
following list (as defined in the header file <fcntl.h>):

O_RDONLY Read only
O_WRONLY Write only
O_RDWR Read and write

One, and only one, of the above three bit values must be set in flag. The following bit values can be used to
describe further how the file can be opened:

O_NDELAY Non-blocking I/O
O_APPEND Append (writes guaranteed at the file’s end)

O_SYNC Sync on every write
O_TRACE For file system debugging (non-standard)
O_NONBLOCK Non-blocking I/O

O_CREAT Open with file create (third argument)
O_TRUNC Open with truncation
O_EXCL Exclusive open
O_NOCTTY Do not assign a controlling tty

The remaining bit values are used to how you wish to manipulate file:
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O_APPEND
Precede every write with an automatic seek to end of file.

O_CREAT
If file does not exist, create it. If this flag is set the third argument, mode, sets the mode on the file. Note
that this mode will be masked by umask(). See the Lexicon article on the command chmod for details on
what the various values of mode mean.

O_EXCL
Exclusive open: this flag is meaningful only if O_CREAT is also used. In that case, open() fails with error
value EEXIST if file already exists.

O_NDELAY
No delay in writing to disk. Please note the following caveats when using this flag:

If set: Opening a FIFO with O_RDONLY returns without delay. Opening a FIFO with O_WRONLY
returns an error if no process has the file open for reading. Opening a file associated with a
communication line returns without waiting for a carrier signal.

If not set:
Opening a FIFO with O_RDONLY blocks until a process opens the file for writing. Opening a FIFO
with O_WRONLY blocks until a process opens the file for reading. Opening a file associated with a
communication line blocks until a carrier signal is present.

O_NOCTTY
If file names a terminal device, do not set it to be the controlling terminal for the process.

O_SYNC
All writes to file will be synchronous to disk. This means that write() will not return until the data have
been physically written to disk.

O_TRUNC
If file exists, truncate it to zero length. You must have write permissions on file to use this flag.

The third argument, mode, is significant only if O_CREAT is specified in the second argument and if file did not
exist before the call to open(). In that case, mode specifies the access permissions of the new file, in exactly the
manner that the system call creat() uses its mode argument to set permissions. The value of mode is typically
given as either an octal constant or bitwise OR of permission-bit values as defined in header file <sys/stat.h>.

Example
This example copies the file named in argv[1] to the one named in argv[2] by using system calls. It demonstrates
open() plus the system calls close(), read(), write(), and creat().

#include <stdio.h>
#include <fcntl.h>
#define BUFSIZE (20*512)
char buf[BUFSIZE];

void fatal(s)
char *s;
{

fprintf(stderr, "copy: %s\n", s);
exit(1);

}

main(argc, argv)
int argc; char *argv[];
{

register int ifd, ofd;
register unsigned int n;
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if (argc != 3)
fatal("Usage: copy source destination");

if ((ifd = open(argv[1], O_RDONLY)) == -1)
fatal("cannot open input file");

if ((ofd = open(argv[2], O_CREAT | O_RDWR | O_TRUNC, 0666)) == -1)
fatal("cannot open output file");

/* For COHERENT 286, use creat() instead of open():
* if ((ofd = creat(argv[2], 0666)) == -1)
*/

while ((n = read(ifd, buf, BUFSIZE)) != 0) {
if (n == -1)

fatal("read error");
if (write(ofd, buf, n) != n)

fatal("write error");
}

if (close(ifd) == -1 || close(ofd) == -1)
fatal("cannot close");

exit(0);
}

See Also
fopen(), file descriptor, close(), libc
ANSI Standard, §4.9.3
POSIX Standard, §5.3.1

Diagnostics
open() returns -1 if the file does not exist, if the caller lacks permission, or if a system resource is exhausted.

Notes
open() is a low-level call that passes data directly to COHERENT. It should not be mixed with high-level calls, such
as fread(), fwrite(), or fopen().

Code that uses the third argument to open() cannot be ported to COHERENT 286.

COHERENT release 4.2.10 changes some of the behaviors triggered by flags O_EXCL and O_NDELAY. In previous
release of COHERENT, flag O_EXCL COHERENT would handle blocking subsequent open()s. This is no longer the
case — the device driver must handle it. In previous release of COHERENT, when flag O_NDELAY was used to open
a character driver, the I/O flag IONDLY would be set. Now, the I/O flag IONONBLOCK is set instead.

opendir() — General Function (libc)
Open a directory stream
#include <sys/types.h>
#include <dirent.h>
DIR *opendir (dirname)
char *dirname;

The COHERENT function opendir() is one of a set of COHERENT routines that manipulate directories in a device-
independent manner. It opens a directory stream and connects the directory dirname with it.

opendir() returns a pointer to the directory stream it has created. It returns NULL if it cannot access dirname, if
dirname is not a directory, or if it cannot create the directory stream (perhaps due to insufficient memory).

If an error occurs, opendir() exits and sets errno to an appropriate value.

Example
The following example searches the current working directory for entry FOO:

#include <stddef.h>
#include <sys/types.h>
#include <dirent.h>
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main()
{

DIR *dirp
struct dirent *dp;

dirp = opendir( "." );

while ((dp = readdir( dirp )) != NULL ) {
if ( strcmp( dp->d_name, "FOO" ) == 0 ) {

printf("Found FOO\n");
(void) closedir(dirp);
return FOUND;

}
}

(void) closedir( dirp );
printf("FOO not found\n");
return NOT_FOUND;

}

See Also
closedir(), dirent.h, getdents(), libc, readdir(), rewinddir(), seekdir(), telldir()
POSIX Standard, §5.1.2

Notes
The dirent routines buffer directories; and because directory entries can appear and disappear as other users
manipulate the directory, your application should continually rescan a directory to keep an accurate picture of its
active entries.

The COHERENT implementation of the dirent routines was written by D. Gwynn.

operator — Definition
An operator is a function that is built into the C language. It usually relates one operand to another. For
example, the statement

1+2

relates the operands 1 and 2 through the operation of addition; on the other hand, the statement

A>B

relates the operands A and B logically, by asserting that the former is greater than the latter; whereas

A=B

relates the operands A and B by assigning the value of the latter to the former. The following is a table of the C
operators:

* Multiplication
/ Division
% Remainder
+ Addition
- Subtraction

< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to

&& Logical AND
!= Inequality
! Logical negation
| | logical OR

& Bitwise AND
^ Bitwise exclusive OR
~ Bitwise complement
| Bitwise inclusive OR
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<< Bitwise shift left
>> Bitwise shift right

= Assign
+= Increment and assign
-= Decrement and assign
*= Multiply and assign
/= Divide and assign
%= Modulus and assign
++ Increment
-- Decrement
== Equivalence
&= Bitwise AND and assign
^= Bitwise exclusive OR and assign
|= Bitwise inclusive OR and assign
<<= Bitwise shift left and assign
>>= Bitwise shift right and assign

* Indirection
& Render an address
() Function indicator
[] Array indicator
-> Structure pointer
. Structure member
? : Conditional expression

sizeof size of an object

Precedence
Precedence refers to the order in which C executes operators. The C languages assigns a level of precedence to
each operator. Operators are executed in the order of their precedence level, from highest to lowest.

The following table summarizes the precedence of C operators. The are listed in descending order of precedence:
those listed higher in the table are executed before those lower in the table. Operators listed on the same line have
the same level of precedence, and the implementation determines the order in which they are executed. If you use
two or more such operators in the same expression, you would be wise to use parentheses to indicate exactly the
order in which you want the operators executed.

Operator Associativity

() [] -> . Left to right

! ~ ++ -- - (type) * & sizeof Right to left

* / % Left to right

+ - Left to right

<< >> Left to right

< <= > >= Left to right

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

?: Right to left

= += -= *= /= %= Right to left

, Left to right
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You can always determine precedence in an expression by enclosing sub-expressions within parentheses: the
expression enclosed within the innermost parentheses is always executed first.

See Also
Programming COHERENT, sizeof
ANSI Standard, §6.1, §6.3
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PAGER — Environmental Variable
Specify Output Filter
PAGER=‘‘command options’’

The environmental variable PAGER directs programs such as msgs, mail and others to ‘‘pipe’’ their output into the
command specified as the value of PAGER. For example, the following sets up /bin/scat as the desired output
filter and passes a command line option to it to specify that the output screen has 20 lines.

export PAGER="exec /bin/scat -l20"

See Also
scat, environmental variables, mail, more, msgs

param.h — Header File
Define machine-specific parameters
#include <sys/param.h>

param.h defines machine-specific parameters. These parameters set limits on the operation of the COHERENT
system; e.g., the number of files that can be open at any one time.

See Also
header files

Notes
This header file is obsolete, and will be dropped from a future release of COHERENT. Its use is strongly
discouraged.

passwd — Command
Set/change login password
passwd [user]

passwd sets or changes the password for the specified user. If user is not specified, passwd changes the password
of the caller.

passwd requests that the old password (if any) be typed, to ensure the caller is who he claims to be. Next it
requests a new password, and then requests it again in case of typing errors. passwd requests a longer password if
the one given is too brief or too simple.

Files
/etc/shadow — Encrypted passwords

See Also
commands, crypt(), login

Notes
One good way to construct a password is to concatenate two common words plus a punctuation mark. For
example, ‘‘dog~collar’’ or ‘‘hamlet&horatio’’ are passwords that are both easy to remember and difficult to guess.
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passwd — System Administration
Define system users

The file /etc/passwd holds information about each user who has permission to use the COHERENT system. This
information is read by the commands login and passwd whenever a user attempts to log in, to ensure that that
user is really himself and not an impostor.

/etc/passwd holds one record for each user; each record, in turn, consists of seven colon-separated fields, as
follows:

name:password:user_id:group_id:comments:home_dir:shell

name is the user’s login name.

password is his encrypted password. If this field holds a single asterisk ‘*’, then the program login reads his
password out of the file /etc/shadow.

user_id is a unique number that is also used to identify the user. group_id identifies the group to which the user
belongs, if any.

comments holds miscellaneous data, such as names, telephone numbers, or office numbers.

home_dir gives the user’s home directory.

Finally, shell gives the program that is first executed when the user logs on; in most instances, this is an
interactive shell (default, /bin/sh).

If you wish, you can set additional passwords to control users who attempt to log into your system remotely (that
is, via a modem). You can set a different remote-access password for each group of users, based on the program
invoked when they log in; for example, you can set one password for the users who log in and invoke uucico, and
another for the users who log in and invoke the interactive shells ksh or sh. For details on how to do this, see the
Lexicon entries d_passwd and dialups.

When a user creates a file, that file is ‘‘owned’’ by him. For example, whenever user joe create a file, that file is
‘‘owned’’ by joe; and joe has user-level permissions on that file. The superuser root can use the command chown
to change the ownership of a file from one user to another. For details on this command, see its entry in the
Lexicon.

See Also
Administering COHERENT, chown, passwd [command]

Notes
/etc/passwd can be read by anyone: if access to it were refused to a user, he could not log on. Thus, the
passwords encrypted within it can be read and copied by anyone, and so may be vulnerable to brute-force
decryption. For this reason, close attention should be paid to passwords: they should not be common words or
names, preferably mix cases or use unique spellings, and be at least six characters long.

paste — Command
Merge lines of files
paste [-s] [-d list] file ...

paste merges corresponding lines from multiple input files. By default, paste uses the <tab> character to delineate
texts from different files. paste writes the merged text to standard output; thus, paste can be used at the head of
a shell pipeline.

If paste reads EOF from any of the input files while other files still contain data, it substitutes blank lines as input
from the file that has ended.

Options
paste recognizes the following command-line options:

-d list Use the characters in list to separate the output fields. The characters in list are taken in sequence and
used circularly, i.e., taken in order until the end of list is reached, then returning to the first character in
list. By default, paste uses the <tab> character to delineate the output fields. The following character
sequences have special meaning when encountered in list:
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\\ Output a single backslash character
\t Output a <tab> character
\n Output a <newline> character
\0 Output a null string (i.e., no separator between output fields)

-s Output successive lines from each input file across the page, with each input line separated from the next
by a <tab> character. After all input lines from a given file have been concatenated, terminate the output
line with a <newline> character and repeat the process on the next input file.

Example
The following two files will be used for subsequent examples. File1 contains:

File1_Line1
File1_Line2
File1_Line3
File1_Line4

File2 contains:

File2_Line1
File2_Line2
File2_Line3
File2_Line4

The command

paste File1 File2

generates the following output:

File1_Line1 File2_Line1
File1_Line2 File2_Line2
File1_Line3 File2_Line3
File1_Line4 File2_Line4

Adding the option -s yields the output:

File1_Line1 File1_Line2 File1_Line3 File1_Line4
File2_Line1 File2_Line2 File2_Line3 File2_Line4

See Also
awk, commands, cut, sed

Notes
paste is copyright  1989 by The Regents of the University of California. All rights reserved.

patch — Command
Patch a variable or flag within the kernel
/conf/patch [-k] image symbol=value ...

The command patch alters the value of datum symbol to value in executable image. In general, you should use
patch to alter configuration data (constants) in programs, in device drivers, and in the COHERENT kernel. For
patch to work with a symbolic constant, image must have a symbol table that includes information about symbol.
Therefore, executables that have been processed by the command strip cannot be patched.

Options
patch recognizes the following command-line options:

-k Patch image, and patch the kernel memory of the running COHERENT system via device /dev/kmem. Only
the superuser root can use patch to access kernel memory.

-K Patch /dev/kmem only. Refer to image for its symbol table, but do not change it.

-p ‘‘Peek’’ — just display current values; change nothing.

-v Verbose — display values before and after patching.
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Variable Names
symbol and value can be either a numeric constant or a symbol from the symbol table of image. symbol and value
expressions can include a numeric offset. In addition, value can be composed of the construct
makedev(major,minor), where major and minor are the ‘‘major’’ and ‘‘minor’’ device numbers, respectively, resulting
in a dev_t-sized device type. No spaces can appear around the equal sign in the symbol=constant construct.

Numeric constants default to decimal, but may be specifyed with a leading 0 prefix to specify an octal number or a
0x prefix to specify a hexadecimal number.

The size of the altered symbol field is, by default, sizeof(int). patch recognizes the following explicit size overrides:

:c The size of the altered field is sizeof(char).

:i The size of the altered field is sizeof(int).

:l The size of the altered field is sizeof(long).

:s The size of the altered field is sizeof(short).

Example
The following example gives technique that allows kernel display — that is, the output of the routines cmn_err()
and the kernel’s version of printf() — to go to a serial port. With this, you can save the panic messages and
register dumps on a terminal screen or printer page while you reboot and try to track down what went wrong. To
do so, plug a terminal into a serial port, and then do the following.

1. Find the major and minor numbers of a working serial port. Do not configure the port for modem control or
flow control; use something simple like com2l. Make sure you can send data out the port; for example see
that the command

date > /dev/com2l

sends data to the terminal’s screen. The baud rate for the port will be whatever is specified for the default in
file /etc/default/async — 9600 unless you have changed it.

2. Make sure the port is not enabled.

3. Create a test kernel around that you can modify. Call it something easily remembered, such as /testcoh.

4. Patch the kernel with the command

/conf/patch -v /testcoh condev=makedev(major,minor):s

where major is the major number for the serial port, and minor is its minor number.

5. Boot the patched kernel.

With this change, you will not be able to control kernel output with XON and XOFF, nor will you seen kernel
output from very early startup (before the page tables are working) appear on the serial device.

Example
The following example patches the kernel to redirect error messages to a terminal device on a serial port, instead of
displaying them on the console:

/conf/patch -v /Ikernel_name "condev=makedev(maj, min):s"

where kernel_name names the kernel you wish to patch, and maj and min are, respectively, the major and minor
device numbers of the serial port to which you wish to redirect messages.

Note that condev is a short integer, so the ‘‘:s’’ is essential. The patch is made to the file on disk. You must reboot
before it can work — chaos results if you try to switch console devices in a running kernel.

See Also
commands, device drivers, kernel

Notes
It is extremely dangerous to patch the COHERENT kernel. Almost all changes that you may wish to make the kernel
can be accomplished more safely by using the commands idtune and idmkcoh. For details on how to use the
commands, see their entries in the Lexicon. Therefore, do not use /conf/patch to patch the kernel unless you
know exactly what you are doing. Caveat utilitor!
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Beginning with release 4.2 of COHERENT, the symbol table has been removed from the kernel, and is kept in its
own file. The symbol-table file is named after its corresponding kernel; for example, the symbol table for a kernel
named /coherent is kept in file /coherent.sym. This complicates using patch to hot-patch a kernel. As noted
above, you are well advised to use commands idtune and idenable to modify your kernel configuration, than using
patch to hot-patch an existing kernel.

PATH — Environmental Variable
Directories that hold executable files

PATH names a default set of directories that are searched by COHERENT when it seeks an executable file. You can
set PATH with the command PATH. For example, typing

PATH=/bin:/usr/bin

tells COHERENT to search for executable files first in /bin, and then in /usr/bin. Note the use of the colon ‘:’ to
separate directory names.

See Also
environmental variables, path.h

path() — General Function (libc)
Path name for a file
#include <path.h>
#include <stdio.h>
char *path(path, filename, mode);
char *path, *filename;
int mode;

The function path() builds a path name for a file.

path points to the list of directories to be searched for the file. You can use the function getenv() to obtain the
current definition of the environmental variable PATH, or use the default setting of PATH found in the header file
path.h, or, you can define path by hand.

filename is the name of the file for which path is to search. mode is the mode in which you wish to access the file,
as follows:

X_OK Execute the file
W_OK Write to the file
R_OK Read the file

path() calls the function access() to check the access status of filename. If path() finds the file you requested and
the file is available in the mode that you requested, it returns a pointer to a static area in which it has built the
appropriate path name. It returns NULL if either path or filename are NULL, if the search failed, or if the requested
file is not available in the correct mode.

Example
This example accepts a file name and a search mode. It then tries to find the file in one of the directories named in
the PATH environmental variable.

#include <path.h>
#include <stdio.h>
#include <stdlib.h>

void
fatal(message)
char *message;
{

fprintf(stderr, "%s\n", message);
exit(1);

}
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main(argc, argv)
int argc; char *argv[];
{

char *env, *pathname;
int mode;

if (argc != 3)
fatal("Usage: findpath filename mode");

if(((mode=atoi(argv[2]))>4) || (mode==3) || (mode<1))
fatal("modes: 1=execute, 2=write, 4=read");

env = getenv("PATH");
if ((pathname = path(env, argv[1], mode)) != NULL) {

printf("PATH = %s\n", env);
printf("pathname = %s\n", pathname);
return;

} else
fatal("search failed");

}

See Also
access(), libc, PATH, path.h

path.h — Header File
Define/declare constants and functions used with PATH
#include <path.h>

path.h declares constants used to handle the environmental variable PATH. These include, among others, the
default path, the path separator, and the list separator. path.h also declares the function path().

See Also
header files, path(), PATH

pathalias — Command
Generate a set of paths among computers
/usr/lib/mail/pathalias [-ivcDf] [-d link] [-l host] [-t link] [ datafile ... ]

The command pathalias computes the shortest path and corresponding route from a host to every other known,
reachable host. It reads host-to-host connectivity information from the standard input or datafile, then writes a
list of host-route pairs onto the standard output. This command normally is used only by administrators of busy
systems, to maintain the path information used by smail.

pathalias recognizes the following command-line options:

-c Print costs: print the path cost before each host-route pair.

-D Terminal domains: see domains section, below.

-d arg arg is a dead link, host, or network. If arg is of the form

host-1!host-2

pathalias treats the link from host-1 to host-2 as an extremely high-cost (i.e., dead) link. If arg is a single
host name, pathalias treats that host as dead and uses it on any path only as the relay host of last resort.
If arg names a network, the network requires a gateway.

-f First-hop cost: the printed cost is the cost to the first relay in a path, instead of the cost of the entire path.
This option implies (and overrides) option -c.

-i Ignore case: map all host names to lower case. By default, case is significant.

-l host Set the name of the local host to host. By default, pathalias reads file /etc/uucpname to discover the
name of your system.

-t arg Output trace information for arg onto the standard error.
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-v Verbose: report some statistics on the standard error output.

Input Format
A line that begins with white space continues the preceding line. pathalias ignores anything following a ‘#’.

A list of a host-to-host connection consists of a from host in column one, followed by white space, followed by a
comma-separated list of to hosts, called links. A link may be preceded or followed by a network character to use in
the route. Valid network characters are ‘!’ (default), ‘@’, ‘:’, and ‘%’. A link (and network character, if present) can
be followed by a ‘‘cost’’ enclosed between parentheses.

The cost is an arithmetic expression that includes numbers, parentheses, and the operators ‘+’, ‘-’, ‘*’, and ‘/’. It
cannot be negative. pathalias recognizes the following symbolic costs:

LOCAL A local-area-network connection. Set cost to 25.

DEDICATED A high-speed dedicated link. Set cost to 95.

DIRECT A toll-free telephone call. Set cost to 200.

DEMAND A long-distance telephone call. Set cost to 300.

HOURLY An hourly poll. Set cost to 500.

EVENING A time-restricted telephone call. Set cost to 1,800.

DAILY A daily poll (also called POLLED). Set cost to 5,000.

WEEKLY An irregular poll. Set cost to 30,000.

In addition, the symbolic cost DEAD is a very large number (effectively, infinite); HIGH and LOW are -5 and +5,
respectively, for baud-rate or quality bonuses/penalties; and FAST is -80, for adjusting costs of links that use
high-speed modems (9600 baud or faster). These symbolic costs represent an imperfect measure of bandwidth,
monetary cost, and frequency of connections. For most mail traffic, it is important to minimize the number of
hosts in a route; for this reason, HOURLY times 24 is much larger than DAILY. If no cost is given, pathalias uses
a default cost of 4,000.

For the most part, an arithmetic expression that mixes symbolic constants other than HIGH, LOW, and FAST
makes no sense. For example, if a host calls a local neighbor whenever there is work, and in addition polls every
evening, the cost is DIRECT, not DIRECT+EVENING.

Examples
Consider the following input:

down princeton!(DEDICATED), tilt,
%thrash(LOCAL)

princeton topaz!(DEMAND+LOW)
topaz @rutgers(LOCAL+1)

If a link is encountered more than once, the least-cost occurrence dictates the cost and network character.
pathalias treats links as bidirectional but asymmetric: for each link declared in the input, pathalias assumes a
DEAD reverse link.

If the ‘‘to’’ host in a link is enclosed by angle brackets, pathalias regards the link as being terminal, and heavily
penalizes all links beyond it. For example, when given the input

seismo <research>(10), research(100), ihnp4(10)
research allegra(10)
ihnp4 allegra(50)

pathalias generates a direct path from site seismo to site research; however, the path from seismo to allegra uses
ihnp4 as a relay, not research.

The set of names by which a host is known to its neighbors is called its aliases. Aliases are declared as follows:

name = alias, alias ...

name is the name by which the host is known to its predecessor in the route.

Fully connected networks, such as the Internet or a local-area network, are declared as follows:
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net = {host, host, ...}

The list of hosts may be preceded or followed by a routing character (by default, ‘!’), and may be followed by a cost
(default 4,000). The network name is optional; if not given, pathalias makes one up. Consider the following input:

etherhosts = {rahway, milan, joliet}!(LOCAL)
ringhosts = @{gimli, alida, almo}(DEDICATED)
= {etherhosts, ringhosts}(0)

The routing character used in a route to a network member is the one encountered when ‘‘entering’’ the network.
For details, see the sections on gateways and domains, below.

If you wish to give connection data, but also wish to hide the host names, use a declaration of the form:

private {host, host, ...}

pathalias will not generate a route to a private host, but it may produce routes through it. The scope of a private
declaration extends from the declaration either to the end of the input file in which it appears, or to a private
declaration with an empty host list, whichever comes first. The latter scope rule lets you retain the semantics of a
private declarations when you pass data to pathalias via the standard input.

Dead hosts, links, or networks may be presented in the input stream by declaring

dead {arg, ...}

where arg has the same form as the argument to the command-line option -d.

To force a specific cost for a link, use

delete {host-1!host-2}

to delete all prior declarations, then re-declare the link as desired. To delete a host and all its links, use the
instruction:

delete {host}

Diagnostic messages name the file in which pathalias found the error. To change the file’s name, use the
instruction:

file {filename}

You can fine-tune an entry by adjusting the weights of all links from a given host. For example:

adjust {host-1, host-2(LOW), host-3(-1)}

If no cost is given, pathalias uses a default of 4,000.

The following script pipes into pathalias input from compressed (and uncompressed) files:

for i in $*; do
case $i in

*.Z) echo "file {‘expr $i : ’.Z’‘}
zcat $i ;;

*) echo "file {$i}"
cat $i ;;

esac
echo "private {}"

done

Output Format
pathalias writes to the standard output a list of host-route pairs, where the route is a string appropriate for use
with printf(), e.g.:

rutgers princeton!topaz!%s@rutgers

%s in the route string is replaced by the name of the user to whom the message is being sent. This task normally
is performed by a mailer, e.g., mail or elm.

Except for domains, the name of a network is never used in routes. Thus, in the earlier example, the path from
down to up would be up!%s, not princeton-ethernet!up!%s.
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Gateways
pathalias represents a network by a pseudo-host and a set of network members. Links from the members to the
network have the weight given in the input, whereas the cost from the network to its members is zero. If a network
is declared dead, the member-to-network links are marked dead, which effectively prohibits access to the network
from its members.

If, however, the input also shows an explicit link from any host to the network, then that host can be used as a
gateway. In particular, the gateway need not be a network member. For example, if CSNET is declared dead and
the input contains

CSNET = {...}
csnet-relay CSNET

then routes to CSNET hosts will use csnet-relay as a gateway.

Domains
A network whose name begins with ‘.’ is called a domain. Domains are assumed to require gateways, i.e., they are
DEAD. The route given by a path through a domain is similar to that for a network, but here the domain name is
tacked onto the end of the next host. Subdomains are permitted. For example, the definition

harvard .EDU # harvard is gateway to .EDU domain
.EDU = {.BERKELEY, .UMICH}
.BERKELEY = {ernie}

yields:

ernie ...!harvard!ernie.BERKELEY.EDU!%s

Output is given for the nearest gateway to a domain. For example, the example above yields:

.EDU ...!harvard!%s

Output is given for a subdomain if it has a different route than its parent domain, or if all its ancestor domains are
private.

If the you use its command-line option -D, pathalias treats a link from a domain to a host member of that domain
as terminal. This property extends to host members of subdomains, etc., and discourages routes that use any
domain member as a relay.

Files
/usr/local/lib/palias.dir — Default output
/usr/local/lib/palias.pag— Default output
comp.mail.maps — Likely location of some input files

See Also
commands, mail [overview], pathmerge, smail
Honeyman P., Bellovin, S.M.: PATHALIAS, or the care and feeding of relative addresses. Atlanta, Proceedings of the
Summer USENIX Conference, 1986.

Notes
This command is not used by the implementation of smail that COHERENT uses. It is included, however, for
compatibility with other implementations.

The order of arguments is significant. In particular, options -i and -t should appear early.

pathconf() — System Call (libc)
Get a file variable by path name
#include <unistd.h>
long pathconf(path, name)
const char *path; int name;

pathconf() returns the value of a limit or option associated with the file path. name is a symbolic constant (defined
in <unistd.h>) that represents the limit or option to be returned. The value that pathconf() returns depends upon
the type of file that path names.

pathconf() can return information about the following constants:
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_PC_LINK_MAX
The maximum value of a file’s link count. If path names a directory, the value returned applies to the
directory itself.

_PC_MAX_CANON
The number of bytes in a terminal’s canonical input queue. Behavior is undefined if path does not name a
terminal file.

_PC_MAX_INPUT
The number of bytes for which space will be available in a terminal’s input queue. Behavior is undefined if
path does not name a terminal file.

_PC_NAME_MAX
The number of bytes in a file name. The behavior is refined if path does not name a directory. The value
returned applies to the file names within the directory.

_PC_PATH_MAX
The number of bytes in a path name. Behavior is undefined if path does not refer to a directory. If path
names the current working directory, pathconf() returns the maximum length of a relative path name.

_PC_PIPE_BUF
The number of bytes that can be written atomically when writing to a pipe. If path names a pipe or FIFO,
the value returned applies to the FIFO itself. If path names a directory, the value returned applies to any
FIFOs that exist or can be created within that directory. If path names any other type of file, behavior is
undefined.

_PC_CHOWN_RESTRICTED
chown() can be used only by a process with appropriate privileges, and only to change the group ID of a
file to either that process’s effective group ID or one of its supplementary group IDs. If path names a
directory, the value returned applies to any file, other than a directory, that exists or can be created within
the directory.

_PC_NO_TRUNC
Path-name components longer than NAME_MAX generate an error. The behavior isundefined if path does
not refer to a directory. The value returned applies to the file names within the directory.

_PC_VDISABLE
If this value is defined, terminal-special characters can be disabled. Behavior is undefined if path does not
name a terminal file.

The value of the system limit or option that name specifies does not change during the lifetime of the calling
process.

pathconf() fails and returns -1 if name is not set to a recognized constant. It fails, returns -1, and sets errno to an
appropriate value if any of the following is true:

• The process that calls pathconf() lacks permission to search a directory named in path. pathconf() sets errno
to EACCES.

• path is needed for the command specified and it either points to an empty string or names a file that does not
exist. pathconf() sets errno to ENOENT.

• A component of path’s prefix is not a directory. pathconf() sets errno to ENOTDIR.

• name is an invalid value. pathconf() sets errno to EINVAL.

See Also
fpathconf(), libc
POSIX Standard, §5.7.1

pathmerge — Command
Merge sorted paths files
/usr/lib/mail/pathmerge file ...

pathmerge reads the sorted path files, each of which was generated by command pathalias, merges the path
information they contain, and writes the result onto the standard output. It normally is used only by
administrators of busy systems, to maintain the path information used by smail.
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In its output, pathalias writes one path given for each host name. It gives precedence in paths to the files that
appear earlier in the argument list. The file name ‘-’ represents the standard input; this lets you mingle input from
files with input from the standard input.

As an example of the use of pathmerge, consider two files, forces and paths, whose contents, respectively, are

ihnp4 cbosgd!ihnp4!%s
muts12 muts12!%s
sun sun!%s

and:

cbosgd cbosgd!%s
ihnp4 ihnp4!%s
sun ames!sun!%s
uunet uunet!%s

The command

pathmerge forces paths

writes the following onto the standard output:

cbosgd cbosgd!%s
ihnp4 cbosgd!ihnp4!%s
muts12 muts12!%s
sun sun!%s
uunet uunet!%s

For the purposes of pathmerge, a host name is terminated a by a space, a tab, a colon, or a newline. The number
of files that you can pass to pathmerge is limited by the number of available file descriptors, as all of the files are
opened and read simultaneously.

See Also
commands, mail [overview], mkline, mkpath, mksort, mkdbm, pathalias, smail

Notes
This command is not used by the implementation of smail that COHERENT uses. It is included, however, for
compatibility with other implementations.

Copyright  1987, 1988 Ronald S. Karr and Landon Curt Noll. Copyright  1992 Ronald S. Karr.

For details on the distribution rights and restrictions associated with this software, see file COPYING, which is
included with the source code to the smail system; or type the command: smail -bc.

paths — System Administration
Routing data base for mail
/usr/lib/mail/paths

File /usr/lib/mail/paths holds the data base that the command smail uses to route mail.

Each line gives routing information to a host, and has the following format:

host route [cost]

host names a remote host. The route field details the route by which mail can travel from your system to host. Note
that it includes the printf()-style format string ‘‘%s’’. This field uses the bang-path format for describing a route.
For example, if you access site foo via site bar, then route field for site bar reads:

bar foo!bar!%s

smail uses the optional field cost to decide whether to queue mail that is spooled for other systems, or to invoke
the command uucico to deliver the mail immediately. If the cost is at or below smail’s ‘‘queueing threshold’’, then
smail attempts to deliver it immediately. This speeds mail delivery between hosts that enjoy an inexpensive UUCP
link, such as a serial line; and batches mail that must be sent over expensive media, such as long-distance
telephone. If the cost field is absent, smail gives this host a cost value above that of its queueing threshold.

Note that the value in the costs field does not override the connection times set in the UUCP file sys. Thus, this field
is useful only for systems that you can call any time, or that you call frequently.
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Example
The following gives a sample paths file for a COHERENT system named lepanto:

friend friend!%s 300
hubsys hubsys!%s 95
lepanto %s 0
lepanto.ampr.org %s 0
widget hubsys!widget!%s 95

As this file shows, lepanto is linked to systems hubsys and friend. The cost of 95 associated with hubsys is low,
and is appropriate to a low-cost link, such as a hard-wired link. On the other hand, the cost of 300 associated
with friend is high, which indicates that the connection with friend is expensive, such as a long-distance
telephone connection. If cost is 100 or greater, mail will be queued for later delivery. A cost below 100 tells smail
to attempt immediate delivery.

In this example, machine lepanto is registered in the domain ampr.org. ‘‘ampr’’ is an abbreviation for ‘‘Amateur
Packet Radio,’’ which indicates that lepanto is a packet-radio node. Note that machine name lepanto appears in
both conventional form (‘‘lepanto’’) and domain form (‘‘lepanto.ampr.org’’); this is done to make it easier for smail to
resolve addresses.

lepanto can use hubsys to forward mail to widget. Thus, when smail receives mail for system widget, it will
transmit it to hubsys for forwarding. Note that hubsys’s administrator must have given lepanto permission to use
it as a mail relay, or this will not work.

See Also
Administering COHERENT, mail [overview], smail

Notes
Please note that the mail-routing program smail does not actually read /usr/lib/mail/paths when it processes
mail; rather, it reads a DBM-style data base that is built from this file. The DBM data base can be read much
faster than an ordinary text file, thus improving the speed with which smail handles mail. Thus, when you edit
paths, you must invoke the command mkpaths to ‘‘cook’’ its contents into DBM format, so smail see the changes
you have made. For information on DBM-style data bases, see the Lexicon entry for libgdbm.

pattern — Definition
A pattern is any combination of text and wildcard characters that can be interpreted by a command. Patterns are
also called ‘‘regular expressions’’.

The function pnmatch() compares two patterns and indicates whether they match.

For a fuller explanation of how to use patterns within applications, see the section on Expert Editing in the tutorial
for the line editor ed.

See Also
egrep, pnmatch(), Programming COHERENT, wildcards

pause() — System Call (libc)
Wait for signal
#include <unistd.h>
int pause()

pause() suspends execution until the process receives a signal. The awaited signal could come from kill(), alarm(),
or the controlling terminal.

See Also
alarm(), kill(), libc, signal(), sleep(), unistd.h
POSIX Standard, §3.4.2

pclfont — Command
Prepare a PCL font for downloading via MLP
pclfont [-f n] font [... font]

The command pclfont prepares each font for downloading via the MLP spooler to a printer that runs the Hewlett-
Packard Page Control Language (PCL). font must give the full path name of a PCL bitmapped ‘‘soft font’’. pclfont
brackets each font with the PCL commands that tell the printer to load the font into a given ‘‘slot’’ in its memory,

LEXICON

982 pattern — pclfont



and to let the font reside permanently in memory, then writes the altered font to the standard output.

The option -f names the slot into which you want to load font. If the command line names more than font, pclfont
sequentially assigns slots beginning with slot n. If you do not use the option -f, pclfont assigns slots beginning
with slot 1.

The processed fonts can either be piped to the command lp or redirected into a file for later downloading. When
downloaded via lp, you must use the MLP device hpfont. For example, to download fonts tr240bpn.usp and
op240bpn.usp into slots 16 and 17 on your printer, use the command:

pclfont -f 16 tr240bpn.usp op240bpn.usp | lp -dhpfont

See Also
commands, lp, printer, troff

pclose() — STDIO Function (libc)
Close a pipe
#include <stdio.h>
int pclose(fp)
FILE *fp;

pclose() closes the pipe pointed to by fp, which must have been opened by the function popen().

pclose() awaits the completion of the child process and performs other cleanup. It returns the value from a WAIT
done on the child process. This value includes information in addition to the ‘‘simple’’ exit value of the child
process.

Example
For an example of this function, see the Lexicon entry for popen.

Files
<stdio.h>

See Also
fclose(), fopen(), libc, pipe(), popen(), sh, system(), wait()

Diagnostics
pclose() returns -1 if fp had not been created by a call to popen(). Otherwise, pclose() returns the exit status of the
command, in the format described in the entry for wait(): exit status in the high byte, signal information in the low
byte.

perror() — General Function (libc)
System call error messages
#include <errno.h>
perror(string)
char *string; extern int sys_nerr; extern char *sys_errlist[];

perror() prints an error message on the standard error device. The message consists of the argument string,
followed by a brief description of the last system call that failed. The external variable errno contains the last error
number. Normally, string is the perror of the command that failed or a file perror.

The external array sys_errlist gives the list of messages used by perror(). The external sys_nerr gives the number
of messages in the list.

See Also
errno, errno.h, libc
ANSI Standard, §7.9.10.4
POSIX Standard, §8.1
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phone — Command
Print numbers and addresses from phone directory
phone person ...

The command phone searches a number of telephone directory files for each person argument that is given. Any
lines that matches any of the person arguments is printed. Typically, such lines contain the telephone number,
name, and address of a person or organization. Lower-case letters in person can be matched by both the same
letter and the corresponding upper-case letter in the phone directory.

The user may supply his own phone directory by setting the (exported) shell variable PHONEBOOK, to the name of
that file. If given, this file is searched first. Then, the system-wide phone book is always searched.

Files
$PHONEBOOK — User-supplied phonebook (searched first)
/usr/pub/phonebook — System-wide phone directory

See Also
commands

Diagnostics
phone exits with non-zero status if a call fails. A diagnostic message is written to stderr if no matching entries are
found.

The standard phonebook shipped with COHERENT includes telephone numbers and descriptions of third-party
vendors who sell software for COHERENT. If you’re looking for software to run under COHERENT, check there first.

pipe — Definition
A pipe directs the output stream of one program into the input stream of another program, thus coupling the
programs together. With pipes, two or more programs (or filters) can be coupled together to perform complex
transforms on streams of data. For example, in the following command

cat DATAFILE1 DATAFILE2 | sort | uniq -d

the filter cat opens two files and prints their contents. Its output is piped to the filter sort, which sorts it. The
output of sort is piped, in turn, to the filter uniq, which (with the -d option) prints a single copy of each line that is
duplicated within the file. Thus, with this simple set of commands and pipes, a user can quickly print a list of all
lines that appear in both files.

See Also
filter, mkfifo(), named pipe, pipe(), Using COHERENT

pipe() — System Call (libc)
Open a pipe
#include <unistd.h>
int pipe(fd)
int fd[2];

A pipe is an interprocess communication mechanism. pipe() creates a pipe, typically to construct pipelines in the
shell sh.

pipe() fills in fd[0] and fd[1] with read and write file descriptors, respectively. The file descriptors allow the transfer
of data from one or more writers to one or more readers. Pipes are buffered to 5,120 bytes. If more than 5,120
bytes are written into the pipe, the write() call will not return until the reader has removed sufficient data for the
write() to complete. If a read() occurs on an empty pipe, its completion awaits the writing of data.

When all writing processe close their write file descriptors, the reader receives an end of file indication. A write on
a pipe with no remaining readers generates a SIGPIPE signal to the caller.

pipe() is generally called just before fork(). Once the parent and child processes are created, the unused file
descriptors should be closed in each process.

Example
The following example prints the word Waiting until a line of data is entered. It illustrates how to use pipe(),
fstat(), and fork().
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#include <stdio.h>
#include <sys/stat.h> /* for stat */
#include <sgtty.h> /* for stty/gtty functions */
#include <unistd.h>

static int fd[2]; /* pipe array */

main()
{

printf("This prints ’Waiting’ every second until a ’q’ is hit.\n");

/*
* Pipe may also be constructed by /etc/mknod
* If it is desired to have tasks communicate where
* they are not parent and child. In this case make
* sure the constructed pipe has the correct owner and
* permissions. Such pipe may be used exactly like this
* but open()ed on each side.
*/

if (-1 == pipe(fd)) {
fprintf(stderr, "Cannot open pipe\n");
exit(EXIT_FAILURE);

}

if (fork())
parentProcess();

else
childProcess();

exit(EXIT_SUCCESS);
}

parentProcess()
{

struct stat s;
char buff;

for (buff = ’ ’; ’q’ != buff;) {
fstat(fd[0], &s); /* get status of pipe */
if (s.st_size) { /* char in the pipe */

read(fd[0], &buff, sizeof(buff));
printf("Got a ’%c’\n", buff);
continue;

}

/*
* This can be any process, it can use system()
* or exec()
*/

printf("Waiting\n");
sleep(1);

}
}

childProcess()
{

struct sgttyb os, ns;
char buff;

gtty(fileno(stdin), &os); /* save old state */
ns = os; /* get base of new state */
ns.sg_flags |= RAW; /* process each character as entered */
ns.sg_flags &= ~(ECHO|CRMOD); /* no echo for now... */
stty(fileno(stdin), &ns); /* set mode */

do {
buff = getchar(); /* wait for the keyboard */
write(fd[1], &buff, sizeof(buff));

} while (’q’ != buff);
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stty(fileno(stdin), &os); /* reset mode */
}

See Also
close(), libc, libsocket, mkfifo(), mknod(), read(), sh, signal(), unistd.h, write()
POSIX Standard, §6.1.1

Diagnostics
pipe() returns zero on successful calls, or -1 if it could not create the pipe.

If it is necessary to create a pipe between tasks that are not parent and child, use /etc/mknod to create a named
pipe. These named pipes can be opened and used by different programs for communication. Remember to give
them the correct owner and permissions.

If you attempt to open a pipe write only, O_NDELAY is set, and there are currently no readers on this pipe, open()
returns immediately and sets errno to ENXIO.

pnmatch() — String Function (libc)
Match string pattern
int pnmatch(string, pattern, flag)
char *string, *pattern; int flag;

pnmatch() matches string with pattern, which is a regular expression. The shell sh uses patterns for file name
expansion and case statement expressions.

pnmatch() returns one if pattern matches string, and zero if it does not. Each character in pattern must exactly
match a character in string; however, the wildcards ‘*’, ‘?’, ‘[’ and ‘]’, and ‘[!’ and ‘]’ can be used in pattern to expand
the range of matching.

flag must be either zero or one: zero means that pattern must match string exactly, whereas one means that
pattern can match any part of string. In the latter case, the wildcards ‘’ and ‘$’ can also be used in pattern.

Example
For an example of this function, see the entry for fgets().

See Also
egrep, grep, libc, sh, string.h, wildcards

Notes
flag must be zero or one for pnmatch() to yield predictable results.

pnmatch() is a more powerful version of the ANSI functions strstr() and strcmp().

For an egrep-style version of pnmatch(), see the function regexp(). It is described in the Lexicon article libmisc.

pointer — C Language
A pointer is an object whose value is the address of another object. The name ‘‘pointer’’ derives from the fact that
its contents ‘‘point to’’ another object. A pointer may point to any type, complete or incomplete, including another
pointer. It may also point to a function, or to nowhere.

The term pointer type refers to the object of a pointer. The object to which a pointer points is called the referenced
type. For example, an int * (‘‘pointer to int’’) is a pointer type; the referenced type is int. Constructing a pointer
type from a referenced type is called pointer type derivation.

The Null Pointer
A pointer that points to nowhere is a null pointer. The macro NULL, which is defined in the header stdio.h, defines
the null pointer. The null pointer is an integer constant with the value zero. It compares unequal to a pointer to
any object or function.

Declaring a Pointer
To declare a pointer, use the indirection operator ‘*’. For example, the declaration

int *pointer;
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declares that the variable pointer holds the address of an int-length object. Likewise, the declaration

int **pointer;

declares that pointer holds the address of a pointer whose contents, in turn, point to an int-length object.

Failure to declare a function that returns a pointer will result in that function being implicitly declared as an int.
This does not cause an error on microprocessors in which an int and a pointer have the same size; however, if you
transport this code to a microprocessor in which an int consists of 16 bits and a pointer consists of 32 bits, the
pointer will be truncated truncated to 16 bits and the program probably will fail.

C allows pointers and integers to be compared or converted to each other without restriction. The COHERENT C
compiler flags such conversions with the strict message

integer pointer pun

and comparisons with the strict message

integer pointer comparison

These problems should be corrected if you want your code to be portable to other computing environments.

See C language for more information.

Wild Pointers
Pointers are omnipresent in C. C also allows you to use a pointer to read or write the object to which the pointer
points; this is called pointer dereferencing. Because a pointer can point to any place within memory, it is possible to
write C code that generates unpredictable results, corrupts itself, or even obliterates the operating system if
running in unprotected mode. A pointer that aims where it ought not is called a wild pointer.

When a program declares a pointer, space is set aside in memory for it. However, this space has not yet been filled
with the address of an object. To fill a pointer with the address of the object you wish to access is called initializing
it. A wild pointer, as often as not, is one that is not properly initialized.

Normally, to initialize a pointer means to fill it with a meaningful address. For example, the following initializes a
pointer:

int number;
int *pointer;

. . .
pointer = &number;

The address operator ‘&’ specifies that you want the address of an object rather than its contents. Thus, pointer is
filled with the address of number, and it can now be used to access the contents of number.

The initialization of a string is somewhat different than the initialization of a pointer to an integer object. For
example,

char *string = "This is a string."

declares that string is a pointer to a char. It then stores the string literal This is a string in memory and fills
string with the address of its first character. string can then be passed to functions to access the string, or you
can step through the string by incrementing string until its contents point to the null character at the end of the
string.

Another way to initialize a pointer is to fill it with a value returned by a function that returns a pointer. For
example, the code

extern char *malloc(size_t variable);
char *example;

. . .
example = malloc(50);

uses the function malloc to allocate 50 bytes of dynamic memory and then initializes example to the address that
malloc returns.

Reading What a Pointer Points To
The indirection operator ‘*’ can be used to read the object to which a pointer points. For example,
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int number;
int *pointer;

. . .
pointer = &number;

. . .
printf("%d\n", *pointer);

uses pointer to access the contents of number.

When a pointer points to a structure, the elements within the structure can be read by using the structure offset
operator ‘->’. See the entry for operators for more information.

Pointers to Functions
A pointer can also contain the address of a function. For example,

char *(*example)();

declares example to be a pointer to a function that returns a pointer to a char.

This declaration is quite different from:

char **different();

The latter declares that different is a function that returns a pointer to a pointer to a char.

The following demonstrates how to call a function via a pointer:

(*example)(arg1, arg2);

Here, the ‘*’ takes the contents of the pointer, which in this case is the address of the function, and uses that
address to pass to a function its list of arguments.

A pointer to a function can be passed as an argument to another function. The functions bsearch and qsort each
take a function pointer as an argument. A program may also use arrays of pointers to functions.

void *
void * is the generic pointer; it replaces char * in that role. A pointer may be cast to void * and then back to its
original type without any change in its value. void * is also aligned for any type in the execution environment.
Please note that COHERENT’s C compiler does not yet recognize the type void *.

In Kernighan and Ritchie C, character pointers are equivalent to void *. To convert a program to use void *, rewrite
the sources so that instances of

char *foo(bar);

is replaced by:

VOID_T *foo(bar);

Be sure that you do not replace legitimate char *s — that is, pointers that actually point to character strings. Then
put the code

#if defined(__ANSI__) || defined(__GNUC__)
typedef void VOID_T
#else
typedef char VOID_T
#endif

into an application-owned header file that is included by every source file.

Pointer Conversion
One type of pointer may be converted, or cast, to another. For example, a pointer to a char may be cast to a
pointer to an int, and vice versa.

The ANSI Standard states that any pointer can be cast to type void * and back again without its value being
affected in any way. (Once again, please note that COHERENT’s C compiler does not yet recognize the type void *.)
Likewise, any pointer of a scalar type may be cast to its corresponding const or volatile version. The qualified
pointers are equivalent to their unqualified originals.

Pointers to different data types are compatible in expressions, but only if they are cast appropriately. Using them
without casting produces a pointer-type mismatch. The translator should produce a diagnostic message when it
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detects this condition.

Pointer Arithmetic
Arithmetic may be performed on all pointers to scalar types, i.e., pointers to chars or int. Pointer arithmetic is
quite limited and consists of the following:

1. One pointer may be subtracted from another.

2. An int or a long, either variable or constant, may be added to a pointer or subtracted from it.

3. The operators ++ or -- may be used to increment or decrement a pointer.

No other pointer arithmetic is permitted. No arithmetic can be performed on pointers to non-scalar objects, e.g.,
pointers to functions.

When an int or long is added to a pointer, it is first multiplied by the length of what the pointer is declared as
pointing to. Thus, if a pointer to an int is incremented by two, it points down two more ints, not two more
characters. The following program demonstrates this feature:

char *pc = "Welcome";
int array[5] = { 1, 2, 3, 4, 5 };
int *pi = array;

main()
{

pc += 2; /* pc points to ’l’ */
pi += 2; /* pi points to 3 */

}

See Also
C language data formats operators, portability, Programming COHERENT
ANSI Standard, §6.1.2.5, §6.2.2.1, §6.2.2.3, §6.3.2.2-3, §6.5.4.1

poll() — System Call (libc)
Query several I/O devices
#include <poll.h>
int poll(fds, nfds, timeout)
struct pollfd fds[]; unsigned long nfds; int timeout;

The COHERENT system call poll() polls one or more file streams for one or more polling conditions. fds gives the
address of an array of structs of type pollfd, which has the following structure:

struct pollfd {
int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

};

Field fd gives the file descriptor for a file stream, as returned by a call to open(), or creat(). Fields events and
revents give, respectively, the polling conditions that interest you, and those that have occurred. The legal
conditions, as defined in header file poll.h, are as follows:

POLLIN Input, or a non-priority or file-descriptor passing message, is available for reading. In revents, this bit
is mutually exclusive with POLLPRI.

POLLPRI A priority message is available for reading. In revents, this bit is mutually exclusive with POLLIN.

POLLOUT Output may be performed; the output queue is not full.

POLLERR An error message has arrived. This field is used only in revents, and is ignored in events.

POLLHUP A hangup has occurred. This field is used only in revents, and is ignored in events.

POLLNVAL The specified fd value does not belong to an open I/O stream. This field is used only in revents, and
is ignored in events.

nfds gives the number of entries in fds.

For each array element fds[i], poll() examines the file descriptor fds[i].fd for the events specified by bits set in
fds[i].events, and places the resulting status into fds[i].revents. If the fd value is less than zero, revents for that
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entry is set to zero. Event flags POLLIN, POLLPRI, and POLLOUT are set in revents only if the same bits are set
in events and the corresponding condition holds. Event flags POLLHUP, POLLERR, and POLLNVAL are always
set in revents if the corresponding condition holds, regardless of the contents of events.

If none of the defined events for any of the file descriptors has occurred, poll() waits for timeout milliseconds.
Because the system clock runs at 100 hertz, the value used for timeout is the next higher multiple of ten
milliseconds. If timeout is zero, poll() returns immediately. If timeout is -1, poll() blocks until a requested event
occurs or a signal interrupts the call.

poll() returns the number of file descriptors for which revents is nonzero. It returns zero if it timed out with no
matching events. If the call failed, it returns -1 and sets errno to an appropriate value.

Example
For an example of using poll() to read a serial port, see the Lexicon entry for ioctl(). The following example uses
poll() to sleep for a fraction of a second.

#include <poll.h>
#include <sys/v_types.h>
#include <sys/times.h>

main()
{

struct pollfd fds;
int timeout;
struct tms tmp;
int before; /* time in millisec before poll() */
int after; /* time in millisec after poll() */

timeout = 270; /* sleep time is timeout * 10 millisec */

fds.fd = -1; /* no file needed for sleeping */

before = times(&tmp); /* Get time before poll */

/* sleep not less than 0.270 sec */
poll(&fds, 1, timeout);

after = times(&tmp); /* Get time after poll */

printf("%d\n", (after - before) * 1000 / CLK_TCK);
}

See Also
libc, poll.h

poll.h — Header File
Define structures/constants used with polling devices
#include <poll.h>

poll.h defines structures and constants used by routines that poll devices.

See Also
header files

popd — Command
Pop an item from the directory stack
popd [item ... ]

The COHERENT shell sh maintains an internal ‘‘directory stack’’, which is a stack of names of directories. You can
manipulate this stack should you, for any reason, wish to traverse a number of directories quickly and efficiently.

The command popd pops an item from the directory stack. If called without an argument, it pops the last item.
Otherwise, it pops the given stack items in the order requested, where each item is a positive integer and zero is the
top of the stack.

See Also
commands, dirs, pushd, sh
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popen() — STDIO Function (libc)
Open a pipe
#include <stdio.h>
FILE *popen(command, how)
char *command, *how;

popen() opens a pipe. It resembles the function fopen(), except that the opened object is a command line to the
shell sh rather than a file.

The caller can read the standard output of command when how is r, or write to the standard input of command
when how is w. popen() returns a pointer to a FILE structure that may be read or written.

Example
This example is equivalent to the command

ls -l | mail me
where me is your login identifier.

#include <stdio.h>
main()
{

FILE *ifp, *ofp;
int c;

if ((NULL == (ofp = popen("lmail me", "w"))) ||
(NULL == (ifp = popen("ls -l", "r")))) {

fprintf(stderr, "cannot popen\n");
exit(1);

}

while (EOF != (c = fgetc(ifp)))
fputc(c, ofp);

pclose(ifp);
pclose(ofp);

}

Files
<stdio.h>

See Also
fclose(), fopen(), libc, pclose(), pipe(), sh, system(), wait()

Diagnostics
popen() returns NULL if the link to command could not be established.

port — System Administration
File that describes ports for UUCP
/usr/lib/uucp/port

File /usr/lib/uucp/port names and describes the serial ports that uucico and cu use to connect to remote
systems.

port consists of a set of entries, one for each port. Entries should be separated from each other by one blank line.
Each entry consists of one or more of the following commands:

port port_name
Name the port being described. This command must appear first in every port’s entry.

type string
This command gives the type of port. It must appear immediately after the port command. string must be
one of the following:

direct The port directly accesses another, usually via a serial port.
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modem
The port accesses a modem. This is the default.

pipe The connection is a pipe that runs through another program

stdin The connection runs through the standard input and standard output. Use this option when
uucico is run as a login shell

tcp The port is a TCP port.

protocol string
List the protocols that can be used with this port. If /usr/lib/uucp/sys contains a list of protocols, that
list takes precedence over the one set in port. We recommend that protocols be specified in the file sys
intsead of here. For information on the available protocols, see the Lexicon article sys.

protocol-parameter protocol parameter
Set a parameter for the protocol. This command recognizes exactly the same arguments as its namesake in
the system-configuration file sys. For information on how to use this command, see the Lexicon entry for

seven-bit true|false
If true, then this port (or the modem plugged into it ) supports only seven-bit transfers; if false, then it
supports both seven-bit and eight-bit protocols. uucico uses this command only during protocol
negotiation, to force the selection of a protocol that works across a seven-bit link. It will not prevent eight-
bit characters from being transmitted. The default is false.

Note that some devices use only seven bits to define a character, and reserve the eighth bit as a parity bit.
It is not possible it is not possible to send eight-bit characters across such devices.

reliable true|false
This command is used only when your system negotiates with the remote system over what protocol to
use. If set to false, it forces your system to accept only a protocol that works over a seven-bit (or
unreliable) connection. If true, then an eight-bit protocol is acceptable. The default is false.

half-duplex true|false
If true, then this port supports only half-duplex communications, which forces uucico not to use a
bidirectional protocol with this port. If it is false, then the port supports both half-duplex and full-duplex
communications. The default is false. sys.

device string
This command names the device associated with the port. For example, the command

device /dev/com2l

names port com2l as the device used by this port. This command is used only with ports of types modem
or direct.

baud number
speed number

Set the baud rate for this port. If an entry in file /usr/lib/uucp/sys specifies a speed but no port entry,
uucico tries every entry in port that has a matching baud rate, in the order in which they appear, until it
finds one that is unlocked. These commands are used only with ports of type modem or direct.

baud-range low high
speed-range low high

Set the range of speeds at which this port can be run. low gives the minimum speed, high the maximum.
This command applies only to ports of type modem.

carrier true|false
If true, the port supports carrier; if false, the port does not. If a port does not support carrier, the carrier-
detect signal will never be required on this port, regardless of what the modem chat script says. If a direct
port supports carrier, the port will be set always to expect carrier.

This command applies only to ports of type direct or modem. The default for a modem port is true; but
for a direct port is false.

hardflow true|false
If true, turn on hardware flow control for this port; otherwise, do not. The default is true. This command
applies only to ports of type direct or modem.
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dial-device device
Send dialing instructions to device, instead of the the normal port device. This applies only to ports of type
modem.

dialer string
Names the dialer to use. Information about the dialer is read from file /usr/lib/uucp/dial. This applies
only to ports of type modem.

dialer string ...
Execute a simple dialing script. This command can be used in situations where the dialing script is so
simple that it would be cumbersome to embed it within a separate file. If the command dialer is used with
only one argument (to name a dialing script), this command is ignored. This applies only to ports of type
modem.

dialer-sequence dialer phone_number ...
Name pairs of dialers and telephone numbers. The telephone number is substituted for the escape
sequences \D or \T in the dialer entry. In effect, this lets you name a sequence of chat scripts to use. At
present, this command is the only way to use a chat script with a TCP port.

This command applies only to ports of type modem or tcp.

lockname name
Use name when locking this port. This applies only to ports of type modem or direct.

service service_name
Name the TCP port to use. If this names a service, then uucico looks the port for that service in file
/etc/services. If it is a number, then uucico binds itself to that TCP port. If this command is not used,
then uucico by default uses the well-known port 540. This command applies only to ports of type tcp.

command command [ arguments ]
If the port is of type pipe, name the command and its arguments with which uucico will be exchanging
data. For example, if your system is on a network, then command could a form of the command rlogin,
which would permit uucico to log into the remote system via the network.

Example
The following gives a sample entry for a port:

port MWCBBS
type modem
device /dev/com2l
baud 9600
dialer tbfast

The following describes each command in detail:

port This names the port being described in this entry, in this case MWCBBS.

type The type of port — in this case, a modem.

device The device used by this port. The device name usually matches the port name, but it does not have to.

baud The speed of the port, in this case 9600.

dialer The type of dialing device (i.e., modem) plugged into this port — in this case, the dialer named tbfast. This
dialer is described in the file /usr/lib/uucp/dial. For information on how a dialer is described in its file,
see the Lexicon entry for dial.

See Also
Administering COHERENT, dial, sys, UUCP

Notes
Only the superuser root can edit /usr/lib/uucp/port.

The file port supports many commands in addition to the ones described here. This article describes only those
commands that might be used in typical UUCP connections. For more information, see the original Taylor UUCP
documentation, which is in the archive /usr/src/alien/uudoc.tar.Z.
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portability — Definition
Portability means that code can be recompiled and run under different computing environments without
modification. Although true portability is an ideal that is difficult to realize, you can take a number of practical
steps to ensure that your code is portable:

• Do not assume that an integer and a pointer have the same size. Remember that undeclared functions are
assumed to return an int. If a function returns a pointer, declare it so.

• Do not write routines that depend on a particular order of code evaluation, particular byte ordering, or
particular length of data types.

• Do not write routines that play tricks with a machine’s ‘‘magic characters’’; for example, writing a routine that
depends on a file’s ending with <ctrl-Z> instead of EOF ensures that that code can run only under operating
systems that recognize this magic character.

• Always use manifest constants, such as EOF, and make full use of #define statements.

• Use header files to hold all machine-dependent declarations and definitions.

• Declare everything explicitly. In particular, be sure to declare functions as void if they do not return a value;
this avoids unforeseen problems with undefined return values.

• Do not assume that integers and pointers have the same size or even the same kind of structure. Do not
assume that pointers are all the same or can point anywhere. On the i8086, in SMALL model a pointer to a
function addresses relative to the code segment, whereas a pointer to data addresses relative to the data
segment. On some machines, character pointers are of a different size or structure than word pointers.

• The constant NULL is defined as being different from any valid pointer. Use it and nothing else for that
purpose.

• Keep test scripts, preferably at the function level. That is, follow each function with an

#ifdef TEST

section that will exercise that function. Running these can rapidly isolate portability problems.

• Place plenty of

#assert

statements in your programs. These can often pick up portability problems.

See Also
header files, pointer, Programming COHERENT, void

POSIX Standard — Definition
The term ‘‘POSIX Standard’’ refers to the Portable Operating System Interface (POSIX) standard, published by the
International Standards Organization (ISO) in 1990 as its standard 9945-1. It is based on standard 1003.1
published in 1988 by the Institute for Electrical and Electronics Engineers (IEEE).

The POSIX Standard is built upon the documentation for the UNIX Operating System published originally by AT&T
Bell Laboratories (now by Unix Systems Laboratories). It defines a common set of guidelines to which UNIX and
UNIX-like operating systems like COHERENT should adhere in order to ensure common functionality, and to
maximize the portability of code from one operating system to another. The publication of the POSIX Standard is a
long step towards maintaining the openness of the UNIX family of operating systems.

ANSI Standard, Programming COHERENT

pow() — Multiple-Precision Mathematics (libmp)
Raise multiple-precision integer to power
#include <mprec.h>
void pow(a, b, m, c)
mint *a, *b, *m, *c;

pow() sets the multiple-precision integer (or mint) pointed to by c to the value pointed to by a raised to the power
of the value pointed to by b, reduced modulo of the value pointed to by m.
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See Also
libmp

pow() — Mathematics Function (libm)
Compute a power of a number
#include <math.h>
double pow(z, x)
double z, x;

pow() returns z raised to the power of x, or z^x. If an overflow error occurs (that is, you attempt to compute a
number that is too large to fit into a double-precision floating-point number), pow() returns a huge value and sets
errno to ERANGE.

Example
For an example of this function, see the entry for log10().

See Also
libm
ANSI Standard, §4.5.5.1
POSIX Standard, §8.1

pr — Command
Paginate and print files
pr [ options ] [ file ...]

pr paginates each file and writes it onto the standard output. At the top of each page, pr writes a header that that
gives today’s date, the file’s name, the number of the page, and the number of the line in the input file at which
printing begins.

The file name ‘-’ tells pr to read the standard input; this lets you mingle text from one or more files with text you
type from the keyboard or pipe in from another program. pr also reads the standard input by default if its
command line does not name a file.

pr recognizes the following command-line options:

+ skip Skip the first skip pages of each input file.

-N Print the text in N columns. This is used to print out material that was typed in one or more columns.

-h header
Use header in place of the text name in the title. If header is more than one word long, it must be enclosed
in quotation marks.

-lN Set the page length to N lines (default, 66).

-m Print the texts simultaneously, in separate columns. Each text will be assigned an equal amount of width
on the page, and any lines longer than that width will be truncated. You can use this to print several
similar texts or listings simultaneously.

-n Number each line.

-sc Separate each column by the character c. You can separate columns with a letter of the alphabet, a period,
or an asterisk. Normally, each column is left-justified in a fixed-width field.

-t Suppress the printing of the header on each page, and the header and footer space.

-wN Set the page width to N columns (default, 80). Text lines are truncated to fit the column width. The
maximum width is 254 columns.

See Also
cat, commands, nroff, prps

Notes
pr generates normal ASCII text, suitable for displaying on your screen or printing with a dot-matrix printer. The
command prps also paginates text, but its output is in the PostScript language, suitable for printing on a
PostScript printer.
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prep — Command
Produce a word list
prep [ -dfp ] [ -i ifile ] [ -o ofile ] [ file ... ]

The command prep prepares a word list that is useful for statistical processing from the textual data found in each
input file. If no file is given, prep reads the standard input for text.

For the purposes of prep, a word consists of a string of alphabetic letters and apostrophes. Words are written, one
per line, to the standard output. Hyphenated words are treated as two words. However, any word hyphenated
between two lines is rejoined as one word.

prep recognizes the following options:

-d Print a sequence number (of words in the input text) before each output word.

-f Fold upper-case letters into lower case. This is sometimes useful for producing unique lists of words.

-i ifile Ignore words found in ifile. ifile has words one per line that are matched against each input word,
independent of case.

-o ofile Print only words found in ofile. Only one of -i or -o may be specified.

-p In addition to printing words, also print each punctuation character (printable, non-numeric characters
that separate words), one per line. These lines are not counted for -d.

See Also
commands, deroff, ksh, sh, sort, spell, typo, wc

Notes
What constitutes a word is different in deroff, prep, and wc.

print — Command
Echo text onto the standard output
print [-enrun] [argument ...]

The command print is built into the Korn shell ksh. It echoes each argument onto the standard output.
Arguments are separated from each other by whitespace, and the list of arguments is terminated by a newline
character.

print recognizes and substitutes for the following C-style escape sequences:

\b Backspace
\f Formfeed
\n Newline
\r Carriage return
\t Tab
\v Vertical tab
\0nnn nnn is the octal value of the desired character

print recognizes the following options:

-e Re-enable expansion of C escape sequences.

-n Suppress printing of a newline at the end of the list of arguments.

-r Suppress expansion of C escape sequences.

-un Redirect output from the standard output to shell file descriptor n.

See Also
commands, echo, ksh
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printer — Technical Information
How to attach and run a printer

A printer is the device that transfers text to paper. The COHERENT system includes a system for spooling a file to
one or more printers. Spooling means that the file is copied into a special area and printed by a daemon. With a
spooler, more than one user can send files to the same printer at the same time, yet the files will not collide.

COHERENT also includes commands to prepare text for printing a variety of printers. These include line printers
(that is, dot-matrix printers), Epson-compatible printers, laser printers that use the PCL page-description language,
and printers that use PostScript. With COHERENT, you can run prepare text into a variety of formats, and print the
output on any number of printers plugged into either parallel or serial ports.

COHERENT has implemented spooling in two ways. Versions of COHERENT prior to release 4.2 control printing
through a version of the Berkeley command lpr. COHERENT release 4.2 and subsequent releases also control
printing through the MLP print spooler, which implements a version of the System-V command lp and related
tools. These systems differ greatly; each set is discussed in its own section below.

Before we begin to describe printing, please note that one major source of confusion for users is the fact that the
same names occur over and over again. For example, please do not confuse the parallel-port’s device driver lp with
the print-spooler command lp or with the device /dev/lp. COHERENT inherits much of this confusion from the
UNIX operating system; but we will do our best to make these terms clear to you. Caveat lector.

Device Drivers
Both the lpr and lp spoolers work through COHERENT’s device drivers for the serial and parallel ports. The
following gives an overview of these drivers.

The driver lp manages parallel ports. The architecture of the PC permits your computer to have up to three
parallel ports. Devices /dev/lpt1, /dev/lpt2, and /dev/lpt3 control, respectively, parallel ports 1, 2, and 3 in
cooked mode. For more information, see the Lexicon entry for the driver lp.

COHERENT uses the driver asy to manage all serial ports, whether COM ports or multi-port cards. For details, see
its entry in the Lexicon.

Finding the Port
Both spooler systems require that you be able to identify a port when you plug a printer into it. This can be more
difficult than it seems, largely because the labels on your system’s port may not be reliable: those labels reflect
what MS-DOS thinks the ports are, and that may not be accurate.

The following describes how to identify the port into which you have just plugged a printer. Note that these
directions assume that you are printing to a parallel port; however, you can adapt them to serial ports as well,
depending on the configuration of serial devices on your system.

1. Plug the printer into an unused port. Load paper into the printer and turn it on.

2. Log in as the superuser root.

3. cd to directory /dev.

4. Send some output to each parallel port. The output must be something that your printer can print. If your
new printer is a line printer, type:

cat /etc/uucpname | pr > lpt1

If the printer is a laser printer that uses PCL, type:

cat /etc/uucpname | hp > lpt1

Or, if the printer is a PostScript printer, type:

cat /etc/uucpname | prps > lpt1

If text appears on your printer, then you have discovered the correct port. Jot down its name on a piece of
paper, e.g., ‘‘lpt1’’. If nothing happens, try the command again for lpt2 and lpt3, until you have found the
correct port and noted its name.

5. Exit from superuser status.
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The lpr Printing System
Versions of COHERENT prior to release 4.2 use a version of the Berkeley command lpr to control printing. Although
this command can print text onto printers plugged into either serial or parallel ports, they are almost always used
through parallel ports; therefore, the descriptions in this section assume that all printers are plugged into parallel
ports.

To begin, lpr is actually a family of commands, as follows:

hpd Daemon that prints files on the laser printer
hpr Spool a file for printing on the laser printer
hpskip Abort/restart printing a file on the laser printer
lpd Daemon that prints files on the line printer
lpr Spool a file for printing on the line printer
lpskip Abort/restart printing a file on the line printer

Each command has its own entry in the Lexicon, which describes it in detail.

The commands lpr and hpr dispatch text to printers: lpr to the printer plugged into device /dev/lp, and hpr to the
printer plugged into device /dev/hp. Each of these devices is actually a link to the correct parallel port — that is,
to devices /dev/lpt1, /dev/lpt2, or /dev/lpt3, as described above. (For information on what a link is, see the
Lexicon entry for the command ln). The fact that each command uses a ‘‘generic’’ device for its output makes it
easy for you to dispatch files to the right device; however, it also means that you can have only one line printer and
one laser printer plugged into your computer.

When you installed COHERENT, the installation program tried to link /dev/lp and /dev/hp for you automatically;
however, you may need to set them yourself (say, because you have purchased a new printer).

To set these links correctly, first follow the directions given above to identify the port into which you have plugged
the printer. Then, link that port to the device by which you will access the printer. If you are installing a line
printer that you will access via the command lpr, then you must use the command ln to link the port to device
/dev/lp; if, however, the printer is a laser printer that you will access via the command hpr, then you must link
the port to device /dev/hp. For example, if you have plugged a line printer into port lpt1, then use the following
commands:

ln -f lpt1 lp
ln -f rlpt1 rlp

(Please note that the last character in ‘‘lpt1’’ and ‘‘rlpt1’’ is the numeral one — not a lower-case el.) If, however, you
have plugged a laser printer into port lpt3, then use the following commands:

ln -f lpt3 hp
ln -f rlpt3 rhp

After you have made the links, use the command lpr or hpr (whichever is applicable) to test whether you have set
up the links correctly. If you have not, go through the above procedure again.

The following describes how to use the lpr family of commands to print to a variety of printers.

Dumb Printers
To print on a line printer, simply use the command lpr. This command performs some formatting on the file,
and invokes the line-printer daemon lpd to spool the file for printing. For example, to print the name of your
system, use the command:

cat /etc/uucpname | pr | lpr -B

The option -B suppresses the printing of a banner page.

You can also print the output of the text-formatting command nroff on a line printer, assuming that your line
printer understands how to backspace. For example, the manual pages included with COHERENT were
formatted with nroff. To print the text of this Lexicon entry on your line printer, type:

man printer | lpr -B

Epson-Compatible Printers
The command epson massages text into a form that uses some of the text-formatting features of the Epson
MX-80 printer and clones thereof. It is especially to be used with text that has been formatted with nroff: it
turns nroff’s character-backspace-character sequence into the Epson escape sequences for emphasized text
and italics. epson writes its formatted output to the standard output, from which you can pipe it to a spooler
or other program.
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For example, to print this manual page on an Epson-compatible printer, type:

man printer | epson | lpr -B

Laser Printers with PCL
The Hewlett-Packard LaserJet, and its clones, use the Hewlett-Packard Control Language (HPCL) to control
their behavior. Note that some laser printers, such as the Apple LaserWriter, use PostScript instead of HPCL;
these printers are described below.

The command hp prepares files to be printed on a HPCL printer. (Please do not confuse this with the device
/dev/hp.) You should use it to prepare simple text, such as program listings, for printing on your laser
printer.

Like the command epson, hp massages the output of nroff into escape sequences used by a printer — in this
case, escape sequences used by a printer that’s running the Hewlett-Packard Page Control Language (PCL).
For example, to print this manual page on your PCL printer, type:

man printer | hp | hpr -B

The command hpr spools files to be printed on a laser printer. It works like the command lpr, except that it
includes a number of special features; for example, you can use it to download LaserJet ‘‘soft fonts’’ into your
printer.

PostScript Printers
Some laser printers use PostScript instead of HPCL to control their behavior. These printers expect their
input to a program written in the PostScript language; if you send them ordinary text, they simply hang. To
print ordinary text on a PostScript printer use the command prps, which is a PostScript version of the
COHERENT command pr. It paginates text, draws a box around the page, and prints a simple header at the top
of each page. For example, to print this manual page on a PostScript printer, use the command:

man printer | prps | hpr -B

Note that to print on a PostScript printer, you must use the -B option to the command hpr. If you do not, hpr
will attempt to print a banner page in ordinary text on your printer, and your printer will hang.

The lp Printing System
Versions of COHERENT beginnning with release 4.2 also include the MLP spooler, which is an implementation of the
System-V lp family of printing commands (hereafter called lp).

lp is considerably more sophisticated than the lpr commands. It permits you to have multiple printers of the same
type (instead of just one laser printer and one line printer, as under lpr), which can be plugged into serial or
parallel ports. It supports prioritization of printing jobs (that is, you can give some users or some types of jobs
higher priority than others), lets each user set a default printer for his jobs, allows users to reprint their jobs easily,
and allows applications to customize their output to take advantage of special printer features. It even supports
local printing — that is, it will format and print output onto a printer that is plugged into a terminal’s auxiliary
port.

lp’s commands resemble those used by UNIX System V to control printing, so this system can work more easily
with third-party applications. Note, however, that the MLP implementation of lp does differ in some important
respects from the System-V original; therefore, users who have used lp under UNIX should pay close attention to
the following descriptions.

lp consists of the following commands:

cancel Cancel the printing of a job
chreq Change priority, lifetime, or printer for a job
lp Spool one or more files for printing
lpadmin Administer the print-spooler system
lpsched Print jobs spooled with command lp; turn on printer daemon
lpshut Stop the printer daemon
lpstat Give the status of printer or print request
pclfont Prepare a PCL font for downloading via MLP
reprint Reprint a spooled print job
route Let a user change his default printer
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Each of these commands is described in its own Lexicon entry.

lp uses the following directories:

/usr/spool/mlp/backend This directory holds the programs and scripts used to manage printers.
/usr/spool/mlp/queue This directory holds all print requests.
/usr/spool/mlp/route This directory holds files that name each user’s default printer.

lp’s behavior is set by the contents of the following files:

/usr/spool/mlp/controls This file holds lp’s configuration data base. This data base links a printer by
name to the device through which it is accessed, and to the configuration script (if
any) with which its input is massaged. For information on how to modify it, see
the Lexicon entry for controls.

/usr/spool/mlp/log This file logs lp’s activity.
/usr/spool/mlp/status This file gives the status of each defined printer.

To use lp, you must first use the command lpadmin to build a description file for each class of printer that you
have plugged into your system. The description file names the class of printer (e.g., ‘‘epson’’ or ‘‘laserjet’’) and gives
the information lp needs to manipulate input to the printer. For example, a script may include a stty command to
set the port into a special mode, and one or more commands for filtering the input so it will print properly. A
backend script can invoke commands like prps or epson to process text for printing. lp can perform sophisticated
filtration; for example, it can correctly handle PostScript code that prints images or bar codes. See the Lexicon
entry for lpadmin for more details on these scripts.

You must then use lpadmin to link a given printer, by name, to the device through which it is accessed. You must
have first identified the port into which each printer is plugged, as described above. These links are stored in file
/usr/spool/mlp/controls. If you have prepared a configuration script for this printer’s type, then you must link it
to the given printer as well. For example, if you have prepared a configuration script for all PostScript printers and
named it postscript, then you must link that script to every PostScript printer whose input you want to be
massaged in this manner. Unlike the lpr printing system, lp lets you attach to your computer more than one
printer of each type.

One last point: each ‘‘printer’’ should identify a given physical device plus a given means of accessing it. Thus, one
physical printer can have more than one name if you plan to access it in more than one manner. See the Lexicon
entry for lpadmin for more information on this topic.

Note that if a printer is a ‘‘local printer’’ — that is, a printer plugged into the auxiliary port of the terminal that the
user is using, the termcap description for that terminal must define the variables PS (print start) and PN (print
end). Each printer’s description file is stored in directory /usr/spool/mlp/backend.

You can use the command route to assign a default printer to each user. If the user has set a default printer for
himself and if he does not name a printer on the lp command line, the output goes to that default printer. If the
user has not set a default printer for himself and does not name a printer on his lp command line, the output goes
to the system’s default printer. This feature is an extension to the version of lp that is implemented by UNIX
System V.

To spool a job for printing, use the command lp. A job consists either of one or more files, or of text read from the
standard input. lp prefaces the job with a header that describes where and how the job is to be printed, then
copies it into directory /usr/spool/mlp/queue. The name that lp gives the spooled job reflects its status, that is,
the order in which it should be printed relative to other jobs that user has spooled. This allows each user to give a
priority to the jobs that he has spooled.

Each job resides in the spooling directory until the printer daemon lpsched reads it and prints it. lpsched selects
jobs for printing based on their relative priority, as shown in their names. It finds where the job is to be printed by
reading its header; then it opens the description file for that printer and follows its directions for printing the job.
To turn on the daemon, use the command lpsched by itself; to turn it off, use the command lpshut. If the spooler
is shut down, jobs remain in /usr/spool/mlp/queue until you reawaken the daemon by issuing the command
lpsched.

To see what files are being printed where, use the command lpstat. To cancel a printing request, use the command
cancel.

A job remains ‘‘alive’’ in /usr/spool/mlp/queue until its ‘‘life’’ has expired; the life is set in its header. There are
three types of ‘‘lifetime’’: temporary, in which a job survives two hours from the time of spooling; short-term, in
which a job survives 48 hours; and long-term, in which a job survives 72 hours. The default is short-term. When a
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job’s life expires, lpsched removes it. A user can use the command chreq to change a job’s lifetime or priority; or
redirect it from one printer to another. While a job lives in the spool directory, a user can use the command
reprint to reprint it. He can also use the command route to change his default printer.

Note that you should be very careful that jobs that include sensitive information — e.g., the payroll checks or your
resume — do not linger in spool directory, where other users can reprint them. For information on resetting a job’s
lifetime, see the Lexicon entries for chreq and MLP_LIFE. You can change the default definitions of temporary,
short-term, and long-term by editing controls. See its entry in the Lexicon for more information. Caveat utilitor!

The following environmental variables affect lp’s default behavior:

MLP_COPIES The number of copies to print.
MLP_FORMLEN The number of lines on the page to be printed.
MLP_LIFE The ‘‘lifespan’’ of a spooled file.
MLP_PRIORITY The default priority to give each spooled file.
MLP_SPOOL Set a number of user-specific variable, such as title of document, type of document, and

data base.

These variables can be set either by a user, or embedded in a script. Each is detailed in its own Lexicon entry.

See Also
Administering COHERENT, hpr, lp, lp [device driver], lpr, lpsched

Notes
When you link /dev/lp or /dev/hp to a device, it normally is linked to a ‘‘cooked’’ device, e.g., /dev/hp. This
works correctly for character-based output, such as text (or PostScript files); however, if you are downloading
binary data to the printer, such as graphics or fonts, be sure to use the ‘‘raw’’ device, e.g., /dev/rhp. Passing
binary information through a ‘‘cooked’’ device will garble the data and distort the resulting image.

Some COHERENT 4.2 customers have experienced printing problems, including no printing, slow printing, or
printing stops after a line or two. To fix this, one needs to do the following steps in exact order;

1. Edit file /etc/conf/install_conf/keeplist.

2. Change the last line so that it reads as follows:

echo ’-I SHMMNI:SEMMNI:NMSQID:LPWAIT:LPTIME:LPTEST’

3. Type the following command to build a new COHERENT kernel:

/etc/conf/bin/idmkcoh -o /testcoh

4. Shutdown and reboot with the new kernel.

5. Log in as the superuser root.

6. Set the kernel variables that control discipline of the printer. The driver uses a hybrid busy-wait/timeout
discipline, to efficiently support in a multi-tasking environment a variety of printers whose buffers come in a
multiplicity of sizes.

The variable LPWAIT sets the time for which the processor waits for the printer to accept the next character.
If the printer is not ready within the LPWAIT period, the processor then resumes normal processing for the
number of ticks set by the kernel variable LPTIME. Thus, setting LPWAIT to an extremely large number (e.g.,
1,000) and LPTIME to a very small number (e.g., one) results in a fast printer, but leaves very few cpu cycles
available for anything else. Conversely, setting LPWAIT to a small number (e.g., 50) and LPTIME to a large
number (e.g., five) results in efficient multi-tasking but also results in a slow printer unless the printer itself
contains a buffer (as is normal with all but the least expensive printers). By default, LPWAIT is set to 400 and
LPTIME to four. We recommend that you set LPWAIT to no less than 50 and no more than 1,000 and
LPTIME to no less than one.

The variable LPTEST determines wether the device driver checks to see if the printer is in an ‘‘on-line’’
condition before it uses the device. If your printer does not support this signal, you must set LPTEST to zero.

To reset the values of LPWAIT, LPTIME, and LPTEST, edit file /etc/conf/mtune and set the parameters
LPWAIT_SPEC, LPTIME_SPEC, and LPTEST_SPEC to the values that you want. Then use the command
/etc/conf/bin/idmkcoh to build a new kernel. For details on this command, see its entry in the Lexicon.
One word of caution to the wary: be sure to name your new kernel something innocuous, such as cohtest, to
ensure that you do not clobber your current working kernel.
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7. Reboot the new kernel and try printing again.

8. If your printer still exhibits problems, try increasing or decreasing the values of LPTIME and LPWAIT.
Remember, each time you build a new kernel kernel, you must reboot in order for the new variables to take
effect.

The MLP printer spooler is distributed under license from Magnetic Data Operations, 9400B Two Notch Road,
Columbia, SC 29223.

The message

cannot open device /dev/lp

from lpr means either that the printer is not turned on, or that the device /dev/lp is not linked to the correct
parallel-port device. Use the directions given above to find and link the correct device. The same applies when you
receive this message from hpr.

printf() — STDIO Function (libc)
Print formatted text
#include <stdio.h>
int printf(format [,arg1, .... argN])
char *format; [data type] arg1, ... argN;

printf() prints formatted text. It uses the format string to specify an output format for each arg, which it then
writes on the standard output.

printf() reads characters from format one at a time; any character other than a percent sign ‘%’ or a string that is
introduced with a percent sign is copied directly to the output. A ‘%’ tells printf() that what follows specifies how
the corresponding arg is to be formatted; the characters that follow ‘%’ can set the output width and the type of
conversion desired. The following modifiers, in this order, may precede the conversion type:

1. A minus sign ‘-’ left-justifies the output field, instead of the default right justify.

2. A string of digits gives the width of the output field. Normally, printf() pads the field with spaces to the field
width; it is padded on the left unless left justification is specified with a ‘-’.

If the field width begins with ‘0’, the field is padded with ‘0’ characters instead of spaces; the ‘0’ does not cause
the field width to be taken as an octal number. Note that this applies only to numeric string descriptors. If
the field descriptor describes a character or string (i.e., %c or %s), printf() ignores a leading ‘0’ and always
pads the field with spaces.

If the width specification is an asterisk ‘*’, the routine uses the next arg as an integer that gives the width of
the field.

3. A period ‘.’ followed by one or more digits gives the precision. For floating point (e, f, and g) conversions, the
precision sets the number of digits printed after the decimal point. For string (s) conversions, the precision
sets the maximum number of characters that can be used from the string. If the precision specification is
given as an asterisk ‘*’, the routine uses the next arg as an integer that gives the precision.

4. The letter ‘l’ before any integer conversion (d, o, x, or u) indicates that the argument is a long rather than an
int. Capitalizing the conversion type has the same effect; note, however, that capitalized conversion types are
not compatible with all C compiler libraries, or with the ANSI standard. This feature will not be supported in
future editions of COHERENT.

The following format conversions are recognized:

% Print a ‘%’ character. No arguments are processed.

c Print the int argument as a character.

d Print the int argument as signed decimal numerals.

e Print the float or double argument in exponential form. The format is d.ddddddesdd, where there is always
one digit before the decimal point and as many as the precision digits after it (default, six). The exponent sign
s may be either ‘+’ or ‘-’.

f Print the float or double argument as a string with an optional leading minus sign ‘-’, at least one decimal
digit, a decimal point (‘.’), and optional decimal digits after the decimal point. The number of digits after the
decimal point is the precision (default, six).
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g Print the float or double argument as whichever of the formats d, e, or f loses no significant precision and
takes the least space.

ld Print the long argument as signed decimal numerals.

lo Print the long argument in unsigned octal numerals.

lu Print the long argument in unsigned decimal numerals.

lx Print the long argument in unsigned hexadecimal numerals.

o Print the int argument in unsigned octal numerals.

p The ANSI standard states that the behavior of the %p descriptor is implementation-specific. Under
COHERENT, %p prints in format %#.8X the literal value of a pointer. Its corresponding variable must be of
type char *.

r The next argument points to an array of new arguments that may be used recursively. The first argument of
the list is a char * that contains a new format string. When the list is exhausted, the routine continues from
where it left off in the original format string.

This descriptor is not part of the ANSI Standard. Its use is deprecated. Code that uses it may not be portable
to other systems.

s Print the string to which the char * argument points. Reaching either the end of the string, indicated by a
null character, or the specified precision, will terminate output. If no precision is given, only the end of the
string will terminate.

u Print the int argument in unsigned decimal numerals.

x Print the int argument in unsigned hexadecimal numerals. The digits are prefaced by the string 0x.

X Like %x, except that the digits are prefaced by the string 0X. Note COHERENT release 4.2 has changed the
means of %X to conform to the ANSI C standard. In versions prior to release 4.2, this format conversion
printed a long argument in unsigned hexadecimal numerals. Programs that depend upon the obsolete use of
%X will no long work the same under the current release of COHERENT.

If it wrote the formatted string correctly, printf() returns the number of characters written. Otherwise, it returns a
negative number.

Example
This example implements a mini-interpreter for printf() statements. It is a convenient tool for seeing exactly how
some of the printf() options work. To use it, type a printf() conversion specification at the prompt. The formatted
string will then appear. To reuse a format identifier, simply type <return>:

#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* the replies go here */
static char reply[80];

/* ask for a string and echo it in reply. */
char *askstr(msg)
char *msg;
{

printf("Enter %s ", msg);
fflush(stdout);

if (gets(reply) == NULL)
exit(EXIT_SUCCESS);

return (reply);
}

main()
{

char fid[80], c;
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/* initialize to an invalid format identifier */
strcpy(fid, "%Z");

for (;;) {
askstr("format identifier");
/* null reply uses previous FID */
if (reply[0])

/* leave the ’%’ */
strcpy(fid + 1, reply);

switch(c = fid[strlen(fid) - 1]) {
case ’d’:
case ’i’:

askstr("signed number");
if(strchr(fid, ’l’) != NULL)

printf(fid, atol(reply));
else

printf(fid, atoi(reply));
break;

case ’o’:
case ’u’:
case ’x’:
case ’X’:

askstr("unsigned number");
if(strchr(fid, ’l’) != NULL)

printf(fid, atol(reply));
else

printf(fid, (unsigned)atol(reply));
break;

case ’f’:
case ’e’:
case ’E’:
case ’g’:
case ’G’:

printf(fid, atof(askstr("real number")));
break;

case ’s’:
printf(fid, askstr("string"));
break;

case ’c’:
printf(fid, *askstr("single character"));
break;

case ’%’:
printf(fid);
break;

case ’p’:
/* print pointer to format id */
printf(fid, fid);
break;

case ’n’:
printf("n not implemented");
break;

default:
printf("%c not valid", c);

}

printf("\n");
}

}

See Also
ecvt(), fcvt(), fprintf(), gcvt(), libc, putc(), puts(), scanf(), sprintf(), vprintf()
ANSI Standard, §7.9.6.3
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POSIX Standard, §8.1

Notes
Because C does not perform type checking, it is essential that each argument match its counterpart in the format
string.

Versions of COHERENT prior to release 4.2 recognized the conversion formats %D, %O, and %U. The ANSI standard
does not recognize these conversion characters, and beginning with release 4.2 the COHERENT implementation of
printf() no longer recognizes them. You should instead use, respectively, the conversion characters %ld, %lo, and
%lu.

proc.h — Header File
Define structures/constants used with processes
#include <sys/proc.h>

proc.h defines structures and constants used by routines that manipulate processes.

See Also
header files

process — Definition
A process is a program in the state of execution.

See Also
daemon, file, Using COHERENT

prof — Command
Print execution profile of a C program
prof [ -abcs ][ progfile [ monfile ] ]

prof interprets the profile file produced by an execution of a C program and reports the execution frequencies of
each routine. It also reports the percentage of execution time spent in each routine.

prof normally reports times and frequencies spent for regions of programs between externally defined names.
progfile is the executable program; if omitted, a.out is assumed. monfile is the monitor file produced during
execution of the program; if omitted, mon.out is assumed.

To produce mon.out, a program must be compiled with the -VPROF option to cc. To profile all modules, each
module must be compiled with this option.

The following options are available.

-a Profile all symbols, not just externals.

-b Print all bin information.

-c Print all call information.

-s Report stack usage high-water mark.

Files
a.out — Program file (with name list intact)
mon.out — Raw execution profile

See Also
cc, commands, ld, nm

profile — System Administration
Set default environment at login
/etc/profile

The shell executes the script /etc/profile whenever any user logs in. This script sets up the default environment
for a user. Note that the actions of this script can be altered or supplemented by each user’s .profile script.

If /etc/passwd specifies a program in the login-shell slot, then /etc/profile is read by /bin/sh. Those lines that
begin with the command export are recognized as global environments, and the remainder of the line is inserted
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into the environment.

Please note that if /bin/sh or /bin/ksh is not the shell, any constructions other than

export foo=value

are not likely to work.

See Also
Administering COHERENT, ksh, .kshrc, .profile, sh

.profile — System Administration
Execute commands at login
$HOME/.profile

The shell reads file $HOME/.profile whenever a user logs in. The user can edit its contents to set up her
environment however she prefers, and to execute programs routinely upon login.

The following gives one user’s .profile:

MAIL=/usr/spool/mail/sally
PATH=/usr/bin:/bin:/v/sally/bin:.
EDITOR=me
PS1="Sally(!) "
PS2="MORE(!)> "
PAGER=scat
set -h
set -o emacs
echo "CALENDAR:"
calendar
echo ""
/usr/games/fortune

The first six entries set environmental variables; note that these are in addition to the variables set in /etc/profile.

The next two entries

set -h
set -o emacs

set two features of the Korn shell, which is used by the person. The first turns on its hashing feature, and the
second turns on MicroEMACS-style editing of the command line.

The last four entries

echo "CALENDAR:"
calendar
echo ""
/usr/games/fortune

execute two programs upon login. The two echo commands print, respectively, the word CALENDAR and a blank
line on the screen. The command calendar reads the user’s personal calendar and prints all entries the relate to
today (or to the weekend, should today be a Friday). The command fortune prints a randomly selected (and, we
hope, amusing) select from file /usr/games/lib/fortunes.

This example is relatively simple. A user’s .profile can be turned into a complex shell program if you wish.

See Also
Administering COHERENT, ksh, .kshrc, profile, sh, Using COHERENT

Programming COHERENT — Overview
The C language is the ‘‘native language’’ of COHERENT. Most COHERENT programs are written in C.

If you are a beginner and are interested in learning something about C, look at the tutorial The C Language in the
first part of this manual.

The following Lexicon entries give you information you need to write or port C programs under COHERENT:
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C keywords
This lists the C keywords recognized by the COHERENT implementation of C. Each keyword, in turn, is
described in full in its own Lexicon entry.

C language
This summarizes the COHERENT implementation of C. It gives the size of each data type, formatting of
floating-point data, static limits, and other information.

C preprocessor
This describes the processing directives that the COHERENT preprocessor recognizes. Each directive is
described in full in its own Lexicon entry

header files
This entry names the header files included as part of COHERENT. Each header file is described in its own
Lexicon entry. Some of the header-file articles are of particular interest.

libraries
This describes the libraries included with COHERENT. Almost every library function and system call has its
own Lexicon entry; the only exceptions are the routines kept in libmisc.a and libcurses.a. Each library
has its own summary entry; of particular interest are the entries libc, libm, libgdbm, and libsocket.

If you are an experienced C programmer who is new to COHERENT, we suggest you look first at the article for C
language, to get an overview of the dialect of C that COHERENT supports. Look at the entry for libraries, to see
what libraries are available; then look at the entry for each library to see what functions are available.

The following Lexicon entries describe the commands with which you can compile and manage your programs:

ar The archiver. This turns a group of object modules into a library.

as The COHERENT macro-assembler. This assembles modules written in assembly language, and builds
object modules that you can link with modules written in C or other languages.

cc The C compiler. This describes the compiler itself, and its options and switches.

cpp The C preprocessor. The preprocessor itself has its own options to help you control the building of your
programs.

db The symbolic debugger. With db, you can set breakpoints, single-step through code, hot-patch binaries,
and otherwise debug your programs. It requires knowledge of 80386 assembly language.

ld The linker. This links object modules into an executable binary. The Lexicon entry describes its switches
and features.

make The programming discipline. make helps you to manage the building of a complex program. It is
indespensible for managing all but the simplest programming projects.

nm This utility prints the contents of a program’s symbol table.

sh The Bourne shell. This is of the COHERENT command interpreter. You can write large, complex programs
in the shell. These can functions, and draw on a library of prewritten functions. The shell is one of the
most powerful tools available to a COHERENT programmer — and one of the most neglected.

strip Strip the symbol table from a program. This makes most programs significantly smaller, with no loss in
functionality.

Each command is described in its own Lexicon entry.

Definitions
The following Lexicon entries give technical definitions of interest to programmers:

address
What an ‘‘address’’ is.

alignment
What byte alignment is, and how it applies under the various machine on which COHERENT has been
implemented

ANSI A brief introduction to the ANSI Standard for Programming Language C.
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arena What an arena is, and how it applies to COHERENT programs.

array What an array is, and elementary information on how to code it.

ASCII The ASCII table.

bit What a bit is.

bit map
What a bit map is, and how to code it under C.

buffer What a buffer is, and how buffering affects your languages.

byte What a byte is.

byte ordering
This describes how bytes and words are ordered on the various machines on which COHERENT has been
implemented.

calling conventions
The calling conventions for COHERENT functions. This is particularly important if you are writing modules
in assembly language.

cast How to ‘‘coerce’’ one data type into another.

cc0 The COHERENT C parser.

cc1 The COHERENT C code generator.

cc2 The COHERENT C optimizer.

cc3 The COHERENT de-compiler. It generates a file of assembly language for your examination.

data formats
This gives the size of the common data types on the various machines on which COHERENT has been
implemented.

data types
The data types that COHERENT C recognizes.

environ
This article introduces the argument environ, which by default is the third argument passed to the
function main() in a C program. It points to image of the process’s environment.

errno This global variable holds the error status returned by a COHERENT system call. The article errno.h
interprets the codes that can appear in this variable.

execution
This describes how each form of the system call exec() executes a program.

field Description of what a field is, and how to address it.

FILE Description of the FILE structure used by STDIO routines.

file What a file is. It also goes into the ‘‘black art’’ of permissions.

file descriptor
Description of the file descriptor used by COHERENT system calls.

function
What a function is.

GMT A brief introduction to Greenwich Mean Time, which is the internal time for every COHERENT system.

initialization
This describes the rules of initialization for C.

interrupt
What an interrupt is.
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Latin 1 The table ISO Latin 1 (ISO 8859.1).

lvalue Definition of the ‘‘left value’’ in a C expression.

macro What a C macro is, and how COHERENT C processes them.

manifest constant
This introduces manifest constants, and lists the constants that COHERENT defines automatically.

modulus
A definition of the modulus arithmetic operation.

NUL Definition of the NUL character.

nybble What a ‘‘nybble’’ is.

object format
Definition of an object format.

operator
A list of the C operators. This article also gives a table of precedence for the operators.

pattern
What a pattern is.

pointer
What a pointer is, and tips for using pointers with COHERENT C.

portability
This gives some tips on how to write portable programs.

POSIX Standard
A brief introduction to the POSIX Standard

random access
A definition of random access.

read-only memory
A definition of ROM, or ‘‘read-only memory’’.

recursion
A definition of this programming technique.

rvalue Definition of the ‘‘right value’’ in a C expression.

signame
This global array holds a string that describes the signal that a program has received.

stack A definition of the program stack, and how to manipulate it under COHERENT C.

standard error
Definition of the standard-error device.

standard input
Definition of the standard-input device.

standard output
Definition of the standard-output device.

stderr The file descriptor of the standard-error device.

stdin The file descriptor of the standard-input device.

STDIO Definition of STDIO — i.e., ‘‘standard input and output’’.

stdout The file descriptor of the standard-output device.

storage class
This entry summarizes the classes of storage that COHERENT C recognizes.
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stream Definition of a file stream.

STREAMS
This article summarizes the COHERENT implemenation of STREAMS.

structure
Definition of a structure, and basic information on how to code it.

structure assignment
This details structure assigment under COHERENT C.

stty Summary of the stty interface to terminals.

termio Introduction to the termio terminal interface.

termios
This summarizes the POSIX Standard extensions to the termio terminal interface.

type checking
This details type checking under COHERENT C.

type promotion
This details type promotion under COHERENT C.

Other Languages
COHERENT includes the following programming languages:

awk This interpreted language lets you write programs for text processing. It is especially good at processing
tabular information, thus letting you quickly write simple data-base programs.

bc bc is a calculator program that offers infinite magnitude and infinite precision. This is an interpreted
langauge that you can program on the fly to perform simple tasks, such as computing interest payments
on the national debt. You can also write programs that you can run repeatedly. These can also take
advantage of a library of routines already written for you.

lex This program reads a set of lexical analysis rules that you write in a standard form, and generates a C
program that you can compile and run.

yacc This program reads a set of parsing rules that you write in Backus-Naur Form, and generates a C program
that you can compile and run. You can use with code generated by lex to write complex programs, such
as compilers.

Each of these languages is described in a Lexicon article. The front of the manual has a tutorial for each.

See Also
Administering COHERENT, C language, COHERENT, commands, libraries, Using COHERENT

protocols — System Administration
Name communications protocols
/etc/protocols

The file /etc/protocols describes the Internet protocols that your local host recognizes. Each line within this file
describes one protocol. A description consists of the following fields:

• The protocol’s official name.

• Its number.

• Aliases, if any, for the protocol name.

Any text that follows the character ‘#’ is comment, and is ignored by any program that reads this file.

For example:

icmp 1 ICMP # internet control message protocol
ggp 3 GGP # gateway-gateway protocol
tcp 6 TCP # transmission control protocol
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See Also
Administering COHERENT, hosts, hosts.equiv, inetd.conf, networks, services

prps — Command
Prepare files for PostScript-compatible printer
prps [options] [file ... ]

prps reads each file, breaks it into pages, writes a header at the top of each page, then writes the paginated text
onto the standard output. If no file is given, prps reads the standard input.

Unike the related command pr, prps writes its output in the PostScript language, suitable for printing on a
PostScript printer such as an Apple LaserWriter or a Hewlett-Packard LaserJet with a PostScript cartridge. The
PostScript output program generates a sequence of standard 8.5×11-inch pages, each containing a header line (file
name, current time and date, and page number) and a box that encloses the text of file. The default output
typeface is ten-point Courier.

prps recognizes the following options:

-b Suppress the box around the page text. If the box is present, PostScript clips text that would extend
beyond its right border.

-h Suppress the header line.

-in Indent the left margin by an additional n characters.

-l Generate ‘‘landscape’’-format output. prps normally generates output pages in ‘‘portrait’’ format (upright
8.5×11 inches). The -l option generates output pages in landscape format (11 by 8.5) instead. This option
is useful for files with long lines; by default, it prints 46 lines per page.

-l2 Generate landscape-format output pages that each contain two side-by-side ‘‘pages’’ of text. This format is
useful for saving paper, especially when used with a small size of type. As it prints in a small size of type,
it prints 66 lines per page.

-nname Use name in place of the file name in the header line.

-tN Set tab stops at every N characters. The default tab setting is eight.

-ptsize Change the size of type to ptsize points. By default, prps sets its output in ten-point type. This yields 64
lines per normal output page, 46 lines in landscape format, and 52 lines per half page in -l2 format. (Note
that a ‘‘point’’ is one twelfth of a pica, which in turn is one sixth of an inch; thus, there are 72 points in an
inch.) By specifying the ptsize on its command line, you can tell prps to use a different size of type. For
example, -8 tells prps to use eight-point type.

-pN Print N lines of text on each output page (or half page). Note that the point size determines how many
lines fit on a page, and lines per page determine point size. If you specify both, prps will use the given
values unless the lines do not fit at the given point size.

+N Skip the first N output pages.

Setting Fonts
prps recognizes the standard nroff font specification sequences and translates them into PostScript font
specifications. The default font is Courier. Because the naming conventions for PostScipt fonts are anything but
uniform, prps appends a suffix to the fontname to designate a Roman, boldface and italic font variety. The default
suffix is ‘ ’ for Roman, ‘‘-Bold’’ for bold and ‘‘-Oblique’’ for italic. These give the standard PostScript names for the
Courier family, ‘‘Courier’’, ‘‘Courier-Bold’’, and ‘‘Courier-Oblique’’.

Option -ffontname specifies an alternative fontname. Option -FsXsuffix specifies an alternative font suffix, where X
is one of the three characters RBI (for Roman, Bold or Italic) and suffix is the desired suffix. For example, the
option

-fTimes -FsR-Roman -FsI-Italic

generates the usual PostScript font names for the Times family, namely ‘‘Times-Roman’’, ‘‘Times-Bold’’, and ‘‘Times-
Italic’’.

To spare you some of this grief, a few fonts have built-in abbreviations. Option -FX, where X is one of the
characters ABHNPST, specifies a PostScript fontname as follows:
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-FA AvantGarde
-FB Bookman
-FH Helvetica
-FN Helvetica-Narrow
-FP Palatino
-FS New Century Schoolbook
-FT Times

These options also set each suffix appropriately for the desired font. However, font naming conventions may differ
on various PostScript devices; examine the prps output and your device documentation if problems occur.

Examples
prps is especially useful as a way of printing the output of nroff, including manual pages. For example,

man prps | prps | hpr -B

or

man prps | prps -l2 | hpr -B

prints this Lexicon article in, respectively, portrait mode or two-page landscape mode. It looks nicer if you center
the output with an indent:

man prps | prps -i8 | hpr -B

or

man prps | prps -l2 -i4 | hpr -B

See Also
commands, hp, hpr, lp, pr, nroff, printer

Notes
When you installed COHERENT onto your system, the installation program asked you whether your printer used the
PostScript language. For information on how to install a PostScript printer onto your system, see the Lexicon
entries for lp and printer.

ps — Command
Print process status
ps [-][adefglmnrtwx] [-c sys] [mem] [-ppid,pid,...,pid]

ps prints information about a process or processes. It prints the information in fields, followed by the command
name and arguments. The fields include the following:

TTY The controlling terminal of the command, printed in short form. For example, ‘‘tty44:’’ means
/dev/tty44. A dash means there is no controlling terminal.

PID Process id; necessary to know when the process is to be killed.

GROUP PID of the group leader of the process, that is, the shell that started up when the user logged in.

PPID PID of the parent of the process; very often a shell.

UID User id or name of the owner.

K Size of the process, in kilobytes.

F Process flag bits, as follows:
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PFCORE 00001 Process is in core
PFLOCK 00002 Process is locked in core
PFSWIO 00004 Swap I/O in progress
PFSWAP 00010 Process is swapped out
PFWAIT 00020 Process is stopped (not waited)
PFSTOP 00040 Process is stopped (waited on)
PFTRAC 00100 Process is being traced
PFKERN 00200 Kernel process
PFAUXM 00400 Auxiliary segments in memory
PFDISP 01000 Dispatch at earliest convenience
PFNDMP 02000 Command mode forbids dump
PFWAKE 04000 Wakeup requested

S State of the process, as follows:

R Ready to run (waiting for CPU time)
S Stopped for other reasons (I/O completion, pause, etc.)
T Being traced by another process
W Waiting for an existent child
Z Zombie (dead, but parent not waiting)

EVENT The condition that the process is anticipating. This not applicable if the process is ready to run. The
following gives the legal symbolic names of events. If a driver does not support symbolic event names,
ps prints a unique hexadecimal number instead:

System Sleeps:
bpwait Wait for a buffer to become valid
bufneed Wait for a free buffer to become available
bwrite Wait for a buffer write to finish
ioreq An IO request is being processed
pause This process is in the pause() system call
pipe data Wait for data to appear in a pipe
pipe wx
poll Wake for polled event, poll timeout, or signal
ptrace Send a ptrace command to a traced child
ptret Wait for signal processing in a traced child to complete
pwrite Wait for a pipe to empty enough for a write
swap Wait for a process to get swapped in
wait Wait for a child to terminate
waitq Wait for more character queues to become available

Driver Sleeps
aha:ccb AHA-154x driver is waiting for a SCSI command to complete
nkbcmd
nkbcmd...
nkbcmd2
nkbcmd2... nkb is waiting for a command to complete
ptycd Pseudoterminal driver is waiting for carrier
ptyread Pseudoterminal driver is waiting for a read
ptywrite Pseudoterminal driver is waiting for a write
ttydrain Line discipline is waiting for a tty to drain
ttyiodrn ioctl() asked line discipline to let tty output drain
ttyoq Line discipline is waiting for an output queue to drain
ttywait Line discipline is waiting for more data

CVAL SVAL IVAL RVAL
Scheduling information; bigger is better.

UTIME Time consumed while running in the program (in seconds).

STIME Time consumed while running in the system (in seconds).

Normally, ps displays the TTY and PID fields of each active process started on the caller’s terminal, as well as the
command name and arguments. The following flags alter this behavior.
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-a Display information about processes started from all terminals.

-c sys This option does nothing; it is included to preserve the integrity of some shell scripts.

-d Print information about status of loadable drivers.

-e Same as -a. This is included for compatibility with other implementation of ps.

-f Blank fields have ‘-’ place-holders. This enables field-oriented commands like sort and awk to process the
output.

-g Print the group leader field GROUP if the l option is given.

-k mem The next argument mem is the memory image (default, /dev/mem). Note that this argument currently
does nothing; it is included only to preserve old shell scripts. The COHERENT implementation of ps reads
information from /dev/ps. This permits ps to be smaller and faster, helps to avoid ‘‘ghosts,’’ and to be
atomic.

-l Long format. In addition to the TTY and PID fields, prints the PPID, UID, K, F, S and EVENT fields.

-m This option does nothing; it is included to preserve the integrity of some shell scripts.

-n Suppress the header line.

-ppid,pid,...,pid
Print information for each process identifier pid in the comma-separated list.

-r Print the real size of the process, which includes the user and auxiliary segments assigned to the process.
Because the user segment (usually 1 kilobyte) is shared by all processes owned by that user, this may give
a misleading total size for all the user’s processes.

-t Print elapsed CPU time fields UTIME and STIME.

-w Wide format output; print 132 columns instead of 80.

-x Display processes which do not have a controlling terminal.

Files
/dev/ps — Device for a system driver
/dev/tty* — List of terminal names

See Also
commands, hmon, kill, mem, ps [device driver], size, wait

Notes
Each process can modify or destroy its command name and arguments. The state of the system changes even as
ps runs.

ps — Device Driver
Driver to return information about processes
/dev/ps

The file /dev/ps accesses the kernel’s process table. It is a part of the driver mem, which manages memory; thus,
it has major number 0 and minor number 6.

/dev/ps is a read-only device that exists only to support the command ps and its variants. The command ps
reads this device to display a ‘‘snapshot’’ of the processes that the COHERENT kernel is executing.

Reading /dev/ps deposits an array of the structure stMonitor into the read buffer. The number of bytes
requested by the system call read() should be enough to accommodate the entire process table. Header file
<sys/coh_ps.h> defines stMonitor.

See Also
device drivers, ps [command]
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PS1 — Environmental Variable
User’s default prompt
PS1=prompt

The environmental variable PS1 sets the prompt for your shell. The default is $.

See Also
environmental variables, PS2, sh

PS2 — Environmental Variable
Prompt when user continues command onto additional lines
PS2=prompt

The environmental variable PS2 sets the prompt that is displayed when a command extends onto additional input
lines. The default is >.

See Also
environmental variables, PS1, sh

PSfont — Command
Cook an Adobe font into PostScript format
PSfont [-qs] [ infile.pfb [ outfile ] ]

The command PSfont ‘‘cooks’’ a file that is in Adobe’s downloadable-font format into PostScript. The output of
PSfont can either be loaded into your PostScript printer as a memory-resident font, which can be used across
multiple files, or included within the output of troff.

PSfont recognizes two options:

-q Quiet option: suppress the printing of warning messages. PSfont normally complains about error
conditions it finds within fonts, such as extraneous control characters.

-s Suppress the instructions serverdict and exitserver from the output. Use this option if you wish to
include the output of PSfont within troff output; do not use this option if you want the cooked font to be
resident within the printer after you download it.

infile is the Adobe font file that PSfont cooks into PostScript. It must have the suffix .pfb. If you do not name an
infile on the command line, PSfont reads the standard input.

outfile names the file into which PSfont writes its output. By convention, it should have the suffix .ps, although
this is not required. If you do not name an outfile on the command line, PSfont writes to the standard output.

See Also
commands, fwtable, troff
Supporting downloadable PostScript language fonts, Adobe Technical Note No. 5040, §3.3. Mountain View, Ca.,
Adobe, Incorporated, 1992.

Notes
For more information on using PSfont with troff, see the Lexicon entry for troff.

ptrace() — System Call (libc)
Trace process execution
#include <signal.h>
int ptrace(command, pid, location, value)
int command, pid, *location, value;

ptrace() provides a parent process with primitives to monitor and alter the execution of a child process. These
primitives typically are used by a debugger such as db, which needs to examine and change memory, plant
breakpoints, and single-step the child process being debugged.

Once a child process indicates it wishes to be traced, its parent issues various commands to control the child. pid
identifies the affected process. The parent may issue a command only when the child process is in a stopped state,
which occurs when the child encounters a signal. A special return value of 0177 from wait() informs the parent
that the child has entered the stopped state. The parent may then examine or change the child process memory
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space or restart the process at any point.

When the child process issues an exec(), the child stops with signal SIGTRAP to enable the parent to plant
breakpoints. The set user id and set group id modes are ineffective when a traced process performs an exec().

The following list describes each available command. A command ignores any arguments not mentioned.

0 This is the only command the child process may issue. It tells the system that the child wishes to be
traced. Parent and child must agree that tracing should occur to achieve the desired effect. Only the
command argument is significant.

1,2 The int at location is the return value. Command 1 signifies that location is in the instruction space,
whereas command 2 signifies data space. Often these two spaces are equivalent.

3 The return value is the int of the process description, as defined in sys/uproc.h. This call may be used to
obtain values such as hardware register contents and segment allocation information.

4,5 Modify the child process’s memory by changing the int at location to value. Command 4 means instruction
space and command 5 means data space. Shared segments may be written only if no other executing
process is using them.

6 Modify the int at location in the process description area, as with command 3. The permissible values for
location are restricted to such things as hardware registers and bits of machine status registers that the
user may safely change.

7 This command restarts the stopped child process after it encounters a signal. The process resumes
execution at location, or from where the process was stopped if location is (int *)1. value gives a signal
number that the process receives as it restarts. This is normally the number of the signal that caused the
process to stop, fetched from the process description area by a 3 command. If value is zero, the effect of
the signal is ignored.

8 Force the child process to exit.

9 Like command 7, except that the child stops again with signal SIGTRAP as soon as practicable after the
execution of at least one instruction. The actual hardware method used to implement this command
varies from machine to machine, explaining the imprecise nature of its definition. This call may provide
part of the basis for breakpoints.

Files
<signal.h>
<sys/uproc.h>

See Also
db, exec, libc, ptrace.h, signal(), wait()

Diagnostics
ptrace() returns -1 if pid is not the process id of an eligible child process or if some other argument is invalid or out
of bounds. Some commands may return an arbitrary data value, in which case errno should be checked to
distinguish a return value of -1 from an error return.

Notes
There is no way to specify which signals should not stop the process.

ptrace.h — Header File
Perform process tracing
#include <sys/ptrace.h>

The header file ptrace.h holds definitions used by routines that perform process tracing. Among other things, it
defines the structure ptrace.

See Also
header files
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pty — Device Driver
Device driver for pseudoterminals

The COHERENT device driver pty lets your system support up to 128 pairs of pseudoterminals, or ptys.

A pseudoterminal is a means of letting a process masquerade as a terminal. For example, when you run the
program xterm under X, that program passes what you type into COHERENT through a pseudoterminal device.

Each pseudoterminal consists of a pair of devices: a master device and a slave device. The program that is
accepting input from a human at a keyboard (e.g., xterm) is ‘‘plugged’’ into the slave device; the program that is
accepting and processing the input (e.g., a shell) is plugged into the master device. The following diagram shows
how this pair of devices relate to each other:

Module

pty Driver

Line

Discipline

Module

Slave pty

Module

Master

Using

Application

Slave

Using

Application

Master pty

As you can see, the slave device talks to the keyboard through a sub-module that performs line discipline. Line-
discipline handles backspace characters, handles special interrupt characters (such as <ctrl-C>), and converts line-
feed characters into carriage-return—line-feed character pairs: it bundles what you type into a package that can be
passed to the master application and processed.

Only one process at a time can open a master device; the device is opened as soon as requested. Several processes
can open a slave device, but blocks until the matching master device has been open. When blocked in this way,
the slave is said to be ‘‘waiting for pseudocarrier.’’

An attempt to read a master device when no input is available, or to write to a master device when the slave cannot
accept data, will block unless nonblocking I/O has been specifically requested; in this case, the system calls read()
or write() fail and errno is set to EAGAIN.

You can use the system call ioctl() on slave devices with all valid line-discipline commands, including TCGETA,
TCSETA, TCSETAW, TCSETAF, and TCFLSH. There are no valid ioctl() commands for master devices.

The system call poll() is allowed with both master and slave pty devices. However, priority polls (POLLPRI) are not
supported.

Master devices are named /dev/pty[p-w][0-f]. Corresponding slaves are /dev/tty[p-w][0-f]. Like any other device,
each pty has a major and minor number. The major number is 9 (PTY_MAJOR in system header file
<sys/devices.h>). For slave devices, minor numbers are assigned according to the following scheme:

device Major number Minor number
/dev/ttyp0 9 0
/dev/ttyp1 9 1
...
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/dev/ttyp9 9 9
/dev/ttypa 9 10
/dev/ttypb 9 11
...

/dev/ttypf 9 15
/dev/ttyq0 9 16
...

/dev/ttyw0 9 112
...

/dev/ttywf 9 127

For master devices, use pty instead of tty in the device name, and add 128 to the minor number.

The configurable parameter NUPTY_SPEC sets the number of pty pairs that may be used. The default is eight. If
you want to change this value, invoke the script /etc/conf/pty/mkdev and enter the new value at the appropriate
prompt. Then use the command /etc/conf/bin/idmkcoh to build a new kernel that incorporates this change;
when the new kernel is built, boot it. For details, see the Lexicon entry for the command idmkcoh.

Specifying a value of zero for NUPTY_SPEC will cause the pty device to be omitted from the next kernel that
idmkcoh generates.

See Also
device drivers

pushd — Command
Push an item onto the directory stack
pushd [directory0 ... directoryN]

The COHERENT shell sh maintains an internal ‘‘directory stack’’, which is a stack of names of directories. You can
manipulate this stack should you, for any reason, wish to traverse a number of directories quickly and efficiently.

The command pushd pushes directory1 through directoryN onto the directory stack, and changes the current
directory to the last directory pushed. If called without an argument, it transposes the last two directories on the
directory stack.

See Also
commands, dirs, popd, sh

putc() — STDIO Function (libc)
Write character into stream
#include <stdio.h>
int putc(c, fp) char c; FILE *fp;

putc() writes character c into the file stream to which fp points. It returns c upon success.

Example
The following example demonstrates putc(). It opens an ASCII file and prints its contents on the screen. For
another example of putc(), see the entry for getc().

#include <stdio.h>
main()
{

FILE *fp;
int ch;
int filename[20];

printf("Enter file name: ");
gets(filename);
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if ((fp = fopen(filename,"r")) != NULL) {
while ((ch = fgetc(fp)) != EOF)

putc(ch, stdout);
} else

printf("Cannot open %s.\n", filename);
fclose(fp);

}

See Also
fputc(), getc(), libc, putchar()
ANSI Standard, §7.9.7.8
POSIX Standard, §8.1

Diagnostics
putc() returns EOF when a write error occurs.

Notes
Because putc() is a macro, arguments with side effects may not work as expected.

putchar() — STDIO Function (libc)
Write a character onto the standard output
#include <stdio.h>
int putchar(c)
char c;

putchar() is a macro that expands to putc(c, stdout). It writes a character onto the standard output.

Example
For an example of this routine, see the entry for getchar().

See Also
fputc(), libc, putc()
ANSI Standard, §7.9.7.9
POSIX Standard, §8.1

Diagnostics
putchar() returns EOF when a write error occurs.

Notes
Because putchar() is a macro, arguments with side effects may not work as expected.

putenv() — General Function (libc)
Add a string to the environment
#include <stdlib.h>
int putenv (envstring)
char *envstring;

The function putenv() puts envstring into the user’s environment. You can use this function to set a new
environmental variable, or to change the definition of an existing variable.

envstring must point to a string of the form VARIABLE=value, where VARIABLE is the environmental variable being
set, and value is the value to which it is being set.

putenv() returns zero if all goes well. If something goes wrong, it returns a value other than zero.

See Also
environ, environmental variables, getenv(), libc, stdlib.h

Notes
The global variable environ, which points to a process’s environment, points to an array of pointers to strings
rather than to an array of strings. When putenv() inserts envstring into the environment, it calls malloc() to
enlarge the array of string pointers to which environ points, then inserts a pointer to envstring into that array. It
does not copy envstring anywhere.

LEXICON

putchar() — putenv() 1019



If a process uses putenv() to insert a string pointer into the environment, it can also call getenv() to read back that
string; however, the array of strings passed to the process via envp (the third argument to the function main()) is
not affected by a call to putenv(). For details on environ and envp, see their entries in the Lexicon.

It is an error to call putenv() with a pointer to an automatic variable as the argument, and then exit the calling
function while envstring is still part of the environment. For safety’s sake, envstring should point to a string that is
static or global. See the Lexicon entry for static, or see the ANSI Standard §3.5.1.

putmsg() — System Call (libc)
Place a message onto a stream
#include <stropts.h>
int putmsg (fd, ctlptr, dataptr, flags)
int fd, flags; const struct strbuf *ctlptr, *dataptr;

putmsg() creates a message from user-specified buffer (or buffers), and sends the message to a STREAMS file. The
message can contain either a data part, a control part, or both. The data and control parts to be sent are
distinguished by being placed in separate buffers, as described below. The semantics of each part are defined by
the STREAMS module that receives the message.

fd gives a file descriptor that identifies an open stream. ctlptr and dataptr each point to a structure of tyupe strbuf,
which contains the following members:

int len; /* Length of data */
void *buf; /* Pointer to buffer */

ctlptr points to the structure that describes the control part (if any) to be included in the message: buf points to the
buffer wherein the control information resides, and len gives the number of bytes to be sent.

Likewise, dataptr specifies the data (if any) to be included in the message. flags gives the message’s type; it is
described in detail below.

To send the data part of a message, dataptr must not be NULL, and the value of dataptr.len must be no less than
zero. To send the control part of a message, the corresponding values must be set for ctlptr. putmsg() does not
send the data portion of the message if dataptr is set to NULL or dataptr.len equals -1; likewise, putmsg() does not
send the control portion of the message if ctlptr is NULL or ctrlptr.len equals -1.

If a control part is specified and flags equals RS_HIPRI, putmsg() sends a high-priority message. If no control part
is specified and flags equals RS_HIPRI, putmsg() fails and sets errno to EINVAL. If flags is set to zero, putmsg()
sends a message of normal priority. If neither the control part nor the data part is specified, and if flags is set to
zero, putmsg() sends no message and returns zero.

The stream head guarantees that the control part of a message generated by putmsg() is at least 64 bytes long.

putmsg() usually blocks if the stream head’s write queue is full due to internal flow-control conditions. For high-
priority messages, putmsg() does not block on this condition. For other messages, putmsg() does not block when
the write queue is full and you have set the mode on fd to O_NDELAY or O_NONBLOCK. putmsg() never sends a
partial message. For details on O_NDELAY and O_NONBLOCK, see the Lexicon entry for open().

Upon successful completion, putmsg() returns zero. If something goes wrong, putmsg() returns -1 and sets errno
to an appropriate value. putmsg() fails if any of the following conditions is true:

• A non-priority message was specified, the mode on fd was set to O_NDELAY or O_NONBLOCK, and the
stream-write queue is full due to internal flow-control conditions. putmsg() sets errno to EAGAIN.

• fd is not a valid file descriptor. putmsg() sets errno to EBADF.

• ctlptr or dataptr contains an illegal address. putmsg() sets errno to EFAULT.

• Your application caught a signal while it was executing putmsg(). putmsg() sets errno to EINTR.

• flags contains an undefined value, or you set flags RS_HIPRI but did not supply a control part. putmsg() sets
errno to EINVAL.

• The stream referenced by fd is linked below a multiplexor. putmsg() sets errno to EINVAL.

• putmsg() could not allocate buffers for the message it was to send due to insufficient STREAMS memory
resources. putmsg() sets errno to ENOSR.
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• fd does not identify a stream. putmsg() sets errno to ENOSTR.

• A hangup condition was generated downstream for the specified stream, or the other end of the pipe is closed.
putmsg() sets errno to ENXIO.

• The size of the message’s data portion does not fall within range of legal packet sizes set by topmost stream
module, or its control portion exceeds the maximum configured size. putmsg() sets errno to ERANGE.

putmsg() also fails if a STREAMS error message had been processed by the stream head before the call to putmsg()
was executed. putmsg() returns the the value contained in the STREAMS error message.

See Also
getmsg(), libc, STREAMS

putp() — terminfo Function
Write a string into the standard window
#include <curses.h>
putp(string)
char *string;

COHERENT comes with a set of functions that help you read terminfo descriptions to manipulate a terminal.
putp() writes the string into the standard window. It is equivalent to tputs(string, 1, putchar);.

See Also
curses.h, terminfo, tputs()

puts() — STDIO Function (libc)
Write string onto standard output
#include <stdio.h>
int puts(string)
char *string

puts() appends a newline character onto the string to which string points, and writes the result onto the standard
output. If all goes well, it returns a nonnegative value (not necessarily -1); if an error occurs, it returns EOF.

Example
The following uses puts() to write a string on the screen.

#include <stdio.h>

main()
{

puts("This is a string.");
}

See Also
fputs(), libc
ANSI Standard, §7.9.7.10
POSIX Standard, §8.1

Notes
For historical reasons, fputs() outputs the string unchanged, whereas puts() appends a newline character.

pututline() — General Function (libc)
Write a record into a logging file
#include <utmp.h>
struct utmp *pututline(record)
const struct utmp *record;

Function pututline() writes record into the file that logs login events. It is designed to update a record within the
logging file.

record points to the record to be insert into the logging file. It is of type utmp, which is a structure whose fields
describe a login event. (For a detailed description of this structure, see the Lexicon entry for utmp.h.)

LEXICON

putp() — pututline() 1021



pututline() assumes that you have first called getutent(), getutid(), or getutline() to open the logging file, and that
the file’s seek pointer is is at or before the record you wish to update. pututline() looks for the first record within
the logging file whose field ut_line matches record.ut_line. If it finds such a record, pututline() overwrites it with
the contents of record; otherwise, it appends record onto the end of the logging file.

If all goes well, pututline() returns the address record. It returns NULL if the logging file had not been opened, or if
it could not write record into the logging file.

By default, getutid() updates record in the logging file /etc/utmp. If you wish to manipulate another file, use the
function utmpname().

See Also
libc, utmp.h

putw() — STDIO Function (libc)
Write word into stream
#include <stdio.h>
int putw(word, fp)
int word; FILE *fp;

putw() writes word into the file stream to which fp points.

putw() differs from the related routine putc() in that putw() writes an int, whereas putc() writes a char that is
promoted to an int.

By default, putw() returns the value written. If an error occurs, it returns EOF. You may need to call ferror() to
distinguish this value from a genuine end-of-file flag.

See Also
ferror(), libc

Notes
Because putw() is implemented as a macro as well as a function, arguments with side effects may not work as
expected. The bytes of word are written in the natural byte order of the machine.

pwd — Command
Print the name of the current directory
pwd

pwd prints the name of the directory that you are in.

See Also
cd, commands, ksh, sh

Notes
Under the Korn shell, pwd is an alias for the expression print -r $PWD.

pwd.h — Header File
Define password structure
#include <pwd.h>

The header file pwd.h defines the structure passwd, which is used to build COHERENT’s password file. passwd is
defined as follows:
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struct passwd {
char *pw_name; /* login user name */
char *pw_passwd; /* login password */
int pw_uid; /* login user id */
int pw_gid; /* login group id */
int pw_quota; /* file quota (unused) */
char *pw_comment; /* comments (unused) */
char *pw_gecos; /* (unused) */
char *pw_dir; /* working directory */
char *pw_shell; /* initial program */

};

For detailed descriptions of the above fields, see the entry for passwd.

See Also
endpwent(), getpwent(), getpwnam(), getpwuid(), header files, setpwent()
POSIX Standard, §9.2.2
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qfind — Command
Quickly find all files with a given name
qfind [-adpv] name ...
qfind [-bv] [-sdirectory]

The command qfind prints the full path name of each file with a given name. It reads a prebuilt data base, for the
sake of speed. This makes qfind much faster than find for locating a file; but it does mean that changes to the file
system since the data base was last updated will not be reflected in what qfind prints.

The option -b tells qfind to build its data base in file /usr/adm/qffiles. By default, this data base names every file
in your system. If you wish to suppress a directory, name it with the -s option. For example, to build the data
base but suppress the directory /usr/spool, use the command:

qfind -b -s/usr/spool

This command excludes the contents of directory /usr/spool and all of its children from the qfind data base.

When invoked without the -b option, qfind reads its data base to find file names.

Normally, qfind prints the full path name of each file in the COHERENT system that ends with the given name (as it
was when you last executed qfind -b.) With the -d option, qfind prints matching directories instead of files. With
the -a option, qfind prints both matching files and matching directories.

Option -p specifies partial name matching. For example, qfind -p foo matches files /src/foo.c and /doc/foo.r as
well as file /usr/bin/foo.

Finally, option -v tells qfind to print verbose output.

Files
/usr/adm/qffiles

See Also
commands, cron, find, whereis, which

Notes
Building the qfind data base with the -b option is slow, but it speeds finding files. You may find it convenient to
use cron to execute qfind -b to rebuild the data base at night, or some other time when the machine is otherwise
idle.

If you want to include all files in the data base, the superuser root must run qfind -b.

qpac — Command
Map the file system
qpac raw_device

Command qpac builds a map of the file system raw_device. It quits before it writes to or changes the file system.
You can use this to examine how your file system is laid out.

See Also
commands, dpac, fmap, fsck, spac, upac

Notes
qpac is a link to the command dpac.
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qpac was written by Randy Wright (rw@rwsys.wimsey.bc.ca).

qsort() — General Function (libc)
Sort arrays in memory
#include <stdlib.h>
void qsort(data, n, size, comp)
char *data; int n, size; int (*comp)( );

qsort() is a generalized algorithm for sorting arrays of data in memory, using C. A. R. Hoare’s ‘‘quicksort’’
algorithm. qsort() works with a sequential array of memory called data, which is divided into n parts of size bytes
each. In practice, data is usually an array of pointers or structures, and size is the sizeof the pointer or structure.
Each routine compares pairs of items and exchanges them as required. The user-supplied routine to which comp
points performs the comparison. It is called repeatedly, as follows:

(*comp)(p1, p2)
char *p1, *p2;

Here, p1 and p2 each point to a block of size bytes in the data array. In practice, they are usually pointers to
pointers or pointers to structures. The comparison routine must return a negative, zero, or positive result,
depending on whether p1 is logically less than, equal to, or greater than p2, respectively.

Example
For an example of this function, see the entry for malloc().

See Also
libc, shellsort(), strcmp(), stdlib.h, strncmp()
The Art of Computer Programming, vol. 3
ANSI Standard, §7.10.5.2
POSIX Standard, §8.1

Notes
The COHERENT library also includes the sorting function shellsort(). These functions use different algorithms for
sorting items; each algorithm has its strengths and weaknesses. In general, the quicksort algorithm is faster than
the shellsort algorithm for large arrays, whereas the shellsort algorithm is faster for small arrays (say, 50 items or
fewer). The quicksort algorithm also performs poorly on arrays with a small number of keys, e.g., an array of 1,000
items whose keys are all ‘7’ and ‘8’.

To get around these limitations, the COHERENT implementation of qsort() has an adaptive algorithm that
recognizes when the quicksort algorithm is performing badly, and calls shellsort() in its place.

quot — Command
Summarize file-system usage
quot [ -c ] [ -f ] [ -n ] [ -t ] filesystem

quot produces several different summaries about the ownership of files for each filesystem argument given. When
no options are specified, quot produces a two-column listing that gives the amount of space used by each user,
sorted in decreasing order of file space used; the first column gives the number of blocks used and the second gives
the use name. Space is always given in blocks.

Options are available to modify the normal output or specify a completely different action.

quot recognizes the following options:

-c Give a three-column breakdown of files by size. The first column contains all file sizes, in increasing order.
The second column gives the number of files of the size indicated in the first. The third gives a cumulative
sum of the sizes of all files less than or equal to the current size.

-f Add an initial column that contains the number of files to the front of the normal output.

-n Takes as input a list of i-numbers and file names, one per line and sorted in ascending order by i-number;
ignore all lines not in this form. The output is in two columns: the first gives the owner and the second
contains the file name for each entry in the output. This conforms to usage with the following pipeline:

ncheck filesystem | sort +0n | quot -n filesystem
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-t To the normal output, add a line that contains totals.

quot runs much faster with a raw device for filesystem.

Only the superuser root can run quot.

Files
/etc/passwd

See Also
ac, commands, ncheck, sort

Notes
Sparse files are recorded as if they had all of their blocks allocated.
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raise() — General Function (libc)
Let a process send a signal to itself
#include <signal.h>
int raise(signal)
int signal;

raise() sends signal to the program that is currently being executed. If called from within a signal handler, the
processing of this signal may be deferred until the signal handler exits.

Example
This example sets a signal, raises it itself, then allows the signal to be raised interactivly. Finally, it clears the
signal and exits.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

void gotcha(void);

void
setgotcha(void)
{

if(signal(SIGINT, gotcha) == SIG_ERR) {
printf("Couldn’t set signal\n");
abort();

}
}

void
gotcha(void)
{

char buf[10];

printf("Do you want to quit this program? <y/n> ");
fflush(stdout);
gets(buf);

if(tolower(buf[0]) == ’y’)
abort();

setgotcha();
}

main(void)
{

char buf[80];

setgotcha();
printf("Set signal; let’s pretend we get one.\n");
raise(SIGINT);

printf("Returned from signal\n");
printf("Try typing <ctrl-c> to signal <enter> to exit");
fflush(stdout);
gets(buf);
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if(signal(SIGINT, SIG_DFL) == SIG_ERR) {
printf("Couldn’t lower signal\n");
abort();

}

printf("Signal lowered\n");
exit(EXIT_SUCCESS);

}

See Also
libc, signal(), signal.h
ANSI Standard, §7.7.2.1

ram — Device Driver
Driver for manipulating RAM

The COHERENT ram devices let you allocate and use the random-access memory (RAM) of the computer system
directly. A typical use is for a RAM disk, which is a COHERENT file system kept in memory rather than on a floppy
disk or hard disk.

The COHERENT RAM device driver has major number 8. You can access it either as a block-special device or as a
character-special device. The high-order bit of the minor number gives the RAM device number (0 or 1); as you can
see, you can have no more than two RAM devices in memory at any one time. The low-order seven bits give the
device’s size in 64-kilobyte chunks.

The first call to open() on a RAM device with nonzero size (1 to 127) allocates memory for the device; open() fails if
sufficient memory is not available. Accessing a RAM device with a minor number that specifies size zero frees the
allocated memory, provided all earlier open() calls have been closed.

Initially, COHERENT includes two block-special devices for RAM disks: the 512-kilobyte device /dev/ram0 (8, 8)
and the 192-kilobyte device /dev/ram1 (8, 131). It also includes the devices /dev/ram0close (8, 0) and
/dev/ram1close (8, 128). You should resize the RAM devices to suit the amount of memory available on your
system.

Examples
The following example formats and mounts a 512-kilobyte RAM disk on directory /fast.

mkdir /fast
/etc/mkfs /dev/ram0 1024
/etc/mount /dev/ram0 /fast

When the RAM disk is no longer needed, its allocated memory can be freed as follows:

/etc/umount /dev/ram0
cat /dev/null >/dev/rram0close

The next example replaces the default /dev/ram0 with a one-megabyte device that contains a COHERENT file
system. The minor number 16 specifies RAM device 0 and a size of one megabyte (i.e., 16 chunks of 64 kilobytes
each). The new RAM device contains 2,048 blocks of 512 bytes each.

rm /dev/ram0
/etc/mknod /dev/ram0 b 8 16
/etc/mknod /dev/rram0 c 8 16
/etc/mkfs /dev/ram0 2048
chmod ugo=rw /dev/ram0
chmod ugo=rw /dev/rram0

The command chmod is necessary to make the new RAM drive accessible.

Files
/dev/ram*

See Also
compress, device drivers, fsck, mkfs, mount, ramdisk, umount, uncompress, zcat
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Notes
Moving frequently used commands or files to a RAM disk can improve system performance substantially. However,
the contents of a RAM device are lost if the system loses power, reboots, or crashes. Therefore, you should
frequently back up files from the RAM disk to a more permanent medium.

If a RAM device uses most but not all available system memory, its open() call will succeed but subsequent
commands may fail because insufficient memory remains for the system.

The COHERENT installation program /etc/build uses RAM device /dev/ram1 as a RAM disk during installation.
Commands compress, uncompress, zcat, and fsck sometimes use /dev/ram1 as a temporary storage device.
Users should avoid using /dev/ram1 as a RAM disk because of these programs. In addition, users of compress,
uncompress, and zcat may have to change the size of /dev/ram1 from the default size of 192 to 512 kilobytes, to
handle files compressed to 16 bits. The following script makes this change; note that it must be run by the
superuser root:

cat /dev/null >/dev/rram1close
rm /dev/ram1 /dev/rram1
mknod /dev/ram1 b 8 136
mknod /dev/rram1 c 8 136

ramdisk — System Administration
Script to create a RAM-disk
/usr/bin/ramdisk

ramdisk is a script that creates a 500-kilobyte RAM disk that is accessed via device /dev/ram0.

To use ramdisk to create a RAM disk for you at boot-time, do the following:

1. Log in as the superuser root.

2. Type:

touch /dev/ram0close

This closes the RAM disk and removes it from memory.

3. Remake the ram disk as a smaller size device. As an example, we’ll make one that is 64 kilobytes. Type the
command:

/etc/mknod /dev/ram0 b 8 1

To break down this command:

/etc/mknod
This is the command that creates a special file (e.g., a block-special file) through which a device like a
printer or RAM is accessed.

/dev/ram0
The directory path and name of your RAM disk.

b This argument tells mknod to build a block-special file. Every device like a printer, floppy drive, COM
port, or RAM drives, are considered a ‘‘block special file.’’

8 This is the major device number for a RAM drive. All major-device numbers are listed in the Lexicon
entry for ‘‘device drivers.’’

1 This is the minor device number of your new ram0. This shows that the ram0 you are building will be
64 kilobytes in size. If the minor device number would have been ‘2’, then the size of ram0 would
have been two times 64, or 128 kilobytes. Each increment in the minor-device number is equal to an
additional 64 kilobytes for the RAM device. A minor device of 16 multiplied by 64 kilobytes would
equal a one megabyte size RAM drive.

4. Next, make a file system in ram0:

/etc/mkfs /dev/ram0 128

The number ‘‘128’’ is exactly twice the memory size, in this case 64 kilobytes. Whatever size memory you
choose to allocate to a RAM device, the block size you specify in the mkfs command will be double. A one-
megabyte RAM device for example would have 2,048 blocks.
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5. Your new RAM disk is now ready to be mounted. Typically, you would mount ram0 in a directory named fast
or some other unique name, so to mount, type;

/etc/mkdir /fast
/etc/mount /dev/ram0 /fast

If /fast already exists, do not create it.

Once you have created your RAM disk, you should load commonly used utilities into it.

If you wish to create a RAM disk automatically whenever you boot COHERENT, un-comment and edit the
appropriate lines in file /etc/rc.

See Also
Administering COHERENT, ram, rc

Notes
This script only works in machines that have sufficient memory.

rand() — Random-Number Function (libc)
Generate pseudo-random numbers
#include <stdlib.h>
int rand( )

rand() generates a set of pseudo-random numbers. It returns integers in the range 0 to 32,767, and purportedly
has a period of 2^32. rand() will always return the same series of random numbers unless you first call the
function srand() to change rand()’s seed, or beginning-point.

Example
The following example uses rand() to implement the ‘‘Let’s Make a Deal’’ game of probability described by Massimo
Piattelli-Palmarini in the March/April 1991 issue of Bostonia magazine. In brief, an investigator places a dollar bill
into one of three boxes. A subject enters the room and guesses which box holds the bill. The investigator then
opens one of the two unselected boxes (one that is always empty), shows it to the subject, then offers the subject a
choice: either stand pat with the box he has selected, or switch to the other non-selected box. The laws of
probability state that the subject should always switch from the box he has selected; this example program tests
that hypothesis.

#include <stdio.h>
#include <time.h>

main()
{

int box[3], win, i, j;

srand(time(NULL));

/* Test 1: the subject always stands pat. For the sake of simplicity,
* the subject always chooses box 0. */

for (i = 0, win = 0; i < 1500; i++) {
for (j = 0; j < 3; j++)

box[j] = 0;

box[rand()%3]++;

if (box[0])
win++;

}
printf("Test 1, always stand pat: 1500 iterations, %d winners\n", win);

/* Test 2: the subject always switches boxes. */
for (i = 0, win = 0; i < 1500; i++) {

for (j = 0; j < 3; j++)
box[j] = 0;

box[rand()%3]++;
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/* if box 2 is empty, pick box 1 */
if (!box[2])

win += box[1];
else

win += box[2];
}
printf("Test 2, always switch: 1500 iterations, %d winners\n", win);

/* Test 3: the subject switches boxes randomly. */
for (i = 0, win = 0; i < 1500; i++) {

for (j = 0; j < 3; j++)
box[j] = 0;

box[rand()%3]++;

/* if box 2 is empty, pick box 1 */
if (!box[2]) {

if (rand()%2)
win += box[1];

else
win += box[0];

} else {
if (rand()%2)

win += box[2];
else

win += box[0];
}

}
printf("Test 3, randomly switch: 1500 iterations, %d winners\n", win);

}

See Also
libc, RAND_MAX, srand(), stdlib.h
The Art of Computer Programming, vol. 2
ANSI Standard, §7.10.2.1
POSIX Standard, §8.1

Notes
This function cannot be used with any of the ‘‘rand48’’ functions. For an overview of these functions, see the entry
for srand48().

RAND_MAX — Manifest Constant
Largest size of a pseudo-random number
#include <stdlib.h>

RAND_MAX is a manifest constant that is defined in the header stdlib.h. It indicates the largest pseudo-random
number that can be returned by the function rand().

Example
For an example of using this manifest constant in a program, see rand().

See Also
manifest constant, rand(), stdlib.h
ANSI Standard, §7.10

random() — Sockets Function (libsocket)
Return a random number
int random();

The function random() returns a random number. It is a synonym for rand().

See Also
libsocket, rand()
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random access — Definition
In the context of computing, random access means that an entity, such as memory, can be accessed at any point,
not just at the beginning. This means that all points within memory can be accessed equally quickly. This
contrasts with sequential access, in which entities must be accessed in a particular order, so that some entities
take longer to access than do others.

A tape drive is an example of a sequential access device, i.e., the order in which data are read is dictated by the
order in which they stream past the tape head. Random-access memory (RAM) is an example of random access.
Hard disks and floppy disks combine elements of random access and sequential access.

RAM, which usually consists of semiconductor integrated circuits, is also strictly random access. In this regard,
the term ‘‘RAM’’ is slightly misleading; a more accurate name would be ‘‘read/write memory’’, to contrast RAM with
read-only memory (ROM), which is also random access memory.

See Also
read-only memory, Programming COHERENT

ranlib — Command
Create index for object library
ranlib library ...

The ranlib is a ‘‘directory’’ that appears at the beginning of each library. It contains the name of each global
symbol (i.e., function name) that appears within the library, and a pointer to the module in which that symbol is
defined. Thus, the ranlib eliminates the need for the linker to search the entire library sequentially to find a given
global symbol, which speeds up linking noticeably.

If the date on the library file is later than that in the ranlib header, the linker will ignore the ranlib and perform a
sequential search through the library; the linker will also send the warning message

Outdated ranlib

to the standard error device. This is done to prevent the accidental use of an outdated ranlib, which could be
disastrous.

The command ranlib creates a ranlib header for an archive. If the header already exists, ranlib updates it.

Files
__.SYMDEF — Index module

See Also
ar, ar.h, commands, ld

Diagnostics
ranlib issues appropriate messages for I/O errors or bad format files. It does not rewrite a library until the last
possible moment, so the library is usually unchanged in case of error. ranlib processes each library
independently. The exit status is the number of libraries in which errors were encountered.

ranlib is a link to the archiver ar.

rc — System Administration
Perform standard maintenance chores
/etc/rc

The shell script /etc/rc is executed by the init process when the COHERENT system enters multi-user mode. The
commands in rc do such things as set the local time zone and initialize file /usr/adm/wtmp, which holds records
of user logins.

See Also
Administering COHERENT, brc, init
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read-only memory — Definition
As its name suggests, read-only memory, or ROM, is memory that can be read but not overwritten. It most often
is used to store material that is used frequently or in key situations, such as a language interpreter or a boot
routine.

See Also
Programming COHERENT, random access

read — Command
Assign values to shell variables
read name ...

read reads a line from the standard input. It assigns each token of the input to the corresponding shell variable
name. If the input contains fewer tokens than the number of names specified, read assigns the null string to each
extra variable. If the input contains more tokens than the number of names specified, read assigns the last name
in the list the remainder of the input.

read normally returns an exit status of zero. If it encounters end of file or is interrupted while reading the
standard input, it returns one.

The shell executes read directly.

Example
The command

read foo bar baz
hello how are you

parses the line ‘‘hello how are you’’ and assigns the tokens to, respectively, the shell variables foo, bar, and baz. If
you further type

echo $foo
echo $bar
echo $baz

you will see:

hello
how
are you

See Also
commands, ksh, sh

read() — System Call (libc)
Read from a file
#include <unistd.h>
int read(fd, buffer, n)
int fd; char *buffer; int n;

read() reads up to n bytes of data from the file descriptor fd and writes them into buffer. The amount of data
actually read may be less than that requested if read() detects EOF. The data are read beginning at the current
seek position in the file, which was set by the most recently executed read() or lseek() routine. read() advances the
seek pointer by the number of characters read.

If all goes well, read() returns the number of bytes read; thus, zero bytes signals the end of the file. It returns -1 if
an error occurs, e.g., fd does not describe an open file, or if buffer contains an illegal address.

Example
For an example of how to use this function, see the entry for open().

See Also
libc, unistd.h
POSIX Standard, §6.4.1
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Notes
read() is a low-level call that passes data directly to COHERENT. It should not be mixed with the STDIO routines
fread(), fwrite(), or fopen().

readdir() — General Function (libc)
Read a directory stream
#include <sys/types.h>
#include <dirent.h>
struct dirent *readdir(dirp)
DIR *dirp;

The COHERENT function readdir() is one of a set of COHERENT routines that manipulate directories in a device-
independent manner. It reads the directory stream pointed to by dirp and returns information about the next
active entry within the stream. It does not report on inactive entries.

readdir() returns a pointer to a structure of type dirent, which contains information about the next active entry
within the stream. The internal structure may be overwritten by another operation on the same directory stream.
The amount of memory needed to hold a copy of the internal structure is given by the value of a macro,
DIRENTSIZ(strlen(direntp->d_name)),not by sizeof(struct dirent) as one might expect.

readdir() returns NULL if it has reached the end of the directory, has detected an invalid location within the
directory, or if an error occurs while it is reading the directory. If an error occurs, readdir() exits and sets errno to
an appropriate value.

Example
For an example of this function, see the Lexicon entry for opendir().

See Also
closedir(), dirent.h, getdents(), libc, opendir(), rewinddir(), seekdir(), telldir()
POSIX Standard, §5.1.2

Notes
The dirent routines buffer directories; and because directory entries can appear and disappear as other users
manipulate the directory, your application should continually rescan a directory to keep an accurate picture of its
active entries.

The COHERENT implementation of the dirent routines was written by D. Gwynn.

readline() — Editing Function (libedit)
Read and edit a line of input
char *readline(prompt)
char *prompt;

The function readline() displays on the standard output the text to which prompt points, then accepts what the
user types. It lets the user type simple, EMACS-style commands to edit what she has typed; when the user types
(¢), readline() returns the line of text with the trailing newline removed.

readline() returns a pointer to the newly entered line. This return value can be passed to the function
add_history(), which adds it to an internal ‘‘history’’ buffer. The user can use a command within readline() recall a
saved line, re-edit it, and re-submit it.

readline() returns NULL when the user types EOF, or if it cannot allocate space for the line of input. Otherwise, it
returns the address of the edited string that the user input.

Editing Commands
readline() provides a simple, EMACS-like editing interface. You can type control characters or escape sequences to
edit a line before it is sent to the calling program, much like the EMACS editing feature of the Korn shell.

readline() recognizes the following editing commands:

<ctrl-A> Move the cursor to the beginning of the line.
<ctrl-B> Move the cursor one character to the left (backwards).
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<ctrl-D> Delete the character under which the cursor is positioned (the ‘‘current character’’).
<ctrl-E> Move the cursor to end of line.
<ctrl-F> Move the cursor one character to the right (forwards).
<ctrl-G> Ring the bell.
<ctrl-H> Delete the character to the left of the cursor. Note that <ctrl-H> is the character that normally is

output by the <backspace> key.
<ctrl-I> Complete file name. Note that <ctrl-I> is the character that normally is output by the <tab> key.
<ctrl-J> Submit the line for processing. Note that <ctrl-J> is the character that normally is output by the (¢)

key.
<ctrl-K> Kill all text from the cursor to end of line.
<ctrl-L> Redisplay the line.
<ctrl-M> Submit the line for processing. Note that on some systems, <ctrl-M> is output by the (¢) key.
<ctrl-N> Get the next line from the history buffer.
<ctrl-P> Get the previous line from the history buffer.
<ctrl-R> Search backwards through the history buffer for a given string.
<ctrl-T> Transpose the character over the cursor with the character to its left.
<ctrl-V> Insert next character into the line, even if it is a control character. Note that under MicroEMACS, this

command is bound to <ctrl-Q>.
<ctrl-W> Kill (wipe) all text from the cursor to the mark.
<ctrl-X><ctrl-X>

Move the cursor from current position to the mark; reset the mark at the previous position of the
cursor.

<ctrl-Y> Yank back the most recently killed text.
<ctrl-]>c Move the cursor forward to next character c.
<ctrl-?> Delete the character under which the cursor is positioned. This command is identical with <ctrl-D>.

Note that <ctrl-?> is the character that normally is output by the <del> key.
<ctrl-[> Begin an escape sequence. Note that <ctrl-[> is the character that normally is output by the <esc>

key.
<esc><ctrl-H>

Delete the previous word (the word to the left of the cursor). A word is delineated by white space.
<esc><del> Delete the current word — that is, from the cursor to the end of the word as delineated by white space

or the end of the line.
<esc><space>

Set the mark.
<esc>. Get the last (or n’th) word from previous line.
<esc>? Show possible completions. This feature is detailed below.
<esc>< Move the cursor to the beginning of the history buffer.
<esc>> Move the cursor to the end of the history buffer.
<esc>B Move the cursor backwards (to the left) by one word.
<esc>D Delete the word under which the cursor is positioned.
<esc>F Move the cursor forward (to the right) by one word.
<esc>L Make the current word lower case.
<esc>M Toggle displaying eight-bit characters normally (meta-mode), or displaying them prefixed with the

string M-. In the meta-mode, you can generate characters with the top bit set by pressing the <alt>
key with an alphanumeric key; this is interpreted the same as <esc><key>.

<esc>U Make the current word upper case.
<esc>Y Yank back the most recently killed text.
<esc>V Show the version of the library libedit.a.
<esc>W Make yankable all text from the cursor to the mark.
<esc>n Set the argument to integer n.
<esc>C Read input from environment variable _C_, where C is an upper-case letter.

Most editing commands can be given an argument n, where n is an integer. To enter a numeric argument, type
<esc>, the number, and then the command to execute. For example,

<esc> 4 <ctrl-F>

moves the cursor four characters forward.

Note that you can type an editing command on the line of input, not just at the beginning. Likewise, you can type
(¢) to submit a line for processing, regardless of where on the line the cursor is positioned.

readline() has a modest macro facility. If you type <esc> followed by an upper-case letter, then readline() reads
the contents of environment variable _C_ as if you had typed them at the keyboard.
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readline() also can complete a file name. For example, suppose that the root directory contains the following files:

coherent
coherent.old

If you type

rm /c

into readline() and then press the <tab> key, readline() completes as much of the name as it can — in this case,
by adding oherent. Because the name is not unique, readline() then beeps. If you press <esc>?, readline()
displays the two choices. If you then enter a tie-break character (in this case, ‘.’), followed by the <tab> character,
readline() completes the file name for you.

Using Line Editing
To include readline() in your program, simply call it as you do any other function. You must link the library
libedit.a into your program.

Example
The following brief example lets you enter a line and edit it, and then displays it.

#include <stdlib.h>

extern char *readline();
extern void add_history();

int main(ac, av)
int ac; char *av[];
{

char *p;

while ((p = readline ("Enter a line:")) != NULL) {
(void) printf ("%s\n", p);
add_history (p);
free (p);

}
return 0;

}

See Also
add_history(), libedit

Notes
readline() calls malloc() to allocate space for the text that the user enters. Therefore, an application must call
free() to free this space when it has finished with it.

readline() cannot handle lines longer than 80 characters.

The original manual page was written by David W. Sanderson <dws@ssec.wisc.edu>.

readonly — Command
Mark a shell variable as read only
readonly

Mark each variable as a read-only shell variable. The shell will not permit subsequent assignments to a readonly
variable. With no arguments, readonly prints the name and value of each read-only variable.

See Also
commands, ksh, sh

readonly — C Keyword
Storage class

readonly is a C keyword that modifies data declarations. As its name implies, the readonly modifier declares that
data are to be read only; this helps protect key data against casual modification by the user or another
programmer.
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See Also
C keywords

Notes
The ANSI Standard eliminates this keyword.

realloc() — General Function (libc)
Reallocate dynamic memory
#include <stdlib.h>
char *realloc(ptr, size)
char *ptr; unsigned size;

realloc() helps you manage a program’s arena. It returns a block of size bytes that holds the contents of the old
block, up to the smaller of the old and new sizes. realloc() tries to return the same block, truncated or extended; if
size is smaller than the size of the old block, realloc() will return the same ptr.

If ptr is set to NULL, realloc() behaves like malloc().

Example
For an example of this function, see the entry for calloc().

See Also
alloca(), arena, calloc(), free(), libc, malloc(), memok(), setbuf(), stdlib.h
ANSI Standard, §7.10.3.4
POSIX Standard, §8.1

Diagnostics
realloc() returns NULL if insufficient memory is available. It prints a message and calls abort() if it discovers that
the arena has been corrupted, which most often occurs by storing past the bounds of an allocated block. realloc()
behaves unpredictably if handed an incorrect ptr.

reboot — Command
Reboot the COHERENT system
/etc/reboot [ -p ]

reboot reboots the COHERENT system. The option -p prompts the user if she really wishes to reboot before
executing the reboot.

reboot can be run only by the superuser root.

The COHERENT system can be rebooted only from the console. It should be rebooted only while in single-user mode.
Failure to return to single-user mode before rebooting could damage the COHERENT file system and destroy data.

See Also
commands, shutdown

Notes
No message is broadcast unless the command shutdown had been executed before invoking reboot.

recursion — Definition
Recursion is the technique by which a program or function calls itself. Because under C, all variables in a function
function have local scope; therefore, when a function calls itself, it in effect recreates itself but with a fresh copy of
each of its variables. The ‘‘states’’ of the previous call or calls to that function are stored on the stack, and are not
modified when the function calls itself.

Recursion is a useful way to loop through a complex procedure. Be careful, however, that you do not lose track of
how the number of times you have called a given function; and be careful not to pile the stack too high, or you may
have problems.

Example
The following program demonstrates recursion. In it, the function recur() calls itself ten times.

#include <stdio.h>
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main()
{

printf("Before recursion ... \n");
recur(1);
printf("After recursion ... \n");

}

recur(level)
int level;
{

printf("Entering call to recur() number %d\n", level);

if (level < 10)
recur(level+1);

printf("Leaving call to recur() number %d\n", level);
}

See Also
programming COHERENT

recv() — Sockets Function (libsocket)
Receive a message from a connected socket
#include <sys/types.h>
#include <sys/socket.h>
int recv(socket, buffer, length, flags)
int socket;
char *buffer;
int length, flags;

The function recv() receives messages from a connected socket.

socket is the socket from which the messages are received. It must have been created by the function socket(),
and connected with the function connect(). buffer points to the chunk of memory into which the message is to be
written; length gives the amount of allocated memory to which buffer points.

flags ORs together either or both of the following flags:

MSG_OOB
Read any out-of-band data present on socket, rather than the regular, in-band data.

MSG_PEEK
‘‘Peek’’ at the data present on the socket: the data are copied but not erased from the socket, so another
call to recv() or recvfrom() retrieves the same data.

If all goes well, recv() returns the number of bytes it read from socket. If something went wrong, it returns -1 and
sets errno to one of the following values:

EAGAIN
If no message is queued at socket, recv() normally waits for a message to arrive (which is a blocking
operation). socket, however, is marked as non-blocking.

EBADF socket does not identify a valid socket.

EINTR A signal interrupted recv() before it could receive any data.

ENOMEM
Insufficient user memory was available to complete the operation.

ENOTSOCK
socket describes a file, not a socket.

See Also
connect(), libsocket, recvfrom(), send(), socket()
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recvfrom() — Sockets Function (libsocket)
Receive a message from a socket
#include <sys/compat.h>
#include <sys/socket.h>
#include "socketvar.h"
int recvfrom (socket, buffer, length, flags, address, addrlen)
int socket; char *buffer; int length; int flags;
sockaddr_t *from; int *alen;

recvfrom() receives messages from another socket. Unlike the related function recv(), recvfrom() receives data
regardless of whether the socket is connected or not.

socket is the file descriptor of the socket from which data are to be received. It may or may not be connected.
buffer is the chunk of memory in user space into which the data are to be written; it is length bytes long. If a
received message is longer than length bytes, excess bytes can be discarded, depending on the type of socket from
which the message is received. If from is not NULL, recvfrom() initializes it to the the source address of the
message. It initializes alen to the size of the buffer associated with address, and modifies it upon return to the size
of the address stored there.

If no messages are waiting at socket, recvfrom() waits for a message to arrive, unless the socket is nonblocking. In
this case, it returns -1 and sets errno, as described below.

flags ORs together either or both of the following flags:

MSG_OOB
Read any out-of-band data present on socket, rather than the regular, in-band data.

MSG_PEEK
‘‘Peek’’ at the data present on socket. The data are returned but remain on socket; therefore, another call to
recvfrom() or recv() retrieves the same data.

If all goes well, recvfrom() returns the number of bytes received. If an error occurs, it returns -1 and sets errno to
one of the following values:

EBADF socket is an invalid descriptor.

ENOTSOCK
socket is the descriptor of a file, not a socket.

EINTR The operation was interrupted by delivery of a signal before any data was available to be received.

EAGAIN
socket is marked non-blocking, but the requested operation would block.

ENOMEM
Too little user memory is available to complete the operation.

See Also
libsocket, recv()

Notes
At present, the COHERENT implementation of recvfrom() always behaves as if address were initialized to NULL.

ref — Command
Display a C function header
ref function

ref looks up the function header of function in any of a series of reference files built by the command ctags. It is
used by the elvis editor’s <shift-K> command. This command checks the file refs in the current directory.

See Also
commands, ctags, elvis

Notes
Release 1.7 of ref tells you which source file it is looking in. It does not show argument lines for macros, because
it now knows that they do not have any.
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ref is copyright  1990 by Steve Kirkendall, and was written by Steve Kirkendall (kirkenda@cs.pdx.edu) assisted by
numerous volunteers. It is freely redistributable, subject to the restrictions noted in included documentation.
Source code for ref is available through the Mark Williams bulletin board, USENET, and numerous other outlets.

regcomp() — Regular-Expression Function (libc)
Compile a regular expression into a structure
#include <regexp.h>
regexp *regcomp(expression)
char *expression;

Function regcomp() compiles expression into a structure of type regexp, and returns a pointer to it. For details on
the structure regexp, see the Lexicon entry for regexp.h. expression must be a regular expression; the rules that
define a regular expression are described in the Lexicon entry regexp.h.

See Also
libc, regexp.h

Notes
regcomp() calls malloc() to allocate the memory that holds the structure it creates. To free this structure, your
program must call free().

regerror() — Regular-Expression Function (libc)
Return an error message from a regular-expression function
#include <regexp.h>
void regerror(message)
char *message;

Function regerror() is the function that is called by default when an error is detected in any of the regular-
expression functions regcomp(), regexec(), or regsub(). It prints message onto the standard-error device, plus
some text to indicate whence the message originates; then calls exit() to abort the program in which the error
occurred.

You are not obliged to use regerror() to report an error with a regular-expression function. You can substitute
another function of your choosing, should you prefer.

See Also
libc, regexp.h

regexec() — Regular-Expression Function (libc)
Compare a string with a regular expression
#include <regexp.h>
int regexec(expression, string)
regexp *expression;
char *string;

Function regexec() compares string with expression, which is a regular expression compiled by function regcomp().
If string matches expression, regexec() returns one; otherwise, it returns zero and readjusts the sub-string pointers
within expression.

For details on the structure regexp and its sub-string pointers, see the Lexicon entry for regexp.h. In brief, if
regexec() successfully matches string with expression, it initializes arrays startp[] and endp[] within expression.
Each startp/endp pair point to one substring within string: the startp element points to the first character of the
substring and the endp element points to the first character that follows the substring. The pair startp[0]/endp[0]
points to the substring of string that matched the whole of expression. The other pairs point to the substrings
within string that matched parenthesized expressions within expression, with parenthesized expressions numbered
in left-to-right order of their opening parentheses.

See Also
libc, regexp.h
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regexp.h — Header File
Header file for regular-expression functions
#include <regexp.h>

Header file <regexp.h> is used with regular-expression function regcomp(), regexec(), and regsub(). These
functions manipulate a regular expression, which is stored in structure regexp. <regexp.h> defines this structure
as follows:

typedef struct regexp {
char *startp[NSUBEXP];
char *endp[NSUBEXP];
char regstart;
char reganch;
char *regmust;
int regmlen;
char program[1];

} regexp;

Fields regstart through program are used internally, and should not be manipulated by a user’s program. Fields
startp[] and endp[] are arrays of pointers to sub-strings within the expression. For details on how these pointers
are used, see the Lexicon entry for regexec(). NSUBEXP gives the number of sub-strings that can be addressed at
one time; as of this writing, it is set to ten.

Syntax of a Regular Expression
The following describes the rules with which the regexp functions define a regular expression.

A regular expression consists of zero or more branches. Branches are separated from each other by a pipe
character ‘|’. A string matches an expression when it matches any branch within the expression.

A branch, in turn, consists of zero or more pieces, which are concatenated. Each piece is a string, or atom, which
can be followed by ‘*’, ‘+’, or ‘?’. An atom followed by ‘*’ can be matched with a sequence of zero or more matches of
the atom. An atom followed by ‘+’ can be matched with a sequence of one or more matches of the atom. An atom
followed by ‘?’ can be matched with either the atom or the null string.

An atom, in turn, is built from the following:

(expression)
A regular expression between parentheses This matches a match for the regular expression.

[string] Match any character within string. If string contains a hyphen ‘-’, this represents a range of characters.
For example, ‘‘0-9’’ represents all digits; or ‘‘a-z’’ represents all lower-case characters. To include a literal ‘-’
within string, make it the first or last character within string. To include a literal ‘]’ in the sequence, make
it the first character, after a possible ‘^’.

[^string]
Match any character that is not in string.
a range (see below), ‘.’

^ Match the null string at the beginning of the input string.

$ Match the null string at the end of the input string.

\c Match the single character c literally; ignore any special significance that c might have.

Ambiguity
A string can match more than one part of an regular expression. The following rules describe how to choose which
part to match.

The basic rule is that if a regular expression could match two parts of a string, it matches the one that begins
earlier.

If both parts begin in the same place but match different lengths of the expression, or match the same length in
different ways, life gets messier, as follows.

In general, the possibilities in a list of branches are considered in left-to-right order, the possibilities for ‘*’, ‘+’, and
‘?’ are considered longest-first, nested constructs are considered from the outermost in, and concatenated
constructs are considered leftmost-first. The match that is chosen is the one that uses the earliest possibility in
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the first choice that has to be made. If there is more than one choice, the next will be made in the same manner
(earliest possibility) subject to the decision on the first choice.

For example, ‘‘(ab|a)b*c’’ could match ‘‘abc’’ in one of two ways. The first choice is between ‘‘ab’’ and ‘a’; since ‘‘ab’’
is earlier, and lead to a successful overall match, it is chosen. Since the ‘b’ is already spoken for, the ‘‘b*’’ must
match its last possibility — the empty string — because it must respect the earlier choice.

In the particular case where no ‘|’s are present and there is only one ‘*’, ‘+’, or ‘?’, the net effect is that the longest
possible match will be chosen. So ‘‘ab*’’, presented with ‘‘xabbbby’’, will match ‘‘abbbb’’. Note that if ‘‘ab*’’ is tried
against ‘‘xabyabbbz’’, it will match ‘‘ab’’ just after ‘x’, due to the begins-earliest rule. In effect, the decision on where
to start the match is the first choice to be made, hence subsequent choices must respect it even if this leads them
to less-preferred alternatives.

See Also
header files, regcomp(), regerror(), regexec(), regsub()

Notes
The code used for the regexp() was written by Harry Spencer at the University of Toronto. It is copyright  1986
by the University of Toronto. These routines are intended to be compatible with the Bell System-8 regexp() but are
not derived from Bell code. The above description of regular expressions is derived from the manual page written
by Harry Spencer.

register — C Keyword
Storage class

register is a C keyword that declares a class of data storage. A variable so declared may be stored in a register,
which may increase the speed with which it is read by a program.

See Also
auto, C keywords, extern, register variable, static
ANSI Standard, §6.5.1

register variable — Definition
register is a C storage class. A register declaration tells the compiler to try to keep the defined local data item in a
machine register. Under COHERENT C, the int foo can be declared to be a register variable with the following
statement:

register int foo;

The COHERENT C compiler makes three registers available for variables: ESI, EDI, and EBX. Subsequent register
declarations are ignored, because no registers are left to hold them.

By definition of the C language, registers have no addresses, so you cannot pass the address of register variable as
an argument to a function. For example, the following code will generate an error message when compiled:

register int i;
. . .

dosomething(&i); /* WRONG */

This rule applies whether or not the variable is actually kept in a register.

Placing heavily-used local variables into registers often improves performance, but in some cases declaring register
variables can degrade performance somewhat.

See Also
auto, extern, Programming COHERENT, static, storage class

regsub() — Regular-Expression Function (libc)
Use regular expression to build a string
"#include <regexp.h>"
regsub(expression, source, dest)
regexp *expression;
char *source, *dest;
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Function regsub() builds a string from a string and a regular expression.

source is the source string that is being interpreted. expression is the regular expression through which source is
being interpreted; it must have been built by a call to regcomp(). Before you call regsub(), you must first have
called regexec() to compare them and initialize the sub-string pointers within expression.

dest points to the memory into which regsub() writes its substituted string. It replaces each instance of ‘&’ within
source with the substring indicated by startp[0] and endp[0]. It also replaces each instance of ‘\n’, where n is a
digit, with the substring startp[n] and endp[n].

For details on how these pointers are initialized, see the Lexicon entry for regsub(). For more details on the
structure regexp, see the Lexicon entry for regexp.h. The rules that describe a regular expression also appear in
function regexp.h.

See Also
libc, regexp.h

remove() — General Function (libc)
Remove a file
#include <stdio.h>
int
remove(filename)
const char *filename;

remove() breaks the link between between filename and the actual file that it represents. In effect, it removes a
file. Thereafter, any attempt to use filename to open that file will fail. It is equivalent to the system call unlink().

remove() will remove a file that is currently open. remove() returns zero if it could remove filename, and nonzero if
it could not.

Example
This example removes the file named on the command line.

#include <stdio.h>
#include <stdlib.h>

main(argc,argv)
int argc, char *argv[])
{

if(argc != 1) {
fprintf(stderr, "usage: remove filename\n");
exit(EXIT_FAILURE);

}

if(remove(argv[1])) {
perror("remove failed");
exit(EXIT_FAILURE);

}
return(EXIT_SUCCESS);

}

See Also
libc, unlink()
ANSI Standard, §7.9.4.1
POSIX Standard, §8.1

rename() — System Call (libc)
Rename a file
#include <stdio.h>
int rename(old; new)
char *old, *new;

The COHERENT system call rename() changes the name of a file, from the name pointed to by old to that pointed to
by new. Both old and new must point to a valid file name. If new names a file that already exists, the old file is
replaced by the file being renamed.
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rename() returns zero if it could rename old, and nonzero if it could not. If rename() could not rename old, its
name remains unchanged.

Example
This example renames the file named in the first command-line argument to the name given in the second
argument.

#include <stdio.h>
#include <stdlib.h>

main(argc, argv)
int argc; char *argv[];
{

if (argc != 3) {
fprintf(stderr, "usage: rename from to\n");
exit(EXIT_FAILURE);

}

if(rename(argv[1], argv[2])) {
perror("rename failed");
exit(EXIT_FAILURE);

}
exit(EXIT_SUCCESS);

}

See Also
libc, link(), stdio.h, unlink()
ANSI Standard, §7.9.4.2
POSIX Standard, §5.5.3

Notes
The ANSI Standard states that rename() fails if old is open, or if its contents must be copied in order to rename it.
Under COHERENT, it also fails if new is already open.

reprint — Command
Reprint a spooled print job
reprint [job [page [page] ] ]

The command reprint reprints each spooled job, where job identifies a job spooled with the command lp. If you do
not specify a job, reprint reprints the job that you spooled most recently.

If you specify a page, reprint will attempt to reprint the document from that page to its end. If you specify two
pages, reprint will attempt to reprint the document from the first page to the second.

Note that the printer daemon lpsched identifies pages by counting lines of input, so this feature works only with
straight text. It does not work correctly with ‘‘cooked’’ input, such as files of PostScript or PCL.

See Also
commands, lp, printer

Notes
You should be very careful that jobs to print sensitive information — e.g., the payroll checks or your resume — do
not linger in spool directory where other users can reprint them. For information on resetting a job’s lifetime, see
the Lexicon entries for chreq, printer, and MLP_LIFE. The article controls describes how to change the default life
expectancies for spooled jobs.

resetterm() — terminfo Function
Reset the terminal to its previous settings
#include <curses.h>
resetterm()

COHERENT comes with a set of functions that let you use terminfo descriptions to manipulate a terminal.
resetterm() restores the terminal to the condition it was in when before the current program began to manipulate
its settings. Your program should call resetterm() before it calls system() or exit().
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See Also
curses.h, fixterm(), terminfo

restor — Command
Restore file system
restor command [dump_device] [filesystem] [file ...]

restor copies to the hard disk one or more files from floppy disks or tapes written by the command dump.

restor recognizes the following commands:

r Mass restore both full and incremental dump disks/tapes into the filesystem. The target file system must
have enough data blocks and i-nodes to hold the dump.

The mass restoration is performed in three phases. In phase 1, restor clears all i-nodes that were either clear
at dump time or are going to be restored. Any allocated blocks are released. Second, it restores all files on
the disk. The i-numbering is preserved; however, data blocks are allocated in the standard fashion. Third, a
pass is made over the i-nodes and the list of free i-nodes in the superblock is updated.

Restoration begins immediately, using the currently mounted disk or tape.

R Like the r command, except that it pauses to ask for numbers of disks or reels.

t Read the header from the dump. Display the date the dump was written and the ‘‘dump since’’ date that
produced the dump.

x Extract each file from the dump and restore it to the hard disk. All file names are absolute path names
starting at the root of the dump (the first directory dumped, which is always the root directory of the file
system). A numeric file name is taken to be an i-number on the dumped file system, permitting restore by i-
number.

restor looks up each argument file in the directories of the dumped file system and prints out each name and
associated i-number. restor extracts the files from the currently mounted dump disk or tape, and writes the
extracted files into the current directory. Extracted files are named after their i-numbers.

X Like command x, except that before it begins, it asks you for the number of the disk (or the reel number of the
dump tape). It continues asking for dump disks until all files have been extracted or you types <ctrl-D>.

Each of the above commands can be modified either or both of the following modifiers:

f Tell restor to take the next argument as the path name of the dump device (floppy-disk drive or tape drive). If
the f modifier is not specified, restor uses the device /dev/dump.

v Verbose output. Tell restor to print a step-by-step trace of its actions when restoring an entire file system.
This is for discovering what went wrong when a mass restore runs into trouble.

Restoring from a Damaged Medium
As noted below, dump requires that its output be written to disks or tapes that are free of defects. Restoring a file
system from a damaged medium is difficult and is not associated with a high probability of success; if, however,
you must try to do so, the following directions will give you a fighting chance of restoring your data.

1. Use the command fdformat to format a blank disk. Use the command badscan to examine it for bad sectors;
if it does have bad sectors, put it aside and try another.

2. Use the command dd to copy the bad disk to directory /tmpfoo1 dd should die at the bad sector in the disk.

3. dd again to directory /tmp/foo2 using that command’s skip=n to skip past the bad sector (or sectors).

4. Repeat step 3 (if it died too) until the end of the disk is reached. Now you have a set of directories named
/tmp/foo[1...n] that contain parts of the bad disk.

5. Use the command

dd if=/tmp/foo1 of=/dev/fha0

with the new, defect-free disk.
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6. Now, use the command

dd if=/tmp/foo2 of=/dev/fha0 seek=whatever

to place foo2 into the right place on the new disk.

7. Repeat 6 for each directory foo3 through fooN.

8. Create a 512-byte file that contain the string

GARBAGE\n

repeated 64 times. Use dd to copy it into new disk where the bad sectors were.

Now, you should have a disk that is a mirror image of the old, damaged dump disk. Each bad sectors will have
been replaced by 64 iterations of the string GARBAGE\n. As noted, there is no guarantee that this scheme will
work in every instance (the chances of error are quite high), but it will give you a fighting chance to save your data.

Files
/dev/dump — Dump device
/etc/ddate — Dump date file

See Also
commands, dump, dumpdir

Diagnostics
Most of the diagnostics produced by restor are self-explanatory, and are caused by internal table overflows or I/O
errors on the dump medium or file system.

If the dump spans multiple disks or reels, restor asks you to mount the next disk at the appropriate time. Type a
newline when the disk has been mounted. restor verifies that this is the correct disk, and gives you another
chance if the disk number in the dump header is incorrect.

Notes
You cannot perform a mass restore onto a live root partition. Instead, boot a stand-alone version of COHERENT on
a floppy-disk drive, or boot from an alternative COHERENT file system on another hard-disk partition before you
attempt to do a mass restoration.

The handling of tapes with multiple dumps on them (created by dumping to the no rewind special files) is not very
general. Basically, restor assumes that tapes holding multiple dumps and tapes holding dumps that span
multiple reels are mutually exclusive. You can restore from any file on a reel by positioning the tape and then
restoring with the x or r commands, which do not reposition the tape. It is (almost) impossible to use the X or R
commands, as the position of the dump tape will be lost when restor closes it.

dump requires that its output be written to disks that are free of bad sectors. If you write a dump to a disk with
bad sectors, you will not be able to restore files from that disk. See dump for directions on processing disks to
ensure that they are free of bad sectors.

return — C Keyword
Return a value and control to calling function

return is a C statement that returns a value from a function to the function that called it. return can be used
without a value, to return control of the program to the calling function; also, the calling function is free to ignore
the value return hands it. Note that it is good programming practice to declare functions that return nothing to be
of type void.

A function can return only one value to the function that called it. Most often, this value is used to signal whether
the function performed successfully or not.

See Also
C keywords
ANSI Standard, §6.6.6.4
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rev — Command
Print text backwards
rev [file ...]

rev reverses the order of the characters in each line of each input file and writes the result to the standard output.
If no file is specified, the standard input is used instead.

Example
The following allows you to give a command like Mandrake the Magician. Typing

rev
Rocks break down wall!
<ctrl-D>

displays:

!llaw nwod kaerb skcoR

on your screen.

See Also
commands

rewind() — STDIO Function (libc)
Reset file pointer
#include <stdio.h>
void rewind(fp)
FILE *fp;

rewind() resets the file pointer to the beginning of stream fp. It is a synonym for fseek(fp, 0L, 0).

Example
For an example of this routine, see the entry for fscanf().

See Also
fseek(), ftell(), libc, lseek()
ANSI Standard, §7.9.9.5
POSIX Standard, §8.1

Notes
Release 4.2 of COHERENT has changed rewind() to conform to the ANSI Standard. Prior to release 4.2, rewind()
returned EOF if an error occurs, and otherwise returned zero. rewind() now returns nothing. Programs that
depend upon the return value of rewind() should be modified to conform to this change.

rewinddir() — General Function (libc)
Rewind a directory stream
#include <dirent.h>
void rewinddir(dirp)
DIR *dirp;

The COHERENT function rewinddir() is one of a set of COHERENT routines that manipulate directories in a device-
independent manner. It resets the current position within the directory stream pointed to by dirp to the beginning
of the directory.

rewinddir() discards all buffered data for its data stream. This ensures that your program knows about all
modifications to the directory that occurred since the last time the directory stream was opened or rewound.

If an error occurs, rewinddir() exits and sets errno to an appropriate value.

See Also
closedir(), dirent.h, getdents(), libc, opendir(), readdir(), seekdir(), telldir()
POSIX Standard, §5.1.2
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Notes
Because directory entries can dynamically appear and disappear, and because directory contents are buffered by
these routines, an application may need to continually rescan a directory to maintain an accurate picture of its
active entries.

The COHERENT implementation of the dirent routines was written by D. Gwynn.

rindex() — String Function (libc)
Find rightmost occurrence of a character in a string
#include <string.h>
char *rindex(string, c) char *string; char c;

rindex() scans string for the last occurrence of character c. If c is found, rindex() returns a pointer to it. If it is not
found, rindex() returns NULL.

Example
This example uses rindex() to help strip a sample file name of the path information.

#include <stdio.h>
#include <string.h>
#include <misc.h>
#define PATHSEP ’/’ /* path name separator */

main()
{

char *testpath = "/foo/bar/baz";
printf("Before massaging: %s\n", testpath);
printf("After massaging: %s\n", basename(testpath));
return(EXIT_SUCCESS);

}

char *basename(path)
char *path;
{

char *cp;
return (((cp = rindex(path, PATHSEP)) == NULL)

? path : ++cp);
}

See Also
libc, strchr(), strrchr(), string.h

Notes
You must include header file string.h in any program that uses rindex(), or that program will not link correctly.

rindex() is now obsolete. You should use strrchr() instead.

rm — Command
Remove files
rm [ -firtv ] file ...

rm removes each file. If no other links exist, rm frees the data blocks associated with the file.

To remove a file, a user must have write and execute permission on the directory in which the file resides, and
must also have write permission on the file itself. The force option -f forces the file to be removed if the user does
not have write permission on the file itself. It suppresses all error messages and prompts.

The interactive option -i tells rm to prompt for permission to delete each file.

The recursive removal option -r causes rm to descend into every directory, search for and delete files, and descend
further into subdirectories. Directories are removed if the directory is empty, is not the current directory, and is
not the root directory.

The test option -t performs all access testing but removes no files.

The verbose option -v tells rm to print each file rm and the action taken. In conjunction with the -t option, this
allows the extent of possible damage to be previewed.
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See Also
commands, ln, rmdir

Notes
Absence of delete permission in parent directories is reported with the message file: permission denied. Write
protection is not inherited by subdirectories; they must be protected individually.

Note that unlike the similarly named command under MS-DOS, COHERENT’s version of rm will not prompt you if
you request a mass deletion. Thus, the command

rm *

will silently and immediately delete all files in the current directory. Caveat utilitor!

rmail — Command
Receive mail from remote sites
rmail [-LlRr] -q num -u uuxflags address ...

Command rmail receives and processes mail from remote sites. It reads and interprets the address on the mail. If
the mail is addressed to a user on your local system, it hands the mail to the local-mail deliverer lmail for delivery;
if the mail is addressed to a remote system, it queues the mail for forwarding to that system.

It is very unusual for a user to invoke rmail from the command line. rmail usually is invoked by another program;
in particular, the command uuxqt invokes it to process mail uploaded from another machine via UUCP.

Options
The command uux can pass options to rmail to control its behavior. rmail recognizes the following command-line
options:

-L Hand all mail that whose address includes a UUCP path to the local mailer lmail for processing, presumably to
make use of other transport mechanisms (e.g., Ethernet). This option, and option -l, defers all routing until
lmail has re-forwarded the mail to smail for further processing.

-l Hand all mail whose address includes a domain name to the local mailer lmail for processing, so they can be
processed for non-UUCP domains.

-q number
Set the queuing threshold to number. When routing mail to a given host, rmail checks the ‘‘cost’’ of contacting
the host; this cost set in file /usr/lib/mail/paths. If the cost is less the queueing threshold, then rmail sends
the mail immediately; otherwise, it queues the mail for later shipment. Under COHERENT, default queueing
threshold is 100.

-R Reroute UUCP paths, trying successively larger righthand substrings of a path until a component is
recognized.

-r Route the first component of a UUCP path (host!address) in addition to routing domain addresses
(user@domain).

-u uuxflags
Pass all uuxflags to the command uux for inclusion in the remote-mail command. This overrides any of the
default values and other queueing strategies.

Files
/usr/lib/mail/aliases — File from which aliases data base is built
/usr/lib/mail/paths — File from which paths data base is built
/usr/spool/uucp/.Log/mail/mail— Log of mail
/bin/lmail — Local mailer
/bin/mail — Mail user agent

See Also
aliases, commands, lmail, mail [overview], paths, smail

Notes
rmail is a link to command smail. For information on how rmail parses addresses and constructs headers, see the
Lexicon entry for smail.
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Because rmail is a link to smail, it actually recognizes all of smail’s command-line options; however, it ignores all
except those listed above.

Copyright  1987, 1988 Ronald S. Karr and Landon Curt Noll. Copyright  1992 Ronald S. Karr.

For details on the distribution rights and restrictions associated with this software, see file COPYING, which is
included with the source code to the smail system; or type the command: smail -bc.

rmdir — Command
Remove directories
rmdir [ -f ] directory ...

rmdir removes each directory. This will not be allowed if a directory is the current working directory or is not
empty. The force option -f allows the superuser to override these restrictions. rmdir removes the ‘.’ and ‘..’ entries
automatically. Note that using the -f option on a directory that is not empty will damage the file system, and
require that it be fixed with fsck.

See Also
commands, mkdir, rm

Notes
rmdir -f does not remove files from a nonempty directory: it simply orphans them. To remove a nonempty directory
and its contents, use rm -r instead.

rmdir() — System Call (libc)
Remove a directory
#include <unistd.h>
int rmdir(path)
char *path;

The COHERENT system call rmdir() removes the directory specified by argument path. To remove the directory, the
following conditions must apply:

• path must exist and be accessible, it must be empty (i.e., contain only entries for ‘.’ and ‘..’).

• You must have permission to remove the directory.

• The file system that contains path must not be mounted ‘‘read only’’.

• The directory must not be the current directory for any process.

• The directory must not be a mount point for another file system.

If the directory is successfully removed, rmdir() returns zero. If an error occurs, it returns -1 and sets errno to an
appropriate value.

See Also
libc, mkdir, mkdir(), rmdir, unistd.h, unlink()
POSIX Standard, §5.5.2

root — Definition
root is the login name for the superuser.

See Also
superuser, Using COHERENT

route — Command
Show or reset a user’s default printer
route [printer]

The command route shows or resets your default printer. When invoked without an argument, it displays your
default printer, plus a list of available alternative printers. When invoked with the argument printer, it changes
your default printer to that printer. printer must name a printer that has been described to the spooler by the
command lpadmin.
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Note that this feature is an extension to the version of lp that is included with UNIX System V.

See Also
commands, lp, lpadmin, printer

Notes
route is unique to the MLP implementation of the lp spooler. Scripts that use it will not be portable to other
implementations of lp.

route is a link to lpstat.

routers — System Administration
Rules for resolving mail addresses to remote systems
/usr/lib/mail/routers

File /usr/lib/mail/routers defines one or more routers. Each router defines a method by which smail routes mail
to a remote system.

Each entry within routers names a router and sets its attributes. The order of entries is important, because smail
invokes routers in the order in which they appear in this file. Each entry consists of the following information:

• The name of the router. This attribute begins the definition of a router. The name must be unique, it must
appear flush with the left margin, and must be followed by a single colon ‘:’.

• The name of the driver, or program that implements the router. This can be a command that is part of
smail’s suite of utilities (which are contained in directory /usr/lib/mail), or can be an ordinary COHERENT

command. If the latter, then the full name of the command that implements the driver is given with a cmd
attribute; this is shown below.

• A set of generic attributes for the router. These attributes are ‘‘generic’’ because they can come from a set that
can be applied to any router.

• A set of driver-specific attributes. These can be applied only to routers that use this driver.

To extend an entry across multiple lines, begin successive lines with white space.

For example, the following entry gives the attributes for a director that reads aliases from a file named
/private/usr/lib/aliases:

# read aliases from a file private to one machine on the network
private_aliases:

driver=aliasfile, owner=owner-$user ;
file=/private/usr/lib/aliases

This entry is named private_aliases. It depends upon the low-level director-driver routine named aliasfile, which is
built into smail, and which implements a general mechanism for looking up aliases within a data base. By default,
the driver aliasfile reads file /usr/lib/mail/aliases (which is simply a file that contains ASCII records in no
particular order); this routers tells it instead to read file /private/usr/lib/mail/aliases. (For details on the format
of an aliases file, see the Lexicon entry aliases). Finally, this router tells smail that if this director discovers an
error while it is processing its input, then it (smail) should sends a mail message to an address formed by prefixing
the string ‘‘owner-’’ onto the name of the alias.

Attributes of a Router
The following gives the generic attributes can be used in router entry. Each attribute is followed by its type
(Boolean or string). To set a string attribute, its name should be followed by an ‘=’, then the value to which you are
setting it. To set a Boolean attribute, prefix it with a ‘+’; to unset a Boolean attribute, prefix it with a ‘-’.

always (Boolean)
A router will not always find a complete match for a particular host name. For example, if a routing data
base has a route to the domain amdahl.com but not to the host name futatsu.uts.amdahl.com, then the
routing driver might return the route to amdahl.com.

In general, smail uses the route that matches the largest ‘‘chunk’’ of the target host. However, if you set
the attribute always, then smail uses any match found by this router in preference to any route returned
by any router that appears below it within routers.
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This attribute is useful for hard-wiring a certain number of routes within a small data base. For example,
this is useful for an Internet site that is the gateway for a small number of UUCP sites within the UUCP

zone.

driver (string)
This attribute gives the set of low-level functions that do the work of routing remote mail. This attribute is
required.

method (string)
transport (string)

A router driver can internally set the transport it uses to deliver mail to a remote site. If it does not do so,
then you must set either a method or a transport attribute, to specify how the mail is to be delivered. The
attribute method names the file whose contents relate host names to transports. The attribute transport
specifies a particular transport that is defined in file /usr/lib/mail/transports. If the file named in a
method attribute does not contain a match for all hosts, then smail uses the transport named with the
transport attribute. The format of a method file is given in the next section.

Method Files
Method files relates a set of host names with the set of transports to be used to deliver mail to those hosts. Each
entry should have the form:

hostname transport-name

which states that smail should use transport-name to deliver mail to hostname. As a special case, if hostname is
the special string ‘*’, the entry matches any host. You should use this catch-all feature only in the last entry in a
method file.

You can associate an entry in a method file with a particular grade of message. This lets you assign each grade of
mail its own transport; for example, you may wish to use non-demand UUCP for messages with a ‘‘bulk’’ or ‘‘junk’’
precedence. To specify a range of grades, append the range of grade-letters to the host name, separated by ‘/’.
Entries with grades can be in any of the forms:

hostname/X transport-name
hostname/X-* transport-name
hostname/*-Y transport-name
hostname/X-Y transport-name

For a discussion of grade letters and their correlation with message-precedence strings, see the description of
attribute grades in the Lexicon entry for config (smail). In the first form, the transport is used for an exact match
of the grade letter. In the second form, a match requires a grade a character value of at least X. In the third, form a
match requires a grade character value of at most Y. The final form specifies a range of grades from character value
X to character value Y.

The Default Configuration
The following gives the routers defined in the default version of file /usr/lib/mail/routers that is included with
COHERENT.

The first router is named paths. It processes the contents of file /usr/lib/mail/paths:

# paths - route using a paths file, like that produced by the pathalias program
paths: driver=pathalias, # general-use paths router

transport=uux; # for matches, deliver over UUCP

file=paths, # sorted file containing path info
proto=dbm, # use a DBM-style data base
optional, # ignore if the file does not exist
-required, # no required domains
domain=uucp, # strip ending ".uucp" before searching

The command pathalias, which this router uses to read file paths, is described in its own Lexicon entry; as is
command uux, which this router invokes to transport the files to the remote site.

The next router, named uucp_neighbors, matches nearby systems that are accessible via UUCP:
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# uucp_neighbors - match neighbors accessible over UUCP
uucp_neighbors:

driver=uuname, # use a program which returns neighbors
transport=uux;

cmd=/usr/bin/uuname, # specifically, use the uuname program
domain=uucp, # strip ending ".uucp" before searching

Command uuname is part of the Taylor UUCP package that is included with COHERENT. It is described in its own
Lexicon entry. Under COHERENT, this command always returns the name of your local host.

The final router describes how to route mail to the ‘‘smart host.’’ This is a system that knows how to access more
remote systems than your system does, and that you trust to handle mail correctly. smail forwards to the smart
host all mail that it does not know how to route, in the hope that the smart host will know what to do with it.

# smart_host - a partically specified smarthost director
#
# If the config file attribute smart_path is defined as a path from the
# local host to a remote host, then host names not matched otherwise will
# be sent off to the stated remote host. The config file attribute
# smart_transport can be used to specify a different transport.
#
# If the smart_path attribute is not defined, this router is ignored.
smart_host:

driver=smarthost, # special-case driver
transport=uux; # by default deliver over UUCP

-path, # use smart_path config file variable?

See Also
Administering COHERENT, config [smail], directors, mail [overview], smail, transports

Notes
For information on how the configuration files directors, routers, and transports relate to each other, see the
Lexicon entry for directors.

Copyright  1987, 1988 Ronald S. Karr and Landon Curt Noll. Copyright  1992 Ronald S. Karr.

For details on the distribution rights and restrictions associated with this software, see file COPYING, which is
included with the source code to the smail system; or type the command: smail -bc.

rpow() — Multiple-Precision Mathematics (libmp)
Raise multiple-precision integer to power
#include <mprec.h>
void rpow(a, b, c)
mint *a, *b, *c;

rpow() sets the multiple-precision integer (or mint) pointed to by c to the value pointed to by a raised to power of
the value pointed to by b.

See Also
libmp

RS-232 — Technical Information
Serial port wiring

This article details the connections (pinouts) of EIA standard RS-232C. This connector consists of a D-shaped plug
with 25 pins in two rows: 13 pins in the upper row and 12 in the lower. This interface is commonly used by
devices that require a serial interface to a computer; these devices include modems, terminals, serial printers, and
such specialized devices as bar-code scanners. In addition, this articles gives the pinouts of the nine-pin DB-9P
connector, which is a nine-pin version of the RS-232 that is commonly used in AT and AT-compatible computers.

RS-232 Pinout
The following table gives the 25-pin EIA standard RS-232C pinouts. It also gives:
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• Nine-pin DB-9P convention
• Common abbreviations of signal names
• Abbreviations of RS-232 signal names
• Equivalent CCITT signal-number designations
• Signal direction (as appropriate)
• Signal description

Please note that in this table, DTE stands for ‘‘data terminal equipment’’ and refers to terminal-type equipment
such as a PC or a terminal, whereas DCE stands for ‘‘data communications equipment’’ and refers to modems and
modem-type equipment.

DB-25 DB-9 Common
Pin # Pin # Name EIA CCITT DTE-DCE Description

1 FG AA 101 — Frame ground
2 3 TD BA 103 → Transmitted data
3 2 RD BB 104 ← Received data
4 7 RTS CA 105 → Request to send
5 8 CTS CB 106 ← Clear to send
6 6 DSR CC 107 ← Data set ready
7 5 SG AB 102 — Signal ground
8 1 DCD CF 109 ← Data carrier detect
9 — — — — Positive DC test voltage
10 — — — — Negative DC test voltage
11 QM — — ← Equalizer mode
12 SDCD SCF 122 ← Secondary carrier detect
13 SCTS SCB 121 ← Secondary clear to send
14 STD SBA 118 → Secondary transmitted data
15 TC DB 114 ← Transmitter clock
16 SRD SBB 119 ← Secondary receiver clock
17 RC DD 115 → Receiver clock
18 DCR — — ← Divided clock receiver
19 SRTS SCA 120 → Secondary request to send
20 4 DTR CD 108.2 → Data terminal ready
21 SQ CG 110 ← Signal quality
22 9 RI CE 125 ← Ring indicator
23 — CH 111 → Data rate selector
24 TC DA 113 ← Transmitted clock
25

Files
/usr/pub/rs232 — On-line version of above table

See Also
Administering COHERENT, asy, modem, terminal
Seyer, M.D.: RS-232 Made Easy: Connecting Computers, Printers, Terminals, and Modems. Englewood Cliffs, NJ,
Prentice-Hall Inc., 1984.

Notes
Serial ports on the back of the PC use either a 25-pin male (DB-25P) or a nine-pin male (DB-9P) connector. Due to
what can only be regarded as extreme stupidity, the 25-pin female (DB-25S) connector was chosen for the parallel
(printer) port, rather than using the usual 36-pin parallel connector. Do not confuse these ports when wiring
custom-cable assemblies, as you can damage your equipment!

rsmtp — Command
Run batched SMTP mail
/bin/rsmtp

Command rsmpt reads and executes Simple Mail Transfer Protocol (SMTP) commands from the standard input. It
normally is used to execute a batched form of SMTP between machines via a remote execution service, e.g., UUCP.
rsmtp reports failures through return mail.
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See Also
commands, mail [overview], smail

Notes
rsmtp is a link to smail.

rubik — Command
Play Rubik’s cube
/usr/games/rubik

The command rubik lets you fiddle with an electronic version of Rubik’s cube. By issuing commands, you can
‘‘rotate’’ the segments of the virtual cube and, with some agony, align all the ‘‘colors’’.

rubik is written in m4, and is a good example of extended programming in this utility.

See Also
commands, m4

runq — Command
Periodically process the mail queue
/bin/runq

Command runq checks the spool directory that holds incoming mail, and processes it. It is equivalent to the
command smail -q.

See Also
commands, mail [overview], smail

Notes
runq is a link to smail.

rvalue — Definition
An rvalue is the value of an expression. The name comes from the assignment expression e1=e2;, in which the
right operand is an rvalue.

Unlike an lvalue, an rvalue can be either a variable or a constant.

See Also
lvalue, Programming COHERENT
ANSI Standard, §6.2.2.1
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sa — Command
Print a summary of process accounting
sa [-abcjlmnrstu] [-v N] [file]

One of the accounting mechanisms available on the COHERENT system is process accounting (also called shell
accounting), which records the commands executed by each user. The command accton enables or disables shell
accounting.

The command sa scans the accounting information in file and prints a summary. If file is omitted, it reads the file
/usr/adm/acct by default. For each command executed, sa prints the number of calls made, the total CPU time
(user and system), and the total real time. The output is ordered by decreasing CPU time.

sa recognizes the following options:

a Place commands executed only once and command names with unprintable characters in the category
‘‘***other’’.

b Sort by average CPU time per call.

c Also print CPU time as a percentage of all CPU time used.

j Print average times per call rather than totals.

l Separate user and system time.

m Accumulate information for each user rather for each command.

n Sort by number of calls.

r Reverse the order of the sort.

s After scanning, condense the accounting file and merge it into the summary files.

t Also print the CPU time as a percentage of real time.

u Print the user and command for each accounting record; this option overrides all others.

v N For commands called no more than N times, where N is a digit, sa asks whether to place the command in
the category ‘‘**junk**’’.

sa uses the summary files /usr/adm/savacct and /usr/adm/usracct to lessen disk usage.

Files
/usr/adm/acct — Default account data
/usr/adm/savacct — Summary
/usr/adm/usracct — Summary

See Also
ac, acct(), acct.h, accton, commands

Notes
The file /usr/adm/acct can become very large; therefore, you should truncate it periodically. Special care should
be taken if process accounting is enabled on a COHERENT system with limited disk space.
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savelog — Command
Save a mail log
/usr/lib/mail/savelog [-c cycle] [-g group] [-l]

[-m mode] [-u user] [-t] file ...

The script savelog archives each file. This script normally is used to save copies of smail’s log files, and of other
files that grow relentlessly. It copies each file into a special archiving directory, and gives the copy a name that
reflects how recently it was created. Unless you request otherwise, it also compresses each file.

When it saves file, savelog copies it into directory $PWD/OLD, where $PWD represents the directory within which
the file normally resides. If sub-directory OLD does not exist, savelog creates it, and gives it mode 0755.

As you probably will invoke savelog periodically to save a log file, this directory can hold an indefinite number of
archives of file, each created at a different time in the past. To help you distinguish among these archives, savelog
names them as follows:

file.number[.compression_suffix]

number represents the order in which the archives were created, zero being the newest; and compression_suffix
indicates the suffix that the compression program gives the file — .Z if the archive is compressed with compress
(which savelog uses by default), or .gz if compressed with gzip. Note that archive ‘0’ is never compressed, on the
off chance that a process still has its corresponding file opened for input.

If file does not exist or has zero length, savelog performs no further processing. To override this behavior, use
option -t.

When file exists and has a length greater than zero, savelog performs the following actions:

• First, it increases by one the version number of each existing copy of file. For example, if you are saving file
foo for the seventh time, then savelog moves file foo.6 to foo.7; then moves foo.5 to foo.6; and so on.
savelog does this regardless of whether an archive is compressed, or whether you used option -t on the
command line. By default, savelog keeps only seven versions of a given file, and throws away those versions
that exceed that limit. To increase or decrease this limit, use command-line option -c, described below.

• If you did not use command-line option -t, savelog next compresses the new file.1. It also changes this file,
subject to the command-line options -m, -u, and -g (described below).

• It moves file to OLD/file.0.

• If you use any of the command-line options -m, -u, -g, or -t, savelog re-creates file, subject to the given flags.

• Finally, savelog modifies the newly created file OLD/file.0, subject to the settings of command-line options -
m, -u, and -g.

Command-line Options
savelog recognizes the following command-line options:

-c cycle Save no more than cycle versions of file. The default is seven, numbered ‘0’ through ‘6’. cycle must be no
less than two. Note that because numbering begins with zero, version number cycle of file is never
created.

-g group
Use the command chgrp to give group the group ownership of file and its archives.

-l Do not compress any log files.

-m mode
Invoke the command chmod to set permissions on the log files to mode.

-t Touch file— that is, create a new, empty copy of file after archiving it. This lets you ensure that the log file
is re-created with correct permissions.

-u user Invoke the command chown to make user the owner of the archives of file.

See Also
commands, mail [overview], uulog
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Notes
If you do not use any of the command-line options -m, -u, or -g, savelog does not re-create file after archiving it.

Copyright  1987, 1988 Ronald S. Karr and Landon Curt Noll. Copyright  1992 Ronald S. Karr.

For details on the distribution rights and restrictions associated with this software, see file COPYING, which is
included with the source code to the smail system; or type the command: smail -bc.

sbrk() — General Function (libc)
Increase a program’s data space
#include <unistd.h>
char *sbrk(increment) unsigned int increment;

sbrk() increases a program’s data space by increment bytes. malloc() calls sbrk() should you attempt to allocate
more space than is available in the program’s data space.

If all goes well, sbrk() returns the old break value. Otherwise, if an error occurs, sbrk() returns -1 and sets errno
to an appropriate value.

See Also
brk(), libc, malloc()

Notes
sbrk() will not increase the size of the program data area if the physical memory requested exceeds the physical
memory allocated by COHERENT. sbrk() does not keep track of how space is used; therefore, memory seized with
sbrk() cannot be freed. Caveat utilitor.

scanf() — STDIO Function (libc)
Accept and format input
#include <stdio.h>
int scanf(format, arg1, ... argN)
char *format; [data type] *arg1, ... *argN;

scanf() reads the standard input, and uses the string format to specify a format for each arg1 through argN, each of
which must be a pointer.

scanf() reads one character at a time from format; white space characters are ignored. The percent sign character
‘%’ marks the beginning of a conversion specification. ‘%’ may be followed by characters that indicate the width of
the input field and the type of conversion to be done.

scanf() reads the standard input until the return key is pressed. Inappropriate characters are thrown away; e.g., it
will not try to write an alphabetic character into an int.

scanf() returns the number of arguments filled. It returns EOF if no arguments can be filled or if an error occurs.

Modifiers
The following modifiers can be used within the conversion string:

1. An asterisk ‘*’, which tells scanf to skip the next conversion; that is, read the next token but do not write it
into the corresponding argument.

2. A decimal integer, which tells scanf the maximum width of the next field being read. How the field width is
used varies among conversion specifier. See the table of specifiers below for more information.

3. One of the three modifiers h, l, or L, whose use is described below.

Modifiers
The following three modifiers may be used before a conversion specifier:

h When used before the conversion specifiers d, i, o, u, x, or X, it specifies that the corresponding argument
points to a short int or an unsigned short int. When used before n, it indicates that the corresponding
argument points to a short int. In implementations where short int and int are synonymous, it is not
needed. However, it is useful in writing portable code.

LEXICON

1058 sbrk() — scanf()



l When used before the conversion specifiers e, E, f, F, or G, it indicates that the corresponding argument
points to a double rather than a float.

L When used before the conversion specifiers e, E, f, F, or G, it indicates that the corresponding argument
points to a long double rather than a float.

Conversion Specifiers
scanf() recognizes the following conversion specifiers:

c Assign the next input character to the next arg, which should be of type char *. The field width specifies the
number of characters (default, one). scanf() does not write a null character at the end of the array it creates.
This specifier forces scanf() to read and store white-space characters and numerals, as well as letters.

d Convert the token to a decimal integer. The format should be equivalent to that expected by the function
strtol() with a base argument of ten. The corresponding argument should point to an int.

D Assign the decimal integer from the next input field to the next arg, which should be of type long *.

e Convert the token to a floating-point number. The format of the token should be that expected by the
function strtod() for a floating-point number that uses exponential notation. The corresponding argument
should point to a float if no modifiers are present, to a double if the l modifier is present, or to a long double
if the L modifier is present.

E Same as e. Prior to release 4.2 of COHERENT, this conversion specifier converted the token to a double. This
change has been made to conform to the ANSI Standard, and may require that some code be rewritten.

f Convert the token to a floating-point number. The format of the token should be that expected by the
function strtod() for a floating-point number that uses decimal notation. The corresponding argument should
point to a double.

g Convert the token to a floating-point number. The format of the token should of that expected by the function
strtod() for a floating-point number that uses either exponential notation or decimal notation. The
corresponding argument should point to a float if no modifiers are present, to a double if the l modifier is
present, or to a long double if the L modifier is present.

G Same as g.

i Convert the token to a decimal integer. The format should be equivalent to that expected by the function
strtol() with a base argument of zero. The corresponding argument should point to an int.

n Do not read any text. Write into the corresponding argument the number of characters that scanf() has read
up to this point. The corresponding argument should point to an int.

o Assign the octal integer from the next input field to the next arg, which should be of type int *.

O Assign the octal integer from the next input field to the next arg, which should be of type long *.

p The ANSI standard states that the behavior of the %p conversion specificer is implementation-specific. Under
COHERENT, %p converts a strings of digits in hexadecimal notation into an address. For example, in the code

char buf[] = "0x7FFFFDBC";
char *foo;
...
sscanf(buf, "%p", &foo);

the %p specifier reads the contents of buf and turns them into an address, which it then uses to initialize the
pointer foo. You can use the %p specifier to turn back into an address the output of printf()’s %p specifier.
Please note that abuse of this specifier can create all manner of fascinating bugs within your programs:
Caveat utilitor.

r The next argument points to an array of new arguments that may be used recursively. The first argument of
the list is a char * that contains a new format string. When the list is exhausted, the routine continues from
where it left off in the original format string.

s Assign the string from the next input field to the next arg, which should be of type char *. The array to which
the char * points should be long enough to accept the string and a terminating null character.

u Convert the token to an unsigned integer. The format should be equivalent to that expected by the function
strtoul() with a base argument of ten. See strtoul for more information. The corresponding argument should
point to an unsigned int.
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x Convert the token from hexadecimal notation to a signed integer. The format should be equivalent to that
expected by the function strtol with a base argument of 16. See the Lexicon entry for strtol() for more
information. The corresponding argument should point to an unsigned int.

X Same as x. Prior to release 4.2 of COHERENT, X meant the same as the current lx; that is, the corresponding
argument points to a long instead of an int. This has been changed to conform to the ANSI Standard, and
may require that some code be rewritten.

It is important to remember that scanf() reads up, but not through, the newline character: the newline remains in
the standard input device’s buffer until you dispose of it somehow. Programmers have been known to forget to
empty the buffer before calling scanf() a second time, which leads to unexpected results.

Example
The following example uses scanf() in a brief dialogue with the user.

#include <stdio.h>

main()
{

int left, right;

printf("No. of fingers on your left hand: ");
/* force message to appear on screen */
fflush(stdout);
scanf("%d", &left);

/* eat newline char */
while(getchar() != ’\n’)

;

printf("No. of fingers on your right hand: ");
fflush(stdout);
scanf("%d", &right);

/* again, eat newline */
while(getchar() != ’\n’)

;

printf("You’ve %d left fingers, %d right, & %d total\n",
left, right, left+right);

}

See Also
fscanf(), libc, sscanf()
ANSI Standard, §7.9.6.4
POSIX Standard, §8.1

Notes
Because C does not perform type checking, it is essential that an argument match its specification. For that
reason, scanf() is best used to process only data that you are certain are in the correct data format. Rather than
use scanf() to obtain a string from the keyboard: we recommend that you use gets() to obtain the string, and use
strtok() or sscanf() to parse it.

scat — Command
Print text files one screenful at a time
scat [ [option ...] [file ... ] ] ...

scat prints each file on the standard output, one screenful (24 lines) at a time if the output is a screen. scat reads
and prints the standard input if no file is named.

The text is processed to allow convenient viewing on a screen; the options described below select the nature of the
processing. Options begin with ‘-’ and may be interspersed with file names.

scat scans two argument lists. The first is in the environmental SCAT. It should consist of arguments separated
by white space (space, tab, or newline characters), with no quoting or shell metacharacters. This string is a useful
place to set terminal-dependent parameters (such as page width and length) and to place invocation lists (see
below). The second argument list is supplied on the command line.
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scat recognizes the following options:

-1 Do not stop at EOF if exactly one file was specified on the command line.

-bn Begin output at input line n.

-c Represent all control characters unambiguously. With this option, scat prints control characters in the
range 0-037 as a character in the range 0100-0137 prefixed by a carat ‘^’; for example, SOH appears as
‘‘^A’’ and DEL as ‘‘^?’’ It prints mark-parity characters (in the range of 0200-0377) with ‘~’; for example,
mark-parity ‘A’ and SOH appear as ‘‘~A’’ and ‘‘~^A’’, respectively. It also prefixes the characters ‘^’, ‘~’, and
‘\’ with a ‘\’. This option overrides the option -t.

-cs Like -c, but map space ‘ ’ to underscore ‘_’ and prefix underscore ‘_’ with ‘\’.

-ct Like -c, but map tabs to spaces, not ‘‘^I’’.

-in Shift the display window right n columns into the text field. This is useful for viewing long lines.

-ln Set the display window length to n lines. The default is 24 normally, 34 for the Tek 4012.

-n Number input lines; wrapped lines are not numbered.

-r Remote; the output is not paged.

-s Skip empty lines.

-Sn Seek n bytes into input before processing.

-t Truncate long lines. Normally, scat wraps each long line, with the interrupted portion delimited by a ‘\’.

-wn Set the display window width to n columns. The default is 80 normally, 72 for the Tek 4012.

-x Expand tabs.

-. suffix Invoke options by file-name suffix. If a file name ends with .suffix, then scat scans the argument sublist
starting immediately after the invocation flag. New options will apply to the invoking file only. A sublist is
terminated by the end of the argument list, by a file name, by the ‘‘--’’ flag, or by another ‘‘-.’’ (invocation
lists do not nest).

-- Terminate a sublist (see previous option).

Numbers may begin with 0 to indicate octal, and may end in b or k to be scaled by 512 or 1,024, respectively.

If the output is being paged, scat waits for a user response, which may be one of the following:

newline Display next page
/ Display next half-page
space Display next line
f Print current file name and line number
n scat next file
q Quit

Example
The following shows how to use the environment argument list, invocation lists, and sublists:

SCAT="-l24 -.c -n -.s -b5"
export SCAT
scat *.c *.s

After processing the SCAT argument list, scat processes the command line argument list ‘‘*.c *.s’’ with the page
length at 24 lines. If a file is a C source (‘‘*.c’’) the invoke option in the SCAT argument list numbers the output
lines. If a file is an assembly source (‘‘*.s’’) scat skips the first four lines.

See Also
cat, commands, pr
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sched.h — Header File
Define constants used with scheduling
#include <sys/sched.h>

sched.h defines constants and structures that are used by routines that perform scheduling.

See Also
header files

script — Command
Capture a terminal session into a file
script [-l logfile] [command]

The COHERENT command script executes command while copying all terminal output to logfile. logfile defaults to
file Log.pid in your current directory, where pid is the number of the recording process. command must specify a
full path name. If the terminal echoes keyboard input, script records these keystrokes in logfile.

If no command is specified, script executes the command specified by environmental variable SHELL by default. If
SHELL is not defined, script assumes /bin/sh.

To exit from script, just type exit from a command prompt.

See Also
commands

Notes
script is intended to capture what you type for purposes of debugging. What it captures cannot be replayed into
the shell.

sdevice — System Administration
Configure drivers included within kernel
/etc/conf/sdevice

File sdevice configures the drivers that can be included within the COHERENT kernel. Command idmkcoh reads
this file when it builds a new COHERENT kernel, and uses the information within it to configure the suite of drivers
it links into the kernel.

There is one line within the file for each type of hardware device; if a driver manipulates more than one type of
device, then it has one entry for each type of device it manipulates. A driver’s entry within file /etc/conf/mdevice
indicates how many entries a driver can have with sdevice: if field 3 contains flag ‘o’, the device can have only one
entry; whereas if field 3 does not contain this flag, it can have more than one entry (although it is not required to
do so). An entry that begins with a pound sign ‘#’ is a comment, and is ignored by idmkcoh.

Each entry within sdevice consists of ten fields, as follows:

1. Name
This gives the name of driver, and must match the name given in mdevice. It cannot exceed eight
characters.

2. Included in Kernel?
This field indicates whether the driver is to be linked into the kernel: ‘Y’ indicates that it is, ‘N’ that it is
not.

3. Number of Units
The number of the hardware units that this driver can manipulate. Under COHERENT, this is always set to
zero.

4. Interrupt Priority
The device’s interrupt priority. This must be a value between 0 and 8: zero indicates that this device is not
interrupt driven, whereas a value from 1 to 8 gives the interrupt priority.

5. Interrupt Type
The type of interrupt for this device. The legal values are as follows:
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0 This device is not interrupt driven.

1 The device is interrupt driven. If the driver controls more than one device, each requires a separate
interrupt.

2 The device is interrupt driven. If the driver supports more than one device, all share the same
interrupt.

3 The device requires an interrupt line. If the driver supports more than one device, all share the same
interrupt. Multiple device drivers that the same interrupt priority can share this interrupt; however,
this requires special hardware support.

6. Interrupt Vector
The interrupt vector used by the device. If field 5 is set to zero, this must be also.

7. Low I/O Address
The low I/O address through which the driver communicates with the device. Set this field to zero if it is
not used.

8. High I/O Address
The high I/O address through which the driver communicates with the device. Set this field to zero if it is
not used.

9. Low Memory Address
The low address of memory within the controller of the device being manipulated. Set this field to zero if it
is not used.

10. High Memory Address
The high address of memory within the controller of the device being manipulated. Set this field to zero if
it is not used.

Note that all COHERENT drivers current set fields 7 through 10 to zero.

For examples of settings for this, read the file itself. For an example of modifying this file to add a new driver, see
the Lexicon entry for device drivers.

See Also
Administering COHERENT, device drivers, mdevice, mtune, stune

sdiv() — Multiple-Precision Mathematics (libmp)
Divide multiple-precision integers
#include <mprec.h>
void sdiv(a, n, q, ip)
mint *a, *q; int n, *ip;

sdiv() divides the multiple-precision integer (or mint) pointed to by a with the integer n, which is in the range 1 <=
n <= 128. It writes the quotient into the mint pointed to by q and the remainder into the integer pointed to by ip.

See Also
libmp

SECONDS — Environmental Variable
Number of seconds since current shell started

The Korn shell stores in environmental variable SECONDS the number of seconds since the current shell was
started.

See Also
environmental variables, ksh

security — System Administration
Because COHERENT is a multi-user, multi-tasking operating system which can support users from remote
terminals, steps must be taken to ensure that the system is secure. Sensitive information that is stored on the
system must be protected from being read or copied by unauthorized persons; files must be protected against
vandalization by intruders. Unless a reasonable degree can be guaranteed, no multi-user operating system can be
trusted to archive important information.
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In one sense, it is easy to achieve perfect security in a computer system. As Grampp and Morris have noted, ‘‘It is
easy to run a secure computer system. You merely disconnect all dial-up connections, put the machine and its
terminals in a shielded room, and post a guard at the door.’’ For practical uses, however, security means balancing
ease of access against restrictiveness: users should have easy access to what is properly theirs, and should be
barred from system facilities that do not belong to them.

The COHERENT system has the following tools to assist with security.

Passwords Every user account can be ‘‘locked’’ with a password. Each user can assign her own password,
and the system administrator can set passwords for the superusers root and bin.

Passwords should be changed frequently. A password should have at least six characters, should
not be a common name or word, and preferably should include a mixture of upper- and lower-case
letters, to prevent decryption by brute-force methods.

Passwords should be guarded jealously. In particular, the password for the superuser root should
be kept secret, as she can read every file and execute every program throughout the system.

Permissions Execution of system-level programs, such as mount, is restricted to the superuser root. This
prevents intruders from seizing superuser permissions through unauthorized manipulation of
system services. Ordinary users are also restricted from directly access system devices, for the
same reason.

One potential hole in security is the setting the setuid bit on programs that are owned by the
superuser root. Setting this bit grant superuser privileges to whoever runs the program. Two
commands often have this bit set: /etc/enable and /etc/disable. This is done to permit users, in
particular user uucp, to enable and disable a port. This, however, permits any user to enable or
disable a device — including the console device; which means that a cracker who breaks into your
system could lock you out of it if she wished.

The lesson is that you should not set the setuid bit on any program that is owned by root unless
you have an excellent reason to do so.

Encryption The command crypt performs rotary encryption, similar to that used by the German Enigma
machine. Files of sensitive information should be encrypted, to protect them against being read by
unauthorized persons. Note that encryption is the only true defense against unauthorized
reading: not even the superuser can read an encrypted file unless she has the encryption key.

Many COHERENT systems have only one user and are not networked; for such installations, the normal level of
security may be an annoyance. Passwords can be turned off by using the command passwd to set the password to
<return>. The command chmod can be used to widen access to devices and system-level utilities; see the Lexicon
entry for chmod for more information on file access.

Security ultimately is a system-wide responsibility. To quote Grampp and Morris, ‘‘By far, the greatest security
hazard for a system ... is the set of people who use it. If the people who use a machine are naive about security
issues, the machine will be vulnerable regardless of what is done by the local management. This applies
particularly to the system’s administrators, but ordinary users should also take heed.’’

See Also
Administering COHERENT, chmod, crypt, login, passwd
Grampp, F.T., Morris, R.H.: UNIX operating system security. AT&T Bell Lab Tech J 1984;8:1649-1672.

sed — Command
Stream editor
sed [ -n ] [-e command] [-f script] ... file ...

sed is a non-interactive text editor. It reads input from each file, or from the standard input if no file is named. It
edits the input according to commands given in the commands argument and the script files. It then writes the
edited text onto the standard output.

sed resembles the interactive editor ed, but its operation is fundamentally different. sed normally edits one line at
a time, so it may be used to edit very large files. After it constructs a list of commands from its commands and
script arguments, sed reads the input one line at a time into a work area. Then sed executes each command that
applies to the line, as explained below. Finally, it copies the work area to the standard output (unless the -n option
is specified), erases the work area, and reads the next input line.
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Line Identifiers
sed identifies input lines by integer line numbers, beginning with one for the first line of the first file and
continuing through each successive file. The following special forms identify lines:

n A decimal number n addresses the nth line of the input.

. A period ‘.’ addresses the current input line.

$ A dollar sign ‘$’ addresses the last line of input.

/pattern/ A pattern enclosed within slashes addresses the next input line that contains pattern. Patterns, also
called regular expressions, are described in detail below.

Commands
Each command must be on a separate line. Most commands may be optionally preceded by a line identifier
(abbreviated as [n] in the command summary below) or by two-line identifiers separated by a comma (abbreviated
as [n[,m]]). If no line identifier precedes a command, sed applies the command to every input line. If one line
identifier precedes a command, sed applies the command to each input line selected by the identifier. If two-line
identifiers precede a command, sed begins to apply the command when an input line is selected by the first, and
continues applying it through an input line selected by the second.

sed recognizes the following commands:

[n]= Output the current input line number.

[n[,m]]!command
Apply command to each line not identified by [n[,m]].

[n[,m]]{command...}
Execute each enclosed command on the given lines.

:label Define label for use in branch or test command.

[n]a\ Append new text after given line. New text is terminated by any line not ending in ‘\’.

b [label] Branch to label, which must be defined in a ‘:’ command. If label is omitted, branch to end of
command script.

[n[,m]]c\ Change specified lines to new text and proceed with next input line. New text is terminated by any
line not ending in ‘\’.

[n[,m]]d Delete specified lines and proceed with next input line.

[n[,m]]D Delete first line in work area and proceed with next input line.

[n[,m]]g Copy secondary work area to work area, destroying previous contents.

[n[,m]]G Append secondary work area to work area.

[n[,m]]h Copy work area to secondary work area, destroying previous contents.

[n[,m]]H Append work area to secondary work area.

[n]i\ Insert new text before given line. New text is terminated by any line not ending in ‘\’.

[n[,m]]l Print selected lines, interpreting non-graphic characters.

[n[,m]]n Print the work area and replace it with the next input line.

[n[,m]]N Append next input line preceded by a newline to work area.

[n[,m]]p Print work area.

[n[,m]]P Print first line of work area.

[n]q Quit without reading any more input.

[n]r file Copy file to output.
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[n[,m]]s[k]/pattern1/pattern2/[g][p][w file]
Search for pattern1 and substitute pattern2 for kth occurrence (default, first). If optional g is given,
substitute all occurrences. If optional p is given, print the resulting line. If optional w is given,
append the resulting line to file. Patterns are described in detail below.

[n[,m]]t[label]
Test if substitutions have been made. If so, branch to label, which must be defined in a ‘:’ command.
If label is omitted, branch to end of command script.

[n[,m]]w file Append lines to file.

[n[,m]] x Exchange the work area and the secondary work area.

[n[,m]]y/chars/replacements/
Translate characters in chars to the corresponding characters in replacements.

Patterns
Substitution commands and search specifications may include patterns, also called regular expressions. Pattern
specifications are identical to those of ed, except that the special characters ‘\n’ match a newline character in the
input.

A non-special character in a pattern matches itself. Special characters include the following:

^ Match beginning of line, unless it appears immediately after ‘[’ (see below).

$ Match end of line.

\n Match the newline character.

. Match any character except newline.

* Match zero or more repetitions of preceding character.

[chars] Match any one of the enclosed chars. Ranges of letters or digits may be indicated using ‘-’.

[^chars] Match any character except one of the enclosed chars. Ranges of letters or digits may be indicated
using ‘-’.

\c Disregard special meaning of character c.

\(pattern\) Delimit substring pattern; for use with \d, described below.

In addition, the replacement part pattern2 of the substitute command may also use the following:

& Insert characters matched by pattern1.

\d Insert substring delimited by dth occurrence of delimiters ‘\(’ and ‘\)’, where d is a digit.

Options
sed recognizes the following options:

-e Next argument gives a sed command. sed’s command line can have more than one -e option.

-f Next argument gives file name of command script.

-n Output lines only when explicit p or P commands are given.

Limits
The COHERENT implementation of sed sets the following limits on input and output:

Characters per input record 512
Characters per output record 512
Characters per field 512

See Also
commands, ed, elvis, ex, me, vi
Introduction to the sed Stream Editor
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seed48() — Random-Number Function (libc)
Initialize values from which 48-bit random numbers are computed
unsigned short *seed48(param)
unsigned short param[3];

Computation of 48-bit pseudo-random numbers uses two 48-bit integers and one 16-bit integer. One of the 48-bit
values holds the ‘‘seed’’ value from which the 48-bit pseudo-random value is computed. This seed can be set
explicitly, or is the previously computed pseudo-random number. The other 48-bit integer holds the multiplier
from which the pseudo-random number is computed; and the 16-bit integer gives holds the addend.

Function seed48() initializes the ‘‘seed’’ from which a 48-bit pseudo-random number is computed. param is an
array of three unsigned short integers that together comprise the new 48-bit seed value.

seed48() returns a pointer to an array of three unsigned short integers that holds the old seed.

See Also
libc, srand48()

seekdir() — General Function (libc)
Reset the position within a directory stream
void seekdir (dirp, loc)
DIR *dirp;
off_t loc;

The function seekdir() is one of a set of COHERENT routines that manipulate directories in a device-independent
manner. It resets the current position within the directory stream pointed to by dirp to loc. loc must be a position
indicator returned by a previous call to telldir().

If an error occurs, seekdir() exits and sets errno to an appropriate value.

See Also
closedir(), dirent.h, getdents(), libc, opendir(), readdir(), rewinddir(), telldir()

Notes
telldir() and seekdir() are unreliable when the directory stream has been closed and reopened. It is best to avoid
using telldir() and seekdir() altogether.

Because directory entries can dynamically appear and disappear, and because directory contents are buffered by
these routines, an application may need to continually rescan a directory to maintain an accurate picture of its
active entries.

The COHERENT implementation of the dirent routines was written by D. Gwynn.

seg.h — Header File
Definitions used with segmentation
#include <seg.h>

seg.h defines structures and constants used by routines that handle memory segmentation.

See Also
header files

select() — General Function (libsocket)
Check if devices are ready for activity
#include <sys/types.h>
#include <sys/time.h>
#include <sys/select.h>
#include <unistd.h>
int select(nfds, readfds, writefds, exceptfds, timeout)
int nfds;
fd_set *readfds, *writefds, *exceptfds;
struct timeval *timeout;
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The function select() examines file descriptors, and tells you which are ready for a given type of activity. select()
can be used with descriptors for sockets, pipes, and most character devices including the console, serial terminals
connected via the asy driver, and pseudoterminals using the pty driver.

readfds, writefds, and exceptfds each gives the address of a a bit-map whose bits correspond to the file descriptors
of the sockets that interest you. Respectively, these arguments identify the sockets that may have data to be read,
those that to which you wish to write data, and those that may have an exception condition pending. (What an
‘‘error condition’’ may be, is described below.) select() examines descriptors zero through nfds in each set and
checks whether the corresponding socket is ready for the activity in question. If the socket is not ready, select()
flips off the bits that correspond to that socket.

Please note that although readfds, writefds, and exceptfds each is pointer to int, the bit-map it points to can be
longer than 32 bits. You can, for example, declare that these pointers points to an array of ints. The number of file
descriptors you can ask select() to examine limited by the manifest constant FD_SETSIZE, which is defined in
header file <sys/select.h>. COHERENT sets this constant to 256; thus, if you set nfds to a value greater than 256,
only the first 256 file descriptors will be examined.

If you are not interested in a given activity, set the corresponding pointer to NULL. For example, if you are
interested only in reading and writing, but not in exception handling, set exceptfds to NULL.

timeout gives the address a timeval structure that holds the maximum time you are willing to wait for the selection
to complete. If it is NULL, select() waits indefinitely.

By manipulating the value of timeout, you can perform some useful tricks. For example, if you set to zero the fields
tv_sec and tv_usec within the timeval structure to which timeout points, select() performs a nonblocking poll of
the indicated devices; this is demonstrated below. Another trick is to set field tv_usec within timeout to a nonzero
value, but set nfds to zero. This tells select() to examine no sockets, but to wait the specified number of
microseconds while not doing it. This lets you ‘‘sleep’’ for an interval shorter than is possible through the system
call sleep(), whose minimum delay is one second.

If all goes well, select() returns the number of sockets that are ready. If the time limit expires, it returns zero. If
an error occurs, it leaves all three bit maps unmodified, returns -1, and sets errno to one of the following values:

EBADF A descriptor set specifies an invalid descriptor. For example, this error occurs if one of the file descriptors
does not describes an ordinary file instead of a socket.

EINTR select() received a signal before the time limit expired and before it could finish examining the sockets.

EINVAL
The time structure to which timeout points contains invalid data: one of its components is negative or too
large.

The following example code demonstrates how to set up a socket and examine it with select(). is taken from a
program written by Jon Dhuse (jdhuse@sedona.intel.com), and was slightly modified for clarity. The entire
program appears in the Lexicon entry libsocket:

int sd[2], rdfds[2], wrtfds[2], i;
struct timeval timeout;

...

/* create socket */
sd = socket(AF_UNIX, SOCK_STREAM, 0);

...

/* initialize the arrays of ints */
for (i = 1; i < 2; i++)

rdfs[i] = 0;
wrtfds[i] = 0;

}
...
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/* Check whether socket is ready */
rdfds[0] = 1 << sd; /* initialize bit map to check for reading */
wrtfds[0] = 1 << sd; /* initialize bit map to check for writing */
timeout.tv_sec = 0;
timeout.tv_usec = 0;
i = select(sd+1, rdfds, wrtfds, (int *)NULL, &timeout);
if (i < 0)

printf("select() returned error %d\n", errno);
else {

if (rdfds & (1 << sd)) /* check if socket has data */
printf("socket has data to be read\n");

if (wrtfds & (1 << sd)) /* check if socket can be written to */
printf("data can be written to socket\n");

}

Associated Macros
The header file <sys/select.h> defines the following macros, which are meant to help you manipulate sets of file
descriptors:

FD_ZERO (&fdset)
Initialize the bit map fdset to zero.

FD_SET (fd, &fdset)
Turn on bit fd within the bit map fdset.

FD_CLR (fd, &fdset)
Turn off bit fd within the bit map fdset.

FD_ISSET (fd, fdset)
This macro evaluates to a non-zero value if bit fd is turned on within fdset; otherwise, it evaluates to zero.

The behavior of these macros is undefined if a descriptor’s value is less than zero or greater than or equal to
FD_SETSIZE.

Exception Conditions
As noted above, the bit map exceptfds identifies sockets that may have an exception condition pending. As of this
writing, COHERENT defines an ‘‘exception condition’’ to be one of the following:

POLLHUP
A hangup has occurred, i.e., loss of carrier on a modem line or closure of the associated master device
when select() queries a slave pseudo-tty.

POLLNVAL
The file descriptor does not correspond to an open device.

See Also
accept(), connect(), libsocket, poll(), read(), write()

Notes
The system call poll() uses a different calling sequence to do much the same work as socket().

sem — Kernel Module
Kernel module for semaphores

The kernel module sem enables System V-style semaphores. It is called a kernel module because you can link it
into your kernel or exclude it, as you wish, just like a device driver; yet it is not a true device devicer because it
does not perform I/O with a peripheral device.

See Also
device drivers, kernel, semctl()
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sem.h — Header File
Definitions used by semaphore facility
#include <sys/sem.h>

sem.h defines constants and structures used by the COHERENT semaphore facility.

See Also
header files, semget()

semctl() — General Function (libc)
Control semaphore operations
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int semctl(id, number, command, arg)
int id, command, number;
union semun {

int value;
struct semid_ds *buffer;
unsigned short array[];

} arg;

The function semctl() controls the COHERENT system’s semaphore facility.

A set of semaphores consists of a copy of structure semid_ds, which is defined in header file <sys/sem.h>. This
structure points to the set of semaphores, notes how many semaphores are in the set, and gives information on
who can manipulate it, and how. The semaphores themselves consist of an array of structures of type sem, which
is also defined in sem.h. When the function semget() creates a set of semaphores, it assigns to that set an
identification number and returns that number to the calling process. For details on this process, see the Lexicon
entry for semget()

id identifies the set of semaphores to be manipulated. This value must have been returned by a call to semget().
number gives the offset within the set identified by id of the semaphore that interests you. arg gives information to
be passed to, or received from, the semaphore in question. command names the operation that you want semctl()
to perform.

The following commands manipulate semaphore number within the set identified by id:

GETVAL Return the value of semval, which is the field in structure sem that gives the address of the
semaphore’s text map.

SETVAL Set semval to arg.value. If an ‘‘adjust value’’ had been created for this semaphore (by changing or
setting a semaphore through semop() with the flag SEM_UNDO set), it is erased.

GETPID Return the value of sempid, which is the field in sem that identifies the last process to have
manipulated this semaphore.

GETNCNT Return the value of semncnt, which gives the number of processes that await an increase in field
sem.semval.

GETZCNT Return the value of semzcnt, which gives the number of processes that are waiting for the value of
sem.semval to become zero.

The following commands return or set field semval within every semaphore in the set identified by id:

GETALL Write every semval into arg.array.

SETALL Initialize every semval to the corresponding value within arg.array. All ‘‘adjust values’’ for this
semaphores are erased.

semctl() also recognizes the following commands:

IPC_STAT Copy the value of each semaphore in the set identified by id into the structure pointed to by
arg.buffer.
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IPC_SET Copy fields sem_perm.uid, sem_perm.gid, and sem_perm.mode (low nine bits only) from the
ipc_perm associated with id into that pointed to arg.buffer. Only the superuser root or the user
whose effective user ID matches the value of field uid in the data structure identified by id can
invoke this command.

IPC_RMID Destroy the semid_ds structure identified by id, plus its array of semaphores. Only the superuser
root or the user whose effective user ID matches the value of field uid can invoke this command.

semctl() fails if one or more of the following is true:

• id is not a valid semaphore identifier. semctl() sets the global variable errno to EINVAL.

• number is less than zero or greater than field sem_nsems in structure semid_ds, which gives the number of
semaphores in the set identified by id (EINVAL).

• command is not a valid command (EINVAL).

• The calling process is denied operation permission (EACCES).

• command is SETVAL or SETALL, but the value of semval exceeds the system-imposed maximum (ERANGE).

• command is IPC_RMID or IPC_SET, but the calling process is owned neither by root nor by the user who
created the set of semaphores being manipulated (EPERM).

• arg.buffer points to an illegal address (EFAULT).

semctl() returns the following values upon successful completion of their following commands:

Command Return Value
GETVAL Value of semval
GETPID Value of sempid
GETNCNT Value of semncnt
GETZCNT Value of semzcnt

For all other commands, semctl() returns zero to indicate successful completion.

If it could not execute a command successfully, semctl() returns -1 and sets errno to an appropriate value.

Files
/usr/include/sys/ipc.h
/usr/include/sys/sem.h

See Also
libc, semget(), semop()

Notes
For information on other methods of interprocess communication, see the Lexicon entries for msgctl() and
shmctl().

semget() — General Function (libc)
Create or get a set of semaphores
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
semget(semkey, number, flag)
key_t semkey; int number, flag;

semget() creates a set of semaphores plus its associated data structure and identifier, links them to the identifier
semkey, and returns the identifier that it has associated with semkey.

semkey is an identifier that your application generates to identify its semaphores.

number gives the of semaphores you want shmget() to create.

flag can be bitwise OR’d to include the following constants:

IPC_ALLOC This process already has a set of semaphores; please fetch it.
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IPC_CREAT If this process does not have a set of semaphores, please create one.

IPC_EXCL Fail if this process already has a set of semaphores.

IPC_NOWAIT Fail if the process must wait to obtain a set of semaphores.

When it creates a set of semaphores, semget() also creates a copy of structure semid_ds, which the header file
<sys/sem.h> defines as follows:

struct semid_ds {
struct ipc_perm sem_perm; /* operation permission struct */
struct sem *sem_base; /* pointer to first semaphore in set */
unsigned short sem_nsems; /* # of semaphores in set */
time_t sem_otime; /* last semop time */
time_t sem_ctime; /* last change time */

};

Field sem_base points the semaphores themselves. Each semaphore is a structure of type sem, which header file
<sys/sem.h> defines as follows:

struct sem {
unsigned short semval; /* semaphore text map address */
short sempid; /* pid of last operation */
unsigned short semncnt; /* # awaiting semval > cval */
unsigned short semzcnt; /* # awaiting semval = 0 */

};

Field sem_perm is a structure of type ipc_perm, which header file <sys/ipc.h> defines as follows:

struct ipc_perm {
unsigned short uid; /* owner’s user id */
unsigned short gid; /* owner’s group id */
unsigned short cuid; /* creator’s user id */
unsigned short cgid; /* creator’s group id */
unsigned short mode; /* access modes */
unsigned short seq; /* slot usage sequence number */
key_t key; /* key */

};

semget() initializes semid_ds as follows:

• It sets the fields sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and sem_perm.gid to, respectively, the
effective user and group identifiers of the calling process.

• It sets the low-order nine bits of sem_perm.mode to the low-order nine bits of flag. These nine bits define
access permissions: the top three bits give the owner’s access permissions (read, write, execute), the middle
three bits the owning group’s access permissions, and the low three bits access permissions for others.

• It sets sem_nsems to number. This gives the number of semaphores to which sem_base points.

• It sets field sem_otime to zero, and field sem_ctime to the current time.

semget() fails if any of the following are true:

• number is less than one and the set of semaphores identified by semkey does not exist. semget() sets errno
to EINVAL.

• number exceeds the system-imposed limit (EINVAL).

• A semaphore identifier exists for semkey, but permission, as specified flag’s low-order nine bits, is not granted
(EACCES).

• A semaphore identifier exists for semkey, but the number of semaphores in its set is less than number, and
number does not equal zero (EINVAL).

• A semaphore identifier does not exist for semkey and (flag & IPC_CREAT) is false (ENOENT).

• semget() tried to create a set of semaphores, but could not because the maximum number of sets allowable by
the system always exists (ENOSPC).
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• A semaphore identifier already exists for semkey but flag requests that semget() create an exclusive set for it
— i.e.

( (flag & IPC_CREAT) && (flag & IPC_EXCL) )

is true (EEXIST).

If all goes well, semget() returns a semaphore identifier, which is always a non-negative integer. Otherwise, it
returns -1 and sets errno to an appropriate value.

Files
/usr/include/sys/ipc.h
/usr/include/sys/sem.h

See Also
ftok(), ipcrm, ipcs, libc, libsocket, semctl(), semop()

Notes
Prior to release 4.2, COHERENT implemented semaphores through the driver sem. In release 4.2, and subsequent
releases, COHERENT has implemented semaphores as a set of functions that conform in large part to the UNIX
System-V standard.

The kernel variables SEMMNI and SHMMNS set, respectively, the maximum number of identifiers that can exist at
any given time and the maximum number of semaphores that a set can hold. Daredevil system operators who
have large amounts of memory at their disposal may wish to change these variables to increase the system-defined
limits. For details on how to do so, see the Lexicon entry mtune.

semop() — General Function (libc)
Perform semaphore operations
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int semop(id, operation, nops)
int id, nops; struct sembuf operation[];

semop() performs semaphore operations.

id identifies the set of semaphores to be manipulated. It must have been returned by a call to semget().

nops gives the number of structures in the array pointed to by operation.

operation points to an array of structures of type sembuf, which the header file sem.h defines as follows:

struct sembuf {
unsigned short sem_num; /* semaphore # */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

};

Each sembuf describes a semaphore operation. Field sem_op identifies the operation to perform on the semaphore
in the set identified by id and with offset sem_num. sem_op specifies one of three semaphore operations, as follows:

1. If sem_op is negative, one of the following occurs:

A. If semval in the semaphore structure identified by id is greater than or equal to the absolute value of
sem_op, semop() subtracts the absolute value of sem_op from semval.

B. If semval is less than the absolute value of sem_op and (sem_flg & IPC_NOWAIT) is true, semop() sets
errno to EGAIN and immediately returns -1.

C. If semval is less than the absolute value of sem_op and (sem_flg & IPC_NOWAIT) is false, then semop()
increments the semncnt associated with the specified semaphore and suspends execution of the calling
process until one of the following occurs:

a. semval equals or exceeds the absolute value of sem_op. When this occurs, semop() decrements the
value of semncnt associated with the specified semaphore, and subtracts the absolute value of
sem_op from semval.
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b. The id for which the calling process is awaiting action is removed from the system.

c. The calling process receives a signal. When this occurs, semop() decrements the field semncnt in
the sem structure that id identifies, and the calling process resumes execution in the manner
defined by the signal. (See the Lexicon entry for signal() for details of what behavior each signal
initiates.)

2. If sem_op is positive, semop() adds sem_op to semval.

3. If sem_op is zero, one of the following occurs:

A. If semval is zero, semop() returns immediately.

B. If semval does not equal zero and (sem_flg & IPC_NOWAIT) is true, semop() sets errno to EGAIN, and
immediately returns -1.

C. If semval does not equal zero and (sem_flg & IPC_NOWAIT) is false, semop() increments the semzcnt
associated with the specified semaphore and suspends execution of the calling process until one of the
following occurs:

a. semval becomes zero. semop() decrements the value of the field semzcnt associated with the
specified semaphore.

b. The set of semaphores identified by id is removed from the system.

c. The calling process receives a signal. semop() then decrements the value of the semzcnt associated
with the specified semaphore, and the calling process resumes execution in the manner prescribed
by the signal.

If field sem_flg in a sembuf structure contains value SEM_UNDO (i.e., expression (sem_flg & SEM_UNDO) is true)
then the system stores an adjust value for this semaphore operation for this semaphore and links it to the process
that has invoked semop(). The adjust value is the inversion of this semaphore operation; when the process dies,
the system executes these adjust values, to undo each of these semaphore operations. If you use the function
semctl() to change the value of a semaphore or a set of semaphores, then the system erases all adjust values for
those semaphores.

semop() returns -1 and sets errno to the value in parentheses if any of the following error conditions occurs:

• id is not a valid semaphore identifier (EINVAL).

• sem_num is less than zero or greater than or equal to the number of semaphores in the set associated with id
(EFBIG).

• nops exceeds the system-imposed maximum (E2BIG).

• Permission is denied to the calling process (EACCES).

• operation would suspend the calling process but (sem_flg & IPC_NOWAIT) is true (EAGAIN).

• operation would cause semval to overflow the system-imposed limit (ERANGE).

• operation points to an illegal address (EFAULT).

• The calling processing receives a signal (EINTR).

• The set of semaphores identified by id has been removed from the system (EDOM).

If all goes well, semop() sets the sempid of each semaphore specified in the array pointed to by operation to the
process identifier of the calling process. It then returns the value that semval had had at the time that the last
operation in the array pointed to by operation was executed.

Files
/usr/include/sys/ipc.h
/usr/include/sys/sem.h

See Also
libc, semctl(), semget()
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Notes
The COHERENT implementation of semaphores does not permit a process to lock or unlock a semaphore unless it
can gain access to all of the semaphores that it requests. This is to prevent the situation in which two processes
have each locked semaphores that the other wants, and each has IPC_NOWAIT set to false — thus suspending
each other forever.

send() — Sockets Function (libsocket)
Send a message to a socket
#include <sys/socket.h>
#include <sys/types.h>
int send(socket, message, length, flags)
int socket;
char *message;
int length, flags;

The function send() sends a message to a socket.

socket is the socket to which the messages are sent. It must have been created by the function socket(), and
connected by the function connect(). buffer points to the chunk of memory that holds the message to be sent;
length gives the amount of allocated memory to which buffer points.

flags ORs together either or both of the following flags:

MSG_OOB
Send ‘‘out-of-band’’ data on sockets that support this notion. The underlying protocol must also support
out-of-band data.

MSG_DONTROUTE
The socket turned on for the duration of the operation. It is used only by diagnostic or routing programs.

If all goes well, send() returns the number of bytes it sent. If something goes wrong, it returns -1 and sets errno to
one of the following values:

EAGAIN
If socket has no buffer space available, send() normally waits until space becomes available (which is a
blocking operation). socket, however, is marked as non-blocking.

EBADF socket does not identify a valid socket.

EINTR A signal interrupted send() before it could send any data.

EMSGSIZE
socket requires that message be sent atomically, and the message was too long.

ENOMEM
Insufficient user memory was available to complete the operation.

ENOTSOCK
socket describes a file, not a socket.

EPROTO
A protocol error has occurred.

See Also
connect(), libsocket, recv(), sendto(), socket()

sendto() — Sockets Function (libsocket)
Send a message to a socket
#include <sys/socket.h>
#include <sys/types.h>
int send(socket, message, length, flags, addr, alen)
int socket; char *message; int length, flags;
sockaddr_t *addr; int alen;

The function sendto() sends a message to a socket. Unlike the related function sendto(), it works regardless of
whether the socket is connected.
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socket is the socket to which the messages are sent. It must have been created by the function socket(). buffer
points to the chunk of memory into which the message is to be written; length gives the amount of allocated
memory to which buffer points. If from is not NULL, sendto() initializes it to the the source address of the message.
It initializes alen to the size of the buffer associated with address, and modifies it upon return to the size of the
address stored there.

flags ORs together either or both of the following flags:

MSG_OOB
Send ‘‘out-of-band’’ data on sockets that support this notion. The underlying protocol must also support
out-of-band data.

MSG_DONTROUTE
The socket turned on for the duration of the operation. It is used only by diagnostic or routing programs.

If all goes well, sendto() returns the number of bytes it sent. If something goes wrong, it returns -1 and sets errno
to one of the following values:

EAGAIN
If socket has no buffer space available, sendto() normally waits until space becomes available (which is a
blocking operation). socket, however, is marked as non-blocking.

EBADF socket does not identify a valid socket.

EINTR A signal interrupted sendto() before it could send any data.

EMSGSIZE
socket requires that message be sent atomically, and the message was too long.

ENOMEM
Insufficient user memory was available to complete the operation.

ENOTSOCK
socket describes a file, not a socket.

EPROTO
A protocol error has occurred.

See Also
connect(), libsocket, recv(), send(), socket()

Notes
At present, the COHERENT implementation of sendto() always behaves as if address were initialized to NULL.

serialno — System Administration
Hold the serial number of your system
/etc/serialno

The file /etc/serialno holds your system’s serial number. This is the number assigned to your system when you
installed COHERENT onto your computer. You need this number when you update your COHERENT system, or
when you contact Mark Williams Company.

See Also
Administering COHERENT

services — System Administration
List supported TCP/IP services
/etc/services

The file /etc/services names the services provided by TCP/IP and related protocols.

Each line within this file describes one services. A line consists of four fields, which respectively give the official
service name, well-known port number by which it is accessed, the name of its protocol, and any aliases by which
it is known. For example:
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smtp 25/tcp mail
time 37/tcp timserver
time 37/udp timserver

Fields are separated by white space, with the exception of fields that give the port and the protocol name; these are
separated by virgule ‘/’. The fourth, aliases field is optional. A pound-sign character ‘#’ introduces a comment; all
text from that character to the end of the line is ignored.

See Also
Administering COHERENT, hosts, hosts.equiv, inetd.conf, networks, protocols

set — Command
Set shell option flags and positional parameters
set [-ceiknstuvx [name ...] ] (Bourne shell)
set [[+-]aefhkmnuvx] [[+-]o name] (Korn shell)

set changes the options of the current shell and optionally sets the values of positional parameters. This
command is used implemented by both the Bourne and Korn shells; however, its syntax and options vary from one
shell to the other.

Bourne Shell
The shell variable ‘$-’ contains the currently set shell flags. If the optional name list is given, set assigns the
positional parameters $1, $2 ... to the given shell variables.

set recognizes the following options:

-c string
Read shell commands from string.

-e Exit on any error (command not found or command returning nonzero status) if the shell is not interactive.

-i The shell is interactive, even if the terminal is not attached to it; print prompt strings. For a shell reading a
script, ignore signals SIGTERM and SIGINT.

-k Place all keyword arguments into the environment. Normally, the shell places only assignments to variables
preceding the command into the environment.

-n Read commands but do not execute them.

-s Read commands from the standard input and write shell output to the standard error.

-t Read and execute one command rather than the entire file.

-u If the actual value of a shell variable is blank, report an error rather than substituting the null string.

-v Print each line as it is read.

-x Print each command and its arguments as it is executed.

- Cancel the -x -v options.

The shell executes set directly.

Korn Shell
set recognizes the following options. Preceding an option with ‘-’ turns on the option; preceding it with ‘+’ turns it
off.

-a allexport: Automatically export all new variables.

-e errexit: Exit from the shell when non-zero status is received.

-f noglob: Do not expand file names. This globally turns off the special meaning of characters ‘*’ and ‘?’.

-h trackall: Automatically add all commands to the shell’s hash table.

-k keyword: Recognize variable assignments anywhere in a command.

-m monitor: Enable job control. See the Lexicon article on ksh for details on job control and how to use it.
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-n noexec: Compile an input command, but do not execute it.

-o option
Set option. set recognizes the following options:

allexport Same as -a option, above.
emacs Turn on MicroEMACS-style editing of command lines.
errexit Same as -e option, above.
ignoreeof Tell the shell not to exit when reading EOF: must use exit command to exit from the shell.
keyword Same as -k option, above.
monitor Same as -m option, above.
noexec Same as -n option, above.
noglob Same as -f option, above.
trackall Same as -h option, above.
nounset Same as -u option, below.
verbose Same as -v option, below.
xtrace Same as -x option, below.

-u nounset: Treat dollar-sign expansion of an unset variable as an error.

-v verbose: When compiling a command, echo its compiled (i.e., expanded) version on the standard output
before executing it.

-x xtrace: Echo simple commands while executing.

The shells execute set directly.

See Also
commands, ksh, sh, unset

setbuf() — STDIO Function (libc)
Set alternative stream buffer
#include <stdio.h>
void setbuf(fp, buffer)
FILE *fp; char *buffer;

The standard I/O library STDIO automatically buffers all data read and written in streams, with the exception of
streams to terminal devices. STDIO normally uses malloc() to allocate the buffer, which is a char array BUFSIZ
characters long; BUFSIZ is a manifest constant defined in the header file stdio.h.

setbuf()’s arguments are the file stream fp and the buffer to be associated with the stream. The call should be
issued after the stream has been opened, but before any input or output request has been issued. If buffer is
NULL, the stream will be unbuffered. If buffer is not NULL, the arena of memory it points to must contain at least
BUFSIZ bytes.

setbuf() returns nothing.

See Also
fopen(), libc, malloc(), setvbuf()
ANSI Standard, §7.9.5.5
POSIX Standard, §8.1

setgid() — System Call (libc)
Set group id and user id
#include <unistd.h>
int setgid(id) int id;

The group identifier is the number that identifies the user group that ‘‘owns’’ a given file. File /etc/group
establishes the set of groups that your COHERENT system recognizes. (For details on how this file is laid out, see
the Lexicon entry for group). When a file is executable, the executing process inherits its group identifier (and thus,
its group-level permissions) from the file in which it resides on disk. For example, the program troff resides in file
/bin/troff. This file is ‘‘owned’’ by group bin; thus, when you execute troff, its group-level permissions are those of
group bin.

The group identifier comes in three forms:
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real This is the group identifier of the user who is running the process.

effective
This is the group identifier that determines the access rights of the process. These rights are the same as
those of the real group identifier unless they have been altered by executing a file whose setgid bit is set.
For example, the program troff does not have the setgid bit set; thus, when you execute troff, the group
permissions of the troff process remain those of your group, not those of the group bin. On the other
hand, the program /usr/lib/uucp/uucico does have the setgid bit set; thus, when you invoke uucico, the
uucico process uses the permissions of uucico’s group (that is, of group uucp), instead of your group.

saved effective
This permits a process to step back and forth between its real and effective group identifiers. If you return
from an effective group identifier to your real one, the system saves the previously effective identifier so you
can revert to it if need be.

The system call setgid() lets you set the real and effective group identifiers of the calling process to the group
identifier gid. The behavior of setgid() varies depending upon the following:

1. If setgid() is invoked by a user whose effective user identifier is that of the superuser root, setgid() sets the
real, effective, and saved effective group identifiers to gid.

2. If setgid() is invoked by a user whose real group identifier is the same as gid, setgid() sets the effective group
identifier to gid.

3. If setgid() is invoked by a user whose saved effective group identifier is same as gid, setgid() sets the effective
group identifier to gid.

If all goes well, setgid() returns zero. If a problem arises, it returns -1.

See Also
execution, getuid(), libc, login, setuid(), unistd.h
POSIX Standard, §4.2.2

setgrent() — General Function (libc)
Rewind group file
#include <grp.h>
void setgrent();

setgrent() rewinds the file /etc/group. It returns nothing.

Files
/etc/group
<grp.h>

See Also
group, libc

setgroups() — System Call (libc)
Set the supplemental group-access list
#include <unistd.h>
int setgroups(ngroups, grouplist)
int ngroups; const gid_t *grouplist;

The ‘‘supplemental group-access list’’ is the list of group identifiers that are used in addition to the effective group
identifier when determining the level of access that a process has to a file. setgroups() fills the calling process’s
supplemental group-access list with the group identifiers in the array to which grouplist points. ngroups gives the
number of identifiers in the array, and cannot exceed NGROUPS_MAX.

If all goes well, setgroups() returns zero. It fails and returns -1 if any of the following occur:

• The value of ngroups exceeds NGROUPS_MAX. setgroups sets errno to EINVAL.

• The effective user identifier is not that of the super-user root. setgroups() sets errno to EPERM.
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• grouplist contains an illegal address. setgroups() sets errno to EFAULT.

See Also
getgroups(), initgroups(), libc, limits.h, unistd.h

Notes
This function may be invoked only by the superuser root.

sethostent() — Sockets Function (libsocket)
Open and rewind file /etc/hosts
#include <netdb.h>
void sethostent(stayopen)
int stayopen;

The function sethostent() is one of a set of functions that interrogate the file /etc/hosts to look up information
about a remote host on a network. It opens and rewinds /etc/hosts.

Flag stayopen indicates whether /etc/hosts is to stay open after it has been interrogated by gethostbyaddr() or
gethostbyname(): if it is zero, then /etc/hosts is closed after it is interrogated; if it is nonzero, then /etc/hosts
remains open.

See Also
endhostent(), gethostbyaddr(), gethostbyname(), libsocket

setjmp() — General Function (libc)
Save machine state for non-local goto
#include <setjmp.h>
int setjmp(env) jmp_buf env;

The function call is the only mechanism that C provides to transfer control between functions. This mechanism,
however, is inadequate for some purposes, such as handling unexpected errors or interrupts at lower levels of a
program. To answer this need, setjmp helps to provide a non-local goto facility. setjmp() saves a stack context in
env, and returns value zero. The stack context can be restored with the function longjmp(). The type declaration
for jmp_buf is in the header file setjmp.h. The context saved includes the program counter, stack pointer, and
stack frame.

Example
The following gives a simple example of setjmp() and longjmp().

#include <setjmp.h>
#include <stdio.h>

jmp_buf env; /* place for setjmp to store its environment */

main()
{

int rc;

if(rc = setjmp(env)) { /* we come here on return */
printf("First char was %c\n", rc);
exit(EXIT_SUCCESS);

}
subfun(); /* this never returns */

}

subfun()
{

char buf[80];

do {
printf("Enter some data\n");
gets(buf); /* get data */

} while(!buf[0]); /* retry on null line */

longjmp(env, buf[0]); /* buf[0] must be non zero */
}
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See Also
getenv(), libc, longjmp(), sigsetjmp()
ANSI Standard, §7.6.1.1
POSIX Standard, §8.1

Notes
Programmers should note that many user-level routines cannot be interrupted and reentered safely. For that
reason, improper use of setjmp() and longjmp() can create mysterious and irreproducible bugs. The use of
longjmp() to exit interrupt exception or signal handlers is particularly hazardous.

setjmp.h — Header File
Define setjmp() and longjmp()
#include <setjmp.h>

setjmp.h defines the structure jmp_buf for a setjmp() environment.

See Also
header file, longjmp(), setjmp()
ANSI Standard, §7.6

setnetent() — Sockets Function (libsocket)
Open and rewind file /etc/networks

#include <netdb.h> int setnetent(stayopen) int stayopen;

Function setnetent() opens or rewinds file /etc/networks, which describes all entities on your local network. If
flag stayopen is set to a non-zero value, /etc/networks is not closed after each call to getnetbyaddr() or
getnetbyname().

See Also
endnetent(), getnetbyaddr(), getnetbyname(), getnetent(), libsocket, netdb.h

setpgid() — System Call (libc)
Set the process-group identifier
#include <sys/types.h>
#include <unistd.h>
int setpgid(pid, pgid)
pid_t pid, pgid;

setpgid() sets to pgid the process-group identifier of the process with identifier pid. If pgid equals pid, the process
becomes a process-group leader. If pgid does not equal pid, the process becomes a member of an existing process
group.

If pid equals zero, setpgid() uses the process identifier of the calling process. If pgid equals zero, the process
specified by pid becomes a process-group leader.

If all goes well, setpgid() returns a value of zero. Otherwise, it returns -1 and sets errno to an appropriate value.
setpgid() if any of the following are true:

• pid matches the process identifier of a child process of the calling process, and that child process has
successfully executed an exec() function. setpgid() sets errno to EACCES.

• pgid is less than zero or greater than or equal to PID_MAX. setpgid() sets errno to EINVAL.

• The calling process has a controlling terminal that does not support job control. setpgid() sets errno to
EINVAL.

• The process identified by pid argument is a session leader. setpgid() sets errno to EPERM.

• pid equals the process identifier of a child process of the calling process, and the child process is not in the
same session as the calling process. setpgid() sets errno to EPERM.

• pgid does not match the process identifier of the process indicated by pid, and the call process’s session has
no process with a process-group identifier that equals pgid. setpgid() sets errno to EPERM.
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• pid does not match the process identifier of the calling process or of a child process of the calling process.
setpgid() sets errno to ESRCH.

See Also
libc, unistd.h
POSIX Standard, §4.3.3

setpgrp() — System Call (libc)
Make a process a process-group leader
int setpgrp()

setpgrp() sets the requesting process’s process-group identifier to its own process identifier. This detaches the
process from its parent group and makes it the leader of its own processing group. If the process is not already a
process-group leader, it is detached from its controlling terminal.

setpgrp() returns the new process-group identifier.

See Also
getpgrp(), libc

Notes
This function is obsolete, and is being phased out in favor of the function setsid().

setprotoent() — Sockets Function (libsocket)
Open the protocols file

#include <netdb.h> int setprotoent(stayopen) int stayopen;

Function setprotoent() opens or rewinds file /etc/protocols, which describes all protocols recognized on your
local network. If flag stayopen is set to a non-zero value, /etc/protocols is not closed after each call to
getprotobyaddr() or getprotobyname().

See Also
getprotobyaddr(), getprotobyname(), getprotoent(), endprotoent(), libsocket, netdb.h

setpwent() — General Function (libc)
Rewind password file
#include <pwd.h>
setpwent()

The COHERENT system has five routines that search the file /etc/passwd, which contains information about every
user of the system. setpwent() rewinds the password file, which allows searches to begin from the beginning of the
file. Please note that this function does not return a meaningful value.

Example
For an example of this function, see the entry for getpwent().

Files
/etc/passwd
pwd.h

See Also
libc

setservent() — Sockets Function (libsocket)
Open the services file

#include <netdb.h> int setservent(stayopen) int stayopen;

Function setservent() opens or rewinds file /etc/services, which describes the services offered by TCP/IP on your
local network. If flag stayopen is set to a non-zero value, /etc/services is not closed after each call to
getservbyport() or getservbyname().
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See Also
getservbyname(), getservbyport(), getservent(), endservent(), libsocket, netdb.h

setsid() — System Call (libc)
Set session identifier
#include <sys/types.h>
#include <unistd.h>
pid_t setsid ( );

If the calling process is not a process-group leader, setsid() sets its process-group and session identifiers to its
process identifier, and releases the its controlling terminal.

If all goes well, setsid() returns the calling process’s session identifier. If the calling process is already a process-
group leader, or if process-group identifier of another process equals that of the calling process, setsid() returns -1
and sets errno to EPERM.

See Also
libc, unistd.h
POSIX Standard, §4.3.2

Notes
If the calling process is the last member of a pipeline started by a job-control shell, the shell may make the calling
process a process-group leader. The other processes of the pipeline become members of that process group. If this
happens, the call to setsid() fails.

For this reason, a process that calls setsid() and expects to be part of a pipeline should first fork: the parent should
exit and the child should call setsid(). This will ensure that the process works reliably when started by both job-
control shells and non-job-control shells.

setsockopt() — Sockets Function (libsocket)
Set a socket option
#include <sys/types.h>
#include <sys/socket.h>
int setsockopt(socket, level, option, buffer, length)
int socket, level, option, length;
char *buffer;

Function setsockopt() sets options on a socket.

socket gives the identifier of the socket, as returned by the function socket().

level gives the level at which the options are set. To retrieve options set on the socket level, set level to
SOL_SOCKET whereas to retrieve options set the TCP level, set level to the number of the TCP protocol.

option gives the number of the option to set. A list of options that are recognized at the socket level appears below.
Options at other levels are set by their respective protocols.

buffer gives the address of the buffer that holds the option. length gives the length of buffer, in bytes.

The following options are recognized at the socket level. They are set in header file <sys/socket.h>:

SO_BROADCAST
Toggle permission to transmit broadcast messages.

SO_KEEPALIVE
Toggle whether to keep a connection alive by periodically transmitting messages. If the connected party
fails to respond to a message, the connection is considered broken and processes that use the socket are
notified via the signal SIGPIPE.

SO_LINGER
Control the action taken when a socket is closed but contains unsent messages. If SO_LINGER is set and
the socket promises reliable delivery of data, the system blocks the process that is attempting to close
socket until socket can transmit its data or its attempts to do so time out. If SO_LINGER is not enabled,
the socket is closed immediately and the unsent messages are thrown away.
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SO_OOBINLINE
Toggle whether a band can receive out-of-band data. Such data can then be read by the function recv() or
sent by the function send(), when invoked with the flag MSG_OOB.

SO_RCVBUF
SO_SNDBUF

Set the size of the receive or send buffer, respectively. You can increase the size of a buffer to speed high-
volume connections, or decrease it to limit the amount of data that are backlogged. The system places an
absolute limit on these values.

SO_REUSEADDR
Toggle whether local addresses can be reused.

If all goes well, setsockopt() returns zero. If something goes wrong, it returns -1 and set errno to one of the
following values:

EBADF socket does not identify a valid socket.

ENOMEM
The available user memory was insufficient to complete the operation.

ENOPROTOOPT
option gives an unknown option.

ENOTSOCK
socket identifies a file, not a socket.

See Also
getsockopt(), libsocket

setspent() — General Function (libc)
Rewind the shadow-password file
#include <shadow.h>
setspent()

The COHERENT system has four routines that search the file /etc/shadow, which contains the password of every
user of the system. setspent() rewinds the password file — that is, it resets the seek pointer so that subsequent
searches of the file start at the beginning of the file. This function does not return a meaningful value.

See Also
endspent(), getspent(), libc, shadow, shadow.h

setuid() — System Call (libc)
Set user identifier
#include <unistd.h>
int setuid(id)
int id;

The user identifier is the number that identifies the user who ‘‘owns’’ a given file. The suite of users is defined in
file /etc/passwd. When a file is executable, the executing process inherits its user identifier (and thus, its user-
level permissions) from the file where it lives on disk. The user identifier comes in three forms:

real This is the identifier of the user who is running the process.

effective
This is the user identifier that determines the access rights of the process. These rights are the same as
those of the real user identifier unless they have been altered by executing a file whose setuid bit is set.

saved effective
This permits a process to step back and forth between its real and effective user identifiers. If you return
from an effective user identifier to your real one, the previously effective id is saved so you can revert to it if
need be.

The system call setuid() lets you alter the real and effective user identifiers of the calling process to the user
identifier uid. The behavior of setuid() varies depending upon the following:
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1. If the effective user identifier is that of the superuser, setuid() sets the real, effective, and saved effective user
identifiers to uid.

2. If the real user identifier is the same as uid, setuid() sets the effective user identifier to uid.

3. If the saved effective user identifier is same as uid, setuid() sets the effective user identifier to uid.

To setuid an existing executable file, use the command chmod.

See Also
chmod, execution, getuid(), libc, login, setgid(), unistd.h
POSIX Standard, §4.2.2

Diagnostics
setuid() returns zero on success, or -1 on failure.

Notes
For more information on the user id, see the Lexicon entry for execution.

setupterm() — terminfo Function
Initialize a terminal
#include <curses.h>
setupterm(term,fd,errret)
char *term;
int fd, *errret;

COHERENT comes with a set of functions that let you use terminfo descriptions to manipulate a terminal.
setupterm() initializes terminal capabilities for terminal type term, which is accessed via file-descriptor fd. It
inhales all capabilities at once, and performs all other system-dependent initialization — which is one reason why
terminfo is much faster than termcap.

If term is initialized to NULL, setupterm() uses the contents of the environmental variable TERM as a default.

errret points to an integer into which setupterm() writes the terminal’s status: zero if there is no such terminal
type, one if all went well, or -1 if something has gone wrong. If erret is NULL, setupterm() prints an error message
and exits if the terminal cannot be found.

See Also
terminfo

setutent() — General Function (libc)
Rewind the input stream for a login logging file
#include <utmp.h>
void setutent()

Function setutent() rewinds the input stream that is reads the file that records login events. This lets you search
this file multiple times without having to close and reopen it.

By default, setutent() manipulates a stream that reads file /etc/utmp. If you wish to manipulate another logging
file, use the function utmpname().

See Also
libc, utmp.h

setvbuf() — STDIO Function (libc)
Set alternative file-stream buffer
#include <stdio.h>
int setvbuf(fp, buffer, mode, size)
FILE *fp; char *buffer; int mode; size_t size;

When the functions fopen() and freopen() open a stream, they automatically establish a buffer for it. The buffer is
BUFSIZ bytes long. BUFSIZ is a manifest constant that is defined in the header stdio.h.

The function setvbuf() alters the buffer used with the stream pointed to by fp from its default buffer to buffer.
Unlike the related function setbuf(), it also allows you set the size of the new buffer as well as the form of buffering.
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buffer is the address of the new buffer. size is its size, in bytes. mode is the manner in which you wish the stream
to be buffered, as follows:

_IOFBF Fully buffered
_IOLBF Line-buffered
_IONBF No buffering

These constants are defined in the header stdio.h.

You should call setvbuf() after a stream has been opened but before any data have been written to or read from the
stream. For example, the following give fp a 50-byte buffer that is line-buffered:

char buffer[50];
FILE *fp;

fopen(fp, "r");
setvbuf(fp, buffer, _IOLBF, sizeof(buffer));

On the other hand, the following turns off buffering for the standard output stream:

setvbuf(stdout, NULL, _IONBF, 0);

setvbuf() returns zero if the new buffer could be established correctly. It returns a value other than zero if
something went wrong or if an invalid parameter is given for mode or size.

Example
This example uses setvbuf() to turn off buffering and echo.

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>

main(void)
{

int c;

if(setvbuf(stdin, NULL, _IONBF, 0))
fprintf(stderr, "Couldn’t turn off stdin buffer\n");

if(setvbuf(stdout, NULL, _IONBF, 0))
fprintf(stderr, "Couldn’t turn off stdout buffer\n");

while((c = getchar()) != EOF)
putchar(c);

}

See Also
fclose(), fflush(), fopen(), freopen(), libc, setbuf()
ANSI Standard, §7.9.5.6

Notes
setvbuf() affects the buffering of an I/O stream but does not affect any buffering that performed by the device upon
which the text is typed. Some devices (e.g., /dev/tty) are buffered by default. To turn off the buffering of what a
user types, you must both turn off buffering on the input stream and turn off buffering on the device itself. For
example, to turn off buffering on a terminal device, you must both call setvbuf() to change the size of the input
buffering to zero, and call stty() to put the terminal device into raw mode.

sgtty — Device Driver
General terminal interface

COHERENT uses two method for controlling terminals: sgtty and termio. To use sgtty, simply include the
statement #include <sgtty.h> in your sources. To use termio, include the statement #include <termio.h>.

The rest of this article discusses the sgtty method of controlling terminals.

When a terminal file is opened, it normally causes the process to wait until a connection is established. In
practice, users’ programs seldom open these files; they are opened by the program getty and become a user’s
standard input, output, and error files. The very first terminal file opened by the process group leader of a terminal
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file not already associated with a process group becomes the controlling terminal for that process group. The
controlling terminal plays a special role in handling quit and interrupt signals, as discussed below. The
controlling terminal is inherited by a child process during a call to fork. A process can break this association by
changing its process group using setpgrp.

A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters can be typed at
any time, even while output is occurring, and are only lost when the system’s input buffers become completely full,
which is rare, or when the user has accumulated the maximum allowed number of input characters that have not
yet been read by some program. Currently, this limit is 256 characters. When the input limit is reached, the
sytems throws away all the saved characters without notice.

Normally, terminal input is processed in units of lines. A line is delimited by a newline character (ASCII LF) or an
end-of-file character (ASCII EOT). Unless otherwise directed, a program attempting to read will be suspended until
an entire line has been typed. Also, no matter how many characters are requested in the read call, at most one
line will be returned. It is not, however, necessary to read a whole line at once; any number of characters may be
requested in a read, even one, without losing information.

During input, the system normally processes erase and kill characters. By default, the backspace character
erases the last character typed, except that it will not erase beyond the beginning of the line. By default, the <ctrl-
U> kills (deletes) the entire input line, and optionally outputs a newline character. Both these characters operate
on a keystroke-by-keystroke basis, independently of any backspacing or tabbing which may have been done. Both
the erase and kill characters may be entered literally by preceding them with the escape character (\). In this case,
the escape character is not read. You may change the erase and kill characters via command stty.

Certain characters have special functions on input. These functions and their default character values are
summarized as follows:

INTR (<ctrl-C> or ASCII ETX) generates an interrupt signal that is sent to all processes associated with
the controlling terminal. Normally, each such process is forced to terminate, but arrangements
may be made either to ignore the signal or to receive a trap to an agreed-upon location; see the
Lexicon entry for signal.

QUIT (Control-\ or ASCII ES) generates a quit signal. Its treatment is identical to that of the interrupt
signal except that, unless a receiving process has made other arrangements, it will not only be
terminated but a core image file (called core) will be created in the current working directory.

ERASE (<backspace> or ASCII BS) erases the preceding character. It will not erase beyond the start of a
line, as delimited by a newline or EOF character.

KILL (<ctrl-U> or ASCII NAK) deletes the entire line, as delimited by a newline or EOF character.

EOF (<ctrl-D> or ASCII EOT) generates an end-of-file character from a terminal. When received, all the
characters waiting to be read are immediately passed to the program without waiting for a newline,
and the EOF is discarded. Thus, if no characters are waiting, which is to say the EOF occurred at
the beginning of a line. zero characters will be passed back, which is the standard end-of-file
indication.

NL (ASCII LF) is the normal line delimiter. It cannot be changed or escaped.

STOP (<ctrl-S> or ASCII DC3) can be used to suspend output. It is useful with CRT terminals to prevent
output from disappearing before it can be read. While output is suspended, STOP characters are
ignored and not read.

START (<ctrl-Q> or ASCII DC1) resumes output that has been suspended by a STOP character. While
output is not suspended, START characters are ignored and not read. The start/stop characters
can be changed via command stty, or via special ioctl() calls described below.

The character values for INTR, QUIT, ERASE, EOF, and KILL may be changed to suit individual tastes. The
ERASE, KILL, and EOF character may be escaped by a preceding \ character, in which case the system ignores its
special meaning. See the Lexicon article on stty for information on how to change these settings dynamically.

When using a ‘‘modem control’’ serial line, loss of carrier from the data-set (modem) causes a hangup signal to be
sent to all processes that have this terminal as the controlling terminal. Unless other arrangements have been
made, this signal causes the process to terminate. If the hangup signal is ignored, any subsequent read returns
with an end-of-file indication. Thus programs that read a terminal and test for end-of-file can terminate
appropriately when hung up on.
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When one or more characters are written, they are transmitted to the terminal as soon as previously written
characters have finished typing. Input characters are echoed by putting them into the output queue as they arrive.
If a process produces characters more rapidly than they can be printed, it will be suspended when its output queue
exceeds some limit, known as the ‘‘high water mark’’. When the queue has ‘‘drained’’ down to some threshold, the
program resumes.

The header file <sgtty.h> declares structures and manifest constants to control the sgtty interface. Of interest to
users are the constants that define baud rates for terminal ports; these are as follows.

B50 50 baud
B75 75 baud

B110 110 baud
B134 134 baud
B150 150 baud
B200 200 baud
B300 300 baud
B600 600 baud

B1200 1200 baud
B1800 1800 baud
B2400 2400 baud
B4800 4800 baud
B9600 9600 baud

B19200 19,200 baud
B38400 38,400 baud

Terminal ioctl() Functions
Header file <sgtty.h> defines the following data structures used by the various device drivers to convey terminal
specific information. These structures are used in conjunction with special terminal or device driver symbolic
constants as part of ioctl() requests.

The sgttyb structure contains information related to line discipline, such as serial line speed, if appropriate, the
‘‘erase’’ and ‘‘kill’’ characters, and a series of flags which set the mode of the line.

/*
* Structure for TIOCSETP/TIOCGETP
*/

struct sgttyb {
char sg_ispeed; /* Input speed */
char sg_ospeed; /* Output speed */
char sg_erase; /* Character erase */
char sg_kill; /* Line kill character */
int sg_flags; /* Flags */

};

The following symbolic constants are used to access bit positions of member sg_flags in data structure sgttyb:

CBREAK Each input character causes wakeup (i.e., forces a return from a read() system call).

CRMOD Map the carriage return characters ’\r’ to the newline character ’\n’.

CRT Use CRT-style character erase.

ECHO Echo input characters.

EVENP Select even parity. If used in conjunction with ODDP, allow either parity.

LCASE Lowercase mapping on input.

ODDP Select odd parity. If used in conjunction with EVENP, allow either parity.

RAW Raw mode. Same as RAWIN plus RAWOUT.

RAWIN Input is treated as 8-bit characters and not interpreted.

RAWOUT Output is treated as 8-bit characters and not interpreted.
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TANDEM Use X-ON/X-OFF flow control protocol to remote device.

XTABS Expand tabs to spaces.

Data structure tchars specifies additional special terminal characters such as the ‘‘interrupt’’ and ‘‘quit’’
characters, the ‘‘start’’ and ‘‘stop’’ characters used for flow control, and the ‘‘end-of-file’’ character.

/*
* Structure for TIOCSETC/TIOCGETC
*/

struct tchars {
char t_intrc; /* Interrupt */
char t_quitc; /* Quit */
char t_startc; /* Start output */
char t_stopc; /* Stop output */
char t_eofc; /* End of file */
char t_brkc; /* Input delimiter */

};

The following symbolic constants are used to access various device functions via ioctl() calls, as defined in header
file <sgtty.h>. Note that not all functions are appropriate for all classes of devices.

TIOCCBRK Clear a BREAK condition on a serial line (i.e., ‘‘mark’’ the line). This request cancels a
previously issued TIOCSBRK request.

TIOCCDTR Clear modem control signal Data Terminal Ready (DTR) on a serial line.

TIOCCHPCL Do not force a hangup on ‘‘last close’’ on a modem line. The normal mode of operation for
serial lines is to drop modem signal Data Terminal Ready (DTR) when the last close() operation
is performed, thus requesting the attached modem to drop the connection.

TIOCCRTS Clear the Request To Send (RTS) signal on a serial line. Modem control signal RTS is often
used for hardware flow control.

TIOCEXCL Set device access as exclusive use. This request requires the process to have root privileges.

TIOCFLUSH Flush the input queue, discarding any pending input characters, and wait for the output queue
to ‘‘drain’’.

TIOCGETC Get current values of the special terminal characters, as defined by data structure tchars.

TIOCGETF Get current console keyboard function key bindings. This request is specific to the nkb console
keyboard device driver. See Lexicon article nkb for further details.

TIOCGETKBT Get current console keyboard key mapping table. This request is specific to the nkb console
keyboard device driver. See Lexicon article nkb for further details.

TIOCGETP Get current terminal line settings, as defined by data structure sgttyb.

TIOCGETTF Get current value of the terminal flags, as defined by field t_flags in the TTY structure.

TIOCHPCL Set hangup on ‘‘last close’’. See TIOCCHPCL for further details.

TIOCRMSR Get the current value of the Modem Status Register (MSR) for the specified serial line. This
request is device driver specific and is currently supported only in the al device driver.
Symbolic constants MSRCTS, MSRDSR, MSRRI, and MSRRLSD correspond to the Clear To
Send, Data Set Ready, Ring Indicator and Receive Line Status Detect (i.e. Carrier Detect)
signals, respectively, in the MSR.

TIOCNXCL Set this device or port as non-exclusive use. See TIOCEXCL for further details.

TIOCQUERY Query the number of characters currently waiting in the input queue.

TIOCSBRK Assert BREAK (i.e., ‘‘space the line’’) on the given serial port. This is often used during login to
signal a remote system to ‘‘hunt’’ to the next baud rate in a sequence. See TIOCCBRK for
further details.

TIOCSDTR Assert modem control signal Data Terminal Ready (DTR) on a serial line.
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TIOCSETC Wait for output to ‘‘drain’’, then set the terminal control characters for this device, as specified
by data structure tchars.

TIOCSETF Set console keyboard function key mapping. This request is specific to the nkb console
keyboard device driver. See Lexicon article nkb for further details.

TIOCSETKBT Set console keyboard key mapping table. This request is specific to the nkb console keyboard
device driver. See Lexicon article nkb for further details.

TIOCSETN Set terminal line settings, as defined by data structure sgttyb. Do not flush the input queue
prior to using the new settings.

TIOCSETP Same as request TIOCSETN, but also flush the input queue.

TIOCSRTS Assert the Request To Send (RTS) signal on a serial line. Modem control signal RTS is often
used for hardware flow control.

Examples
The following code fragment gets the current terminal settings and turns off echo.

#include <sgtty.h>
static struct sgttyb new, orig;
. . .
/*
* Get the existing terminal parameters for the terminal
* device associated with file descriptor 0 (stdin),
* turn off echo, turn on CBREAK (break on every input character)
* and set the new parameters.
*/

ioctl(0, TIOCGETP, &orig);
new = orig;
new.sg_flags &= ~ECHO; /* Turn off echo */
new.sg_flags |= CBREAK; /* Turn on CBREAK mode */
ioctl(0, TIOCSETN, &new);

The following line uses the previously saved terminal mode to return the terminal mode to its prior state:

ioctl(0, TIOCSETN, &orig);

See Also
device drivers, gtty(), ioctl(), sgtty.h, stty, stty(), terminal, termio

sgtty.h — Header File
Definitions used to control terminal I/O
#include <sgtty.h>

sgtty.h defines structures, constants, and macros used by routines that use the sgtty method to control terminal
I/O.

See Also
header files, sgtty

sh — Command
The Bourne shell
sh [-ceiknstuvx] token ...

The COHERENT system offers two command interpreters: ksh, the Korn shell; and sh, the Bourne shell. sh is the
default COHERENT command interpreter. The tutorial included in this manual describes the Bourne shell in detail.

As you will see from the following description, a shell is both a command interpreter and a programming language
in its own right. It would be worth your while to spend some time in learning the rudiment’s of the shell’s
programming language; doing so will help you to use your COHERENT system to best advantage.

Commands
A command consists of one or more tokens. A token is a string of text characters (i.e., one or more alphabetic
characters, punctuation marks, and numerals) delineated by spaces, tabs, or newlines.
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A simple command consists of the command’s name, followed by zero or more tokens that represent arguments to
the command, names of files, or shell operators. A complex command uses shell constructs to execute one or more
commands conditionally. In effect, a complex command is a mini-program that you write in the shell’s
programming language and that sh interprets.

Shell Operators
sh recognizes a number of operators that form pipes, that redirect input and output to commands, and that let you
define the conditions under which a given command are executed.

command | command
The pipe operator: let the output of one command serve as the input to a second. You can combine
commands with ‘|’ to form pipelines. A pipeline passes the standard output of the first (leftmost) command
to the standard input of the second command. For example, in the pipeline

sort customers | uniq | more

sh invokes sort to sort the contents of file customers. It then pipes the output of sort into the command
uniq, which outputs one unique copy of the text that is input into it. sh then pipes the output of uniq to
the command more, which displays it on your terminal one screenful at a time. Note that under
COHERENT, unlike MS-DOS, pipes are executed concurrently: that is, sort does not have to finish its work
before uniq and more can begin to receive input and go to work.

command ; command
Execute commands on a command line sequentially. The command to the left of the ‘;’ executes to
completion; then the command to the right of it executes. For example, in the command line

a | b ; c | d

first executes the pipeline a | b then, when a and b are finished, executes the pipeline c | d.

command &
Execute a command in the background. This operator must follow the command, not precede it. It prints
the process identifier of the command on the standard output, so you can use the kill command to kill
that process should something go wrong. This operator lets you execute more than one command
simultaneously. For example, the command

fdformat -v /dev/fha0 &

formats a high-density, 5.25-inch floppy disk in drive 0 (that is, drive A); but while the disk is being
formatted, sh returns the command line prompt so you can immediately enter another command and
begin to work. If you did not use the ‘&’ in this command, you would have to wait until formatting was
finished before you could enter another command.

command && command
Execute a command upon success. sh executes the command that follows the token ‘&&’ only if the
command that precedes it returns a zero exit status, which signifies success. For example, the command

cd /etc
fdformat -v /dev/fha0 && badscan -o proto /dev/fha0 2400

formats a floppy disk, as described above. If the format was successful, it then invokes the command
badscan to scan the disk for bad blocks; if it was not successful, however, it does nothing.

command || command
Execute a command upon failure. This is identical to operator ‘&&’, except that the second command is
executed if the first returns a non-zero status, which signifies failure. For example, the command

/etc/fdformat -v /dev/fha0 || echo "Format failed!"

formats a floppy disk. If formatting failed, it echoes the message Format failed! on your terminal;
however, if formatting succeeds, it does nothing.

Note that the tokens newline, ‘;’ and ‘&’ bind less tightly than ‘&&’ and ‘||’. sh parses command lines from
left to right if separators bind equally.

>file Redirect into file all text written to the standard output, which normally is written onto your screen. For
example, the command
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sort customers >customers.sort

sorts file customers and writes the sorted output into file customers.sort. sh creates customers.sort if it
does not exist, and destroys its previous contents if it does exist.

>>file Append onto file all text written to the standard output, which normally is written onto your screen. If file
does not exist, sh creates it; however, if the file already exists, sh appends the output onto its contents
rather than destroying them. For example, the command

sort customers.now | uniq >>customers.all

sorts file customers.now, pipes its output to command uniq, which throws away duplicate lines of input,
and appends the results onto file customers.all.

<file Redirect input. Here, sh reads the contents of a file and processes them as if you had typed them from
your keyboard. For example, the command

ed textfile <edit.script

invokes the line editor ed to edit textfile; however, instead of reading editing commands from your
keyboard, sh passes to ed the contents of file edit.script. This command would let you prepare an editing
script that you could execute repeatedly upon files rather than having to type the same commands over
and over.

<< token
Prepare a ‘‘here document’’. This operator tells sh to accept standard input from the shell input until it
reads the next line that contains only token. For example, the command

cat >FOO <<\!
Here is some text.

!

redirects all text between ‘<<\!’ and ‘!’ to the cat command. The operator ‘>’ in turn redirects the output of
cat into file FOO. sh performs parameter substitution on the here document unless the leading token is
quoted; parameter substitution and quoting are described below.

command 2> file
Redirect into file all text written to the standard error, which normally is written onto your screen. For
example, the command

nroff -ms textfile >textfile.p 2>textfile.err

invokes the command nroff to format the contents of textfile. It redirects the output of nroff (i.e., the
standard output) into textfile.p; it also redirects any error messages that nroff may generate into file
textfile.err.

Please note that a command may use up to 20 streams. By default, stream 0 is the standard input;
stream 1 is the standard output; and stream 2 is the standard error. sh lets you redirect any of these
streams individually into a file, or combine streams into each other.

<&n sh can redirect the standard input and output to duplicate other file descriptors. (See the Lexicon article
file descriptor for details on what these are.) This operator duplicates the standard input from file
descriptor n.

>&n Merge one output stream with another. For example,

2>&1

merges the output of file descriptor 2 (the standard error) with that file descriptor 1 (the standard output).

<&- Close the standard input.

>&- Close the standard output.

When you execute a command in the foreground, that command inherits the file descriptors and signal traps
(described below) of the invoking shell, modified by any specified redirection. When you execute a command in the
background, it receives its input from the null device /dev/null (unless you redirect its input and output), and
ignores all interrupt and quit signals.
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File-Name Patterns
If a token contains any of the characters ‘?’, ‘*’, or ‘[’, sh interprets it as being a file-name pattern. sh ‘‘expands’’ a
pattern into the names of zero or more files in the current directory. These characters are sometimes called
‘‘wildcards,’’ because each can represent any of several values, depending upon how you use them:

? Match any single character except newline. For example, the command

ls name?

prints the name of any file that consists of the string name plus any one character. If B name is followed by
no characters, or is followed by two or more characters, it will not be printed.

* Match a string of zero or more characters, other than newline. For example, the command

ls name*

prints the name of any file that begins with the string name, followed by zero or more other characters.
Likewise, the command

ls name?*

prints the name of any file that consists of the string name followed by at least one character. Unlike name*,
the token name?* insists that be followed by at least one character before it will be printed.

[!xyz]
Exclude characters xyz from the string search. For example, the command

ls [!abc]*

prints all files in the current directory except those that begin with a, b, or c.

[C-c]
Enclose alternatives to match a single character. A hyphen ‘-’ indicates a range of characters. For example,
the command

ls name[ABC]

prints the names of files nameA, nameB, and nameC (assuming, of course, that those files exist in the
current directory). The command

ls name[A-K]

prints the names of files nameA through nameK (again, assuming that they exist in the current directory).

When sh reads a token that contains one of the above characters, it replaces the token in the command line with
an alphabetized list of file names that match the pattern. If it finds no matches, it passes the token unchanged to
the command. For example, when you enter the command

ls name[ABC]

sh replaces the token name[ABC] with nameA, nameB, and nameC (again, if they exist in the current directory),
so the command now reads:

ls nameA nameB nameC

It then passes this second, transformed version of the command line to the command ls.

Note that the slash ‘/’ and leading period ‘.’ must be matched explicitly in a pattern. The slash, of course,
separates the elements of a path name; whereas a period at the begin of a file name usually (but not always)
indicates that that file has special significance.

Pattern Matching in Prefixes and Suffices
sh recognizes special constructs that let you match patterns in the prefices and suffices of a string:

{#parameter}
This operator gives the number of characters in parameter. For example, the command

foo=BAZZ ; echo ${#foo}

prints ‘4’ on your screen, which is the number of characters that comprise variable foo.
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{string1%string2}
This returns the longest string for which the beginning of string1 matches string2. For example, if variable
xyzzy is initialized to string usr/bin/cpio, then the command

echo ${xyzzy%/*}

echoes the string usr/bin.

{string1%%string2}
This returns the shortest string for which the beginning of string1 matches string2. For example, if variable
xyzzy is initialized to usr/bin/cpio, then the command

echo ${xyzzy%/*}

echoes the string usr.

{string1#string2}
This returns the longest string for which the end of string1 matches string2. For example, if variable plugh
is initialized to the string usr/bin/cpio , the command

echo ${plugh#*/}

echoes bin/cpio.

{string1##string2}
This returns the shortest string for which the end of string1 matches string2. For example, given that
plugh=usr/bin/cpio, the command

echo ${plugh##*/}

echoes cpio.

The following shows how to use these expressions to implement the command basename:

basename () {
set $(echo ${1##*/}) $2
echo ${1%$2}

}

Quoting Text
From time to time, you will want to ‘‘turn off’’ the special meaning of characters. For example, you may wish to
pass a token that contains a literal asterisk to a command; to do so, you need a way to tell sh not to expand the
token into a list of file names. Therefore, sh recognizes the quotation operators ‘\’, ‘"’, and ‘’’. These ‘‘turn off’’ (or
quote) the special meaning of operators.

The backslash ‘\’ quotes the following character. For example, the command

ls name\*

lists a file named name*, and no other.

The shell ignores a backslash immediately followed by a newline, called a concealed newline. This lets you give
more arguments to a command than will fit on one line. For example, the command

cc -o output file1.c file2.c file3.c \
file4.c file5.c file19.c

invokes the C compiler cc to compile a set of C source files, the names of which extend over more than one line of
input. You will find this to be extremely helpful, especially when you write scripts and makefiles, to help you write
neat, easily read commands.

A pair of apostrophes ’ ’ prevents interpretation of any enclosed special characters. For example, the command

find . -name ’*.c’ -print

finds and prints the name of any C-source file in the current directory and any subdirectory. The command find
interprets the ‘*’ internally; therefore, you want to suppress the shell’s expansion of that operator, which is
accomplished by enclosing that token between apostrophes.

A pair of quotation marks " " has the same effect. Unlike apostrophes, however, sh performs parameter
substitution and command-output substitution (described below) between quotation marks.
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Environmental Variables
Environmental variables are names that can be assigned string values on a command line, in the form

name=value

name must begin with a letter, and can contain letters, digits, and the underscore character ‘_’. In shell input,
‘$name’ or ‘${name}’ represents the value of the variable. Consider, for example, the commands:

TEXT=mytext
nroff -ms $TEXT >$TEXT.out

Here, sh expands $TEXT before it executes the command fBnroff. This technique is very useful in large, complex
scripts: by using variables, you can change the behavior of the script by editing one line, rather than having to edit
numerous variables throughout the script.

Note that if an assignment precedes a command on the same command line, the effect of the assignment is local to
that command; otherwise, the effect is permanent. For example,

kp=one testproc

assigns variable kp the value one only for the execution of the script testproc.

sh sets the following environmental variables by default:

# The number of actual positional parameters given to the current command.

@ The list of positional parameters ‘‘$1 $2 ...’’.

* The list of positional parameters ‘‘$1’’ ‘‘$2’’ ... (the same as ‘$@’ unless quoted).

- Options set in the invocation of the shell or by the set command.

? The exit status returned by the last command.

! The process number of the last command invoked with ‘&’.

$ The process number of the current shell.

sh also references the following variables:

CWD Current working directory: this is the name of the directory in which you are now working. Note that
this variable is not common to other implementations of sh. Code that uses it may not be portable to
other operating systems.

HOME Initial working directory; usually specified in the password file /etc/passwd.

IFS Delimiters for tokens; usually space, tab and newline.

LASTERROR
Name of last command returning nonzero exit status.

MAIL Checked at the end of each command. If file specified in this variable is new since last command, the
shell prints ‘‘You have mail.’’ on the user’s terminal.

PATH Colon-separated list of directories searched for commands.

PS1 First prompt string. By default, this is ‘$’.

PS2 Second prompt string. By default, this is ‘>’. sh prints it when it expects more input, such as when
an open quotation-mark has been typed but a close quotation-mark has not been typed, or within a
shell construct.

Beginning with release 4.2, the COHERENT implementation of sh performs word-expansion on the values of the
variables PS1 and PS2. For example, setting the variables

export SITE=$(uname -s)
PS1="$SITE $USER $(pwd) > "

create a prompt that consists of your site name, your login identifier, and your current working directory.

The special forms ‘${nameCtoken}’ perform conditional parameter substition: C is one of the characters ‘-’, ‘=’, ‘+’, or
‘?’. sh replaces the form ‘${name-token}’ by the value of name if it is set, and by token otherwise. It handles the ‘=’
form in the same way, but also sets the value of name to token if it was not set previously. sh replaces the ‘+’ form
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by token if the given name is set. It replaces the ‘?’ form by the value of name if set, and otherwise prints token and
exits from the shell.

To unset an environmental variable, use the command unset. The command unset -f undefines a shell function
(described below).

Command Output Substitution
sh can use the output of a command as shell input (e.g., as command arguments) by enclosing the command
between grave characters ` `. For example, to list the contents of the directories named in file dirs, use the
command

ls -l `cat dirs`

Constructs
sh lets you control execution of commands by the constructs break, case, continue, for, if, until, and while. It
recognizes each reserved word only if it occurs unquoted as the first token of a command. This implies that a
separator must precede each reserved word in the following constructs; for example, newline or ‘;’ must precede do
in the for construct.

The following describes each shell construct:

break [n]
Exit from a for, until, or while loop. If n is given, exit from the preceding n levels of looping.

case token in [ pattern [ | pattern ] ...) sequence;; ] ... esac
Check token against each pattern, and execute sequence associated with the first matching pattern.

continue [n]
Branch to the end of the nth enclosing for, until, or while construct.

for name [ in token ... ] do sequence done
Execute sequence once for each token. On each iteration, name takes the value of the next token. If the in
clause is omitted, $@ is assumed. For example, to list all files ending with .c:

for i in *.c
do

cat $i
done

if seq1 then seq2 [ elif seq3 then seq4 ] ... [ else seq5 ] fi
Execute seq1. If the exit status is zero, execute seq2; if not, execute the optional seq3 if given. If the exit
status of seq3 is zero, then execute seq4, and so on. If the exit status of all tested sequences is nonzero,
execute seq5.

until sequence1 [ do sequence2 ] done
Execute sequence2 until the execution of sequence1 results in an exit status of zero.

while sequence1 [ do sequence2 ] done
Execute sequence2 as long as the execution of sequence1 results in an exit status of zero.

(sequence)
Execute sequence within a subshell. This allows sequence to change the current directory, for example,
and not affect the enclosing environment.

$(( )) Perform arithmetic expansion, as described in the POSIX Standard. The expression syntax is that of C, but
the only values are signed integers, and there are no side effects (i.e., no increment, decrement, or
assignment operators). The expression given inside this form is first processed for further expansions,
then evaluated according to the C rules for arithmetic; the result is placed on the output command line.
This is most useful when used with return and exit to form return values from functions and scripts.

To use $(()) with the shell’s logical operators and statements, you must use some indirection. For example:

val () {
return $((! ($*)))

}

Or:
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val $(($# < 5)) && {
echo Not enough arguments
exit 1

}

Or:

val $((${#foo} > 8)) {
echo $foo is too long; use 8 characters, maximum.
exit 2

}

{sequence
} Braces simply enclose a sequence. Note that the closing ‘}’ must appear on the line that follows sequence.

Special Commands
sh usually executes commands with the fork system call, which creates another process. However, sh executes
the commands in this section either directly or with an exec system call. See the Lexicon articles on fork() and
exec for details on these calls.

. script Read and execute commands from script. Positional parameters are not allowed. sh searches the
directories named in the environmental variable PATH to find the given script.

: [token ...]
A colon ‘:’ indicates a ‘‘partial comment’’. sh normally ignores all commands on a line that begins with a
colon, except for redirection and such symbols as $, {, ?, etc.

# A complete comment: if # is the first character on a line, sh ignores all text that follows on that line.

cd dir Change the working directory to dir. If no argument is given, change to the home directory.

command command [arguments]
When you issue a command, sh by default looks for that command among its set of built-in functions; if it
cannot find it there, it looks for the command in the directories set in the environmental variable PATH.
Thus, if you have given a shell function the same name as an executable command, sh will never find the
executable.

The command command tells sh to look for command in the directories named in your PATH, and ignore
any shell function with that name.

dirs sh lets you maintain a ‘‘directory stack’’, or stack of names of directories. You can push, pop, and
otherwise manipulate the contents of this stack, which you can use for any purpose for which you need to
access a number of directory names quickly. The command dirs prints the contents of the directory stack.
The commands pushd and popd also manipulate the directory stack.

Please note that these commands are unique to the COHERENT implementation of sh, and are not portable
to other shells. Caveat utilitor.

eval [token ...]
Evaluate each token and treat the result as shell input.

exec [command]
Execute command directly rather than performing fork. This terminates the current shell.

exit [status]
Set the exit status to status, if given; otherwise, the previous status is unchanged. If the shell is not
interactive, terminate it.

export [name ...]
sh executes each command in an environment, which is a set of shell-variable names and their
corresponding values. When you invoke sh, it inherits all environmental variables that are currently set;
and it, in turn, normally passes those variables to each command it invokes. export specifies that the
shell should pass the modified value of each given name to the environment of subsequent commands.
When no name is given, sh prints the name and value of each variable marked for export.

getopts optstring name [arg ...]
Parse the args to command. See the Lexicon entry for getopts for details.
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popd [N ...]
Pop the directory stack. When used without an argument, it pops the stack once. When used with one or
more numeric arguments, popd pops the specified items from the stack; item 0 is the top of the stack.
(For information on the directory stack, see the entry for the command dirs, above.)

pushd [dir0 ... dirN]
Push dir0 through dirN onto the directory stack, and change the current directory to the last directory
pushed onto the stack. When called without an argument, pushd exchanges the two top stack elements.
(For information on the directory stack, see the entry for the command dirs, above.)

read name ...
Read a line from the standard input and assign each token of the input to the corresponding shell variable
name. If the input contains fewer tokens than the name list, assign the null string to extra variables. If the
input contains more tokens, assign the last name the remainder of the input.

readonly [name ...]
Mark each shell variable name as a read only variable. Subsequent assignments to read only variables will
not be permitted. With no arguments, print the name and value of each read only variable.

set [-ceiknstuvx [name ...] ]
Set listed flag. If name list is provided, set shell variables name to values of positional parameters
beginning with $1.

shift Reset positional parameter 1 to the value $2, reset positional parameter 2 to the value $3, and so on. The
original value of positional parameter 1 is thrown away.

times Print the total user and system times for all executed processes.

trap [command] [n ...]
Execute command if sh receives signal n. If command is omitted, reset traps to original values. To ignore a
signal, pass null string as command. With n zero, execute command when the shell exits. With no
arguments, print a description of the traps that have already been set.

umask [nnn]
Set user file creation mask to nnn. If no argument is given, print the current file creation mask.

wait [pid]
Delay execution of further commands until the process that has process identifier pid terminates. If pid is
omitted, delay until every child process has finished executing. If no child process is active, this command
finishes immediately.

Shell Functions
Beginning with COHERENT release 4.2, sh lets you declare and use functions. In effect, a function is a script that
you load permanently into memory.

A function takes the form

function() {
command $1 $2
other_function $3 $4

}

A function begins with its name. A pair of parentheses after the name tell sh that this is a function.

The body of the function is enclosed within braces. A function can call any command, plus any other function.
Arguments are passed into the function using the syntax $1, $2, etc., just as with a shell script.

sh keeps an internal list of the functions that you have declared. When it reads an identifier, it first searches its
list of functions; if the identifier is not a function, sh then assumes that the identifier names a command, and it
attempts to find that command in the directories you have named in your environmental variable PATH. Thus, if
you give a function the same name as that of an existing command, sh will always use the function and never find
the command. To suppress this behavior, use the command command, described above.

The following example function copies one file into another:
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copyfile(){
if [ $# -eq 1 ]; then

cat $1
else

cp $1 $2
fi

}

Shell Library
The file /usr/lib/shell_lib.sh holds a library of shell functions. You can import these library with the ‘.’ command.

This library holds the following functions:

basename "pathname" [ "suffix" "prefix" ]
This function behaves the same as the command basename, except that you can include an option prefix
to strip as well as a suffix.

file_exists "filename"
Return true if file filename exists.

find_file "filename" "path" "path" ...
Seek file in every directory named in a path.

has_prefix "string" "prefix"
Return true if string is prefixed with the string prefix.

is_empty "arg"
Return true if arg is null.

is_equal "arg1" "arg2"
Return true if arg1 and arg2 are equal.

is_numeric "argument"
Return true if argument is numeric, or false if it is not.

is_yes "arg"
Return true if arg matches ‘Y’, ‘y’, ‘‘YES’’, or ‘‘yes’’; one if the argument matches ‘N’, ‘n’, ‘‘NO’’, or ‘‘no’’; two if
it matches anything else.

parent_of "file" [ "prefix" "suffix" ]
By default, write the path name of file. prefix and suffix are the prefix and suffix of a command run with
the output path name.

read_input "prompt" "variable" "default" "validate"
Echo prompt onto the screen. Write what the user types into variable. If the user does not respond, set
variable to default. The optional argument validate names a function that read_input calls to evaluate
what the user types; often, this is the shell-library function require_yes_or_no.

require_yes_or_no "arg"
This is the validation function for read_input. Check whether arg is properly affirmative or negative.

source_path "script" [ "command " ]
Echo the name of the directory that contains script. Normally, this function is called with the $0 of script.
It pipes its output into command if this argument is set; if it is not, it writes to the standard output.

split_path "string" "prefix" "suffix"
This function dissects string, which must consist of colon-separated elements, such as a PATH string.
prefix and suffix give, respectively, the prefix and suffix of the command that is run for every component of
string.

val "expression"
Return the negated value of expression. You can use this function to turn shell arithmetic expressions into
test results.

Scripts
Shell commands can be stored in a file, or script. The command
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sh script [ parameter ... ]

executes the commands in script with a new subshell sh. Each parameter is a value for a positional parameter, as
described below. If you have used the command chmod to make script executable, you may omit the sh command.

To ensure that a script is executed by sh, begin the script with the line:

#!/bin/sh

Parameters of the form ‘$n’ represent command-line arguments within a script. n can range from zero through
nine; $0 always gives the name of the script. These parameters are also called positional parameters.

If no corresponding parameter is given on the command line, the shell substitutes the null string for that
parameter. For example, if the script format contains the following line:

nroff -ms $1 >$1.out

then invoking format with the command

format mytext

invokes the command nroff to format the contents of mytext, and writes the output into file mytext.out. If,
however, you invoke this command with the command line

format mytext yourtext

the script formats mytext but ignores yourtext altogether.

Reference $* represents all command-line arguments. If, for example, we change the contents of script format to
read

nroff -ms $* >$1.out

then the command

format mytext yourtext

invoke nroff to format the contents of mytext and yourtext, and write the output into file mytext.out.

Commands in a script can also be executed with the . (dot) command. It resembles the sh command, but the
current shell executes the script commands without creating a new subshell or a new environment; therefore, you
cannot use command-line arguments.

Command-line Options

-c string
Read shell commands from string.

-e Exit on any error (command not found or command returning nonzero status) if the shell is not interactive.

-i The shell is interactive, even if the terminal is not attached to it; print prompt strings. For a shell reading a
script, ignore the signals SIGTERM and SIGINT.

-k Place all keyword arguments into the environment. Normally, sh places only assignments to variables
preceding the command into the environment.

-n Read commands but do not execute them.

-s Read commands from the standard input and write shell output to the standard error.

-t Read and execute one command rather than the entire file.

-u If the actual value of a shell variable is blank, report an error rather than substituting the null string.

-v Print each line as it is read.

-x Print each command and its arguments as it is executed.

- Cancel the -x and -v options.

If the first character of argument 0 is ‘-’, sh reads and executes the scripts /etc/profile and $HOME/.profile
before reading the standard input. /etc/profile is a convenient place for initializing system-wide variables, such
as TIMEZONE.
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Files
/etc/profile — System-wide initial commands
$HOME/.profile — User-specific initial commands
/dev/null — For background input
/tmp/sh* — Temporary files
/usr/lib/shell_lib.sh — Library of shell functions

See Also
commands, dup(), environ, exec, fork(), getopts, ksh, login, newgrp, set, signal(), test, Using COHERENT, vsh
Introduction to sh, the Bourne Shell, tutorial

For a list of all commands associated with sh, see the section Shell Commands in the commands Lexicon article.

Diagnostics
sh notes on the standard error all syntax errors in commands, and all commands that it cannot find. Syntax
errors cause a noninteractive shell to exit. It gives error messages if I/O redirection is incorrect. sh returns the
exit status of the last command executed or the status specified by an exit command.

shadow — System Administration
File that holds restricted passwords
/etc/shadow

COHERENT stores information in file /etc/passwd. This file identifies each user, gives her home directory, default
shell, and base group. It must be universally readable so that it can be used by programs like ls, which must
translate user-identification numbers into login identifiers.

In general, this system works well; however, it does create a hole in system security. If users’ encrypted passwords
are kept in /etc/passwd, which is universally readable, a ‘‘cracker’’ can read the passwords, decypher some of
them with brute-force methods, and then log in as the users whose passwords she cracked.

To plug that hole in system security, UNIX implemented the method of ‘‘shadow’’ passwords. In this scheme, a
user’s login information is still kept in /etc/passwd; however, the encrypted passwords (plus supplemental
information) is kept in the file /etc/shadow, which can be read only by a process with root-level permissions.

The shadow password file contains one entry per user. Each user identified in /etc/shadow must have an entry in
/etc/passwd. The opposite is not true, but a user described in /etc/passwd who does not have an entry in
/etc/shadow cannot log into your system. Each entry in /etc/shadow is laid out exactly the same as file
/etc/passwd. At present, the COHERENT implementation of login uses only the name and password fields. For
details, see the Lexicon entry for passwd.

Reading /etc/shadow
COHERENT includes four functions with which a program can read the shadow-password file /etc/shadow:

endspent()
Close /etc/shadow after reading from it.

getspent()
Read the next record from /etc/shadow. If a process has not yet read /etc/shadow, it returns the first
record.

getspnam()
Return the first record for the user with a given login identifier.

setspent()
Return the seek pointer for /etc/shadow to the beginning of the file.

Functions getspent() and getspnam() return a pointer to an object with structure spwd, which gives an analogue
for each field in /etc/shadow. This structure is defined in header file <shadow.h>. For details on this structure,
see the Lexicon entry for shadow.h.

See Also
Administering COHERENT, login, shadow.h
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Notes
For details of how the program login uses shadow passwords, see its entry in the Lexicon.

shadow.h — Header File
Definitions used with shadow passwords
#include <shadow.h>

The header file <shadow.h> declares and defines the functions, macros, structures, and constants used to
manipulate shadow passwords.

<shadow.h> holds defines the structure spwd, which describes the records that are stored in file /etc/shadow.
<shadow.h> gives two definitions spwd: one implements the structure used by UNIX System V, release 4; and the
other implements the structure used by UNIX System V, release 3.

The following gives the form of spwd that is used by some releases of UNIX System V, release 4:

struct spwd {
char *sp_namp; /* User Name */
char *sp_pwdp; /* Encrypted password */
long sp_lstchg; /* Last changed date */
long sp_min;
long sp_max;
long sp_warn;
long sp_inact;
long sp_expire; /* Acct expiration date. */
unsigned long sp_flag;

};

The following gives the version of spwd used by UNIX System V, release 3:

struct spwd {
char *sp_name; /* User name */
char *sp_passwd; /* Encrypted password - non-POSIX */
int sp_uid; /* User id */
int sp_gid; /* Group id */
int sp_quota; /* File space quota - non-POSIX*/
char *sp_comment; /* Comments - non-POSIX */
char *sp_gecos; /* Gecos box number - non-POSIX */
char *sp_dir; /* Working directory */
char *sp_shell; /* Shell */

};

By default, COHERENT uses the System V, release 3, version of spwd.

For information on how to select a given version of spwd, see the discussion of compilation environments in the
Lexicon article header files.

See Also
header files, endspent(), getspent(), getspnam(), libc, setspent(), shadow

SHELL — Environmental Variable
Name the default shell
SHELL=shell

The environmental variable SHELL names the shell that COHERENT invokes when you log in. The default is
SHELL=/bin/sh, which invokes the Bourne shell.

See Also
environmental variables, sh

shellsort() — General Function (libc)
Sort arrays in memory
void shellsort(data, n, size, comp)
char *data; int n, size; int (*comp)( );

shellsort() is a generalized algorithm for sorting arrays of data in memory, using D. L. Shell’s sorting method.
shellsort() works with a sequential array of memory called data, which is divided into n parts of size bytes each. In
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practice, data is usually an array of pointers or structures, and size is the sizeof the pointer or structure.

Each routine compares pairs of items and exchanges them as required. The user-supplied routine to which comp
points performs the comparison. It is called repeatedly, as follows:

(*comp)(p1, p2)
char *p1, *p2;

Here, p1 and p2 each point to a block of size bytes in the data array. In practice, they are usually pointers to
pointers or pointers to structures. The comparison routine must return a negative, zero, or positive result,
depending on whether p1 is less than, equal to, or greater than p2, respectively.

Example
For an example of how to use this routine, see the entry for string.

See Also
libc, qsort()
The Art of Computer Programming, vol. 3, pp. 84ff, 114ff

Notes
For a discussion of how the shellsort algorithm differs from that used by qsort(), see the Lexicon entry for qsort().

shift — Command
Shift positional parameters
shift

Commands to the shell can be stored in a file, or script. Positional parameters pass command-line variables to a
script.

shift changes the values of positional parameters. The old parameter values $2, $3, ... become the new parameter
values $1, $2 .... shift also reduces the value of $#, which gives the number of positional parameters, by one.

The shell executes shift directly.

See Also
commands, ksh, sh

shm — Kernel Module
Kernel module for shared memory

The kernel module shm enables System V-style shared memory. It is called a kernel module because you can link
it into your kernel or exclude it, as you wish, just like a device driver; yet it is not a true device driver because it
does not perform I/O with a peripheral device.

See Also
device drivers, kernel, shmget()

shm.h — Header File
Definitions used with shared memory
#include <sys/shm.h>

shm.h defines constants and macros used by routines that implement the COHERENT shared-memory facility.

See Also
header files, shmget()

shmat() — General Function (libc)
Attach a shared-memory segment to a process
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
char *shmat (shmid, shmaddr, shmflg)
int shmid, shmflag; char *shmaddr;
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shmat() attaches the shared-memory segment associated with the identifier shmid with the .data segment of the
calling process.

shmat() selects the address at which to attach the shared-memory segment. If

shmflg & SHM_RDONLY

is true, the attached memory is read-only; otherwise, it is read-write.

shmat() fails if any of the following is true:

• shmid is not a valid shared-memory identifier. shmat() sets errno to EINVAL.

• The calling process lacks appropriate permission (EACCES).

• Not enough memory is available to hold the shared-memory segment (ENOMEM).

• The process already has the maximum number of shared-memory segments attached to it (EMFILE).

You can attach more than one shared-memory segment to a process, up to a maximum of six. COHERENT assigns
each segment its own address.

If all went well, shmat() returns the address of the newly attached shared-memory segment; otherwise, it returns
-1 and sets errno to an appropriate value.

Example
For an example of this function, see the Lexicon entry for shmget().

See Also
libc, shmctl(), shmdt(), shmget()

Notes
The COHERENT implementation of shared memory does not yet support attaching a shared-memory segment to a
user-defined address. Therefore, you should always set shmaddr to zero.

shmctl() — General Function (libc)
Manipulate shared memory
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
shmctl(shmid, command, buf)
int shmid, command; struct shmid_ds *buf;

shmctl() controls the COHERENT system’s shared-memory facility. Note that shared memory consists of the
segment of memory being shared, plus a copy of structure shmid_ds, which is defined in header file <sys/shm.h>.
This structure describes the shared-memory segment and identifies who can manipulate it, and how.

command names the operation that you want shmctl() to perform, as follows:

IPC_RMID Remove the system identifier shmid and destroy its associated shared memory segment and
shmid_ds structure. Only the superuser root or the user whose effective user ID matches the
value of field uid can invoke this command.

IPC_SET Copy fields shm_perm.uid, shm_perm.gid, and shm_perm.mode (low nine bits only) from the
ipc_perm associated with buf into shmid. Only the superuser root or the user who created this
shared-memory segment can invoke this command.

IPC_STAT Copy every element of the shmid_ds associated with shmid into the one pointed to by buf.

SHM_LOCK Lock the shared-memory segment shmid, to keep it from being paged out of memory. Only the
superuser root can invoke this command. Because COHERENT does not support paging, this
command present does nothing.

SHM_UNLOCK Unlock the shared-memory segment shmid, to permit it to be paged out of memory. Only the
superuser root can invoke this command. Because COHERENT does not support paging, this
command present does nothing.

shmctl() fails if any of the following is true:
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• shmid is not a valid shared-memory identifier. shmget() sets errno to EINVAL.

• command is not a valid command (EINVAL).

• command equals IPC_STAT but the owner of the calling process lacks permission (EACCES).

• command equals IPC_RMID or IPC_SET but the owner of the calling process lacks permission (EPERM).

• buf points to an illegal address (EFAULT).

shmctl() returns zero if all went well; otherwise, it returns -1 and sets errno to an appropriate value.

Example
For an example of this function, see the Lexicon entry for shmget().

Files
/usr/include/sys/ipc.h
/usr/include/sys/shm.h

See Also
libc, shmat(), shmdt(), shmget()

Notes
For information on other methods of interprocess communication, see the Lexicon entries for semctl() and
msgctl().

shmdt() — General Function (libc)
Detach a shared-memory segment from a process
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
char *shmdt (shmaddr)
char *shmaddr;

shmdt() detaches the shared-memory segment at address shmaddr from the calling process. If all went well,
shmdt() returns returns zero; otherwise, it returns -1 and sets errno to an appropriate value. In particular, it sets
errno to EINVAL if shmaddr does not point to the beginning of a shared-memory segment.

Example
For an example of this function, see the Lexicon entry for shmget().

See Also
libc, shmctl(), shmdt(), shmget()

Notes
The COHERENT implementation of shared memory does not yet support attaching a shared-memory segment to a
user-defined address. Therefore, you should always set shmaddr to zero.

shmget() — General Function (libc)
Create or get shared-memory segment
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmget(memkey, size, flag)
key_t memkey; int size, flag;

shmget() creates a shared-memory identifier, associated data structure, and shared-memory segment, links them
to the identifier memkey, and returns the shared-memory identifier that it has associated with memkey.

memkey is an identifier that your application generates to identify its shared-memory segments. To guarantee that
each key is unique, you should use the function call ftok() to generate keys.

size gives the size, in bytes, of the shared-memory segment that you want shmget() to create.
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flag can be bitwise OR’d to include the following constants:

IPC_ALLOC This process already has a shared-memory segment; please fetch it.

IPC_CREAT If this process does not already have a shared-memory segment, please create one.

IPC_EXCL Fail if a shared-memory segment already exists for this process.

IPC_NOWAIT Fail if the process must wait to obtain a shared-memory segment.

When it creates a shared-memory segment, shmget() also creates a copy of structure shmid_ds, which is defined
in header file <sys/shm.h>, and which describes the shared-memory segment. It is defined as follows:

struct shmid_ds {
struct ipc_perm shm_perm;/* operation permission struct */
int shm_segsz; /* segment size */
char *__unused; /* for binary compatibility */
char __pad [4]; /* for binary compatibility */
pid_t shm_lpid; /* pid of last shmop */
pid_t shm_cpid; /* pid of creator */
unsigned short shm_nattch; /* current # attached */
unsigned short shm_cnattach; /* for binary compatibility */
time_t shm_atime; /* last shmat time */
time_t shm_dtime; /* last shmdt time */
time_t shm_ctime; /* last change time */

};

Field shm_perm is a structure of type ipc_perm, which header file <sys/ipc.h> defines as follows:

struct ipc_perm {
unsigned short uid; /* owner’s user id */
unsigned short gid; /* owner’s group id */
unsigned short cuid; /* creator’s user id */
unsigned short cgid; /* creator’s group id */
unsigned short mode; /* access modes */
unsigned short seq; /* slot usage sequence number */
key_t key; /* key */

};

shmget() initializes shm_id as follows:

• It sets fields shm_perm.guid, shm_perm.uid, shm_perm.cgid, and shm_perm.gid to, respectively, the
effective user ID and effective group ID of the calling process.

• It sets the low-order nine bits of field shm_perm.mode to the low-order nine bits of flag. These nine bits
define access permissions: the top three bits give the owner’s access permissions (read, write, execute), the
middle three bits the owning group’s access permissions, and the low three bits access permissions for others.

• It sets field shm_segsz equal to size.

• It sets fields shm_atime, shm_dtime, shm_lpid, and shm_nattch to zero, and field shm_ctime to the current
time.

shmget() fails if any of the following is true:

• size is smaller than one byte, or larger than 0x10000 (the system-imposed maximum). shmget() sets errno to
EINVAL.

• A shared-memory identifier exists for memkey but permission, as specified by flag’s low-order nine bits, is not
granted (EACCES).

• A shared-memory identifier exists for memkey, but the size of its associated segment is less than size, and
size does not equal zero (EINVAL).

• A shared-memory identifier does not exist for memkey and (flag & IPC_CREAT) is false (ENOENT).

• shmget() tried to create a shared-memory segment, but could not because 100 (the COHERENT-defined
maximum) already exist (ENOSPC).
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• shmget() tried to create a shared-memory identifier, but could not because not enough physical memory is
available (ENOMEM).

• A shared-memory identifier already exists for memkey, but flag requests that shmget() create an exclusive
segment it — i.e.

( (flag & IPC_CREAT) && (flag & IPC_EXCL) )

is true (EEXIST).

If all goes well, shmget() returns a shared-memory identifier, which is always a non-negative integer. Otherwise, it
returns -1 and sets errno to an appropriate value.

Example
The following demonstrates how to use COHERENT’s shared-memory feature. Please note that this example will not
work with versions of COHERENT prior to release 4.2.

The example consists of two programs: writeshm, which captures input from the keyboard and writes it into a
shared-memory segment; and readshm, which reads and displays from the shared-memory segment the text that
writeshm put there. Each program terminates when you type ‘‘end’’.

Note that this example is most effective if you run each program from its own virtual console.

The first program gives the source for writeshm:

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <string.h>

main()
{

int iShmId; /* Segment id */
char *cpShm; /* Pointer to the segment */
key_t key; /* Segment key */

key = ftok("/etc/passwd", ’S’); /* Get a key */

/* if a shared-memory segment exists, get it; otherwise, create one */
if ((iShmId = shmget(key, 256, 0644 | IPC_CREAT)) < 0) {

perror("get");
exit(1);

}

/* Attach segment to process. Use an attach address of zero to
* let the system find a correct virtual address to attach.
*/

if ((cpShm = shmat(iShmId, 0, 0644)) == (char *) -1) {
perror("shmat");
exit(1);

}
printf("Server is ready.\n");
printf("Any message to continue, ’end’ to exit\n");

for (;;) {
printf("Enter the message -> ");
gets(cpShm);
if (!strcmp(cpShm, "end")) {

puts("Bye");
shmdt(cpShm); /* Detach segment */
break;

}
}

}

The next program gives the source for readshm:
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#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <string.h>

main()
{

int iShmId; /* Segment id */
char *cpShm; /* Pointer to the segment */
key_t key; /* Segment key */
char cBuf[16]; /* Read buffer */

/* Get a key */
key = ftok("/etc/passwd", ’S’);

/* Get shared memory id. If it does not exist, do *not* create it. */
if ((iShmId = shmget(key, 256, 0644)) < 0) {

perror("get");
exit(1);

}

/* attach shared-memory segment to the process */
if ((cpShm = shmat(iShmId, 0, 0644)) == (char *) -1) {

perror("shmat");
exit(1);

}
printf("Client is ready\n");

for (;;) {
printf("Press enter to read the message -> ");
gets(cBuf);
printf("Got: \"%s\"\n", cpShm);

/* Exit on the ’end’: detach and remove segment */
if (!strcmp(cpShm, "end")) {

struct shmid_ds stShmId;

puts("Bye");
shmdt(cpShm);
if (shmctl(iShmId, IPC_RMID, &stShmId)) {

perror("shmctl");
exit(1);

}
break;

}
}

}

Files
/usr/include/sys/ipc.h
/usr/include/sys/shm.h

See Also
ftok(), ipcrm, ipcs, libc, libsocket, shmat(), shmctl(), shmdt()

Notes
Prior to release 4.2, COHERENT implemented shared memory through the driver shm. In release 4.2, and
subsequent releases, COHERENT implements shared memory as a set of functions that conform in large part to the
UNIX System-V standard.

The kernel variables SHMMAX and SHMMNI set, respectively, the maximum size of a shared-memory segment and
the number of shared-memory segments that can exist at any given time. Daredevil system operators who have
large amounts of memory at their disposal may wish to change these variables to increase the system-defined
limits. For details on how to do so, see the Lexicon entry mtune.
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short — C Keyword
Data type

short is a numeric data type. The ANSI standard states that it cannot be longer than an int.

COHERENT defines a short to be two bytes long; thus, sizeof short equals two chars, or 15 bits plus a sign, and
can hold any value from -32,768 to 32,767.

A short normally is sign extended when cast to a larger data type; however, an unsigned short will be zero
extended when cast.

See Also
C keywords, data format, data type, int, long
ANSI Standard, §6.1.2.5

shutdown — Command
Shut down the COHERENT system
/etc/shutdown [ reboot | halt | single | powerfail ] time

shutdown shuts down the COHERENT system. You must use this command to shut COHERENT down. Failure to
shut down the system before rebooting or shutting off the computer could damage the COHERENT file system and
destroy data.

When you invoke shutdown, you must specify the ‘‘level’’ shutdown, and the time to shutdown. The level must be
one of the following:

reboot Bring down the system, then reboot it automatically. Use this level if, for example, you are installing a new
kernel.

halt Halt the system, but do not reboot it or enter single-user mode. Use this option when you intend to turn
off your computer.

single Bring down the system to single-user mode.

powerfail
Bring down the system as quickly as possible. Normally, this level is invoked by a daemon that has
received information of a power failure from your system’s uninterruptable power supply (UPS).

time is the interval, in minutes, from the time you invoke the command to the time that shutdown shuts the
system down. Setting time to zero shuts down the system immediately. Every minute, shutdown displays on
every user’s terminal the message

System going down in N minutes!

where N is the number of minutes left until shutdown. When time has expired, shutdown displays the message

System is going down now!

at which point users have ten seconds to save their files and exit. Users who have turned off system messages will
not, of course, see these messages.

After the system has been halted, you do not need to type sync; shutdown does that automatically.

If users have not logged off from the system when it comes time to shut the system down, you will see the prompt:

Some file systems remain mounted. Proceed with shutdown ? [y]

If you type ‘n’, the shutdown will be aborted. You should then make sure that the users have logged off, then
invoke /etc/shutdown again. To lock out new users from logging in while you are trying to shut the system down,
create the file /etc/nologin. Note that this file is removed automatically when you reboot your system.

If you type ‘y’, shutdown will continue as before. Users will be thrown off the system; any files they might have
had opened at that time will not be updated.

See Also
commands, nologin, reboot

LEXICON

short — shutdown 1109



Notes
Only the superuser root can run shutdown.

shutdown can be run from any terminal. When the system reboots, however, control returns to the system
console.

shutdown was written by Udo Munk (udo@umunk.GUN.de).

shutdown() — Sockets Function (libsocket)
Replace function to shut down system
int shutdown (s, how)
int s, how;

Function shutdown() does nothing under COHERENT. It is present in its sockets library to ensure that imported
code will link.

See Also
libsocket

sigaction() — System Call (libc)
Perform detailed signal management
#include <signal.h>
int sigaction (signal, action, old_action)
int signal; const struct sigaction *action; struct sigaction *old_action;

sigaction() lets the calling process specify the action it will take when it receives signal.

signal can be any of the signals named in the Lexicon entry for signal() except SIGKILL and SIGSTOP.

action points to a structure that specifies the action to take when signal is received. If action is set to NULL, the
current disposition of the signal is unaffected.

old_action points to a structure that describes the action previously associated with signal, and that is to be
restored upon return from sigaction().

The structure sigaction has the following members:

void (*sa_handler)();
sigset_t sa_mask;
int sa_flags;

sa_handler gives the disposition of the signal. You can set it to any of the actions described in the article for
signal().

sa_mask identifies the signals to be blocked while the signal handler is active. Upon entry to the signal handler,
that set of signals is added to the set of signals already being blocked when signal was received. signal itself is also
blocked. Note that you cannot block SIGSTOP and SIGKILL.

sa_flags specifies a set of flags used to modify the behavior of signal. As of this writing, sigaction() recognizes only
the flag SA_NOCLDSTOP: If this is set and signal equals SIGCHLD, signal is not sent to the calling process when
its child processes stop or continue.

sigaction() returns zero if all is well. It fails and returns -1 if either of the following is true:

• signal does not identify a valid signal. sigaction() sets errno to EINVAL.

• action or old_action points outside the process’s allocated address space. sigaction() sets errno to EFAULT.

See Also
libc, sigaddset(), sigdelset(), sigemptyset(), sigfillset(), sigismember(), signal(), signal.h, sigpending(),
sigprocmask(), sigset(), siglongjmp(), sigsetjmp(), sigsuspend()
POSIX Standard, §3.3.4
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sigaddset() — Signal Function (libc)
Add a signal to a set of signals
#include <signal.h>
int sigaddset (set, signo)
sigset_t *set; int signo;

sigaddset() is one of a set of signalling functions that manipulate data objects addressable by the application,
instead of a set of signals known to the system. It adds the signal signo to the set of signals to which set points.

If all goes well, sigaddset() returns zero. If signo is set to an invalid or unsupported value, it returns -1 and sets
errno to EINVAL.

See Also
libc, sigaction(), sigdelset(), sigemptyset(), sigfillset(), sigismember()

Notes
If your program is compiled using the System V Release 4 compilation environment, this is a function that is linked
in from libc. If not, a macro form is used.

sigdelset() — Signal Function (libc)
Delete a signal from a set
#include <signal.h>
int sigdelset (set, signo)
sigset_t *set;
int signo;

sigdelset() is one of a set of signalling functions that manipulate data objects addressable by the application,
instead of a set of signals known to the system. It deletes the signal signo from the set of signals to which set
points.

If all goes well, sigdelset() returns zero. If signo is set to an invalid or unsupported value, it returns -1 and sets
errno to EINVAL.

See Also
libc, sigaction(), sigaddset(), sigemptyset(), sigfillset(), sigismember()

Notes
If your program is compiled using the System V Release 4 compilation environment, this is a function that is linked
in from libc. If not, a macro form is used.

sigemptyset() — Signal Function (libc)
Initialize a set of signals
#include <signal.h>
int sigemptyset (set)
sigset_t *set;

sigemptyset() is one of a set of signalling functions that manipulate data objects addressable by the application,
instead of a set of signals known to the system. It initializes the set of signals to which set points, such that all
standard signals are excluded.

sigemptyset() returns zero if all goes well. If a problem occurs, it returns -1 and sets errno to an appropriate
value.

An application must call either sigemptyset() or sigfillset() at least once for each object of type sigset_t prior to
any other object. If such an object is not initialized in this way, but is supplied as an argument to any of the
functions sigaddset(), sigdelset(), sigismember(), sigaction(), sigprocmask(), sigpending(), or sigsuspend(), the
results are undefined.

See Also
libc, sigaction(), sigaddset(), sigdelset(), sigfillset(), sigismember()
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Notes
If your program is compiled using the System V Release 4 compilation environment, this is a function that is linked
in from libc. If not, a macro form is used.

sigfillset() — Signal Function (libc)
Initialize a set of signals
#include <signal.h>
int sigfillset (set)
sigset_t *set;

sigfillset() is one of a set of signalling functions that manipulate data objects addressable by the application,
instead of a set of signals known to the system. It initializes the set of signals to which set points, such that all
standard signals are included.

sigfillset() returns zero if all goes well. If a problem occurs, it returns -1 and sets errno to an appropriate value.

Applications must call either sigemptyset() or sigfillset() at least once for each object of type sigset_t prior to any
other object. If such an object is not initialized in this way, but is supplied as an argument to any of the functions
sigaddset(), sigdelset(), sigismember(), sigaction(), sigprocmask(), sigpending(), or sigsuspend(), the results are
undefined.

See Also
libc, sigaction(), sigaddset(), sigdelset(), sigemptyset(), sigismember()

Notes
If your program is compiled using the System V Release 4 compilation environment, this is a function that is linked
in from libc. If not, a macro form is used.

sighold() — System Call (libc)
Place a signal on hold
#include <signal.h>
int sighold (sigtype)
int sigtype;

sighold() is a member of the sigset() family of signal-handling system calls. It is equivalent to the system call

sigset(sigtype, SIG_HOLD);

This, in effect, places the signal sigtype ‘‘on hold’’ until the system call sigrelse() is invoked for it. Only one ‘‘copy’’
of sigtype can be held at a time.

Thus, you can use sighold() and sigrelse() to defer processing of the signal sigtype. This permits you to protect a
portion of your application from this signal until it is ready to process it.

See the Lexicon entry for signal() for a list of recognized signals. Note that signal SIGKILL cannot be held.

sighold() returns zero if all went well. If something went wrong, it returns -1 and sets errno to an appropriate
value.

See Also
libc, sigignore(), signal(), sigpause(), sigrelse(), sigset()

Notes
For more information on the sigset() family of signal-handling system calls, see the Lexicon entry for sigset().

sigignore() — System Call (libc)
Tell the system to ignore a signal
#include <signal.h>
int sigignore (sigtype)
int sigtype;

sigignore() is a member of the sigset() family of signal-handling system calls. It is equivalent to the system call

sigset(sigtype, SIG_IGN);
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This, in effect, tells the system to ignore all signals of type sigtype.

See the Lexicon entry for signal() for a list of recognized signals. Note that signal SIGKILL cannot be ignored.

sigignore() returns zero if all went well. If something went wrong, it returns -1 and sets errno to an appropriate
value.

See Also
libc, sighold(), signal(), sigpause(), sigrelse(), sigset()

Notes
For more information on the sigset() family of signal-handling system calls, see the Lexicon entry for sigset().

sigismember() — Signal Function (libc)
Check if a signal is a member of a set
#include <signal.h>
int sigismember (set, signo)
sigset_t *set;
int signo;

sigismembeer() is one of a set of signalling functions that manipulate data objects addressable by the application,
instead of a set of signals known to the system. It tests whether the signal signo is a member of the set of signals
to which set points.

If signo is a member of set, sigismember() returns zero. If signo is set to an invalid or unsupported value, it
returns -1 and sets errno to EINVAL.

See Also
libc, sigaction(), sigaddset(), sigdelset(), sigemptyset(), sigfillset()

Notes
If your program is compiled using the System V Release 4 compilation environment, this is a function that is linked
in from libc. If not, a macro form is used.

siglongjmp() — General Function (libc)
Perform a non-local goto and restore signal mask
#include <setjmp.h>
void siglongjmp(environ, value)
sigjmp_buf environ; int val;

siglongjmp() behaves like the function longjmp(), except that it also restores the signal mask.

environ points to an array of type sigjmp_buf, which is declared in header file setjmp.h. It must have been
initialized by a call to sigsetjmp(). value is the integer value to be returned to the function that called sigsetjmp().

See Also
libc, sigaction(), sigprocmask(), sigsetjmp(), sigsuspend()
POSIX Standard, §8.3.1

signal() — System Call (libc)
Specify action to take upon receipt of a given signal
#include <signal.h>
int (*signal(sigtype, function))()
int sigtype, (*function)();

A process can receive a signal, or interrupt, from a hardware exception, terminal input, or a kill() call made by
another process. A hardware exception might be caused by an illegal instruction or a bad machine address. The
terminal interrupt character (described in detail in the Lexicon entry tty) generates a process interrupt (and in one
case a core dump file for debugging purposes).

signal() tells the signal handler what to do when the current process receives signal sigtype. sigtype is the signal to
process, as defined below. function points to the routine to execute when sigtype is received. This can be a
function of your own creation; or you can use one of the following macros, which expand into pointers to system-
defined functions:
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SIG_DFL
This is the default action. The process terminates just as if it called the function exit(). In addition, the
system writes a core file in the current working directory if sigtype is any of the following: SIGQUIT,
SIGSYS, SIGTRAP, or SIGSEGV. (Note that this behavior applies only to executables for which you have
write permission. If you lack write permission on an executable, then no core file is written.) For more
information on core files, see the Lexicon entry core.

SIG_IGN
Ignore sigtype. The system discards all signals of this type.

signal() returns a pointer to the previous action. If sigtype is not a recognized signal, signal() returns (int (*)())-1.

With the exception of SIGKILL and SIGTRAP, caught signals are reset to the default action SIG_DFL. To catch a
signal again, the routine to which function points must reissue the call to signal().

The following list names the signals that signal() can process, as defined in the header file signal.h. Note that the
signal SIGKILL, which kills a process, can be neither caught nor ignored. Signals marked by an asterisk produce
a core dump if the action is SIG_DFL:

SIGHUP . . . . . . . . . Hangup
SIGINT . . . . . . . . . . Interrupt
SIGQUIT* . . . . . . . . Quit
SIGILL*. . . . . . . . . . Illegal instruction
SIGTRAP* . . . . . . . . Trace trap
SIGIOT . . . . . . . . . . IOT instruction
SIGABRT* . . . . . . . . To be replaced by SIGIOT
SIGEMT . . . . . . . . . Emulator trap
SIGFPE* . . . . . . . . . Floating-point exception
SIGKILL . . . . . . . . . Kill
SIGBUS. . . . . . . . . . Bus error
SIGSEGV* . . . . . . . . Segmentation violation
SIGSYS* . . . . . . . . . Bad argument to system call
SIGPIPE . . . . . . . . . Write to pipe with no readers
SIGALRM . . . . . . . . Alarm
SIGTERM . . . . . . . . Software termination signal
SIGUSR1 . . . . . . . . . User-defined signal
SIGUSR2 . . . . . . . . . User-defined signal
SIGCLD. . . . . . . . . . Death of a child
SIGCHLD. . . . . . . . . Death of a child
SIGPWR . . . . . . . . . Restart
SIGWINCH . . . . . . . . Window change
SIGPOLL . . . . . . . . . Polled event in stream

A signal may be caught during a system call that has not yet returned. In this case, the system call appears to fail,
with errno set to EINTR. If desired, such an interrupted system call may be reissued. System calls which may be
interrupted in this way include pause(), read() on a device such as a terminal, write() on a pipe, and wait().

Example
The following program demonstrates signal(), kill(), getpid(), and fork().

#include <signal.h>

int got_it; /* Each side gets its own copy of all data at the fork */
int errset;

/*
* Control comes here on SIGTRAP. Do no I/O in signal function.
* Reset the signal if you ever want another.
*/

void
sig_ser()
{

got_it = 1; /* tell the child we got it */
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if (0 > signal(SIGTRAP, sig_ser)) /* reset the signal */
errset = 1;

}

main()
{

int count;
int child, parent;

parent = getpid(); /* Both sides will get a copy */

if (signal(SIGTRAP, sig_ser) < 0) { /* sets for both sides */
perror("signal set failed");
exit(0);

}

if (child = fork()) { /* parent gets the child’s id */
for (count = 0; count < 3; count++) {

kill(child, SIGTRAP); /* signal the child */

while(!got_it) /* wait for signal */
sleep(1);

if (errset)
perror("parent: signal reset failed");

printf("parent got signal %d\n", count);
got_it = errset = 0;

}
exit(0);

}

for (count = 0; count < 3; count++) {
while(!got_it) /* wait for signal */

sleep(1);
if (errset)

perror("child: signal reset failed");
printf("child got signal %d\n", count); /* show we got it */

kill(parent, SIGTRAP); /* signal the parent */
got_it = errset = 0;

}
exit(0);

}

See Also
kill, kill(), libc, ptrace(), sh, sigaction(), signame, sigset()
ANSI Standard, §7.7.1.1

Notes
The function signal() predates the sigset() and sigaction() sets of signal-handling functions. Never combine
signal() with any of the sigset() or sigaction() families of functions: use one or the other, but not both. For a
description of how signal() differs from sigset() and sigaction(), see their Lexicon entries.

signal.h — Header Files
Define signals
#include <signal.h>

The header file signal.h defines manifest constants that name all of the machine-independent signals that the
COHERENT system uses to communicate with its processes.

See Also
header files, kill, signal()
ANSI Standard, §7.7
POSIX Standard, §3.3.1
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signame — Global Variable
Array of names of signals
#include <signal.h>
extern char *signame[_SIGNAL_MAX];

When a program terminates abnormally, its parent process receives a byte of termination information from the
system call wait(). This byte contains a signal number, as defined in the header file signal.h. For example, SIGINT
indicates an interrupt from the terminal.

The array signame, indexed by signal number, contains strings that give the meaning of each signal. Thus,
signame[SIGINT] points to the string ‘‘interrupt’’. For portability reasons, all programs which wait on child
processes (such as the shell sh) should use signame.

Files
<signal.h>

See Also
Programming COHERENT, sh, signal(), wait

Notes
Please note that through revision 10 of the COHERENT manual, the signal numbers in signame[] were offset by one.
That is erroneous: the signal numbers are not offset at all.

In standard implementations of UNIX, the manifest constant NSIG was one larger than the number of signals.
Prior to release 4.2, however, COHERENT defined NSIG as being equal to the number of signals. Beginning with
release 4.2, COHERENT defines NSIG to conform to the UNIX usage, and introduces the manifest constant
_SIGNAL_MAX, which is equal to the number of signals. If your code depends upon the old definition of NSIG, you
should replace it with _SIGNAL_MAX.

Please note that signame[] is obsolete, and will be removed from future releases of COHERENT. Please do not
incorporate it into new code, and you should try to remove it from existing code.

sigpause() — System Call (libc)
Pause until a given signal is received
#include <signal.h>
int sigpause (sigtype)
int sigtype;

sigpause() is a member of the sigset() family of signal-handling system calls. It pauses until the signal sigtype is
received. If, however, a signal of type sigtype had previously been ‘‘placed on hold’’ by a call to sighold(), sigpause()
releases the signal for processing, just as if you had invoked the system call sigrelse().

See the Lexicon entry for signal() for a list of recognized signals.

sigpause() returns zero if all went well. If something went wrong, it returns -1 and sets errno to an appropriate
value.

See Also
libc, sighold(), sigignore(), signal(), sigrelse(), sigset()

Notes
For more information on the sigset() family of signal-handling system calls, see the Lexicon entry for sigset().

Note that invoking

sigpause(SIGCHLD)

with no children pauses forever.
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sigpending() — System Call (libc)
Examine signals that are blocked and pending
#include <signal.h>
int sigpending(stash)
sigset_t *stash;

sigpending() retrieves the signals that have been sent to the calling process but have been blocked by the calling
process’s signal mask. stash points to the area of memory where the retrieved signals are to be stored.

sigpending() returns zero if all goes well. It returns -1 and sets errno to EFAULT if stash points outside the
process’s allocated address space.

See Also
libc, sigaction(), signal()
POSIX Standard, §3.3.6

sigprocmask() — System Call (libc)
Examine or change the signal mask
#include <signal.h>
int sigprocmask(how, set, old_set)
int how; const sigset_t *set; sigset_t *old_set;

sigprocmask() examines or changes the calling process’s signal mask.

how defines how to modify the mask, as follows:

SIG_BLOCK
Add to the signal mask the set of signals to which set points.

SIG_UNBLOCK
Remove from the signal mask the set of signals to which set points.

SIG_SETMASK
Replace the current signal mask with the set of signals to which set points. If old_set is not NULL,
sigprocmask() stores the old mask in the space to which it points.

If set is NULL, sigprocmask() ignores the value of how; thus, you can use the call to find which signals are in the
signal mask.

If any unblocked unblocked signals are pending after you call sigprocmask(), at least one of those signals will be
delivered before sigprocmask() returns.

If all goes well, sigprocmask() returns zero. sigprocmask() returns -1 if either of the following conditions is true:

• how is not set to a recognized value. sigprocmask() sets errno to EINVAL.

• set or old_set points outside the process’s allocated address space. sigprocmask() sets errno to EFAULT.

In either error condition, sigprocmask() does not change the signal mask.

See Also
libc, signal(), siglongjmp(), sigsetjmp()
POSIX Standard, §3.3.5

sigrelse() — System Call (libc)
Release a signal for processing
#include <signal.h>
int sigrelse (sigtype)
int sigtype;

sigrelse() is a member of the sigset() family of signal-handling system calls. It releases the signal sigtype, which
had previously been ‘‘placed on hold’’ by the system call sighold(). Only one ‘‘copy’’ of sigtype can be held at a time.
Thus, you can use sighold() and sigrelse() to defer processing of the signal sigtype. This permits you to protect a
portion of your application from this signal until it is ready to process it.

When sigtype is released, it is processed by the function that had set for it by the system call sigset(). If sigset()
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has not been invoked for sigtype, then the system uses the function to which SIG_DFL points. SIG_DFL
terminates the process, just as if it called the function exit(). In addition, it dumps core if sigtype is any of the
following: SIGQUIT, SIGRESET, SIGTRAP, SIGSEGV, or SIGSYS.

Note that signal SIGKILL cannot be held. See the Lexicon entry for signal() for a list of recognized signals.

sigrelse() returns zero if all went well. If something went wrong, it returns -1 and sets errno to an appropriate
value.

See Also
libc, sighold(), sigignore(), signal(), sigpause(), sigset()

Notes
For more information on the sigset() family of signal-handling system calls, see the Lexicon entry for sigset().

sigset() — System Call (libc)
Specify action to take upon receipt of a given signal
#include <signal.h>
void (*sigset (sigtype, function))()
int sigtype;
void (*function)();

sigset() tells the signal handler what to do when the current process receives signal sigtype.

sigtype identifies the signal being sought. For a list of recognized signals, see the Lexicon entry for signal(). Note
that the signal SIGKILL, which kills a process, can be neither caught nor ignored.

function points to the function to be executed when sigtype is received. This can be a function of your own
creation; or you can use one of the following macros, which expand into pointers to system-defined functions:

SIG_DFL
This is the default action. The process terminates just as if it called the function exit(). In addition, the
system writes a core file in the current working directory if sigtype is any of the following: SIGQUIT,
SIGSYS, SIGTRAP, SIGSEGV, or SIGSYS. For more information on core files, see the Lexicon entry core.

SIG_IGN
Ignore sigtype. The system discards all signals of this type.

SIG_HOLD
Hold sigtype. The signal is held until the process calls sigrelse() to release it. Once the signal is released,
it is processed as defined by sigset(). Only one ‘‘copy’’ of sigtype can be held at any given time.

If all goes well, sigset() returns a pointer to the routine that had previously been in place to process sigtype. If
something goes wrong (e.g., sigtype is not defined in signal.h), sigset() returns SIG_ERR and sets errno to an
appropriate value.

sigset() Versus signal()
The COHERENT system also include the system call signal(), which also handles signals. signal() predates sigset()
and its related functions sighold(), sigignore(), sigpause(), and sigrelse(). You should never combine signal() with
the sigset() family of functions: use one or the other, but not both.

The sigset() functions differ from signal() in the way they handle signals while a signal is being processed: signal()
automatically invokes SIG_DFL for sigtype while its function is executing; whereas sigset() and its related functions
invoke SIG_HOLD.

Thus, with signal(), sending signal sigtype to a program while that signal’s function is already executing will trigger
the default action, which in most instances is to exit from the program. The signal-handling function itself can call
signal() to reset the signal-handler to point to itself or another function; however, there remains a brief interval of
vulnerability between the time the signal-processing function is called and the time it calls signal() to program the
signal handler. With sigset(), however, if another sigtype is received while its function processing, the signal
handler holds it, and releases it automatically after function returns.

sigset() also differs from signal() in the way in which the signal-handler is reset once sigtype has been processed.
With signal(), function is automatically reset to SIG_DFL just before a signal of type sigtype is processed. If you
wish sigtype always to be processed by function, you must explicitly re-invoke signal() for sigtype within function.
However, the sigset() family of routines always process sigtype by the routine to which function points until you
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explicitly change it.

See Also
libc, sighold(), sigignore(), signal(), sigpause(), sigrelse()

Notes
Functions called from within a signal handler should be re-entrant; this includes the standard I/O library. Thus,
in general, it is not a good idea to call printf() from inside a signal handler. The risk is that a signal will arrive
while the main program is updating a static structure, or calling malloc(); then the signal handler will run when
something is not in a consistent state, with unpredictable results.

sigsetjmp() — General Function (libc)
Save machine state and signal mask for non-local jump
#include <setjmp.h>
int sigsetjmp(environ, savemask)
sigjmp_buf environ;
int savemask;

sigsetjmp() performs the same action as the function setjmp(), except that if the value of savemask is not zero, it
saves the process’s signal mask as well as the machine state into the array to which environ points.

See Also
libc, sigaction(), siglongjmp(), sigprocmask(), sigsuspend()
POSIX Standard, §8.3.1

sigsuspend() — System Call (libc)
Install a signal mask and suspend process
#include <signal.h>
int sigsuspend(set)
const sigset_t *set;

sigsuspend() replaces the process’s signal mask with the set of signals to which set points, then suspends the
current process until it receives a signal that either terminates the process or invokes a signal-handling function.

If the received signal terminates the process, sigsuspend() does not return. If, however, the received signal invokes
a signal-handling function, sigsuspend() restores the original signal mask.

Because sigsuspend() indefinitely suspends execution of the process, there is no return value that indicates
successful completion. If something goes wrong, it returns -1 and sets errno to an appropriate value.
sigsuspend() fails if either of the following is true:

• The calling process catches a signal and grabs control from the signal-catching function. sigsuspend() sets
errno to EINTR.

• set points outside the process’s allocated address space. sigsuspend() sets errno to EFAULT.

See Also
libc, siglongjmp(), signal(), sigsetjmp()
POSIX Standard, §3.3.7

sin() — Mathematics function (libm)
Calculate sine
#include <math.h>
double sin(radian) double radian;

sin() calculates the sine of its argument radian, which must be in radian measure.

Example
The following example uses the functions sin() and cos() to paint sine and cosine on the screen. It is by Dmitry
Gringauz (dmitry@golem.com).

#include <math.h>
#include <stdio.h>
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#define MAX_X 79 /* X dimension of screen */
#define MAX_Y 23 /* Y dimension of screen */
char screen[MAX_X][MAX_Y]; /* the screen matrix */

main()
{

double pi = 3.14159, i, result;
int x = 0, y = 0, mid_x = (MAX_X-1)/2, mid_y = (MAX_Y-1)/2;

/* blank (dot) out the screen */
for (y = 0; y < MAX_Y; y++)

for (x = 0; x < MAX_X; x++)
screen[x][y] = ’.’;

/* build the "axis" */
for (x=0; x < MAX_X; x++)

screen[x][mid_y] = ’-’;
for (y = 0; y < MAX_Y; y++)

screen[mid_x][y] = ’|’;

/* make center and arrows */
screen[mid_x][mid_y] = ’+’;
screen[mid_x][0] = ’^’;
screen[MAX_X-1][mid_y] = ’>’;

/* do the sin() and cos() thing */
for (i = -pi; i <= pi; i = i + 2.0 / (MAX_X)) {

result = sin(i) ;

x = i*mid_x/pi + mid_x;
y = mid_y*(-1.0*result) + mid_y;

if (x >= MAX_X)
x = MAX_X - 1;

if (y >= MAX_Y)
y = MAX_Y - 1;

screen[x][y] = ’*’;
result = cos(i) ;

x = i*mid_x/pi + mid_x;
y = mid_y*(-1.0*result) + mid_y;

if (x >= MAX_X)
x = MAX_X - 1;

if (y >= MAX_Y)
y = MAX_Y - 1;

screen[x][y] = ’*’;
} /* i */

/* print the screen */
for (y = 0; y < MAX_Y; y++) {

for (x = 0; x < MAX_X; x++)
printf("%c", screen[x][y]);

printf("\n");
} /* y */

}

See Also
cos(), cosh(), libm, sinh()
ANSI Standard, §7.5.2.6
POSIX Standard, §8.1

sinh() — Mathematics Function (libm)
Calculate hyperbolic sine
#include <math.h>
double sinh(radian) double radian;
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sinh() calculates the hyperbolic sine of radian, which is in radian measure.

See Also
libm
ANSI Standard, §7.5.3.2
POSIX Standard, §8.1

size — Command
Print size of an object file
size [file ...]

size prints the sizes, in bytes, of the segments of each file (in decimal) and also prints the total size of all the
segments (in both decimal and octal). Each file must be an object file.

size outputs one line for each file, listing the following segments:

.text

.data

.bss

See Also
coff.h, commands, l.out.h

Notes
size makes no concessions to machines that use hexadecimal.

sizeof — C Keyword
Return size of a data element

sizeof is a C operator that returns a constant int that gives the size of any given data element. The element
examined can be a data object, a portion of a data object, or a type cast. sizeof returns the size of the element in
chars; for example

long foo;
sizeof foo;

returns four, because a long is as long as four chars.

sizeof can also tell you the size of an array. This is especially helpful for use with external arrays, whose size can
be set when they are initialized. For example:

char *arrayname[] = {
"COHERENT",
"COHware volume I",
"COHERENT Device Driver Kit",
"GNU C/C++"

};

main()
{

printf("\"arrayname\" has %d entries\n",
sizeof(arrayname)/sizeof char*);

}

sizeof is especially useful in malloc() routines, and when you need to specify byte counts to I/O routines. Using it
to set the size of data types instead of using a predetermined value will increase the portability of your code.

See Also
C keywords, data types, operators
ANSI Standard, §6.3.3.4
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sleep — Command
Stop executing for a specified time
sleep seconds

The command sleep suspends execution for a specified number of seconds. This routine is especially useful with
other commands to the shell. For example, typing

(sleep 3600; echo coffee break time) &

executes the echo command in one hour (3,600 seconds) to indicate an important appointment.

See Also
alarm(), commands, ksh, pause(), sh

sleep() — General Function (libc)
Suspend execution for interval
#include <unistd.h>
sleep(seconds)
unsigned seconds;

sleep() suspends execution for not less than seconds.

Example
The following example demonstrates how to use sleep():

#include <unistd.h>
main()
{

printf("Waiting for Godot ...\n");

for ( ; ; ) {
sleep(5); /* sleep for five seconds */
printf("... still waiting ...\n");

}
}

See Also
libc, nap(), unistd.h
POSIX Standard, §3.4.3

Notes
To make a program sleep for less than one second, use the system calls nap() or poll(). For an example, see the
Lexicon article for poll().

smail — Command
Mail delivery system
smail [ flags ] address ...

smail is the program that receives and delivers mail. It accepts mail from a source either on your local host or on
a remote host, and delivers that mail to its destination — again, either on your local host or another remote host.
smail does not provide a user interface for typing mail or reading it; to do so, you must use a ‘‘mailer’’ program,
such as mail or elm.

You will rarely, if ever, need to invoke smail directly. You may modify one of its configuration files from time to
time, but smail normally is invoked only by other programs. The rest of this article gives smail’s command-line
options and describes how it works. You will find this information useful should you wish to reconfigure your mail
system, or chase down a bug.

smail can be invoked under a variety of names. Each name indicates the major use to which smail will be put,
e.g., receiving local mail, receiving remote mail, attempting to deliver undelivered mail, or displaying information
about undelivered mail. These names are described below; each also has its own Lexicon entry.

Command-line Options
smail recognizes the following command-line options:
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-bc Display the contents of file COPYING, which is distributed with the source code for smail. This file details
what your rights and restrictions the authors of smail have set upon their work.

-bd Listen for connection requests on a socket bound in the Internet domain. When a connection occurs,
conduct an Simple Mail Transfer Protocol (SMTP) conversation with the peer process on the other system.
This option currently is not implemented under COHERENT, as COHERENT does not yet support
networking.

-bi Initialize the aliases file. The file that it builds depends upon whether you also use option -oA on the
command line.

By default, smail under COHERENT is compiled with the GDBM package. GDBM is a set of functions that
permit a program to build and read a simple hashed data base; for details on how it works, see the Lexicon
entry for libgdbm. Thus, when you also use option -oAfile to name an aliases file, smail invokes the
command /usr/lib/mail/newaliases to compile the contents of file into a DBM data base.

-bm address ...
Deliver mail to each address.

-bP address
Assume that each address on the command line is a configuration-file variable, and write its value onto
the standard output. For example, the command

smail -bP hostnames max_message_size

produces output of the form:

lepanto.com
102400

If you also use the flags -d or -v on the command line, smail also displays the variable names. Thus, the
command

smail -bP -v max_message_size

prints something like the following:

max_message_size=102400

The command

smail -bP primary_name

prints the primary (or ‘‘canonical’’) name for the local host that smail uses, and command

smail -bP config_file

prints the name of the primary configuration file. The command

smail -bP help

prints a verbose listing of every variable plus its type, one variable per line. Finally, command

smail -bP all

prints a verbose listing of every variable and its value. It is equivalent to the command smail -bP -v
followed by a list of the name of every configuration variable.

-bp List information about the messages that currently reside in smail’s input spool directories. This is
smail’s default mode of operation when you invoke it under the name mailq. When you also use the flags -
v or -d, smail displays the transaction-log entries for each message, to show what has happened to the
message so far.

-bS Read SMTP commands from the standard input, but do not write SMTP replies onto the standard output.
Report failures via mail rather than through reply codes.

This option is suitable for setting up a batched form of SMTP between machines over a remote execution
service like UUCP. This is the default mode of operation if you invoke smail under the name rsmtp.

-bs Read SMTP commands from standard input, and write SMTP replies onto the standard output. The
following SMTP commands are implemented:
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HELO MAIL FROM RCPT
TO DATA RSET NOOP
VRFY EXPN QUIT

This is the default mode of operation if you invoke smail under the name smtpd.

-bt Run smail in test-address mode: smail reads addresses from standard input, parses them, and writes its
result onto the standard output. This is primarily useful for debugging smail or debugging new smail
routers.

-bV See option -V, below.

-bv Verify an address. smail reads each address you list on its command line, subjects it to aliasing and
forwarding expansions, then subjects it to host routing or resolving, and finally prints the resolved address
onto the standard output. You can then check whether the resolved address matches what you expect. If
smail cannot resolve an address, it prints an explanation of why it cannot.

-C file Use file as the primary configuration file — i.e., the file that holds global attributes. smail resets the
effective user identifier and group identifier to those of the real user and group, to avoid problems should
smail be setuid to the superuser.

If file is ‘-’, then smail does not use a primary configuration file. You should use this only for debugging.

-d[number]
Turn on debugging. number sets the level of debugging; the default level is one. No white space must
separate the option and number. Please note that -d and -v are identical; smail recognizes both for
historical reasons.

-D file Write debugging information into file. Normally, using option -v or -d to generate debugging output also
disables background delivery of mail, because programs should not continue to write to the standard error
after the mail process exits; however, if you name a debugging-output file, background delivery can
continue.

-ee
-oee These options refer to a ‘‘berkenet’’ style of error-processing that smail does not support. If used, smail

mails an error message back to you.

-em
-oem Mail error messages to the sender. This is the default.

-ep Write error messages onto the standard-error device.

-eq If an error occurs, do not notify the sender of it. This only works for mail being delivered locally: an error
that occurs on a remote host’s mail system still generates a mail message to the sender. To set this
behavior on both the local host and a remote host, supply a header that reads:

Precedence: junk

-ew
-oew Mail errors to the sender, just as with option -m. With some mail-delivery programs, this option asks the

program to invoke the command write to write errors onto the sender’s screen, should she be logged in.

-F fullname
Set to fullname the full name of the sender for incoming mail. Use this option only if you wish to use
smail to receive a single mail message from the standard input.

-f sender
Set to sender the address for incoming mail. Use this option only if you want smail to receive a single mail
message from the standard input.

-h number
Set to number the hop count for a message. If this command-line option is not used, smail computes the
hop count from the number of Received: fields in the message’s header. smail uses the hop count as a
primitive method of detecting an infinite loop: if the hop count is too large, smail rejects the mail.

NB, an infinite loop occurs when two sites each think that a given user resides on the other. A message
mailed to that user will ping-pong between the sites; unless the message is stopped somehow, its header
can grow infinitely large.
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-I Use the ‘‘hidden-dot’’ algorithm when reading a message. If a message contains a line that begins with one
or more periods, smail removes that leading period; a line that consists of a single period terminates the
message. This option is always set for messages received via SMTP.

-i A line that consists of a single period does not terminate an incoming message. This is the default if you
invoke smail under the name rmail.

-m If a user mails a message to an alias list or mailing list that includes her name, send a copy of the message
to that user. By default, if the user mails a message to a list that includes her name, smail does not send
a copy of a message back to her.

-N Disable delivery of a message. smail performs all other processing, and the transport programs are
expected to go through most of the steps involved in delivery. Use this option when you wish to debug
smail but do not want to have the messages delivered.

-n Do not process aliases. With this option, smail will not expand entries in alias files; however, it will still
expand entries in mailing-list files and forwarding files.

-oC file See option -C, above.

-odb If mail is to be delivered, deliver it in the background. Note that background delivery is not currently
supported in the SMTP modes: mail is delivered in the foreground.

-oD file Use file as the directors file, instead of the default /usr/lib/mail/directors. smail resets the effective user
and group identifiers to those of the real user and group, to avoid problems should an installation setuid
smail to the superuser. If file is ‘-’, smail does not read a directors file. Use this option only when you
are debugging smail.

-odf If mail is to be delivered, deliver it in the foreground.

-oE file Use file as the delivery-retry control file, instead of the default /usr/lib/mail/retry. smail resets the
effective user and group identifiers to those of the real user and group, to avoid problems should an
installation setuid smail to the superuser. If file is ‘-’, smail does not read a retry file. Use this option only
when you are debugging smail.

-oep See option -ep, above.

-oeq See option -eq, above.

-oI See option -I, above.

-oi See option -i, above.

-oL directory
Use directory as the library directory — that is, the directory that holds configuration files and mailing-list
directories. This overrides the default value compiled into smail through its option smail_lib_dir (under
COHERENT /usr/lib/smail), as well as any name set in a configuration file.

-oMr sender_proto
Use sender_proto as the protocol by which sending host delivers the mail message. You can include this
value in expansion strings via the variable $sender_proto.

-oMs sender_host
Set to sender_host the system that can send the mail message. You can include this value in expansion
strings via the variable $sender_host.

-om See option -m, above.

-oQ file Set the path name of the host-name qualification file to file, instead of the default /usr/lib/mail/qualify.
smail resets the effective user and group identifiers to those of the real user and group, to avoid problems
should an installation setuid smail to the superuser. If file is ‘-’, smail does not read a qualify file. Use
this option only when you are debugging smail.

-oR file Use file as the router file, instead of the default /usr/lib/mail/routers. smail resets the effective user and
group identifiers to the real user and group identifiers, to avoid problems should an installation setuid
smail to the superuser. If file is ‘-’, smail does not read a router file. Use this option only when you are
debugging smail.

LEXICON

smail 1125



-oT file Use file as the transport file, instead of the default /usr/lib/mail/transports. smail resets the effective
user and group identifiers to those of the real user and group, to avoid problems should an installation
setuid smail to the superuser. If file is ‘-’, smail does not read a transport file. Use this option only when
you are debugging smail.

-oU Tell smail to report memory usage when it exits.

-oX mail-service
Tell smail to listen for SMTP requests on the TCP/IP service or port mail-service. You can use this option
with -bd mode to define alternate debugging versions of smail’s SMTP listening daemon; this can be useful
when you test a new installation.

Please note that because COHERENT does not yet support networking, this option does nothing.

-Q
-odq Spool incoming messages, but do not deliver them until later queue. This mode of operation is somewhat

more efficient in terms of CPU usage, but slows down the flow of mail.

-q[interval]
Force smail to process its input spool directory. If you set interval, smail continually checks its input-
spool directory, and sleeps for interval between checks. interval is a string that consists of a number
followed by one of the following letters to indicate unit of time:

s seconds
m minutes
h hours
d days
w weeks
y years

For example, option -q2h30m tells smail to check its input spool directory every two hours and 30
minutes. This flag is useful with the -bd mode of operation, as it awakens the daemon process after each
interval to process the queue. This is smail’s default mode of operation when you invoke it under the
name runq.

-r sender
See option -f, above.

-t Extract addresses from the To:, Cc:, and Bcc: fields of the message header. This is useful for mailers that
do not compute the recipient addresses themselves. In this mode, the addresses given on the command
line will not receive mail, even as a result of expanding aliases or forwarding addresses. smail ignores this
option unless it is in the mode set by command-line option -bm (which is the default mode).

-V Print the version smail onto the standard output.

Normal Use
A user agent can submit new mail message by invoking smail and passing it a message via the standard input.
For example, mailers such as mail and elm submit mail by invoking smail with a command such as

smail -em -i address ...

Because smail also works correctly if invoked as sendmail, it is common to install smail as /usr/lib/sendmail, so
that existing binaries on BSD systems, or other systems that currently run sendmail, need not be modified to run
smail instead. This also lets you run applications that have been configured to send mail via sendmail without
modifying their sources or recompiling.

Some user agents, such as GNU Emacs, may wish to have smail decipher the recipient list from the header. These
programs can invoke smail with a command, such as:

smail -em -t -i

To receive mail over UUCP, uuxqt invokes the command rmail, which is a link to smail. rmail can also be another
program that invokes smail directly as:

smail -em -i -fsender-address recipient address ...

An alternative method of receiving mail over UUCP is through the command rsmtp, which receives batched SMTP
requests. This can be used between two sites running smail to gain many of the benefits of the SMTP protocol,
such as the ability to use recipient addresses that uux cannot correctly pass to a remote rmail program. For
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example, an address that contains quotations marks or spaces cannot be expected to pass correctly over an uux-
rmail link, but will pass correctly over a uux-rsmtp link.

Addressing Under smail
The following describes how smail interprets an E-mail address.

smail understands domain-style addresses (e.g., henry@mwc.com) UUCP-style path names, (e.g.,
mwc!lepanto!henry), and local addresses (e.g., henry). It assumes that an address of the form user@domain is a
domain address, that an address of the form host!address is a UUCP path, and anything else is a local address.

When it parses a mixed address (that is, an address that contains both a ‘!’ and a ‘@’), smail gives precedence to ‘@’
over ‘!’. Thus, it parses the address a!b@c as (a!b)@c, rather than a!(b@c), which means that mail addressed to
a!b@c is forwarded to system c instead of to system a.

Resolving Addresses
An E-mail address has two forms: internal and external. The internal form of an address is what appears on the
To: line in the message’s header. This is the recipient’s address as typed by the person who mailed the message.
This is regardless of whether the sender typed the recipient’s full address, or typed an alias for the recipient. (For
details on how to use aliases to address mail messages, see the Lexicon entry for aliases.) The external form of an
address (also called the message’s envelope), is the address that smail passes to the mail-delivery agent (either uux
or lmail).

Resolving is the act of transforming an internal address into an envelope. It has two stages: host resolution and
alias resolution. Host resolution (also called routing) is how smail figures out the identity of the computer to which
it must send the message. If smail determines that the message must be delivered on your local machine, it then
applies alias resolution (also called alias expansion) to the address. If the address proves to be an alias, smail
expands the alias and again performs host resolution to find the machine to which it should deliver the message.
If, however, the address names a user on your local machine, then smail hands the message to the local mailer
lmail for delivery.

Although smail understands domain-style addresses (i.e., addresses that contain a ‘@’ and are read from right to
left), it can deliver mail only to UUCP paths (i.e., addresses that contain ‘!’ characters and are read from left to right)
and local addresses. Thus, it must resolve a domain address into a UUCP path or local address.

To resolve a domain-style address, smail must find the route to the most specific part of the domain, as specified
in the routing file /usr/lib/mail/paths. Two degrees of resolution can occur:

Full Resolution
smail finds the full route to the machine. In this case, smail either tacks the user specification onto the
end of the machine’s UUCP path, or resolves it into a local address, whichever is appropriate.

Partial Resolution
smail finds a route for only the right portion of the domain specification; e.g., for

henry@lepanto.mwc.com

it finds mwc.com but cannot identify lepanto. Here, smail tacks the complete address (in the form
domain!user) onto the end of the UUCP path. For example, if smail finds that the route to mwc.com is via
systems foo, bar, and baz, it constructs the path:

foo!bar!baz!lepanto.mwc.com!henry

This assumes that routing program on system baz (perhaps smail, perhaps some other program) will
recognize the token lepanto.mwc.com as being a domain rather than a host.

It is an error to route a partially resolved address to the local host (a null UUCP path), because the local host is
responsible for resolving the address more fully.

The command-line option -r tells smail to attempt to route the first (leftmost) component of a UUCP path,
regardless of whether it knows how to send mail directly to a site named further to the right in the path. This is
called always routing. For example, if a mail message is address to

foo!bar!baz!mwc!lepanto!fred

option -r tells smail always to route the mail to foo, even if also knows how to route mail to mwc.

The command-line option -R tells smail to route mail to the rightmost host named on a UUCP path. This is called
reroute routing. Use it if you have a very up-to-date routing table, and wish to bypass some obsolete routing
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information in the current path.

If file /usr/lib/mail/paths does not contain a path to the remote system, smail forwards mail to the the host
named in the entry smart_path in file /usr/lib/mail/config. This lets your system depend on another, better
informed, system to deliver your mail. Note that before you name another system as your system’s smart_path,
you should get the permission of the person who administers that system. Please note that if you start to forward
mail to a system without permission, that system’s administrator may forward your mail to the bit bucket.

After smail resolves an address, it reparses the address to see if it is now a UUCP path or local address. If the new
address turns out to be another domain address, smail complains. This error occurs when an address partially
resolves to the local host.

By default, smail does not alter an explicit UUCP path of any mail message. If the stated path is unusable (i.e., the
next host is unknown), then smail applies always-routing and attempts to deliver the message to first (leftmost)
system named in the UUCP path. If this fails, smail then uses reroute-routing and again attempts to deliver the
message. If this too fails, smail finally attempts to to find a path to a smart-host and passes the mail to it. And if
that finally fails, smail mails an error message to user who mailed the message, and abandons any further attempt
to deliver the message.

Headers
Document RFC822, which governs Internet mail, demands that a mail message contain certain entries in its
header. These entries include one that begins with the string To:, one that begins with the string From:, and one
that begins with the string Date. If a message’s header does not contain one or more of these entries, smail inserts
it.

Build the From: Line of a Message
The header of a mail message includes a line that begins From:. This line names the user who originated the
message. This line is extremely important, as it will read by users and programs on the recipient’s system to
identify the sender, and possibly reply to the message.

smail collapses the From_ and >From_ lines within a mail message to generate a simple ‘‘from’’ argument, which it
then uses to create its own From: line. This processing sometimes is called from-ming a message. The following
gives the rules for from-ming:

• First, it concatenates all hosts named on remote from lines, separating them from each other by ‘!’s.

• It appends onto that concatenated address, the address from the last From_ line.

• If that address is in domain format (i.e., the form user@domain), smail rewrites it in bang-path format (i.e.,
the form domain!user). If a host or domain names the local system, smail ignores it.

• Finally, smail removes redundant information from the From_ line.

smail generates its own From_ line. For mail that is to be forwarded via UUCP, smail generates a line of the form
remote-from host; host is the UUCP host name (not the domain name), so that From_ can indicate a valid UUCP
path, thus leaving the sender’s domain address in From:.

Undeliverable Mail
smail returns to sender all mail that is undeliverable. A message is declared to be undeliverable if the user is
unknown, or if the user resides on an unknown host.

Logging
smail uses two log files:

/usr/spool/smail/log/logfile
The log of every mail message that your system receives. Please note that if your system is busy, this file
will quickly become very large. You should embed the command /usr/lib/mail/savelog in root’s cron file
to ensure that this file is truncated and saved regularly. For details on savelog or cron, see their articles
in the Lexicon.

/usr/spool/smail/log/paniclog
The log of every mail that created a panic situation. If your system is configured properly, this file will
never become large.
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Registered Domains and Subdomains
You may wish to register your domain with the NIC. This will give you an internationally recognized e-mail
address. For more information, send E-mail to postmaster@internic.net.

Once you have registered your domain, you can also set up subdomains for other systems, so they can receive
information from the Internet via your system. The rest of this section discusses how to describe subdomains to
your system, and related topics.

Let’s say that you have registered your domain, and you have named it mydomain. To route mail systems
subordinate to mydomain, do the following:

1. Insert the following entry into /usr/lib/mail/paths:

.mydomain.com %s 50

This tells smail that the local host (i.e., your machine) must resolve that any address that ends in the
suffix .mydomain.com, or it is an error.

2. For each site in mydomain, create two entries in /usr/lib/mail/paths. For example, for the site
foo.mydomain.com, create the entries:

foo foo!%s 200
foo.mydomain.com foo!%s 200

If the site bar.mydomain.com is fed by the route froboz!florp!bar, insert these lines into paths:

bar froboz!florp!bar!%s 200
bar.mydomain.com froboz!florp!bar!%s 200

Note that you do not have to register subdomains with the NIC. Once you register the top-level domain with the
NIC, you control the entire name space — you can subdomain to your heart’s content.

The only restrictions on subdomaining may be with your Internet Nameserver. Most nameservers for UUCP
domains publish a ‘‘wildcard’’ mail exchanger (MX) record, that essentially says, ‘‘send everything for
*.mydomain.com to this Internet gateway.’’ However, some nameserver managers require you to register every site
in your domain, for which they provide a separate MX record. The advantage of this scheme is that anybody on the
Internet who sends mail to your domain immediately receives an error message if the message is addressed to a
non-existent site. For details, check with the person who manages your nameserver.

To route for an entire subdomain (e.g., .subd.mydomain.com), you must choose a gateway for that domain (e.g.,
gateway.subd.mydomain.com),and then use a line like this:

.subd.mydomain.com gateway!%s 200

smail automatically chooses the longest subdomain match it can find, so this rule applies before the
.mydomain.com %s rule.

Note that the gateway need not be in the subdomain itself. You could have a line elsewhere in the paths file on
mydomain that says:

gateway.mydomain.com gateway!%s 200

Your main gateway may also have information about machines in subdomains, although this is not necessary. For
instance, if your main machine is directly connected to a machine in a subdomain, you may want to put this
information into paths, so the mail will not go through the gateway for that domain.

For example, the machine smith.subd.mydomain.com might be directly connected to your master gateway,
mydomain.com:

smith smith!%s 200
smith.subd.mydomain.com smith!%s 200

Without this rule, mail for smith would be queued for forwarding through gateway.subd.mydomain.com.

Compatibility With sendmail
smail was designed to be a plug-in replacement for the BSD program sendmail, in that external programs can call
smail in the same way that they call sendmail and expect similar results. However, smail is completely different
internally and has entirely different configuration files. As a result, the option -o to smail only sets a few
configuration parameters that were believed to be commonly used by other programs. Also, for convenience, some
new (upper-case only) parameters are defined only in smail. smail ignores attempts to use this flag to set other
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options. For a complete list of the -o options that smail recognizes, see the section on command-line options,
above.

For compatibility with other software systems (in particular, the Taylor UUCP package), COHERENT links smail to
command /usr/lib/sendmail. Thus, a program that expects to use sendmail can use smail without being
recompiled or reconfigured.

Configuration Files
For most sites, the configuration compiled into smail is sufficient, and thus no configuration files are needed.
However, you can use any or all of the following optional configuration files to restructure how smail behaves on
your system:

/usr/lib/mail/config
General configuration. This file can override compiled-in configuration, including the names of any of the
following configuration files.

/usr/lib/mail/directors
Configuration file for smail directors, i.e., configured methods for resolving local addresses.

/usr/lib/mail/routers
Configuration file for smail routers, i.e., configured methods for resolving or routing to remote hosts.

/usr/lib/mail/transports
Configuration for smail transports, i.e., configured methods of mail delivery.

The contents of file config dictate how smail configures its internal workings — where it looks to find other
configuration files, where it should send error messages, and so on. The contents of routers, directors, and
transports together tell smail how to deliver mail both on your local system and on remote systems. The following
describes how these files work together.

When smail is given a list of addresses to which a message is to be delivered, it processes the list iteratively until it
produces a list of resolved addresses. When an address is resolved, smail will know which transport it must use to
deliver the message to the person or persons to whom it is addressed, and all data that this transport requires. To
accomplish this, smail goes through the following steps:

A. smail first parses each address to find a host name, called the target, and the remaining part of the address,
called the remainder.

As a simple example, in the address tron@uts.amdahl.com, the host part uts.amdahl.com is the target and
tron is the remainder. Likewise, in the address sun!amdahl!tron, the target is sun and the remainder is
amdahl!tron.

B. smail then shows each address to directors, in the order given in file /usr/lib/mail/directors, until one of
the directors says that it knows what to do with that address. That director can either return a new list of
addresses, or put the address onto a list of resolved addresses. If new addresses are produced, smail places
them onto the input list, to be processed from step A.

C. When an address has passed through step B, smail shows it to various routers, in the order given in file
/usr/lib/mail/routers, until a router can match the target name for the address. If no router can match the
complete target, then smail selects the router that matches the longest portion of the target. The router
names the transport to be used to deliver the message to that address, plus some other information that the
transport requires (e.g., the next host and next address values). The information as to which transport to use
can come either from the definition of the router, from a method file, or may be specified by the router
specifically.

When all addresses have been resolved, smail sorts them and passes them to transports. The transport then
delivers the message to the addresses it is given.

Host names and local user-names are matched independent of case; for example, ‘‘Postmaster’’, ‘‘POSTMASTER’’,
and ‘‘postmaster’’ are in effect all the same. In addition, smail keeps an internal hash table of all regular recipient
addresses, that is, all addresses that do not specify files or shell commands. This table is used to discard duplicate
regular recipient addresses. This hash table is independent of case, as well, so that the address Postmaster@SRI-
NIC.ARPA is considered a duplicate of postmaster@sri-nic.arpa.

Other Files and Directories
smail also uses the following configuration files:
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/usr/lib/mail/qualify
Configuration file for host-name qualification.

/usr/lib/mail/retry
Optional delivery retry configuration file, i.e., minimum time between retries and maximum time to retry
before giving up.

smail reads the following files to learn how to redirect mail locally and to give paths to remote sites:

/usr/lib/mail/aliases
Aliases for mail addresses.

/usr/lib/mail/paths
Paths to remote hosts.

/usr/lib/mail/lists
Mailing-list files.

/usr/spool/mail
The directory that holds each user’s mailbox file.

$HOME/.forward
Forwarding address or addresses for a given user.

smail uses the following directories to hold incoming mail messages and its work files:

/usr/spool/smail
Directory that holds spool directories and work files.

/usr/spool/smail/input
Spool directory for incoming messages.

/usr/spool/smail/error
Directory that holds mail messages that failed for a reason that the site administrator should investigate.

/usr/spool/smail/msglog
Directory that holds transaction logs for individual messages.

/usr/spool/smail/lock
This directory holds smail’s input lock files.

The following files log smail’s activity. Please note that these files will grow without end. Your system’s system
administrator should check and truncate these files from time to time. She can also use the script
/usr/lib/mail/savelog to manage these files; for details, see the Lexicon entry for this command:

/usr/spool/smail/log/logfile
A log of smail’s transactions.

/usr/spool/smail/log/paniclog
A log of configuration or system errors encountered by smail.

See Also
commands, mail [command], mail [overview], mailq, rmail, rsmtp, runq, savelog, smtpd

Diagnostics
If all goes well, smail returns zero to the shell when it exits. If an error occurs, it returns a value other than zero.
The meaning of each code is set in smail’s source file exitcodes.h, as follows:

EX_USAGE. . . . . . . . Error in command-line usage
EX_DATAERR. . . . . . Data-format error
EX_NOINPUT . . . . . . Cannot open input file
EX_NOUSER. . . . . . . Addressee unknown
EX_NOHOST . . . . . . Host unknown
EX_UNAVAILABLE . . . Service unavailable
EX_SOFTWARE. . . . . Internal software error
EX_OSERR . . . . . . . System error
EX_OSFILE . . . . . . . Critical OS file missing
EX_CANTCREAT . . . . Cannot create (user) output file
EX_IOERR . . . . . . . . Error in file I/O
EX_TEMPFAIL . . . . . Temporary failure; user can retry
EX_PROTOCOL. . . . . Remote error in protocol
EX_NOPERM . . . . . . Permission denied
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If you invoke smail with its option -bd, then the message

bind() failed: address already in use

means that another process is already listening to the SMTP socket.

Notes
Many mail bugs are not smail bugs. smail cannot help it if remote sites trash your mail messages.

Setting the input spool directory processing interval to a period of more than 2,147,483,647 seconds will result in
an incorrectly calculated processing interval — and is a rather silly thing to do at any event.

Copyright  1987, 1988 Ronald S. Karr and Landon Curt Noll. Copyright  1992 Ronald S. Karr.

For details on the distribution rights and restrictions associated with this software, see file COPYING, which is
included with the source code to the smail system; or type the command:

smail -bc.

smtpd — Command
SMTP daemon
/bin/smtpd

The daemon smtpd reads SMTP commands from standard input, and writes SMTP replies onto the standard
output. The following SMTP commands are implemented:

HELO MAIL FROM RCPT
TO DATA RSET NOOP
VRFY EXPN QUIT DEBUG

See Also
commands, mail [overview], rsmtp, smail

Notes
smtpd is a link to command smail.

Copyright  1987, 1988 Ronald S. Karr and Landon Curt Noll. Copyright  1992 Ronald S. Karr.

For details on the distribution rights and restrictions associated with this software, see file COPYING, which is
included with the source code to the smail system; or type the command: smail -bc.

smult() — Multiple-Precision Mathematics (libmp)
Multiply multiple-precision integers
#include <mprec.h>
void smult(a, n, c)
mint *a, *c; int n;

smult() multiplies the multiple-precision integer (or mint) pointed to by a by the integer n, which is <= 127. It
writes the product into the mint pointed to by c.

See Also
libmp

SOCKADDRLEN() — Sockets Function (libsocket)
Return length of an address
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/un.h>
int SOCKADDRLEN(address)
struct sockaddr *address;

Function SOCKADDRLEN() returns the size, in bytes, of address->sa_family. This helps a program distinguish
between a UNIX and an Internet address.
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See Also
libsocket

Notes
COHERENT implements SOCKADDRLEN() as a function rather than as a macro.

socket() — Sockets Function (libsocket)
Create a socket
#include <sys/types.h>
#include <sys/socket.h>
int socket(domain, type, protocol)
int domain, type, protocol;

socket() creates a ‘‘socket’’ — that is, an endpoint for communication. It returns a descriptor that uniquely
identifies the socket.

domain specifies the domain within which communication will take place. This selects the protocol family to be
used. These families are defined in <sys/socket.h> Currently, socket() recognizes the following domains:

AF_UNIX UNIX internal protocols.
AF_INET ARPA Internet protocols.

The socket has the indicated type, which specifies the semantics of communication. socket() recogizes the
following types:

SOCK_STREAM
This type provides a byte stream that is sequenced, reliable, two-way, and connection-based.

SOCK_DGRAM This type supports ‘‘datagrams’’ — that is, connectionless, unreliable messages of a fixed
maximum length.

protocol identifies the protocol to be used with the newly created socket. In most instances, a given type of socket
supports only one protocol. However, a socket type may support many different protocols, in which case you must
specify the one to use. The protocol number to use is particular to the ‘‘communication domain’’ in which
communication is to take place.

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket must be in a
connected to another socket (through a call to function connect()) before any data can be sent to it or received on
it. Once connected, data can be transferred using the system calls read() and write(). When a session has been
completed, invoke the system call close() to close the socket.

If all goes well, socket() returns the descriptor of the newly created socket; this is always a positive integer. If
something goes wrong, it returns -1 and sets errno to an appropriate value. The following lists the possible errors,
by the value to which socket() sets errno:

EPROTONOSUPPORT
type or protocol is not supported within this domain.

EMFILE
The per-process descriptor table is full.

ENFILE
The system file table is full.

EACCESS
You do not have permission to create a socket of a given type or protocol.

ENOBUFS
Not enough buffer space is available. The socket cannot be created until sufficient resources are freed.

See Also
accept(), connect(), libsocket, listen(), read(), write()

LEXICON

socket() 1133



socket.h — Header File
Define constants and structures with sockets
#include <sys/socket.h>

Header file <socket.h> defines constants, structures, and prototypes used with sockets.

See Also
header files, libsocket

socketpair() — Sockets Function (libsocket)
Create a pair of sockets
int socketpair (family, type, protocol, fds)
int family, type, protocol, fds[2];

Function socketpair() creates a pair of sockets. family, type, and protocol give the family, type, and protocol of the
sockets to be created. At present, family must be set to AF_UNIX. fds gives the address of an array of two integers,
into which socketpair() writes the file descriptors of the sockets it creates.

If all goes well, socketpair() returns zero. If an error occurs, it returns -1 and sets errno to an appropriate value.

See Also
libsocket

Notes
socketpair() does not connect the pair of sockets that it creates, so a call to getpeername() on one of them will not
return the name of the other.

sort — Command
Sort lines of text
sort [-bcdfimnru] [-t c] [-o outfile] [-T dir] [+beg[-end]][file ...]

sort reads lines from each file, or from the standard input if no file is specified. It sorts what it reads, and writes
the sorted material to the standard output.

sort sorts lines by comparing a key from each line. By default, the key is the entire input line (or record) and
ordering is in ASCII order. The key, however, can be one or more fields within the input record; by using the
appropriate options, you can select which fields are used as the key, and dictate the character that is used to
separate the fields.

The following options affect how the key is constructed or how the output is ordered.

-b Ignore leading white space (blanks or tabs) in key comparisons.

-d Dictionary ordering: use only letters, blanks, and digits when comparing keys. This is essentially the ordering
used to sort telephone directories.

-f Fold upper-case letters to lower case for comparison purposes.

-i Ignore all characters outside of the printable ASCII range (octal 040-0176).

-n The key is a numeric string that consists of optional leading blanks and optional minus sign followed by any
number of digits with an optional decimal point. Ordering is by the numeric, as opposed to alphabetic, value
of the string.

-r Reverse the ordering, i.e., sort from largest to smallest.

As noted above, the key compared from each line need not be the entire input line. The option +beg indicates the
beginning position of the key field in the input line, and the optional -end indicates that the key field ends just
before the end position. If no -end is given, the key field ends at the end of the line. Each of these positional
indicators has the form +m.nf or -m.nf, where m is the number of fields to skip in the input line and n is the
number of characters to skip after skipping fields. Optional flags f are chosen from the above key flags (bdfinr) and
are local to the specified field.

The following additional options control how sort works.
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-c Check the input to see if it is sorted. Print the first out-of-order line found.

-m Merge the input files. sort assumes each file to be sorted already. With large files, sort runs much faster
with this option.

-o outfile
Put the output into outfile rather than on the standard output. This allows sort to work correctly if the
output file is one of the input files.

-tc Use the character c to separate fields rather than the default blanks and tabs. For example, -t/ uses the
slash instead of white space to separate fields; this is useful when sorting file names and directory names.

-T dir
Create temporary files in directory dir rather than the standard place.

-u Suppress multiple copies of lines with key fields that compare equally.

The following example sorts the password file /etc/passwd, first by group number (field 4) and then by user name
(field 1):

sort -t: +3n -4 +0 -1 /etc/passwd

Limits
The COHERENT implementation of sort sets the following limits on input and output:

Characters per input record 399
Characters per output record 399
Characters per field 399

Files
/usr/tmp/sort* — First attempt at temporary files
/tmp/sort* — Second attempt at temporary files

See Also
ASCII, commands, ctype.h, qsort(), shellsort(), tsort, uniq

Diagnostics
sort returns a nonzero exit status if internal problems occurred, or if the file was not correctly sorted in the case of
the -c option.

spac — Command
Sort a file system
spac raw_device

The command spac uses the default dpac sorting algorithm to re-organize file system raw_device.

See Also
commands, dpac, fmap, fsck, qpac, upac

Notes
spac is a link to the command dpac. spac was written by Randy Wright (rw@rwsys.wimsey.bc.ca).

spell — Command
Find spelling errors
spell [-a][-b][file ...]

spell builds a set of unique words from a document contained in each input file, or the standard input if none. It
writes a list of words believed to be misspelled onto the standard output.

spell should normally be invoked with the document in the form of the input to the text formatter nroff rather
than the output. spell deletes control information to the formatter by invoking deroff.

The default dictionary is for American spelling of English. The -a option specifies this dictionary explicitly. Under
the -b option, British spelling is checked. This accepts favour, fibre, and travelled rather than the American
spellings favor, fiber, and traveled for the same words. Words ending in ize are also accepted when ending in ise
(e.g., digitize, digitise).
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The dictionary has a reasonably complete coverage of proper names as well as technical terms in certain fields.
However, it covers some fields (e.g., computer science) better than others (e.g., medicine).

Looking up a Word
The COHERENT command look reads spell’s dictionaries to find words that resemble a fraction of a word that you
type. For example, the command

look consider

returns the following to the standard output:

consider#
considerable
considerably
considerate
considerately
consideration#
considered
considering

The ‘#’ indicates a possible plural form by adding ‘s’ to the end of the word. This lets you check the spelling of a
word without having to enter the word into a file and run spell on it.

Files
/usr/dict/clista — Compressed American dictionary
/usr/dict/clistb — Compressed British dictionary
/usr/dict/spellhist — History file for dictionary maintainer
/usr/lib/spell

See Also
commands, deroff, look, nroff, sort, typo

Notes
Dictionaries are not provided for languages other than English.

No dictionary can be complete. You must add new words to the dictionary to ensure that it fully meets your needs.

Obscure words (such as opcodes, variable names, etc.) are flagged as spelling errors.

Because the data files required for spell are quite large, they might not be installed onto systems with limited disk
space. As a result, the command might not work as expected on all systems.

split — Command
Split a text file into smaller files
split [-lines][-ccount][infile [outfile] ]

split divides a file into a number of smaller files. This is especially useful for dividing text files into chunks that
can be managed by MicroEMACS or similar editors, or for dividing binary files into chunks that can be easily
transmitted via UUCP.

split uses infile as its input file if given; otherwise, it uses the standard input. If infile is ‘-’, split uses the standard
input.

split puts its output into files with names prefixed by outfile and suffixed consecutively with aa, ab, ac, and so on.
If no outfile is specified, file names are prefixed with x.

Normally, split puts 1,000 lines in each output file. This default may be changed for text files by the option -lines,
where lines gives the desired number of lines per file. When using split on binary files, the argument count to the -
c option lets you specify the number of characters to place into each output file.

See Also
commands
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spow() — Multiple-Precision Mathematics (libmp)
Raise multiple-precision integer to power
#include <mprec.h>
void spow(a, n, b)
mint *a, *b; int n;

spow() raises the multiple-precision integer (or mint) pointed to by a to the power of n, and writes the result into
the mint pointed to by b. In no case may the exponent be negative.

See Also
libmp

sprintf() — STDIO Function (libc)
Format output
#include <stdio.h>
int sprintf(string, format [ , arg ] ...)
char *string, *format;

sprintf() formats and prints a string. It resembles the function printf(), except that it writes its output into the
memory location pointed to by string, instead of to the standard output.

sprintf() reads the string pointed to by format to specify an output format for each arg; it then writes every arg into
string, which it ends with a null character. For a detailed discussion of sprintf()’s formatting codes, see printf().

If it wrote the formatted string correctly, sprintf() returns the number of characters written. Otherwise, it returns
a negative number.

Example
For an example of this function, see the entry for sscanf().

See Also
printf(), fprintf(), libc, vsprintf()
ANSI Standard, §7.9.6.5
POSIX Standard, §8.1

Notes
The output string passed to sprintf() must be large enough to hold all output characters.

Because C does not perform type checking, it is essential that each argument match its format specification.

sqrt() — Mathematics Function (libm)
Compute square root
#include <math.h>
double sqrt(z) double z;

sqrt() returns the square root of z.

Example
The following program prints all prime numbers between one and a positive integer that the user enters. It was
written by Michael B. Young (myoung@mcs.csuhayward.edu).

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

int i, userinput;

/* get user input */
fprintf(stderr, "Enter an integer value greater than 2: ");
scanf("%d", &userinput);
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if (userinput < 3) {
fprintf(stderr, "Error: enter a positive integer > 2\n");
exit(EXIT_FAILURE);

}

/* test for all numbers between one and "userinput". */
/* for efficiency’s sake, even numbers are not tested. */
/* two is the only even prime number */

printf("%d\n", 2);
for (i = 3; i < userinput; i += 2)

if (prime(i))
printf("%d\n", i);

exit(EXIT_SUCCESS);
}

/*
* function prime() - tests the passed integer testvalue for "prime-ness"
* by testing whether each integer between 1 and the square root of
* testvalue divides evenly into testvalue. Returns 1 if prime, 0 if not.
*/
int prime(testvalue)
int testvalue;
{

int end, j, result;

end = (int) sqrt ( (double) testvalue );
for (j = 2, result = 1; result == 1 && j <= end; j++) {

if ((testvalue % j) == 0)
result = 0;

}
return result;

}

See Also
cos(), cosh(), libm, sin()
ANSI Standard, §7.5.5.2
POSIX Standard, §8.1

Diagnostics
When a domain error occurs (i.e., when z is negative), sqrt() sets errno to EDOM and returns zero.

srand() — Random-Number Function (libc)
Seed random number generator
#include <stdlib.h>
void srand(seed) int seed;

srand() uses seed to initialize the sequence of pseudo-random numbers returned by rand(). Different values of seed
initialize different sequences.

Example
For an example of this function, see the entry for rand().

See Also
libc, rand(), stdlib.h
The Art of Computer Programming, vol. 2
ANSI Standard, §7.10.2.2
POSIX Standard, §8.1

Notes
For a superior but non-standard random-number generator, see the function randl(), described in the Lexicon
article libmisc.

srand() cannot be used with any of the ‘‘rand48’’ functions. For an overview of these functions, see the entry for
srand48().
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srand48() — Random-Number Function (libc)
Seed the 48-bit pseudo-random number routines
void srand48(seedval)
long seedval;

Computation of 48-bit pseudo-random numbers uses two 48-bit integers and one 16-bit integer. One of the 48-bit
values holds the ‘‘seed’’ value from which the 48-bit pseudo-random value is computed. This seed can be set
explicitly, or is the previously computed pseudo-random number. The other 48-bit integer holds the multiplier
from which the pseudo-random number is computed; and the 16-bit integer gives holds the addend.

Function srand48() builds the 48-bit ‘‘seed’’ value from a long integer. The 32 bits of the long integer comprise the
high 32 bits of the seed; the low 16 bits are filled with the value 0x33E.

Functions lcong48() and seed48() can also be used to seed the routines that generate 48-bit pseudo-random
numbers. srand48() returns nothing.

See Also
drand48(), erand48(), jrand48(), libc, lcong48(), lrand48(), mrand48(), nrand48(), seed48()

srandom() — Sockets Function (libsocket)
Seed the random-number generator
int srandom(seed)
int seed;

The function srandom() ‘‘seeds’’ the random-number generator with value seed. It is a synonym for srand().

srandom() does not return a meaningful value.

See Also
libsocket, srand()

srcpath — Command
Find source files
srcpath [-aw] [-p path] filename pattern ...

The command srcpath expands the environmental variable SRCPATH, applies it to each argument, and prints the
full path of each unique result.

An argument can either be a file name or a pattern. For example, the command

srcpath "*.[ch]"

finds all .c and .h files on SRCPATH. By default. srcpath keeps only the first file that it finds with a given name.
srcpath automatically appends ‘.’ to the beginning of SRCPATH so files in the current directory have precedence.

srcpath recognizes the following command-line options:

-p path
Use path as its path instead of SRCPATH. For example,

srcpath -p ".:/usr/src/cmd" "*.c"

tells srcpath to search ‘.’ and /usr/src/cmd instead of SRCPATH. Note that with this option, srcpath does
not automatically place ‘.’ at the beginning of the list.

-a Disable shadowing. Normally, if srcpath finds a file is found in more than one directory on the path, it prints
only the first. The -a option forces srcpath to print all instances of the file name.

-w By default, srcpath silently bypasses directories and matching files for which it has no read permission. The -
w option causes it to print a warning message when this happens.

See Also
commands, find, make, PATH
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sscanf() — STDIO Function (libc)
Format a string
#include <stdio.h>
int sscanf(string, format [, arg ] ...)
char *string; char *format;

sscanf() reads the argument string, and uses format to specify a format for each arg, each of which must be a
pointer. For more information on sscanf()’s conversion codes, see scanf().

Example
This example uses sprintf() to create a string, and then reads it with sscanf(). It also illustrates a common
problem with this routine.

#include <stdio.h>

main()
{

char string[80];
char s1[10], s2[10];

sprintf(string, "123456789012345678901234567890");
sscanf(string, "%9c", s1);
sscanf(string, "%10c", s2);

printf("\n%s is the string\n", string);
printf("%s: first 9 characters in string\n", s1);
printf("%s: first 19 characters in string\n", s2);

}

See Also
fscanf(), libc, scanf()
ANSI Standard, §7.9.6.6
POSIX Standard, §8.1

Diagnostics
sscanf() returns the number of arguments filled. It returns zero if no arguments can be filled or if an error occurs.

Notes
Because C does not perform type checking, an argument must match its format specification. sscanf() is best used
only to process data that you are certain are in the correct data format, such as data that were written with
sprintf().

sscanf() is difficult to use correctly, and incorrect usage can create serious bugs in programs. It is recommended
that you use strtok() instead.

stack — Definition
The stack is the segment of memory that holds function arguments, local variables, function return addresses, and
stack frame linkage information.

If your program uses recursive algorithms, or declares large amounts of automatic data, or simply contains many
levels of functions calls, the stack may ‘‘overflow’’, and overwrite the program data. Note that this is unlikely with
COHERENT, because the 80386 has implemented dynamic stack allocation.

See Also
Programming COHERENT

standard error — Definition
The standard error is the peripheral device or file where programs write error messages by default. It is defined in
the header file stdio.h under the abbreviation stderr, and by default is the computer’s monitor.

The shell lets you redirect into a file all text written to the standard error device. To do so, use the shell operator
2>. For example

make 2>errorfile
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redirects all error messages generated by make into file errorfile.

See Also
Programming COHERENT, stderr, stdio.h

standard input — Definition
The standard input is the device or file from which data are accepted by default. It is defined in the header file
stdio.h under the abbreviation stdin, and will be the computer’s keyboard unless redirected by the operating
system, a shell, or freopen.

The shell lets you redirect the standard input device. To do so, use the shell operator <. For example

mail fwb <textfile

the standard input device from your terminal to file textfile; in effect, this commands mails the contents of textfile
to user fwb.

See Also
Programming COHERENT, stdin, stdio.h

standard output — Definition
The standard output is the device or file where programs write output by default. It is defined in the header file
stdio.h under the abbreviation stdout, and in most instances is defined to be the computer’s monitor.

The shell lets you redirect into a file all text written to the standard output device. To do so, use the shell operator
>. For example

sort myfile >sortfile

redirects the text output by sort into file sortfile.

See Also
Programming COHERENT, stdio.h, stdout

stat() — System Call
Find file attributes
#include <sys/stat.h>
int stat(file, statptr)
char *file; struct stat *statptr;

stat() returns a structure that contains the attributes of a file, including protection information, file type, and file
size.

file points to the path name of file. statptr points to a structure of the type stat, as defined in the header file
stat.h. For information on stat, see the Lexicon entry for stat.h.

Example
The following example uses stat() to print a file’s status.

#include <sys/stat.h>
main()
{

struct stat sbuf;
int status;

if (status = stat("/usr/include", &sbuf)) {
printf("Can’t find\n");
exit(EXIT_FAILURE);

}

printf("uid = %d gid = %d\n", sbuf.st_uid, sbuf.st_gid);
}

See Also
chmod(), chown(), libc, ls, open(), stat.h
POSIX Standard, §5.6.2
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Diagnostics
stat() returns -1 if an error occurs, e.g., the file cannot be found. Otherwise, it returns zero.

Notes
stat() differs from the related function fstat() mainly in that fstat() accesses the file through its descriptor, which
was returned by a successful call to open(), whereas stat() takes the file’s path name and opens it before checking
its status.

The call

stat("", &s)

is identical to

stat(".", &s)

Both calls succeed. The POSIX Standard forbids the former call — in fact, the POSIX Standard forbids the NULL
string as a path name under any circumstances; therefore you should never use the former call.

stat.h — Header File
Definitions and declarations used to obtain file status
#include <sys/stat.h>

stat.h is a header file that declares the structure stat plus constants used by the routines that manipulate files,
directories, and named pipes. It holds the prototypes for the routines chmod(), fstat(), mkdir(), stat(), and
umask().

The following summarizes the structure stat:

struct stat {
dev_t st_dev; /* Device */
ino_t st_ino; /* Inode number */
mode_t st_mode; /* Mode */
nlink_t st_nlink; /* Link count */
uid_t st_uid; /* User id */
gid_t st_gid; /* Group id */
dev_t st_rdev; /* Real device; NB, this is non-POSIX */
off_t st_size; /* Size */
time_t st_atime; /* Access time */
time_t st_mtime; /* Modify time */
time_t st_ctime; /* Change time */

};

st_dev and st_ino together form a unique description of the file. The former is the device on which the file and its
i-node reside, whereas the latter is the index number of the file. st_mode gives the permission bits, as outlined
below. st_nlink gives the number of links to the file. st_uid and st_gid, respectively given the user id and group
id of the owner. st_rdev, valid only for special files, holds the major and minor numbers for the file. st_size gives
the size of the file, in bytes. For a pipe, the size is the number of bytes waiting to be read from the pipe.

Three entries for each file give the last occurrences of various events in the file’s history. st_atime gives time the
file was last read or written to. st_mtime gives the time of the last modification, write for files, create or delete
entry for directories. st_ctime gives the last change to the attributes, not including times and size.

The following manifest constants define file types:

S_IFMT Type
S_IFDIR Directory
S_IFCHR Character-special file
S_IFPIP Pipe
S_IFIFO Pipe
S_IFBLK Block-special file
S_IFREG Regular file

The following manifest constants define file modes:
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S_IREAD Read permission, owner
S_IWRITE Write permission, owner
S_IEXEC Execute/search permission, owner
S_IRWXU RWX permission, owner
S_IRUSR Read permission, owner
S_IWUSR Write permission, owner
S_IXUSR Execute/search permission, owner
S_IRWXG RWX permission, group
S_IRGRP Read permission, group
S_IWGRP Write permission, group
S_IXGRP Execute/search permission, group
S_IRWXO RWX permission, other
S_IROTH Read permission, other
S_IWOTH Write permission, other
S_IXOTH Execute/search permission, other

See Also
chmod(), fstat(), header file, stat()
POSIX Standard, §5.6.1

statfs() — System Call (libc)
Get information about a file system
#include <sys/types.h>
#include <sys/statfs.h>
int statfs (path, buffer, length, fstype)
char *path;
struct statfs *buffer;
int length, fstype;

The COHERENT system call statfs() returns information about a file system, either mounted or unmounted.

buffer points to a structure of type statfs, which contains the following members:

short f_fstyp; /* type of the file system */
short f_bsize; /* block size */
short f_frsize; /* fragment size */
long f_blocks; /* number of blocks in the file system */
long f_bfree; /* number of free blocks */
long f_files; /* number of file nodes */
long f_ffree; /* number of free file nodes */
char f_fname[6]; /* name of the volume */
char f_fpack[6]; /* name of the pack */

length is the length of the area into which statfs() can write its output. This should always be set to sizeof(struct
statfs).

path and fstype identify the file system. If the file system is unmounted, then path should name the device by
which the file system is accessed, and fstype should contain the type of the file system. If the file system is
mounted, then path should give the full path name of a file on the file system in question, and fstype must be set
to zero.

statfs() returns zero if all went well. If something went wrong, it returns -1 and sets errno to an appropriate value.

See Also
fstatfs(), libc, mkfs, statfs.h, ustat()

static — C Keyword
Declare storage class

static is a C storage class. It has two entirely different meanings, depending upon whether it appears inside or
outside a function.

Outside a function, static means that the function or variable it preceeds may not be seen outside the module.

Inside a function, static may only precede a variable. It means that that variable is permanently allocated, rather
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than allocated on the stack when the function is entered and discarded when the function exits. If a static
variable is initialized, that occurs before the program starts rather than every time the function is entered. If a
function returns a pointer to a variable, often that variable is declared static within the function. If a pointer to a
non-static local variable is returned, that variable is freed when the function returns and the pointer points to an
unprotected location.

Example
The following example demonstrates the uses of the static keyword. It returns the next integer in a sequence as a
string.

/* static to keep function hidden outside of this module */
static char *nextInt()
{

/* static to protect value between calls */
static int next = 0;
/* static to allow the return of a pointer to s */
static char s[5];

sprintf(s, "%d", next++);
return(s);

}

See Also
auto, C keywords, extern, register variable, storage class
ANSI Standard, §6.5.1

stdarg.h — Header File
Header for variable numbers of arguments
#include <stdarg.h>

stdarg.h is the header file that ANSI C uses to declare and define the routines that traverse a variable-length
argument list. It declares the type va_list and defines the macros va_arg(), va_start(), and va_end().

Example
The following example concatenates multiple strings into a common allocated string and returns the string’s
address. method of handling variable arguments:

#include <stdarg.h>
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>

char *
multcat(numargs)
int numargs;
{

va_list argptr;
char *result;
int i, siz;

/* get size required */
va_start(argptr, numargs);
for(siz = i = 0; i < numargs; i++)

siz += strlen(va_arg(argptr, char *));

if ((result = calloc(siz + 1, 1)) == NULL) {
fprintf(stderr, "Out of space\n");
exit(EXIT_FAILURE);

}
va_end(argptr);

va_start(argptr, numargs);
for(i = 0; i < numargs; i++)

strcat(result, va_arg(argptr, char *));
va_end(argptr);
return(result);

}
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int
main()
{

printf(multcat(5, "One ", "two ", "three ",
"testing", ".\n"));

}

See Also
header files, varargs.h
ANSI Standard, §7.8

Notes
The routines defined in <stdarg.h> were first implemented under UNIX System V, where they are declared in the
header file <varargs.h>. The ANSI C committee recognized the usefulness of <varargs.h>, but decided that it had
semantic problems. In particular, <varargs.h> introduced the notion of declaring ‘‘...’’ for the variable-arguments
argument list in the function prototype. This, unfortunately, left them with declarations of the form

void error(...)
{

whatever
}

and no obvious hook for accessing the parameter list within the body of the function. So, the ANSI committee
changed the header declaration: it insisted on one or more formal parameters, followed by the list of variables.

The committee had the wisdom to change the name of its header file, hence <stdarg.h> came into being.
Unfortunately, the committee kept the same macro names, but in one macro (va_start()) changed the number of
arguments it takes.

COHERENT includes both <varargs.h> and <stdarg.h>, to support both ANSI and System-V code.

stddef.h — Header File
Header for standard definitions
#include <stddef.h>

stddef.h defines types and macros that are used through the library.

See Also
header files, offsetof()
ANSI Standard, §7.1.6

stderr — Definition
stderr is the name of the FILE pointer assigned to the standard error device. It is set in the header file stdio.h.

See Also
Programming COHERENT, stdin, stdio.h, stdout, standard error
ANSI Standard, §4.9.1, §4.9.3

stdin — Definition
stdin is the name of the FILE pointer that is assigned to the standard input device. It is set in the header file
stdio.h.

See Also
Programming COHERENT, standard input, stderr, stdio.h, stdout
ANSI Standard, §7.9.1

STDIO — Definition
STDIO is an abbreviation for standard input and output. It refers to a set of standard library functions that
accompany all C compilers and that govern input and output with peripheral devices. For details on the STDIO
routines, see the Lexicon entries for libc and stdio.h.

See Also
libc, Programming COHERENT, stdio.h
ANSI Standard, §4.9
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stdio.h — Header File
Declarations and definitions for I/O

stdio.h is a header file that defines manifest constants used in standard I/O, prototypes the STDIO functions, and
defines numerous I/O macros, as follows:

Types

FILE . . . . . . . . . . . Descriptor of file used by STDIO routines
stderr. . . . . . . . . . . Standard error device (by default, the screen)
stdin . . . . . . . . . . . Standard input device (by default, the keyboard)
stdout . . . . . . . . . . Standard output device (by default, the screen)

Manifest Constants

BUFSIZ . . . . . . . . . . Default buffer size
EOF . . . . . . . . . . . . End of file
FILENAME_MAX . . . . Maximum length of a file name
FOPEN_MAX . . . . . . Maximum number of of open files
L_ctermid . . . . . . . . Length of ctermid()
L_tmpnam . . . . . . . . Length of a temporary file name
P_tmpdir. . . . . . . . . Default directory for temporary files
TMP_MAX . . . . . . . . Maximum number of temporary file names

Functions and Macros

clearerr() . . . . . . . . . Present status stream
fclose() . . . . . . . . . . Close a file stream
fdopen() . . . . . . . . . Open a file stream for I/O
feof() . . . . . . . . . . . Discover a file stream’s status
ferror() . . . . . . . . . . Discover a file stream’s status
fflush() . . . . . . . . . . Flush an output buffer
fgetc(). . . . . . . . . . . Get a character
fgetpos() . . . . . . . . . Read the file-position indicator
fgets(). . . . . . . . . . . Get a string
fgetw() . . . . . . . . . . Get a word
fileno() . . . . . . . . . . Get a file descriptor from a FILE structure
fopen() . . . . . . . . . . Open a file stream
fprintf(). . . . . . . . . . Format and print to a file stream
fputc() . . . . . . . . . . Output a character
fputs() . . . . . . . . . . Output a string
fputw() . . . . . . . . . . Output a word
fread() . . . . . . . . . . Read a file stream
freopen() . . . . . . . . . Open a file stream
fscanf() . . . . . . . . . . Format and read from a file stream
fseek() . . . . . . . . . . Seek in a file stream
fsetpos() . . . . . . . . . Set the file-position indicator
ftell() . . . . . . . . . . . Return file pointer position
fwrite() . . . . . . . . . . Write to a file stream
getc() . . . . . . . . . . . Get a character
getchar() . . . . . . . . . Get a character
gets() . . . . . . . . . . . Get a string
getw() . . . . . . . . . . . Get a word
pclose(). . . . . . . . . . Close a pipe
popen() . . . . . . . . . . Open a pipe
printf() . . . . . . . . . . Print a formatted string
putc() . . . . . . . . . . . Output a character
putchar() . . . . . . . . . Output a character
puts() . . . . . . . . . . . Output a string
putw(). . . . . . . . . . . Output a word
rewind() . . . . . . . . . Reset a file pointer
scanf() . . . . . . . . . . Format and input from standard input
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setbuf() . . . . . . . . . . Set alternative file-stream buffer
setvbuf() . . . . . . . . . Set alternative file-stream buffer
sprintf() . . . . . . . . . Format and print to a string
sscanf() . . . . . . . . . . Format and read from a string
tmpfile() . . . . . . . . . Create a temporary file
ungetc() . . . . . . . . . Return character to file stream
vfprintf() . . . . . . . . . Format and print to a file stream
vprintf() . . . . . . . . . Print a formatted string
vsprintf(). . . . . . . . . Format and print to a string

See Also
header file, libc, STDIO
ANSI Standard, §7.9

Notes
COHERENT release 4.2 has rewritten its version of stdio.h so that it conforms to the ANSI Standard. For this
reason, program that use STDIO and are compiled under COHERENT release 4.2 (or subsequent releases) will not
run correctly under versions of COHERENT prior to release 4.2.

stdlib.h — Header File
Declare/define general functions
#include <stdlib.h>

stdlib.h is a header file that is defined in the ANSI Standard. It declares a set of general utilities and defines
attending macros and data types, as follows.

Types

div_t . . . . . . . . . . . Type of object returned by div
ldiv_t . . . . . . . . . . . Type of object returned by ldiv

Manifest Constants

EXIT_FAILURE . . . . . Value to indicate that program failed to execute properly
EXIT_SUCCESS. . . . . Value to indicate that program executed properly
MB_CUR_MAX . . . . . Largest size of multibyte character in current locale
MB_LEN_MAX. . . . . . Largest overall size of multibyte character in any locale
RAND_MAX . . . . . . . Largest size of pseudo-random number

Functions

abort() . . . . . . . . . . End program immediately
abs(). . . . . . . . . . . . Compute the absolute value of an integer
atof() . . . . . . . . . . . Convert string to floating-point number
atoi() . . . . . . . . . . . Convert string to integer
atol() . . . . . . . . . . . Convert string to long integer
bsearch() . . . . . . . . . Search an array
calloc() . . . . . . . . . . Allocate dynamic memory
div() . . . . . . . . . . . . Perform integer division
exit() . . . . . . . . . . . Terminate a program gracefully
free() . . . . . . . . . . . De-allocate dynamic memory to free memory pool
getenv() . . . . . . . . . Read environmental variable
labs() . . . . . . . . . . . Compute the absolute value of a long integer
ldiv() . . . . . . . . . . . Perform long integer division
malloc() . . . . . . . . . Allocate dynamic memory
qsort() . . . . . . . . . . Sort an array
rand() . . . . . . . . . . . Generate pseudo-random numbers
realloc() . . . . . . . . . Reallocate dynamic memory
srand() . . . . . . . . . . Seed the random-number generator
strtod() . . . . . . . . . . Convert string to floating-point number
strtol() . . . . . . . . . . Convert string to long integer
strtoul() . . . . . . . . . Convert string to unsigned long integer
system() . . . . . . . . . Suspend a program and execute another
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See Also
header files
ANSI Standard, §7.10

stdout — Definition
stdout is the name of the FILE pointer that is assigned to the standard output device. It is set in the header file
stdio.h.

See Also
Programming COHERENT, standard output, stderr, stdin, stdio.h
ANSI Standard, §7.9.1

sticky bit — Definition
The sticky bit is one of the mode bits associated with a file. If the sticky bit is set for an executable file and
swapping is enabled, COHERENT behaves in a special way when it executes that file.

When the COHERENT system executes the file the first time, all proceeds normally. When the program exits,
however, the pure segments are left on the swap device; when the program is re-invoked, COHERENT reads ‘‘pure’’
code (text) areas from the swap device and all other (impure) segments from the file system. This speeds execution
of large programs that are executed frequently.

This strategy works well on systems that have large swap devices. Because overuse of the sticky bit would quickly
swamp the swap device, only the superuser can set the sticky bit.

See Also
chmod, Using COHERENT

stime() — System Call (libc)
Set the time
#include
int stime(timep)
time_t *timep;

stime() sets the system time. timep points to a variable of type time_t, which contains the number of seconds
since midnight GMT of January 1, 1970.

If all goes well, stime() zero. If a problem occurs, it returns -1.

stime() is restricted to the superuser.

Files
<sys/types.h>

See Also
ctime(), date, ftime(), libc, stat(), utime()

storage class — Definition
Storage class refers to the part of a declaration that indicates how data are to be stored. The C language
recognizes the following storage clases:

auto
extern
register
static

typedef is technically defined as a storage class as well, but it does not actually indicate how data are stored. The
default class is auto.

See Also
auto, extern, Programming COHERENT, register, static, typedef
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store() — DBM Function (libgdbm)
Write a record into a DBM data base
#include <dbm.h>
int store(key, datum)
datum key, datum;

Function store() writes a record into the currently open DBM data base. The data base must first have been
opened by a call to dbminit().

key points to the key by which the datum is identified. datum points to the datum itself. If the data base already
contains a record with key, store() overwrites it.

The sizes of key and datum together must not exceed BSIZE bytes — that is, the size of one file-system block.
(BSIZE is defined in header file <sys/buf.h>.)

If all goes well, store() returns zero. If an error occurs, it returns a negative value.

See Also

Notes
For a statement of copyright and permissions on this routine, see the Lexicon entry for libgdbm.

strcasecmp() — Sockets Function (libsocket)
Case-insensitive string comparison
int strcasecmp (left, right)
char *left, *right;

Function strcasecmp() compares strings left and right. It returns zero if the strings are identical; -1 if left is
lexigraphically less than (that is, occurs earlier in the alphabet) than right; or one if if left is lexicographically
greater than right. Unlike the function strcmp(), strcasecmp() ignores case when it compares the strings.

See Also
libsocket, strcmp(), string.h

strcasencmp() — Sockets Function (libsocket)
Case-insensitive string comparison
int strcasencmp (left, right, n)
char *left, *right;
int n;

Function strcasencmp() compares the first n bytes of strings left and right. It returns zero if the first n bytes of the
strings are identical; -1 if left is lexigraphically less than (that is, occurs earlier in the alphabet) than right; or one if
if left is lexicographically greater than right. Unlike the function strncmp(), strcasencmp() ignores case when it
compares the strings.

See Also
libsocket, strncmp(), string.h

strcat() — String Function (libc)
Concatenate two strings
#include <string.h>
char *strcat(string1, string2)
char *string1, *string2;

strcat() appends all characters in string2 onto the end of string1. It returns the modified string1.

Example
For an example of this function, see the entry for string.h.

See Also
libc, string.h, strncat()
ANSI Standard, §7.11.3.2
POSIX Standard, §8.1
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Notes
string1 must point to enough space to hold itself and string2; otherwise, another portion of the program may be
overwritten.

strchr() — String Function (libc)
Find a character in a string
#include <string.h>
char *strchr(string, character)
char *string; int character;

strchr() searches for the first occurrence of character within string. The null character at the end of string is
included within the search. It is equivalent to the COHERENT function index().

strchr() returns a pointer to the first occurrence of character within string. If character is not found, it returns
NULL.

Having strchr() search for a null character will always produce a pointer to the end of a string. For example,

char *string;
assert(strchr(string, ’\0’) == string + strlen(string));

never fails.

See Also
libc, string.h
ANSI Standard, §7.11.5.2
POSIX Standard, §8.1

strcmp() — String Function (libc)
Compare two strings
#include <string.h>
int strcmp(string1, string2)
char *string1, *string2;

strcmp() compares string1 with string2 lexicographically. It returns zero if the strings are identical, returns a
number less than zero if string1 occurs earlier alphabetically than string2, and returns a number greater than zero
if it occurs later. This routine is compatible with the ordering routine needed by qsort().

Example
For examples of this function, see the entries for string.h and malloc().

See Also
libc, qsort(), shellsort(), string.h, strncmp()
ANSI Standard, §7.11.4.2
POSIX Standard, §8.1

strcoll() — String Function (libc)
Compare two strings, using locale-specific information
#include <string.h>
int strcoll(string1, string2)
char *string1; char *string2;

strcoll() lexicographically compares the string pointed to by string1 with one pointed to by string2. Comparison
ends when a null character is read.

strcoll() compares the two strings character by character until it finds a pair of characters that are not identical. It
returns a number less than zero if the character in string1 is less (i.e., occurs earlier in the character table) than its
counterpart in string2. It returns a number greater than zero if the character in string1 is greater (i.e., occurs later
in the character table) than its counterpart in string2. If no characters are found to differ, then the strings are
identical and strcoll() returns zero.

See Also
libc, localization, string.h
ANSI Standard, §7.11.4.3
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Notes
The string-comparison routines strcoll(), strcmp(), and strncmp() differ from the memory-comparison routine
memcmp() in that they compare strings rather than regions of memory. They stop when they encounter a null
character, but memcmp() does not.

strcoll() differs from strcmp() and similar functions in that it reads the user’s locale, as set by a call to function
setlocale(), to determine the lexicographic value of each character. For details, see the Lexicon entry for
localization.

strcpy() — String Function (libc)
Copy one string into another
#include <string.h>
char *strcpy(string1, string2)
char *string1, *string2;

strcpy() copies the contents of string2, up to the NUL, into the memory to which string1 points. It returns string1.

Example
See string.

See Also
libc, memcpy(), string.h, strncpy()
ANSI Standard, §7.11.2.3
POSIX Standard, §8.1

Notes
string1 must point to enough space to hold string2, or another portion of the program or operating system may be
overwritten.

strcspn() — String Function (libc)
Return length a string excludes characters in another
#include <string.h>
unsigned int strcspn(string1, string2)
char *string1, *string2;

strcspn() compares string1 with string2. It then returns the length, in characters, for which string1 consists of
characters not found in string2.

See Also
libc, string.h
ANSI Standard, §7.11.5.3
POSIX Standard, §8.1

strdup() — String Function (libc)
Duplicate a string
#include <string.h>
char *strdup(string)
char *string;

The string function strdup() duplicates the text to which string points. It calls malloc() to allocate memory for the
duplicate, copies the string, and returns a pointer to the memory that holds the copy. If something goes wrong, it
returns NULL.

See Also
libc, string.h

Notes
strdup() is not part of the ANSI Standard. Using it in your programs may limit their portability.
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stream — Definition
The term stream is a metaphor for any entity that can be named and from which bits can flow, such as a device or
a file. The name ‘‘stream’’ reflects the fact that the C programming environment does not depend upon record
descriptors and other devices that predetermine what form data can assume; instead, data from whatever source
are conceived as being a flow of bytes whose significance is set entirely by the program that reads them.

For example, whether 16 bits forms an int, two chars, and should be used as an absolute value or a bit map, is
entirely up to the program that receives it. It is also irrelevant to the program that processes these 16 bits whether
they come from the keyboard, from a file on disk, or from a peripheral device.

The FILE structure holds all of the information needed to manipulate a stream. The STDIO functions can be used
to open, close, or reopen a stream; read data from it; or write data to it.

See Also
bit, byte, data formats, file, FILE, Programming COHERENT, stdio.h

stream.h — Header File
Definitions for message facility
#include <stream.h>

stream.h definitions constants and structures used by the routines that implement the COHERENT version of
STREAMS.

See Also
header files, STREAMS

STREAMS — Definition
COHERENT implementation of STREAMS

Beginning with release 4.2, COHERENT supports STREAMS. This is a system that helps programmers create system-
independent device-drivers. STREAMS replaces most of the kernel-accessible routines that are unique to
COHERENT.

For details on the COHERENT implementation of STREAMS, and for summaries of the STREAMS routines, see the
manual that comes with release 2.2 of the COHERENT Device-Driver Kit.

To add the STREAMS driver to your kernel (should it not already have it), log in as the superuser root and then
enter the following commands:

cd /etc/conf
streams/mkdev
bin/idmkcoh -o /kernel_name

where kernel_name names the new kernel to build. Then reboot to invoke the newly built kernel_name.

See Also
device drivers, getmsg(), Programming COHERENT, putmsg(), stropts.h

strerror() — String Function (libc)
Translate an error number into a string
#include <string.h>
char *strerror(error)
int error;

strerror() helps to generate an error message. It takes the argument error, which presumably is an error code
generated by an error condition in a program, and may return a pointer to the corresponding error message.

The error numbers recognized and the texts of the corresponding error messages are set by COHERENT.

See Also
libc, perror(), string.h
ANSI Standard, §7.11.6.2
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Notes
strerror() returns a pointer to a static array that may be overwritten by a subsequent call to strerror().

strerror() differs from the related function perror() in the following ways: strerror() receives the error number
through its argument error, whereas perror() reads the global constant errno. Also, strerror() returns a pointer to
the error message, whereas perror() writes the message directly into the standard error stream.

The error numbers recognized and the texts of the messages associated with each error number are set by
COHERENT. However, strerror() and perror() return the same error message when handed the same error number.

strftime() — Time Function (libc)
Format locale-specific time
#include <time.h>
size_t strftime(string, maximum, format, brokentime)
char *string; size_t maximum; const char *format;

const struct tm *brokentime;

The function strftime() provides a locale-specific way to print the current time and date. It also gives you an easy
way to shuffle the elements of date and time into a string that suits your preferences.

strftime() references the portion of the locale that is affected by the calls

setlocale(LC_TIME, locale);

or

setlocale(LC_ALL, locale);

For more information on setting locales, see the entry for localization.

string points to the region of memory into which strftime() writes the date and time string it generates. maximum
is the maximum number of characters that can be written into string. string should point to an area of allocated
memory at least maximum+1 bytes long; if it does not, reserved portions of memory may be overwritten.

brokentime points to a structure of type tm, which contains the broken-down time. This structure must first be
initialized by either of the functions localtime() or gmtime().

Finally, format points to a string that contains one or more conversion specifications, which guide strftime() in
building its output string. Each conversion specification is introduced by the percent sign ‘%’. When the output
string is built, each conversion specification is replaced by the appropriate time element. Characters within format
that are not part of a conversion specification are copied into string; to write a literal percent sign, use ‘‘%%’’.

strftime() recognizes the following conversion specifiers:

a The locale’s abbreviated name for the day of the week.
A The locale’s full name for the day of the week.
b The locale’s abbreviated name for the month.
B The locale’s full name for the month.
c The locale’s default representation for the date and time.
d The day of the month as an integer (01 through 31).
H The hour as an integer (00 through 23).
I The hour as an integer (01 through 12).
j The day of the year as an integer (001 through 366).
m The month as an integer (01 through 12).
M The minute as an integer (00 through 59).
p The locale’s way of indicating morning or afternoon (e.g, in the United States, ‘‘AM’’ or ‘‘PM’’).
S The second as an integer (00 through 59).
U The week of the year as an integer (00 through 53); regard Sunday as the first day of the week.
w The day of the week as an integer (0 through 6); regard Sunday as the first day of the week.
W The day of the week as an integer (0 through 6); regard Monday as the first day of the week.
x The locale’s default representation of the date.
X The locale’s default representation of the time.
y The year within the century (00 through 99).
Y The full year, including century.
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z The name of the locale’s time zone. If no time zone can be determined, print a null string.

Use of any conversion specifier other than the ones listed above will result in undefined behavior.

If the number of characters written into string is less than or equal to maximum, then strftime() returns the
number of characters written. If, however, the number of characters to be written exceeds maximum, then
strftime() returns zero and the contents of the area pointed to by string are indeterminate.

See Also
asctime(), ctime(), gmtime(), libc, localtime(), time [overview]
ANSI Standard, §7.12.3.5
POSIX Standard, §8.1

string.h — Header File
Declarations for string library
#include <string.h>

string.h is the header that holds the prototypes of all ANSI routines that handle strings and buffers. It declares
the following routines:

fnmatch() . . . . . . . . Match a string with a normal expression
index() . . . . . . . . . . Search string for a character; use strchr() instead
memccpy(). . . . . . . . Copy a region of memory up to a set character
memchr() . . . . . . . . Search a region of memory for a character
memcmp() . . . . . . . . Compare two regions of memory
memcpy() . . . . . . . . Copy one region of memory into another
memmove() . . . . . . . Copy one region of memory into another with which it overlaps
memset(). . . . . . . . . Fill a region of memory with a character
pnmatch() . . . . . . . . Match string pattern
strcat() . . . . . . . . . . Concatenate two strings
strcmp() . . . . . . . . . Compare two strings
strncat() . . . . . . . . . Append one string onto another
strncmp() . . . . . . . . Compare two lengths for a set number of bytes
strcpy(). . . . . . . . . . Copy a string
strncpy() . . . . . . . . . Copy a portion of a string
strcoll(). . . . . . . . . . Compare two strings, using locale information
strcspn() . . . . . . . . . Return length one string excludes characters in another
strdup(). . . . . . . . . . Duplicate a string
strerror() . . . . . . . . . Translate an error number into a string
strlen() . . . . . . . . . . Measure a string
strpbrk() . . . . . . . . . Find first occurrence in string of character from another string
strchr() . . . . . . . . . . Find leftmost occurrence of character in a string
strrchr() . . . . . . . . . Find rightmost occurrence of character in a string
strspn(). . . . . . . . . . Return length one string includes character in another
strstr() . . . . . . . . . . Find one string within another string
strtok() . . . . . . . . . . Break a string into tokens
strxfrm() . . . . . . . . . Transform a string, using locale information

Example
This example reads from stdin up to NNAMES names, each of which is no more than MAXLEN characters long. It
then removes duplicate names, sorts the names, and writes the sorted list to the standard output. It demonstrates
the functions shellsort(), strcat(), strcmp(), strcpy(), and strlen().

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define NNAMES 512
#define MAXLEN 60

char *array[NNAMES];
char first[MAXLEN], mid[MAXLEN], last[MAXLEN];
char *space = " ";

int compare();
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main()
{

register int index, count, inflag;
register char *name;

count = 0;
while (scanf("%s %s %s\n", first, mid, last) == 3) {

strcat(first, space);
strcat(mid, space);
name = strcat(first, (strcat(mid, last)));
inflag = 0;

for (index=0; index < count; index++)
if (strcmp(array[index], name) == 0)

inflag = 1;

if (inflag == 0) {
if ((array[count] =

malloc(strlen(name) + 1)) == NULL) {
fprintf(stderr, "Insufficient memory\n");
exit(EXIT_FAILURE);

}
strcpy(array[count], name);
count++;

}
}

shellsort(array, count, sizeof(char *), compare);
for (index=0; index < count; index++)

printf("%s\n", array[index]);
exit(EXIT_SUCCESS);

}

compare(s1, s2)
register char **s1, **s2;
{

return(strcmp(*s1, *s2));
}

See Also
header files, libc, strcasecmp(), strcasencmp()
ANSI Standard, §7.1.1

Notes
Some implementations of UNIX call this header file strings.h. If you are porting code to COHERENT, you may have
to modify the #include directives that invoke this header file.

The ANSI standard allows adjacent string literals, e.g.:

"hello" "world"

Adjacent string literals are automatically concatenated. Thus, the compiler will automatically concatenate the
above example into:

"helloworld"

Because this departs from the Kernighan and Ritchie description of C, it will generate a warning message if you use
the compiler’s -VSBOOK option.

strings — Command
Print all character strings from a file
strings [-dopx] [-length] [file ... ]

strings looks for ASCII strings in a binary file. A ‘‘string’’ is defined as any sequence of four or more printable
characters. strings is useful for identifying unknown object files, or for looking at the messages printed by
commands. You can also use it as a filter if file is not specified.

strings recognizes the following command-line options:
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-d Precede each string by its offset in the file in decimal.

-o Precede each string by its offset in the file in octal.

-p Strip the parity bits of all characters in the string prior to comparison.

-x Precede each string by its offset in the file in hexadecimal.

Finally, the option -length forces strings to use length as the minimum length for a printable string.

See Also
commands, isprint, od

strip — Command
Strip tables from executable file
strip file [...]

strip removes the symbol table, relocation information, and debug tables from a file. It makes the executable file
noticeably smaller.

See Also
cc, commands, ld, nm, size

strlen() — String Function (libc)
Measure a string
#include <string.h>
int strlen(string)
char *string;

strlen() measures string, and returns its length in bytes, not including the null terminator. This is useful in
determining how much storage to allocate for a string.

Example
For an example of how to use this function, see the entry for string.

See Also
libc, string.h
ANSI Standard, §7.11.6.3
POSIX Standard, §8.1

strncat() — String Function (libc)
Append one string onto another
#include <string.h>
char *strncat(string1, string2, n)
char *string1, *string2; unsigned n;

strncat() copies up to n characters from string2 onto the end of string1. It stops when n characters have been
copied or it encounters a null character in string2, whichever occurs first, and returns the modified string1.

Example
For an example of this function, see the entry for strncpy.

See Also
libc, strcat(), string.h
ANSI Standard, §7.11.3.2
POSIX Standard, §8.1

Notes
string1 should point to enough space to hold itself and n characters of string2. If it does not, a portion of the
program or operating system may be overwritten.
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strncmp() — String Function (libc)
Compare two strings
#include <string.h>
int strncmp(string1, string2, n)
char *string1, *string2; unsigned n;

strncmp() compares lexicographically the first n bytes of string1 with string2. Comparison ends when n bytes have
been compared, or a null character encountered, whichever occurs first. strncmp() returns zero if the strings are
identical, returns a number less than zero if string1 occurs earlier alphabetically than string2, and returns a
number greater than zero if it occurs later. This routine is compatible with the ordering routine needed by qsort().

Example
For an example of this function, see the entry for strncpy().

See Also
libc, strcmp(), string.h
ANSI Standard, §7.11.4.4
POSIX Standard, §8.1

strncpy() — String Function (libc)
Copy one string into another
#include <string.h>
char *strncpy(string1, string2, n)
char *string1, *string2; unsigned n;

strncpy() copies up to n bytes of string2 into string1, and returns string1. Copying ends when strncpy() has copied
n bytes or has encountered a null character, whichever comes first. If string2 is less than n characters in length,
strncpy() pads string1 to length n with one or more null bytes.

Example
This example, called swap.c, reads a file of names, and changes them from the format

first_name [middle_initial] last_name

to the format

last_name, first_name [middle_initial]

It demonstrates strncpy(), strncat(), strncmp(), and index().

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define NNAMES 512
#define MAXLEN 60

char *array[NNAMES];
char gname[MAXLEN], lname[MAXLEN];

main(argc, argv)
int argc; char *argv[];
{

FILE *fp;
register int count, num;
register char *name, string[60], *cptr, *eptr;
unsigned glength, length;

if (--argc != 1) {
fprintf (stderr, "Usage: swap filename\n");
exit(EXIT_FAILURE);

}

if ((fp = fopen(argv[1], "r")) == NULL)
printf("Cannot open %s\n", argv[1]);

count = 0;
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while (fgets(string, 60, fp) != NULL) {
if ((cptr = index(string, ’.’)) != NULL) {

cptr++;
cptr++;

} else if ((cptr = index(string,’ ’)) != NULL)
cptr++;

strcpy(lname, cptr);
eptr = index(lname, ’\n’);
*eptr = ’,’;

strcat(lname," ");
glength = (unsigned)(strlen(string) - strlen(cptr));
strncpy(gname, string, glength);

name = strncat(lname, gname, glength);
length = (unsigned)strlen(name);
array[count] = malloc(length + 1);

strcpy(array[count],name);
count++;

}

for (num = 0; num < count; num++)
printf("%s\n", array[num]);

exit(EXIT_SUCCESS);
}

See Also
libc, strcpy(), string.h
ANSI Standard, §7.11.2.4
POSIX Standard, §8.1

Notes
string1 must point to enough space to n bytes; otherwise, a portion of the program or operating system may be
overwritten.

stropts.h — Header File
User-level STREAMS routines
#include <stropts.h>

The header file stropts.h gives user-level information about STREAMS system calls and calls to ioctl().

See Also
header files, STREAMS

strpbrk() — String Function (libc)
Find first occurrence of a character from another string
#include <string.h>
char *strpbrk(string1, string2)
char *string1, *string2;

strpbrk() returns a pointer to the first character in string1 that matches any character in string2. It returns NULL if
no character in string1 matches a character in string2.

The set of characters that string2 points to is sometimes called the ‘‘break string’’. For example,

char *string = "To be, or not to be: that is the question.";
char *brkset = ",;";
strpbrk(string, brkset);

returns the value of the pointer string plus five. This points to the comma, which is the first character in the area
pointed to by string that matches any character in the string pointed to by brkset.

See Also
libc, string.h
ANSI Standard, §7.11.5.4
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POSIX Standard, §8.1

Notes
strpbrk() resembles the function strtok() in functionality, but unlike strtok(), it preserves the contents of the
strings being compared. It also resembles the function strchr(), but lets you search for any one of a group of
characters, rather than for one character alone.

strrchr() — String Function (libc)
Search for rightmost occurrence of a character in a string
#include <string.h>
char *strrchr(string, character)
char *string; int character;

strrchr() looks for the last, or rightmost, occurrence of character within string. character is declared to be an int,
but is handled within the function as a char. Another way to describe this function is to say that it performs a
reverse search for a character in a string. It is equivalent to the COHERENT function rindex().

strrchr() returns a pointer to the rightmost occurrence of character, or NULL if character could not be found within
string.

See Also
libc, rindex(), string.h
ANSI Standard, §7.11.5.5
POSIX Standard, §8.1

strspn() — String Function (libc)
Return length a string includes characters in another
#include <string.h>
unsigned int strspn(string1, string2)
char *string1; char *string2;

strspn() returns the length for which string1 initially consists only of characters that are found in string2. For
example,

char *s1 = "hello, world";
char *s2 = "kernighan & ritchie";
strcspn(s1, s2);

returns two, which is the length for which the first string initially consists of characters found in the second.

See Also
libc, string.h
ANSI Standard, §7.11.5.6
POSIX Standard, §8.1

strstr() — String Function (libc)
Find one string within another
#include <string.h>
char *strstr(string1, string2)
char *string1, *string2;

The string function strstr() looks for string2 within string1. The terminating NUL is not considered part of string2.

strstr() returns a pointer to where string2 begins within string1, or NULL if string2 does not occur within string1.

For example,

char *string1 = "Hello, world";
char *string2 = "world";
strstr(string1, string2);

returns string1 plus seven, which points to the beginning of world within Hello, world. On the other hand,

char *string1 = "Hello, world";
char *string2 = "worlds";
strstr(string1, string2);
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returns NULL because worlds does not occur within Hello, world.

See Also
libc, string.h
ANSI Standard, §7.11.5.7
POSIX Standard, §8.1

Notes
Neither string1 nor string2 can be more than 2,147,483,647 characters long.

strtod() — General Function (libc)
Convert string to floating-point number
#include <stdlib.h>
double strtod(string, tailptr)
char *string; char **tailptr;

strtod() converts the number given in string to a double-precision floating-point number and returns its value. It
is a more general version of the function atof(). strtod() also stores a pointer to the first character following the
number through tailptr, provided tailptr is not NULL.

strtod() parses the input string into three portions: beginning, subject sequence, and tail.

The beginning consists of zero or more white-space characters that begin the string.

The subject sequence is the portion of the input string that strtod() converts into a floating-point number. It
consists of an optional sign character, a nonempty sequence of decimal digits optionally including a decimal-point
character, and an optional exponent. If present, the exponent consists of either ‘e’ or ‘E’ followed by an optional
sign and a nonempty sequence of decimal digits. strtod() reads characters until it encounters either a second
decimal-point character or exponent marker, or any other non-numeral.

The tail continues from the end of the subject sequence to the null character that ends the string.

strtod() ignores the beginning portion of the string. It converts the subject sequence to a double-precision number.
Finally, it sets the pointer pointed to by tailptr to the address of the first character of the string’s tail.

strtod() returns the double generated from the subject sequence. If no subject sequence could be recognized, it
returns zero and stores the initial value of string through tailptr. If the number represented by the subject sequence
is too large or too small to fit into a double, then strtod() sets the global constant errno to ERANGE and returns
HUGE_VAL or zero, respectively. If, however, the number given in the subject sequence has more digits to the
right of the decimal point than can be encoded within an IEEE double (which has a fraction of 53 bits), strtod
trims the excess digits before it converts the string.

Example
The following gives an example for strtod().

#include <stdlib.h>

main()
{

static char st[] = " 123.4 567.8";
char *head, *tail;

for (head = st;; head = tail) {
double amt = strtod(head, &tail);

/* No token found is end of string */
if (head == tail)

break;
printf("%f\n", amt);

}
exit(EXIT_SUCCESS);

}

See Also
atof(), double, errno, libc, limits.h, stdlib.h, strtol(), strtoul()
ANSI Standard, §7.10.1.4
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Notes
strtod() ignores initial white space in the string pointed to by string; white space is defined as being all characters
so recognized by the function isspace().

strtok() — String Function (libc)
Break a string into tokens
#include <string.h>
char *strtok(string1, string2)
char *string1, *string2;

strtok() divides a string into a set of tokens. string1 points to the string to be divided, and string2 points to the
character or characters that delimit the tokens.

strtok() divides a string into tokens by being called repeatedly.

On the first call to strtok(), string1 should point to the string being divided. strtok() searches for a character that
is not included within string2. If it finds one, then strtok() regards it as the beginning of the first token within the
string. If one cannot be found, then strtok() returns NULL to signal that the string could not be divided into
tokens. When it finds the beginning of the first token, strtok() then looks for a character that is included within
string2. When it finds one, strtok() replaces it with NUL to mark the end of the first token, stores a pointer to the
remainder of string1 within a static buffer, and returns the address of the beginning of the first token.

On subsequent calls to strtok(), pass it NULL instead of string1. strtok() then looks for subsequent tokens using
the address that it saved from the first time you called it.

Note that with each call to strtok(), string2 may point to a different delimiter or set of delimiters.

Example
The following example breaks command_string into individual tokens and puts pointers to the tokens into the
array tokenlist[]. It then returns the number of tokens created. No more than maxtoken tokens will be created.
command_string is modified to place ‘\0’ over token separators. The token list points into command_string.
Tokens are separated by spaces, tabs, commas, semicolons, and newlines.

#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>

tokenize(command_string, tokenlist, maxtoken)
char *command_string, *tokenlist[]; size_t maxtoken;
{

static char tokensep[]="\t\n ,;";
int tokencount;
char *thistoken;

if(command_string == NULL || !maxtoken)
return 0;

thistoken = strtok(command_string, tokensep);

for(tokencount = 0; tokencount < maxtoken &&
thistoken != NULL;) {

tokenlist[tokencount++] = thistoken;
thistoken = strtok(NULL, tokensep);

}

tokenlist[tokencount] = NULL;
return tokencount;

}

#define MAXTOKEN 100
char *tokens[MAXTOKEN];
char buf[80];

main()
{

for(;;) {
int i, j;
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printf("Enter string ");
fflush(stdout);
if(gets(buf) == NULL)

exit(EXIT_SUCCESS);

i = tokenize(buf, tokens, MAXTOKEN);
for (j = 0; j < i; j++)

printf("%s\n", tokens[j]);
}

}

See Also
libc, string.h
ANSI Standard, §7.11.5.8
POSIX Standard, §8.1

strtol() — General Function (libc)
Convert string to long integer
#include <stdlib.h>
long strtol(string, tailptr, base)
char *string; char **tailptr; int base;

strtol() converts the number given in string to a long and returns its value; it is a more general version of the
function atol(). strtol() also stores a pointer to the first character following the number through tailptr, provided
tailptr does not equal NULL.

base gives the base of the number being read, either zero or a value from two to 36. If the given base is zero,
strtol() determines an implicit base for the number: hexadecimal if the number starts with 0x or 0X, octal if the
number starts with 0, or decimal otherwise. Alternatively, you can specify a base between 2 and 36.

strtol() parses string into three portions: beginning, subject sequence, and tail.

The beginning consists of zero or more white-space characters that begin the string.

The subject sequence is the portion of the string that strtol() converts into a long. It consists of an optional sign
character, an optional prefix 0x or 0X if the base is 16, and a nonempty sequence of digits in the specified base.
For example, if the base is 16, then strtol() recognizes numeric characters ‘0’ to ‘9’ and alphabetic characters ‘A’
through ‘F’ and ‘a’ to ‘f’ as digits. It continues to scan until it encounters a nondigit.

The tail continues from the end of the subject sequence to the null character that ends the string.

strtol() ignores the beginning portion of the string. It converts the subject sequence to a long. Finally, if tailptr is
not NULL, it sets the pointer pointed to by tailptr to the address of the first character of the string’s tail.

strtol() returns a long representing the value of the subject sequence. If the input string does not specify a valid
number, it returns zero and stores the initial value of string through tailptr. If the number it builds is too large or
too small to fit into a long, it sets the global variable errno to the value of the macro ERANGE and returns
LONG_MAX or LONG_MIN, respectively.

See Also
libc
ANSI Standard, §7.10.1.5

Notes
strtol() ignores initial white space in the input string. White space is defined as being all characters so recognized
by the function isspace().

strtoul() — General Function (libc)
Convert string to unsigned long integer
#include <stdlib.h>
unsigned long strtoul(string, tailptr, base)
char *string; char **tailptr; int base;

strtoul() converts the number given in string to a unsigned long and returns its value. It is the unsigned long
counterpart of strtol() and a more general version of the function atol(). strtoul() also stores a pointer to the first
character following the number through tailptr, provided tailptr does not equal NULL.
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base gives the base of the number being read, either zero or a value from two to 36. If the given base is zero,
strtoul() determines an implicit base for the number: hexadecimal if the number starts with 0x or 0X, octal if the
number starts with 0, or decimal otherwise. Alternatively, the user can specify an explicit base between two and
36.

strtoul() parses the string into three portions: beginning, subject sequence, and tail.

The beginning consists of zero or more white-space characters that begin the string.

The subject sequence is the portion of the string that strtoul() converts into an unsigned long. It consists of an
optional sign character, an optional prefix 0x or 0X if the base is 16, and a nonempty sequence of digits in the
specified base. For example, if the base is 16, then strtoul() recognizes numeric characters ‘0’ to ‘9’ and alphabetic
characters ‘A’ through ‘F’ and ‘a’ to ‘f’ as digits. It continues to scan until it encounters a nondigit.

The tail continues from the end of the subject sequence to the null character that ends the string.

strtoul() ignores the beginning portion of the string. It converts the subject sequence to an unsigned long. Finally,
if tailptr does not equal NULL , it sets the pointer pointed to by tailptr to the address of the first character of the
string’s tail.

strtoul() returns an unsigned long representing the value of the subject sequence. If the input string does not
specify a valid number, it returns zero and stores the initial value of string through tailptr. If the number it builds
is too large to fit into an unsigned long, it sets the global variable errno to the value of the macro ERANGE and
returns ULONG_MAX.

Example
This example uses strtoul() as a hash function for table lookup. It demonstrates both hashing and linked lists.
Hash-table lookup is the most efficient when used to look up entries in large tables; this is an example only.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*
* For fastest results, use a prime about 15% bigger
* than the table. If short of space, use a smaller prime.
*/
#define HASHP 11
struct symbol {

struct symbol *next;
char *name;
char *descr;

} *hasht[HASHP], codes[] = {

NULL, "a286", "frogs togs",
NULL, "xy7800", "doughnut holes",
NULL, "z678abc", "used bits",
NULL, "xj781", "black-hole varnish",
NULL, "h778a", "table hash",
NULL, "q167", "log(-5.2)",
NULL, "18888", "quid pro quo",
NULL, NULL, NULL /* end marker */

};

void
buildTable()
{

long h;
register struct symbol *sym, **symp;

for(symp = hasht; symp != (hasht + HASHP); symp++)
*symp = NULL;
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for(sym = codes; sym->descr != NULL; sym++) {
/*
* hash by converting to base 36. There are
* many ways to hash, but use all the data.
*/

h = strtoul(sym->name, NULL, 36) % HASHP;
sym->next = hasht[h];
hasht[h] = sym;

}
}

struct symbol *
lookup(s)
char *s;
{

long h;
register struct symbol *sym;

h = strtoul(s, NULL, 36) % HASHP;
for(sym = hasht[h]; sym != NULL; sym = sym->next)

if(!strcmp(sym->name, s))
return(sym);

return(NULL);
}

main()
{

char buf[80];
struct symbol *sym;

buildTable();
for(;;) {

printf("Enter name ");
fflush(stdout);

if(gets(buf) == NULL)
exit(EXIT_SUCCESS);

if((sym = lookup(buf)) == NULL)
printf("%s not found\n", buf);

else
printf("%s is %s\n", buf, sym->descr);

}
}

See Also
errno, libc, limits.h, stdlib.h, strtol()
ANSI Standard, §7.10.1.6

Notes
strtoul() ignores initial white space in the input string. White space is defined as being all characters so recognized
by the function isspace().

struct — C Keyword
Data type

struct is a C keyword that introduces a structure. The following is an example of how struct can be used in the
description of a name and address file:
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struct address {
char firstname[10];
char lastname[15];
char street[25];
char city[10];
char state[2];
char zip[5];
int salescode;

};

The C Programming Language, second edition prohibits the assignment of structures, the passing of structures to
functions, and the returning of structures by functions. COHERENT, however, lifts these restrictions. It allows one
structure to be assigned to another, provided the two structures are of the same type. It also allows structures to
be passed by and returned by functions. These features are supported by most compilers, but users should be
aware that their use can cause problems in porting code to some compilers.

See Also
array, C keywords, field, initialization, structure
ANSI Standard, §3.1.2.5, §3.5.2.1

structure — Definition
A structure is a set of variables that has been given a name and can be manipulated as a single entity. The
variables may be of different data types. Structures are a convenient way to deal with data elements that belong
together, such as names and addresses, employee descriptions, or sales and inventory information.

See Also
Programming COHERENT, struct

structure assignment — Definition
The C Programming Language, second edition forbids structure assignment, the passing of structures to functions,
and returning structures from functions (as opposed to the passing or returning of pointers to structures). The
COHERENT C compiler lifts these restrictions.

Some C compilers transform structure arguments and structure returns into structure pointers. Note that the use
of structure assignment, structure arguments, or structure returns may create problems when porting the code to
another C compiler.

See Also
portability, Programming COHERENT, struct, structure

Notes
Because this feature deviates from the description of the C language found in the first edition of The C
Programming Language compiling with the -VSBOOK option will flag all points where it occurs in your program.

strxfrm() — String Function (libc)
Transform a string using locale information
#include <string.h>
unsigned int strxfrm(string1, string2, n)
char *string1, *string2; unsigned int n;

strxfrm() transforms string2 using information concerning the program’s locale, as set by the function setlocale().
It then writes up to n bytes of the transformed result into the area to which string1 points. It returns the length of
the transformed string, not including the terminating null character. The transformation incorporates locale-
specific material into string1.

If n is set to zero, strxfrm() returns the length of the transformed string.

If two strings return a given result when compared by strcoll() before transformation, they will return the same
result when compared by strcmp() after transformation.

Example
The following simple program demonstrates strxfrm():
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#include <stdio.h>
#include <string.h>

main()
{

char string1[20], string2[20];

strcpy (string1, "This is string 1");
strcpy (string2, "This is string 2");

printf ("String 1 before transformation: %s\n", string1);
printf ("String 2 before transformation: %s\n", string2);

strxfrm (string1, string2, 18);

printf ("String 1 after transformation: %s\n", string1);
printf ("String 2 after transformation: %s\n", string2);

}

See Also
libc, string.h
ANSI Standard, §7.11.4.5

Notes
If strxfrm() returns a value equal to or greater than n, the contents of the area to which string1 points are
indeterminate.

stty — Command
Set/print terminal modes
stty
stty -a
stty -g
stty x:x: ... :x
stty arglist ...

The command stty lets you change or display the settings of the standard input device. The device is usually a
terminal, although tapes, disks and other special files may be applicable.

Default Settings
The following describes how COHERENT sets up a terminal device by default. This normal processing is often called
‘‘cooked’’ mode. Note that on some machines, the default characters differ from those given below.

The erase and kill characters (normally <crtl-H> and <ctrl-U>) erase, respectively, one typed character and an
entire line of typing.

The stop-output and start-output characters (normally <ctrl-S> and <ctrl-Q>) respectively stop and restart output.

The interrupt character (normally <ctrl-C>) sends the signal SIGINT, which usually terminates program execution.

The quit character (normally <ctrl-\>) sends the signal SIGQUIT, which usually terminates program execution with
a core dump.

The end of file character (normally <ctrl-D>) generates an end-of-file signal from the terminal.

You can change the setting of each special character by invoking stty with the appropriate option.

Options
When called without any arguments, stty gives a brief listing of settings for the standard-input device.

stty can read the settings of devices other than the standard-input device by redirecting that device to it. For
example, the command

stty < /dev/com1l

prints a brief summary of the settings for serial device com1l.

stty’s command-line arguments can take a number, as indicated below by n; or they can take a character, as
indicated below by c. Argument c can be one of the following:
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• A single character.
• A caret ‘^’ followed by a single character (to indicate a control character, e.g., ^X for <ctrl-X>).
• An ^?, which denotes the <del> character.
• An ‘0x’ followed by two hexadecimal digits.
• An ^-, which indicates that that option is not used.

stty recognizes the following command-line arguments:

-a Give a complete listing of settings for the standard-input device.
-g Give a complete list of settings for the standard-input device, but in hexadecimal. This is a dump of

the termio structure in effect at the moment. For more information on the termio structure, see the
Lexicon entry for termio.

x:x:...:x Establish new settings for the standard-input device. The settings are hexadecimal values that are
separated by colons. This form can be combined with -g option to copy stty settings from one device
to another. For example, to set device com2l so that it mimics device com1l, use the following
command:

stty `stty -g < /dev/com1l` < /dev/com2l

0 Hang up the telephone.
50 Set line speed to 50 bps.
75 Set line speed to 75 bps.
110 Set line speed to 110 bps.
134 Set line speed to 110 bps.
150 Set line speed to 150 bps.
200 Set line speed to 200 bps.
300 Set line speed to 300 bps.
600 Set line speed to 600 bps.
1200 Set line speed to 1200 bps.
1800 Set line speed to 1800 bps.
2400 Set line speed to 2400 bps.
4800 Set line speed to 4800 bps.
9600 Set line speed to 9600 bps.
19200 Set line speed to 19200 bps.
38400 Set line speed to 38400 bps.
brkint Send interrupt on break.
-brkint Do not send interrupt on break.
bs0 No delay on backspace.
bs1 Delay briefly on backspace.
clocal Turn on modem control.
-clocal Turn off modem control.
cooked Set the device into cooked mode. This is a composite of options parenb, -parodd, cs7, brkint, ignpar,

istrip, icrnl, ixon, opost, onlcr, isig, and icanon.
cr0 No delay on carriage returns.
cr1 Carriage-return delay depends upon column position.
cr2 Delay approximately 0.10 seconds on carriage return.
cr3 Delay appoximately 0.15 seconds on carriage return.
cread Enable the receiver.
-cread Disable the receiver.
cs5 Character size is five bits.
cs6 Character size is six bits.
cs7 Character size is seven bits.
cs8 Character size is eight bits.
cstopb Use two stop bits per character.
-cstopb Use one stop bit per character.
echo Echo every character.
-echo Do not echo characters.
echoe Echo the erase character as backspace-space-backspace.
-echoe Do not echo the erase character as backspace-space-backspace.
echok Echo newline after the kill character.
-echok Do not echo newline after the kill character.
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echonl Echo newline.
-echonl Do not echo newline.
ek Set the kill and erase characters to printable characters. A composite of erase ’#’ and kill ’@’.
eof c Set the end-of-file character to c.
eol c Set the end-of-line character to c.
erase c Set the erase character to c.
evenp Set the port to even parity. This is a composite of the options parenb, -parodd, and cs7.
-evenp Turn off even parity — in effect, turn off parity altogether. This is a composite of the options -parenb

and cs8.
ff0 No delay on formfeeds.
ff1 Delay approximately two seconds on formfeeds.
hup Hang up the telephone on logging out.
-hup Do not hang up the telephone on logging out.
hupcl Same as hup.
-hupcl Same as -hup.
icanon Enable canonical input.
-icanon Disable canonical input.
icrnl Map carriage-return to newline on input.
-icrnl Do not map carriage-return to newline on input.
ignbrk Ignore break on input.
-ignbrk Do not ignore break on input.
igncr Ignore carriage return on input.
-igncr Do not ignore carriage return on input.
ignpar Ignore parity errors on input.
-ignpar Do not ignore parity errors on input.
inlcr Map newline to carriage return on input.
-inlcr Do not map newline to carriage return on input.
inpck Enable parity checking on input.
-inpck Do not enable parity checking on input.
intr c Set the interrupt character to c.
isig Check input against interrupt and quit characters.
-isig Do not check input against interrupt and quit characters.
iuclc Map input’s upper-case characters to lower case.
-iuclc Do not map input’s upper-case characters to lower case.
istrip Strip input to seven bits.
-istrip Do not strip input to seven bits.
ixany Allow any on input character to restart output.
-ixany Do not allow any input character to restart output.
ixoff Request that system send start or stop characters when the input queue is, respectively, nearly full or

nearly empty.
-ixoff Do not request that system send start or stop characters to manage input queue.
ixon Use start/stop characters to control output queue.
-ixon Do not use start/stop characters to control output queue
kill c Set the kill character to c.
lcase Map upper-case characters to lower case. A composite of options xcase, iuclc, and olcuc.
-lcase Turn off mapping of upper-case character to lower case. A composite of options -xcase, -iuclc, and -

olcuc.
LCASE A synonym for lcase.
-LCASE A synonym for -lcase.
min n Set the constant VMIN to decimal value n. For more about VMIN, see the Lexicon entry for termio.
nl A composite of options -icrnl and -onlcr.
-nl A composite of options icrnl, -inlcr, -igncr, onlcr, -ocrnl, and -onlret.
nl0 No delay on newline.
nl1 Delay approximately 0.10 seconds on newline.
noflsh Flush buffer on interrupt or quit.
-noflsh Do not flush buffer on interrupt or quit.
ocrnl In output, map carriage return to newline.
-ocrnl In output, do not map carriage return to newline.
oddp Set device to odd parity. This option is a composite of the options parenb, parodd, and cs7.
-oddp Turn off odd parity — in effect, turn off parity altogether. This is a composite of the options -parenb

and cs8.
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ofdel Use delete characters as fill characters.
-ofdel Do not use delete characters as fill characters.
ofill Use fill characters for delays.
-ofill Do not use fill characters for delays.
olcuc Map lower-case characters to upper case on output.
-olcuc Do not map lower-case characters to upper case on output.
onlcr Map newline to carriage return/newline on output.
-onlcr Do not map newline to carriage return/newline on output.
onlret A newline character executes a carriage return.
-onlret A newline character does not execute a carriage return.
onocr Do not output carriage returns at column 0.
-onocr Output carriage returns at column 0.
opost Post-process output.
-opost Do not post-process output.
parenb Enable parity generation and detection.
-parenb Disable parity generation and detection.
parity Synonym for option evenp.
-parity Synonym for option -evenp.
parmrk Mark parity errors.
-parmrk Do not mark parity errors.
parodd Odd parity.
-parodd Turn off odd parity; i.e., use even parity.
quit c Set the quit character to c.
raw Set the device into raw mode. This is a composite of the options -parenb, -parodd, -hupcl, cs8, -

opost, -olcuc, -ocrnl, -onocr, -onlret, -ofill, -ofdel, nl0, cr0, tab0, bs0, vt0, and ff0. This turns off
most character processing, including all input processing (see c_iflag fields in <termio.h>), canonical
input buffering (-icanon), and output processing (-opost). It does not turn off echo.

-raw Turn off raw mode — in effect, restore the device to cooked mode. Same as cooked.
sane Restore the device to ‘‘sanity’’ — for example, after an editor or communications program has died

unexpectedly. This is a composite of options icrnl, opost, onlcr, isig, icanon, -xcase, echo, echoe,
echok, and erase ^h.

tab0 No delay for horizontal-tab character.
tab1 Delay for horizontal-tab character depends on column position.
tab2 Delay approximately 0.10 seconds on horizontal tab.
tab3 Expand horizontal-tab characters into spaces.
tabs A synonym for tab0.
-tabs A synonym for tab3.
time n Set the constant VTIME to decimal value n. For more about VTIME, see the Lexicon entry for termio.
vt0 No delay on vertical-tab characters.
vt1 Delay approximately two seconds on vertical-tab characters.
xcase Canonical presentation of upper-case and lower-case characters.
-xcase Do not process upper-case and lower-case characters.

See Also
ASCII, commands, getty, init, ioctl(), signal()

Notes
Executing stty with input redirected from another device does not have an effect unless the device being read is
open. The last close of any terminal device resets all termio values to the system defaults. Thus, to change the
settings of a device, you must first open the device.

For example,

enable com1l

or

sleep 32000 > /dev/com1l &

might precede:

stty evenp < /dev/com1l
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Note, too, that stty does not check its arguments for consistency.

stty provides complete access to the System-V-style termio structure. Note, however, that the settings of termio
are processed by the kernel’s in-line discipline and device-driver modules. Under COHERENT, none of these
modules pays attention to delay settings. Therefore, setting delays with stty does not, at present, affect the
behavior of the terminal device.

stty() — System Call (libc)
Set terminal modes
#include <sgtty.h>
int stty(fd, sgp)
int fd;
struct sgttyb *sgp;

The COHERENT system call stty() sets a terminal’s attributes. See the Lexicon article for stty for information on
terminal attributes and their legal values.

Example
This example demonstrates both stty() and gtty(). It sets terminal input to read one character at a time (that is, it
reads the terminal in ‘‘raw’’ form). When you type ‘q’, it restores the terminal to its previous settings, and exits.
For an additional example, see the pipe Lexicon article.

#include <sgtty.h>

main()
{

struct sgttyb os, ns;
char buff;

printf("Waiting for q\n");
gtty(1, &os); /* save old state */
ns = os; /* get base of new state */
ns.sg_flags |= RAW; /* prevent <ctl-c> from working */
ns.sg_flags &= ~(ECHO|CRMOD);/* no echo for now... */
stty(1, &ns); /* set mode */

do {
buff = getchar(); /* wait for the keyboard */

} while(buff != ’q’);

stty(1, &os); /* reset mode */
}

Files
<sgtty.h> — Header file

See Also
exec, gtty(), ioctl(), libc, open(), read(), sgtty.h, stty, write()

Notes
Please note that if you use stty() to change the baud rate on a port, you must first invoke sleep(). If you do not, the
port reverts back to its default settings.

stune — System Administration
Set values of tunable kernel variables
/etc/conf/stune

File stune names each tunable variable within the kernel, and gives the value to which it is actually set.
Command idmkcoh reads this file when it builds a new kernel, and uses its contents to patch the kernel
appropriately.

Each entry within this file has two fields. The first field names the variable; the name must match that given in
stune. The second field gives the value of the variable; this value must fall between the minimum and maximum
values given in stune.

If a line begins with a pound sign ‘#’, it is a comment and idmkcoh ignores it. If a tunable variable is not named in
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this file, idmkcoh uses the default value given in stune.

See Also
Administering COHERENT, device drivers, mdevice, mtune, sdevice

su — Command
Substitute user id, become superuser
su [user [command] ]

Default user is root; default command is sh. su changes the real user id and the effective user id to that of the
user. If user has a login password, su requests it. Then it executes the specified command.

If command is absent, su invokes an interactive sub-shell.

If user is absent, su assumes user name root (the superuser).

Files
/etc/passwd — Login names and passwords

See Also
commands, login, newgrp, sh, superuser

sum — Command
Print checksum of a file
sum [file ...]

sum prints an unsigned integer checksum and a size in blocks (rounding up) for each file specified. If more than
one file is specified, sum also prints the file name. If no file is specified, sum reads the standard input.

sum may be used to verify the integrity of data transferred across phone lines or stored on an unreliable medium.

See Also
cmp, commands

superuser — Definition
The superuser is the user who has system-wide permissions. He can execute any program, read any file, and write
into any directory. Thus, superuser status is reserved to the system administrator, also called root, who needs
this status to control the operation of the system.

No person should be able to become the superuser without knowing a password. Because the superuser in effect
‘‘owns’’ the system, the superuser password should be guarded most carefully.

See Also
root, su, Using COHERENT

swab() — General Function (libc)
Swap a pair of bytes
void swab(src, dest, nb) char *src, *dest; unsigned nb;

The ordering of bytes within a word differs from machine to machine. This may cause problems when moving
binary data between machines. swab() interchanges each pair of bytes in the array src that is n bytes long, and
places the result into the array dest. The length nb should be an even number, or the last byte will not be touched.
src and dest may be the same place.

Example
This example prompts for an integer; it then prints the integer both as you entered it, and as it appears with its
bytes swapped.

#include <stdio.h>

main()
{

int word;
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printf("Enter an integer: \n");
scanf("%d", &word);
printf("The word is 0x%x\n", word);
swab(&word, &word, 2);
printf("The word with bytes swapped is 0x%x\n", word);

}

See Also
byte ordering, dd, canon.h, libc

switch — C Keyword
Test a variable against a table

switch is a C keyword that lets you perform a number of tests on a variable in a convenient manner. For example,

while(foo < 10)
switch(foo) {
case 1:

dosomething();
break;

case 2:
somethingelse();

case 3:
anotherthing();
break;

default:
break;

}
}

is equivalent to

while(foo < 10) {
if(foo == 1) {

dosomething();
continue;

} else if (foo == 2) {
somethingelse();
anotherthing();
continue;

} else if(foo == 3) {
/* Note: compiler eliminates duplicate code */

anotherthing();
continue;

} else
break;

}

switch is always used with the case statement, and nearly always with the default statement.

See Also
break, C keywords, case, default, while
ANSI Standard, §6.6.4.2

sync — Command
Flush system buffers
sync

Most COHERENT commands manipulate files stored on a disk. To improve system performance, the COHERENT
system often changes a copy of part of the disk in a buffer in memory, rather than repeatedly performing the time-
consuming disk access required.

sync writes information from the memory buffers to the disk, updating the disk images of all mounted file systems
which have been changed. In addition, it writes the date and time on the root file system.

sync should be executed before system shutdown to ensure the integrity of the file system.
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See Also
commands

sync() — System Call (libc)
Flush system buffers
sync()

sync() is the COHERENT system call that copies the contents of all memory buffers to disk.

See Also
libc

sys — System Administration
Data base for UUCP connections
/usr/lib/uucp/sys

The file /usr/lib/uucp/sys describes how to communicate with a remote system. The UUCP daemon uucico uses
the information in this file to telephone a remote system, log into a remote system, and control what it allows a
remote system to do on your system.

Command cu also reads file sys for information on how it can call a remote system. However, the following
descriptions concentrate on how sys is used by uucico.

Structure of the sys File
sys has the following structure:

command argument
...

alternate
command argument

...
alternate
command argument

...
system remotesystem
command argument

...
alternate
command argument

...
system remotesystem
command argument

...
alternate
command argument

...

Blank lines in the file are ignored. The body of the file consists of a series of commands. Each command defines
one or more values; each value, in turn, determines one aspect of how your system interacts with a remote system.
A backslash at the end of a line lets an entry extend over more than one one line.

The commands from the top of sys to the first system command set global values — that is, the values used by
default when dealing with every remote system. Note that uucico recognizes a number of global values that are
not explicitly written in sys.

The command system names a remote system. The commands from one system command to the next (or the end
of the file, whichever comes first) define the values that uucico uses when it communicates with that system.
These system-specific values can override any of the global values.

The command alternate introduces a block of alternate values. The commands from one alternate command to
the next alternate command (or to the next system command or to the end of the file, whichever comes first) set a
block of alternate values. uucico uses a block of alternate values when the default values (and all preceding blocks
of alternate values) fail for any reason. By defining blocks of alternate values, you can define multiple ways to
interact with a remote system.
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Order of Command Execution
As you can see the above display, both the global section and each system-specific section can contain blocks of
alternate commands. The order in which uucico reads blocks of commands is important: each block can contain
its own version of a given command, and uucico uses the value set by the command that it has read last.

The following describes the order in which uucico reads commands when it attempts to call site remotesite:

1. uucico reads its default global values (which are described below). It then reads the global-values section of
sys, up to the first alternate command.

2. uucico reads the section remotesite, from its system command to the first alternate command.

3. uucico calls remotesite.

4. If the call to remotesite succeeds, then all is well. If it fails, however, then uucico reads the first block of
alternate commands in the global section, then the first block of alternate commands in the section for
remotesite.

Note that a block of alternate values can simply reproduce values set previously. This in effect forces uucico
to try the same values once again.

5. uucico again calls remotesite.

6. If the call succeeds, then all is well. If it fails, uucico reads the second block of alternate values (should there
be one) in the global-defaults section, then the second block of alternate values (again, should there be one) in
the section for remotesystem. uucico makes its third attempt to call remotesite.

This process continues either until uucico succeeds in getting through to remotesite, or until it runs out of blocks
of alternate values in both the global section and in the site-specific section.

As you can see, it can be difficult at times to tell just what values uucico is using at any given time. The command
uuchk can help you untangle this skein of values. See its Lexicon entry for details.

Structural Commands
The following commands help control the manner in which uucico reads commands from sys:

system remotesystem
Name the remote system. All commands up to the next system command refer to the system
remotesystem.

alternate [name]
Introduce an alternate set of commands. The optional name lets you name this block of alternate
commands; if uucico uses this block of alternate commands, it records name in the log file for
remotesystem.

default-alternates true|false
If its argument is false, do not use any blocks of alternate values from the global section. The default is
true.

Chat Commands
The command chat defines a chat script. A chat script summarizes the conversation that your system has with the
remote system as it attempts to log into that system.

chat has the following structure:

chat expect respond expect respond ... expect respond

As you can see, a chat script consists of pairs of strings. Each pair contains an expect string, which gives what
you expect the remote system to say to your system; and a respond string, which gives what your system sends in
reply. When uucico runs out of expect/respond pairs, it assumes that it has succeeded in logging into
remotesystem. If you want to send something to the remote system without waiting an expect string, then the
expect string in a expect/respond pair should be simply a pair of quotation marks with nothing between.

Each string in the chat script is demarcated by white space. Therefore, you must use the escape sequence ‘\s’ to
indicate white space within a string. You can embed other escape sequences within the respond string; these are
given below.

LEXICON

1174 sys



An expect string can contain several sub-strings separated by hyphens. The sub-strings themselves comprise pairs
of expect/respond strings. If your system does not receive the first expect sub-string, it can send the first respond
string (to prod the remote system), then await the second expect string; and so on, until your system either runs
out of sub-strings or it receives an expect sub-string that it recognizes. You can, of course, repeat the same
expect/respond pair more than once. Because sub-strings are separated by hyphens, you cannot use a literal
hyphen in a string; you should indicate a literal hyphen by the escape sequence ‘\055’ (ASCII for the hyphen
character).

You can embed the following escape sequences in a respond string:

\\ Literal backslash character
\DDD Character with octal value DDD
\b Backspace
\c Suppress carriage return at end of send string
\d Delay sending for one or two seconds
\E Enable echo checking
\e Disable echo checking
\K Same as BREAK
\L Your system’s login name
\N NUL
\n Newline or line feed
\P The password on the system being contacted
\p Pause sending for a fraction of a second
\r Carriage return
\s Space
\t Tab
\xDDD Character with hexadecimal value DDD
\Z Send name of the system being called
EOT End-of-transmission character (<ctrl-D>)
BREAK Break character

As in C, up to three octal digits may follow a backslash The escape sequence \x can be followed by an indefinite
number of hexadecimal digits. To follow a hexadecimal escape sequence with a hexadecimal digit, interpose a send
string of ‘""’.

uucico sends a carriage return at the end of each send string, unless the escape sequence \c appears in the string.

‘‘Echo checking’’ means that after uucico writes each character, it waits for the remote system to echo it. You
must turn on echo checking separately for each send string for which you want it.

The following gives an example chat script; the numbers simply mark the elements of the chat script for the
discussion that follows, and are not part of the chat script:

1 2 3 4 5 6
chat "" \r\c ogin:-BREAK-ogin:-BREAK-ogin: nuucp word: public

This script does the following:

1. Expect nothing from the modem (as indicated by the empty string "").

2. Send newline and carriage-return characters, as indicated by the escape sequence \r\c.

3. Expect the string ogin: (or a string that ends with ogin:). If this is not received within the defined pause
period, send a break character (as indicated by the escape sequence BREAK), and wait again for ogin:. If the
procedure times out again, send another break character and wait again. If the third attempt times out, quit.

4. Having received ogin: from remotesystem, send the string nuucp.

5. Wait for the string word:, that is, the tail of the prompt Password:.

6. When the password prompt is received, reply with the password public.

Some users may experience trouble when logging into a machine that is running SCO UNIX: it appears not to
recognize carriage returns. The simplest work around is to embed the ‘‘delay’’ escape sequence \d in the send
strings. For example, if you were using the above chat script to communicate with a SCO UNIX system, and the
system was not responding to your transmission, you could modify it as follows:
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chat "" \r\c ogin:-BREAK-ogin:-BREAK-ogin: \d\dnuucp\d\d\d\d word: \d\dpublic\d\d\d

This slows how your system responds to the SCO system; giving it enough time to ‘‘digest’’ your transmission
appears to work around the problem. You can try adjusting the number of \d characters to get best performance.

The following commands help control the chat your system has with a remotesystem:

chat-fail string
Abort the chat if string is received. string cannot contain white-space characters; use escape sequences
instead.

The description for remotesystem can contain multiple chat-fail commands. The default is to have none.

chat-program program arguments
Pass arguments (if any) to program, which is the path name of a program that you want uucico to execute
before it executes your chat command. program can contain its own version of a chat script, but this is
not required. If both a system’s description contains both the commands chat-program and chat, uucico
always executes the former first.

arguments can contain any of the following escape sequences:

\Y Port device name
\S Port speed
\\ Literal backslash

uucico connects the standard input and standard output of program to the port in use, and connects the
standard error of program to the UUCP log file. If program does not exit with a status of zero, uucico
assumes that it has failed.

uucico runs program as user uucp, and the environment is that of the process that invoked uucico. Take
care that by using program, you do not compromise your system’s security.

chat-seven-bit true|false
If the argument is true, uucico strips all incoming characters to seven bits before it compares them with
the expect string; otherwise, it uses all eight bits. The default is true because some UNIX systems generate
parity bits during the login prompt that must be ignored while running a chat script.

chat-timeout seconds
Wait seconds for the remote system to respond to a send string. If send string times out, uucico sends the
next send sub-string (if there is one), or fails. The default is timeout time is 60 seconds.

Aliases and Identifiers
The following commands let you manipulate how your system identifies itself to a remotesystem:

alias systemalias
Define systemalias to be an alias for remotesystem. The commands uucp and uux can use systemalias, as
can remotesystem itself. This command is helpful should remotesystem change its name: it spares you the
trouble of having to comb through your system to replace every occurrence of the old name. The default is
to have no aliases.

myname mysysname
Tell your system to identify itself as mysysname instead of its true name (as kept in file /etc/uucpname)
when it calls remotesystem.

If the description of remotesystem includes the command called-login without the argument ANY, your
system will identify itself as mysysname when it is called by remotesystem.

call-login loginname
Tell uucico how to expand the escape sequence \L, which stands for the login name. With this command,
you can use a default chat script with several different systems, expanding the login escape sequence (and
password, as will be shown next) with the appropriate strings.

call-password password
Tell uucico how to expand the escape sequence \P, which stands for a password. As with the command
call-login, described above, this command lets you use the same chat script with a number of different
systems, by expanding the login and password escape sequences as needed.
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Accepting a Call
The following commands affect how your system handles a call from another system:

called-login login_identifer [remotesystem ... ]
Recognize the remote system with the name login_identifier when it attempts to log into your system. If
you set login_identifier to ANY, uucico will accept any login identifier. The optional remotesystem
arguments name each remote system that is allowed to log in under that login identifier.

Some systems use this command to select a number of different alternate sections within sys; in effect,
this allows uucico to jump to a given portion of sys based upon the identity of the system that is
attempting to log in. In this case, the remotesystem arguments will not be used.

callback true|false
If true, this command tells uucico to hang up when the given remote system calls, and call it back. This
is a security measure, to protect your system from being penetrated by remote systems. The default is
false.

called-chat ’’ ’’ \r\d\r in:--in: nuucp word: public word: serialnumber
called-chat-fail string
called-chat-programprogram arguments
called-chat-seven-bit true|false
called-chat-timeout seconds

These commands control how a remote system logs into your system. They are analogous to the
commands chat, chat-fail, chat-program, chat-seven-bit, and chat-timeout, and are structured just like
them.

Note that called-chat the rest of these commands are invoked after protocol negotiation has been
completed between uucico on your system and its counterpart on the remote system, but before data
exchange has begun. How this chat sequence dovetails with the conversation that COHERENT has with the
remote system when it logs into your system depends upon a number of factors, in particular whether
COHERENT or uucico controls the port in question. It is customary to let COHERENT control logging in
through serial ports, as these ports can be used by interactive users as well as by UUCP sessions, while
uucico usually is allowed to control its well-known TCP port (540). However, called-chat can be used to
perform special tasks on normal serial lines, such as put the modem into a special state that is required by
a given remote site’s hardware.

Time Strings and Time Commands
Many of the commands that you can use in sys commands use a special kind of string, the time string, to specify a
range of time. The following describes the structure of a time string.

Each simple time string begins with a token that sets the day of the week. You can use any one of the following
values:

Su Sunday only
Mo Monday only
Tu Tuesday only
We Wednesday only
Th Thursday only
Fr Friday only
Sa Saturday only
Wk Every week (Monday through Friday)
Any Every day of the week

You can name more than one day of the week in a time string: just use commas to separate entries.

After the day of the week comes a range of hours and minutes The beginning and ending times are separated by a
hyphen. Military time is used, i.e., hour 0 (midnight) through hour 23 (11 PM). uucico uses the local time on your
system. The range of time can may cross midnight; for example 2300-0700 indicates 11 PM to 7 AM the following
day.

If no time is given, any time applies. The word Never in place of the time string indicates that this remote system
is never to be contacted. You should use this setting for systems that contact you but which you never contact.

You can specify more than one day/time combination in a time string; use commas to separate entries.

The following gives examples of time strings:
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Wk2305-0855,Sa,Su2305-1655
Weekdays from 11:05 PM to 8:55 AM the following day; any time on Saturday; and Sunday from 11:05 PM
to 4:55 PM the following day.

Wk0905-2255,Su1705-2255
Weekdays from 9:05 AM to 10:55 PM, and Sunday from 5:05 PM to 10:55 PM. The remote system cannot
be called on Saturday.

The following commands control when remotesystem is contacted:

time timestring [retry]
Specify when your system can call remotesystem. timestring gives a time string; the section Time Strings,
above, describes how to construct one. retry, if used, defines how long to wait before your system attempt
to call remotesystem again. The default time for each remotesystem is Never.

The optional argument retry sets many minutes your system will wait before it attempts to recontact
remotesystem, should a call made during timestring fail. If retry is not defined, uucico uses an
exponentially increasing retry time: after each failure the next retry period is longer.

The description of remotesystem can contain multiple time commands. uucico will call remotesystem if
the current time matches the time defined by any of them.

timegrade grade timestring [retry]
This command tells uucico to call remotesystem only if a file with a grade greater than or equal to grade is
awaiting transfer to that system.

grade gives the grade of file to await. It is a single letter or digit, from ‘0’ to ‘9’, ‘A’ to ‘Z’, and ‘a’ to ‘z’, in this
order from highest grade to lowest.

timestring gives the period of time to which this command applies. retry gives the length of time, in
minutes, that your system must wait before it recontacts remotesystem should a call made during
timestring fail.

The command time is equivalent to the command timegrade with a grade of ‘z’, which permits all jobs to
be run. The command uucico -S overrides grade; the command uucico -s does not.

The grade applies only to calls made to remotesystem, not to calls that it makes to you.

The description of remotesystem can have multiple timegrade commands.

The command call-timegrade, described below, complements this command.

call-timegrade grade timestring
This command tells uucico to ask remotesystem to execute only the jobs with a grade of grade or higher,
should it call remotesystem during the period of time defined in timestring. This commands complements
the command timegrade: while timegrade limits what your system does with the remote system, call-
timegrade attempts to limit what remotesystem does to your system.

grade gives the grade of the job to send. It is be a single letter or digit, from ‘0’ to ‘9’, ‘A’ to ‘Z’, and ‘a’ to ‘z’,
in this order from highest grade to lowest. timestring gives the period of time to which this command
applies. It is a time string, as defined above.

The description of a remotesystem can contain multiple call-timegrade commands.

Please note that not every implementation of UUCP will cooperate in setting grades to its jobs. If this
command does not appear, or if no time string matches, the remote system can send whatever grade of
work it chooses.

Retries and Waiting
The following commands define how often uucico will try to do something, and how long it will wait for a particular
event to happen.

max-retries retries
Recontact a remotesystem no more than than retries times during any time time period. The default
number of retries is 26.
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success-wait seconds
Wait seconds before recontacting a remotesystem after a successful call. This limits the number of times a
remotesystem will be contacted during a given time period. The default is zero.

Ports and Telephones
The following commands govern how uucico selects a port and telephones remotesystem.

address ip_address|domain_name
Name a remote system to contact a TCP/IP network. This command can name the remote system to
contact either by its domain name (e.g., lepanto.com) or its IP address (e.g., 199.3.32.100). Note that if
the port named by port command is not a TCP port, uucico ignores this command.

baud speed
speed speed

Set the speed (or ‘‘baud rate’’) at which to call remotesystem. This tells uucico to try every port defined in
file /usr/lib/uucp/port until it finds an unlocked port that runs at speed.

If the description of remotesystem contains both the baud and port, uucico uses both when it selects a
port.

If you wish to try multiple speeds when contacting a remotesystem, you must embed each baud command
in its own set of alternate commands.

uucico does not use a default speed. The command

baud 0

tells uucico to use the ‘‘natural’’ speed of a port (whatever that is), and override and overrides any baud or
speed commands that appear in the global defaults.

To place a call to a remotesystem, its description (or the global defaults) must name a port through which
to dial out, either with baud or with the command port (described below).

port portname
Name or describe the port through which to contact remotesystem.

If used with only one argument, uucico assumes that that string names a port defined in the file
/usr/lib/uucp/port. portname may point to more than one physical device; uucico tries each in turn until
it finds one that is unlocked.

If used with more than one string, uucico assumes that the strings define a port, in the same way as done
in the file port.

To place a call to a remotesystem, its description (or the global defaults) must name a port through which
to dial out, either with port or with the command baud (described above).

phone number
Give the telephone number of remotesystem. An ‘=’ character in the telephone number tells uucico to wait
for a secondary dial tone. A ‘-’ character tells uucico to pause for one second while dialing

The description of a remotesystem can have more than one phone command, one for each number at
which you can call that remotesystem. If you want your system to telephone remotesystem, then its
description must contain at least one phone command.

Protocols and Protocol Variables
The command

protocol codes

names the communication protocols to use with remotesystem. code must one or more lower-case letters, each of
which names a protocol. If more than one protocol is named, uucico considers them in the order in which you give
them.

uucico recognizes the following protocol codes:

t
e These protocols perform no checking at all. They are intended to be used over a communication path that has

end-to-end reliability, e.g., TCP. uucico will consider them only when it is talking to a TCP port that is both
reliable and eight-bit.

LEXICON

sys 1179



i This is a bidirectional protocol; that is, your system and remotesystem can both send and receive
simultaneously. It requires an eight-bit connection. This protocol is preferred for a serial connection, as it
offers the fastest transmission of data.

g This is the first, and the commonest UUCP protocol. Every implementation of UUCP supports this protocol;
some support no other. It requires an eight-bit connection. For a detailed description of how this protocol
works, see the article by Steven Baker, cited below.

G This is the System V Release 4 version of the g protocol.

a This mimics the Z-Modem protocol. It requires an eight-bit connection; but unlike the g and i protocols, it
works even if certain control characters cannot be transmitted. (Code for this protocol was contributed by
Doug Evans.)

j This is a variant of the i protocol, which can avoid certain control characters. The set of characters it avoids
can be set by a parameter. It is useful over a eight-bit connection that will not transmit certain control
characters.

f This protocol supports X.25 connections. It checksums each file as a whole, so any error causes the entire file
to be retransmitted. It requires a reliable connection, but uses only seven-bit transmissions. It is a streaming
protocol; therefore, you can use it with a serial port, but the port must be completely reliable and flow
controlled.

If you do not use the protocol command to specify a protocol, uucico considers the protocols in the order given
above, and chooses one based on the characteristics of the port and the dialer specified in the files
/usr/lib/uucp/port and /usr/lib/uucp/dial. The port and dial must meet the requirements of a protocol before
uucico will consider it during negotiation with remotesystem.

If neither the seven-bit nor the reliable command is used, uucico will use the i protocol (subject, of course, to
what is supported by the remote system; you cannot assume that all systems support the i protocol). No current
protocol can be used with a port for which you have specified seven-bit true and reliable false. You must use the
protocol command for the system, or uucico will select no protocol at all. (The only reasonable choice would be
protocol f.) You can use the command

protocol-parameter protocol parameter [argument ... ]

to modify a protocol’s default parameters.

The i protocol recognizes the following parameters:

window size
Request that remotesystem use a size window, between one and 31, inclusive. The default is 16.

packet-size size
Request that remotesystem use a packet of size bytes, between one and 4,095, inclusive. The default is
1,024.

remote-window size
Ignore the window size requested by remotesystem, and instead us a window of size. The default is zero,
which means that the request of remotesystem is honored.

remote-packet-size size
Ignore the packet size requested by remotesystem, and instead use a packet of size bytes. The default is
zero, which means that the request of remotesystem is honored.

sync-timeout seconds
Wait seconds for a SYNC packet from remotesystem. The default is ten.

sync-retries number
Resend a SYNC packet number times before giving up. The default is six.

timeout seconds
Wait seconds for an incoming packet before sending a NAK (negative acknowledgement) The default is ten.

retries number
Resend a packet or negative acknowedgement number times before giving and closing the connection. The
default is six.
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errors number
Quit after number errors have occurred. The default is 100.

error-decay number
Decrease the count of errors by one after receiving number packets. This keeps occasional errors from
accumulating during a long conversation, and so aborting what is actually a successful transmission. The
default is ten.

ack-frequency number
Send an acknowledgement after receiving number packets. By default, this is set to half the requested size
of the window.

The protocols g and G recognize the following parameters:

window size
Request that remotesystem use a size window, between one and seven, inclusive. The default is seven.

packet-size size
Request that remotesystem use a packet size of size bytes. size must be a power of two, between 32 and
4,096, inclusive. The default is 64, which is the only packet size supported by many older UUCP packages.

startup-retries number
Retry the entire initialization sequence number times before quitting. The default is eight.

init-retries number
Retry one phase of the initialization sequence number times before quitting. The default is four.

init-timeout seconds
Wait for seconds before timing out one phase of the initialization sequence. The default is ten.

retries number
Resend a packet or a request for a packet number times before quitting. The default is six.

timeout seconds
Wait for seconds for a packet or an acknowledgement before timing out. The default is ten.

garbage number
Drop the connection after receiving number unrecognized characters. number must be larger than the
packet size. The default is 10,000.

errors number
Quit after number errors have occurred. Errors include malformed packets, out-of-order packets, bad
checksums, and packets rejected by the remote system. The default is 100.

error-decay number
Decrease the count of errors by one after receiving number packets. This keeps occasional errors from
accumulating during a long conversation, and so aborting what is actually a successful transmission. The
default is ten.

remote-window size
Ignore the window size requested by remotesystem, and instead us a window of size. The default is zero,
which means that the request of remotesystem is honored.

remote-packet-size size
Ignore the packet size requested by remotesystem, and instead use a packet of size bytes. The default is
zero, which means that the request of remotesystem is honored.

short-packets true|false
If true, optimize transmission by sending shorter packets when there is less data to send. This confuses
some UUCP packages; when connecting to such a package, this parameter must be set to false. The default
is true for the g protocol and false for the G protocol.

The a protocol mimics the Z-modem protocol. It supports the following parameters: All take numeric arguments,
except for escape-control, which takes a Boolean argument:

timeout seconds
Wait seconds for a packet before timing out. The default is ten.
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retries number
Resend a packet number times before quitting. The default is ten.

startup-retries number
Retry sending the initialization sequence number times before quitting. The default is four.

garbage number
Drop the connection after receiving number unrecognized ‘‘garbage’’ characters. number must be larger
than the packet size. The default is 2,400.

send-window number
Send number characters before waiting for an acknowledgement. The default is 1,024.

escape-control true|false
If true, uucico can use the protocol over a connection that does not transmit certain control characters,
such as XON or XOFF. The connection must still transmit eight-bit characters other than control
characters. The default is false.

The j protocol can be used over an eight-bit connection that will not transmit certain control characters. It accepts
the same parameters as the i protocol, plus the following:

avoid string
Avoid every character defined in string. string can contain escape sequences, as defined above for the chat
script. Each character must be a non-printable ASCII character (i.e., ASCII values less than 32 or greater
than 126). Each must be defined using using the escape sequence \DDD, where DDD gives three octal
digits.

The default value is \021\023 (i.e., XON and XOFF). If the package is configured to use HAVE_BSD_TTY,
then you may have to avoid \377 as well.

The f protocol is intended for use with error-correcting modems only. It checksums each file as a whole, so any
error causes the entire file to be retransmitted. It recognizes the following parameters:

timeout seconds
Wait seconds before timing out. The default is 120.

retries number
Retry sending a file number times before quitting. The default is two.

The protocols t and e recognize the following parameter:

timeout seconds
Wait seconds before timing out. The default is 120.

Note that the command protocol-parameter can be used in files /usr/lib/uucp/dial and /usr/lib/uucp/port as
well as in sys. In case of a conflict between the entries in these files, the entries in dial takes precendence; then
those in port. The entries in sys have lowest precedence.

File Transfers
The following commands help to control the transfer of files.

send-request yes|no
Set whether remotesystem can request files from your system. The default is yes, that is, remotesystem
may request files.

receive-request yes|no
Set whether remotesystem can send files to your system. The default is yes, that is, remotesystem may
send files.

request yes|no
This combines the commands send-request and receive-request into one.

call-transfer yes|no
Set whether your system may transfer files to remotesystem when it calls remotesystem. The default is yes.

called-transfer yes|no
Set whether your system may transfer files to remotesystem when remotesystem calls your system. The
default is yes.
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transfer yes|no
This combines commands call-transfer and called-transfer into one.

call-local-size number timestring
Send or receive no file larger than number bytes when your system calls remotesystem during the time
defined in timestring. You can use this command to help limit the length of a call made during times when
toll charges are higher. The description of a system may contain multiple call-local-size commands, one
for each period during which you wish to limit activity. The default is to have no limit.

Please note that the size-control commands, are guaranteed only to limit the size of files being sent by your
system. The size of files being sent from remotesystem can be checked if the other system is running the
Taylor UUCP package. Other UUCP packages do not understand a maximum-size request, nor do they
inform this package of the size of the files they are sending.

call-remote-size number timestring
Limit to number bytes the size of a file that can be fetched by remote request (either by your system on
remotesystem or by it on your system) when your system calls remotesystem during the time defined in
timestring. The description of a remotesystem can contain multiple call-local-size commands, one for each
period during which you wish to limit activity. The default is to have no limit.

called-local-size number timestring
Send or receive no file larger than number bytes when remotesystem calls your system during the time
defined in timestring. The description of a system may contain multiple call-local-size commands, one for
each period during which you wish to limit activity. The default is to have no limit.

called-remote-size number timestring
Limit to number bytes the size of a file that can be fetched by remote request (either by your system on
remotesystem or by it on your system) when remotesystem calls your system during the time defined in
timestring. The description of a remotesystem can contain multiple call-local-size commands, one for each
period during which you wish to limit activity. The default is to have no limit.

local-send directorylist ...
Limit to directorylist the directories from which your system can send files to remotesystem. Each directory
in directorylist must be separated by white space. You can use a tilde ‘~’ for the public directory, i.e.,
/usr/spool/uucppublic. Listing a directory within directorylist lets your system send all files within that
directory and its subdirectories.

Prefixing a directory with an exclamation point ‘!’ specifically excludes it and its subdirectories from being
sent. For example, the command

local-send /v/fwb !/v/fwb/Personal

means that your system can send all files in directory /v/fwb to remotesytem except for the files in
directory /v/fwb/Personal.

uucico reads directorylist from left to right, and the last directory to apply takes effect. Therefore, you
should list directories from top down. The default is the root directory, i.e., your system can send any file
to remotesystem.

remote-send directorylist
Limit to directorylist the directories from which remotesystem can request files. The default is
/usr/spool/uucppublic.

local-receive directorylist
Limit to directorylist the directories into which your system can write files requested from remotesystem.
The default is /usr/spool/uucppublic.

remote-receive directorylist
Limit to directorylist the directories on remotesystem into which your system can write files. The default is
/usr/spool/uucppublic. This command cannot override permissions that localsystem has granted to your
system.

forward-to systemlist
Limit the systems to which your system will forward files to those named in systemlist. A systemlist of ANY
lets remotesystem forward files through your system to any system it wants. The default is not to permit
forwarding to other systems. Note that if you permit remotesystem to execute the command uucp on your
system, it effectively has permission to forward to any system.
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forward-from systemlist
Limit the systems from which remotesystem request files through your system to those named in
systemlist. A systemlist of ANY lets remotesystem request files from any system. The default is not to
permit remotesystem to request files from anywhere. Note that if you permit remotesystem to execute the
command uucp on your system, it effectively has permission to fetch files through your system from any
other system.

forward systemlist
This command combines the commands forward-to and forward-from.

Miscellaneous Commands
The following gives miscellaneous commands that can be used in sys:

sequence yes|no
If true, this commands tells uucico to use the conversation sequencing for remotesystem. This means that
if somebody impersonates remotesystem and logs into your system, that fact will be discovered the next
time remotesystem actually calls. The default is false.

command-path path
Limit to path the directories that a command file forwarded from remotesystem can search for commands
to execute. The directories named in path must be separated by white space.

commands commandlist
Limit the commands that remotesystem can execute on your system to those named in commandlist. A
commandlist ALL lets remotesystem execute all programs on your system. The default is rnews rmail.

free-space number
This command tells uucico always to leave free number bytes of space in a file system. This command
ensures that uucico will not permit remotesystem to fill up your file system. If an incoming file is too large
to leave number bytes free on the file system, uucico refuses the file or aborts its downloading.

Note that not every version of UUCP supports this.

pubdir directory
Name the public directory available to remote UUCP systems. The default is /usr/spool/uucppublic.

debug activitylist
Log each UUCP activity named in activitylist when talking with remotesystem. These logs can help you
debug problems with uucico and cu. uucico recognizes the following activities:

abnormal chat handshake
uucp-proto proto port
config spooldir execute
incoming outgoing

none tells uucico to log nothing.

max-remote-debug typelist
Limit to typelist the types of debugging that remotesystem can request on your system. This command is
designed to stop remotesystem from filling your disk with debugging information.

Defaults
The following gives the default settings for all systems. You should regard these as appearing at the head of
/usr/lib/uucp/sys, even though they do not explicit appear in that file:
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time Never
chat "" \r\c ogin:-BREAK-ogin:-BREAK-ogin: \L word: \P
chat-timeout 10
callback n
sequence n
request y
transfer y
local-send /
remote-send ~
local-receive ~
remove-receive ~
commands rnews rmail
max-remote-debug abnormal,chat,handshake

Example
The following gives the entry in /usr/lib/uucp/sys for the system mwcbbs, which is the Mark Williams bulletin
board:

system mwcbbs
time Any
baud 2400
port MODEM
phone 17085590412
chat "" \r\d\r in:--in: nuucp word: public word: serialnumber
protocol g
protocol-parameter g window 3
protocol-parameter g packet-size 64
myname bbsuser
request yes
transfer yes
remote-send /usr/spool/uucppublic /tmp
remote-receive /usr/spool/uucppublic /tmp
commands rmail uucp

The following describes each command in detail:

system mwcbbs
Name the sytem being described, in this case mwcbbs.

time Any
Set the time during your system can contact mwcbbs, in this case any time.

baud 2400
Set the speed at which your system can contact mwcbbs; here 2400 baud.

port MWCBBS
Set the port through which your system can dial out to mwcbbs; here, port MWCBBS. This port is defined
in the file /usr/lib/uucp/port; for details on this file and how to modify its data, see the Lexicon entry for
port.

phone 17085590412
This gives the telephone number of mwcbbs.

chat ’’ ’’ \r\d\r in:--in: nuucp word: public word: serialnumber
Give the chat script with which your system logs into mwcbbs. See the section on chat scripts, above, for
details on how to interpret this command.

protocol g
Use the g protocol.

protocol-parameter g window 3
Set the window used with protocol g to three.

protocol-parameter g packet-size 64
Set the size of the packet used with protocol g to 64 bytes.

myname bbsuser
Identify yourself to mwcbbs as user bbsuser.
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request yes
Let mwcbbs send files to your system, and request files from your system. Setting this to no would forbid
mwcbbs to do so.

transfer yes
Permit files to be transferred from your system to mwcbbs, and vice versa, regardless of whether your
system calls mwcbbs or vice versa.

remote-send /usr/spool/uucppublic /tmp
Permit mwcbbs to request files only from directories /usr/spool/uucppublic and /tmp.

remote-receive /usr/spool/uucppublic /tmp
Limit the directories into which your system will write files requested from mwcbbs to
/usr/spool/uucppublic /tmp.

commands rmail uucp
Limit the commands that mwcbbs can execute on your system to rmail and uucp.

See Also
Administering COHERENT, dial, port, UUCP
Baker, S.: From UUCP to eternity. UNIX Review, April 1993, pp. 15-26. Summarizes the history of UUCP and
describes the working of the g protocol.

Notes
Only the superuser root can edit /usr/lib/uucp/sys.

The file sys supports many commands in addition to the ones described here. This article describes only those
commands that might be used in typical UUCP connections. For more information, see the original Taylor UUCP
documentation, which is in the archive /usr/src/alien/uudoc104.tar.Z.

sysconf() — System Call (libc)
Get configurable system variables
#include <unistd.h>
long sysconf(name)
int name;

sysconf() returns the value of the system limit or option identified by name.

In the following table, the left column gives a symbolic constant to which name can be set, and the right column
gives the corresponding system variable (as defined in <limits.h> and <unistd.h>) that sysconf() reads and
returns:

Name Variable
_SC_ARG_MAX ARG_MAX
_SC_CHILD_MAX CHILD_MAX
_SC_CLK_TCK CLK_TCK
_SC_NGROUPS_MAX NGROUPS_MAX
_SC_OPEN_MAX OPEN_MAX
_SC_PASS_MAX PASS_MAX
_SC_JOB_CONTROL _POSIX_JOB_CONTROL
_SC_SAVED_IDS _POSIX_SAVED_IDS
_SC_VERSION _POSIX_VERSION

The following describes the values returned in more detail:

ARG_MAX
Maximum number of bytes that can be occupied by a process’s argument list and environment.

CHILD_MAX
Number of processes a user can run simultaneously.

CLK_TCK
Length of a clock tick, in microseconds.

NGROUPS_MAX
The maximum number of groups to which a user can belong, in addition to her primary group.
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OPEN_MAX
The number of files a process can have open simultaneously.

PASS_MAX
The maximum length of a password. Please note that the constant _SC_PASS_MAX is defined only for
programs compiled for UNIX System V release 4.

_POSIX_JOB_CONTROL
This is a Boolean flag that indicates whether the operating system supports the POSIX job-control
functions.

_POSIX_SAVED_IDS
This is a Boolean flag that indicates whether the operating system permits each process to have a saved
set-user ID and a saved set-group ID.

_POSIX_VERSION
This is a long integer that encodes the four-digit year and two-digit month of approval for the version of the
POSIX standard supported by the operating system. For example, 199009L indicates the version approved
in September of 1990.

The value of variable CLK_TCK can vary; you should not assume that it is a compile-time constant.

If name is an invalid value, sysconf() returns -1 and set errno to an appropriate value. If sysconf() fails due to a
value of name that is not defined on the system, it returns -1 without setting errno.

Example
At the time of this writing (August 1994), the program

#include <unistd.h>
main()
{

printf("_SC_ARG_MAX: %d\n", sysconf(_SC_ARG_MAX));
printf("_SC_CHILD_MAX: %d\n", sysconf(_SC_CHILD_MAX));
printf("_SC_CLK_TCK: %d\n", sysconf(_SC_CLK_TCK));
printf("_SC_NGROUPS_MAX: %d\n", sysconf(_SC_NGROUPS_MAX));
printf("_SC_OPEN_MAX: %d\n", sysconf(_SC_OPEN_MAX));
printf("_SC_JOB_CONTROL: %d\n", sysconf(_SC_JOB_CONTROL));
printf("_SC_SAVED_IDS: %d\n", sysconf(_SC_SAVED_IDS));
printf("_SC_VERSION: %d\n", sysconf(_SC_VERSION));

}

returns the following values:

_SC_ARG_MAX: 5120
_SC_CHILD_MAX: 25
_SC_CLK_TCK: 100
_SC_NGROUPS_MAX: 32
_SC_OPEN_MAX: 60
_SC_JOB_CONTROL: 0
_SC_SAVED_IDS: 1
_SC_VERSION: 199009

See Also
libc, unistd.h
POSIX Standard, §4.8.1

Notes
Programs can use the appropriate #ifndef guards to control whether they use sysconf() or a symbol from
<limits.h> for each kind of limit. For example:

#include <unistd.h>
#include <limits.h>
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#ifdef _SC_OPEN_MAX
max = sysconf (_SC_OPEN_MAX);

#elif defined (OPEN_MAX)
max = OPEN_MAX;

#else
/* either complain, or make some rational assumption, e.g. */
#error Open file descriptor limits cannot be determined
#endif

sysi86() — System Call (libc)
Identify parts within Intel-based machines
#include <sys/sysi86.h>
int sysi86(hardware, type)
int hardware, *type;

The system call sysi86() identifies parts within Intel-based computers. hardware names the machine part that you
wish to identify; you should always use one of the constants defined in header file <sys/sysi86.h>. type point to
the int into which sysi86() writes an identifying code.

sysi86() returns -1 if it was unable to read your machine. It returns a value other than -1 if it succeeds in reading
your machine.

Example
The following program identifies the type of floating-point processor in your machine.

#include <sys/sysi86.h>

#ifndef FP_NO
/*
* The following header may be needed to get the FP_... constants on some
* other implementations of the iBCS2 specification; while the sysi86()
* system call and the SI86FPHW constant are part of the iBCS2 specification,
* the FP_... constants and the <sys/fp.h> header are not.
*/
#include <sys/fp.h>
#endif

const char *
floating_point_provider ()
{

int fp_type;

if (sysi86 (SI86FPHW, & fp_type) == -1)
return "unable to retrieve FP type";

switch (fp_type) {

case FP_NO:
return "no FP hardware or emulation available";

case FP_SW:
return "software emulation of FP hardware";

case FP_287:
return "80287 hardware FP";

case FP_387:
return "80387 or 80486DX hardware FP";

default:
return "unknown floating-point provider";

}
}

main()
{

printf("%s\n", floating_point_provider());
}
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See Also
libc, sysi86.h

Notes
At present under COHERENT, this system call can interrogate a machine only for the type of its floating-point
processor.

system() — General Function (libc)
Pass a command to the shell for execution
#include <stdlib.h>
int system(commandline) char *commandline;

system() passes commandline to the shell sh, which loads it into memory and executes it. system() executes
commands exactly as if they had been typed directly into the shell. system() may be used by commands such as
ed, which can pass commands to the COHERENT shell in addition to processing normal interactive requests.

Example
This example uses system to list the names of all C source files in the parent directory.

#include <stdio.h>
#include <stdlib.h>

main()
{

system("cd .. ; ls *.c > mytemp; cat mytemp");
}

See Also
exec fork(), libc, popen(), stdlib.h, wait()
ANSI Standard, §7.10.4.5

Diagnostics
system() returns the exit status of the child process, in the format described in wait(): exit status in the high byte,
signal information in the low byte. Zero normally means success, whereas nonzero normally means failure. This,
however, depends on the command. If the shell is not executable, system() returns a special code of octal 0177.
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tail — Command
Print the end of a file
tail [+n[bcfl]] [file]
tail [-n[bcfl]] [file]

tail copies the last part of file, or of the standard input if none is named, to the standard output.

The given number tells tail where to begin to copy the data. Numbers of the form +number measure the starting
point from the beginning of the file; those of the form -number measure from the end of the file.

A specifier of blocks, characters, or lines (b, c, or l, respectively) may follow the number; the default is lines. If no
number is specified, a default of -10 is assumed.

The -f option opens the tail of a file, and then displays new material as it is added to a file. This command lets you
watch a file as it is being built, such as by nroff. Note that when tail is invoked with this option, it does not exit;
therefore, when you wish to exit, type the interrupt character (usually <ctrl-C>).

See Also
commands, dd, egrep, head, sed

Notes
Because tail buffers data measured from the end of the file, large counts may not work.

tan() — Mathematics Function (libm)
Calculate tangent
#include <math.h>
double tan(radian) double radian;

tan() calculates the tangent of its argument radian, which must be in radian measure.

Example
The following program implements the Fresnel equation, which computes the percentage of light or energy reflected
from perfect glass, based on the angle of incidence. It is by Dmitry Gringauz (dmitry@golem.com). Be sure to
compile it with the options -f and -lm.

#include <math.h>
#include <stdio.h>

double deg_to_rad(deg)
double deg;
{

return deg*PI/180.0;
}

double rad_to_deg(rad)
double rad;
{

return rad*180.0/PI;
}

LEXICON

1190 tail — tan()



main()
{

double i=0.0; /* incidence angle */
double Ra=0.0; /* angle of refraction */
double Rho=0.0; /* % reflection of the beam */
double Ri=1.52; /* refractive index of glass */

printf("\tAngle\t\tRho\n");
printf("\t-----\t\t---\n");

for (i = 5.0; i <= 90.0; i = i+5.0) {
double x = 0.0, y = 0.0; /* temporaries */

/* find the angle of refraction */
Ra = rad_to_deg(asin( sin(deg_to_rad(i)) / Ri));

/* makes sense to calculate these only once */
x = deg_to_rad(i - Ra);
y = deg_to_rad(i + Ra);

/* find out percent of reflected energy */
Rho = pow(sin(x), 2.0) / pow(sin(y), 2.0) +

pow(tan(x), 2.0) / pow(tan(y), 2.0);
Rho = Rho/2.0*100.00;
printf("\t%f\t%f\n", i, Rho);

} /* for */
} /* main */

See Also
libm, tanh()
ANSI Standard, §7.5.2.7
POSIX Standard, §8.1

Diagnostics
tan() returns a very large number where it is singular, and sets errno to ERANGE.

tanh() — Mathematics Function (libm)
Calculate hyperbolic cosine
#include <math.h>
double tanh(radian) double radian;

tanh() calculates the hyperbolic tangent of radian, which is in radian measure.

See Also
libm, tan()
ANSI Standard, §7.5.3.3
POSIX Standard, §8.1

Diagnostics
When an overflow occurs, tanh() sets errno to ERANGE.

tape — Technical Information
Magnetic-tape devices

The COHERENT system supports two classes of magnetic-tape devices: floppy tape, in which the tape device is
plugged into your system’s floppy-disk controller; and SCSI tape, in which the tape device is plugged into your
system’s SCSI controller (should it have one). The following gives general remarks on tape devices, then briefly
discusses the drivers for tape devices and the block-special files by which you can access them.

Tape Devices
A tape consists of one or more files. Each file, in turn, consists of one or more records and is terminated by a tape
mark. Two tape marks terminate the last file. Tape records may vary in length, but cannot exceed 32 kilobytes (16
kilobytes is more practical).

Like other block-oriented devices, tape units can be accessed through a system’s cooked interface or its raw
interface. On a cooked device, seeking to any byte offset and reading in any number of bytes is possible. You
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cannot read beyond the tape mark at the end of the current file. For block-I/O requests, every record in the file
must be 512 bytes long. Write requests must be made in increments of 512 bytes.

A raw device bypasses the buffer cache, so that data are written directly to or from your buffer. One write request
generates one tape record, and one read request returns exactly one record. The number of bytes read may be
fewer than expected. If the tape mark is read, a count of zero is returned, but the system positions the tape at the
start of the next tape file. Seeking on a raw device is ignored, and mounting is not allowed. Raw (or character)
requests are usually performed in units much larger than 512 bytes.

A unit cannot be opened if it is off-line or already in use. If tape cartridge within the tape drive is write protected,
you cannot open the tape device for writing. Closing the device has varying effects, depending on the device’s
minor-device number and whether the device was opened for reading or writing. If the tape had been read, the
tape is rewound; if the no-rewind device was specified, the tape advances to the next file. In the case of writing,
two tape marks are written at the current position and the tape is rewound; if the no-rewind device was specified,
two tape marks are written and the tape is positioned between them. When you close a device that had been
opened for writing, the tape volume ends at the current position; data beyond this point are undefined.

Hard errors may occur during tape operation. They include detecting the end-of-tape (EOT) reflector, reading an
unexpectedly long record, or seeking a cooked tape into a tape mark. After an error, no further operations can be
performed on the unit until the program closes the device and you rewind the tape. Soft parity errors may arise
due to dirt on the tape, a bad tape, or misaligned heads. If an error occurs on a write, the device may attempt to
place the record further along the tape. If the error occurs on a read, the driver simply rescans the record. After
several failures, the driver announces a hard error.

Drivers
COHERENT includes two drivers for tape backups:

ft This driver has major number 4, the same as the floppy-disk drive. It works with QIC-40 and QIC-80
drives from Colorado, Archive, Mountain, Summit, and IBM.

hai This is a host adapter-independent SCSI driver, which supports SCSI hard disks as well as tape. This has
major device number 13. hai works with hard disks from Adaptec, Seagate, and Future Domain. It has
been tested with the Archive Viper 60, 150, 250, and 525 SCSI tape devices, and is known to work with
them.

Each driver has a number of default behaviors, depending upon how you access it. For details, see the driver’s
entry in the Lexicon.

Devices
The following names the devices used to access tape drives. For SCSI tape devices, N is the SCSI identifier of your
tape unit, as set when you installed COHERENT. (To change your suite of SCSI identifiers, you must reconfigure
your kernel. For directions on how to do this, see the Lexicon entry for hai.)

/dev/rStpN SCSI tape unit N, raw device, rewind.
/dev/nrStpN SCSI tape unit N, raw device, no rewind.
/dev/xStpN SCSI tape unit N, control device.
/dev/rctN QIC-24 tape unit N, raw device, rewind.
/dev/nrctN QIC-24 tape unit N, raw device, no rewind.
/dev/xctN QIC-24 tape unit N, control device.
/dev/ftN QIC-40/80 (floppy tape), rewind.
/dev/nftN QIC-40/80 (floppy tape), no rewind.
/dev/ctmini Default mini-cartridge device, retensioning.
/dev/rctmini Default mini-cartridge device, no retensioning.
/dev/xctmini Default mini-cartridge device, control device.
/dev/mcN Irwin floppy tape, retensioning
/dev/rmcN Irwin floppy tape, no retensioning.
/dev/xmcN Irwin floppy tape, control device.

Installing Tape Devices
To install a SCSI tape device onto your system, do the following:

• Power down your system; then plug the SCSI device into your SCSI board. Do not plug the tape device into
your SCSI board while your system is powered up, or you will damage your hardware.
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• After you have rebooted your system, log in as the superuser root.

• cd to directory /etc/conf.

• Invoke the command cohtune hai and set the variable HAI_TAPE to the SCSI ID of the tape drive — usually
two.

• Invoke the command idmkcoh to build a new kernel.

• Reboot your system and invoke the newly built kernel.

To install a floppy-tape device onto your system, do the following:

• If you have not already done so, make sure that the you have updated COHERENT to a version that supports
floppy tape, that is, release 4.2.12 or later.

• Power down your system and install the floppy-tape device as described in its manual. Do not attempt to
install your device while your system is powered up, or you can damage or destroy your system. Be very
careful that DIP switches and jumpers are set correctly. Also, make sure that all cables are seated firmly — it
is easy to loosen a connected while installing a tape device.

• Reboot your system into single-user mode. You can do so by typing <ctrl-C> while your file system is being
checked during the reboot process, or invoke the command

/etc/shutdown single 0

after the system has checked its file system and rebooted.

• Running from single-user mode, run the script /etc/conf/ft/mkdev. If you know that your tape drive uses
soft select and know the manufacturer, you can specify these features explicitly. If you know that your tape
drive uses hard select and know the unit number (for example, a tape drive that takes the place of a second
floppy-disk drive is unit 1), you can specify these features explicitly. If you are not sure of the above, select
automatic configuration. The device driver ft will try to sense which type of drive you are using.

• Unless you have other tape drives installed, we recommend that you link the no-rewind-on-close floppy-tape
device to the default tape device /dev/tape.

• While still in single-user mode, run the script /etc/conf/bin/idmkcoh. This generates a new kernel that can
access the tape drive.

• Reboot your system and invoke the newly built kernel.

Manipulating Tape Devices
The command tape manipulates tape devices. With this command, you can rewind a tape, check the status of a
tape device, or perform other useful tasks. For details, see its entry in the Lexicon.

Command ftbad lets you view and edit the list of bad blocks on a floppy-tape cartridge. For details on how to use
this command, use see its entry in the Lexicon.

For details on how to build backups onto tape devices, see the Lexicon entry backups.

See Also
Administering COHERENT, backups, ft, ftbad, hai, tape [command]

Notes
Systems with a very slow CPU (e.g., a 16-megahertz 80386SX) may have trouble running the floppy-tape driver ft
in multi-user mode. The reason is that floppy-tape hardware does not have much intelligence built into it, so the
driver must consume many CPU cycles. In such instances, we suggest that you back up your system while in
single-user mode (which is a good idea in any case).

tape — Command
Manipulate a tape device
tape command [count] [device]

The command tape lets you manipulate a tape device. device names the tape device to manipulate. If you name
no device on the command line, tape uses the device T_DEFAULT; header file <tape.h> defines this constant to be
device /dev/tape. For a list of tape devices, see the overview article for tape.
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command names the task that you want tape to execute, as follows:

erase Erase the tape. SCSI tape only.

retension Retension the tape. This rewinds the tape, then performs a full forward wind, then another
rewind. The seek offset is set to zero.

rewind Rewind the tape. This command positions the tape at the beginning of track 0. It resets seek
offset (see seek and tell, below) to zero. If tape is already rewound, this command has no
effect.

rfm Move the tape forward to the next file mark; in effect, skip the current file. SCSI tape only.

seek location This command has the same effect as if the tape had just been used with no-rewind-on-close,
leaving the tape at byte location. No tape motion occurs at the time of the command, but the
next read or write begins at byte location on the tape. Floppy tape only.

status Display various parameters for the tape drive, and for the cartridge being used. Not every tape
drive supports every status option. Unsupported features appear as ‘‘unavailable’’. The
following gives an example of output from this command:

Floppy Tape Status:
Drive Configuration = 0x90

500 Kbits/sec
Non-Extra-Length Tape
QIC-80 Mode.

ROM Version = 0x85
Vendor ID = 0x0146, Make=5, Model=6
Tape Status Unavailable.
Drive Status = 0x65

drive ready or idle
cartridge present
cartridge referenced
at physical BOT

Drive Error Status - No Error.

Floppy tape only.

tell Display the byte offset that will be in effect the next time the tape is read or written. Floppy
tape only.

The related command ftbad lets you read and modify the list of bad blocks on a floppy-tape cartridge.

See Also
commands, ftbad, hai, tape

tar — Command
Archiving/backup utility
tar [options] file ...

tar is a utility that lets you read, write, and update archives in a machine-independent format. Its name is an
abbreviation for tape archive; however, tar can read/write output to files and floppy disks, as well as to magnetic
tape.

tar is now a link to the command gtar, which implements tape archiving more robustly than did the version of tar
shipped with earlier editions of COHERENT. For details on how to use gtar, turn to its entry in the Lexicon.

See Also
commands, gnucpio, gtar
POSIX Standard, §10.1.1

tboot — Technical Information
Describe the tertiary bootstrap

Booting is the process of loading COHERENT into memory and setting it into motion. This normally occurs after you
have turned on your computer. The term comes from the old expression about pulling one’s self up by one’s
bootstraps.
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Booting can be quite involved, and uses a number of files, depending upon the version of COHERENT being booted
and the medium from which you are booting it. The subject of this article, tboot, is the booting program that
performs tertiary booting.

To grasp what is meant by ‘‘tertiary booting’’, consider how the boot sequence works:

1. The BIOS loads the first 512 bytes off of the first hard disk and runs it. This program is called the master
boot. Mark Williams Company recommends that you use the COHERENT master boot, because it lets you boot
off any partition on either of the first two drives.

2. The master boot loads the first 512 bytes off the active partition and runs that. This program is the
‘‘secondary boot’’ program.

The secondary boot is generally responsible for loading the operating system off the active parition and
running it.

Recent releases of COHERENT need a more sophisticated program to load the operating system than can fit into 512
bytes. In these releases of COHERENT, the secondary boot loads a program off the root file system; this program is
called the ‘‘tertiary boot’’, or tboot.

tboot evaluates the hardware of your computer to provide the operating system (COHERENT) with vital information.
This evaluation allows COHERENT to run without modification on a wider range of hardware.

tboot is responsible for loading the operating system kernel. It first looks for a file called autoboot, which it then
loads. If autoboot does not exist, tboot prompts you to type in the name of a kernel, e.g., begin (during
installation) or coherent. If you do not remember the name of the kernel you wish to boot, you can type dir or ls
for a list of files in your root file system.

Pressing the spacebar when the prompt is displayed prevents execution of /autoboot and causes tboot to pause.
You can then type the name of an alternate kernel to load (assuming it already resides within the root directory),
type ls to see a listing of files, or type info for a display of hard-drive parameters.

See Also
Administering COHERENT, booting

tcdrain() — termios Macro (termios.h)
Drain output to a device
#include <termios.h>
int tcdrain(fd)
int fd;

The termios macro tcdrain() waits until all output written to device fd has been transmitted. fd must have
returned by a call to open(), and must describe a terminal device.

If all goes well, tcdrain() returns zero. If something goes wrong, it returns -1 and sets errno to an appropriate
value, as follows:

EBADF fd is not a valid file descriptor.

EINTR A signal interrupted tcdrain().

ENOTTY
fd does not describe a terminal device.

See Also
termios
POSIX Standard, §7.2.2

tcflow() — termios Macro (termios.h)
Control flow on a terminal device
#include <termios.h>
int tcflow(fd, action)
int fd;
int action;
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The termios macro tcflow() suspends transmission of data to, or receiption of data from, the device described by
file descriptor fd. When a terminal device is opened, by default neither its input nor its output is suspended. action
gives the action to take, as follows:

TCOOFF
Suspend output.

TCOON
Restart output.

TCIOFF
Transmit character STOP,
which tells the terminal to stop sending data to the system.

TCION Transmit character START, which tells the terminal to resume sending data to the system.

These constants are defined in header file <termios.h>.

Should all go well, tcflow() returns zero. If something goes wrong, it returns -1 and sets errno to an appropriate
value, as follows:

EBADF fd is not a valid file descriptor.

EINVAL
action is not set to an appropriate value.

ENOTTY
fd does not describe a terminal device.

See Also
termios
POSIX Standard, §7.2.2

tcflush() — termios Macro (termios.h)
Flush data being exchanged with a terminal
#include <termios.h>
int tcflush (fd, queue_selector)
int fd;
int queue_selector;

The termios macro tcflush() discards, or ‘‘flushes,’’ data send to or received from the terminal device described by
the file descriptor fd. queue_selector indicates what to do, as follows:

TCIFLUSH
Flush data received but not read.

TCOFLUSH
Flush data written but not transmitted.

TCIOFLUSH
Flush both data written and data read.

These constants are defined in header file <termios.h>.

If all goes well, tcflush() returns zero. If something goes wrong, it returns -1 and sets errno to an appropriate
value, as follows:

EBADF fd is not a valid file descriptor.

EINVAL
queue_selector is not a proper value.

ENOTTY
fd does not describe a terminal device.

See Also
termios
POSIX Standard, §7.2.2
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tcgetattr() — termios Macro (termios.h)
Get terminal attributes
#include <termios.h>
int tcgetattr (fd, termios_p);
int fd;
struct termios *termios_p;

The termios macro tcgetattr() gets the parameters for the terminal device described by file descriptor fd, and
stores them in the termios structure to which termios_p points.

ttcgetattr() can be called from a background process. Please note, however, a foreground process can
subsequently change the terminal device’s attributes, which renders obsolete the information in termios_p.

If all goes well, tcgetattr() returns zero. If a problem occurs, it returns -1 and sets errno to an appropriate value,
as follows:

EBADF fd is not a valid file descriptor.

ENOTTY
fd does not describe a terminal device.

See Also
tcsetattr(), termios
POSIX Standard, §7.2.1

tcsendbreak() — termios Macro (termios.h)
Send a break to a terminal
#include <termios.h>
int tcsendbreak(fd, duration)
int fd;
int duration;

The termios macro tcsendbreak() transmits NUL characters to the terminal device described by file descriptor fd.

duration gives the length of time to transmit NUL characters. If duration is zero, tcsnedbreak() transmits zero-
valued bits for at least 0.25 seconds and no more than 0.5 seconds. If duration is not set to zero, tcsendbreak()
sends zero-valued bits for the time specified by the implementation. Under COHERENT, tcsendbreak() is a macro
defined as follows:

#define tcsendbreak(filedes,duration) ioctl(filedes,TCSBRK,0)

TCSBRK is defined in header file <termio.h>: it transmits break characters for 0.25 seconds. Thus, the argument
duration is ignored.

If fd does not use asynchronous serial data transmission, the implementation defines whether the tcsendbreak()
function sends data to generate a break condition (as defined by the implementation) or returns without taking any
action. Under COHERENT, it does nothing.

If all goes well, tcsendbreak() returns zero. If something goes wrong, it returns -1 and sets errno to an appropriate
value, as follows:

EBADF fd is not a valid file descriptor.

ENOTTY
fd does not describe a terminal.

See Also
termios
POSIX Standard, §7.2.2
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tcsetattr() — termios Macro (termios.h)
Set terminal attributes
#include <termios.h>
int tcsetattr(fd, optional_actions, termios_p)
int fd, optional_actions;
struct termios *termios_p;

The termios macro tcsetattr() sets the attributes of the terminal device described by file descriptor fd to those
stored in the termios structure to which termios_p points.

option_actions defines the manner in which the attributes are set, as follows:

TCSANOW
The attributes are set immediately.

TCSADRAIN
The attributes are set after all data that has been sent to fd has been written. Use this when changing
parameters that affect output.

TCSAFLUSH
The change occurs after all output send to fd has been written: all input received but not read is discarded.

These constants are defined in header file <termios.h>.

If all goes well, tcsetattr() returns zero. If something goes wrong, it returns -1 and sets errno

EBADF fd is not a valid file descriptor.

EINVAL
optional_actions is not a proper value, or an attempt was made to change an attribute in the termios
structure to an unsupported value.

ENOTTY
fd does not describe a terminal.

See Also
termios
POSIX Standard, §7.2.1

tee — Command
Copy input to multiple output streams
tee [ -a ] [ -i ] [ file ...]

tee reads from standard input, usually a pipe, and writes to the standard output, usually a pipe. tee also writes a
copy of the input data to each file specified.

The -a flag tells tee to append data to each file, analogous to the shell construct ‘‘>>file’’. Otherwise, it creates each
file, analogous to the construct ‘‘>file’’.

The flag -i means ignore interrupts.

See Also
commands, ksh, sh

telldir() — General Function (libc)
Return the current position within a directory stream
off_t telldir (dirp)
DIR *dirp;

The COHERENT function telldir() is one of a set of COHERENT routines that manipulate directories in a device-
independent manner. It returns the current position within the directory stream pointed to by dirp.

If an error occurs, telldir() exits and sets errno to an appropriate value.

See Also
closedir(), dirent.h, getdents(), libc, opendir(), readdir(), rewinddir(), seekdir(),
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Notes
The value returned by telldir() should only be used as an argument to seekdir().

telldir() and seekdir() are unreliable when directory stream has been closed and reopened. It is best to avoid using
telldir() and seekdir() altogether.

Because directory entries can dynamically appear and disappear, and because directory contents are buffered by
these routines, an application may need to continually rescan a directory to maintain an accurate picture of its
active entries.

The COHERENT implementation of the dirent routines was written by D. Gwynn.

tempnam() — General Function (libc)
Generate a unique name for a temporary file
#include <stdio.h>
char *tempnam(directory, name);
char *directory, *name;

tempnam() constructs a unique temporary name that can be used to name a file. directory points to the name of
the directory in which you want the temporary file written. If this variable is NULL, tempnam() reads the
environmental variable TMPDIR and uses it for directory. If neither directory nor TMPDIR is given, tempnam()
uses /tmp.

name points to the string of letters that will prefix the temporary name. This string should not be more than three
or four characters, to prevent truncation or duplication of temporary file names. If name is NULL, tempnam() sets
it to t.

tempnam() uses malloc() to allocate a buffer for the temporary file name it returns. If all goes well, it returns a
pointer to the temporary name it has written. Otherwise, it returns NULL if the allocation fails or if it cannot build
a temporary file name successfully.

See Also
libc, mktemp(), TMPDIR, tmpfile(), tmpnam()

TERM — Environmental Variable
Name the default terminal type
TERM=terminal type

The environmental variable TERM names the type of terminal that you are using. This variable is read by every
program that uses the termcap or terminfo library, to ensure that the correct terminal description is read when
the program is invoked. You should set this variable in your profile, to ensure that the system understands what
type of terminal you use. The file /etc/profile sets TERM to ansipc.

See Also
environmental variables, me, termcap

term — System Administration
Format of compiled terminfo file

Before it can be used, a file of terminfo information must be compiled with the command tic. It is read by the
command setupterm.

Once compiled, the binary terminfo file is moved into a sub-directory of directory /usr/lib/terminfo. To avoid a
linear search of a huge COHERENT directory, a two-level scheme is used to name the subdirectories:
/usr/lib/terminfo/C/name, where name names the terminal and C is the first character of name. For example,
the terminfo entry for the Wyse 150 terminal is kept in the file /usr/lib/terminfo/w/wyse150. Synonyms for a
terminal exist as links to the same compiled file.

The binary format of a terminfo file has been designed to be the same on all hardware. The file is divided into six
parts: header, terminal names, boolean flags, numbers, strings, and string table.

Header
The header section begins the file. This section contains the following six short integers:
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1. The magic number (octal 0432).

2. The size, in bytes, of the names section.

3. The number of bytes in the boolean section.

4. The number of short integers in the numbers section.

5. The number of offsets (short integers) in the strings section.

6. The size, in bytes, of the string table.

A short integer is two bytes long. Under the term file format, 0xFFFF represents -1; all other negative value are
illegal. Minus 1 generally means that a capability is missing from this terminal. All short integers are aligned on a
short-word boundary.

Names
The names section contains the first line of the terminfo description, which lists the names for the terminal, each
name separated by a vertical bar ‘|’. The section is terminated with a NUL.

Boolean
The boolean section contains the boolean flags for terminals. There is one flag for each boolean capacity recognized
by terminfo. The flags appear in the order described in the header file term.h. Each flag is one byte long, and is
set to zero or one, depending upon whether the capacity is absent or present in this terminal. If necessary, this
section is ended with a NUL to ensure that the next section begins on an even byte.

Numbers
The numbers section is similar to the flags section. There is one entry for each numeric capacity recognized by
terminfo, each capacity being represented by a short integer. A value of -1 indicates that this terminal lacks this
capability. Entries appear in the order described in the header file term.h.

Strings
The strings section also contains one short integer for each string capability recognized by terminfo. A value of -1
means that this terminal lacks this capability. Otherwise, the value gives an offset from the beginning of the string
table. Entries appear in the order described in the header file term.h.

Special characters in ^X or \c notation are stored in their interpreted form. Padding information and parameter
information are stored intact in uninterpreted form.

String Table
The final section is the string table. It contains all the values of string capabilities referenced in the string section.
Each string is null terminated.

Files
/usr/lib/terminfo/* — Default location of object files

See Also
Administering COHERENT, curses, infocmp, tic, terminfo
Strang, J., Mui, L., O’Reilly, T.: termcap and terminfo. Sebastopol, CA: O’Reilly & Associates, Inc., 1991.

Notes
The total compiled file cannot exceed 4,096 bytes. The name field cannot exceed 128 bytes.

termcap — System Administration
Terminal-description language
/etc/termcap

termcap is a language for describing terminals and their capabilities. Terminal descriptions are collected in the
file /etc/termcap and are read by tgetent and its related programs to ensure that output to a particular terminal
is in a format that that terminal can understand.

COHERENT also supports the terminal-description language terminfo. For a description of how these languages
differ, see the Lexicon entry for terminfo.
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Overview
A terminal description written in termcap consists of a series of fields, which are separated from each other by
colons ‘:’. Every line in the description, with the exception of the last line, must end in a backslash ‘\’. Tab
characters are ignored. Lines that begin with a ‘#’ are comments. A termcap description must not exceed 1,024
characters.

The first field names the terminal. Several different names may be used, each separated by a vertical bar ‘|’; each
name given, however, must be unique within the file /etc/termcap. By convention, the first listed must be two
characters long. The second name is the name by which the terminal is most commonly known; this name may
contain no blanks in it. Other versions of the name may follow. By convention, the last version is the full name of
the terminal; here, spaces may be used for legibility. Any of these may be used to name your terminal to the
COHERENT system. For example, the name field for the VT-100 terminal is as follows:

d1|vt100|vt-100|pt100|pt-100|dec vt100:\

Note that the names are separated by vertical bars ‘|’, that the field ends with a colon, and that the line ends with
a backslash. Using any of these names in an export command will make the correct terminal description
available to programs that need to use it.

The remaining fields in the entry describe the capabilities of the terminal. Each capability field consists of a two-
letter code, and may include additional information. There are three types of capability:

Boolean
This indicates whether or not a terminal has a specific feature. If the field is present, the terminal is
assumed to have the feature; if it is absend, the terminal is assumed not to have that feature. For
example, the field

am:

is present, termcap assumes that the terminal has automatic margins, whereas if that field is not present,
the program using termcap assumes that the terminal does not have them.

Numeric
This gives the size of some aspect of the terminal. Numeric capability fields have the capability code,
followed by a ‘#’ and a number. For example, the entry

co#80:

means that the terminal screen is 80 columns wide.

String capabilities
These give a sequence of characters that trigger a terminal operation. These fields consist of the capability
code, an equal sign ‘=’, and the string.

Strings often include escape sequences. A ‘‘\E’’ indicates an <ESC> character; a control character is
indicated with a carat ‘^’ plus the appropriate letter; and the sequences \b, \f, \n, \r, and \t are,
respectively, backspace, formfeed, newline, <return>, and tab.

An integer or an integer followed by an asterisk in the string (e.g., ‘int*’) indicates that execution of the
function should be delayed by int milliseconds; this delay is termed padding. Thus, deletion on lines on
the Microterm Mime-2A is coded as:

dl=20*^W:

dl is the capability code for delete, the equal sign introduces the deletion sequence, 20* indicates that each
line deletion should be delayed by 20 milliseconds, and ^W indicates that the line-deletion code on the
Mime-2A is <ctrl-W>.

The asterisk indicates that the padding required is proportional to the number of lines affected by the
operation. In the above example, the deletion of four lines on the Mime-2A generates a total of 80
milliseconds of padding; if no asterisk were present, however, the padding would be only 20 milliseconds,
no matter how many lines were deleted. Also, when an asterisk is used, the number may be given to one
decimal place, to show tenths of a millisecond of padding.

Note that with string capabilities, characters may be given as a backslash followed by the three octal digits
of the character’s ASCII code. Thus, a colon in a capability field may be given by \072. To put a null
character into the string, use \200, because termcap strips the high bit from each character.
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Finally, the literal characters ‘^’ and ‘\’ are given by ‘‘\^’’ and ‘‘\\’’.

Capability Codes
The following table lists termcap’s capability codes. Type indicates whether the code is boolean, numeric, or
string; a dagger ‘†’ indicates that this capability may include padding, and a dagger plus an asterisk ‘‘†*’’ indicates
that it may be used with the asterisk padding function described above.

Variable Type Definition
ae . . . . . . . . string† . . . . . End alternate set of characters
al . . . . . . . . string†* . . . . . Add blank line
am. . . . . . . . boolean . . . . . Automatic margins
as . . . . . . . . string† . . . . . Start alternate set of characters
bc . . . . . . . . string . . . . . . Backspace character, if not <ctrl-H>
bs . . . . . . . . boolean . . . . . Backspace character is <ctrl-H>
bt . . . . . . . . string† . . . . . Backtab
bw . . . . . . . . boolean . . . . . Backspace wraps from column 0 to last column
CC . . . . . . . . string . . . . . . Command character in prototype if it can be set at terminal
cd . . . . . . . . string†* . . . . . Clear to end of display
ce . . . . . . . . string† . . . . . Clear line
ch . . . . . . . . string† . . . . . Horizontal cursor motion
cl . . . . . . . . string†* . . . . . Clear screen
cm. . . . . . . . string† . . . . . Cursor motion, both vertical and horizontal
co . . . . . . . . number . . . . . Number of columns
cr . . . . . . . . string†* . . . . . <return>; default <ctrl-M>
cs . . . . . . . . string† . . . . . Change scrolling region (DEC VT100 only); resembles cm
cv . . . . . . . . string† . . . . . Vertical cursor motion
da . . . . . . . . boolean† . . . . Display above may be retained
dB . . . . . . . . number . . . . . Milliseconds of delay needed by bs
db . . . . . . . . boolean . . . . . Display below may be retained
dC . . . . . . . . number . . . . . Milliseconds of delay needed by cr
dc . . . . . . . . string†* . . . . . Delete a character
dF . . . . . . . . number . . . . . Milliseconds of delay needed by ff
dl . . . . . . . . string†* . . . . . Delete a line
dm . . . . . . . string . . . . . . Enter delete mode
dN . . . . . . . . number . . . . . Milliseconds of delay needed by nl
do . . . . . . . . string . . . . . . Move down one line
dT . . . . . . . . number . . . . . Milliseconds of delay needed by tab
ed . . . . . . . . string . . . . . . Leave delete mode
ei . . . . . . . . string . . . . . . Leave insert mode; use :ei=: if this string is the same as ic
eo . . . . . . . . string . . . . . . Erase overstrikes with a blank
ff. . . . . . . . . string†* . . . . . Eject hardcopy terminal page; default <ctrl-L>
hc . . . . . . . . boolean . . . . . Hardcopy terminal
hd . . . . . . . . string . . . . . . Move half-line down, i.e., forward 1/2 line feed)
ho . . . . . . . . string . . . . . . Move cursor to home position; use if cm is not set
hu . . . . . . . . string . . . . . . Move half-line up, i.e., reverse 1/2 line feed
hz . . . . . . . . string . . . . . . Cannot print tilde ‘~’ (Hazeltine terminals only)
ic . . . . . . . . string† . . . . . Insert a character
if. . . . . . . . . string . . . . . . Name of the file that contains is
im . . . . . . . . string . . . . . . Begin insert mode; use :im=: if ic has not been set
in . . . . . . . . boolean . . . . . Nulls are distinguished in display
ip . . . . . . . . string†* . . . . . Insert padding after each character listed
is . . . . . . . . string . . . . . . Initialize terminal
k0-k9 . . . . . . string . . . . . . Codes sent by function keys 1 through 10 (k0 = F10)
kb . . . . . . . . string . . . . . . Code sent by backspace key
kd . . . . . . . . string . . . . . . Code sent by down-arrow key
ke . . . . . . . . string . . . . . . Leave ‘‘keypad transmit’’ mode
kh . . . . . . . . string . . . . . . Code sent by home key
kl . . . . . . . . string . . . . . . Code sent by left-arrow key
kn . . . . . . . . number . . . . . No. of function keys; default is 10
ko . . . . . . . . string . . . . . . Entries for for all other non-function keys
kr . . . . . . . . string . . . . . . Code sent by right-arrow key
ks . . . . . . . . string . . . . . . Begin ‘‘keypad transmit’’ mode
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ku . . . . . . . . string . . . . . . Code sent by up-arrow key
l0-l9. . . . . . . string . . . . . . Function keys labels if not f0-f9
li . . . . . . . . . number . . . . . Number of lines
ll . . . . . . . . . string . . . . . . Move cursor to first column of last line (cm not set)
ma. . . . . . . . string . . . . . . Map keypad-to-cursor movement for vi version 2
mi . . . . . . . . boolean . . . . . Cursor may be safely moved while in insert mode
ml . . . . . . . . string . . . . . . Turn on memory lock for area of screen above cursor
ms. . . . . . . . boolean . . . . . Cursor can be moved while in standout or underline mode
mu . . . . . . . string . . . . . . Turn off memory lock
nc . . . . . . . . boolean . . . . . <return> does not work
nd . . . . . . . . string . . . . . . Move cursor right non-destructively
nl . . . . . . . . string†* . . . . . Newline character; default is \n (Obsolete)
ns . . . . . . . . boolean . . . . . Terminal is CRT, but does not scroll
os . . . . . . . . boolean . . . . . Terminal can overstrike
pc . . . . . . . . string . . . . . . Pad character any character other than null
PS . . . . . . . . string . . . . . . Print start: redirect input to auxiliary port
PN . . . . . . . . string . . . . . . Print end: stop redirecting input to auxiliary port
pt . . . . . . . . boolean . . . . . Terminal’s tabs set by hardware; may need to be set with is
se . . . . . . . . string . . . . . . Exit standout mode
sf . . . . . . . . string† . . . . . Scroll forward
sg . . . . . . . . number . . . . . Blank characters left by so or se
so . . . . . . . . string . . . . . . Enter standout mode
sr . . . . . . . . string† . . . . . Reverse scroll
ta . . . . . . . . string† . . . . . Tab character other than <ctrl-I>, or with padding
tc . . . . . . . . string . . . . . . Similar terminal — must be last field in entry
te . . . . . . . . string . . . . . . End a program that uses cm
ti . . . . . . . . string . . . . . . Begin a program that uses cm
uc . . . . . . . . string . . . . . . Underscore character and skip it
ue . . . . . . . . string . . . . . . Leave underscore mode
ug . . . . . . . . number . . . . . Blank characters left by us or ue
ul . . . . . . . . boolean . . . . . Terminal underlines but does not overstrike
up . . . . . . . . string . . . . . . Move up one line
us . . . . . . . . string . . . . . . Begin underscore mode
vb . . . . . . . . string . . . . . . Visible bell; may not move cursor
ve . . . . . . . . string . . . . . . Exit open/visual mode
vs . . . . . . . . string . . . . . . Begin open/visual mode
xb . . . . . . . . boolean . . . . . Beehive terminal (f1=<esc>, f2=<crtl-C>)
xn . . . . . . . . boolean . . . . . Newline is ignored after wrap
xr . . . . . . . . boolean . . . . . <return> behaves like ce \r \n
xs . . . . . . . . boolean . . . . . Standout mode is not erased by writing over it
xt . . . . . . . . boolean . . . . . Tabs are destructive

Examples
The following is the termcap description for the IBM Personal Computer, also known as ansipc. This is the default
description used with your COHERENT system console:

ap|ansipc|ansi personal computer:\
:al=\E[L:am:bs:bt=\E[Z:bw:cd=\E[O:ce=\E[K:ch=\E[%i%d‘:\
:cl=\E[2O:cm=\E[%i%d;%dH:co#80:cs=\E[%i%d;%dr:\
:cv=\E[%i%dd:dl=\E[M:ho=\E[H:is=\E[25f\E[2K\E[m\E[H:\
:k0=\E[0x:k1=\E[1x:k2=\E[2x:k3=\E[3x:k4=\E[4x:k5=\E[5x:\
:k6=\E[6x:k7=\E[7x:k8=\E[8x:k9=\E[9x:kb=^h:kd=\E[B:kh=\E[H:\
:kl=\E[D:kr=\E[C:ku=\E[A:li#24:ll=\E[24;1H:hd=\E[C:se=\E[m:\
:sf=\E[S:sg#0:so=\E[7m:sr=\E[T:ue=\E[m:up=\E[A:us=\E[4m:\
:KI=\E[5x:KD=\E[3x:Kd=\E[P:KB=\E[6x:KU=\E[4x:Ku=\E[@:\
:KM=\E[7x:KJ=\E[8x:Kt=\E[Z:KT=\t:KL=\E[1x:KR=\E[2x:KP=\E[U:\
:Kp=\E[V:KX=\E[9x:KC=\E[0x:KE=\E[24H:KW=^F:Kw=^R:Kr=^N:do=\E[B:

The first field, which occupies line 1, gives the various aliases for this device. The remaining fields mean the
following:

:al=\E[L:\ <esc>L adds new blank line; use one millisecond for each line added.
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:am:\ Terminal has automatic margins.
:bs:\ Backspace character is <ctrl>-H (the default).
:bt=\E[Z:\ <esc>[Z back-tabs.
:bw:\ On this device, a backspace character wraps from column 0 to the last column (in this case,

column 79) on the previous line.
:cd=\E[O:\ <esc>[O clears to the end of display.
:ce=\E[K:\ <esc>[K clears to end of line.
:ch=\E[%i%d‘:\ The string for horizontal cursor motion (described later).
:cl=\E[2O:\ <esc>[2O clears screen.
:cm=\E[%i%d;%dH:\

Cursor motion (described later).
:co#80:\ Screen has 80 columns.
:cs=\E[%i%d;%dr:\

String for changing the scrolling region.
:cv=\E[%i%dd:\ String for vertical cursor motion.
:dl=\E[M:\ <esc>E[M deletes a line.
:ho=\E[H:\ <esc>[H moves cursor to home position.
:is=\E[25f\E[2K\E[m\E[H:\

The string with which the device is initialized.
:k0=\E[0x:\ Function key 10 sends sequence <esc>[0x.
:k1=\E[1x:\ Function key 1 sends sequence <esc>[1x.
:k2=\E[2x:\ Function key 2 sends sequence <esc>[2x.
:k3=\E[3x:\ Function key 3 sends sequence <esc>[3x.
:k4=\E[4x:\ Function key 4 sends sequence <esc>[4x.
:k5=\E[5x:\ Function key 5 sends sequence <esc>[5x.
:k6=\E[6x:\ Function key 6 sends sequence <esc>[6x.
:k7=\E[7x:\ Function key 7 sends sequence <esc>[7x.
:k8=\E[8x:\ Function key 8 sends sequence <esc>[8x.
:k9=\E[9x:\ Function key 9 sends sequence <esc>[9x.
:kb=^h:\ Backspace key sends <Ctrl>-H.
:kd=\E[B:\ Down-arrow key sends <esc>[B.
:kh=\E[H:\ Home key sends <esc>[H.
:kl=\E[D:\ Left-arrow key sends <esc>[D.
:kr=\E[C:\ Right-arrow key sends <esc>[C.
:ku=\E[A:\ Up-arrow key sends <esc>[A.
:li#24:\ Terminal has 24 lines.
:ll=\E[24;1H:\ <esc>[24;1H moves the cursor to the first column of the last line.
:hd=\E[C:\ <esc>[C moves the cursor downward by one-half line.
:se=\E[m:\ <esc>[m exits standout mode.
:sf=\E[S:\ <esc>[S scrolls the screen forward.
:sg#0:\ The so and se instructions leave zero blank lines on the screen.
:so=\E[7m:\ <esc>[7m begins standout mode.
:sr=\E[T:\ <esc>[T reverse-scrolls the screen.
:ue=\E[m:\ <esc>m ends underline mode.
:up=\E[A:\ <esc>[A moves the cursor up one line.
:us=\E[4m:\ <esc>4m begins underscore mode.
:do=\E[B: <esc>E[B moves cursor down one line.

Note that the last field did not end with a backslash; this indicated to the COHERENT system that the termcap
description was finished.

A terminal description does not have to be nearly so detailed. If you wish to use a new terminal, first check the
following table to see if it already appears by termcap. If it does not, check the terminal’s documentation to see if
it mimics a terminal that is already in /etc/termcap, and use that description, modifying it if necessary and
changing the name to suit your terminal. If you must create an entirely new description, first prepare a skeleton
file that contains the following basic elements: number of lines, number of columns, backspace, cursor motion, line
delete, clear screen, move cursor to home position, newline, move cursor up a line, and non-destructive right
space. For example, the following is the termcap description for the Lear-Siegler ADM-3A terminal:

la|adm3a|3a|lsi adm3a:\
:am:bs:cd=^W:ce=^X:cm=\E=%+ %+ :cl=^Z:co#80:ho=^^:li#24:\
:nd=<ctrl-L>:up=^K:
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Once you have installed and debugged the skeleton description, add details gradually until every feature of the
terminal is described.

Cursor Motion
The cursor motion characteristic contains printf-like escape sequences not used elsewhere. These encode the line
and column positions of the cursor, whereas other characters are passed unchanged. If the cm string is
considered as a function, then its arguments are the line and the column to which the cursor is to move; the %
codes have the following meanings:

%d Decimal number, as in printf. The origin is 0.

%2 Two-digit decimal number. The same as %2d in printf().

%3 Three-digit decimal number. The same as %3d in printf().

%. Single byte. The same as %c in printf().

%+n Add n to the current position value. n may be either a number or a character.

%>nm If the current position value is greater than n+m; then there is no output.

%r Reverse order of line and column, giving column first and then line. No output.

%i Increment line and column.

%% Give a % sign in the string.

%n Exclusive or line and column with 0140 (Datamedia 2500 terminal only).

%B Binary coded decimal (16 * (n/10))+(n%10). No output.

%D Reverse coding (n-(2*(n%16)). No output (Delta Data terminal only).

To send the cursor to line 3, column 12 on the Hewlett-Packard 2645, the terminal must be sent <esc>&a12c03Y
padded for 6 milliseconds. Note that the column is given first and then the line, and that the line and column are
given as two digits each. Thus, the cm capability for the Hewlett-Packard 2645 is given by:

:cm=6\E&%r%2c%2Y:

The Microterm ACT-IV needs the current position sent preceded by a <Ctrl-T>, with the line and column encoded
in binary:

:cm=^T%.%.:

Terminals that use %. must be able to backspace the cursor (bs or bc) and to move the cursor up one line on the
screen (up). This is because transmitting \t, \n, \r, or <ctrl-D> may have undesirable consequences or be ignored
by the system.

Similar Terminals
If your system uses two similar terminals, one can be defined as resembling the other, with certain exceptions.
The code tc names the similar terminal. This field must be last in the termcap entry, and the combined length of
the two entries cannot exceed 1,024 characters. Capabilities given first over-ride those in the similar terminal, and
capabilities in the similar terminal can be cancelled by xx@ where xx is the capability. For example, the entry

hn|2621nl|HP 2621nl:ks@:ke@:tc=2621

defines a Hewlett-Packard 2621 terminal that does not have the ks and ke capabilities, and thus cannot turn on
the function keys when in visual mode.

Initialization
A terminal initialization string may be given with the is capability; if the string is too long, it may be read from a file
given by the if code. Usually, these strings set the tabs on a terminal with settable tabs. If both is and if are
given, is will be printed first to clear the tabs, then the tabs will be set from the file specified by if. The Hewlett-
Packard 2626 has:

:is=\E&j@\r\E3\r:if=/usr/lib/tabset/stdcrt:

Programming With termcap
The COHERENT library libterm.a contains the following routines that extract and use the descriptions for termcap:
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tgetent() Read a termcap entry.

tgetflag() Check if a given Boolean capability is present in the terminal’s termcap entry.

tgetnum() Return the value of a numeric termcap feature (e.g., the number of columns on the terminal).

tgetstr() Read and decode a termcap string feature.

tgoto() Read and decode a cursor-addressing string.

tputs() Read and decode the leading padding information of a termcap string feature.

See the Lexicon entry for each function for details.

The external variable ospeed is the output speed to the terminal as encoded by stty. The external variable PC is a
padding character if a NUL (<crtl-@>) is not appropriate.

The following example shows how to read a termcap entry:

#include <stdio.h>

static char *CM, *SO, *SE, *CL;
static int rows, cols;
static int am;
static int errflag;
static char *ptr;
static char *tv_stype;

extern char *tgoto(); /* termcap cursor position command */
extern char *tgetstr(); /* get string code from termcap */
extern int tgetflag(); /* get boolean flag from termcap */
extern int tgetnum(); /* get numeric code from termcap */
extern void tputs(); /* termcap put data command */
extern char PC; /* termcap’s pad character */

/*
* Get a required termcap string or exit with a message.
*/
static char *
qgetstr(ref)
char *ref;
{

register char *tmp;

if ((tmp = tgetstr(ref, &ptr)) == NULL) {
printf("/etc/termcap terminal %s must have a %s= entry\n",

tv_stype, ref);
errflag = 1;

}
return (tmp);

}

/*
* Get required termcap information for this terminal type.
*/
static void
tcapopen()
{

extern char *getenv(), *realloc();
char *tcapbuf;
char tcbuf[1024]; /* this must hold the whole tml entry */
char *p;

/* set up termcap type */
if ((tv_stype = getenv("TERM")) == NULL) {

printf("Environment variable TERM not defined\n");
exit(1);

}
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if (tgetent(tcbuf, tv_stype) != 1) {
printf("Terminal type %s not in /etc/termcap\n", tv_stype);
exit(1);

}

/* get far too much and shrink later */
if ((ptr = tcapbuf = malloc(1024)) == NULL) {

printf("out of space\n");
exit(1);

}

/* get termcap entries for later use */
CM = qgetstr("cm"); /* this string used by tgoto() */
CL = qgetstr("cl"); /* this string used to clear screen */
SO = qgetstr("so"); /* this string used to set standout */
SE = qgetstr("se"); /* this string used by clear standout */
if (errflag) /* set if any missing entries */

exit(1);

/* set termcap’s pad char */
PC = (((p = tgetstr("pc", &ptr)) == NULL) ? 0 : *p);

if (tcapbuf != realloc(tcapbuf, (unsigned)(ptr - tcapbuf))) {
printf("Buffer not shrunk in place!\n");
exit(1);

}

if ((cols = tgetnum("co")) < 0) /* Get rows and columns */
cols = 80;

if ((rows = tgetnum("li")) < 0)
rows = 24;

am = tgetflag("am"); /* automatic margins ? */
}

/*
* output char function.
*/
static void
ttputc(c)
{

fputc(c, stdout);
}

/*
* output command string, set padding to one line affected.
* use ttputc as character output function. Use only for
* termcap created data not your own strings.
*/
void
putpad(str)
char *str;
{

tputs(str, 1, ttputc);
}

/*
* Move cursor.
*/
void
move(col, row)
{

putpad(tgoto(CM, col, row));
}
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/*
* Demonstrate termcap.
*/
main()
{

tcapopen();

putpad(CL); /* clear the screen */

move(30, 5);
putpad(SO); /* standout mode */
printf("Termcap Demo");
putpad(SE); /* end standout mode */

move(0, 7);
printf("This terminal has %d columns and %d rows.", cols, rows);

if (am) {
move(0, 8);
printf("Automatic margins.");

}

move(0, rows); /* quit at bottom of screen */
exit(0);

}

Files
/etc/termcap — Terminal-description data base
/usr/lib/libterm.a — Routines for reading a termcap description

See Also
Administering COHERENT, captoinfo, curses, libterm, terminal, terminfo, tgetent(), tgetflag(), tgetnum(),
tgetstr(), tgoto(), tputs()
Strang, J., Mui, L., O’Reilly, T.: Termcap & Terminfo. Sebastopol, CA: O’Reilly & Associates, Inc., 1991. Highly
recommended.

Notes
To see which terminals are currently supported, see file /etc/termcap.

COHERENT also supports terminfo, a clone of the UNIX System-V terminal-description system. terminfo enjoys a
number of features not available under termcap, and is the preferred system under COHERENT.

Should you wish to convert to terminfo, the command captoinfo converts a file of termcap descriptions to their
terminfo analogues.

terminal — Technical Information
This article describes how you can hook up a terminal to your COHERENT system via a serial port. It also discusses
common problems that arise with this procedure, as diagnosed daily by the technical support staff at Mark
Williams Company. For information on connecting a modem to your computer’s serial port, see the article modem.

Terminals for Beginners
To a beginner, a terminal — with its many wires and controls — may be daunting. However, connecting a terminal
or PC-based terminal emulator to a COHERENT system is really very easy. To make matters even easier, this
section discusses how to use a simple configuration, using only one COM port.

What you need:

1. A COHERENT system with a COM port.

2. Either a terminal or a PC with a COM port and communications software. An old PC or PC-AT is fine. (You
can also use a Macintosh or other such computer, but that is beyond the scope of this discussion.)

3. A ‘‘null modem cable’’ purchased from your nearest computer supply store. This should cost between $10 and
$20, in U.S. currency. The only tricky part about the cable is making sure that the connectors on the ends
match the connectors on your COM ports (i.e., nine pin vs. 25 pin, and male vs female. Adaptors are also
available.

LEXICON

1208 terminal



What you do:

1. Connect the cable to the COM port on the COHERENT system. Note that the COM port on your COHERENT
system is always a male plug (that is, it has pins rather than sockets). Do not plug your connection into a
female plug, as this is the parallel port. If you do so, you can damage your equipment.

2. Connect the cable to the COM port on the terminal/PC. If you are using a PC as a terminal, the COM port on
it will also be male. If you are using a stand-alone terminal, the plug could be either male or female.

If you are using a stand-alone terminal, there may be a plug on the back that is labelled ‘‘AUX’’. Do not use
this plug; use the other one.

3. Configure the terminal/PC to use 9600 speed (or ‘‘baud’’) and 8N1 character setting (that is, eight bits, no
parity, one stop bit. Note that you do not need a telephone number: you won’t be dialing anywhere.

4. Log in on your COHERENT system as the superuser root. Type the following command:

/etc/enable com?l

where ‘?’ is the number of the COM port on your COHERENT system into which you are plugging the cable
from the PC or terminal Note that the last character is lower-case ‘L’, not a one.

5. Now come a tricky part: use your favorite text editor and edit file /etc/ttytype. This file gives the default type
of terminal that will be connecting to COHERENT via a given COM port. This is important. If you don’t do this,
such screen-oriented programs as editors and vsh will not work properly.

Each entry in /etc/ttytype has two columns: the first gives a type of terminal, and the second names the
port. The following shows an example entry:

vt100 com3l

In this instance, COM port com3l has a DEC VT-100 plugged into it by default. Look for an entry for the
COM port into which you plugged your terminal device. If you can’t find you, you can create one easily
enough; however, having two entries for the same port is not a good idea, as COHERENT will become confused.

If you are plugging in a PC, use the terminal type vt100. If you are using a stand-alone terminal, name the
type of terminal you are using, e.g., wyse370 for a Wyse 370 color terminal. If you cannot figure out what
type of terminal you are using, use dumb. This will not allow you to use screen-oriented programs like
MicroEMACS, but at least you will be able to connect to COHERENT; you can figure out the type of terminal
later.

6. Return to your terminal device. If you are using a PC, invoke the terminal emulator, and put it into ‘‘connect’’
mode. If you are using a stand-alone terminal, turn it on. Press (¢). After a short pause, you should see the
prompt

Coherent login:

on your screen. You can then log in and run normally.

That’s all there is to it. In this way, you can get more use out of an old, obsolete PC. After you get it working, you
may need to adjust some other settings, particularly if you are using a communications package on a PC for a
terminal.

If you see garbage characters when you log in, probably the speed (or ‘‘baud rate’’) is not set correctly either on the
COM port of your COHERENT system or on your terminal device. The Lexicon article on ttys describes the magic
character string used to describe each com port and one of the letters is the port speed.

Problems with Terminal Hookup
As noted above, it is easy to hook up a terminal. However, problems can arise if you overlook any details.

When problems arise, they usually come from some form of confusion. These can include send/receive confusion,
baud rate confusion, and shell/no shell confusion. The following sections describes eacy type of confusion in turn.

Send/Receive Confusion
This most often happens when you’ve soldered your own connectors, and you made a mistake. If you purchased a
connector, as we recommended above, then skip to the next section.

A serial connection between your computer and a terminal requires at least three wires: one each for pins 2, 3, and
7. These pins, respectively, control send (TD), receive (RD), and signal-ground (Gnd or SG). These pin numbers
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correspond to the 25-pin ‘‘DB-25’’ connectors used on most equipment. If your system has the AT-style nine-pin
‘‘DB-9’’ connectors, you will need to wire to the corresponding signals. See the Lexicon entry for RS-232 for details
of the pin-outs for these two connectors.

When hooking up a terminal to a serial port using a three-wire connection, you must cross pins 2 and 3, so that
each device’s send pin talks to the other device’s receive pin. You can plug a device called a ‘‘null modem’’ between
the cable and the serial port, to do this automatically.

Note that the only symptom of a problem in the cable is that nothing appears on your terminal when you type.

Baud-Rate Confusion
The terminal and the computer must speak to each other at the same speed, or ‘‘baud rate’’. A typical symptom of
baud-rate confusion is garbage characters on the screen. When the wiring is wrong, you see nothing; when the
baud rate is wrong, you see random collections of characters on the screen, but nothing meaningful.

You can fix baud-rate problems by using the command stty to reset the baud rate on the port, or resetting the
baud rate on the terminal. The problem should also be solved by editing file /etc/ttys. For directions on how to
reset the baud rate for a port, see the Lexicon entry for stty; see the Lexicon entry for ttys for information on how
to edit /etc/ttys.

Please note, too, that COHERENT supports the following configuration for terminals:

8 word bits
1 stop bit
No parity bits

These settings, as well as the baud rate, must match before your terminal will work correctly.

The Old Shell Game
Before a terminal is useful to you, you must enable the port into which it is plugged. Enabling a port means that
the COHERENT system creates a shell for that port: this, in turn, means that COHERENT prints a login prompt on
the device plugged into that port, and reads and processes interactively commands that are entered from that port.
The COHERENT system also restricts permissions on all enabled serial ports, so that only the superuser root can
read and write to the port. This prevents other users who may be using the system from accessing the serial port.

Note that not all ports need be enabled: for example, you should not enable a COM port into which you’ve plugged
a printer.

When you boot the COHERENT system, it reads system file /etc/ttys and creates a shell for each serial port that
needs one. One way to enable a port is to log in as the superuser root, then use a text editor to change the port’s
entry in /etc/ttys, as described its Lexicon article. Finally, typing the command

kill quit 1

forces COHERENT to re-read /etc/ttys and so create a shell for the port. Note that doing this will ensure that the
port is re-enabled every time you boot.

A better way to enable a port is to use the command enable, as described in its Lexicon article. For example, to
put up a shell on COM port /dev/com1r, log in as the superuser root and type the command:

/etc/enable com1r

Exiting Raw Mode
A terminal is in cooked mode. In cooked mode, the tty driver interprets and correctly processes such predefined
characters as the end-of-file character or the quit character. In raw mode, however, processing of such characters
is turned off; and in general the terminal will behave bizarrely. Raw mode is used by programs that do not want
the tty driver to interpret characters; for example, a program that uses a tty to transmit a binary to another
machine does not want the tty driver to be interpreting the binary information being passed through it.

Occasionally, a program will exit abruptly and leave the terminal in raw mode. To return to cooked mode, use the
command <ctrl-J> stty sane <ctrl-J>. This invokes the command stty, which lets you manipulate terminal
settings, to restore the previous cooked state. See the Lexicon entry on stty for details on raw and cooked modes;
this article also describes the options of this most useful command.

See Also
Administering COHERENT, asy, device drivers, hs, modem, RS-232, sgtty, stty, termcap, terminfo, termio,
termios, ttys
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Notes
One final bit of hard-won wisdom: once you have something working, write down what you did, and store it in a
place where you won’t lose it. Note especially what connectors are where and how they have been cabled together.
It makes life easier just knowing that you are looking for a female-to-female cable instead of male-to-female or
male-to-male. If you know whether to insert a null modem, you are even better off.

COHERENT supports multi-port serial cards as well as COM ports 1 through 4. See the Lexicon entry on asy for a
list of the devices that COHERENT supports, and for details.

Thanks to Dave Hough (tecdah1@sdc.cs.boeing.com), whose posting to comp.os.coherent is the basis of the
‘‘Beginners’’ section, above.

terminfo — System Administration
Terminal-description language
/usr/lib/terminfo

terminfo is a system for describing terminals. Descriptions are collected in the file /usr/lib/terminfo and are
read by curses, more, vi, and other utilities. By passing her terminal’s terminfo entry to a program, a user can
make sure that the program can take full advantage of her terminal’s capacities.

terminfo resembles the terminal-description language termcap; however, it enjoys a number of features that
termcap does not, as follows:

• A termcap entry cannot exceed a predefined limit. terminfo lifts this restriction.

• terminfo entries are compiled; therefore, they are read and loaded more quickly.

• termcap entries are all kept in file /etc/termcap. Each terminfo resides in its own file; thus, a program and
find and load an entry more quickly.

• terminfo is a little more easily read by human beings.

Whether a program uses termcap or terminfo descriptions depends entirely on that program. For example,
MicroEMACS uses termcap descriptions; but vsh (and other curses-based programs) use terminfo. In general,
terminfo is regarded as being more flexible and up-to-date.

terminfo Entries
Directory /usr/lib/terminfo consists of a number of sub-directories, one for each terminal type being described. A
terminal type describes a given make of terminal (e.g., the Wyse 150) plus some special attribute, such as the
number of characters on a line or a specially defined bank of function keys. A terminfo entry can extend over
more than one line by indenting every line after the first. A line that begins with a pound sign ‘#’ is a comment.

A terminfo entry consists of an indefinite number of comma-separated fields. White space after each comma is
ignored. The first field names the terminal; the remaining fields hold capability codes. (Capability codes are
discussed in detail below.) Preceding a field with a period ‘.’ comments out that field, and only that field.

Naming Terminals
The first field in a terminfo entry names the terminal being described. The name field consists of one or more
names, which are separated by vertical-bar characters. The first name given is the most common abbreviation for
the terminal. The last name is usually a long name that fully identifies the terminal. All names in between the
first and the last give common synonyms for that terminal. All names can contain upper-case characters; the last
name can also contain white space.

Terminal names (except for the last, verbose entry) should use the following conventions:

• The hardware should have a root name chosen, e.g., ‘‘wyse150’’.

• The root name should not contain hyphens, except to prevent synonyms from colliding with other names.

• Modes that the hardware can be in, or user preferences, should be indicated by appending a hyphen and an
indicator of the mode. For example, a wyse150 with an old-fashioned 82-key keyboard could be called
wyse150-o.

Use the following suffixes whenever possible:
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Suffix Meaning
-w Wide (more than 80 columns)
-am With automatic margins (usually default)
-nam Without automatic margins
-n Number of lines on the screen
-na No arrow keys
-np n pages of memory
-rv Reverse video

Capability Codes
A capability code describes a capability of a terminal. Capability codes come in three varieties:

Boolean This indicates whether a terminal has a given feature. If the field is present, the terminal is
assumed to have the capability; if not, then it is assumed not to be present. For example, the code
am indicates ‘‘automatic margins’’. If am appears in a terminal’s terminfo entry, then it can
execute automatic margins; if not, then it can’t.

Numeric This gives the size of some aspect of a terminal, such as the number of lines or the number of
columns. A numeric code is followed by a number sign ‘#’ and then a string of digits, which set
the value for that code For example, the code cols#80 indicates that a terminal has 80 columns
per row.

String Capabilities
This gives a sequence of characters that trigger a terminal operation. For example, a terminal may
expect a ‘‘magic sequence’’ to wipe the screen clean, to print in reverse video, or to change the
shape of its cursor. Likewise, a terminal may send a ‘‘magic sequence’’ when a particular function
key is pressed. For example, the code klf1=\E5 indicates that this terminal sends the string
<esc>5 when the user presses function-key 1.

Some terminal capabilities may involve padding — that is, telling the terminal to delay execution of the capability
for a fraction of a second. In some instances, padding may make the difference between a terminal’s drawing
information correctly, or displaying a jumble.

A delay code can appear anywhere in a string capability code. It is introduced by a dollar sign ‘$’ and enclosed in
angle brackets ‘<>’. The numeric value is always in milliseconds. For example, the code el=\EK$<3> indicates
that the clear-to-end-of-line code el is invoked by the ‘‘magic sequence’’ <esc>K, and that it should involve a three-
millisecond delay. Function tputs() provides the delay.

The delay can be either a number, e.g., ‘‘20’’, or a number followed by an asterisk, e.g., ‘‘3*’’. An asterisk indicates
that the padding must be proportional to the number of lines affected by the operation; the amount given is the
amount of padding required by each line of output. (This is true even in the case of the insert-character code.)
When an asterisk is specified, it is sometimes useful to give a delay of the form ‘‘3.5’’ to specify a delay-per-unit to
tenths of milliseconds. (Only one decimal place is allowed.)

The following table gives the commonest terminfo capability codes. The variable is the name by which the
programmer (at the terminfo level) accesses the capability. The code is the name used in the terminfo entry.
There is no fixed limit to the length of a code, but the convention is to keep them to five characters or fewer.
Whenever possible, names are the same as, or similar to, those in the ANSI Standard X3.64-1979.

The semantics describe features of the code:

† You may specify padding.

†* Padding may be based on the number of lines affected.

# The string is passed through tparm() with the number of parameters given in the description.

#i Indicate the ith parameter.

Boolean Codes

Code Variable Description
am. . . . . auto_right_margin . . . . . . Automatic margins
bce . . . . back_color_erase. . . . . . . Erase screen with background color
bw . . . . . auto_left_margin . . . . . . . cub1 wraps from column 0 to last column
ccc . . . . can_change . . . . . . . . . . Terminal can redefine a color
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chts . . . . hard_cursor. . . . . . . . . . Cursor is difficult to see
cpix . . . . cpi_changes_res . . . . . . . Changing character pitch also changes resolution
crxm . . . cr_cancels_micro_mode. . . Carriage return cancels micro mode
da . . . . . memory_above . . . . . . . . Display can be retained above the screen
daisy . . . has_print_wheel . . . . . . . You must change print wheel on printer
db . . . . . memory_below . . . . . . . . Display can be retained below the screen
eo . . . . . erase_overstrike . . . . . . . Erase overstrikes with a blank
eslok . . . status_line_esc_ok. . . . . . Escape can be used on the status line
gn . . . . . generic_type. . . . . . . . . . Generic line type (e.g., dialup, switch).
hc . . . . . hard_copy . . . . . . . . . . . Hardcopy terminal
hls. . . . . hue_lightness_saturation. . Terminal uses HLS color notation
hs . . . . . has_status_line. . . . . . . . Has an extra ‘‘status line’’
hz . . . . . tilde_glitch . . . . . . . . . . Hazeltine cannot print tildes ‘~’
in . . . . . insert_null_glitch. . . . . . . Insert mode distinguishes NULs
km . . . . has_meta_key. . . . . . . . . Has a metakey (shift sets parity bit)
mc5i . . . prtr_silent . . . . . . . . . . . Printer does not echo on screen
mir . . . . move_insert_mode . . . . . . Safe to move while in insert mode
msgr . . . move_standout_mode . . . . Safe to move in standout modes
npc . . . . no_pad_char . . . . . . . . . No padding character
nxon . . . needs_xon_xoff . . . . . . . . Padding does not work: needs XON/XOFF
os . . . . . over_strike . . . . . . . . . . Terminal overstrikes
sam . . . . semi_auto_right_margin . . Printing in last column returns carriage
ul . . . . . transparent_underline . . . Underline character overstrikes
xenl . . . . eat_newline_glitch . . . . . . Newline ignored after 80 columns (Concept)
xhp . . . . ceol_standout_glitch. . . . . Standout not erased by overwriting (HP)
xhpa . . . col_addr_glitch . . . . . . . . Only positive motion for HPA/MHPA capitals
xon . . . . xon_xoff . . . . . . . . . . . . Terminal uses XON/XOFF handshaking
xsb . . . . no_esc_ctlc . . . . . . . . . . Beehive terminal (F1=escape, F2=<ctrl-C>)
xvpa. . . . row_addr_glitch . . . . . . . Only positive motion for VPA/MVPA capitals
xt . . . . . teleray_glitch . . . . . . . . . Tabs destructive, magic SO char (Teleray 1061)

Numeric Codes

Code Variable Description
bufsz . . . buffer_capacity . . . . . . . . Number of bytes buffered before printing
colors. . . max_colors . . . . . . . . . . Maximum number of colors on the screen
cols . . . . columns . . . . . . . . . . . . Number of columns in a line
it . . . . . init_tabs . . . . . . . . . . . . Tabs initially every n spaces
lines . . . lines . . . . . . . . . . . . . . Number of lines on screen or page
lm . . . . . lines_of_memory . . . . . . . Lines of memory if greater than lines; zero, variable
maddr . . max_micro_address . . . . . Maximum value in micro_ ... _address
mjump . . max_micro_jump. . . . . . . Maximum value in parm_ ... _micro
mls . . . . micro_line_size . . . . . . . . Line-step size when in micro mode
ncv . . . . no_color_video . . . . . . . . Video attributes that cannot be used with color
nlab . . . . num_labels . . . . . . . . . . Number of labels on the screen
npins . . . number_of_pins . . . . . . . Number of pins in the print-head
orc . . . . output_res_char . . . . . . . Horizontal resolution, units per character
orhi . . . . output_res_horz . . . . . . . Horizontal resolution in units per inch
orl . . . . . output_res_line. . . . . . . . Vertical resolution, units per line
orvi . . . . output_res_vert. . . . . . . . Vertical resolution, units per inch
pairs . . . max_pairs . . . . . . . . . . . Maximum number of color_pairs on screen
pb . . . . . padding_baud_rate . . . . . Lowest baud rate where CR/NL padding is needed
spinh . . . dot_horz_spacing. . . . . . . Spacing of pins horizontally (pins/inch)
spinv . . . dot_vert_spacing . . . . . . . Spacing of pins vertically (pins/inch)
vt . . . . . virtual_terminal . . . . . . . Virtual terminal number
widcs . . . wide_char_size . . . . . . . . Character step size, double-width mode
wsl . . . . width_status_line . . . . . . Number of columns in the status line
xmc . . . . magic_cookie_glitch . . . . . Number of blank characters left by smso or rmso

String Capabilities

Code Variable Description
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CC . . . . . command_character. . . . . Terminal-settable command character in prototype
acsc . . . . acs_chars . . . . . . . . . . . Pairs of graphical character set (aAbBcC ...)
bel. . . . . bell . . . . . . . . . . . . . . . Audible signal (bell)†
blink . . . enter_blink_mode . . . . . . Turn on blinking
bold . . . . enter_bold_mode . . . . . . . Turn on bold (extra bright)
cbt . . . . back_tab. . . . . . . . . . . . Back tab†
ch . . . . . erase_charse . . . . . . . . . Erase #1 characters†#
chr . . . . change_res_horz . . . . . . . Change horizontal resolution
civis. . . . cursor_invisible . . . . . . . Make cursor invisible
clear . . . clear_screen. . . . . . . . . . Clear screen†*
cnorm . . cursor_normal . . . . . . . . Make cursor appear normal (undo vs and vi)
cpi. . . . . change_char_pitch. . . . . . Change number of characters per inch
cr . . . . . carriage_return. . . . . . . . Carriage return†*
csnm . . . char_set_names . . . . . . . Names of character sets
csr. . . . . change_scroll_region . . . . change to lines #1 through #2 (vt100)†#
cub . . . . parm_left_cursor . . . . . . . Move cursor left #1 spaces†#
cub1 . . . cursor_left. . . . . . . . . . . Move cursor left one space
cud . . . . parm_down_cursor . . . . . Move cursor down #1 lines.†*#
cud1 . . . cursor_down . . . . . . . . . Move cursor down one line
cuf. . . . . parm_right_cursor . . . . . . Move cursor right #1 spaces†*#
cuf1 . . . . cursor_right. . . . . . . . . . Move cursor right one space
cup . . . . cursor_address. . . . . . . . Cursor motion relative to row 1 column 2†#
cuu . . . . parm_up_cursor . . . . . . . Move cursor up #1 lines†*#
cuu1 . . . cursor_up . . . . . . . . . . . Upline (cursor up)
cvr . . . . change_rs_vert . . . . . . . . Change vertical resolution
cvvis . . . cursor_visible. . . . . . . . . Make cursor very visible
dch . . . . parm_dch . . . . . . . . . . . Delete #1 chars†*#
dch1 . . . delete_character . . . . . . . Delete character†*
defc . . . . define_char . . . . . . . . . . Define a character in a character set
dim . . . . enter_dim_mode . . . . . . . Turn on half-bright mode
dl . . . . . parm_delete_line . . . . . . . Delete #1 lines†*#
dl1 . . . . delete_line. . . . . . . . . . . Delete line†*
docr . . . . these_cause_cr . . . . . . . . List of characters that trigger carriage return
dsl . . . . . dis_status_line . . . . . . . . Disable status line
ech . . . . erase_chars . . . . . . . . . . Erase no. 1 characters
ed . . . . . clr_eos . . . . . . . . . . . . . Clear to end of display†*
el . . . . . clr_eol . . . . . . . . . . . . . Clear to end of line†
el1. . . . . clr_bol . . . . . . . . . . . . . Clear to beginning of line, inclusive
enacs . . . ena_acs . . . . . . . . . . . . Enable alternate character set
flash . . . flash_screen. . . . . . . . . . Visible bell (may not move cursor)
ff. . . . . . form_feed . . . . . . . . . . . Hardcopy terminal page eject†*
fsl . . . . . from_status_line . . . . . . . Return from status line
hd . . . . . down_half_line . . . . . . . . Half-line down (forward 1/2 linefeed)
home . . . cursor_home . . . . . . . . . Move cursor to home position (if no cup)
hpa . . . . column_address . . . . . . . Set cursor column†#
ht . . . . . tab . . . . . . . . . . . . . . . Tab to next eight-space hardware tab stop
hts . . . . set_tab. . . . . . . . . . . . . Set a tab in all rows, current column.
hu . . . . . up_half_line. . . . . . . . . . Half-line up (reverse 1/2 linefeed)
ich. . . . . parm_ich . . . . . . . . . . . Insert #1 blank characters†*#
ich1 . . . . insert_character . . . . . . . Insert character†
if. . . . . . init_file. . . . . . . . . . . . . Name of file containing is
il . . . . . . parm_insert_line . . . . . . . Add #1 new blank lines†*#
il1 . . . . . insert_line. . . . . . . . . . . Add new blank line†*
ind . . . . scroll_forward. . . . . . . . . Scroll text up†
indn. . . . parm_index . . . . . . . . . . Scroll forward #1 lines†#
initc . . . initialize_color . . . . . . . . Initialize color definition
initp . . . initialize_pair . . . . . . . . . Initialize color pairs
invis . . . enter_secure_mode . . . . . Turn on blank mode (characters invisible)
ip . . . . . insert_padding . . . . . . . . Insert pad after character inserted†*
iprog . . . init_prog. . . . . . . . . . . . Full path name of initialization program
is1. . . . . init_1string . . . . . . . . . . Terminal-initialization string
is2. . . . . init_2string . . . . . . . . . . Terminal-initialization string
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is3. . . . . init_3string . . . . . . . . . . Terminal-initialization string
kBEG . . . key_sbeg. . . . . . . . . . . . Sent by shifted beginning key
kCAN . . . key_scancel . . . . . . . . . . Sent by shifted cancel key
kCMD. . . key_scommand. . . . . . . . Sent by shifted command key
kCPY . . . key_scopy . . . . . . . . . . . Sent by shifted copy key
kCRT . . . key_screate . . . . . . . . . . Sent by shifted create key
kDC . . . . key_sdc . . . . . . . . . . . . Sent by shifted delete-character key
kDL . . . . key_sdl. . . . . . . . . . . . . Sent by shifted delete-line key
kEND . . . key_send . . . . . . . . . . . Sent by shifted end key
kEOL . . . key_seol . . . . . . . . . . . . Sent by shifted EOL clear-line key
kEXT . . . key_sexit. . . . . . . . . . . . Sent by shifted exit key
kFND . . . key_sfind . . . . . . . . . . . Sent by shifted find key
kHLP . . . key_shelp . . . . . . . . . . . Sent by shifted help key
kHOM. . . key_shome . . . . . . . . . . Sent by shifted home key
kIC . . . . key_sic. . . . . . . . . . . . . Sent by shifted input key
kLFT . . . key_sleft . . . . . . . . . . . . Sent by shifted (æ) key
kMOV. . . key_smove. . . . . . . . . . . Sent by shifted move key
kMSG . . . key_smessage. . . . . . . . . Sent by shifted message key
kNXT . . . key_snext . . . . . . . . . . . Sent by shifted next key
kOPT . . . key_soptions . . . . . . . . . Sent by shifted option key
kPRT . . . key_sprint. . . . . . . . . . . Sent by shifted print key
kPRV . . . key_sprevious. . . . . . . . . Sent by shifted previous key
kRDO . . . key_sredo . . . . . . . . . . . Sent by shifted redo key
kRES . . . key_srsume . . . . . . . . . . Sent by shifted resume key
kRIT . . . key_sright . . . . . . . . . . . Sent by shifted (Æ) key
kRPL . . . key_sreplace . . . . . . . . . Sent by shifted replace key
kSAV . . . key_ssave . . . . . . . . . . . Sent by shifted save key
kSPD . . . key_ssuspend. . . . . . . . . Sent by shifted suspend key
kUND . . . key_sundo. . . . . . . . . . . Sent by shifted undo key
ka1 . . . . key_a1 . . . . . . . . . . . . . Sent by key A1, upper left of keypad
ka3 . . . . key_a3 . . . . . . . . . . . . . Sent by key A3, upper right of keypad
kb2 . . . . key_b2 . . . . . . . . . . . . . Sent by key B2, center of keypad
kbeg. . . . key_beg . . . . . . . . . . . . Sent by ‘‘begin’’ key
kbs . . . . key_backspace . . . . . . . . Sent by backspace key
kc1 . . . . key_c1 . . . . . . . . . . . . . Sent by key C1, lower left of keypad
kc3 . . . . key_c3 . . . . . . . . . . . . . Sent by key C3, lower right of keypad
kcan . . . key_cancel. . . . . . . . . . . Sent by cancel key
kcbt . . . . key_btab. . . . . . . . . . . . Sent by back-tab key
kclo . . . . key_close . . . . . . . . . . . Sent by close key
kclr . . . . key_clear . . . . . . . . . . . Sent by clear-screen or erase key
kcmd . . . key_command . . . . . . . . Sent by ‘‘cmd’’ key
kcpy . . . key_copy. . . . . . . . . . . . Sent by copy key
kcrt . . . . key_create. . . . . . . . . . . Sent by create key
kctab . . . key_ctab. . . . . . . . . . . . Sent by clear-tab key
kcub1. . . key_left . . . . . . . . . . . . Sent by (æ) key
kcud1. . . key_down . . . . . . . . . . . Sent by (º) key
kcuf1 . . . key_right . . . . . . . . . . . Sent by (Æ) key
kcuu1. . . key_up. . . . . . . . . . . . . Sent by terminal (ª) key
kdch1. . . key_dc . . . . . . . . . . . . . Sent by delete-character key
kdl1 . . . . key_dl . . . . . . . . . . . . . Sent by delete-line key
ked . . . . key_eos . . . . . . . . . . . . Sent by clear-to-end-of-screenkey
kel. . . . . key_eol. . . . . . . . . . . . . Sent by clear-to-end-of-line key
kend . . . key_end . . . . . . . . . . . . Sent by end key
kent. . . . key_enter . . . . . . . . . . . Sent by (¢) key
kext . . . . key_exit . . . . . . . . . . . . Sent by exit key
kf0 . . . . key_f0 . . . . . . . . . . . . . Sent by function key 0
kf1 . . . . key_f1 . . . . . . . . . . . . . Sent by function key 1
kf10. . . . key_f10 . . . . . . . . . . . . Sent by function key 10
kf11. . . . key_f11 . . . . . . . . . . . . Sent by function key 11
kf12. . . . key_f12 . . . . . . . . . . . . Sent by function key 12
kf13. . . . key_f13 . . . . . . . . . . . . Sent by function key 13
kf14. . . . key_f14 . . . . . . . . . . . . Sent by function key 14
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kf15. . . . key_f15 . . . . . . . . . . . . Sent by function key 15
kf16. . . . key_f16 . . . . . . . . . . . . Sent by function key 16
kf17. . . . key_f17 . . . . . . . . . . . . Sent by function key 17
kf18. . . . key_f18 . . . . . . . . . . . . Sent by function key 18
kf19. . . . key_f19 . . . . . . . . . . . . Sent by function key 19
kf2 . . . . key_f2 . . . . . . . . . . . . . Sent by function key 2
kf20. . . . key_f20 . . . . . . . . . . . . Sent by function key 20
kf21. . . . key_f21 . . . . . . . . . . . . Sent by function key 21
kf22. . . . key_f22 . . . . . . . . . . . . Sent by function key 22
kf23. . . . key_f23 . . . . . . . . . . . . Sent by function key 23
kf24. . . . key_f24 . . . . . . . . . . . . Sent by function key 24
kf25. . . . key_f25 . . . . . . . . . . . . Sent by function key 25
kf26. . . . key_f26 . . . . . . . . . . . . Sent by function key 26
kf27. . . . key_f27 . . . . . . . . . . . . Sent by function key 27
kf28. . . . key_f28 . . . . . . . . . . . . Sent by function key 28
kf29. . . . key_f29 . . . . . . . . . . . . Sent by function key 29
kf3 . . . . key_f3 . . . . . . . . . . . . . Sent by function key 3
kf30. . . . key_f30 . . . . . . . . . . . . Sent by function key 30
kf31. . . . key_f31 . . . . . . . . . . . . Sent by function key 31
kf32. . . . key_f32 . . . . . . . . . . . . Sent by function key 32
kf33. . . . key_f33 . . . . . . . . . . . . Sent by function key 33
kf34. . . . key_f34 . . . . . . . . . . . . Sent by function key 34
kf35. . . . key_f35 . . . . . . . . . . . . Sent by function key 35
kf36. . . . key_f36 . . . . . . . . . . . . Sent by function key 36
kf37. . . . key_f37 . . . . . . . . . . . . Sent by function key 37
kf38. . . . key_f38 . . . . . . . . . . . . Sent by function key 38
kf39. . . . key_f39 . . . . . . . . . . . . Sent by function key 39
kf4 . . . . key_f4 . . . . . . . . . . . . . Sent by function key 4
kf40. . . . key_f40 . . . . . . . . . . . . Sent by function key 40
kf41. . . . key_f41 . . . . . . . . . . . . Sent by function key 41
kf42. . . . key_f42 . . . . . . . . . . . . Sent by function key 42
kf43. . . . key_f43 . . . . . . . . . . . . Sent by function key 43
kf44. . . . key_f44 . . . . . . . . . . . . Sent by function key 44
kf45. . . . key_f45 . . . . . . . . . . . . Sent by function key 45
kf46. . . . key_f46 . . . . . . . . . . . . Sent by function key 46
kf47. . . . key_f47 . . . . . . . . . . . . Sent by function key 47
kf48. . . . key_f48 . . . . . . . . . . . . Sent by function key 48
kf49. . . . key_f49 . . . . . . . . . . . . Sent by function key 49
kf5 . . . . key_f5 . . . . . . . . . . . . . Sent by function key 5
kf50. . . . key_f50 . . . . . . . . . . . . Sent by function key 50
kf51. . . . key_f51 . . . . . . . . . . . . Sent by function key 51
kf52. . . . key_f52 . . . . . . . . . . . . Sent by function key 52
kf53. . . . key_f53 . . . . . . . . . . . . Sent by function key 53
kf54. . . . key_f54 . . . . . . . . . . . . Sent by function key 54
kf55. . . . key_f55 . . . . . . . . . . . . Sent by function key 55
kf56. . . . key_f56 . . . . . . . . . . . . Sent by function key 56
kf57. . . . key_f57 . . . . . . . . . . . . Sent by function key 57
kf58. . . . key_f58 . . . . . . . . . . . . Sent by function key 58
kf59. . . . key_f59 . . . . . . . . . . . . Sent by function key 59
kf6 . . . . key_f6 . . . . . . . . . . . . . Sent by function key 6
kf60. . . . key_f60 . . . . . . . . . . . . Sent by function key 60
kf61. . . . key_f61 . . . . . . . . . . . . Sent by function key 61
kf62. . . . key_f62 . . . . . . . . . . . . Sent by function key 62
kf63. . . . key_f63 . . . . . . . . . . . . Sent by function key 63
kf7 . . . . key_f7 . . . . . . . . . . . . . Sent by function key 7
kf8 . . . . key_f8 . . . . . . . . . . . . . Sent by function key 8
kf9 . . . . key_f9 . . . . . . . . . . . . . Sent by function key 9
kfnd. . . . key_find . . . . . . . . . . . . Sent by find key
khlp. . . . key_help. . . . . . . . . . . . Sent by help key
khome . . key_home . . . . . . . . . . . Sent by home key
khts. . . . key_stab. . . . . . . . . . . . Sent by set-tab key
kich1 . . . key_ic . . . . . . . . . . . . . Sent by insert char/enter insert-mode key
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kil1 . . . . key_il. . . . . . . . . . . . . . Sent by insert line
kind. . . . key_sf . . . . . . . . . . . . . Sent by scroll-forward/down key
kll . . . . . key_ll. . . . . . . . . . . . . . Sent by home-down key
kmrk . . . key_mark . . . . . . . . . . . Sent by mark key
kmsg . . . key_message . . . . . . . . . Sent by message key
kmov . . . key_move . . . . . . . . . . . Sent by move key
knp . . . . key_npage. . . . . . . . . . . Sent by next-page key
knxt. . . . key_next. . . . . . . . . . . . Sent by next-object key
kopn . . . key_open . . . . . . . . . . . Sent by open key
kopt. . . . key_options . . . . . . . . . . Sent by options key
kpp . . . . key_ppage . . . . . . . . . . . Sent by previous-page key
kprt . . . . key_print . . . . . . . . . . . Sent by print (copy) key
kprv. . . . key_previous . . . . . . . . . Sent by previous-object key
krdo. . . . key_redo. . . . . . . . . . . . Sent by redo key
kref . . . . key_reference . . . . . . . . . Sent by reference key
kres . . . . key_resume . . . . . . . . . . Sent by resume key
krfr . . . . key_refresh . . . . . . . . . . Sent by refresh key
kri . . . . . key_sr . . . . . . . . . . . . . Sent by scroll-backward/up key
krmir . . . key_eic. . . . . . . . . . . . . Sent by rmir or smir in insert mode
krpl . . . . key_replace . . . . . . . . . . Sent by replace key
krst . . . . key_restart . . . . . . . . . . Sent by restart key
ksav. . . . key_save. . . . . . . . . . . . Sent by save key
kslt . . . . key_select . . . . . . . . . . . Sent by select key
kspd . . . key_suspend . . . . . . . . . Sent by suspend key
ktbc . . . . key_catab . . . . . . . . . . . Sent by clear-all-tabs key
kund . . . key_undo . . . . . . . . . . . Sent by undo key
lf0 . . . . . label_f0 . . . . . . . . . . . . Label on function key 0 if not F0
lf1 . . . . . label_f1 . . . . . . . . . . . . Label on function key 1 if not F1
lf10 . . . . label_f10. . . . . . . . . . . . Label on function key 10 if not F10
lf2 . . . . . label_f2 . . . . . . . . . . . . Label on function key 2 if not F2
lf3 . . . . . label_f3 . . . . . . . . . . . . Label on function key 3 if not F3
lf4 . . . . . label_f4 . . . . . . . . . . . . Label on function key 4 if not F4
lf5 . . . . . label_f5 . . . . . . . . . . . . Label on function key 5 if not F5
lf6 . . . . . label_f6 . . . . . . . . . . . . Label on function key 6 if not F6
lf7 . . . . . label_f7 . . . . . . . . . . . . Label on function key 7 if not F7
lf8 . . . . . label_f8 . . . . . . . . . . . . Label on function key 8 if not F8
lf9 . . . . . label_f9 . . . . . . . . . . . . Label on function key 9 if not F9
ll . . . . . . cursor_to_ll . . . . . . . . . . Last line, first column (if no cup)
lpi . . . . . change_line_pitch . . . . . . Change number of lines per inch
mc0 . . . . print_screen. . . . . . . . . . Print contents of the screen
mc4 . . . . prtr_off. . . . . . . . . . . . . Turn off printer
mc5 . . . . prtr_on. . . . . . . . . . . . . Turn on printer
mcub . . . parm_left_micro . . . . . . . Like cub for micro adjustment
mcub1 . . micro_left . . . . . . . . . . . Like cub1 for micro adjustment
mcud . . . parm_down_micro . . . . . . Like cud for micro adjustment
mcud1 . . micro_down. . . . . . . . . . Like cud1 for micro adjustment
mcuf . . . parm_right_micro . . . . . . Like cuf for micro adjustment
mcuf1 . . micro_right . . . . . . . . . . Like cuf1 for micro adjustment
mcuu . . . parm_up_micro. . . . . . . . Like cuu for micro adjustment
mcuu1 . . micro_up . . . . . . . . . . . Like cuu1 for micro adjustment
mgc . . . . clear_margins. . . . . . . . . Clear all margins (top, bottom, sides)
mhpa . . . micro_column_address . . . Like hpa for micro adjustment
mrcup . . cursor_mem_address . . . . Memory-relative cursor addressing
mvpa . . . micro_row_address . . . . . Like vpa for micro adjustment
nel. . . . . newline . . . . . . . . . . . . Newline (behaves like CR followed by LF)
oc . . . . . orig_colors. . . . . . . . . . . Set all colors to originals
op . . . . . orig_pair . . . . . . . . . . . . Set default color_pair to original
pad . . . . pad_char . . . . . . . . . . . Pad character (rather than NUL)
pfkey . . . pkey_key . . . . . . . . . . . Program function key 1 to type string 2
pfloc . . . pkey_local . . . . . . . . . . . Program function key 1 to execute string 2
pfx . . . . pkey_xmit . . . . . . . . . . . Program function key 1 to transmit string 2
pln . . . . plab_norm. . . . . . . . . . . Program label 1 to show string 2
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porder . . order_of_pins . . . . . . . . . Match software bits to print-head pins
prot . . . . enter_protected_mode. . . . Turn on protected mode
rc . . . . . restore_cursor . . . . . . . . Restore cursor to position of last sc
rep . . . . repeat_char . . . . . . . . . . Repeat character #1 #2 times. †*#
rev . . . . enter_reverse_mode . . . . . Turn on reverse-video
rf . . . . . reset_file. . . . . . . . . . . . Name of file containing reset string
rfi . . . . . reg_for_input . . . . . . . . . Send next input character
ri . . . . . scroll_reverse . . . . . . . . . Scroll text down†
rin . . . . . parm_rindex . . . . . . . . . Scroll backward one line†#
ritm . . . . exit_italics_mode. . . . . . . Disable italics
rlm . . . . exit_leftward_mode . . . . . Enable rightward motion
rmacs. . . exit_alt_charset_mode. . . . End alternate character set†
rmam . . . exit_am_mode . . . . . . . . Turn off automatic margins
rmcup . . exit_ca_mode . . . . . . . . . String to end programs that use cup
rmdc . . . exit_delete_mode . . . . . . . End delete mode
rmicm . . exit_micro_mode . . . . . . . Disable micro-motion capabilities
rmir . . . . exit_insert_mode . . . . . . . End insert mode
rmkx . . . keypad_local . . . . . . . . . Exit ‘‘keypad transmit’’ mode
rmln . . . label_off . . . . . . . . . . . . Turn off soft labels
rmm . . . meta_off . . . . . . . . . . . . Turn off ‘‘meta mode’’
rmp . . . . char_padding . . . . . . . . . Like ip, but in replace mode
rmso . . . exit_standout_mode . . . . . End stand out mode
rmul . . . exit_underline_mode. . . . . End underscore mode
rmxon . . exit_xon_mode . . . . . . . . Turn off XON/XOFF handshaking
rs1 . . . . reset_1string . . . . . . . . . Reset terminal completely to sane modes
rs2 . . . . reset_2string . . . . . . . . . Reset terminal completely to sane modes
rs3 . . . . reset_3string . . . . . . . . . Reset terminal completely to sane modes
rshm . . . exit_shadow_mode. . . . . . Disable shadow printing
rsubm . . exit_subscript_mode. . . . . Disable subscript printing
rsupm . . exit_superscript_mode . . . Disable superscript printing
rum . . . . exit_upward_motion. . . . . Enable downward motion
rwidm . . exit_doublewide_mode. . . . Disable double-width printing
sbim . . . start_bit_margin . . . . . . . Start printing bit-mapped graphics
sc . . . . . save_cursor . . . . . . . . . . Save cursor position†
scp . . . . set_color_pair. . . . . . . . . Set current color pair
scs. . . . . select_char_set . . . . . . . . Select character set
scsd . . . . start_char_set_def . . . . . . Start definition of a character set
sdrfq . . . enter_draft_quality. . . . . . Set draft-quality printing
setb . . . . set_background . . . . . . . Set current background color
setf . . . . set_foreground . . . . . . . . Set current foreground color
sgr. . . . . set_attributes. . . . . . . . . Define the nine video attributes†*#
sgr0 . . . . exit_attribute_mode . . . . . Turn off all attributes
sitm. . . . enter_italics_mode . . . . . . Enable italics
slm . . . . enter_leftward_mode. . . . . Enable leftward carriage motion
smacs. . . enter_alt_charset_mode. . . Start alternate character set†
smam . . . enter_am_mode. . . . . . . . Turn on automatic margins
smcup . . enter_ca_mode . . . . . . . . String to begin programs that use cup
smdc . . . enter_delete_mode . . . . . . Delete mode (enter)
smgb . . . set_bottom_margin . . . . . Set bottom margin to current line
smgbp . . set_bottom_margin_parm. . Set bottom margin at lines 1 or 2
smgl. . . . set_left_margin . . . . . . . . Set left margin to current column
smglp . . . set_left_margin_parm . . . . Set left margin to columns 1 or 2
smgr . . . set_right_margin . . . . . . . Set right margin to current column
smgrp. . . set_right_margin_parm . . . Set right margin to columns 1 or 2
smgt . . . set_top_margin . . . . . . . . Set top margin to current line
smgtp. . . set_top_margin_parm . . . . Set top margin to lines 1 or 2
smicm . . enter_micro_mode . . . . . . Enable micro-motion capabilities
smir. . . . enter_insert_mode . . . . . . Insert mode (enter)
smkx . . . keypad_xmit . . . . . . . . . Enter ‘‘keypad transmit’’ mode
smln . . . label_on . . . . . . . . . . . . Turn on soft labels
smm . . . meta_on . . . . . . . . . . . . Turn on ‘‘meta mode’’ (eighth bit)
smso . . . enter_standout_mode . . . . Begin stand-out mode
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smul . . . enter_underline_mode. . . . Start underscore mode
smxon . . enter_xon_mode . . . . . . . Turn on XON/XOFF handshaking
snlq . . . . enter_near_letter_quality . . Set near-letter-quality printing
snrmq . . enter_normal_quality . . . . Set normal-quality print
sshm . . . enter_shadow_mode. . . . . Enable shadow printing
ssubm . . enter_subscript_mode. . . . Enable subscript printing
ssupm . . enter_superscript_mode. . . Enable superscript printing
subcs . . . subscript_characters . . . . List of ‘‘subscript-able’’ characters
sum . . . . enter_upward_mode. . . . . Enable upward carriage motion
supcs . . . superscript_characters . . . List of ‘‘superscript-able’’ characters
swidm . . enter_doublewide_mode. . . Enable double-wide printing
tbc . . . . clear_all_tabs . . . . . . . . . Clear all tab stops†
tsl . . . . . to_status_line. . . . . . . . . Go to status line, column 1
uc . . . . . underline_char . . . . . . . . Underscore one char and move past it
vpa . . . . row_address . . . . . . . . . Vertical position absolute (set row)†#
wind . . . set_window . . . . . . . . . . Current window is lines #1-#2, columns 3—4
xoffc . . . xoff_character. . . . . . . . . XOFF character
xonc . . . xon_character . . . . . . . . XON character
zerom. . . zero_motion. . . . . . . . . . No motion for subsequent character

Escape Sequences
You can use the following escape sequences with any string-capability entry:

\E <esc> character
\e <esc> character
^X <ctrl-X> for any appropriate X
\n Newline
\r Carriage return
\t Horizontal tab
\b Backspace
\f Formfeed
\s Space
\000 Value of a character in three octal digits
\^ Literal carat
\, Literal comma
\\ Literal backslash

Parameterized Strings
Cursor-addressing and other strings requiring parameters in the terminal are described by a parameterized string
capability, with printf()-like escape sequences in it. Each escape sequence is introduced with a percent sign ‘%’,
followed by one character that described the type of formatting to be performed, as follows:

%% Literal ‘%’
%d Decimal integer
%2d Decimal integer with at least two places
%02d Decimal integer, two places, zero padding
%3d Decimal integer with at least three places
%03d Decimal integer, three places, zero padding
%c Character
%s String

%p[i] Push ith parameter
%P[a-z] Set variable [a-z] to pop()
%g[a-z] Push variable [a-z]
%’c’ Character constant c
%{nn} Integer constant nn
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%+ Addition: push(pop() + pop())
%- Subtraction: push(pop() - pop())
%* Multiplication: push(pop() * pop())
%/ Division: push(pop() / pop())
%m Modulo: push(pop() % pop())
%& Bitwise AND: push(pop() op pop())
%| Bitwise OR: push(pop() op pop())
%^ Bitwise NOR: push(pop() op pop())
%= Logical AND: push(pop() op pop())
%> Logical OR: push(pop() op pop())
%< Logical NOR: push(pop() op pop())
%! Unary NOT: push(op pop())
%~ Unary complement: push(op pop())
%i Add one to first two parmameters (for ANSI terminals)

The parameterized mechanism is based on a stack. % operations push parameters and constants onto the stack,
do arithmetic and other operations on the top of the stack, and print out values in various formats. Up to nine
parameters can be used at once. If-then-else testing is possible, as is storage in a limited number of variables.
There is no provision for loops or printing strings in any format other than %s.

For example, compare the termcap entry cm and the terminfo entry cup. %+ (add space and print as a character)
cm would be treated as %p1%’ ’%+%c, that is, push the first parameter, push space, add the top two numbers
onto the stack, and output the top item on the stack using character (%c) format. For the second parameter,
change %p1 to %p2. %. (print as a character) becomes %p1%c. %d (print in decimal) becomes %p1%d.

As with tgoto(), characters standing by themselves (no ‘%’ sign) are output as is.

Alternate Characters
The instruction acsc defines a set of alternate characters. These alternate characters define, among other things,
the characters used to draw boxes.

acsc is set to a string composed of pairs of characters. The first character in each pair gives the character used by
a VT100 in graphics mode to display; the second character is the one for the terminal in use. The following table
shows the VT100 graphic-character set:

Arrow right +
Arrow left ,
Arrow down .
Full block (inverted space) 0
Lantern I
Arrow up -
Diamond ’
Checkboard a
Degree f
+/- Sign g
Centered rectangles h
Lower right corner j
Upper right corner k
Upper left corner l
Lower left corner m
Cross n
Upper horizontal line o
Middle horizontal line q
Lower horizontal line s
Left tee t
Right tee u
Lower tee v
Upper tee w
Vertical line x
Centered dot ~
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Changes from termcap to terminfo
This section describes features of terminfo that termcap does not contain.

Defaults
terminfo does not contain every default found in termcap. termcap, for example, assumed that \r was a carriage
return unless nc was present, indicating that it did not work, or cr was present, indicating an alternative. In
terminfo, if cr is present, the string so given works; otherwise it should be assumed not to work. The bs and bc
capabilities are replaced by cub and cub1. (The former takes a parameter, moving left that many spaces. The
latter is probably more common in terminals and moves left one space.) nl (linefeed) has been split into two
functions: cud1 (moves the cursor down one line) and ind (scroll forward). cud1 applies when the cursor is not on
the bottom line, ind applies when it is on the bottom line. The bell capability is now explicitly given as bel.

The terminfo data base is compiled, unlike termcap. This means that a terminfo source file (describing some set
of terminals) is processed by the terminfo compiler, producing a binary description of the terminal in a file under
/usr/lib/terminfo. The function setupterm() reads this file. The advantage to compilation is that starting up a
program using terminfo is faster. The increase in speed comes partly from not having to skip past other terminal
descriptions, and partly from the compiler having sorted the capabilities into order so that a linear scan can read
them in.

The terminfo compiler tic uses the environment variable TERMINFO to be the destination directory of the new
object files. It is also used by setupterm() to find an entry for a given terminal. First it looks in the directory given
in TERMINFO and, if not found there, checks /usr/lib/terminfo.

Basic Example
The following gives the terminfo description for a simple terminal, the Lear-Siegler ADM-3:

adm3|3|lsi adm3,
cr=^M, cud1=^J, ind=^J, bel=^G,
am, cub1=^H, clear=^Z, lines#24, cols#80

As you can see, the description is divided into comma-separated fields. The following discusses each field in detail.

adm3|3| lsi adm3,
The first field names the terminal. This field is unique in that it is divided into a number of sub-fields,
which are separated by vertical bar characters. The first sub-field gives the name by which the
terminal is normally addressed in a program; the last gives a longer, descriptive name.

cr=^M, To move the cursor to the left margin, send <ctrl-M>.

cud1=^J, To move the cursor down one row, send <ctrl-J>.

ind=^J, To scroll the screen up, send <ctrl-J>. Note that the ADM-3, like most terminals, does not scroll
unless the cursor is on the last row.

bel=^G, To ring the terminal’s bell, send <ctrl-G>.

am, This boolean code indicates that the ADM-3 wraps to the leftmost column of the of the next row when
the cursor reaches the rightmost column.

cub1=^H, To move the cursor nondestructively one column to the left, send <ctrl-H>.

clear=^Z, To clear the screen, send <ctrl-Z>.

lines#24, The ADM-3 has 24 rows (lines).

cols#80, The ADM-3 has 80 columns.

Modifying an Entry
A full discussion of how to modify a terminfo entry is beyond the scope of this article. The references, below,
name several volumes that discuss this topic at length.

In brief, modifying a terminfo entry requires that you use the command infocmp to de-compile the entry for a
given terminal, modify the text by hand, then use the command tic to recompile and re-install the entry.

C-Level Routines
The library /usr/lib/libcurses.a contains a suite of C functions with which you can read a given terminal’s
terminfo capabilities. You must reference the terminfo capabilities in your program as global variables whose
names are identical to the full names of the capabilities themselves; e.g., auto_left_margin. These functions are
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declared in the header files <curses.h> <term.h>, and <terminfo.h>; note that you must #include all three header
files in your C program.

You can call the following functions from within a C program to read a terminfo entry:

fixterm() Set the terminal into program mode
putp() Write a string into stdwin
resetterm() Reset the terminal into a saved mode
setupterm() Initialize terminal capabilities
tparm() Output a parameterized string
tputs() Process a capability string
vidattr() Set the terminal’s video attributes
vidputs() Set video attributes into a function

setupterm() initializes a terminal. It inhales all terminal capabilities at once, and performs all other system-
dependent initialization.

A program should call resetterm() when it exits or calls a shell escape, to restore the tty modes. When it returns
from a shell escape, the program should call fixterm() to set the tty modes back to their internal settings.

tparm() is a more powerful, parameterized string mechanism. It resembles the termcap function tgoto(). tgoto() is
still available for compatibility. tputs() is unchanged.

Files
/usr/lib/libcurses.a — Routines for reading terminfo descriptions
/usr/lib/terminfo/?/* — Directories containing compiled descriptions

See Also
Administering COHERENT, captoinfo, curses, fixterm(), infocmp, putp(), resetterm(), setupterm(), term,
termcap, tic, tparm(), tputs(), vi, vidputs()
Strang, J., Mui, L., O’Reilly, T.: Termcap and Terminfo. Sebastopol, CA: O’Reilly & Associates, Inc., 1991. Highly
recommended.

Notes
As mentioned above, each terminfo description is kept in its own file, in a subdirectory of directory
/usr/lib/terminfo. Each file is named after the device it describes. Thus, to see what terminal devices have
terminfo descriptions, type the command:

ls -laR /usr/lib/terminfo

You may wish to redirect the output of this command into a file, for further study later on.

This implementation of terminfo was written by Pavel Curtis of Cornell University. It was ported to COHERENT by
Udo Munk.

termio — Device Driver
General terminal interface

COHERENT uses two methods for controlling terminals: sgtty and termio. To use sgtty, simply include the
statement #include <sgtty.h> in your sources. To use termio, include the statement #include <termio.h>.

The rest of this article discusses the termio method of controlling terminals.

When a terminal file is opened, it normally causes the process to wait until a connection is established. In
practice, users’ programs seldom open these files: they are opened by the program getty and become a user’s
standard input, output, and error files. The very first terminal file opened by the process group leader of a terminal
file not already associated with a process group becomes the control terminal for that process group. The control
terminal plays a special role in handling quit and interrupt signals, as discussed below. The control terminal is
inherited by a child process during a call to fork(). A process can break this association by changing its process
group using setpgrp().

A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters can be typed at
any time, even while output is occurring, and are lost only when the system’s input buffers become completely full,
which is rare, or when the user has accumulated the maximum allowed number of input characters that have not
yet been read by some program. Currently, this limit is 256 characters. When the input limit is reached, the
system throws away all the saved characters without notice.
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Normally, terminal input is processed in units of lines. A line is delimited by a newline character (ASCII LF), an
end-of-file character (ASCII EOT), or an end-of-line character. This means that a program attempting to read will
be suspended until an entire line has been typed. Also, no matter how many characters are requested in the read
call, at most one line is returned. It is not, however, necessary to read a whole line at once; any number of
characters may be requested in a read, even one, without losing information.

During input, the system normally processes erase and kill characters. By default, the backspace character
erases the last character typed, except that it will not erase beyond the beginning of the line. By default, the <ctrl-
U> kills (deletes) the entire input line, and optionally outputs a newline character. Both these characters operate
on a keystroke-by-keystroke basis, independently of any backspacing or tabbing which may have been done. Both
the erase and kill characters may be entered literally by preceding them with the escape character (\). You can
change the erase and kill characters.

Certain characters have special functions on input. These functions and their default character values are
summarized as follows:

INTR (<ctrl-C> or ASCII ETX) generates an interrupt signal that is sent to all processes with the
associated control terminal. Normally, each such process is forced to terminate, but arrangements
may be made either to ignore the signal or to receive a trap to an agreed-upon location. For details
and a table of legal signals, see the Lexicon entry for signal().

QUIT (<ctrl-\> or ASCII ES) generates a quit signal. Its treatment is identical to that of the interrupt
signal except that, unless a receiving process has made other arrangements, it not only terminates
but dumps a core image file (named core) into the current working directory.

ERASE (<backspace> or ASCII BS) erases the preceding character. It does not erase beyond the start of a
line, as delimited by a newline, EOF, or EOL character.

KILL (<ctrl-U> or ASCII NAK) deletes the entire line, as delimited by a newline, EOF, or EOL character.

EOF (<ctrl-D> or ASCII EOT) generates an end-of-file character from a terminal. When received, all the
characters waiting to be read are immediately passed to the program without waiting for a newline,
and the EOF is discarded. Thus, if no characters are waiting, which is to say the EOF occurred at
the beginning of a line, zero characters are passed back; this is the standard end-of-file indication.

NL (ASCII LF) is the normal line delimiter. It cannot be changed or escaped.

EOL (ASCII LF) is an additional line delimiter, like NL. It is not normally used.

STOP (<ctrl-S> or ASCII DC3) can be used to suspend output. It is useful with CRT terminals to prevent
output from disappearing before it can be read. While output is suspended, STOP characters are
ignored and not read.

START (<ctrl-Q> or ASCII DC1) resumes output that has been suspended by a STOP character. While
output is not suspended, START characters are ignored and not read. The START/STOP
characters cannot be changed or escaped.

You can change the character values for INTR, QUIT, ERASE, KILL, EOF, and EOL To suit your taste. The
ERASE, KILL, and EOF character can be preceded by a ‘\’ character, in which case the system ignores its special
meaning.

When the carrier signal from the data-set drops, the system sends a hangup signal to all processes that have this
terminal as their control terminal. Unless other arrangements have been made, this signal causes the process to
terminate. If the hangup signal is ignored, any subsequent read returns EOF. Thus, programs that read a
terminal and test for end-of-file can terminate appropriately when hung up on.

When one or more characters are written, they are transmitted to the terminal as soon as previously written
characters have finished typing. Input characters are echoed by putting them into the output queue as they arrive.
If a process produces characters more rapidly than they can be printed, it is suspended when its output queue
exceeds a preset limit. When the queue has drained down to that threshold, the program resumes.

Several calls to ioctl() apply to terminal files. The primary calls use the following structure, defined in <termio.h>:
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#define NCC 8
struct termio {

unsigned short c_iflag; /* input modes */
unsigned short c_oflag; /* output modes */
unsigned short c_cflag; /* control modes */
unsigned short c_lflag; /* local modes */
char c_line; /* line discipline */
unsigned char c_cc[NCC]; /* control chars */

};

The special control characters are defined by the array c_cc. The relative positions and initial values for each
function are as follows:

0 INTR ^C
1 QUIT ^\
2 ERASE \b
3 KILL ^U
4 EOF ^D
5 EOL \n
6 reserved
7 reserved

The field c_iflag describes the basic terminal input control:

BRKINT Signal interrupt on break
IGNPAR Ignore characters with parity errors
INPCK Enable input parity check
ISTRIP Strip character
ICRNL Map CR to NL on input
IXON Enable start/stop output control
IXOFF Enable start/stop input control

If INPCK is set, input parity checking is enabled. If it is not set, then checking is disabled. This allows output
parity generation without input parity errors.

If ISTRIP is set, valid input characters are stripped to seven bits before being processed; otherwise, all eight bits
are processed.

If IXON is set, START/STOP output control is enabled. A received STOP character suspends output and a
received START character restarts output. All start/stop characters are ignored and not read.

If IXOFF is set, the system transmits START/STOP characters when the input queue is nearly empty or nearly
full.

The initial input control value is all bits clear.

The field c_oflag field specifies the system treatment of output:

OPOST Postprocess output.
OLCUC Map lower case to upper on output.
ONLCR Map NL to CR-NL on output.

If OPOST is set, output characters are post-processed as indicated by the remaining flags; otherwise, characters
are transmitted without change.

If OLCUC is set, a lower-case alphabetic character is transmitted as the corresponding upper-case character. This
function is often used with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair.

The initial output control value is all bits clear.

The field c_cflag describes the hardware control of the terminal, as follows:

CBAUD Baud rate
B0 Hang up
B50 50 baud
B75 75 baud
B110 110 baud
B134 134.5 baud
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B150 150 baud
B200 200 baud
B300 300 baud
B600 600 baud
B1200 1200 baud
B1800 1800 baud
B2400 2400 baud
B4800 4800 baud
B9600 9600 baud
B19200 19200 baud
B38400 38400 baud
CREAD Enable receiver
PARENB Parity enable
PARODD Odd parity, else even
HUPCL Hang up on last close
CLOCAL Local line, else dial-up

The CBAUD bits specify the baud rate. The zero-baud rate, B0, hangs up the connection. If B0 is specified, the
data-terminal-ready signal is not asserted. Normally, this disconnects the line. For any particular hardware, the
system ignores impossible changes to the speed.

If PARENB is set, parity generation and detection is enabled and a parity bit is added to each character. If parity is
enabled, the PARODD flag specifies odd parity if set; otherwise, even parity is used.

If CREAD is set, the receiver is enabled. Otherwise, no characters will be received.

If HUPCL is set, COHERENT disconnects the line when the last process with the line open closes the line or
terminates; that is, the data-terminal-ready signal is not asserted.

If CLOCAL is set, the system assumes that the line to be a local, direct connection with no modem control.
Otherwise, it assumes modem control.

The line discipline uses the field c_lflag to control terminal functions. The basic line discipline (zero) provides the
following:

ISIG Enable signals
ICANON Canonical input (erase and kill processing)
XCASE Canonical upper/lower presentation
ECHO Enable echo
ECHOE Echo erase character as BS-SP-BS
ECHOK Echo NL after kill character
ECHONL Echo NL

The following gives the meaning of each flag in detail:

ISIG If this flag is set, the system checks each input character against the special control characters INTR and
QUIT. If an input character matches one of these control characters, the system executes the function
associated with that character. If it is not set is not set, the system performs no checking; thus, these
special input functions are possible only if ISIG is set. You can disable these functions individually by
changing the value of the control character to an unlikely or impossible value (e.g., 0377).

ICANON
If this flag is set, the system enables canonical processing. This enables the erase and kill-edit functions,
and limits the assembly of input characters into lines delimited by NL, EOF, and EOL. The system also
interprets the vmin and vtime locations in the termio structure as c_cc[VEOF] and c_cc[VEOL],
respectively.

When the ICANON bit is cleared, you must set c_cc[VMIN] and c_cc[VTIME] to appropriate vmin and vtime
values. vmin is a number from 0 to 255 that gives the minimum number of characters required before any
read operation completes. vtime is a number from 0 to 255 that specifies how long, in tenths of a second,
to wait for completion of input. The following describes how termio processes the vmin and vtime values:

1. If vmin is greater than zero and vtime equals zero, block until vmin characters are received.

2. If both vmin and vtime are greater than zero, block until the first character is received, then return
after vmin characters are received or vtime/10 seconds have elapsed since the last character was
received, whichever occurs first.
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3. If vmin equals zero, return after first character is received or after vtime/10 seconds have passed,
whichever occurs first. It may return a read count of zero — but will return one character if it is
available, even if vtime is zero.

You can use the command stty to reset the vmin and vtime values. The header file termio.h includes the
constants VMIN and VTIME, which set default values for vmin and vtime, respectively.

XCASE If this flag is set, and if ICANON is set, an upper-case letter is accepted on input by preceding it with a ‘\’
character, and is output preceded by a ‘\’ character. In this mode, the following escape sequences are
generated on output and accepted on input:

For: Use:

‘ \’
| \!
~ \^
{ \(
} \)
\ \\

For example, A is input as \a, \n as \\n, and \N as \\\n.

ECHO If this flag is set, characters are echoed as received. When ICANON is set, the following echo functions are
possible:

• If ECHO and ECHOE are set, the erase character is echoed as ASCII BS SP BS, which clears the last
character from the screen.

• If ECHOE is set and ECHO is not set, the erase character is echoed as ASCII SP BS.

• If ECHOK is set, the NL character is echoed after the kill character to emphasize that the line will be
deleted. Note that an escape character preceding the erase or kill character removes any special
function.

• If ECHONL is set, the NL character is echoed even if ECHO is not set. This is useful for terminals set
to local echo (‘‘half duplex’’).

Unless escaped, the EOF character is not echoed. Because EOT is the default EOF character, this
prevents terminals that respond to EOT from hanging up.

The initial line-discipline control value is all bits clear.

The primary calls to ioctl() have the following form:

ioctl( fildes, command, arg )
struct termio *arg;

The following commands use this form:

TCGETA Get the parameters associated with the terminal and store in the termio structure referenced by
arg.

TCSETA Set the parameters associated with the terminal from the structure referenced by arg. The change
is immediate.

TCSETAW Wait for the output to drain before setting the new parameters. This form should be used when
changing parameters that affect output.

TCSETAF Wait for the output to drain, then flush the input queue and set the new parameters.

Additional calls to ioctl() have the following form:

ioctl( fildes, command, arg )
int arg;

The following command uses this form:

TCFLSH
Flush both the input and output queues.

Note that header <termio.h> defines other constants for purposes of portability. Features designated by these
constants are unavailable in the current release of COHERENT 386.
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Example
The following example gives some functions that let you perform a non-blocking read of the keyboard — that is, a

read(0, &c, sizeof(char));

that returns zero (failure) rather than waiting for input if there is no current typed character.

To do so, you must do the following:

• Set up keyboard input appropriately with the ioctls TCGETA and TCSETA.

• Turn off ICANON.

• Turn off the various versions of ECHO.

• Use ISIG to disable keyboard interrupts.

• Finally, set:

termiob.c_cc[VMIN] = 0;
termiob.c_cc[VTIME] = 0;

This lets read() return after reading zero bytes in .0 seconds.

#include <termio.h>
#include <stdlib.h>

void
ttyinit()
{

struct termio termiob;

ioctl(0, TCGETA, &termiob); /* get tty characteristics */
termiob.c_cc[VMIN] = 0;
termiob.c_cc[VTIME] = 0; /* non-blocking read */
ioctl(0, TCSETA, &termiob); /* set new mode */

}

int
ttycheck()
{

static int done = 0;
char c;

if (done)
return 0;

if (read(0, &c, 1) != 0) {
if (c == ’a’)

return 0;
else if (c != ’ ’) {

++done;
return 0;

}

/* After <space>, pause until another character is typed */
while (read(0, &c, 1) == 0)

;
}
return 1;

}

main()
{

ttyinit();

while (1) {
printf("Still checking ...\n");
if (!ttycheck())

exit(EXIT_SUCCESS);
}

}
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For another example of how to manipulate the termio structure, see the entry for ioctl().

Files
/dev/tty*

See Also
device drivers, ioctl(), stty, terminal, termio.h, termios
POSIX Standard, §7.1

Notes
The version of stty that is supplied with COHERENT 386 provides complete access to the System-V-style termio
structure. This lets you specify and view any combination of the fields therein, including various delays. How
these fields are processed, however, depends on the device in question. The settings of termio are processed by
the kernel’s in-line discipline and device-driver modules. In COHERENT 4.0.1, none of these modules pays attention
to delay settings.

termio.h — Header File
Definitions used with terminal input and output
#include <termio.h>

termio.h defines structures and constants used by functions that control terminal input and output.

See Also
header files, termio
POSIX Standard, §7.1.2

Notes
COHERENT lets you choose between sgtty and termio to control terminals. For more information, see the Lexicon
entries for sgtty and termio.

termios — Overview
POSIX extended terminal interface

The name termios describes a group of routines that POSIX Standard defines to extend the termio interface to
terminals. termios includes the following routines:

cfgetispeed() . . . . . . Get input speed
cfgetospeed() . . . . . . Get output speed
cfsetispeed(). . . . . . . Set input speed
cfsetospeed() . . . . . . Set output speed
tcdrain() . . . . . . . . . Drain output to a device
tcflow() . . . . . . . . . . Control flow on a terminal device
tcflush() . . . . . . . . . Flush data being exchanged with a terminal
tcgetattr() . . . . . . . . Get terminal attributes
tcsendbreak() . . . . . . Send a break to a terminal
tcsetattr() . . . . . . . . Set terminal attributes

Each is described in its own Lexicon entry. Under COHERENT, all are defined as macros in header file <termios.h>.

Example
The following example returns the input and output speeds for the terminal device that you now are using:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <termios.h>

int main()
{

struct termios term;
int speed;
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if (tcgetattr(STDIN_FILENO, &term) < 0) {
fprintf(stderr, "tcgetattr error");
exit(EXIT_FAILURE);

}

speed = cfgetispeed(&term);
printf("tty line input speed is ");

if (speed == B50) printf("50 baud\n");
else if (speed == B75) printf("75 baud\n");
else if (speed == B110) printf("110 baud\n");
else if (speed == B134) printf("134 baud\n");
else if (speed == B150) printf("150 baud\n");
else if (speed == B200) printf("200 baud\n");
else if (speed == B300) printf("300 baud\n");
else if (speed == B600) printf("600 baud\n");
else if (speed == B1200) printf("1200 baud\n");
else if (speed == B1800) printf("1800 baud\n");
else if (speed == B2400) printf("2400 baud\n");
else if (speed == B4800) printf("4800 baud\n");
else if (speed == B9600) printf("9600 baud\n");
else if (speed == B19200) printf("19200 baud\n");
else if (speed == B38400) printf("38400 baud\n");
else printf("unknown speed\n");

speed = cfgetospeed(&term);
printf("tty line output speed is ");

if (speed == B50) printf("50 baud\n");
else if (speed == B75) printf("75 baud\n");
else if (speed == B110) printf("110 baud\n");
else if (speed == B134) printf("134 baud\n");
else if (speed == B150) printf("150 baud\n");
else if (speed == B200) printf("200 baud\n");
else if (speed == B300) printf("300 baud\n");
else if (speed == B600) printf("600 baud\n");
else if (speed == B1200) printf("1200 baud\n");
else if (speed == B1800) printf("1800 baud\n");
else if (speed == B2400) printf("2400 baud\n");
else if (speed == B4800) printf("4800 baud\n");
else if (speed == B9600) printf("9600 baud\n");
else if (speed == B19200) printf("19200 baud\n");
else if (speed == B38400) printf("38400 baud\n");
else printf("unknown speed\n");

exit(EXIT_SUCCESS);
}

See Also
cfgetispeed(), cfgetospeed(), cfsetispeed(), cfsetospeed(), Programming COHERENT, tcdrain(), tcflow(),
tcflush(), tcgetattr(), tcsendbreak(), tcsetattr(), termio, termios.h

Notes
If a program that uses termios has set the termio flag ISIG (which enables signals) and receives character SUSP
(normally <ctrl-Z>), it sends the signal SIGTSTP to the current process group. By default, termios then discards
SUSP. Character SUSP, as its name implies, tells a program to suspend operation and recede into the background.
Please note that because COHERENT does not yet support job control, SUSP at present will do nothing.

termios.h — Header File
Definitions used with POSIX extended terminal interface
#include <termios.h>

Header file <termios.h> defines the structures and macros that implement the POSIX Standard’s extensions to the
termio interface.

See Also
header files, termios
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test — Command
Evaluate conditional expression
test expression ...

test evaluates an expression, which consists of string comparisons, numerical comparisons, and tests of file
attributes. For example, a test command might be used within a shell script to test whether a certain file exists
and is readable.

The logical result (true or false) of the expression is returned by the command for use by another shell construct,
such as the command if.

Under the Korn shell, test is a built-in command that returns zero if expression is true, and one if it is false.
Under the Bourne shell, test is not a built-in command; rather, the Bourne shell uses the command /bin/test to
test expressions. /bin/sh returns zero if the expression is true, one if it is false, and two if a syntax error (or other
error) occurred.

Expression Options
test recognizes the following options, one or more of which can be built into an expression:

! exp Negates the logical value of expression exp.
string1 != string2 string1 is not equal to string2.
string1 < string2 string1 is lexicographically less than string2 (sh only).
string1 = string2 string1 is equal to string2.
string1 > string2 string1 is lexicographically greater than string2 (sh only).
(exp) Parentheses allow expression grouping.
exp1 -a exp2 Both expressions exp1 and exp2 are true.
-b file file is a block-special device.
-c file file is a character-special file.
-d file file exists and is a directory.
-e file file exists (/bin/test only).
file1 -ef file2 file1 is the same file as file2.
n1 -eq n2 Numbers n1 and n2 are equal. Please note that test evalutes the expression as zero. Thus, if

one of the arguments is a variable that is not set, test treats it as if it were zero. For example,
consider the expression:

if [ "$notset" -eq 0 ]
If notset is not set, test evaluates it to zero and so returns true.

-f file file exists and is an ordinary file.
-g file File mode has setgid bit.
n1 -ge n2 Number n1 is greater than or equal to n2.
n1 -gt n2 Number n1 is greater than n2.
-k file File mode has sticky bit.
-L file File is a symbolic link.
n1 -le n2 Number n1 is less than or equal to n2.
n1 -lt n2 Number n1 is less than n2.
-n string string has nonzero length.
n1 -ne n2 Numbers n1 and n2 are not equal.
file1 -nt file2 file1 is newer than file2.
exp1 -o exp2 Either expression exp1 or exp2 is true. -a has greater precedence than -o.
file1 -ot file2 file1 is older than file2.
-p file file is a named pipe.
-r file file exists and is readable.
-s file file exists and has nonzero size.
-t [fd] fd is the file descriptor number of a file that is open and a terminal. The Bourne shell requires

that fd be given; under the Korn shell, however, defaults to the standard output (file descriptor
1) if no fd is given.

-u file File mode has setuid set.
-w file file exists and is writable.
-x file file exists and executable.
-z string string has zero length (is a null string).
string string has nonzero length.
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Implementations of test
The implementation of test under the Bourne shell has been rewritten for COHERENT release 4.2, both to extend its
range of features and to make it more compliant with published standards. Although this makes test more useful
to programmers, it may create problems when you try to execute a Bourne-shell script written under COHERENT
release 4.2 on an earlier release of COHERENT. The following describes how the Bourne shell’s implementation of
test was designed; and how it differs both from earlier implementations under the Bourne shell and from the
implementation under the Korn shell.

To begin, the Bourne shell’s implementation of test attempts to comply with the POSIX Standard, comply with
previous COHERENT releases of test, and comply with System-V UNIX to the greatest extent possible. However,
these objectives are mutually exclusive. See the POSIX Standard P1003.2/D11.2 §4.62, especially the Rationale, for
details of some of the problems. In particular, System V and Berkeley differ in the way they parse some
expressions, which leads the POSIX Standard to specify test behavior for a minimal set of expressions, not including
-a and -o.

The following details differences among the various implementations of test. First, the following options were not
implemented in the Bourne shell’s implementation of test prior to COHERENT release 4.2, but were included in the
Korn shell’s implementation: -b, -c, -ef, -g, -k, -L, -nt, -ot, -p, -u, and -x. Of these, the following are not described
in the POSIX Standard: -k, -L, -ef, -nt, and -ot. Note that Bourne-shell scripts that use any of the above options to
test will not run on versions of COHERENT prior to release 4.2, but will run under the Korn shell.

Next, the Bourne shell for COHERENT 4.2 implements the POSIX Standard’s option -e and the options < and >.
Bourne-shell scripts that use any of these three options to test will not run on versions of COHERENT prior to
release 4.2, nor will they run under the Korn shell.

The definitions of the options -f and -t have been changed from the Berkeley standard to that described in the
POSIX Standard. Berkeley defines -f as meaning that a file exists and is not a directory; whereas the POSIX
Standard defines it as meaning that a file exists and is a regular file. Versions of the Bourne shell prior to
COHERENT 4.2 use the Berkeley definitions; whereas all version of the Korn shell and Bourne shell under
COHERENT 4.2 use the POSIX Standard’s definition. Berkeley gives -t a default value of one if it is not used with an
argument; whereas the POSIX Standard requires that -t have an argument. The Korn shell and all versions of the
Bourne shell prior to COHERENT 4.2 use the Berkeley definition; whereas the Bourne shell under COHERENT 4.2
uses the POSIX Standard’s definition. These differences are subtle, but important. Thus, a Bourne shell script that
uses either of these options may not run correctly when imported into COHERENT 4.2 from earlier versions of
COHERENT, or when exported from COHERENT 4.2 to them or to the Korn shell.

Finally, test under the Korn shell and under the Bourne shell prior to COHERENT 4.2 returns zero if an expression
is true and one either if the expression is false or if the expression contained a syntax error. However, test under
the Bourne shell for COHERENT 4.2 returns zero if an expression is true, one if it is false, and two if a syntax error
occurred. Bourne-shell scripts that pay close attention to what test returns may not run correctly when imported
into COHERENT 4.2 from earlier implementations of COHERENT, or when exported from COHERENT 4.2 to earlier
versions of COHERENT or to the Korn shell.

Example
The following example uses the test command to determine whether a file is writable.

if test ! -w /dev/lp
then

echo The line printer is inaccessible.
fi

Under COHERENT, the command ‘[’ is linked to test. If invoked as ‘[’, test checks that its last argument is ‘]’. This
allows an alternative syntax: simply enclose expression in square brackets. For example, the above example can be
written as follows:

if [ ! -w /dev/lp ]
then

echo The line printer is inaccessible.
fi

For a more extended example of the square-bracket syntax, see sh.

See Also
commands, expr, find, if, ksh, sh, while
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Notes
The Korn shell’s version of this command is based on the public-domain version written by Erik Baalbergen and
Arnold Robbins.

tgetent() — termcap Function (libterm)
Read termcap entry
#include <curses.h>
#include <term.h>
int tgetent(bp, name)
char *bp, *name;

tgetent() is one of a set of functions that read a termcap terminal description. It extracts the entry from file
/etc/termcap for the terminal name and writes it into a buffer at address bp. bp should be a character buffer of
1,024 bytes and must be retained through all subsequent calls to the other functions. It returns -1 if it cannot
open /etc/termcap, zero if the terminal name given does not have an entry, and one upon a successful search.

tgetent() first looks in the environment to see if the termcap variable had already been set. If it finds that the
variable termcap has been set, that the value does not begin with a slash, and that the terminal type name in the
termcap variable is the same as that in the environment variable TERM, then tgetent() uses the termcap string
instead of reading the file /etc/termcap. However, if the termcap string does begin with a slash, then it is used as
the path name of a terminal-capabilities file other than /etc/termcap. This can speed entry into programs that
call tgetent(), and can be used to help debug new terminal descriptions.

Files
/etc/termcap — Terminal capabilities data base
/usr/lib/libterm.a — Function library

See Also
termcap

tgetflag() — termcap Function
Get termcap Boolean entry
#include <curses.h>
#include <term.h>
int tgetflag(name)
char *name;

tgetflag() is one of a set of functions that read a termcap terminal description. It returns one if the requested
Boolean capability name is present in the terminal’s termcap entry, zero if it is not.

Files
/etc/termcap — Terminal capabilities data base
/usr/lib/libterm.a — Function library

See Also
termcap

tgetnum() — termcap Function (libterm)
Get termcap numeric feature
#include <curses.h>
#include <term.h>
int tgetnum(name)
char *name;

tgetnum() is one of a set of functions that read a termcap terminal description. It returns the value of the
numeric feature name, as defined in the terminal’s termcap entry. It returns -1 if the feature is not present in the
terminal’s entry.

Files
/etc/termcap — Terminal capabilities data base
/usr/lib/libterm.a — Function library
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See Also
termcap

tgetstr() — termcap Function (libterm)
Get termcap string entry
#include <curses.h>
#include <term.h>
char *tgetstr(name, area)
char *name, **area;

tgetstr() is one of a set of functions that read a termcap terminal description. It reads the string value of feature
name from the terminal’s termcap description, and writes it into the buffer at address area. It also advances the
value of the pointer to area.

tgetstr() decodes the abbreviations for the fields used in the termcap entry, except for padding and for cursor-
addressing information.

Files
/etc/termcap — Terminal capabilities data base
/usr/lib/libterm.a — Function library

See Also
termcap

tgoto() — termcap Function (libterm)
Read/interpret termcap cursor-addressing string
#include <curses.h>
#include <term.h>
char *tgoto(cm, destcol, destline)
char *cm; int scrcol, scrline;

tgoto() is one of a set of functions that read a termcap terminal description. It decodes a cursor-addressing string
from the cm termcap feature, and writes it onto the screen, at column scrcol and line destline. tgoto() uses the
external variables UP (from the up feature) and BC (if bc is given rather than bs) if it is necessary to avoid placing
\n, <ctrl-D>, or <ctrl-@> into the returned string. Programs calling tgoto() should turn off the XTABS bits, as
tgoto() may write a tab. If a ‘%’ sequence is given that is not understood, tgoto() returns ‘‘OOPS’’.

Files
/etc/termcap — Terminal capabilities data base
/usr/lib/libterm.a — Function library

See Also
termcap

tic — Command
Compile a terminfo description
tic [-v[n]] sourcefile

The command tic compiles a sourcefile of terminfo information into a binary object.

sourcefile must be self-contained, i.e., it may not contain ‘‘use’’ entries that refer to terminals not described fully in
the same file.

The object files generated by tic are normally placed into subdirectories of the directory /usr/lib/terminfo. If the
environment variable TERMINFO is defined, it is assumed to name an alternative directory to use.

The flag -vn tells tic to output debugging and tracing information. n sets the amount of debugging information to
produce, as follows:
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1 Names of files created
2 Information related to the ‘‘use’’ facility
3 Statistics from the hashing algorithm
5 String-table memory allocations
7 Entries into the string-table
8 List of tokens encountered by scanner
9 All values computed in construction of the hash table

n is set to one by default.

Files
/usr/lib/terminfo/* — Default location of object files

See Also
commands, infocmp, terminfo, term
Strang, J., Mui, L., O’Reilly, T.: termcap and terminfo. Sebastopol, CA: O’Reilly & Associates, Inc., 1991.

Notes
tic was written by Pavel Curtis of Cornell University. It was ported to COHERENT by Udo Munk.

time — Overview
COHERENT includes a number of routines that allow you to set and manipulate time, as recorded on the system’s
clock, into a variety of formats. These routines should be adequate for nearly any task that involves temporal
calculations or the maintenance of data gathered over a long period of time.

All functions, global variables, and manifest constants used in connection with time are defined and described in
the header files time.h and timeb.h. In brief, time manipulates two data elements: the type time_t, and the
structure tm.

time_t is defined in the header file <time.h>. COHERENT follows the UNIX standard and initializes time_t to the
number of seconds since January 1, 1970, 0h00m00s GMT; this moment, in turn, is rendered as day 2,440,587.5
on the Julian calendar. This allows accurate calculation of time as far back as January 1, 4713 B.C.

The structure tm is defined in the header file <time.h>. It is defined as follows:

struct tm {
int tm_sec; /* current time, seconds */
int tm_min; /* current time, minutes */
int tm_hour; /* current time, hour */
int tm_mday; /* day of the month, 1-31 */
int tm_mon; /* month, 1-12 */
int tm_year; /* year since 1900 */
int tm_wday; /* day of the week, Sunday = 0 */
int tm_yday; /* day in the current year */
int tm_isdst; /* is daylight-savings time now in effect? */

};

For an example of manipulating this structure in a C program, see the Lexicon entry for localtime().

Standard Time Functions
The COHERENT system includes the following functions to manipulate time:

asctime(). . . . . . . . . Convert time structure to ASCII string
clock() . . . . . . . . . . Get processor time
ctime() . . . . . . . . . . Convert system time to an ASCII string
difftime(). . . . . . . . . Return difference between two times
gmtime() . . . . . . . . . Convert system time to calendar structure
localtime() . . . . . . . . Convert system time to calendar structure
mktime() . . . . . . . . . Turn broken-down time into calendar time
strftime(). . . . . . . . . Format locale-specific time
time() . . . . . . . . . . . Get the current time
tzset(). . . . . . . . . . . Set local time zone

To print out the local time, a program must perform the following tasks:
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1. Read the system time with time(). This function returns a time_t.

2. Pass the time_t returned by time() to the function localtime(). This function breaks it down into the tm
structure,

3. Pass localtime()’s output to asctime(), which transforms the tm structure into an ASCII string.

4. Finally, pass the output of asctime() to printf(), to displays it on the standard output device.

See the entry for asctime() for an example C program that goes through the above steps.

Special Time Functions
COHERENT includes a number of extensions to the time functions used by standard UNIX systems. These are
designed to increase the scope and accuracy of time-handling, and to ease calculation of some time elements.

COHERENT holds information about your time locale in the environmental variable TIMEZONE. This variable is
described in detail in its Lexicon article. In brief, it consists of seven fields:

1. Name of the local standard time zone
2. Offset from Greenwich Mean Time, in minutes
3. Name of the local daylight time zone
4. Date when daylight-savings time begins
5. Date when daylight-savings time ends
6. Hour when daylight-savings time begins
7. Hour when daylight-savings time ends

The fields are defined in such a way that any form of daylight-saving adjustment can be handled correctly. For
example, the United States shifts into daylight-savings time on the first Sunday in April; whereas Brazil shifts into
daylight-savings time on a set day each spring.

The function tzset() parses TIMEZONE into the following external variables:

timezone Seconds from GMT to give local time
tzname[2][16] Character array of names of standard and daylight times

For details on manipulations these variable, see the Lexicon entry for tzset(). The library libmisc.a contains the
following functions that convert time from Julian to Gregorian form:

time_to_jday() Convert time_t to the Julian date
jday_to_time() Convert Julian date to time_t
tm_to_jday() Convert tm structure to Julian date
jday_to_tm() Convert Julian date to tm structure

COHERENT’s time functions assume that conversion to the Gregorian calendar occurred October 1582, when it was
first adopted in Rome. However, various nations adopted the Gregorian calendar at different times; for example, it
was adopted in the British Empire (including its American colonies) only in September 1752. (This, by the way, is
the date assumed by the COHERENT command cal, as you would see if you typed the command cal 9 1752.) Users
in northern and eastern Europe, and in European-influenced areas of Asia (e.g., India) may wish to to write their
own functions to convert historical data properly from the Julian to the Gregorian calendar.

Example
For an example of some time functions, see the entry for asctime().

See Also
cal, libc, libmisc

Notes
COHERENT also includes the system call ftime(), which returns the current system time. Because the ANSI
Standard eliminates ftime(), users are urged to replace this system call with calls to time().

UNIX System V defines time_t in header file <sys/types.h>, whereas COHERENT defines it in time.h. This should
not affect the porting of programs from UNIX to COHERENT, but it may affect the porting of programs in the other
direction.
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time — Command
Time the execution of a command
time [command]

time invokes the given command with any arguments provided. Upon termination, time prints the elapsed real
time, CPU time in the system, and CPU time in the user program on the standard error output.

See Also
commands, date, ps, times

Diagnostics
If the command terminates abnormally, time displays an error message that explains why.

time.h — Header File
Give time-description structure
#include <time.h>

The header file time.h prototypes the routines that COHERENT uses to manipulate time, and declares the constants
and data types they use.

See Also
header files, time [overview]
ANSI Standard, §7.12

time() — System Call (libc)
Get current system time
#include <time.h>
time_t time(tp)
time_t *tp;

time() reads and returns the current system time. COHERENT defines the current system time as the number of
seconds since January 1, 1970, 0h00m00s GMT.

tp points to a data element of the type time_t, which the header file time.h defines as being equivalent to a long. If
tp is initialized to a value other than NULL, then time() attempts to write the system time into the address to which
tp points. If, however, tp is initialized to NULL, then time() returns the current system time but does not attempt
to write it anywhere.

Example
For an example of this call, see the entry for asctime().

See Also
date, libc, time [overview], time.h
ANSI Standard, §7.12.2.4
POSIX Standard, §4.5.1

Notes
UNIX System V defines time_t in header file <sys/types.h>, whereas COHERENT defines it in time.h. This should
not affect the porting of programs from UNIX to COHERENT, but it may affect the porting of programs in the other
direction.

timeb.h — Header File
Define timeb structure
#include <sys/timeb.h>

The header file timeb.h defines the structure timeb, which is used by the function ftime() to return time
information.

See Also
ftime(), header files, time [overview]
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timeout.h — Header File
Define the timer queue
#include <timeout.h>

timeout.h defines the timeout queue. The timeout queue can, as its name implies, be used to call a function when
a process has ‘‘timed out’’.

See Also
header files

Notes
This header file is obsolete, and will be dropped from a future release of COHERENT. Its use is strongly
discouraged.

times — Command
Print total user and system times
times

times prints the total elapsed user time and system time for the current shell and all its children. It gives each
time in minutes, seconds and tenths of seconds. For example,

1m11.8s 1m35.8s

indicates a total user time of 1 minute 11.8 seconds, and a total system time of 1 minute 35.8 seconds.

The shell executes times directly.

See Also
commands, ksh, time, sh

times.h — Header File
Definitions used with times() system call
#include <sys/times.h>

times.h defines the structure tms, which is used by the system call times().

See Also
header files, times()
POSIX Standard, §4.5.2

times() — System Call (libc)
Obtain process execution times
#include <sys/times.h>
#include <time.h>
int times(tbp)
struct tms *tbp;

times() reads CPU time information about the current process and its children, and writes it into the structure
pointed to by tbp. The structure tms is declared in the header file sys/times.h, as follows:

struct tms {
clock_t tms_utime; /* process user time */
clock_t tms_stime; /* process system time */
clock_t tms_cutime; /* childrens’ user times */
clock_t tms_cstime; /* childrens’ system times */

};

All of the times are measured in basic machine cycles, or CLK_TCK.

The childrens’ times include the sum of the times of all terminated child processes of the current process and of all
of their children. The user time represents execution time of user code, whereas system time represents system
overhead, such as executing system calls, processing signals, and other monitoring functions.

times() returns the number of ticks that have passed since system startup.
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Files
<sys/times.h>
<time.h>

See Also
acct(), ftime(), libc, time() times.h,
POSIX Standard, §4.5.2

TIMEZONE — Environmental Variable
Time zone information
TIMEZONE=standard:offset[:daylight: date:date:hour:minutes]

The COHERENT system records time internally as Greenwich Mean Time (GMT). It does so to make it easier to
coordinate exchange of information across systems in different time zones around the world.

TIMEZONE is an environmental parameter that holds information about your local time zone. This information is
used by COHERENT’s time routines to convert GMT to the date and time in your local area. TIMEZONE takes into
account your local time zone’s offset from Greenwich, whether your country uses daylight savings time, and the
date and hour that daylight savings time begins and ends.

To set TIMEZONE, use the command

export TIMEZONE=[description]

where description is the string that describes your time zone. What this string consists of will be described below.
Most users write this command into the file .profile, so that TIMEZONE is set automatically whenever they log
onto the COHERENT system.

COHERENT’s installation procedure creates file /etc/timezone, which sets TIMEZONE. This file is executed by
/etc/profile when each user logs in. Thus, you must set the TIMEZONE in your .profile only if it differs from the
system’s TIMEZONE as set in /etc/timezone. This would be necessary if, for example, a user in New York were to
regularly login on a system in Chicago.

The Description String
A TIMEZONE description string consists of seven fields that are separated by colons. Fields 1 and 2 must be filled;
fields 3 through 7 are optional.

Field 1 gives the name of your standard time zone. Field 2 gives the time zone’s offset from Greenwich Mean Time
in minutes. Offsets are positive for time zones west of Greenwich and negative for time zones east of Greenwich.
For example, users in Chicago set these fields as follows:

TIMEZONE=CST:360

CST is an abbreviation for Central Standard Time, that area’s time zone; and 360 refers to the fact that Chicago’s
time zone is 360 minutes (six hours) ahead of (that is, earlier than) Greenwich.

Field 3 gives the name of the local daylight saving time zone. In Chicago, for example, this field would be set as
follows:

TIMEZONE=CST:360:CDT

CDT is an abbreviation for Central Daylight Time. The absence of this field indicates that your area does not use
daylight saving time.

Fields 4 and 5 specify the dates on which daylight saving time begins and ends. If field 3 is set but fields 4 and 5
are not, changes between standard time and daylight saving time are assumed to occur at the times legislated in
the United States: at 2 A.M. standard time on the first Sunday in April, and at 2 A.M. daylight saving time on the
last Sunday in October.

Fields 4 and 5 each consist of three numbers separated by periods. The first number specifies which occurrence of
the day in the month marks the change, counting positive occurrences from the beginning of the month and
negative occurrences from the the end of the month. The second number specifies a day of the week, numbering
Sunday as one. The third number specifies a month of the year, numbering January as one. For example, in
Chicago fields 4 and 5 are set to the following:

TIMEZONE=CST:360:CDT:1.1.4:-1.1.10
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If the first number in either field is set to zero, then the last two numbers are assumed to indicate an absolute
date. This is done because some countries switch to daylight saving time on the same day each year, instead of a
given day of the week.

Finally, fields 6 and 7 specify the hour of the day at which daylight saving time begins and ends, and the number
of minutes of adjustment. In Chicago, these are set as follows:

TIMEZONE=CST:360:CDT:1.1.4:-1.1.10:2:60

The ‘2’ of field 6 indicates that the switch to daylight savings time occurs at 2 A.M. The ‘‘60’’ of field 7 indicates
that daylight savings time changes the local time by 60 minutes. Although 60 minutes is the standard change,
some regions of the world shift by 30, 45, 90, or 120 minutes; the last shift is also called ‘‘double daylight saving
time’’.

For an example of this variable’s use in a program, see the entry for asctime().

See Also
environmental variables, time [overview]

Notes
File /etc/default/login defines TIMEZONE differently: it uses the same format as the COHERENT environmental
variable TZ, which is set in file /etc/timezone. Note that TZ and TIMEZONE as defined in /etc/default/login
must be identical, or much confusion will result.

For those requiring more information on this subject, much research has been performed by astrologers. See Time
Changes in the World, compiled by Doris Chase Doane (three volumes, Hollywood, California, Professional
Astrologers, Inc., 1970).

TMPDIR — Environmental Variable
Directory that holds temporary files

The command cc reads the environmental variable TMPDIR to see where you want it to write its temporary files.
You can speed compilation by building a RAM disk and pointing TMPDIR to point at it.

For example, if you have created a RAM disk and mounted it as /z, then by embedding the instruction

export TMPDIR=/z/tmp

in your .profile, you can ensure that cc will write all of its temporary files onto the RAM disk.

See Also
cc, environmental variables, ram

tmpfile() — STDIO Function (libc)
Create a temporary file
#include <stdio.h>
FILE *tmpfile(void);

The function tmpfile() creates a file to hold data temporarily. The file is opened into binary update mode (wb+) and
is removed automatically when it is closed or when the program exits. There is no way to access the temporary file
by name. If your program needs to do so, it should open a file explicitly.

tmpfile() returns NULL if it could not create a temporary file. If it could, it returns a pointer to the FILE associated
with the temporary file. The function exit() removes all files created by tmpfile().

Example
This example implements a primitive file editor that can edit large files. It uses two temporary files to keep all
changes. The editor accepts the following commands:

dn delete; d52 deletes line 52
in insert; i7 inserts line before line 7
pn print; p17 prints line 17
p print the entire file
w write the edited file and quit
q quit without writing the file
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The entire temporary file is copied with each command.

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdarg.h>

FILE *fp, *tmp[2];
int linecount;

fatal(message)
char *message;
{

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

/*
* Copy up to line number or EOF.
* Return number of lines copied.
*/
static int
copy(line, *ifp, ofp)
int line; FILE *ifp, *ofp;
{

int i, c, count;

count = 0;
for(c=i=1; (i<line || line==-1) && c!=EOF; i++) {

while((c = fgetc(ifp)) != EOF && c != ’\n’)
fputc(c, ofp);

if(c == ’\n’) {
count++;
fputc(’\n’, ofp);

}
}
return(count);

}

/*
* Read a file until line number is read.
* Return 1 if line is found before EOF.
*/
static int
find(line, ifp)
int line; FILE *ifp;
{

int i, c;

for(c=i=1; i<line && c!=EOF; i++)
while((c = fgetc(ifp)) != EOF && c != ’\n’)

;
return(c != EOF);

}

main(int argc, char *argv[])
{

int i, line, args;
char c, cmdbuf[80];

if(argc != 2)
fatal("usage: tmpfile filename\n");

if((tmp[0]=tmpfile())==NULL||(tmp[1]=tmpfile())==NULL)
fatal("Error opening tmpfile\n");

if((fp = fopen(argv[1], "r")) == NULL)
fatal("Error opening input file\n");
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linecount = copy(-1, fp, tmp[i = 0]);
fclose(fp);

/* one file pass per command */
for(;;) {

if(gets(cmdbuf) == NULL)
fatal("EOF on stdin\n");

if(!(args = sscanf(cmdbuf, "%c%d", &c, &line)))
continue;

fseek(tmp[i], 0L, SEEK_SET);

switch(c) {
/* Write edited file */
case ’w’:

if((fp = fopen(argv[1], "w")) == NULL)
fatal("Error opening file\n");

copy(linecount + 1, tmp[i], fp);
fclose(fp);

/* Quit */
case ’q’:

exit(EXIT_SUCCESS);

/* Print entire file */
case ’p’:

if(args == 1) {
copy(linecount + 1, tmp[i], stdout);
continue;

}
if(find(line, tmp[i]))

copy(2, tmp[i], stdout);
continue;

/* Delete a line */
case ’d’:

if(args == 1)
printf("dn where n is a number\n");

else if(line > linecount)
printf("only %d lines\n", linecount);

else {
copy(line, tmp[i], tmp[i^1]);
if(find(2, tmp[i]))

copy(-1, tmp[i], tmp[i^1]);

linecount--;
fseek(tmp[i], 0L, SEEK_SET);
i ^= 1;

}
continue;

/* Insert a line */
case ’i’:

if(1 == args)
printf("in where n is a number\n");

else if(line > linecount)
printf("only %d lines\n", linecount);

else {
copy(line, tmp[i], tmp[i^1]);
printf("Enter inserted line\n");
copy(2, stdin, tmp[i^1]);
copy(-1, tmp[i], tmp[i^1]);
linecount++;

fseek(tmp[i], 0L, SEEK_SET);
i ^= 1;

}
continue;
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default:
printf("Invalid request\n");
continue;

}
}

}

See Also
mktemp(), libc, tempnam(), tmpnam()
ANSI Standard, §7.9.4.3
POSIX Standard, §8.1

Notes
If a program exits abnormally or aborts, the files created by tmpfile() may not be removed.

tmpnam() — STDIO Function (libc)
Generate a unique name for a temporary file
#include <stdio.h>
char *tmpnam(name);
char *name;

tmpnam() constructs a unique name for a file. The names returned by tmpnam() generally are mechanical
concatenations of letters, and therefore are mostly used to name temporary files, which are never seen by the user.
A file named by tmpnam() does not automatically disappear when the program exits. You must explicitly remove it
before the program ends if you want it to disappear.

name points to the buffer into which tmpnam() writes the name it generates. If name is set to NULL, tmpnam()
writes the name into an internal buffer that may be overwritten each time you call this function.

tmpnam() returns a pointer to the temporary name. Unlike the related function tempnam(), tmpnam() assumes
that the temporary file will be written into directory /tmp and builds the name accordingly.

Example
For an example of this function, see execve().

See Also
libc, mktemp(), tempnam()
ANSI Standard, §7.9.4.4
POSIX Standard, §8.1

Notes
If you want the file name to be written into buffer, you should allocate at least L_tmpnam bytes of memory for it;
L_tmpnam is defined in the header stdio.h. Under COHERENT, it is 64 characters long.

toascii() — ctype Function (libc)
Convert characters to ASCII
#include <ctype.h>
int toascii(c) int c;

The function toascii() takes the integer value c, keeps the low seven bits unchanged, and changes the others to
zero. This, in effect, transforms the integer value to an ASCII character. toascii() then returns the transformed
integer. If c is already a valid ASCII character, toascii() returns it unchanged.

Example
This example prompts for a file name. It then opens the file and prints its contents, while converting all non-
alphanumeric characters to alphanumeric.

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
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main()
{

FILE *fp;
int ch;
int filename[20];

printf("Enter file name: ");
fflush(stdout);
gets(filename);

if ((fp = fopen(filename, "r")) != NULL) {
while ((ch = fgetc(fp)) != EOF)

putchar(isascii(ch) ? ch : toascii(ch));
} else {

printf("Cannot open %s\n", filename);
exit(EXIT_FAILURE);

}
return(EXIT_SUCCESS);

}

See Also
isascii(), libc

Notes
This function is not described in the ANSI Standard. Any program that uses it does not conform strictly to the
Standard, and may not be portable to other compilers or environments.

tolower() — ctype Function (libc)
Convert characters to lower case
#include <ctype.h>
int tolower(c) int c;

The function tolower() converts the character c to lower case. It returns c converted to lower case. If c is not
upper-case character, that is, a character for which isupper() returns true, toupper() returns it unchanged.

Example
The following example demonstrates tolower() and toupper(). It reverses the case of every character in a text file.

#include <ctype.h>
#include <stdio.h>

main()
{

FILE *fp;
int ch;
int filename[100];

printf("Enter name of file to use: ");
fflush(stdout);
gets(filename);

if ((fp = fopen(filename,"r")) != NULL) {
while ((ch = fgetc(fp)) != EOF) {

if (islower(ch))
putchar(toupper(ch));

else if (isupper(ch))
putchar(tolower(ch));

else
putchar(ch);

}
} else

printf("Cannot open %s.\n", filename);
}

See Also
_tolower(), libc, toupper()
ANSI Standard, §7.3.2.1
POSIX Standard, §8.1
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touch — Command
Update modification time of a file
touch [ -c ] file ...

COHERENT keeps track of when each file was last modified. touch changes the modification time of each file to the
current time, but does not modify its contents. By default, touch creates file if it does not already exist; the -c flag
suppresses this.

See Also
commands, make

toupper() — ctype Function (libc)
Convert characters to upper case
#include <ctype.h>
int toupper(c) int c;

toupper() converts the letter c to upper case and returns the converted character. If c is not an lower-case
character, that is, any character for which islower() returns true, toupper() returns it unchanged.

Example
For an example of this routine, see the entry for tolower().

See Also
_toupper(), libc, tolower()
ANSI Standard, §7.3.2.2
POSIX Standard, §8.1

tparm() — terminfo Function
Output a parameterized string
#include <curses.h>
tparm(string,p1...p9)
char *string, parm1 ... par9;

COHERENT comes with a set of functions that let you use terminfo descriptions to manipulate a terminal. tparm()
outputs a parameterized string.

A parameterized string is a string into which parameters can be inserted, as in a printf() formatting string. Under
terminfo, a parameterized string can hold up to nine parameters. tparm() expands the parameters, inserts them
into the appropriate ‘‘slots’’ within the string, and then outputs the string.

See the Lexicon entry on terminfo for more information on parameterized strings.

See Also
curses.h, terminfo, tputs()

tputs() — termcap/terminfo Function (libterm/libcurses)
Read/decode leading padding information
#include <curses.h>
#include <term.h>
tputs(name, affcnt, outc)
char *name; int affcnt; int (*outc)();

tputs() is one of a set of functions that read a termcap or terminfo terminal description.

tputs() decodes the leading padding information of the string name. When you use tputs() to interpret the
terminfo data base, name should point to a string that names one of terminfo’s variables, as defined in the
Lexicon entry for terminfo; e.g., auto_right_margin or auto_left_margin. When you use tputs() to interpret the
termcap data base, name should point to termcap’s variable code, e.g., am.

affcnt gives the number of lines affected by the operation. Set it to one if it is not applicable.

outc points to the routine that writes each character.
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Files
/etc/termcap — Terminal capabilities data base
/etc/terminfo — Terminal capabilities data base
/usr/lib/libcurses.a — Routines for reading terminfo descriptions
/usr/lib/libterm.a — Routines for reading termcap descriptions

See Also
libcurses, libterm, termcap, terminfo

Notes
As noted above, tputs() can read either a termcap or a terminfo description. The termcap version of tputs() lives
in library /usr/lib/libterm.a. To obtain the termcap version of tputs(), link in the library /usr/lib/libterm.a. To
obtain the terminfo version, however, link in the library /usr/lib/libcurses.a.

tr — Command
Translate characters
tr [-cds] string1 [string2]

tr reads characters from the standard input, possibly translates each to another value or deletes it, and writes to
standard output.

Each specified string may contain literal characters of the form a or \b (where b is non-numeric), octal
representations of the form \ooo (where o is an octal digit), and character ranges of the form X-Y. tr rewrites each
string with the appropriate conversions and range expansions.

If an input character is in string1, tr outputs the corresponding character of string2. If string2 is shorter than
string1, the result is the last character in string2.

The following flags control how tr translates characters:

-c Replace string1 by the set of characters not in string1.

-d Delete characters in string1 rather than translating them.

-s The ‘‘squeeze’’ option: map a sequence of the same character from string1 to one output character.

Example
The following example prints all sequences of four or more spaces or printing characters from infile:

tr -cs ’ -~’ ’\12’ <infile | grep ....

Here string1 is the range from <space> to ‘~’, which includes all printing characters. Because this example uses
the flags -cs, tr maps sequences of nonprinting characters to newline (octal 12).

See Also
ASCII, commands, ctype.h, sed

Notes
Beginning with COHERENT 4.2, the command

echo "This is a test." | tr

returns

This is a test.

This behavior does not conform with POSIX Standard, but is required by a number of third-party packages.

tr — Device Driver
Driver to read stored error messages
/dev/trace

The device driver tr is the ‘‘traceback’’ driver for the COHERENT kernel. It manipulates an internal buffer that holds
error messages from the kernel or another device driver. It has major number 6. This driver is extremely useful to
persons who are writing device drivers.

The DDI/DKI kernel routine cmn_err() can be invoked by drivers to write formatted messages. By default, it writes
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the messages both onto the system’s console and into an internal buffer in memory that can hold up to four
megabytes of text. Messages that begin with a caret, ‘^’, go to the console but not the internal buffer. Messages
that begin with an exclamation point, ‘!’, go to the buffer but not to the console.

The trace driver tr reads this internal buffer, and lets you copy its contents into a file for later perusal. This offers
two major advantages to persons developing and debugging device drivers:

• First, copious diagnostic output will no longer scroll off the screen and be lost. The trace buffer holds every
error message written through cmn_err() until you read the buffer. When you install tr, you can set the size
of the buffer, up to four megabytes.

• Second, if messages are written to the trace buffer only and not to the console, system timing is affected much
less than if the messages were written to the console. This makes it easier to catch subtle problems in timing.

To add tr to your kernel, do the following:

• Log in as the superuser root.

• cd to directory /etc/conf.

• Execute script tr/mkdev. This will walk you through the process of configuring your kernel to use this driver,
and create the device /dev/trace.

• Execute script bin/idmkcoh, to generate a new kernel.

• Invoke the script /etc/shutdown to shutdown system, then boot the new kernel.

To read the contents of the trace buffer, simply use the command

cp /dev/trace file

where file is the file into which you wish to copy the contents of the trace buffer.

See Also
device drivers
COHERENT Device Driver Kit: cmn_err()

transports — System Administration
Describe mail transportation systems
/usr/lib/mail/transports

The program smail reads file /usr/lib/mail/transports for information on the commands it can use to deliver
mail, either to your local system or to a remote system.

Each entry within transports names a transport and sets its attributes. Each entry consists of the following
information:

• The name of the transport. This attribute begins the definition of a transport. The name must be unique, it
must appear flush with the left margin, and must be followed by a single colon ‘:’.

• The name of the driver, or program that implements the transport. This can be a command that is part of
smail’s suite of utilities (which are contained in directory /usr/lib/mail), or can be an ordinary COHERENT
command. If the latter, then the full name of the command that implements the driver is given with a cmd
attribute. This is demonstrated below.

• A set of generic attributes for the transport. These attributes are ‘‘generic’’ because they can come from a set
that can be applied to any router.

• A set of driver-specific attributes. These can be applied only to entries that use this driver.

To extend an entry across multiple lines, begin successive lines with white space.

Attributes of a Transport
The following gives the generic attributes that a transport can have. Each attribute is followed by its type (Boolean,
string, or number). To set a string or number attribute, its name should be followed by an ‘=’, then the value to
which you are setting it. To set a Boolean attribute, prefix it with a ‘+’; to unset a Boolean attribute, prefix it with a
‘-’.
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bsmtp (Boolean)
This transport uses a batched SMTP format, in which the message is enclosed within an envelope of SMTP
commands. You can use such a transport to send mail in SMTP format to remote hosts, even when direct
two-way connections are not feasible. For example, this will work over UUCP and eliminates difficulties
with sending arbitrary addresses as arguments to the command uux. Use of this attribute also turns on
the attribute dots. When this attribute is also used with the attribute uucp, smail uses UUCP-style bang-
path addresses in the SMTP envelope.

crlf (Boolean)
If set, each line of the header and message ends within the pair of characters CR:LF rather than a single
newline character. In general, this is not a useful attribute, as the SMTP transport (which requires this as
a part of the interactive protocol) always does this anyway.

debug (Boolean)
If set, this attribute replaces the body of the message with debugging information. You can use it, for
example, as a shadow transport, to watch the flow of mail for debugging purposes. This lets you debug
mail while avoid the problems that arise from saving other users’ personal correspondence.

dots (Boolean)
If set, then smail uses the ‘‘hidden-dot’’ protocol. With this protocol, smail prefixes a period ‘.’ onto every
line that already begins with a period. All of the various SMTP modes imply this behavior.

driver (string)
This attribute names the specific entity that actually transports the mail. It is required.

error_transport (string)
This attribute names another transport that smail can use to send the message, should this transport fail.

from (Boolean)
If set, smail supplies a ‘‘From<space>’’ line before the message when it delivers mail via this transport. If
this is a remote transport (i.e., the attribute local is not turned on), this line ends with the string

remote from hostname

where hostname is the UUCP name for your local host (as set in file /etc/uucpname). This is useful for
delivery via UUCP and for delivering mail to standard mailbox files, which require this format.

hbsmtp (Boolean)
‘‘Half-baked’’ batched SMTP. This is batched SMTP mode without an initial HELO command or an ending
QUIT command. smail can use this transport to create files that it will later concatenate into a batch of
SMTP commands and multiple messages. Use of this attribute also turns on attribute dots.

local_xform (Boolean)
If this attribute is set, smail uses the form of the header and envelope information appropriate for delivery
to your local host. This changes no existing header field, except that it inserts commas into the fields that
name the sender and recipient. This also affects the form of any generated From line and the form of
envelope addresses used in SMTP commands.

You can also use this attribute when delivering mail to a remote site that is also running smail version
3.1. This is useful within a domain that maintains consistent user-forwarding information. This leaves a
message in unqualified format until it leaves the domain via a gateway.

local (Boolean)
This implies that attribute local_xform is set, but implies that delivery really is the final delivery to a user,
file, or program on your local host. This attribute disables generation of a bounce message that results
should a message exceed its allowed hop-count.

max_addrs (number)
This attribute sets the maximum number of recipient addresses that can be given in one call to the
transport. If this is turned off, then there is no maximum. The default number is one; typically, this
attribute either is left at one or turned off.

max_chars (number)
This states the maximum number of characters in the addresses that can be given in one call to this
transport. If this is turned off, there is no maximum number. The default number is about one third of
the number of characters that can be passed as arguments to a program. When using SMTP transports,
this should be turned off unless a remote host is known to be unable to handle a large number of
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addresses. For delivery over UUCP to rmail ona remote system, this should be in the neighborhood of 200
to 250, to avoid buffer overruns at the remote site. UUCP generally has small buffers to hold argument
information.

If smail is given an address whose length exceeds this number, then the address will be passed with one
call to the transport. Thus, this limit is not strictly enforced.

max_hosts (number)
This states the maximum number of different hosts that can be given in one call to the transport. If this is
turned off using the form -max_hosts, there is no maximum number. The default number is one and
typically this is not changed.

received (Boolean)
If this attribute is set, smail inserts a Received: field into each message it delivers via this transport. The
form of this field is taken from the attribute received_field in file /usr/lib/mail/config. This attribute is
on by default.

return_path (Boolean)
If this attribute is set, smail inserts field Return-Path: into the header of each message it delivers via this
transport. The form of this field is taken from the attribute return_path_field in file
/usr/lib/mail/config. Use this attribute only with a transport that performs final delivery to a local
destination.

shadow (string)
This names a second transport through which smail also sends the message. This second transport
usually performs some task that is unrelated to the actual delivery of the message. For example, you
could use a shadow transport to start a program that looked up the sender within a data base and
displayed her picture in a window on your workstation. smail calls the shadow transport only if the
primary transport successfully delivers the message.

strict (Boolean)
If this flag is set, then smail attempts to transform mail that does not conform to RFC822 standards. This
may be useful for sites that gateway between the UUCP zone and the Internet. In general, it is not a good
idea to turn on this attribute, as it changes the contents of headers fields. Turn on this attribute only
when you know that some remote hosts understand only mail that conforms to the RFC822 standard.

unix_from_hack (Boolean)
If set, then smail inserts the character ‘>’ before any line in the message that begins with the string
‘‘From’’. This is required for local delivery to mailbox files that are in the standard form expected by the
System-V program mailx and the BSD program Mail.

uucp (Boolean)
If set, then smail converts outgoing recipient addresses into UUCP-style paths of the form
hosta!hostb!hostc!user. An exception is that smail preserves any use of ‘%’ as an address operator. Thus,
smail would convert an envelope address of the form user%hostb@hosta to hosta!user%hostb. This only
affects envelope addresses and does not affect the body of the message or its header.

inet (Boolean)
If you set this attribute, smail converts output-recipient addresses to Internet specifications. This is not
the same as the attribute strict, because the transformations apply only to the envelope’s address, and not
to header’s. If inet is defined, then when smail routes a message to a remote system, it generates a
‘‘route-addr’’ address rather than ‘‘bang-path’’ address. Thus, if smail is given the address
user%host@gateway and gateway is reached through the path hosta!hostb!hostc, then smail generates
the address @hostb,@hostc:user%host@gatewayto be sent to the host @hosta.

retry_dir (string)
This attribute tells smail to use the subdirectory under directory /usr/lib/mail/retry for managing host
retry intervals for this transport. By default, the directory is named after the transport. However, multiple
transports can share a retry directory by using retry_dir to force each to use that directory. For example,
by default the definition of each TCP/IP SMTP transport uses retry_dir to force that transport to use retry
directory smtp.

remove_header (string)
Tell smail to remove the named header field from each message it sends via this transport. This is an
expansion string, so header removal can be made dependent upon some condition. If expansion of the
string results in an empty string, then no header is removed. You can specify any number of
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remove_header attributes for a given transport.

insert_header (string)
append_header (string)

Add the given header field at the beginning (insert_header) or end (append_header) of the message header
for transport. These are expansion strings, so the header (and the existence of the header) can be made to
depend on some conditions. If expansion of the string results in an empty string, then smail does not add
a header. You can specify any number of insert_header and append_header attributes for a given
transport.

The Default Transports
The following describes the transports that are defined in the version of /usr/lib/mail/transports that is shipped
with COHERENT.

The first transport, local, delivers mail to a user on your system:

# local - deliver mail to local users
#
# By default, smail will append directly to user mailbox files.
#
local: driver=appendfile, # append message to a file

return_path, # include a Return-Path: field
from, # supply a From_ envelope line
local; # use local forms for delivery

file=/usr/spool/mail/${lc:user}, # location of mailbox files
mode=0600, # For BSD: only the user can

# read and write file
notify_comsat, # notify comsat daemon of delivery
suffix="\1\1\1\10, # MMDF mailbox format
prefix="\1\1\1\10, # MMDF mailbox format

The next transport, pipe, delivers mail to a shell command:

# pipe -deliver mail to shell commands
#
# This is used implicitly when smail encounters addresses which begin with
# a vertical bar character, such as "|/usr/lib/news/recnews talk.bizarre".
# The vertical bar is removed from the address before being given to the
# transport.
pipe: driver=pipe, # pipe message to another program

return_path, # include a Return-Path: field
from, # supply a From_ envelope line
local; # use local forms for delivery

cmd="/bin/sh -c $user", # send address to the Bourne Shell
parent_env, # environment info from parent addr
pipe_as_user, # use user-id associated with address
ignore_status, # ignore a non-zero exit status
ignore_write_errors, # ignore write errors, i.e., broken pipe
umask=0022, # umask for child process
-log_output, # do not log stdout/stderr

The next transport, file, delivers mail to a file:

# file - deliver mail to files
#
# This is used implicitly when smail encounters addresses which begin with
# a slash or squiggle character, such as "/usr/info/list_messages" or
# perhaps "~/Mail/inbox".
file: driver=appendfile,

return_path, # include a Return-Path: field
from, # supply a From_ envelope line
local; # use local forms for delivery
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file=$user, # file is taken from address
append_as_user, # use user-id associated with address
expand_user, # expand ~ and $ within address
mode=0644, # you may wish to change this

# mode, depending upon local
# conventions and preferences

suffix="\1\1\1\10, # MMDF mailbox format
prefix="\1\1\1\10, # MMDF mailbox format

The next transport , uux, invokes the UUCP command uux to deliver messages to a remote site via UUCP:

# uux - deliver to the rmail program on a remote UUCP site
#
# HDB UUCP users should comment out the first cmd= line below, and
# uncomment the second.
uux: driver=pipe,

uucp, # use UUCP-style addressing forms
from, # supply a From_ envelope line
max_addrs=5, # at most 5 addresses per invocation
max_chars=200; # at most 200 chars of addresses

# the -r flag prevents immediate delivery, parentheses around the
# $user variable prevent special interpretation by uux.
cmd="/usr/bin/uux - -r -a$sender -g$grade $host!rmail $(($user)$)",
pipe_as_sender, # have uucp logs contain caller
log_output, # save error output for bounce messages

Transport demand delivers mail to command rmail on a remote system:

# demand - deliver to a remote rmail program, polling immediately
#
# HDB UUCP users should comment out the first cmd= line below, and
# uncomment the second.
demand: driver=pipe,

uucp, # use UUCP-style addressing forms
from, # supply a From_ envelope line
max_addrs=5, # at most 5 addresses per invocation
max_chars=200; # at most 200 chars of addresses

cmd="/usr/bin/uux - -a$sender -g$grade $host!rmail $(($user)$)",
pipe_as_sender, # have uucp logs contain caller
log_output, # save error output for bounce messages

The final two transports are local versions of previously defined tranports. What a local transport is, and the
advantages it offers, is described above.

Transport local_uux is a local version of transport uux:

local_uux:
driver=pipe,
local_xform, # transfer using local message format
uucp, # use uucp-conformant addresses
from, # supply a From_ envelope line
max_addrs=5, # at most 5 addresses per invocation
max_chars=200; # at most 200 chars of addresses

# the -r flag prevents immediate delivery, parentheses around the
# $user variable prevent special interpretation by uux.
cmd="/usr/bin/uux - -r -a$sender -g$grade $host!rmail $(($user)$)",
pipe_as_sender, # have uucp logs contain caller
log_output, # save error output for bounce messages

Finally, local_demand is a local form of transport demand:
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local_demand:
driver=pipe,
local_xform, # transfer using local formats
uucp, # use uucp-conformant addresses
from, # supply a From_ envelope line
max_addrs=5, # at most 5 addresses per invocation
max_chars=200; # at most 200 chars of addresses

cmd="/usr/bin/uux - -a$sender -g$grade $host!rmail $(($user)$)",
pipe_as_sender, # have uucp logs contain caller
log_output, # save error output for bounce messages

See Also
Administering COHERENT, config [smail], directors, mail [overview], smail, routers

Notes
For information on how the configuration files directors, routers, and transports relate to each other, see the
Lexicon entry for directors.

Copyright  1987, 1988 Ronald S. Karr and Landon Curt Noll. Copyright  1992 Ronald S. Karr.

For details on the distribution rights and restrictions associated with this software, see file COPYING, which is
included with the source code to the smail system; or type the command: smail -bc.

trap — Command
Execute command on receipt of signal
trap [command] [n ...]

The command trap tells the shell to execute command when it receives signal n.

You can name more than one signal on the command line for trap. Each signal n is an integer, as defined in the
header file signal.h. For information on the traps that COHERENT recognizes and what each one means, see the
Lexicon entry for the system call signal(). If n is zero, the shell executes command when it exits.

If you name no command on the command line for trap, then trap resets the trap for signal n to its original value.
If command is a null string (i.e., the string ""), the shell traps signal n but does nothing; in effect, this turns off
signal n.

If you invoke trap with no arguments, it prints the signal number and associated command for each signal for
which a trap has been set.

The shell executes trap directly.

Example
The following example takes two files and outputs only those lines which are the same.

# If input only one file-name then simply "cat".
if [ $# = 1 ]; then

cat $1
exit 0

# If input two file-names - Ok, else "Usage".
else

if [ $# != 2 ]; then
echo "Usage: cmn file1 [file2]"
exit 1

fi
fi

# TMP is original name of temporary file (/tmp/temp_(pid)
TMP=/tmp/temp_$$

# Temporary file has to be removed
trap ’rm $TMP; exit 1’ 1 2 9
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# Difference between "file1" and "difference between file1 and file2"
# is the common strings "file1" and "file2"
# The strings that are in "file1" and absent in "file2" print in TMP.
diff $1 $2 | sed -n -e "s/^< //p" > $TMP

# The strings that are in "file1" and absent in TMP print in stdout.
diff $1 $TMP | sed -n -e "s/^< //p"

# Remove temporary file
rm $TMP

See Also
commands, ksh, sh, signal()

trigraph — C Language
A trigraph is a set of three characters that represents one character in the C character set. The set of trigraph
sequences was defined in the ANSI Standard to allow users to use the full range of C characters, even if their
keyboards do not implement the full C character set. Trigraph sequences are also useful with input devices that
reserve one or more members of the C character set for internal use; e.g., the Hazeltine family of terminals, which
reserves the tilde ‘~’ as its escape character.

Each trigraph sequence is introduced by two question marks. The third character in the sequence indicates which
character is being represented. The following table gives the set of trigraph sequences:

Trigraph Character
Sequence Represented

??= #
??( [
??/ \
??) ]
??’ ^
??< {
??! |
??> }
??- ~

The characters represented are the ones used in the C character set but not included in the ISO 646 character set.
ISO 646 describes an invariant sub-set of the ASCII character set.

Trigraph sequences are interpreted even if they occur within a string literal or a character constant. Thus, strings
that uses a literal ‘‘??’’ will not work the same as under a non-ANSI implementation of C. For example, the
function call

printf("Feel lucky, punk??!\n");

would print:

Feel lucky, punk|

To print a pair of questions marks, use the escape sequence ‘\??’. For example:

printf("Feel lucky, punk\??!\n");

See Also
cc, C language
ANSI Standard, §5.2.1.1

Notes
By default, the COHERENT C compiler cc ignores trigraphs. To invoke interpretation of trigraphs, use the option -
V3GRAPH.

troff — Command
Extended text-formatting language
troff [option ...] [file ...]

The command troff is the COHERENT typesetter and text-formatting language. It performs typeset-quality text
formatting, suitable for printing on either the Hewlett-Packard LaserJet II or III printers, or on any printer for
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which the PostScript language has been implemented.

troff Input
troff processes each given file, or the standard input if none is specified, and prints the formatted result on the
standard output. The input must consist of text with formatting commands embedded within it.

troff provides a full suite of commands that set line length, page length and page offset, generate vertical and
horizontal motions, indentation, fill and adjust output lines, and center text. The great flexibility of troff lies in its
acceptance of user-defined macros to control almost all higher-level formatting. For example, the formation of
paragraphs, header and footer areas, and footnotes must all be implemented by the user via macros.

troff uses a superset of the commands and syntax used by nroff, the other COHERENT text-formatter: files
prepared for the latter usually can be processed through the former without requiring any changes. troff differs
from nroff in that nroff can perform only monospaced formatting, whereas troff can handle multiple fonts of type,
both monospaced and proportionally spaced. It lets you load font-width tables dynamically, so you can use
whatever fonts you have loaded into your printer at a given time. troff also lets you move about the page in
increments other than sixths of an inch vertically or tenths of an inch horizontally.

troff produces output either in the Hewlett-Packard Printer Control Language (PCL) or PostScript, whichever you
prefer. The former can be printed on the Hewlett-Packard LaserJet family of laser printer, and can use any PCL
bitmapped ‘‘soft font’’. The latter can be printed on any printer that supports the PostScript language, and can use
any font for which you have an Adobe Font Metric description. The default is PCL output; to obtain PostScript, use
the -p command-line option. See below for information on how to manage downloadable fonts.

Command-line Options
Command-line options may be listed in any order. They are as follows:

-d Debug: print each request before execution. This option is very useful when you are writing and
debugging new macros.

-D Display the available fonts. These are all the fonts that have been loaded into troff with the .lf
primitive (described below).

-f name Write the temporary file into file name.

-i files Read from the standard input after reading the given files.

-k Keep: do not erase the temporary file.

-l Landscape mode: output is rotated 90 degrees, with default size 11 by 8.5 inches rather than 8.5 by
11 inches.

-mname Include the macro file /usr/lib/tmac.name in the input stream.

-nN Number the first page of output N.

-p Produce output for a PostScript printer rather than for a HP-compatible printer.

-raN Set number register a to the value N.

-rabN Set number register ab to value N. For obvious reasons, ab cannot contain a digit.

-v Return the number of your version.

-x Do not eject to the bottom of the last page when text ends. This option lets you use troff
interactively, which is especially useful when debugging macros.

If the environmental variable TROFF is set when troff is invoked, its contents are prefixed to the list of command-
line arguments. This allows the user to set commonly used options once in the environment rather than on each
troff command line.

troff Primitives
As noted earlier, troff’s command set is a superset of that used by nroff: see the Lexicon entry on nroff for
information on the commands and escape sequences shared by troff and nroff. This article describes the
primitives that troff does not share with nroff.

Please note that the basic troff unit is one-tenth of a point. A printer’s point is 1/12 of a pica, which is in turn
one-sixth of an inch; therefore, there are 72 points and 720 troff units in an inch.
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.co endmark
Copy input to output file directly, with no processing. If endmark argument is present, troff copies input
until it finds a line containing endmark followed by \n. If no endmark is given, troff copies input until it
finds a line containing .co\n. This directive is useful for embedding PostScript commands in an input file.

.cs XX N M
Set font XX to use constant character spacing. The width of each character is N divided by 36 ems. If M is
present, it specifies the width of an em; otherwise, N assumes the point size em for the given font.

.fd Display the currently available fonts.

.fp N XX
Associate font name XX with numeric font position N. The given N should be a number between 1 and 9.
Subsequently, the numeric font position can be used in an escape sequence \fN to select the font. (This
nomenclature comes from the days when phototypesetters used print wheels that were set in fixed
positions on the device.) The nroff primitive .rf performs a similar task, and is more flexible in its syntax.

.fz XX N
Fix the point size of font XX at N. The point size of the font will not be affected by subsequent .ps
commands or \sN point size escapes.

.lf XX file [n]
Load font-width table from file and use it for font XX. If file is not found, troff looks for
/usr/lib/roff/troff_pcl/fwt/file or /usr/lib/roff/troff_ps/fwt/file (depending on whether the -p option is
used).

The optional third argument sets the default point size of the loaded font to n. Note that this argument
takes effect only if troff is running in -p (PostScript) mode.

For example, to load the font-width table for the PCL bitmapped font cn090rpn.usp (which sets Century
Roman, nine point, portrait mode) and name it font RS, use the command:

.lf RS cn090rpn.usp

To do the same thing under PostScript, use the command:

.lf RS Century_R.fwt 9

Thereafter, you can reference font RS with either .ft RS or \f(RS.

Note that the second argument to this primitive must name a font-width table generated by the COHERENT
command fwtable, not the font itself, although both may have the same name.

Please note that .lf is unique to the COHERENT implementation of troff, and cannot be ported to other
implementations.

.ps Np Set point size to N points. The default point size is 10 point.

.rb file Read input from file and copy it to the output without processing. This directive is useful for including
files containing PostScript routines in the output.

.ss N Set the minimum word spacing to N divided by 36 ems.

.vs Np Set the vertical spacing to N points. The default vertical spacing for troff is 11 points.

Escape Sequences
troff recognizes the following escape sequences, in addition to those recognized by nroff:

\| Set a 1/6th-em half-narrow space character.

\^ Set a 1/12th-em half-narrow space character.

\s´N´ Set the point-size escape sequence to N. Like the .ps primitive, it changes the point size to N. The specified
N may have a leading plus or minus sign to make the new size relative to the current point size.

\Xdd Output character dd where dd are two hexadecimal digits. This is useful for forcing troff to print
characters outside the normal printable range, e.g., those with the high-order bit set. troff reserves the
following values for its internal use:
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<ctrl-space> 0X00 Ignored
<ctrl-A> 0X01 Leader dots, same as ‘‘\a’’
<ctrl-I> 0X09 Tab, same as ‘‘\t’’
<ctrl-J> 0X10 Newline

The hexadecimal values to which characters map depend upon the character set that you (or your printer)
use. For example, to print the character ‘ß’ using the Hewlett-Packard Laser-Jet printer and the Pacific
Page cartridge, use the escape sequence \XFB.

The escape sequence \X is unique to the COHERENT implementation of nroff and troff. Code that uses it
will behave differently when ported to other implementations.

Number Registers
The basic unit of measure under troff is the decipoint, or one-tenth of a printer’s point. A point is one-tenth of a
pica, which in turn is one sixth of an inch; therefore, there are 72 points in an inch, or 720 decipoints. All troff
number registers that hold information about page or type dimensions hold that information in decipoints. For
this reason, the decipoint is sometimes called the ‘‘machine unit.’’

The following table shows how other units of measure translate into troff machine units:

inch: 1i = 720u
vertical line space: 1v = 110u
centimeter: 1c = 283u
em: 1m = 100u
en: 1n = 50u
pica: 1P = 120u
point: 1p = 10u

If you are working with PostScript, you must remember to divide the value of a troff number register by ten before
you pass the value to PostScript, or you will see very strange results on your page — or likelier, no results at all.

Special Characters
troff includes a set of escape sequences for setting special characters. These escape sequences are defined in the
files /usr/lib/roff/troff_*/specials.r. If you have additional fonts or an extended PostScript cartridge on your
printer, you can modify these files to change the current definitions or add new ones.

The following shows the escape sequences currently defined in specials.r, and the character each prints:

\(em — \(hy - \(bu • \(sq []
\(ru _ \(14 1/4 \(12 1/2 \(34 3/4
\(fi fi \(fl fl \(ff ff \(Fi ffi
\(Fl ffl \(de ˚ \(dg † \(fm '
\(ct ¢ \(rg  \(co  \(tm 
\(pl + \(mi − \(eq = \(** ∗
\(sc § \(aa ´ \(ga ` \(ul _
\(sl ⁄ \(*a α \(*b β \(*g γ
\(*d δ \(*e ε \(*z ζ \(*y η
\(*h θ \(*i ι \(*k κ \(*l λ
\(*m µ \(*n ν \(*c ξ \(*o ο
\(*p π \(*r ρ \(*s σ \(ts ς
\(*t τ \(*u υ \(*f φ \(*x χ
\(*q ψ \(*w ω \(*A Α \(*B Β
\(*G Γ \(*D ∆ \(*E Ε \(*Z Ζ
\(*Y Η \(*H Θ \(*I Ι \(*K Κ
\(*L Λ \(*M Μ \(*N Ν \(*C Ξ
\(*O Ο \(*P Π \(*R Ρ \(*S Σ
\(*T Τ \(*U Υ \(*F Φ \(*X Χ
\(*Q Ψ \(*W Ω \(sr √ \(rn 
\(>= ≥ \(<= ≤ \(== ≡ \(~= ≈
\(ap ~ \(!= ≠ \(-> → \(<- ←
\(ua ↑ \(da ↓ \(mu × \(di ⁄
\(+- ± \(cu ∪ \(ca ∩ \(sb ⊂
\(sp ⊃ \(ib ⊆ \(ip ⊇ \(in ∞
\(pd ∂ \(gr ∇ \(no ¬ \(is ∫
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\(pt ∝ \(es ∅ \(mo ∈ \(br 
\(dd ‡ \(rh ☞ \(lh <- \(or |
\(ci O \(lt  \(lb  \(rt 
\(rb  \(lk  \(rk  \(bv 
\(lf  \(rf  \(lc  \(rc 

Printer Configuration
troff reads several files in directory /usr/lib/roff/troff_pcl (when generating PCL output) or
/usr/lib/roff/troff_ps (when generating PostScript) to find printer-specific information. It reads special character
definitions from file specials.r. It reads font loading requests from file fonts.r. It copies file .pre at the beginning of
the output. It copies file .post at the end of the output. In landscape mode, troff looks for files .pre_land and
.post_land instead. You can change these files as desired to include printer-specific commands in troff output.

Managing Fonts
As noted above, troff produces output in either of two page-description languages: the Hewlett-Packard Printer
Control Language (PCL), which is the ‘‘native language’’ of Hewlett-Packard’s LaserJet printers; or PostScript. The
COHERENT system also comes with tools that lets you process fonts, so that you can use with troff either
downloadable soft fonts or the fonts that are on board your printer.

The following two sections describe how to manage fonts under PCL and under PostScript. You should refer to the
section that is appropriate to your type of printer.

PCL Fonts
Before troff can use a font, it must know the following information:

• What the width of every character of the font is, and
• How it can tell the printer to print that font.

Both pieces of information are stored in a file called a font-width table. Before troff can use a font, it must read the
font-width table for that font.

To load a font-width table into troff, use the primitive .lf. Its syntax is as follows:

.lf XX file

XX gives the name by which you will call the font in your troff program. file is the font-width table for this font. If
file is not a full path name, troff looks for it in directory /usr/lib/roff/troff_pcl/fwt.

COHERENT comes with font-width tables for a number of commonly used fonts. The following tables are for the
fonts built into the Hewlett-Packard LaserJet III:

Table . . . . . . . . . . . . . Description
CGTimes_B.fwt . . . . . . . Times Bold, scalable, rotatable
CGTimes_BI.fwt . . . . . . Times Bold Italic, scalable, rotatable
CGTimes_I.fwt . . . . . . . Times Italic, scalable, rotatable
CGTimes_R.fwt. . . . . . . Times Roman, scalable, rotatable
Cour10_B.fwt . . . . . . . . Courier Bold, ten point, portrait
Cour10_I.fwt . . . . . . . . Courier Italic, ten point, portrait
Cour10_R.fwt . . . . . . . . Courier Roman, ten point, portrait
Cour12L_B.fwt . . . . . . . Courier Bold, 12 point, landscape
Cour12L_R.fwt . . . . . . . Courier Roman, 12 point, landscape
Cour12_B.fwt . . . . . . . . Courier Bold, 12 point, portrait
Cour12_I.fwt . . . . . . . . Courier Italic, 12 point, portrait
Cour12_R.fwt . . . . . . . . Courier Roman, 12 point, portrait
LinepL_R.fwt . . . . . . . . Line Printer, 8.5 point, landscape
Linep_R.fwt . . . . . . . . . Line Printer, 8.5 point, portrait
Univers_B.fwt. . . . . . . . Univers Bold, scalable, rotatable
Univers_BI.fwt . . . . . . . Univers Bold Italic, scalable, rotatable
Univers_I.fwt . . . . . . . . Univers Italic, scalable, rotatable
Univers_R.fwt. . . . . . . . Univers Roman, scalable, rotatable

Note that the scalable Hewlett-Packard fonts are set by default at 250 points in size — that is, about 3.5 inches.
Because you cannot scale PCL fonts when you load them, you must use the .ps primitive to size the font.

The following troff program demonstrates scalable fonts on the Hewlett-Packard LaserJet III:
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.lf TR CGTimes_R.fwt

.lf TB CGTimes_B.fwt

.lf TI CGTimes_I.fwt

.lf UR Univers_R.fwt

.lf UB Univers_B.fwt

.lf UI Univers_I.fwt

.vs 14p

.ps 12p
\f(TRThis is Times Roman, 12 point.
.sp
\f(TBThis is Times Bold, 12 point.
.sp
\f(TIThis is Times Italic, 12 point.
.vs 26p
.ps 24p
\f(URThis is Univers Roman, 24 point.
.sp
\f(UBThis is Univers Bold, 24 point.
.sp
\f(UIThis is Univers Italic, 24 point.
.br

Note that this program does not run correctly if downloaded to a LaserJet II, or to any printer that is running
PostScript.

The COHERENT command fwtable lets you build new font-width tables. It can build tables for PCL bit-mapped soft
fonts, as well as for fonts that are built into the LaserJet III.

To manipulate PCL bit-mapped soft fonts, do the following:

• Use the command fwtable to build a font-width table from the font. The input to fwtable should be the soft
font itself; and the output of fwtable should be redirected into an appropriately named file. See the lists of
tables given above for an idea of how to name your font-width table.

• Move the newly created font-width table into directory /usr/lib/roff/troff_pcl/fwt.

• Move the font itself into directory /usr/lib/roff/troff_pcl/fonts. You may need to create this directory if this
is the first time you are using soft fonts.

• Include the instruction .lf in your troff file to load the font-width table and name the font, as shown above. If
you use the same fonts repeatedly, you may wish to put the .lf primitives into a separate file that you always
include on your troff command line via the environmental variable TROFF.

• Before you print your document, load the soft font into your printer. If you are using the hp spooler to spool
files to your printer, use the command hpr -f. If you are using the MLP spooler, then you must pre-process
the font with the command pclfont, then spool the processed font to device hpraw. Both commands are
described in detail in their Lexicon entries. Briefly, to load font tr100bpn.usp into your printer, use the
command

hpr -f /usr/lib/roff/troff_pcl/fonts/tr100bpn.usp

or the command:

pclfont /usr/lib/roff/troff_pcl/fonts/tr100bpn.usp | lp -d hpraw

These commands also let you specify what ‘‘slot’’ to put the font; you can use this to help manage fonts in
your printer. By placing the frequently used fonts in the lower slots, you can then load the less-frequently
used fonts into the upper slots, and overwrite just those fonts when you change fonts for another printing job.
You must do such font management by hand — COHERENT does not include a utility to do it for you.

You may wish to write the font-loading commands into a script that you execute before you print a job. You
must reload fonts every time you power up your printer or clear its memory.

To build a font-width table for a font built into your LaserJet III, do the following:

• Each font on your printer is described with a .tfm file, which comes on a disk with your printer. (If you did
not receive such a disk, check with the dealer from which you purchased your printer, or write to Hewlett-
Packard.) Use the COHERENT command doscp to copy the .tfm file for the font that interests you from the
disk.
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• Use the command fwtable -t to build the font-width table. Its input should be the .tfm file that you just
uploaded. Redirect its output into an appropriate named file.

• Move the newly created font-width table into directory /usr/lib/roff/troff_pcl/fwt.

• Note that because the font is build into your printer, you do not need to download anything before you can
use the font. When troff reads the font-width table, it will know how to invoke the font on your printer.

PostScript Fonts
Before troff can use a font, it must know the following information:

• What the width of every character of the font is, and
• How it can tell the printer to print that font.

Both pieces of information are stored in a file called a font-width table. Before troff can use a font, it must read the
font-width table for that font.

To load a font into troff, use the primitive .lf. Its syntax is as follows:

.lf XX file [n]

XX gives the name by which you will call the font in your troff program. file is the font-width table for this font. If
file is not a full path name, troff looks for it either in directory /usr/lib/roff/troff_ps/fwt.

The optional argument n lets you size the font. This applies only to PostScript scalable fonts. All fonts that are
loaded with this option are not affected by the .ps primitive.

For example, the instruction

.lf HR HelvNar_R.fwt 12

loads a font for PostScript output. The font is named HR. The font-width table is read from file
/usr/lib/roff/troff_ps/HelvNar_R.fwt, which defines the font Helvetica Narrow Roman. Finally, it sizes the font
to 12 points. Hereafter, the instructions .ft HR or \f(HR invoke this font.

COHERENT comes with font-width tables for a number of commonly used fonts. The following tables are for
PostScript fonts. LaserJet III, and are kept in directory /usr/lib/roff/troff_pcl/fwt. All are, of course, scalable
and rotatable:

Table . . . . . . . . . . . . . Description
Avant_B.fwt . . . . . . . . . Avant-Garde Roman (Gothic Book)
Avant_BI.fwt . . . . . . . . Avant-Garde Bold Italic
Avant_I.fwt . . . . . . . . . Avant-Garde Italic
Avant_R.fwt . . . . . . . . . Avant-Garde Roman
Bookman_B.fwt. . . . . . . Bookman Bold
Bookman_BI.fwt . . . . . . Bookman Bold Italic
Bookman_I.fwt . . . . . . . Bookman Italic
Bookman_R.fwt . . . . . . Bookman Roman
Century_B.fwt . . . . . . . Century Bold
Century_BI.fwt . . . . . . . Century Bold Italic
Century_I.fwt . . . . . . . . Century Italic
Century_R.fwt . . . . . . . Century Roman
Chancery_I.fwt . . . . . . . Zapf Chancery Italic
Courier_B.fwt . . . . . . . . Courier Bold
Courier_BI.fwt . . . . . . . Courier Bold Italic
Courier_I.fwt . . . . . . . . Courier Italic
Courier_R.fwt. . . . . . . . Courier Roman
Dingbats.fwt . . . . . . . . Zapf Dingbats
HelvNar_B.fwt . . . . . . . Helvetica Narrow Bold
HelvNar_BI.fwt . . . . . . . Helvetica Narrow Bold Italic
HelvNar_I.fwt . . . . . . . . Helvetica Narrow Italic
HelvNar_R.fwt . . . . . . . Helvetica Narrow Roman
Helv_B.fwt. . . . . . . . . . Helvetica Bold
Helv_BI.fwt . . . . . . . . . Helvetica Bold Italic
Helv_I.fwt . . . . . . . . . . Helvetica Italic
Helv_R.fwt. . . . . . . . . . Helvetica Narrow
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Pala_B.fwt . . . . . . . . . . Zapf Calligraphic Bold (Palatino)
Pala_BI.fwt . . . . . . . . . Zapf Calligraphic Bold Italic
Pala_I.fwt . . . . . . . . . . Zapf Calligraphic Italic
Pala_R.fwt . . . . . . . . . . Zapf Calligraphic Roman
Symbol.fwt . . . . . . . . . Symbols
Times_B.fwt. . . . . . . . . Times Bold
Times_BI.fwt . . . . . . . . Times Bold Italic
Times_I.fwt . . . . . . . . . Times Italic
Times_R.fwt. . . . . . . . . Times Roman

Note that these tables are designed for the fonts used on the Pacific Page implementation of the PostScript
language. They may not work correctly with genuine Adobe fonts.

The following gives an example program to demonstrate the PostScript fonts:

.lf HR HelvNar_R.fwt 12

.lf HC Avant_B.fwt 24

.lf DB Dingbats.fwt 9

.vs 14

.sp
\f(HRThis is 12-point Helvetic Narrow Roman
.vs 26
.sp
\f(HCThis is 24-point Avant-Garde
.vs 11
.sp
\fRA row of dingbats: \f(DBa row of dingbats

This program will not work unless you format using the -p option to troff, and print it on a PostScript printer.
Please note that because PostScript is a portable language, you can print the PostScript output of troff on any
printer that implements PostScript, not just the Hewlett-Packard LaserJet.

COHERENT comes with tools with which you can ‘‘cook’’ fonts so that you can use with with troff, whether the fonts
are downloadable soft fonts or on board a cartridge. To cook fonts that are on-board a cartridge in your printer, do
the following:

• First, the PostScript cartridge should come with a set of files that give font-width information. These have the
suffix .afm; there should be one file for each font in your cartridge. If you did not receive such a cartridge,
contact the dealer from which you purchased the cartridge, or contact the cartridge’s manufacturer. Use the
command doscp to copy the .afm files from the disk onto your COHERENT system.

• Use the command fwtable -p to cook each .afm file into troff’s font-width table format. Each font-width table
that you create should have the suffix .fwt, and should be named so that it appropriate describes the font.
See the above table of font-width tables for examples.

Move the newly created font-width tables into directory /usr/lib/roff/troff_ps/fwt.

Thereafter, when you write a troff program, use the .lf primitive to load the font-width table. You may wish to
create a file called fonts.r that routinely loads all of the font-width tables that you use routinely. You do not
need to load fonts into your printer; the font-width table includes the information needed so that troff can
invoke them from your cartridge.

COHERENT comes with tools to help you manage download soft fonts under PostScript. Note that the fonts must be
in the Adobe Font Metric (AFM) format. To manage downloadable AFM fonts, do the following:

• A downloadable AFM font comes in three files: a file of information about the font, which has the suffix .inf; a
file that contains the font-width table, which has the suffix .afm; and a file that contains the font itself, which
has the suffix .pfb. You can ignore the .inf file; it is not used in this process. You should use the COHERENT
command doscp -b to copy the .pfb from the floppy disk; and use the command doscp -a to copy the .afm file
from floppy disk. (The options -b and -a stand, respectively, for binary and ASCII modes.)

• Use the command

fwtable -p fontname.afm fontname.fwt

to generate the font-width table from the .afm file. Note that the font-width table should have the suffix .fwt.
By convention, you should give the font-width table the same name as the font, to help you remember which
table goes with which font; this, however, is not required. For example, to create the font-width table for the
Adobe font Avant Garde bold, use the following command:
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fwtable -p avgb____.afm avgb____.fwt

• Move the newly created font-width table into directory /usr/lib/roff/troff_ps/fwt.

• Next, use the command PSfont to ‘‘cook’’ the .pfb file into a form that can be downloaded to your printer.
Note that a font can be cooked into either of two forms. The first form permits the font to stay resident in
your printer, so that you can use it to print an indefinite number of documents. The second form does not
permit the font to stay resident in your printer, but it does permit you to include the font directly within your
troff output. The first form is the default output of PSfont; to create the second form, invoke PSfont with its
option -s. For example, to cook the font Avant Garde bold into the first output format, use the command:

PSfont avgb____.pfb avgb____.ps1

To it into the second form, use the command:

PSfont -s avgb____.pfb avgb____.ps2

Note that the suffix .ps1 indicates the first (stay-resident) form of the font, whereas the suffix .ps2 indicates
the second (includable) form of the font. These suffixes are simply conventions, and are not required.

• Move the newly created fonts into directory /usr/lib/roff/troff_ps/ps. Note that you may need to create this
directory when you first begin to process fonts.

• When you create a troff program, use the primitive .lf to include the font-width table for this font and size the
font, as described above.

• If you have processed the fonts into the first (stay-resident) form, you must load them into your printer before
you can print any documents. To download the font, use either the command hpr -B or the command lp
-dprinter (where printer names the printer to which the font is being downloaded). For example, to download
the Avant Garde bold font to printer hpraw, use the command:

lp -dhpraw /usr/lib/roff/troff_ps/ps/avgb____.ps1

(For more information on the command lp, see its entry in the Lexicon, or see the entry for printer.) You may
wish to create a script to download the fonts that you use commonly. Note that you must reload the fonts
into your printer every time you either power up the printer or clear out its memory. Note, too, that
downloading and processing stay-resident fonts may take several minutes, depending upon your printer’s
make.

• To use the ‘‘includable’’ form of a font, use the troff primitive .rb to load it into the troff. For example, to
include Avant Garde bold directly within your troff output, include the following statement in your troff
source:

.rb /usr/lib/roff/troff_ps/ps/avgb____.ps2

If you use some downloadable fonts commonly, you may wish to include a set of .rb statements for the fonts
in file fonts.r. Note that files that include downloadable fonts will be much larger than those that do not use
them.

Files
/tmp/rof* — Temporary files
/usr/lib/tmac.* — Standard macro packages
/usr/lib/roff/troff_pcl/ — Support files directory for PCL
/usr/lib/roff/troff_ps/ — Support files directory for PostScript
/usr/lib/roff/troff_*/.pre — Output prefix
/usr/lib/roff/troff_*/.pre_land — Output prefix, landscape mode
/usr/lib/roff/troff_*/.post — Output suffix
/usr/lib/roff/troff_*/.post_land— Output suffix, landscape mode
/usr/lib/roff/troff_*/fonts.r — Font definitions
/usr/lib/roff/troff_*/fwt/ — Directory for font width tables
/usr/lib/roff/troff_*/specials.r— Special character definitions

See Also
col, commands, deroff, fwtable, hpr, lp, man, ms, nroff, printer, PSfont
nroff, The Text-Formatting Language, tutorial

Adobe Systems Incorporated: PostScript Language Reference Manual. Reading, Mass.: Addison-Wesley Publishing
Company, Inc., 1988.
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Adobe Systems Incorporated: PostScript Language Tutorial and Cookbook. Reading, Mass.: Addison-Wesley
Publishing Company, Inc., 1988.

Emerson, S.L., Paulsell, K.: troff Typesetting for Unix Systems. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1987
(ISBN 0-13-930959-4).

Lawson, A.: Printing Types: An Introduction. Boston: Beacon Press, 1971.

Lawson, A.: Anatomy of a Typeface. Boston: David R. Godine, Publisher, 1990.

Diagnostics
For a list of the error messages that troff can produce, see the Lexicon entry for nroff.

Notes
Like nroff, troff should be used with the macro packages ms, which is found in the file /usr/lib/tmac.s, and
man, which is found in the file /usr/lib/tmac.an.

troff output, unlike that of nroff, cannot be processed through a terminal driver. If you redirect the output of troff
to a terminal, all you will see is the literal program it outputs.

Laser printers cannot print on an area near each edge of the output page. Output sent to the unprintable area will
disappear. On some printers, the logical page does not correspond to the physical page, so printed troff output
may be offset from the specified position on the physical page.

true — Command
Unconditional success
true

true does nothing, successfully. It always returns zero (i.e., true).

true is useful in shell scripts when you want to execute a condition indefinitely. For example, the following
example

while true; do
date

done

prints the current date and time on your screen forever (or at least until interrupted by typing <ctrl-C>).

See Also
commands, false, ksh, sh

Notes
Under the Korn shell, true is an alias for the partial-comment :.

trustme — System Administration
List of trusted users
/etc/trustme

The file /etc/trustme names users who are ‘‘trusted’’ — that is, who are permitted to log into the system even
though the file /etc/nologin has been created to stop users from logging in.

See Also
Administering COHERENT, login, nologin

tsort — Command
Topological sort
tsort [file]

tsort performs a topological sort of a set of input items. The input file (or the standard input, if no file is given)
specifies an ordering on pairs of items. It consists of pairs of items separated by blanks, tabs or newlines. If a pair
contains the same item twice, it simply indicates that the item is in the input set. Otherwise, the pair indicates
that the first item precedes the second in the ordering.

tsort prints a sorted list of the input items on the standard output.
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See Also
commands, sort

Diagnostics
tsort prints an error message on the standard error if its input contains an odd number of items or if the specified
ordering includes a cycle.

ttt — Command
Play 3-D tic-tac-toe
/usr/games/ttt

The COHERENT game ttt plays three-dimensional tic-tac-toe. Each playing board is four-by-four, and four are
stacked on top of each other. You play against the computer; each player selects to occupy one ‘‘square’’ on one of
the boards. The first player to get four four squares in a row, in any direction, wins.

See Also
commands

tty — Command
Print the user’s terminal name
tty

tty prints the name of the character-special file that manages your terminal.

Diagnostics
tty prints the message ‘‘Not a tty.’’ if the user is not associated with any controlling terminal.

See Also
commands, who

tty.h — Header File
Define flags used with tty processing
#include <sys/tty.h>

tty.h defines manifest constants that are used by the routines that handle ttys.

See Also
header files, tty

ttyname() — General Function (libc)
Identify a terminal
#include <unistd.h>
char *ttyname(fd)
int fd;

Given a file descriptor fd attached to a terminal, ttyname() returns the complete pathname of the special file
(normally found in the directory /dev).

Files
/dev/* — Terminal special files
/etc/ttys — Login terminals

See Also
ioctl(), isatty(), libc, tty(), ttyslot(), unistd.h
POSIX Standard, §4.7.2

Diagnostics
ttyname() returns NULL if it cannot find a special file corresponding to fd.

Notes
The string returned by ttyname() is kept in a static area, and is overwritten by each subsequent call.
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ttys — System Administration
Describe terminal ports
/etc/ttys

File /etc/ttys describes the terminals in the COHERENT system. The process init reads this file when it brings up
the system in multi-user mode.

/etc/ttys contains one line for each terminal. Each line consists of the following four fields:

1. The first field is one character long, and indicates if the device is enabled for logins: ‘0’ indicates that the
device is not enabled, and ‘1’ (one) indicates that logins are enabled for the device.

2. The second field is one character long, and indicates whether the device is local (i.e., a terminal) or remote
(i.e., a modem): ‘r’ indicates remote, and ‘l’ (lower-case L) indicates local.

If the port is named in file /etc/dialups, then the command login checks the file /etc/d_passwd to see if the
program the user is invoking is protected by a password. If so, it prompts the user for that additional
password before allowing her to log in. For details, see the Lexicon entries for login, dialups, and d_passwd.

3. The third field is one character long, and sets the baud rate for the device. Note that a device can have either
a fixed baud rate, or a variable baud rate. The following table gives the codes for fixed baud rates:

C 110
G 300
I 1200
L 2400
N 4800
P 9600
Q 19200
S 38400

The common variable-speed codes terminal types are as follows:

0 300, 1200, 150, 110
3 2400, 1200, 300

When a user dials into a variable-speed line, a message is sent to the terminal using the first speed listed. If
the message is unintelligible, the user hits the <break> key and the system tries the next speed; and so on,
until the correct speed is selected.

4. The fourth field names the port that this device is plugged into. The following table names the ports that
COHERENT recognizes:

console The console device
colorN Virtual console device N, color console
monoN Virtual console device N, monochrome console
comNl Serial port comN, local device
comNr Serial port comN, remote device
comNfl Serial port comN, local device, flow control
comNfr Serial port comN, remote device, flow control
comNpl Serial port comN, local polled device
comNpr Serial port comN, remote polled device

Note that if field 2 (described above) says that this is a local device, then you must use a port descriptor that
ends in ‘l’; likewise, if field 2 states that this is a remote device, the port descriptor must end in ‘r’. Doing
otherwise will result in trouble. See Lexicon entry asy for details. Note also that you must use a device with
hardware flow control (i.e., a device whose suffix includes the letter ‘f’) if you wish to use a high-speed modem
(e.g., 14.4bis).

Do not leave trailing spaces at the end of an entry in /etc/ttys. Leaving blanks at the end of a line usually results
in errors that state that a device could not be found.

After you have edited /etc/ttys, the following command forces COHERENT to re-read the file and use the new
descriptions:

kill quit 1
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Examples
Consider the following ttys entry:

1lPconsole

Field 1 is the first character. Here it is set to ‘1’ (one), which indicates that the device is enabled for logins. Field 2
is the second character. Here it is set to ‘l’ (lower-case L), which indicates that this is a local device. Field 3 is the
third character. Here, it is set to ‘P’, which indicates that the device operates at the fixed baud rate of 9600 baud.
This field is ignored by the console device driver since the console is not a serial device. Finally, field 4 is the
remainder of the line. Here, it indicates that the device in question is the console.

Now, consider another example:

1r3com3r

Field 1 is the first character. Here it is set to ‘1’ (one), which indicates that the device is enabled for logins. Field 2
is the second character. Here it is set to ‘r’, which indicates that this is a remote device, i.e., a modem. Field 3 is
the third character. Here, it is set to ‘3’, which indicates that the device operates at variable baud rates of 2400,
1200, and 300. By hitting the <break> key on the terminal, the user can select from among those three baud
rates, in that order. Finally, field 4 is the remainder of the line. Here, it indicates that the device in question is
plugged into port com3, and is accessed via special file /dev/com3r.

Files
/etc/ttys

See Also
Administering COHERENT, asy, d_passwd, dialups, getty, init, login, stty, terminal, tty

Notes
If you wish to enable logins on a COM port on which you will also be dialing out, you must edit file /etc/ttys and
add a line for the raw device. For example, if you have a modem plugged into COM1 and you wish to dial out on
that port, you must have an entry for both com1l and com1r. Note that the entry for com1r must precede the
entry for com1l. If you do not do this, the commands cu and uucico cannot disable com1r before they dial out on
com1l.

cu also requires that the device /dev/console appear last in file /etc/ttys. If this is not so, cu refuses to disable
the enabled port or dial out.

ttyslot() — General Function (libc)
Return a terminal’s line number
int ttyslot( )

ttyslot() returns the number of the line in the file /etc/ttys that describes the controlling terminal (see ttys).

Files
/dev/* — Terminal special files
/etc/ttys — Login terminals

See Also
libc

Diagnostics
ttyslot() returns zero if an error occurs.

ttystat — Command
Get terminal status
/etc/ttystat [ -d ] port

ttystat checks the status of the specified asynchronous port in directory /dev. It normally just returns an exit
status that indicates the status of the port. The option -d tells ttystat to print the status of the port on the
standard output.

Example
The following example prints the status of port /dev/com2r:
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/etc/ttystat -d com2

If /dev/com2r is enabled, ttystat prints:

com2r is enabled

ttystat finds the port status from the /etc/ttys file.

Files
/etc/ttys — Terminal characteristics file

See Also
commands, disable, enable, ttys

Diagnostics
ttystat returns one if the port is enabled, or zero if the port is disabled. It returns -2 if an error occurs.

ttytype — Command
Select a default terminal type for a port
ttytype

The command ttytype selects a default terminal type for a given port.

The default terminal types are recorded in file /etc/ttytype. You must edit this file to ensure that the default
terminal types are described correctly. The following gives a example version of /etc/ttytype:

ansipc console The COHERENT console
adm3a com1l The old Kaypro II
vt100 com2r Remote logins

The first string gives the type of terminal. This string must name a terminal that is recognized by termcap and
terminfo The second string gives the device with which this terminal type is linked. The console device should
always be linked to terminal type ansipc. Other devices can be linked to the type of terminal most often used on
them; on the above example, the user has a Kaypro II that is wired into his COHERENT system via a local serial
port. ttytype ignores all strings after the first two in each line, so you can add comments to each entry, as in the
above example.

You can use ttytype to set a terminal type automatically at login time. To do so, edit the file /etc/profile and
replace the line

export TERM=ansipc

with the command:

export TERM=`/usr/bin/ttytype`

Files
/etc/ttytype — File of default terminal types

See Also
commands, termcap, terminfo

type checking — Definition
Every expression has a type, such as int, char, or double. C is not strongly typed, which means that it allows
different types to be mixed relatively freely, and be changed (or cast) from one type to another.

COHERENT checks types more strictly than the C standard implies. COHERENT’s type checking can be enabled or
disabled in degrees, using -VSTRICT and other ‘‘variant’’ options with the cc command.

See Also
cc, Programming COHERENT, type promotion
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type promotion — Definition
In arithmetic expressions, COHERENT promotes one signed type to another signed type by sign extension, and
promotes one unsigned type to another unsigned type by zero padding. For example, char promotes to int by sign
extension, whereas unsigned char promotes to unsigned int by zero padding.

See Also
data formats, Programming COHERENT

typedef — C Keyword
Define a new data type

typedef is a C facility that lets you define new data types. Such definitions are always made in terms of existing
data types; for example,

typedef long time_t;

establishes the data type time_t, and defines it to be equivalent to a long. By convention, programmer-defined
data types are written in capital letters.

Judicious use of the typedef facility can make programs easier to maintain, and improve their portability.

See Also
C keyword, manifest constants, portability, storage class
ANSI Standard, §6.5.6

types.h — Header File
Define system-specific data types
#include <sys/types.h>

The header file types.h defines a number of data types that are used throughout the COHERENT system.

See Also
header_fi
POSIX Standard, §2.5

typeset — Command
Set/list variables and their attributes
typeset
typeset [+-]fr
typeset [ irx ] variable=value

The command typeset is built into the Korn shell ksh. It sets or lists all variables and their attributes.

When called with an argument of the form variable=value, it sets variable variable to value. The following options
modify variable or value:

i Store value as an integer
r Make variable read-only
x Export variable to the environment

When called without an argument, typeset lists all variables and their attributes. When called with one of the
following options, it lists the variables of the appropriate type. When prefixed with a hyphen ‘-’, it prints the
variable plus its value; when prefixed with a plus sign ‘+’, it prints the variable alone:

f List functions instead of variables
r List read-only variables

See Also
commands, ksh
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typo — Command
Detect possible typographical and spelling errors
typo [-nrs][file ...]

typo proofreads an English-language document for typographical errors. It conducts a statistical test of letter
digrams and trigrams in each input word against digram and trigram frequencies throughout the entire document.
From this test, typo computes an index of peculiarity for each word in the document. A high index indicates a
word less like other words in the document than does a low index. Built-in frequency tables ensure reasonable
results even for relatively short documents.

typo reads each input file (or the standard input if none), and removes punctuation and non-alphabetic characters
to produce a list of the words in the document. To reduce the volume of the output, typo compares each word
against a small dictionary of technical words and discards it if found. The output consists of a list of unique non-
dictionary words with associated index of peculiarity, most peculiar first. An index higher than ten indicates that
the word almost certainly occurs only once in the document.

typo recognizes the following arguments:

-n Inhibit use of the built-in English digram and trigram statistics, and inhibit dictionary screening of words.
More words will be output and the indices of peculiarity will be less useful for short documents.

-r Inhibit the default stripping of nroff escape sequences. Normally, typo strips lines beginning with ‘.’ and
removes the nroff escape sequences ‘\’.

-s Produce output files digrams and trigrams that contain, respectively, the digram and trigram frequency
statistics for the given document. No indices of peculiarity are calculated or printed. If desired, these files
may be installed in directory /usr/dict.

Files
/tmp/typo* — Intermediate files
/usr/dict/dict — Limited dictionary
/usr/dict/digrams — Digram frequency statistics
/usr/dict/trigrams — Trigram frequency statistics

See Also
commands, nroff, sort, spell

tzset() — Time Function (libc)
Set the local time zone
#include <time.h>
#include <sys/types.h>
void tzset()
extern long timezone; char *tzname[2][16];

tzset() is one of the suite of COHERENT functions that control and display the system’s time. It searches for the
environmental parameter TIMEZONE, which gives information on the local time zone. For more information on
TIMEZONE, see its Lexicon entry.

If TIMEZONE is set, tzset() initializes the external variables timezone and tzname. timezone contains the
number of seconds to be subtracted from GMT to obtain local standard time. tzname[0] and tzname[1] are
character arrays that hold, respectively, the names of the local standard time zone and the local daylight-saving
time zone. If TIMEZONE is not set, timezone defaults to zero, tzname[0] to GMT, and tzname[1] to the empty
string.

See Also
date, ftime(), libc, localization, time [overview], TIMEZONE

Notes
tzset() used to be named settz(). It has been renamed to conform to published standards.
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ulimit() — System Call (libc)
Get/set limits for a process
#include <ulimit.h>
long ulimit (command [, blocks^])
int command, blocks^;

The system call ulimit() retrieves or sets limits on what a process can do. command indicates what you want it to
do, as follows:

UL_GETFSIZE
Return the maximum size, in blocks, of a file that the current process can create.

UL_SETFSIZE
Limit to blocks the size of any regular file that any process can create. A process may decrease this limit, but
only a process owned by the superuser root can increase it.

UL_GMEMLIM
Return the current process’s break value. For details on the break value, see the Lexicon entry for brk().

UL_GDESLIM
Return the maximum number of files that this process can open.

Each of the above commands is defined in the header file ulimit.h. When called to execute the command
UL_SETFSIZE, ulimit() requires a second integer argument; when called to execute any other command, ulimit()
takes only one argument.

If all goes well, ulimit() returns a non-negative value. ulimit() fails if any of the following occur:

• A process owned by someone other than the superuser root attempted to increase its file-size limit. ulimit()
returns -1 and sets errno to EPERM.

• The first argument to ulimit() was something other than one of the above-named values. ulimit() returns -1
and sets errno to EINVAL.

See Also
brk(), libc, ulimit.h

Notes
ulimit() does not fail per se if you invoke it with option UL_SETFSIZE and do not supply a second argument.
However, doing so will (or should) crash the process. Caveat utilitor.

ulimit.h — Header File
Define manifest constants used by system call ulimit()
#include <ulimit.h>

The header file ulimit.h defines manifest constants used with the system call ulimit().

See Also
header files, ulimit()
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umask — Command
Set the file-creation mask
umask [OOO]

The file-creation mask modifies the default mode assigned to each file upon creation. The mode sets the
permissions granted by the file’s owner, plus other important information about a file.

The command umask sets the default file-creation mask to OOO, which are three octal numerals. If invoked
without an argument, umask prints the current file-creation mask in octal.

Note that zero bits in the mask correspond to permitted permission bits in the target, and that execute permission
cannot be enabled via any setting of mask. See the Lexicon entries for umask() and chmod for further details on
file mode. The shell executes umask directly.

Example
Setting mask to octal 022 (i.e., 000 010 010) causes a file created with mode octal 0666 to actually have
permissions of

rw- r-- r--

Setting mask to zero (i.e., 000 000 000) causes a file created with mode octal 0666 to actually have permissions of

rw- rw- rw-

See Also
chmod, commands, ksh, sh, umask()

umask() — System Call (libc)
Set file-creation mask
#include <sys/stat.h>
int umask(mask)
int mask;

umask() allows a process to restrict the mode of files it creates. Commands that create files should specify the
maximum reasonable mode. A parent (e.g. the shell sh) usually calls umask() to restrict access to files created by
subsequent commands.

mask should be constructed from any of the permission bits found by chmod() (the low-order nine bits). When a
file is created with creat() or mknod(), every bit set in the mask is zeroed in mode; thus, bits set in mask specify
permissions that will be denied.

umask() returns the old value of the file-creation mask.

Example
Setting mask to octal 022 (i.e., 000 010 010) causes a file created with mode octal 0666 to actually have
permissions of

rw- r-- r--

Setting mask to zero (i.e., 000 000 000) causes a file created with mode octal 0666 to actually have permissions of

rw- rw- rw-

See Also
creat(), libc, mknod(), sh, stat.h
POSIX Standard, §5.3.3

Notes
A file’s default permission cannot be set to execute regardless of the value of mask.
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umount — Command
Unmount file system
/etc/umount special

umount unmounts a file system special that was previously mounted with the mount command.

The script /bin/umount calls /etc/umount, and provides convenient abbreviations for commonly used devices.
For example, typing

umount f0

executes the command

/etc/umount /dev/fha0

The system administrator should edit this script to reflect the devices used on your specific system.

Files
/etc/mtab — Mount table
/dev/*
/bin/umount — Script that calls /etc/umount

See Also
clri, commands, fsck, icheck, mount

Diagnostics
Errors can occur if special does not exist or is not a mounted file system.

umount() — System Call (libc)
Unmount a file system
#include <sys/mount.h>
umount(filesystem)
char *filesystem;

umount() is the COHERENT system call that unmounts a file system. filesystem names the block-special file
through which the file system is accessed. Note that this must have been previously mounted by a call to mount(),
or the call will fail.

See Also
libc, mount()

unalias — Command
Remove an alias
unalias alias ...

The command unalias is built into the Korn shell ksh. It removes each alias.

See Also
alias, commands, ksh

uname — Command
Print information about COHERENT
uname [ -amnrsv ]
uname [ -S systemname ]

The command uname prints information about the current implementation of COHERENT. It recognizes the
following options:

-a Print all information.

-m Print the machine on which this implementation of COHERENT is running. This always defaults to the Intel
80386.
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-n Print the name of your system, as set in the file /etc/uucpname.

-r Print the release of your copy of COHERENT.

-s Print the system name.

-S Change the system name. systemname is restricted to eight characters.

-v Print the version of COHERENT.

Example
The following script uses uname to implement a version of the Sun OS command hostname. It is by Cy Schubert
(cschuber@bcsc02.gov.bc.ca):

#!/bin/sh -
# hostname - display or change the name of the host system
case $# in

0) uname -n;;
1) uname -S $1;;
*) echo Usage: hostname [new_hostname]

exit 1;;
esac

See Also
commands

uname() — System Call (libc)
Get the name and version of COHERENT
#include <sys/utsname.h>
int uname(name)
struct utsname *name;

The COHERENT system call uname() identifies the current release of the COHERENT operating system. It writes its
output into the structure pointed to by name. This must be of type utsname, which has the following members:

char sysname[SYS_NMLN]; /* system name */
char nodename[SYS_NMLN]; /* UUCP node name */
char release[SYS_NMLN]; /* current release */
char version[SYS_NMLN]; /* current version */
char machine[SYS_NMLN]; /* hardware */

uname() returns a non-negative value upon success. If something went wrong, i.e., name points to an invalid
address, uname() returns -1 and sets errno to an appropriate value.

See Also
libc, utsname.h
POSIX Standard, §4.4.1

Notes
The COHERENT implementation of uname() conforms to POSIX Standard, which states that uname() returns a ‘‘non-
negative’’ value upon success. To write portable code, your code must check for a return value that is greater than
or equal to zero. It is an error to check for return value equal to zero, because the test works on some systems that
adhere to the Standard but not on others.

uncompress — Command
Uncompress a compressed file
uncompress [ file ... ]

uncompress uncompressses one or more files that had been compressed by the command compress.

Each file’s name must have the suffix .Z, which was appended onto it by compress; otherwise, uncompress prints
an error message and exits. When uncompress has uncompressed a file, it removes the .Z suffix from that file’s
name.

If no file is specified on the command line, uncompress uncompresses matter read from the standard input, and
writes its output to the standard output.
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Older versions of uncompress could only uncompress files that had been compressed with option -b12 or lower,
with -b12 being the default. The edition of uncompress released with COHERENT version 3.1 (and subsequent
versions) can handle values up to 16.

See Also
commands, compress, compression, ram, zcat

unctrl.h — Header File
Define macro unctrl()
#include <unctrl.h>

The header file unctrl.h defines the macro unctrl() which changes a character from a control character to a
printable character.

See Also
header files

ungetc() — STDIO Function (libc)
Return character to input stream
#include <stdio.h>
int ungetc (c, fp)
int c; FILE *fp;

ungetc() returns the character c to the stream fp. c can then be read by a subsequent call to getc(), gets(), getw(),
scanf(), or fread(). No more than one character can be pushed back into any stream at once. A call to fseek() will
nullify the effects of a previous ungetc().

ungetc() normally returns c. It returns EOF if the character cannot be pushed back.

Example
For an example of this function, see fgetc().

See Also
fgetc(), getc(), libc
ANSI Standard, §7.9.7.11
POSIX Standard, §8.1

union — C Keyword
Multiply declare a variable

A union defines an area of storage that can accept any one of several types of data. In effect, it is a multiple
declaration of a variable. For example, a union may be declared to consist of an int, a double, and a char *. Any
one of these three elements can be held by the union at a time, and will be handled appropriately by it. For
example, the declaration

union {
int number;
double bignumber;
char *stringptr;

} example;

allows example to hold either an int, a double, or a pointer to a char, whichever is needed at the time. All of these
have the same address. The elements of a union are accessed like those of a struct: for example, to access
number from the above example, type example.number.

unions are helpful in dealing with heterogeneous data, especially within structures; however, you are responsible
for keeping track of what data type the union is holding at any given time. Passing a double to a union and then
reading the union as though it held an int will yield results that are unpredictable, and probably unwelcome.

Example
For an example of how to use a union in a program, see the entry for byte ordering.
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See Also
C keywords, initialization, struct, structure
ANSI Standard, §3.1.2.5, §3.5.2.1

uniq — Command
Remove/count repeated lines in a sorted file
uniq [-cdu] [-n] [+n] [infile[outfile]]

uniq reads input line by line from infile and writes all non-duplicated lines to outfile. The input file must be sorted.
uniq uses the standard input or output if either infile or outfile is omitted. The following describes the available
options:

-c Print each line once, discarding duplicate lines; before each line, print the number of times it appears
within the file.

-d Print only lines that are duplicated within the file; print each line only once; do not print any counts.

-u Print only lines that are not duplicated within the file.

uniq by default behaves as if both -u and -d were specified, so it prints each unique line once.

Optional specifiers allow uniq to skip leading portions of the input lines when comparing for uniqueness.

-n Skip n fields of each input line, where a field is any number of non-white space characters surrounded by
any number of white space characters (blank or tab).

+n Skip n characters in each input line, after skipping fields as above.

See Also
comm, commands, sort

unistd.h — Header File
Define constants for file-handling routines
#include <unistd.h>

The header file unistd.h defines standard routines used by the UNIX and UNIX-like operating systems. It
prototypes many commonly used functions, and declares manifest constants used when checking file access,
setting the seek pointer, and locking files.

See Also
access(), fseek(), header files, lockf()
POSIX Standard, §2.9

units — Command
Convert measurements
units [ -u ]

units is an interactive program that tells you how to convert one unit of measurement into another. It prompts
you for two quantities with the same dimension (e.g., two measurements of weight, or two of size). It first prints
the prompt ‘‘You have:’’ to ask for the unit you wish to convert from, and then prints the prompt ‘‘You want:’’ for
the unit you wish to convert to.

Example
The following example returns the formula for convert fortnights into days:

You have: fortnight
You want: days
* 14
/ 0.071428

The following fundamental units are recognized: meter, gram, second, coulomb, radian, bit, unitedstatesdollar,
sheet, candle, kelvin, and copperpiece (shillings and pence).

A quantity consists of an optional number (default, 1) and a dimension (default, none). Numbers are floating point
with optional sign, decimal part and exponent. Dimensions may be specified by fundamental or derived units, with
optional orders. A quantity is evaluated left to right: a factor preceded by a ‘/’ is a divisor, otherwise it is a
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multiplier. For example, the earth’s gravitational acceleration may be entered as any of the following:

9.8e+0 m+1 sec-2
32 ft/sec/sec
32 ft/sec+2

British equivalents of US units are prefixed with br, e.g., brpint. Other units include c (speed of light), G
(gravitational constant), R (gas-law constant), phi (golden ratio) % (1/100), k (1,024), and buck (United States
dollar).

/usr/lib/units is the ASCII file that contains conversion tables. The binary file /usr/lib/binunits may be
recreated by using the -u option.

Files
/usr/lib/units — Known units
/usr/lib/binunits — Binary encoding of units file

See Also
bc, commands, conv

Diagnostics
If the ASCII file /usr/lib/units has changed more recently than the binary file /usr/lib/binunits, units prints a
message and regenerates the binary file before it continues; this can take up to a few minutes, depending upon the
speed of your system.

The error message ‘‘conformability’’ means that the quantities are not dimensionally compatible, e.g., m/sec and
psi. units prints each quantity and its dimensions in fundamental units.

Notes
There are the inevitable name collisions: g for gram versus gee for Earth’s gravitational acceleration, exp for the
base of natural logarithms versus e for the charge of an electron, ms for (plural) meters versus millisecond, and, of
course, batman for the Persian measure of weight rather than the Turkish.

unlink() — System Call (libc)
Remove a file
#include <unistd.h>
int unlink(name) char *name;

unlink() removes the directory entry for the given file name, which in effect erases name from the disk. name
cannot be opened once it has been unlink()’d. If name is the last link, unlink() frees the i-node and data blocks.
Deallocation is delayed if the file is open. Other links to the file remain intact.

Example
This example removes the files named on the command line.

#include <unistd.h>
main(argc, argv)
int argc; char *argv[];
{

int i;

for (i = 1; i < argc; i++) {
if (unlink(argv[i]) == -1) {

printf("Cannot unlink \"%s\"\n", argv[i]);
exit(EXIT_FAILURE);

}
}
exit(EXIT_SUCCESS);

}

See Also
libc, link(), ln, remove(), rm, rmdir, unistd.h
POSIX Standard, §5.5.1
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Diagnostics
unlink() returns zero when successful. It returns -1 if file does not exist, if the user does not have write and
search permission in the directory containing file, or if file is a directory and the invoker is not the superuser.

unpack — Command
GNU utility to uncompress files
unpack [-cfhLrtvV ] [ file ... ]

unpack uncompresses each file named on its command line. Each file must have been compressed by the
COHERENT commands gzip or compress, or by the UNIX command pack. If no file appear on its command line
unpack uncompresses what it reads from the standard input.

unpack is a link to the command gunzip. For details on its command-line options, see the Lexicon entry for
gunzip.

See Also
commands, gzip, gunzip

unset — Command
Unset an environment variable or shell function
unset environmental_variable
unset -f shell_function

The command unset unsets an environmental variable or shell function.

When used with the option -f, unset unsets the shell function named on the command line. This option applies
only to the Bourne shell sh.

When used without the option -f, unset unsets the environmental variable named on the command line. This
version of the command applies to both the Bourne shell sh and the Korn shell ksh.

See Also
commands, environmental variables, ksh, sh

unsigned — C Keyword
Data type

unsigned tells the compiler to treat the variable as an unsigned value. In effect, this doubles the largest absolute
value that that type can hold, and changes the lowest storage value to zero.

See Also
C keywords, data type
ANSI Standard, §6.2.1.2

until — Command
Execute commands repeatedly
until sequence1 [ do sequence2 ] done

The shell’s until loop executes the commands in sequence1. If the exit status is nonzero, the shell then executes
the commands in the optional sequence2 and repeats the process until the exit status of sequence1 is zero.
Because the shell recognizes a reserved word only as the unquoted first word of a command, both do and done
must occur either unquoted at the start of a line or preceded by ‘;’.

The shell commands break and continue may be used to alter control flow within an until loop. The contruct
while has the same form as until but the sense of the test is reversed.

The shell executes until directly.

See Also
break, commands, continue, ksh, sh, test, while
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unzip — Command
Un-zip a zipped archive
unzip archive [-cfpux file ...] [-ltvz] [-anojqUV]

The command unzip extracts files from a zipped archive. It recognizes the following command-line options:

-c [file ...]
Extract file, but write them to the standard output instead of to disk.

-f [file ...]
‘‘Freshen’’ files: Extract file from archive and write it to disk, but do so only if the file in the archive is
newer than the file on disk. Do not create new files.

-l List the contents of the archive, short format.

-p [file ...| command]
Extract each file and pipe it to command.

-t Test the integrity of archive.

-u [file ...]
Update each file within the archive. Create the file if necessary.

-v List files, verbose format.

-x [file ...]
Extract each file from default. If no file argument is given, extract all files. This is the default.

-z Display archive’s comments, if any.

The following modify the behavior of the options:

-a Convert text from MS-DOS format to UUCP format.

-j Ignore (‘‘junk’’) paths; do not make directories.

-n Never overwrite existing files.

-o Overwrite files without prompting.

-q Quiet mode.

-qq Quieter mode.

-U Do not convert file names to lower-case letters.

The following example extracts file ReadMe from archive data1:

unzip data1 ReadMe

The next example extracts all files from archive foo.zip and pipes them to the pager more:

unzip -p foo | more

The final example ‘‘freshens’’ files on disk from the contents of foo.zip. Files are overwritten without prompting:

unzip -fo foo

Notes
commands, compress, gunzip, gzip, uncompress, zip

Notes
Do not confuse this command with gunzip. Archives made by gzip may not be extractable by unzip.

upac — Command
De-fragment a file system without sorting
upac raw_device

Command upac uses de-fragments file system raw_device without sorting it by access date. Rather, it orders files
by i-node number.
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See Also
commands, dpac, fmap, fsck, qpac, spac

Notes
upac is a link to the command dpac.

upac was written by Randy Wright (rw@rwsys.wimsey.bc.ca).

update — System Administration
Update file systems periodically
/etc/update

update periodically calls sync to write to the disk all file system data that are in memory. It never exits.

The initialization command file /etc/rc normally executes update. It should not be executed directly.

See Also
Administering COHERENT, init, sync

uproc.h — Header File
Definitions used with user processes
#include <sys/uproc.h>

uproc.h defines the constants and structures used by routines that manage user processes.

See Also
header files

USER — Environmental Variable
Name user’s identifier
USER=user_identifier

The environmental variable USER names your login identifier. For example, if your login identifier is fwb, then by
typing set you will see the entry USER=fwb. USER is set by login.

See Also
environmental variables, ksh, login, LOGNAME, sh

Using COHERENT — Overview
For an ordinary user — that is, one who neither administers the COHERENT system nor writes programs for it —
using COHERENT mainly involves issuing commands to the COHERENT system.

The Lexicon entry commands names every command that comes with the COHERENT system. The commands are
grouped by function. You should look carefully at the shell commands — that is, the commands that work closely
with the shell to help you control the execution of other commands. What other groups you study will depend on
just what you want to do with your COHERENT system.

Pay particular attention to the Lexicon entries for the commands sh, ksh, and vsh. These introduce the shells —
that is, the programs with which you can issue commands to COHERENT. Each has its own syntax; ksh and sh in
fact implement fully flown programming languages on their own.

vsh is a visual shell, and is especially useful to beginners. It uses a visual interface and drop-down menus to
make it easy for you to issue commands without having to remember convoluted command syntax. The Lexicon
entry for vsh describes it, and how you can customize it for yourself.

The Lexicon entry for MS-DOS compares COHERENT with MS-DOS, and describes how they differ. It also gives a
table of COHERENT equivalents to commonly used MS-DOS commands. If you are used to using MS-DOS, you
should find this useful.

The follow commands help you to find information about your system:

apropos
This command searches the description of each Lexicon article for a keyword that you enter. In this way,
you can quickly find which articles discuss a given topic, such as ‘‘printer’’ or ‘‘modem’’.
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help This command displays a brief summary of each Lexicon article, by name.

man This command displays Lexicon articles on your screen, by name.

The following three articles introduce files that are stored in your home directory. By modifying these files, you can
customize your COHERENT account to suit your tastes:

.kshrc Script $HOME/.kshrc configures the Korn shell to suit your tastes. You will need to edit this file if you
decide to use the Korn shell.

.lastlogin
File $HOME/.lastlogin records the date and time you last logged in to your COHERENT system.

.profile Script $HOME/.profile holds commands that are executed when a given user logs in to your COHERENT
system.

The following Lexicon entries hold technical information that you probably will find useful:

block This defines the size of a ‘‘block’’ on a mass-storage device.

compression
This introduces the subject of compression, and the programs with which you can compress and de-
compress files. It also gives a table that describes how to de-compress files based on their default suffices.

environmental variables
This article lists the commonly used environmental variables that are described in the Lexicon. These
variables control many of the behaviors of the COHERENT system.

Lexicon
This describes the format of the printed COHERENT manual. It also summarizes changes made to on-line
Lexicon pages (the ones that you view via the command man) since the manual was last printed.

man This summarizes the man macros that are used by the text-formatter nroff.

ms This summarizes the ms macros that are used by the text-formatter nroff.

Finally, the following Lexicon entries define technical terms that are used in this manual:

caveat utilitor
daemon
directory
file
filter
i-node
named pipe
pipe
process
root
sticky bit
superuser
wildcards

For pointers on where to look for information on how to install and modify peripheral devices on your system, such
as the keyboard, the hard disk, or a CD-ROM drive, see the Lexicon entry Administering COHERENT.

See Also
Administering COHERENT, COHERENT, Programming COHERENT

usleep() — Sockets Function (libsocket)
Sleep briefly
long usleep (t)
long t;

The function usleep() sleeps for t milliseconds or until it receives a signal.

See Also
libsocket, nap()

LEXICON

1278 usleep()



Notes
usleep() is included for compatibility with Berkeley socket code. It is the equivalent of the System V Release 4
system call nap().

usrtime — System Administration
Times each user is permitted to log in
/etc/usrtime

File /etc/usrtime holds the time, day of the week, and terminal line upon which a given user can log into your
COHERENT system. Command login reads it to see if a user who is attempting to log in is doing at a permitted time
and via a permitted line. If a user is not named in this file, login assumes that she can log in at any time, via any
line.

usrtime consists of an indefinite number of lines, each with the following format:

users:enable:tty:weekday:time:comment

The following describes each field in detail.

user The login identifiers of the user or users to be restricted. Multiple identifiers must be separated by
commas. Each identifier must be defined in /etc/passwd. If this field is empty, then the line is a default
for every user not specifically named elsewhere in usrtime.

The keywords ALL, UUCP, SLIP, and INTERACTIVE can also be used in this field, to name categories of
users. They are described in detail below.

enable Enable or disable the login (or logins). NOLOGIN disables the login; LOGIN or an empty field enables it. A
range of dates of the form

yyyymmdd-yyyymmdd

enables logins only during those dates. This field can contain more than one range of dates; if it does, the
ranges must be separated by a comma. Prefixing a range of dates with a ‘!’ disables logins between those
dates.

tty This field lists the devices via which the user (or users) may log in — usually a tty or com device. If this
field names more than one device, they must be separated by commas. A device name can contain the
wildcard character ‘?’; for details on how this is interpreted, see the Lexicon entry for wildcards. If a device
is prefixed with a ‘!’, the user cannot log in on that device. If this field is empty, then the user can log in on
all devices.

weekday
This field lists the days of the week upon which the the user (or users) can log in. If more than one day is
named, they must be separated by commas. Each day is identified by the first three letters of its name. If
a weekday is prefixed with a ‘!’, then the users cannot log in on that day. If this field is empty, the users
can log in on any day of the week.

time This field gives range of time during which the user (or users) may log in. Time is given in the form:

hhmm-hhmm

If more than one range is named, they must be separated by commas. Prefixing a range with a ‘!’ forbids
the user to log in during between those times. If this field is empty, then the user can log in during any
time of the day.

comment
This field holds some commentary, presumably helpful to others who must read this file. login ignores
this field.

Scope of Entries
A user may be affected by more than entry in this file. The order in which the entries appear is significant.

At the top of the file should appear the entries that are being excluded from restriction. These should include such
users as bin and daemon, plus any ordinary user you wish to exclude from being restricted. The entries for such
a users should consist of her (its) name, followed by five colons. Any user named in such an entry is immune to
any restrictions that may appear below in this file.

Next should come the global restrictions, that is, restrictions for entire categories of users. As mentioned above,
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you can use the keywords ALL, UUCP, SLIP, or INTERACTIVE to describe users. These keywords have the
following meaning:

ALL All users.
UUCP All ‘‘users’’ who are UUCP accounts — i.e., whose shell as set in /etc/passwd is /usr/lib/uucp/uucico.
SLIP All ‘‘users’’ who are SLIP accounts — i.e., whose shell is sllogin.
INTERACTIVE

Users who have an interactive the interactive shell ksh or sh set at login.

Last should come entries for individual users or clusters of users. These restrictions can be set in addition to
those set for categories of users. An entry for an individual users that appears below the global entries will not
loosen the restrictions set globally for that user; but it can tighten them.

Note that login ignores any restrictions set for the superuser root. Finally login ignores every line that begins with
a ‘#’. You can use such lines to hold comments.

Example
The following gives an example usrtime file:

# <user>:<enable>:<tty>:<weekday>:<time>:<comment>
sys,bin,daemon:::::
INTERACTIVE::/dev/com??,/dev/color?:Mon,Tue,Wed,Thu,Fri:0630-1830:
UUCP::/dev/com2l:::UUCP accounts
::::0800-1700:default for anybody not mentioned below
fred,anne:LOGIN:/dev/color?::0830-1630:administration
ivan,marian:LOGIN:/dev/com??:::secretarial staff
catherine:19930401-19931130::::consultant programmer

See Also
Administering COHERENT, login

Notes
No line in usrtime can exceed 500 characters.

ustat() — System Call (libc)
Get statistics on a file system
#include <sys/types.h>
#include <ustat.h>
int ustat (device, buffer)
dev_t device;
struct ustat *buffer;

The COHERENT system call ustat() returns information about a mounted file system. device names the device upon
which the file system is mounted. buffer points to a structure of type ustat, which contains the following fields:

daddr_t f_tfree; /* number of free blocks */
ino_t f_tinode; /* number of free i-nodes */
char f_fname[6]; /* name of the file system */
char f_fpack[6]; /* pack name of the file system */

Useful information may not be available for fields f_fname and f_fpack; in that case, they are initialized to nuls.

ustat() returns zero if all goes well; otherwise, it returns -1 and sets errno to an appropriate value. ustat() can fail
for any of the following reasons:

• device does not contain a mounted file system.

• buffer points to an illegal address.

• The kernel caught a signal while it was executing the call.

See Also
libc, mkfs, statfs()

Note
ustat() is largely superceded by statfs().
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utime() — System Call (libc)
Change file access and modification times
#include <sys/types.h>
#include <utime.h>
int utime(file, times)
char *file;
time_t times[2];

utime() sets the access and modification times associated with the given file to times obtained from times[0] and
times[1], respectively. The time of last change to the attributes is set to the time of the utime() call.

This call must be made by the owner of file or by the superuser.

Files
<sys/types.h>

See Also
libc, restor, stat(), utime.h
POSIX Standard, §5.6.6

Diagnostics
utime() returns -1 on errors, such as if file does not exist or the invoker not the owner.

utime.h — Header File
Declare system call utime()

The header file <utime.h> declares the COHERENT system call utime(). It also defines the structure utimbuf, which
utime() uses.

See Also
header files, utime()

utmp — System Administration
File that notes login events that are active
/etc/utmp

File /etc/utmp notes every login event that is active — that is, when the user has logged in and has not yet logged
out. It is read by the command who to display the users who are now logged into your system.

utmp records each active login event as a record of type utmp, which is defined in header file <utmp>. For details,
see the Lexicon entry utmp.h.

File /usr/adm/wtmp records every login event that has concluded. You can comb this file to trace which user
have logged onto your system, and when.

See Also
Adminstering COHERENT, utmp.h, wtmp

utmp.h — Header File
Login accounting information
#include <utmp.h>

Header file <utmp.h> defines the types and constants that are used to manipulate the system-adminstration files
/etc/utmp and /usr/adm/wtmp. The former file describes every user who is currently logged into your system;
the latter records when each user logged into your system and logged out again.

Each of these files consists of records, each of which has are objects of type utmp, which <utmp.h> defines as
follows:
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struct utmp {
char ut_user[8];
char ut_id[4];
char ut_line[12];
short ut_pid;
short ut_type;
struct exit_status {

short e_termination;
short e_exit;

} ut_exit;
time_t ut_time;

};

The following describes each field in utmp:

ut_user
The login identifier of the user.

ut_id The user’s identifier, as taken from /etc/init.

ut_line The device through which the user logged in.

ut_pid The process identifier of the user’s shell.

ut_type
Type of entry in this file. This can be any of the following values:

EMPTY An empty entry
RUN_LVL Run level
BOOT_TIME Boot time
OLD_TIME
NEW_TIME
INIT_PROCESS Process spawned by init
LOGIN_PROCESS A getty waiting for a login
USER_PROCESS A user process
DEAD_PROCESS
ACCOUNTING

ut_exit The process’s exit status. It consists of the following fields:

e_termination
Process’s termination status.

e_exit Process’s exit status.

ut_time
The time the user logged on.

The following functions use this header file:

endutent() . . . . . . . . Close the logging file.
getutent() . . . . . . . . Read the next entry from /etc/utmp.
getutid() . . . . . . . . . Find an entry in /etc/utmp by login identifier.
getutline() . . . . . . . . Find an entry in /etc/utmp by login device.
pututline() . . . . . . . . Write a record into /etc/utmp.
setutent() . . . . . . . . Rewind the input stream that is reading /etc/utmp
utmpname() . . . . . . . Manipulate a file other than /etc/utmp.

Each function is described in its own Lexicon entry.

Files
/etc/utmp
/usr/adm/wtmp

See Also
ac, header files, login, utmp, who, wtmp
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utmpname() — General Function (libc)
Manipulate a login logging file other than /etc/utmp
#include <utmp.h>
int utmpname(file)
const char *file;

The system files /etc/utmp and /usr/adm/wtmp record information about every login event on your system —
that is, they record every time someone logs into your system, the line from which the user logged in, and how long
he was logged in. COHERENT comes with a set of functions that manipulate these files: they let you open a logging
file, reads records, and update them.

By default, these functions manipulate the file /etc/utmp, which records the login events that are active — that is,
the user has logged in but not yet logged out. Function utmpname() lets you change the file being manipulated.
file points to the name of the file you wish to manipulate. Usually, this is the file /usr/adm/wtmp, which records
login events that have concluded; but you can name any file in which you or the system has recorded login events.
utmpname() also closes the logging file that is already open.

See Also
libc, utmp.h

utsname.h — Header File
Define utsname structure
#include <sys/utsname.h>

utsname.h defines the structure utsname. This structure holds information that describes a given release of the
COHERENT system.

See Also
header files, uname()
POSIX Standard, §4.4.1

uuchk — Command
Check UUCP configuation
/usr/lib/uucp/uuchk [-Ifile] [v] [--help]

The command uuchk reads the UUCP configuration files sys, port, and dial, and generates a report on the
configuration for each remote system listed in sys. You can use this report to repair problems in your configuration
files.

The following gives sample output for system mwcbbs:

Call out using port intel.slow at speed 2400
The possible ports are:
Port name intel.slow
Port type modem
Device /dev/com3fl
Speed 2400
Carrier available
Hardware flow control available
Dialer intel.slow
Chat script "" AT\s&C1\s&D2\sE1\sM1\sQ0\sS0=0\sV1\sDP\D CONNECT\s2400
Chat script timeout 60
Chat failure strings BUSY NO\sCARRIER NO\sANSWER
Chat script incoming bytes stripped to seven bits
Wait for dialtone ,
Pause while dialing ,
Carrier available
Wait 60 seconds for carrier
When complete chat script "" \d+++\dAT\sH0\sE0\sV0\sQ1\sM0\sS0=1
When complete chat script timeout 60
When complete chat script incoming bytes stripped to seven bits
When aborting chat script "" \d+++\dAT\sH0\sE0\sV0\sQ1\sM0\sS0=1
When aborting chat script timeout 60
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When aborting chat script incoming bytes stripped to seven bits
Phone number 17085590445
Chat script "" \r\d\r in:--in: nuucp word: public word: 127417124
Chat script timeout 10
Chat script incoming bytes stripped to seven bits
At any time may call if any work
May make local requests when calling
May make local requests when called
May send by local request: /
May send by remote request: /usr/spool/uucppublic /tmp
May accept by local request: ~
May receive by remote request: /usr/spool/uucppublic /tmp
May execute rmail uucp
Execution path /bin /usr/bin /usr/local/bin
Will leave 50000 bytes available
Public directory is /usr/spool/uucppublic
Will use protocols g
For protocol g will use the following parameters
window 3
packet-size 64

uuchk recognizes the following command-line options:

-Ifile
--configfile

Use file instead of the standard configuration files. This option lets you sanity-check a new configuration
file without having to install it.

-v
--version

Print the version of uuchk and exit.

--help Print a help message, and exit.

See Also
commands, dial, port, sys, UUCP

uucico — Command
Communicate with a remote site
/usr/lib/uucp/uucico [-D] [-csite] [-Ifile] [-pport] [-r0] [-r1] [-ssite] [-Ssite] [-xlevel]

The UUCP daemon uucico is the program that communicates with a remote site. It either contacts another site and
issues commands for execution by another uucico process on that remote system (master mode); or it receives a
call from a remote system and executes the commands that that system issues (slave mode).

The commands uucp and uux invoke uucico automatically, usually in master mode. uucico can also be invoked
directly from the shell, from within a script, or from with a cron file.

You can also name uucico in file /etc/passwd as the default process to run for a given login identifier. A system
that logs in under that login ID (presumably, a version of uucico on a remote system) will interact with your
system’s uucico, instead of a shell. When invoked in this manner, uucico runs in slave mode by default.

After uucico has finished communicating with the remote system, it invokes the daemon uuxqt to execute the
commands issued by the remote system. For information on uuxqt, see its Lexicon entry.

uucico recognizes the following command-line options:

-csite ‘‘Cron’’ mode: If a call is not permitted to site at the present time, then do not make the call; but also,
do not log an error message or update the system status. Use this option if you wish to invoke uucico
regularly through cron, and do not want to be bombarded with error messages should the entry in
cron conflict with the legal calling times set in sys.

-D Do not detach from the device until the contact with the remote system concludes.
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-e Force uucico to produce its own login: and Password: prompts. uucico checks the password it
receives against its own, private list, rather than against the password kept in file /etc/passwd. This
should be used with the options -l and -p. When used with this option, uucico does not terminate, but
continues to issue prompts until you kill it explicitly. This option permits you to use uucico as a
server on a network.

-fsite Force option: call site immediately, regardless of whether the site’s description in sys indicates that
this is a legal time to call.

-I file Read configuration information from file, instead of from the default file /usr/lib/uucp/sys.

-l Force uucico to produce its own login: prompt. uucico checks the login it receives against its own,
private list, rather than against the normal system password files. This should be used with the
option -e.

-q Quiet: do not invoke daemon uuxqt on the remote system.

-pport Use port. When used with the options -s or -S, dial out on port; this overrides the default port used
with the system being contacted. When uucico is in slave mode, this implies the option -e.

-r0 Act as slave in polling process; that is, carry out the orders of another uucico that has dialed into your
system. This is the default.

-r1 Act as master in polling process; that is, dial out to another system and give it orders. This option is
implied by options -s or -S. If the uucico command line does not name a site to call, this option tells
uucico to call any system for which work is waiting to be performed.

-ssite Call site. This must name one of the entries in /usr/lib/uucp/sys.

-Ssite Call site immediately, if the present time lies within the legal time set for site, as described in file
/usr/lib/uucp/sys.

-w After contacting a system with the options -r1, -s, -S, begin an endless loop of login prompts, as with
the option -e. In effect, UUCP calls a remote site; but instead of logging into that site, it lets that site log
into it.

-xactivity[,activity,...,activity^]
-Xactivity[,activity,...,activity]

Log a given activity. These logs can help you debug problems with UUCP. uucico recognizes the
following activities:

abnormal chat config
execute handshake incoming
outgoing port proto
spooldir uucp-proto

One -x option can name multiple activities, separated by commas. A uucico command line can
contain more than -x option. uucico writes its logging information into file
/usr/spool/uucp/.Admin/audit.local.

Example
To poll the site mwcbbs (the Mark Williams bulletin board) five minutes after each hour, put the following entry
into a cron file:

05 * * * * /usr/lib/uucp/uucico -smwcbbs -r1

Files
/usr/lib/uucp/sys — List of reachable systems
/usr/spool/uucp/.Log/uucico/sitename— uucico activities log file for sitename
/usr/spool/uucp/.Log/uucico/UUCICO— uucico debug log
/usr/spool/uucp/sitename — Spool directory for work

See Also
commands, cron, uucp, UUCP, uulog, uutouch, uuxqt

Notes
uucico was written by Ian Lance Taylor (ian@airs.com).
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uuconv — Command
Convert UUCP configuration files to Taylor format
/usr/lib/uucp/uuconv -i input -o output [-p program] [-I file]

The command uuconv converts UUCP configuration files from one format to another. In all probability, you will
have to run this program only once, when you convert from your previous UUCP implementation to Taylor UUCP.

uuconv recognizes the follow command-line options:

--help Print a help message and exit.

-I file
--config file

Read configuration information from file instead of from the standard UUCP configuration file.

-i file
--input file

Read input from file.

-o file
--output file

Write output into file.

-p program
--program program

Convert program (e.g., uucp or cu).

-v
--version

Print the version of uuconv that you are running, and exit.

See Also
commands, UUCP

Notes
uuconv was written by Ian Lance Taylor (ian@airs.com).

UUCP — Overview
Unattended communication with remote systems

UUCP stands for ‘‘UNIX to UNIX communications protocol’’. It is a system of commands that allows you to exchange
files with other COHERENT or UNIX systems, in an unattended manner. With UUCP, you can send mail to other
systems, upload files, and execute commands. When configured correctly, UUCP also lets other users upload files
to your system, copy files from it, and execute commands. All this can be done without your having to sit at your
console and type commands; thus, files can be transferred in the small hours, when telephone rates are lower and
computers are relatively free.

UUCP gives you access to the Usenet, a nation-wide network of UNIX and COHERENT users. Access to the Usenet
will let you exchange mail with any of the thousands of Usenet users, receive mail from them, download source
code for many useful programs, and read the latest news on a host of subjects. For details on contacting UUNET,
a commercially accessible Usenet site, enter the command:

phone uunet

Implementation of UUCP
Beginning with release 4.2, COHERENT implements the Taylor UUCP package. The current implementation is Taylor
UUCP version 1.05. Taylor UUCP offers extraordinary flexibility, beyond that offered by standard implementations of
UUCP. The following Lexicon entries describe UUCP:

config. . . . . . . . . . . Overall configuration file for UUCP
cu . . . . . . . . . . . . . Introduce the cu communications utility
dial . . . . . . . . . . . . Describe how uucico and cu can dial a modem
domain . . . . . . . . . . Describe the file that names your UUCP domain
port . . . . . . . . . . . . File that describes ports through which UUCP dials
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sys . . . . . . . . . . . . File that describes systems contacted by UUCP
uuchk . . . . . . . . . . Check UUCP configuation
uucico . . . . . . . . . . Daemon that controls communication with a remote site
uuconv . . . . . . . . . . Convert UUCP configuration files to Taylor format
uucp . . . . . . . . . . . Spool files for transmission to other systems
uucpname . . . . . . . . File that names your system
uudecode . . . . . . . . Decode a binary file sent from a remote system
uuencode . . . . . . . . Encode a binary file for transmission
uuinstall . . . . . . . . . Install or modify UUCP
uulog . . . . . . . . . . . Read a UUCP log
uumkdir . . . . . . . . . Create a UUCP directory
uumvlog . . . . . . . . . Archive UUCP log files
uuname . . . . . . . . . List UUCP names of known systems
uupick . . . . . . . . . . Pick up a file uploaded from a remote system
uurmlock . . . . . . . . Remove a UUCP lockfile
uusched . . . . . . . . . Call all systems that have jobs waiting for them
uustat . . . . . . . . . . Display and modify the status of a UUCP job
uuto. . . . . . . . . . . . Send a file to a remote system
uutouch . . . . . . . . . Touch a file to trigger uucico poll
uutry . . . . . . . . . . . Debugging tool for UUCP
uux . . . . . . . . . . . . Execute a command on a remote system
uuxqt . . . . . . . . . . . Execute commands requested by a remote system

Files and Directories
UUCP uses the following files and directories:

/usr/lib/uucp/sys
This file contains information about remote UUCP sites with which you can communicate. uucico uses its
information to connect to remote systems; sets permissions for the directories that a given remote system
can write into or read from; establishes the protocol (or protocols) that can be used when communicating
with the given remote system to transfer files.

/usr/lib/uucp
This directory holds many of the UUCP executables. It also holds the following configuration files:

/usr/lib/uucp/config
Customize the configuratio of Taylor UUCP. Note that this file is not shipped with COHERENT, to
ensure that the default configuration is used; however, you can write one yourself easily enough.
For details, see the Lexicon entry config.

/usr/lib/uucp/dial
uucico uses the information in this file to communicate with modems.

/usr/lib/uucp/port
uucico uses the information in this file to communicate with a given port on your system.

/usr/spool/uucp
This directory holds log files and spool directories, as follows:

/usr/spool/uucp/.Admin
This directory holds the following administrative logging files:

/usr/spool/uucp/.Admin/xferstats
This file holds statistics about the rate at which data were transferred between your site
and a remote site.

/usr/spool/uucp/.Admin/audit.local
This file holds auditing information, as generated using the option -x with any UUCP
command.

/usr/lib/uucp/.Log
This directory holds information that detail the files transferred between your system and any
remote system. It contains one sub-directory for each UUCP command — one each for uucico,
uucp, uux, and uuxqt. Each sub-directory, in turn, contains one log file for each remote system
with which your system exchanges files, plus the file ANY, which holds information about all
remote systems. For example, file /usr/spool/uucp/.Log/uucp/lepanto logs every file that you
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have exchange with remote site lepanto via the command uucp.

/usr/spool/uucp/.Received
This directory contains one sub-directory for each remote system with which your system
exchanges files. It holds files received from that system that cannot be executed properly. If your
system is configured correctly, this directory should be empty.

/usr/spool/uucp/.Sequence
This directory holds one file for each remote system with which you exchange files. The file holds
a string from which the job most recently performed with that site was named. This sequence
number is used to identify each job uniquely. This is discussed in more detail below.

/usr/spool/uucp/.Status
This directory holds one file for each system with your system communicates via UUCP. The file
holds information about the status with which the last contact exited. For example, if your system
communicated successfully with system mwc, then file /usr/spool/uucp/.Status/mwc will hold
an entry that resembles the following:

0 0 778536664 0 SUCCESSFUL mwc

However, if your system communicates with system sales and the last session failed during
handshake, then file /usr/spool/uucp/.Status/saleswill hold something like the following:

4 7 769981110 4200 Handshake failed sales

Note that if a .Status file indicates that the last contact failed, uucico may silently refuse to dial
out to that system; UUCP is designed this way, in order to spare you the expense of repeatedly
calling a system whose connection is damaged in some way. The solution is simply to remove the
file in question. For example, if uucico refuses to dial system mwc and you know that that
system is working correctly, try removing file /usr/spool/uucp/.Status/mwc.

/usr/spool/uucp/.Temp
This directory holds one directory for each system with which your system has exchanged files.
Each sub-directory holds temporary files used by the jobs being performed for that system.

/usr/spool/uucp/.Xqtdir
The command uuxqt executes from within this directory all commands that have been spooled
onto your system for execution. It also copies into this directory all files on remote systems that a
spooled command names. Note that files reside here only briefly.

/usr/spool/uucp/sitename
This directory holds all files being uploaded to site sitename. Each file is constructed as follows:

prefix This is either D. or C.. The former indicates a data file, and the latter a command file (that
is, a file to be executed on the remote system by command uux).

site The name of the site to which the file is being uploaded.

sequence_number
This is a unique number, meant to ensure that no UUCP file clobbers another. When
UUCP is spooling a file to be transmitted to a remote site, it looks in that site’s .Sequence
file, increases the sequence number by one, uses that number to name the file, and writes
the incremented sequence number back into the site’s .Sequence file.

/usr/spool/uucp/LCK..*
Finally, files that begin with the string LCK.. are lock files. UUCP (and many other COHERENT
programs) use them to lock devices, to ensure that only one program can access a device at a time.
Each lock file contains the process identifier of the process that has locked that device, but
different programs use different conventions in naming lock files.

Programs that log users into your system lock console and terminal devices. These programs use
lock files whose names are built from the major-device number and the minor-device number of
the device being locked For example, file /usr/spool/uucppublic/LCK..2.1 locks the device with
major number 2 and minor number 1 — that is, the color virtual-console device /dev/color1.
Looking into file LCK..2.1, we see the number 6836; and when we use the command ps -alx to
look for a process with this identifier, we see the following
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color1 6836 1 fred 133 6001 w ksh
color1 8923 6836 fred 204 6001 S ttywait me

That is, user fred has logged into this system via device /dev/color1 and invoked a shell that has
process identifier 6836.

Second, when UUCP opens a port to dial out, it creates a lock file whose name includes the name
of the port on which it is dialing. For example, if UUCP is dialing out via port /dev/com3fl, it
creates file LCK..com3fl in /usr/spool/uucp. This helps to stop two UUCP process from each
trying to open the same port at the same time.

Finally, when UUCP dials a given remote site, it creates a lock file for that site. For example, if
UUCP dials site mwc, it creates lock file LCK..mwc in directory /usr/spool/uucp. This help to
prevent two different UUCP processes from attempting to dial the same site at the same time.

This concludes our discussion of UUCP’s files and directories. For more information, see the Lexicon entries
config, dial, port, and sys.

Permissions
The following gives the correct permissions and ownership for the files that comprise the UUCP system:

-rw------- uucp uucp /usr/lib/uucp/dial
-rw------- uucp uucp /usr/lib/uucp/port
-rw------- uucp uucp /usr/lib/uucp/sys
-r-sr-xr-x uucp root /usr/lib/uucp/uucico
-rwxr-xr-x uucp root /usr/lib/uucp/uuconv
-r-s--s--x root root /usr/lib/uucp/uumkdir
-r-xr-xr-x uucp uucp /usr/lib/uucp/uumvlog
-r-xr-xr-x uucp uucp /usr/lib/uucp/uurmlock
-r-xr-xr-x root root /usr/lib/uucp/uusched
-r-s--s--x uucp uucp /usr/lib/uucp/uutouch
-r-x------ uucp uucp /usr/lib/uucp/uutry
-r-sr-xr-x uucp root /usr/lib/uucp/uuxqt
-r-s--s--x uucp uucp /usr/bin/uucheck
-r-sr-xr-x uucp root /usr/bin/uucp
-r-x--x--x bin bin /usr/bin/uudecode
-r-x--x--x bin bin /usr/bin/uuencode
-r-s--s--- uucp uucp /usr/bin/uuinstall
-rwxr-xr-x root root /usr/bin/uulog
-r-sr-xr-x uucp root /usr/bin/uuname
-rwxr-xr-x root root /usr/bin/uupick
-r-sr-xr-x uucp root /usr/bin/uustat
-r-xr-xr-x root root /usr/bin/uuto
-r-sr-xr-x uucp root /usr/bin/uux

Permissions should be set properly by COHERENT when you installed it on your computer. However, if problems
arise with UUCP, be sure to check that permissions are correct. If permissions have somehow been reset
incorrectly, UUCP will not work because much of its work depends upon its being able to create and delete files in
certain restricted directories.

Should a file’s permissions be ‘‘stepped on’’ for whatever reason, use the command chmod to restore them.
Likewise, should the group or user who ‘‘owns’’ a file or directory be changed for whatever reason, you (or, to be
more exact, the superuser root can use the commands chgrp and chown to restore proper ownership. For details
on how to use these commands, see their entry in the Lexicon.

Debugging UUCP Problems
For information how to debug and solve common problems with UUCP, see the tutorial on UUCP that appears in
the front half of this manual.

See Also
asy, commands, config, cu, dial, domain, modem, mwcbbs, port, sys, terminal, uuchk, uucico, uuconv, uucp,
uucpname, uudecode, uuencode, uuinstall, uulog, uumkdir, uumvlog, uuname, uupick, uurmlock, uusched,
uustat, uuto, uutouch, uutry, uux, uuxqt
UUCP, Remote Communications Utility, tutorial
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Notes
The Lexicon entry mail gives directions on how to send mail to users on popular commercial networks.

For information on how to hook up a Trailblazer modem to run UUCP, see the Lexicon entry for modem.

The COHERENT implementation of UUCP was written by Ian Lance Taylor (ian@airs.com). It was ported to
COHERENT by Robert Chalmers (earth@nanguo.cstpl.com.au). For information on copyright and availablity of
source code, see the documentation included in file /usr/src/alien/uudoc.tar.Z.

uucp — Command
Spool files for transmission to other systems
uucp [ -cCdfmr ] [-nuser] [-xactivity] source ... dest

The command uucp spools every file source for copying to dest. source and dest can specify a remote system.

uucp recognizes the following options:

-C Copy the source file into spool directory; same as option -p. This is the default.

-c Do not copy the source file into spool directory; rather, use the file itself. The file must be readable both by
yourself and by the daemon uucico. If the file is removed before uucico processes it, the transmission of the
file will fail.

-d Create directories as required on the destination system. This is the default.

-f Do not create any directories on the remote system. If directories do not already exist, abort copying the file.

-ggrade
Assign a grade (a single ASCII character, from ‘0’ through ‘z’) to indicate the importance of the file being
transmitted. The lower the ASCII value of grade, the more important the file; thus, ‘0’ is the highest grade and
‘z’ the lowest.

-I file
Read the configuration for the remote system from file instead of from /usr/lib/uucp/sys, which is the
default.

-j Report the job’s process identifier. If you wish, you can use this identifier with the command uustat to kill
the job.

-m Send mail to requester when the file is sent; report whether the job was executed successfully.

-nuser
Send mail to user on destination system when the file is received. user can contain a path. Note that user is
relative to the destination machine, not to originating machine or to any intervening machine. For example,
consider the command:

uucp -nlepanto!fred myfile joe!/tmp

Here, you are copying myfile from your machine into directory /tmp on machine joe, and sending notification
to user fred on machine lepanto. If, however, machine joe does not know how to address machine lepanto,
then fred will never be notified of the transfer.

-p Copy the source file into spool directory; same as -C. This is the default.

-R Copy directories recursively.

-r Spool transfer request, but do not initiate uucico.

-s file
Write status upon completion of job into file.

-u user
Set user name to user.

-W Do not prefix the file’s name with the name of the current directory.

-xactivity
Log a given activity. These logs can help you debug problems with UUCP. uucp recognizes the following
activities:
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abnormal
Log abnormal events that occur while spooling a file for copying.

config Log problems that arise with reading or interpreting the configuration files dial, port, and sys.

execute
Log each step uucp takes as it executes.

spooldir
Log activity that involved the UUCP spooling directory /usr/spool/uucp and its subdirectories.

uucp writes its logging information into file /usr/spool/uucp/.Admin/audit.local.

Examples
The first example copies file foo to directory /bar on system george:

uucp foo george!/bar

The next example copies file /foo from system george into directory /tmp on your system:

uucp george!/foo /tmp

The next example copies file /foo from system george into file or directory /bar on system ivan:

uucp george!/foo ivan!/bar

Note that this assumes your system can talk to both george and ivan and that your system has permission to read
file /foo on system george as well as to write file /bar on system ivan.

The next example downloads files /foo and /bar from remote systems ivan and george into directory /tmp on
your system:

uucp ivan!/foo george!/bar /tmp

The last example downloads file foo from system ivan via system george:

uucp george!ivan!foo

For an example of using the command find with uucp to spool files automatically, see the entry for find.

Files
/usr/lib/uucp/sys — List of reachable systems
/usr/spool/uucp/.Log/*/sitename— uucp activities log files for sitename
/usr/spool/uucp/sitename — Spool directory for work

See Also
commands, mail, uucico, UUCP, uudecode, uuencode, uutouch, uuxqt

Notes
uucp was written by Ian Lance Taylor (ian@airs.com).

uucpname — System Administration
Set the system’s UUCP name
/etc/uucpname

The file /etc/uucpname sets the name by which your system is known to all other system with which it
communicates via UUCP. To rename your system, simply change the contents of this file.

The contents of /etc/uucpname is, in effect, your system’s nom de plume. It should be unique (or as unique as
possible), easily remembered, and preferably in good taste. Examples of existing systems include lepanto, smiles,
and stevesf. You should avoid names taken from popular culture, such as calvin, hobbes, or terminator: many
other people have already used them.

Note that system names must obey the following rules:

• UUCP names must be no more than 14 characters long.

• Names must consist of letters and numbers. No punctuation marks, white space, control characters, or
diacritic marks are permitted.
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• Each name must begin with a letter.

If you wish for your system to communicate with other systems in the world-wide UUCP network, you should follow
the following restrictions as well:

• UUCP names should be contain no more than seven characters.

• They should use only lower-case letters and digits.

If you are connecting to other machines we recommend that you acquire a registered Fully Qualified Domain
Name. Every person in the United States may register in the .us domain. Send mail to us-domain-
request@venera.isi.edu for information on this. If you wish to create your own domain (e.g., mwc.com), send
mail to info-request@uunet.uu.net for information on this.

See Also
Administering COHERENT, domain, UUCP

Notes
Only the superuser root can edit /etc/uucpname.

uudecode — Command
Decode a binary file sent from a remote system
uudecode [ file ]

uudecode takes a file encoded by uuencode and translates it back to binary. Any leading and trailing lines added
by uucp are discarded.

If the file is not specified, standard input is read.

Example
Consider the file tmp consisting of:

begin 644 sys
M5&AE(’%U:6-K(&)R;W=N(&9O>"!J=6UP<R!O=F5R(’1H92!L87IY(&1O9RX*

end

Note that the third line is a space followed by a newline. To decode it, type:

uudecode tmp

The output contained in file sys will be:

The quick brown fox jumps over the lazy dog.

See Also
commands, UUCP, uucp, uuencode

Notes
The user on the remote system must be able to write the file.

uuencode — Command
Encode a binary file for transmission
uuencode [ source ] file_label [ < source ] > output

uuencode prepares a file for transmission to a remote destination via uucp. It takes binary input and produces an
encoded version, consisting of printable ASCII characters, on standard output, which may be redirected or piped to
uucp.

If source is not specified, uuencode reads the standard input and writes to the standard output. If, however,
source is specified, uuencode its permissions into the uuencode’d file. file_label is the name that uudecode gives
to the file when it is decoded.

uuencode is chiefly used for mail. You cannot mail a binary file, but you can mail a uuencode’d binary. The
standard way to mail a binary is to compress it, uunecode it, split it into pieces less than 50 kilobytes each, then
mail each piece.

The format of the encoded file is as follows:
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1. A header line starting with the characters begin followed by a space. This is followed by the mode of the file
in octal and the name of the output file specified on the command line. (For details, see the Lexicon entry for
chmod). These last two fields are also separated by a space. The mode and the system name can be changed
by directing the output into a file and editing it.

2. The body of the file, consisting of a number of lines, each no more than 62 characters long, including a
newline character. Each line starts with a character count written as a single ASCII character, representing
an integer value from 0 (octal 40) to 63 (octal 135) giving the number of characters in the rest of the line. This
is followed by the encoded characters and a newline. The last line of the body is a line consisting of an ASCII
space (octal 40).

3. A trailer, which consists of the string end on a line by itself.

The encoding is done by taking three bytes and storing them in four characters, six bits per character. Each six
bits is converted to a printable character by adding 0x20 to it.

Example
Consider the file tmp, which consists of the line:

The quick brown fox jumps over the lazy dog.

To record it in file tmp.send, type:

uuencode tmp < tmp > tmp.send

The output is:

begin 644 tmp
M5&AE(’%U:6-K(&)R;W=N(&9O>"!J=6UP<R!O=F5R(’1H92!L87IY(&1O9RX*

end

Note that the third line consists of a space followed by a newline.

See Also
commands, UUCP, uucp, uudecode

Notes
uuencode expands a file by more than one third, which thus increases transmission time. This can be a factor
when sending large files.

uuinstall — Command
Install or modify UUCP
uuinstall

uuinstall help you to install UUCP on your COHERENT system. It uses screen templates, help lines, and prompts to
walk you through the installation of devices, remote systems, site names, domains, and permissions. For a
detailed description of its use, see the tutorial on UUCP in the front of this manual.

See Also
commands, UUCP

Notes
Only the superuser root can execute uuinstall.

On some terminals, the arrow keys do not move the cursor. In this case, you can use vi-style cursor-movement
keys:

H Move the cursor left
K Move the cursor up
L Move the cursor right
J Move the cursor down
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uulog — Command
Read a UUCP log
uulog [-fsystem] [-ssystem] [-nnumber] [-x]

uulog copies the last part of the file /usr/spool/uucp/.Log/uucico/system to see what uucico has done recently.
system names the remote system whose logfile will be examined. If it is not specified, logfiles for all systems are
displayed.

uulog recognizes the following options:

-fsystem
Similar to the command tail -f: this forces uulog to display UUCP activity as it is written into the log file for
system, until you interrupt it by typing <ctrl-C>.

-nnumber
Display only number lines from the end of the log.

-ssystem
Display the log file for system.

-x Display the log file for the command uuxqt rather than uucico.

Files
/usr/spool/uucp/.Log/uucico/system— uucico log file for system
/usr/spool/uucp/.Log/uuxqt/system— uuxqt log file for system

See Also
commands, UUCP

uumkdir — Command
Create UUCP directories
/usr/lib/uucp/uumkdir [-m mode ] [-p] directory ...

The command uumkdir creates each directory named on its command line. Option -m sets the permissions on the
newly created directory to mode, which must be a three-numeral octal number.

See Also
commands, UUCP

uumvlog — Command
Archive UUCP log files
uumvlog days

uumvlog copies all UUCP log files into backup files, named for their respective commands and the date upon which
the backup was performed. days gives the number of days for which backup files should be kept: if a backup file
is more than days days old, then uumvlog will delete it.

This command should be run by cron, because the UUCP log files can threaten to exhaust available file space on a
small system unless they are chopped back daily.

Files
/usr/spool/uucp/.Log/command/system— UUCP log files

See Also
commands, cron, UUCP

Notes
uumvlog manages the log files under directory /usr/spool/uucp/.Log. However, it does not touch the files in
/usr/spool/uucp/.Admin. These can grow quite large if unattended. At present, you must manage these files by
hand.
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uuname — Command
List UUCP names of known systems
uuname [ -l ]

The command uuname lists the names of all systems reachable directly by UUCP. It does so by reading the names
of the systems defined in file /usr/lib/uucp/sys, plus the name of your local system as set in file
/etc/uucpname. Command-line option -l prints the name of your local system only.

Files
/etc/uucpname — Name of local system
/usr/lib/uucp/sys — Site and remote login data

See Also
commands, UUCP

uupick — Command
Pick up a file uploaded from a remote system
/usr/bin/uupick [-s system] [-I file] [-x event] file ...

The command uupick lets you ‘‘pick up’’ each file that has been uploaded to your system via UUCP. It moves the
file into your current directory from whence it was copied on your system. It usually used to acquire files that had
been sent to your system via the script uuto.

uupick recognizes the following command-line options:

--help Print a help message, and exit.

-I file
--config file

Read configuration information from file instead of from the default configuration file.

-s system
--system system

‘‘Pick up’’ only files uploaded from system.

-v
--version

Print the version of uupick that you are running, and exit.

-x activity

-xtype[,type,...,type]
-Xtype[,type,...,type]

Log a given activity. uupick recognizes the following activities:

abnormal chat config
execute handshake incoming
outgoing port proto
spooldir uucp-proto

One -x option can name multiple activities, separated by commas. A uupick command line can contain
more than -x option.

See Also
commands, UUCP, uuto

Notes
uupick was written by Ian Taylor (ian@airs.com).

uurmlock — Command
Remove UUCP lock files
uurmlock

UUCP uses a system of lock files to ensure that sites are polled in an orderly manner. It creates a lock file named
after the site being polled, to prevent more than one invocation of uucico or another UUCP command from polling
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the same site at the same time. On occasion, if UUCP fails or crashes, it will neglect to clean up its lock files, thus
preventing itself from polling the locked sites.

The command uurmlock removes all lock files. You should run this if you suspect that UUCP has died in a
disorderly manner and has left lock files lying around unattended.

Before you run uurmlock, examine the output of the command ps to ensure that no UUCP command is running at
the moment (and so has legitimately locked a site).

Files
/usr/spool/uucp/LCK.* — UUCP lock files

See Also
commands, UUCP

Notes
Only the superuser root can run uurmlock.

Note that uurmlock removes all .LCK files from /usr/spool/uucp. Not all of these are used by UUCP; however,
this behavior is necessary to remain compatible with UNIX, and is almost always benign.

uusched — Command
Call all systems that have jobs waiting for them
/usr/lib/uucp/uusched

The one-line script uusched invokes command uucico with its option -r1, which tells uucico to call all systems
that have jobs queued up for them.

See Also
commands, uucico, UUCP

uustat — Command
UUCP status inquiry and control
uustat [-eKiMNQ] [-B lines] [-cC command] [-o hours] [-sS system] [-uU user] [-y hours]
uustat -a
uustat [-k jobid] [-r jobid]
uustat -m
uustat -p
uustat -q

The command uustat displays status information about the UUCP system. You can also use it to cancel or
rejuvinate requests made by via commands uucp or uux.

By default, uustat displays every job queued by the user who invokes this command. If the command line
includes any of the options -a, -e, -s, -S, -u, -U, -c, -C, -o, or -y, then uustat displays information about all of the
jobs that match given specifications.

The option -K can be used to kill a selected group of jobs, such as all jobs more than seven days old.

Command-line Options
uustat recognizes the following command-line options:

-a List all queued requests to transfer files.

-C command
List all jobs except those that request the execution of command. If command is ALL, list all jobs that
simply request a file transfer (as opposed to requesting the execution of some command). You cannot use
this option with the option -c. A uustat command can hold more than one -C option.

-c command
List every job that requests the execution of command. If command is ALL, uustat lists all jobs that
request the execution of a command (as opposed to simply requesting a file transfer). A uustat command
can hold more than one -c option.
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-e List queued requests to execute a program on a remote system, rather than queued requests to transfer
files. Queued execution requests are processed by uuxqt rather than uucico. A queued execution request
may await a file from a remote system. These requests are created by an invocation of the command uux.

-I file Read configuration information from file instead of from the default file /usr/lib/uucp/sys.

-i For each listed job, prompt whether to kill the job. If the first character of the input line is y or Y, the job
will be killed.

-K Kill each listed job without prompting for permission. This can be used in a script to clean up obsolete
jobs automatically.

-k jobid Kill the job with the identifier jobid. A job’s identifier is shown by the default output format, as well as by
the commands uucp or uux when invoked with option -j. A job may only be killed only by the user who
created the job, the UUCP administrator, or the superuser root. You can use the option -k more than once
on a uustat command line, to kill several jobs simultaneously.

-M For each listed job, send mail to the UUCP administrator. If the job is killed (due to -K or -i with an
affirmative response), the mail will indicate that. A comment specified by the -W option may be included.
If the job is an execution, the initial portion of its standard input will be included in the mail message; the
number of lines to include may be set with the -B option (the default is 100). If the standard input
contains null characters, it is assumed to be a binary file and is not included.

-m Display the status of conversations for all remote systems.

-N For each listed job, send mail to the user who requested the job. The mail is identical to that sent by the
option -M.

-o hours
List all jobs that have been queued longer than hours.

-p Display the status of all processes holding UUCP locks on systems or ports.

-Q Work quietly: Do not list the job, just perform the actions indicated by the options -i, -K, -M, or -N.

-q Display the status of commands, executions, and conversations for all remote systems for which
commands or executions are queued.

-r jobid Rejuvinate the job with job identifier jobid. This marks the job as having been invoked at the current time;
which, in turn, affects the output of the options -o or -y and preserves the job from any automated cleanup
daemon. The job identifier is shown by the default output format, as well as by the commands uucp and
uux when invoked with option -j. A job may only be rejuvenated by the user who created the job, by the
UUCP administrator, or the superuser root. You can use the option -r more than once on a uustat
command line, to rejuvinate several jobs simultaneously.

-S system
List all jobs except the ones queued for system. You cannot use this option with the option -s. A uustat
command can hold more than one -S option.

-s system
List every job queued for system. A uustat command can hold more than one -s option.

-U user List all jobs except the ones queued for user. You cannot use this option with the option -u. A uustat
command can hold more than one -U option.

-u user List every job queued for user. A uustat command can hold more than one -u option.

-W Specify a comment to be included in mail sent with the -M or -N options.

-x type Turn on particular debugging types. The following types are recognized:

abnormal chat config
execute handshake incoming
outgoing port proto
spooldir uucp-proto

Only abnormal, config, spooldir, and execute are meaningful for uustat.
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Multiple types may be given, separated by commas, and the -x option can appear multiple times on the
uustat command line. A number may also be given, which will turn on that many types from the foregoing
list; for example, -x 2 is equivalent to -x abnormal,chat.

-y hours
List all jobs that have been queued less than hours.

Examples
The first example displays the status of all jobs:

uustat -a

The output has the format:

jobid system user queue-date command (size)

The job identifier may be passed to the options -k or -r. The size indicates how much data is to be transferred to
the remote system, and is absent for a file-receive request. The options -s, -S, -u, -U, -c, -C, -o, and -y may be used
to control which jobs are listed.

The next example displays the status of queued execution requests:

uustat -e

The output has the format:

system requestor queue-date command

The options -s, -S, -u, -U, -c, -C, -o, and -y can be used to control which requests are listed.

The next example displays the status for all systems with queued commands:

uustat -q

This displays the system, the number of commands queued for it, the age of the oldest queued command, the
number of queued local executions, the age of the oldest queued execution, the date of the last conversation, and
the status of that conversation.

The next example displays conversation status for all remote systems:

uustat -m

The output gives the system, the date of the last conversation, and the status of that conversation. If the last
conversation failed, uustat indicates how many attempts have been made to call the system. If the retry period is
preventing calls to that system, uustat also displays the time when the next call will be permitted.

The next example displays the status of all processes that hold UUCP locks:

uustat -p

The output is exactly the same as that of the command ps for each process that holds a lock.

The next example kills all rmail commands that have been queued up waiting for delivery for over one week (168
hours).

uustat -c rmail -o 168 -K -Q -M -N -W"Queued for over 1 week"

uustat sends mail both to the UUCP administrator and to the user who requested the rmail execution. The mail
message includes the string given by the -W option. The option -Q prevents any of the jobs from being listed on the
terminal, so any output from the program will be error messages.

Files
/usr/lib/uucp/config — Configuration file.
/usr/spool/uucp — UUCP spool directory.

See Also
commands, ps, rmail, uucico, UUCP, uucp, uux, uuxqt

Notes
uustat was written by Ian Lance Taylor (ian@airs.com).
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uuto — Command
Send a file to a remote system
/usr/bin/uuto file ... file remote_system

The one-line script uuto invokes the command uucp to send each file to remote_system.

See Also
commands, UUCP, uucp

uutouch — Command
Touch a file to trigger UUCP poll
uutouch system

The command uutouch creates an empty control file for system in the directory /usr/spool/uucp/system. This
forces UUCP to poll system when uucico is called with the option -sall. If the empty file for system aready exists, it
is left alone.

There are three types of files in the spool directory /usr/spool/uucp/system:

C. Command file.

D. Data file.

X. Execute file.

Example
A typical usage is to put the following line into the cron file /usr/spool/cron/crontabs/uucp:

0 7 * * * /usr/lib/uucp/uutouch george

This forces UUCP to schedule a poll to the remote system george at 7 AM local time. The actual poll take place
when uucico is started.

Files
/usr/spool/uucp/sitename — Directory for uucp work files

See Also
commands, cron, uucico, UUCP

uutry — Command
Debugging script for UUCP
uutry remotesystem [-xdebuglevel]"

The command uutry is a script that invokes uucico to contact remotesystem, and records all debugging
information that uucico generates. uutry redirects the debugging information into file audit.local in directory
/usr/spool/uucp/.Admin. If such a file already exists, uutry renames it audit.OLD before it invokes uucico.

The option argument -x sets the debugging level to debuglevel. This is a number from zero through nine; for
information on what the debugging level means, see the Lexicon entry for the command uucico. The default level is
five.

See Also
commands, UUCP

Notes
For security reasons uutry can be run only by the superuser root.

uux — Command
Execute a command on a remote system
uux [-a user] [-rnpz] command-string

The command uux spools command-string for execution on a remote system. Usually, it is invoked by software
systems, in particular the mail system, to request that work be performed on a remote system. However, you can
also invoke uux by hand to execute a task on a remote system.
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For security reasons, you can execute on the remote system only the commands that the remote system permits
explicitly. These commands are named in the entry for your system in the remote system’s copy of
/usr/lib/uucp/sys.

If all permissions are in order, uux creates a file with the prefix X. in the remote system’s directory
/usr/spool/uucp/yoursystem, where yoursystem is the name by which the remote system knows your system.
This file is then executed by the remote system’s copy of the command uuxqt.

command-string consists of a command name followed by zero or more arguments. Both the command’s name and
the arguments may be prefixed by a system name (sitename) and an exclamation mark. Note that all special
characters must be escaped or enclosed in quotation marks to avoid being processed by your system’s shell.

For example, the simplest form of the uux command is:

uux host!command arg0 ... argN

where host is the name of the remote system being contacted, as defined in file /usr/lib/uucp/sys, command is
the name of the command to execute on the remote system, and arg0 through argN are the arguments to
command.

If an argument names a file, that file can reside on the remote system, on your system, or on some third system.
For example, the command

uux widget!lp /usr/sally/herfile

asks site widget to print its own file /usr/sally/herfile. On the other hand, the command

uux widget!lp !$HOME/myfile

requests that site widget print on its line printer the file myfile from your home directory on your home system.
Note that the ‘!’ that prefixes myfile is shorthand for the name of your system. Finally, the command

uux widget!lp lepanto!/usr/fred/hisfile

requests that system widget print file /usr/fred/hisfile, which resides on the third site lepanto. If widget does
not know how to contact site lepanto, the command fails.

If you wish, you can embed the shell operators ‘<’, ‘>’, ‘;’, or ‘|’ within a uux command. This lets you construct a
more powerful command than you could do otherwise. Commands that contain these operators must be quoted,
to ensure that your shell does not interpret them. For example, the command

uux "widget!pr /usr/sally/herfile > lepanto!~/fred/hisfile"

tells uux to use pr to format its file /usr/sally/herfile, and write the output into file
/usr/spool/uucppublic/fred/hisfileon site lepanto. (Note that the tilde ‘~’, as always, is a synonym for the home
directory of the user that is executing the command; and a uux command is always executed by user uucp whose
home directory is always /usr/spool/uucppublic.) Again, the command fails if you do not have appropriate
permissions on widget or if widget does not have appropriate permissions on lepanto.

The operator ‘-’ lets you use the standard input when constructing a uux command. For example, the command

who | uux - widget!lp

executes the who command on your system, pipes the output to uux, and tells uux to invoke the command lp on
remote system widget to print the list of users on your system.

uux attempts to transfer any needed input files to the system that will be executing the requested command. You
must enclose in parentheses any output files generated by command, to distinguish them from the names of input
file.

Command-line Options
uux recognizes the following options:

-a address
Report the status of the job to address.

-C Copy local files to the spool directory.
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-c Do not copy local files to the spool directory. This is the default. If the files are removed from their local
directory before uucico processes them, the copy fails. The files must be readable by the uucico as well as
the by the user who invokes uux.

-g grade
Set the grade of the file-transfer command. grade is a single ASCII character, from ‘0’ to ‘z’; the lower the
ASCII value of grade, the more important the files.

-I file Read configuration information from file instead of from the default file /usr/lib/uucp/sys.

-j Print job identifiers on the standard output. uux creates a job identifier for each file-copying operation
required to perform the operation. To cancel the copying of a file, pass the job identifier to the uustat with
its option -k.

-l Link local files into the spool directory. If a file cannot be linked because it is on a different device, it is
copied unless the -c option also appears (in other words, use of -l switches the default from -c to -C). If the
files are changed before uucico processes them, the changed versions will be used. The files must be
readable by the uucico as well as by the user who invoked uux.

-n Do not send mail about the status of a job, even if it fails. The default is to send mail to the requester
should the command fail.

-
-p Read the standard-input device and pipe what is read into the command to be executed.

-r Queue the uux request but do not invoke uucico to perform the transfer. The default is to initiate uucico.

-x event
Log each event in the execution of uux, where event is one of the following values: abnormal, config,
spooldir, or execute. A -x option can hold multiple events, each separated by commas; and a uux
command line can hold more than -x option.

-z Notify requester should command-string fail.

Examples
The following script prints files on a remote system. The files named on the command line are sent unprocessed to
system prnsrvr to be printed through that system’s version of command lp. Option -r tells uux not to invoke
uucico immediately, but merely spool the request for execution later.

for i in $*
do

uux -r prnsrvr!lp !$i
done

Please note that the ‘!’ that prefixes string ‘‘!$i’’ indicates that the file to be printed resides in the current directory
on your home system.

The next example copies file /foo from system george and file /bar from system norm to your system and then
invokes command cmp to compare their contents. It writes the results of the comparison into file
/tmp/cmp.results on your local system:

uux -z "!cmp -l george!/foo norm!/bar >/tmp/cmp.results"

This command assumes that your system can talk to both george and norm, and that your system has permission
to read file /foo on system george and file /bar on system norm. Option -z tells uux to send you mail when it has
successfully completed the job.

The last example compiles file mycode.c on system cserver. The command redirects all of the compiler’s error
messages into file /tmp/errors on your local system:

uux ’cserver!cc -O -o (!mycode) !mycode.c > !/tmp/errors’

Note that the name of the output file !mycode is enclosed within parentheses. This is to protect the ‘!’ from being
interpreted by uux; it will be interpreted by uuxqt on the remote system.

See Also
commands, UUCP, uuxqt
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Notes
You cannot pipe the output from a command on one system into a command on another. If command-line consists
of several commands that are connected by pipe characters ‘|’, only the first can be prefixed by a system name and
‘!’; every other command within the pipeline will be executed on the system named by the first command. For
example, consider the command:

uux "mwc!wrap -w80 -t4 < !myfile.c | prps | lp"

This command passes file myfile.c from the current directory on your current system to command wrap on system
mwc for processing; then pipes the output of wrap into prps on system mwc for transformation into PostScript;
and then pipes the output of prps into lp, again on system mwc, for printing. If you embed a ‘!’ within the
subsequent commands of a pipeline, uux will expand it into something quite unexpected (and probably
unwelcome).

It is not a good idea to use the metacharacter ‘*’ within command-line. The odds that it will be expanded into what
you want are very small.

Every command that you spool with uux is executed within a special execution directory on the remote system.
(Under COHERENT, this directory is /usr/spool/uucp/.Xqtdir; it may vary on other systems.) Before it executes
the command, UUCP copies into that special directory each file that the command names, unless that file already
resides on the system within which the command is being executed. For this reason, each file named in a uux
command must be unique, regardless of its full path name. For example, the following command will not work:

uux "marian!diff fred!/x/testfile ivan!/y/testfile > !xyz.diff"

It fails because uux (or, to be more accurate, uuxqt) copies file testfile from system fred into its execution
directory, then copy testfile from system ivan into the test directory. The second copied testfile overwrites the
first, and thus the command diff fails.

uux was written by Ian Lance Taylor (ian@airs.com).

uuxqt — Command
Execute commands requested by a remote system
uuxqt

uuxqt reads files from directory /usr/spool/uucp/sitename, and executes them. It recognizes the files to execute
(as opposed to the files that simply contain data, such as mail messages) because they are prefixed with the string
‘‘X.’’. uuxqt executes only the programs for which the remote system has permission.

uuxqt is invoked by either uucp or uucico. It is not generally considered a user-callable program.

Command-line Options
uuxqt recognizes the following command-line options:

-c command
Only execute command; ignore requests to execute any other command. For example:

uuxqt -c rmail

-s system
Only execute requests originating from system.

-I file Read configuration information from file instead of from /usr/lib/uucp/sys.

-x activity
Log each activity; activity must be one following: abnormal, config, spooldir, and execute. An -x option
can name more than one activity, with activities being separated by commas; and a uuxqt command-line
can have more than one -x option.

Files
/usr/lib/uucp/config — Configuration file
/usr/spool/uucp/sitename — Directory for execute files
/usr/spool/uucp/Log — UUCP log file
/usr/spool/uucp/Debug — Debugging file
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See Also
commands, uucico, UUCP, uucp, uux

Notes
uuxqt was written by Ian Lance Taylor (ian@airs.com).
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va_arg() — Variable Arguments
Return pointer to next argument in argument list
#include <stdarg.h>
typename *va_arg(listptr, typename)
va_list listptr, typename;

#include <varargs.h>
typename *va_arg(listptr, typename)
va_list listptr, typename;

va_arg() returns a pointer to the next argument in an argument list. It can be used with functions that take a
variable number of arguments, such as printf() or scanf(), to help write such functions portably. It is always used
with va_end() and va_start() within a function that takes a variable number of arguments.

listptr is of type va_list, which is defined in the headers <stdarg.h> and <varargs.h>. This object must first be
initialized by the macro va_start().

typename is the name of the type for which va_arg() is to return a pointer. For example, if you wish va_arg() to
return a pointer to an integer, typename should be of type int.

va_arg() can only handle ‘‘standard’’ data types, i.e., those data types that can be transformed to pointers by
appending an asterisk ‘*’.

Example
For an example of this macro, see the entry for stdarg.h.

See Also
stdarg.h, varargs.h
ANSI Standard, §7.8.1.2

Notes
There are two different versions of va_arg(): the ANSI version, which is defined in <stdarg.h>; and the UNIX version,
which is defined in <varargs.h>. For a discussion of how these implementations differ, see the entry for stdarg.h.

If there is no next argument for va_arg() to handle, or if typename is incorrect, then the behavior of va_arg() is
undefined.

The ANSI Standard demands that va_arg() be implemented only as a macro. If its macro definition is suppressed
within a program, its behavior is undefined.

va_end() — Variable Arguments
Tidy up after traversal of argument list
#include <stdarg.h>
void va_end(listptr)
va_list listptr;

#include <varargs.h>
void va_end(listptr)
va_list listptr;

va_end() helps to tidy up a function after it has traversed the argument list for a function that takes a variable
number of arguments. It can be used with functions that take a variable number of arguments, such as printf() or
scanf(), to help write such functions portably. It should be used with the routines va_arg() and va_start() from
within a function that takes a variable number of arguments.
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listptr is of type va_list(), which is declared in header stdarg.h. listptr must first have been initialized by macro
va_start.

Example
For an example of this function, see the entry for stdarg.h.

See Also
stdarg.h, varargs.h
ANSI Standard, §7.8.1.3

Notes
There are two different versions of va_end(): the ANSI version, which is defined in <stdarg.h>; and the UNIX

version, which is defined in <varargs.h>. For a discussion of how these implementations differ, see the entry for
stdarg.h.

If va_list() is not initialized by va_start(), or if va_end() is not called before a function with variable arguments
exits, then the behavior of va_end() is undefined.

va_start() — Variable Arguments
Point to beginning of argument list
#include <varargs.h>
void va_start(listptr)
va_list listptr;

#include <stdarg.h>
void va_start(listptr, rightparm)
va_list listptr, type rightparm;

va_start() is a macro that points to the beginning of a list of arguments. It can be used with functions that take a
variable number of arguments, such as printf() or scanf(), to help implement them portably. It is always used with
va_arg() and va_end() from within a function that takes a variable number of arguments.

This macro is defined in two different header files, <stdarg.h> and <varargs.h>. The former header file is the
creation of the ANSI C committee, whereas the latter originates with UNIX System V. In both implementations, the
first argument is listptr, which is of type va_list.

The implementation in <stdarg.h> (ANSI) adds a second argument, rightparm, which is the rightmost parameter
preceding the variable arguments in the function’s parameter list. Undefined behavior results if any of the
following conditions apply to rightparm: if it has storage class register; if it has a function type or an array type; or
if its type is not compatible with the type that results from the default argument promotions.

Example
For an example of this macro, see the entry for stdarg.h.

See Also
stdarg.h, varargs.h
ANSI Standard, §7.8.1.1

Notes
For a discussion of how the <stdarg.h> and <varargs.h> implementations of the variable-argument routines differ,
stdarg.h.

The ANSI Standard demands that va_start() be implemented only as a macro. If the macro definition of va_start()
is suppressed within a program, the behavior is undefined (and probably unwelcome).

varargs.h — Header File
Declare/define routines for variable arguments
#include <varargs.h>

The header file <varargs.h> prototypes and defines the routines used to manage variable arguments. These
routines are modelled after those used in UNIX System V. The routines in varargs.h were designed to give a C
compiler a semi-rational way of dealing with functions (e.g., printf()) that can take a variable number of
arguments. In brief, these routines consist of the variable-list typedef va_list, the parameter declaration va_dcl,
and the three macros va_start(), va_arg(), and va_end(). The macros respectively start the argument list, fetch the
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next member, and end the argument list.

See Also
header files, stdarg.h

Notes
These routines are also implemented in the header file <stdarg.h>, which is described in the ANSI Standard. For
details on how these implementations differ, see the entry for stdarg.h.

vfprintf() — STDIO Function (libc)
Print formatted text into stream
#include <stdarg.h>
#include <stdio.h>
int
vfprintf(fp, format, arguments)
FILE*fp; char *format; va_list arguments;

vfprintf() constructs a formatted string and writes it into the stream pointed to by fp. It translates integers,
floating-point numbers, and strings into a variety of text formats. vfprintf() can handle a variable list of arguments
of various types. It is roughly equivalent to fprintf()’s conversion specifier %r.

format points to a string that can contain text, character constants, and one or more conversion specifications. A
conversion specification describes how to convert a particular data type into text. Each conversion specification is
introduced with the percent sign ‘%’. (To print a literal percent sign, use the escape sequence ‘%%’.) See printf()
for further discussion of the conversion specification, and for a table of the type specifiers that can be used with
vfprintf().

After format comes arguments. This is of type va_list, which is defined in the header file stdarg.h. It has been
initialized by the macro va_start() and points to the base of the list of arguments used by vfprintf(). For more
information, see the Lexicon entry for va_arg().

arguments should access one argument for each conversion specification in format, of the type appropriate to its
conversion specification. For example, if format contains conversion specifications for an int, a long, and a string,
then arguments access three arguments, being, respectively, an int, a long, and a char *. arguments can take only
the data types acceptable to the macro va_arg(), namely, the basic types that can be converted to pointers simply
by adding a ‘*’ after the type name. See va_arg() for more information on this point.

If there are fewer arguments than conversion specifications, then vfprintf()’s behavior is undefined (and probably
unwelcome). If there are more, vfprintf() evaluates and then ignores every argument without a corresponding
conversion specification. If an argument is not of the same type as its corresponding conversion specifier, then the
behavior of vfprintf() is undefined. Thus, presenting an int where vfprintf() expects a char * may generate
unwelcome results.

If it wrote the formatted string correctly, vfprintf() returns the number of characters written. Otherwise, it returns
a negative number.

See Also
fprintf(), libc, printf(), sprintf(), vprintf(), vsprintf()
ANSI Standard, §7.9.6.7

Notes
vfprintf() can construct a string up to at least 509 characters long.

vi — Command
Clone of Berkeley-style screen editor
vi [ options ] [ +cmd ] [ file1 ... file27 ]

vi is a link to the editor elvis, which is a clone of the UNIX editors ex and vi. For details on how to run vi, see the
entry for elvis in the Lexicon.

See Also
commands, ed, ex, elvis, me, view
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Notes
elvis is copyright  1990 by Steve Kirkendall, and was written by Steve Kirkendall (kirkenda@cs.pdx.edu), assisted
by numerous volunteers. It is freely redistributable, subject to the restrictions noted in included documentation.
Source code for elvis is available through the Mark Williams bulletin board, USENET, and numerous other
outlets.

elvis is distributed as a service to COHERENT customers, as is. It is not supported by Mark Williams Company.
Caveat utilitor.

vidattr() — terminfo Function
Set the terminal’s video attributes
#include <curses.h>
vidattr(newmode)
int newmode;

COHERENT comes with a set of functions that let you use terminfo descriptions to manipulate a terminal.
vidattr() sends one or more video attributes to the terminal opened by a call to setupterm(). newmode is any
combination of the macros A_STANDOUT, A_UNDERLINE, A_REVERSE, A_BLINK, A_DIM, A_BOLD, A_INVIS,
A_PROTECT, and A_ALTCHARSET, OR’d together. Their names are self-explanatory; all are defined in the header
file curses.h.

See Also
curses.h, setupterm(), terminfo, vidputs()

vidputs() — terminfo Function
Write video attributes into a function
#include <curses.h>
vidputs(newmode,outc)
int newmode;
int (*outc)();

COHERENT comes with a set of functions that let you use terminfo descriptions to manipulate a terminal.
vidputs() resets the video attributes of the terminal that had been opened by a call to setupterm().

newmode is any combination of the macros A_STANDOUT, A_UNDERLINE, A_REVERSE, A_BLINK, A_DIM,
A_BOLD, A_INVIS, A_PROTECT, and A_ALTCHARSET, OR’d together. Their names are self-explanatory; all are
defined in the header file curses.h.

outc points to a function that takes a single character as an argument, e.g., putchar().

The related function vidattr() resets video attributes without requiring a pointer to a function.

See Also
curses.h, setupterm(), terminfo, vidattr()

view — Command
Screen-oriented viewing utility
view file1 ... file27

view is a link to elvis, which is a clone of the UNIX vi/ex set of editors. Invoking elvis through this link forces it to
operate solely in read-only mode, just as the UNIX view utility operates.

For information on how to use this version of view, see the Lexicon page for elvis.

See Also
commands, ed, elvis, ex, me, vi

Notes
view is copyright  1990 by Steve Kirkendall and was written by Steve Kirkendall (kirkenda@cs.pdx.edu), assisted
by numerous volunteers. It is freely redistributable, subject to the restrictions noted in included documentation.

elvis is distributed as a service to COHERENT customers, as is. It is not supported by Mark Williams Company.
Caveat utilitor.
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virtual console — Technical Information
COHERENT system of multiple virtual consoles

The ‘‘virtual consoles’’ feature of COHERENT allows you to run multiple sessions from the system console. You can
switch between sessions on the console screen using the appropriate keystrokes. If your computer has both
monochrome and color video adapters and monitors, you can run multiple sessions on both screens
simultaneously.

For this feature to be available, your system must be configured for virtual consoles. Normally, this configuration
is done during installation. In addition, virtual console sessions must be enabled for logins prior to use. Virtual
terminals are most useful when your system is running in multiuser mode.

COHERENT allows up to ten sessions at a given time. All you need to do to access multiple sessions is to hold down
the <Ctrl> key on the system keyboard and press the digit on the numeric keypad corresponding to the desired
active session number. Simultaneously pressing keys <Ctrl> and <.> (located on the numeric keypad) will take
you to the next open virtual terminal session. Another means of switching sessions is to hold down the <Alt> key
and press one of the ‘‘function keys’’. By default, function key <F10> takes you to the next open virtual terminal
session, <F11> takes you to the previous open virtual terminal session, and <F12> toggles between the current
and previously selected sessions.

Technical Features
It is not essential to know the following in order to use virtual terminals. We provide this information for advanced
users, as well as persons wishing to customize their systems in ways not available under the default scheme used
by the COHERENT installation procedure.

Different sessions are accessed by using different device names in directory /dev. Like any character special device,
each virtual terminal screen has a major and minor number associated with it. The major number for all virtual
terminal screens is 2. The device with minor number 0 is initially the console device — this is where output
appears during startup and at other times when the system is in single-user mode. Virtual terminals are assigned
successive minor numbers. When there are both color and monochrome display adapters on the system, the color
sessions are given the lower minor numbers. For example, in a system configured for four color and four
monochrome sessions, logical devices might be numbered as follows:

crwxr-xr-x 1 root root 2 0 Mon Jun 15 14:51 /dev/console
crwxr-xr-x 1 root root 2 1 Mon Jun 15 14:51 /dev/vcolor0
crwxr-xr-x 1 root root 2 2 Mon Jun 15 14:51 /dev/vcolor1
crwxr-xr-x 1 root root 2 3 Mon Jun 15 14:51 /dev/vcolor2
crwxr-xr-x 1 root root 2 4 Mon Jun 15 14:51 /dev/vcolor3
crwxr-xr-x 1 root root 2 5 Mon Jun 15 14:50 /dev/vmono0
crwxr-xr-x 1 root root 2 6 Mon Jun 15 14:50 /dev/vmono1
crwxr-xr-x 1 root root 2 7 Mon Jun 15 14:50 /dev/vmono2
crwxr-xr-x 1 root root 2 8 Mon Jun 15 14:50 /dev/vmono3

Alternatively, using physical device numbering, successive color-only sessions can be accessed by using minor
numbers 64-79, while successive monochrome-only sessions are selected with minor numbers 80-95. The
configuration of four color plus four monochrome sessions described above could also be represented as:

crwxr-xr-x 1 root root 2 64 Mon Jun 15 14:51 /dev/color0
crwxr-xr-x 1 root root 2 65 Mon Jun 15 14:51 /dev/color1
crwxr-xr-x 1 root root 2 66 Mon Jun 15 14:51 /dev/color2
crwxr-xr-x 1 root root 2 67 Mon Jun 15 14:51 /dev/color3
crwxr-xr-x 1 root root 2 80 Mon Jun 15 14:50 /dev/mono0
crwxr-xr-x 1 root root 2 81 Mon Jun 15 14:50 /dev/mono1
crwxr-xr-x 1 root root 2 82 Mon Jun 15 14:50 /dev/mono2
crwxr-xr-x 1 root root 2 83 Mon Jun 15 14:50 /dev/mono3

The following diagram summarizes bit assignments in the virtual terminal minor number:

7654 3210
| 1=physical device, 0=logical device
|| 00=color, 01=mono, 1x=reserved

|||| terminal’s index number

The system initially defaults to a maximum of four color and four monochrome sessions. This may be altered by
patching character variables VTVGA and VTMONO. For example, to allow for six color and three monochrome
sessions, enter the following command while running as root (note that this will not take effect until after the
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system has been rebooted):

/conf/patch -v /coherent VTVGA=6:c VTMONO=3:c

Running multiple sessions on different virtual consoles requires that logins be enabled for each of the virtual
consoles. Each session must have a corresponding entry in file /etc/ttys. For example, a system allowing four
color and four monochrome sessions would have entries in /etc/ttys as follows:

0lPconsole
1lPcolor0
1lPcolor1
1lPcolor2
1lPcolor3
1lPmono0
1lPmono1
1lPmono2
1lPmono3

Device /dev/console must not be enabled when using virtual consoles! Additional lines would be present if logins
are enabled for other devices such as serial ports. Commands enable and disable may be used, as usual, to allow
or disallow logins on individual virtual consoles.

When virtual terminals are enabled, kernel output, such as messages about user traps or system panics, goes to
the currently active session (i.e., the session with the cursor showing).

Altering Virtual Consoles
To add, delete, or alter the configuration of virtual consoles, log in as the superuser root and type the following
commands:

cd /etc/conf
console/mkdev
bin/idmkcoh -o /kernel_name

where kernel_name is what you wish to name the newly built kernel. When you reboot, invoke kernel_name in the
usual manner and your new configuration will have been implemented.

See Also
Administering COHERENT, console, device drivers, enable, kb.h

Notes
Some confusion can arise when you attempt to install COHERENT to use both color and monochrome consoles.

At installation time, you are asked if you want to install both color and monochrome screens. If you reply ‘‘yes,’’
you must select only four multiscreens for each. Otherwise, you will find it difficult to address virtual consoles on
both consoles: COHERENT uses the lower function keys for virtual consoles on the color monitor, and the upper
function keys for those on the monochrome monitor.

If you have requested two consoles, COHERENT uses the color terminal by default. If you really have only a
monochrome monitor plugged into your system, you must invoke the appropriate monochrome virtual console;
otherwise, you will nothing on your monitor.

void — C Keyword
Data type

The keyword void indicates that the function does not return a value. Using void declarations makes programs
clearer and is useful in error checking. For example, a function that prints an error message and calls exit to
terminate a program should be declared void because it never returns. A function that performs a calculation and
stores its result in a global variable (rather than returning the result), or one that returns no value, should also be
declared void to prevent the accidental use of the function in an expression.

See Also
C keywords
ANSI Standard, §6.1.2.5
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volatile — C Keyword
Qualify an identifier as frequently changing

The type qualifier volatile marks an identifier as being frequently changed, either by other portions of the program,
by the hardware, by other programs in the execution environment, or by any combination of these. This alerts the
translator to re-fetch the given identifier whenever it encounters an expression that includes the identifier. In
addition, an object marked as volatile must be stored at the point where an assignment to this object takes place.

See Also
C keyword, const
ANSI Standard, §6.5.3

Notes
Although COHERENT recognizes this keyword, the semantics are not implemented in this release. Thus, storage
declared to be volatile might have references removed by optimizations that the compiler performs. The compiler
will generate a warning if the peephole optimizer is enabled and the keyword volatile is detected.

vprintf() — STDIO Function (libc)
Print formatted text into standard output stream
#include <stdarg.h>
#include <stdio.h>
int
vprintf(format, arguments)
char *format; va_list arguments;

vprintf() constructs a formatted string and writes it into the standard output stream. It translates integers,
floating-point numbers, and strings into a variety of text formats. vprintf can handle a variable list of arguments
of various types. It is roughly equivalent to printf()’s conversion specifier %r.

format points to a string that can contain text, character constants, and one or more conversion specifications. A
conversion specification defines how a particular data type is converted into a particular text format. Each
conversion specification is introduced with the percent sign ‘%’. (To print a literal percent sign, use the escape
sequence ‘%%’.) See printf() for further discussion of the conversion specification and for a table of the type
specifiers that can be used with vprintf().

After format comes arguments. This is of type va_list, which is defined in the header stdarg.h. It has been
initialized by the macro va_start() and points to the base of the list of arguments used by vprintf(). Each argument
must have basic type that can be converted to a pointer simply by adding an ‘*’ after the type name. This is the
same restriction that applies to the arguments to the macro va_arg(). For more information, see va_arg().

arguments should access one argument for each conversion specification in format of the type appropriate to
conversion specification. For example, if format contains conversion specifications for an int, a long, and a string,
then arguments access three arguments, being, respectively, an int, a long, and a char *.

If there are fewer arguments than conversion specifications, then vprintf’s behavior is undefined (and probably
unwelcome). If there are more, then vprintf() evaluates and then ignores every argument without a corresponding
conversion specification. If an argument is not of the same type as its corresponding type specification, then the
behavior of vprintf() is undefined; thus, accessing an int where vprintf() expects a char * may generate unwelcome
results.

If it writes the formatted string correctly, vprintf() returns the number of characters written; otherwise, it returns a
negative number.

See Also
fprintf(), libc, printf(), sprintf(), vfprintf(), vsprintf()
ANSI Standard, §7.9.6.8

Notes
vprintf() can construct a string up to at least 509 characters long.
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vsh — Command
Interactive graphical shell
vsh [-ddirectory] [-eirt]

vsh is the COHERENT system’s visual shell. With it, users can use arrow keys or simple keystrokes to perform
tasks under the COHERENT, such as change directories, edit files, and execute programs. Each user can program a
bank of up to nine function keys to perform complex tasks with a single keystroke. With vsh, a naive user can
access much of the power of the COHERENT system without having to learn the details of sh or ksh.

Unlike X or other windowing systems, vsh works on a character-based terminal and requires only a modest
amount of memory. It does not require a mouse.

Graphics Interface
vsh uses the curses library and terminfo descriptions. To use vsh, you must have a terminfo description
installed for the device upon which you wish to run it, and you must set the environmental variable TERM to point
correctly to that description. For example, to run vsh from your console, you should set TERM to ansipc; while to
run it from a PC that is plugged into a serial port, you should set TERM to vt100. You must have a terminfo
description for the device to which you set TERM, or vsh will behave bizarrely. For more information on devices
and how to set them, see the Lexicon entries for TERM and terminfo. For more information on terminals in
general, see the entries for terminal and console.

To ensure that TERM set correctly, you may wish to embed the command ttytype in the file /etc/profile. For
more details, see the Lexicon entry for ttytype.

If you have a non-standard terminal or have trouble displaying vsh, try invoking it with the options -e or -t. All of
vsh’s command-line options are described below.

Main Screen
When you invoke vsh, you see a screen that appears as follows:

As you can see, the screen is divided the following six sections, or windows:

• The first window, the Command Window, is the narrow window that runs across the top of the screen. This
window lists the commands that vsh can perform. You will enter this window frequently as you work with
vsh.
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• The second window, the Current Directory window, names the directory that you are currently in.

• The third window, the Destination Directory window, names the default destination directory.

• The fourth window, the File Window, extends down the left side of the screen. It lists the contents of the
current directory. You will also work frequently in this window.

• The fifth window, the System Window, is the upper window on the right side of the screen. It gives
information about the system, that is, who is running vsh, the device she is running it on, and the current
date and time. Your cursor never enters this window.

• The last window, the Status Window, gives information about the work you have performed under vsh. Again,
your cursor will never enter this window.

Across the bottom of the screen are nine ‘‘stubs,’’ one each for function keys one through nine. The stub’s text
indicates the command that vsh executes when you press that key.

The following sections discuss each window in detail.

File Window
The file window lists all of the files and directories within the current directory. This is the default window for vsh;
the cursor ordinarily rests in this window, and you will do most of your work in it.

The leftmost column in the File Window gives the name of each file and directory. Directories are given at the top
of the list; they are enclosed within brackets ‘[ ]’. The other columns give, respectively the time the file or directory
was last updated; the date it was last updated; and its permissions. For information on how to interpret the
permissions string, see the Lexicon entry for the command ls.

The top listing in the File Window is always [..], which represents the current directory’s parent directory.

The top listing in this list is highlighted by being shown in reverse video. To move the highlighting bar up and
down the list, use the arrow keys. If you press the arrow keys on your keyboard’s number pad, be sure to turn the
<NumLock> key off, or the keys will not work as you expect. If you press the (º) key, the bar shifts down one row
on the list. Pressing the (ª) key moves the bar up one row.

You can page up or page down by pressing, respectively, the keys <PgUp> and <PgDn>. The key <Home> moves
the cursor to the top of the list, and <End> moves it to the bottom. If your terminal does not implement these
keys, you can use the following control characters:

<ctrl-N> Next page (like <PgDn>)
<ctrl-P> Previous page (like <PgUp>)
<ctrl-A> Beginning (top) of list (like <Home>)
<ctrl-E> End (bottom) of list (like <End>)

Note that if the list of files and directories is too large to fit into the window, moving the bar to the bottom of the
window and pressing (º) will scroll the list. If you press the <End> key, the row moves to the last row in the list;
and if you press <Home>, it moves to the top of the list.

A scroll bar runs down the right side of the File Window. As you scroll up and down this window, the scroll bar
moves. Note that the position of the scroll bar is proportional to the highlighting bar’s position in relation to the
entire list of files, not just to its current position within the File Window. This gives you an easy way to see just
where you are in the entire file list.

If you position the highlighting bar over the name of a directory and press (¢), vsh names that directory in the
Current Directory Window and displays its contents in the File Window. For example, if you position the
highlighting bar over the entry for directory [letters] and press (¢), vsh displays the contents of directory letters
in the File Window. (If you are familiar with the Bourne or Korn shell, this has the same effect as typing the
command cd letters.) To return to the directory you had just been displaying (that is, the parent directory of
letters), use the arrow keys to move the highlighting bar to the entry [..]; then press (¢). vsh changes the
contents of the Current Directory Window, and in the File Window erases the contents of letters and displays the
contents of its parent directory.

If you press (¢) while a file is highlighted instead of a directory, vsh does the following:

1. If the file is executable, vsh executes it.
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2. If the file matches a pattern from the file-action list, vsh executes the action from the list with the file as
input. The file-action list is in file $HOME/.vsh; it looks like:

[Mm]akefile:make
*.mk:make -f %F
*.sh:sh %F
*.c:cc -c -O %F
*.sc:sc %F
*.a:ar tv %F | more
*.[1-9]:nroff -man %F | more
*.tar.F:fcat %F | tar xvf -
*.F:fcat %F | more
*.tar.Z:zcat %F | tar xvf -
*.Z:zcat %F | more

vsh recognizes most common wildcard characters; for a table of these and their meaning, see the Lexicon
entries for wildcards. The token %F stands for the file that is currently highlighted. For example, in the
above example the entry *.Z:zcat %F means that if you select a file with the suffix .Z (which usually means
that a file has been compressed), it passes that file to zcat to uncompress and display it. vsh defines many
defaults for you when it creates this file, which you can use as a model. To change the file-action list, use the
File actions sub-command of the Install command, which is described below.

3. If the file appears to be ASCII vsh displays it with the default viewer.

While vsh is working, it displays a large letter ‘X’ in reverse video in the lower right corner of the screen. This
shows that vsh is doing some internal task. vsh cannot accept any commands while the ‘X’ is displayed, so please
be patient.

Also, note that vsh cannot handle more than 1,000 files in any given directory. If a directory contains more than
1,000 files, only the first thousand will be available for use.

System Window
The system window is the upper of the two windows on the right side of the screen. The cursor never enters this
window; rather, this window simply displays information about your COHERENT system, and how you are currently
using it. It contains the following entries:

System:
This gives the name of your system, as you (or your COHERENT system administrator) has set it in file
/etc/uucpname. See the Lexicon’s entry for uucpname for more details on proper naming conventions for
COHERENT systems.

Line: This gives the device by which you are accessing your COHERENT system. If you are working on your
system’s console device, then you should see console on this line; whereas if you are accessing your
COHERENT via a PC plugged into serial port com1l, you should see com1l here. If you are using virtual
consoles, the line is shown as mono[0-8] or color[0-8]. See the Lexicon entries for console and asy for
more information about the devices through which you can access a COHERENT system.

Login: This gives the name under which you logged into COHERENT. For example, if your login identifier is fred,
then you should see fred on this line.

UID: This shows your user-identification number (or UID). This is the unique number by which your COHERENT

system knows you, as set in file /etc/passwd. For information on the UID and how to set it, see the
Lexicon entries for passwd and setuid.

GID: This gives the number and name of the user group to which you belong. Users on a COHERENT system can
be organized into groups; permissions on files can be set to include the members of your group, but
exclude all others. For information on groups, see the Lexicon entries for group and setgid.

Date: This gives today’s date (or rather, what your COHERENT system thinks today’s date is).

Time: This gives what your system thinks the current time is. If your system’s time is not set correctly, then the
time shown here will not be correct. For information on how to set the system time, see the Lexicon
entries for the commands ATclock and date.

The time can also vary depending upon what time zone your COHERENT system thinks it’s located in. For
information on timezones and how to set them correctly, see the Lexicon entry for TIMEZONE.
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Command Window
The Command Window is the top window, and stretches across the width of the screen. This window gives you
access to vsh’s commands. Some commands in the command window actually open an entire menu of commands,
with which you can perform all manner of work.

The command window contains the following entries. For convenience, the following displays the entries vertically;
the actual window displays them horizontally:

File
Directory
Options
Install
Command
Refresh
Exit
Help

When the cursor is in the File Window (which is the default) and you wish to execute one of the commands in the
Command Window, press its initial letter. For example, to execute the Refresh command, press R.

Note that the commands on this window are in two groups. A command’s behavior differs, depending upon which
group it belongs to.

The commands File, Directory, Options, and Install display a drop-down menu when you invoke it. That is
because they have more than one option available under it. If you do not wish to invoke any of the sub-commands
on that menu, you can do either of the following: You can press the <Esc> key, which erases the drop down-menu
and returns you to the File Window; or you can press the (æ) or (Æ) keys, which move you to the command in
this group that lies, respectively, to the left or to the right of the current command. For example, suppose that you
were in the File Window, and you pressed F, to invoke the File command. vsh would move the cursor into the
Command Window, and display the File Command’s drop-down window, which displays its sub-commands. If you
then pressed the <Esc> key, vsh would return you to the File Window. If you pressed the (Æ) key, vsh would
erase the File command’s drop-down window and display, instead, the drop-down window for the Directory
command. If, however, you pressed the (æ) key, vsh would erase the File command’s drop-down window and
display, instead, the drop-down window for the Help command. As you can see, vsh ‘‘wraps-around’’ the cursor —
it considers the command at the far right to be to the left of the command to the far left, and vice versa. This
concept is a little difficult to grasp when you read about it, but once you try it, it will quickly become clear.

Please note that vsh delays for one second its reaction to the <esc> key. The curses function wgetch(), which is
used to read the keyboard, needs this delay so it can distinguish between the <esc> key and the other function
keys, which all of which start with an <esc>. So, please be patient.

The other group of commands are the commands Command, Refresh, Exit, and Help each have only option, so
when you invoke one of them, it immediately begins to execute that option. When you access one of these
commands through the (Æ) and (æ) keys, each displays a drop-down menu that shows its one option.

The following describes each command in detail.

File Pressing F invokes the File command. This displays a drop-down menu that lists a set of sub-commands.
These sub-commands let you manipulate files; with them, you can edit a file, create a file, change its
permissions, rename it, erase it, print it, or do other common tasks.

To invoke a sub-command, you can do either of the following: Press the letter in the sub-command that is
underlined (each sub-command has its own unique letter with which you can invoke it); or use the (ª)

and (º) keys to move the highlighting bar to that command, and then press (¢).

The following discusses each sub-command in detail:

Copy This sub-command copies a file. Please note that the behavior of this subcommand depend upon
whether you have tagged files.

If you have tagged one or more files, vsh opens a pop-up window that requests the path name of a
directory. By default, vsh displays the destination directory, if you have set one. When you enter
the path name, vsh copies every tagged file into that directory.

If you have not tagged any files, vsh opens a pop-up window that requests that you enter a file
name or a path name. Again, if you have set a destination directory, the window displays it by
default. If you enter only a file name into this window, vsh copies the highlighted file into the

LEXICON

1314 vsh



newly named file in the current directory; if you have named an existing file, vsh prompts you
before it overwrites that file. If you enter a path name, vsh copies the highlighted file into the
directory you have named; the copied file retains its current name. If, however, you enter both a
file name and a path name, then vsh copies the highlighted file into the directory you named, and
gives it the file name that you entered.

Note that this command will not overwrite a file that you do not own; nor will it create a new file in
a directory in which you do not have write permission, or copy a file on which you do not have
read permission. For more information on copying files under COHERENT, see the Lexicon entry
for the command cp.

Move This sub-command prompts you for the name of a directory; if you have set a destination
directory, vsh displays it by default. When you confirm the destination, vsh then moves all tagged
files into it. (If no files are tagged, vsh moves only the highlighted file. For more information on
tagging, see the entry for the sub-command Tag, below.) The files retain their names in the new
directory.

This command does not move a file for which you do not have read permission, or move a file into
a directory into which you do not have write permission; nor will it move a file into a non-existent
directory (of course). For details on moving files, see the Lexicon entry for the command mv.

Delete This sub-command deletes the tagged files. (If no files are tagged, then it deletes only the
highlighted file. For more information on tagging, see the entry for the sub-command Tag, below.)
It will prompt you to confirm that you really do want to delete the file or files in question. With
regard to the mass deletion of tagged files, this sub-command lets you choose whether to do a
mass deletion or delete files one at a time.

Note that this sub-command will not delete a file that you do not own. For details on deleting
files, see the Lexicon entry for the command rm.

Rename
This sub-command lets you rename the highlighted file. It opens a pop-up window that shows the
current name of the file, and prompts you to type the new name. Press <Esc> to abort this sub-
command, or type the new name and press (¢).

It does not work with directories. It will not let you rename a file that you do not own. For details
on renaming a file, see the Lexicon entry for the command mv.

Execute
This sub-command executes the highlighted file. vsh prompts you to type the arguments you
wish to pass this file, then invokes the file with those arguments.

Note that vsh will not execute a file for which you do not have execute permission.

Access This sub-command lets you change the manner in which every tagged file can be accessed. (If no
files are tagged, the default is the highlighted file.) When you invoke it, vsh displays the following
pop-up window for each tagged file:

Change access f file filename

Owner
Read [x] Write[x] Execute[ ]

Group
Read [x] Write[ ] Execute[ ]

World
Read [x] Write[ ] Execute[ ]

Special
Set UID [ ] Set GID [ ] Set sticky[ ]

An ‘x’ in a field means that that permission is turned on; a blank means that it is turned off. Use
the arrow keys to move to the cursor the field whose status you wish to change, then enter a space
or ‘x’ to, respectively, turn off or turn on that given permission. To abort this command, press
<Esc>.
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For information what permission fields mean, see the Lexicon entry for ls. Note that you can reset
permissions only on the files you own.

Owner This lets you change the owner and group that owns each tagged file. If no files are tagged, then
this applies only to the highlighted file. When you invoke this sub-command, vsh opens a pop-up
window that shows the user and group that own a file: type the name of the user or group you
want to own the file. vsh repeats this step for each tagged file. To abort this command, press
<Esc>.

For details on changing ownership of a file, see the Lexicon entries for the command chown and
chgrp. Note that only the superuser root can run this command.

Print This passes every tagged file to the print spooler for printing. To change the default print spooler,
use the Install command’s Print spooler sub-command.

Note that vsh simply passes the file to the spooler for printing; you cannot use this to process a
file before printing it. If you try to use this feature of vsh to print a file on a PostScript printer, the
printer will hang. We suggest that you use the Command feature to print a file on a specialized
printer; it’s a little more difficult, but it works. Another approach is to use the spooler lp and
prepare a special backend script to do the processing automatically. For details on how to do that,
see the Lexicon entries for lp and printer.

View This sub-command invokes the default viewer to display the contents of every tagged file. If you
try to view the contents of a binary file, the results may not be what you expect.

Note that vsh will not display a file for which you do not have read permission. To change the
default viewer, use the Install command’s File viewer sub-command.

Edit This sub-command invokes the text editor to edit every tagged file. If no files are tagged, then edit
only the highlighted file.

The default text editor is vi, which can create problems for persons who do not know how to exit
from that editor. For a quick brush-up on vi, see the Lexicon entry for elvis. To change the
default text editor, use the Install command’s Editor sub-command. Note that COHERENT will not
let you edit a file for which you do not have read permission.

Edit new
This sub-command prompts you to type the name of a file, then invokes the editor for that file.
This can be a new file (that is, one that does not yet exist in the current directory), or a file that
already exists.

Note that if you do try to edit a binary file, you may find yourself running into difficulties.

Touch This ‘‘touches’’ every tagged file — that is, it changes the date and time that the file was last
modified, just the same as if you had just edited it.

Note that you cannot touch a file for which you do not have write permission. For more
information on touching files, see the Lexicon entry for the command touch.

Tag all This sub-command ‘‘tags’’ every file in the current directory. This lets you do mass moves or
deletions of files. When you tag a file, vsh updates the entries Files tagged and File size ta. in
the Status Window, to reflect the number and total size of the files you have just tagged. It also
prints an asterisk next to the tagged file.

When the cursor is in the File Window, you can toggle tagging on the highlighted file by pressing
the space bar. Note that the highlighted file is implicitly tagged, whether an as asterisk appears
next to it or not. For details, see the section on the Status Window, below.

Untag all
This sub-command untags all files that are tagged in the current directory. As noted above, you
can toggle the tagging of the highlighted file by pressing the space bar. This command updates the
Status Window to reflect your changes.

Select This sub-command opens a pop-up window and lets you enter a regular expression; it then tags
all files that match the expression. For example, if you enter *.c, then this sub-command tags all
files that end in the string .c.
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File type
This sub-command prints a summary of information about the type of the highlighted file.

File info
This sub-command opens a pop-up window that displays the following information about the
highlighted file or directory:

Filename
Filetype
I-Node
Links
Owner UID
Owner GID
access
modification
status changed

Filename is the name of the file. Filetype is its type, e.g., directory or regular file. I-Node gives the
number of this file’s i-node; for information on what an i-node is, see its entry in the Lexicon.
Links gives the number of links to the file. For information on what a link is, see the Lexicon
entries for ln and link(). Owner UID and Owner GID identify the owner and group that own this
file. For information on what the UID and GID are, see the Lexicon entries for setuid and setgid.
access, modification, and status changed give, respectively, the date and time the file was last
accessed, last modified, or last had its status changed.

Directory
Pressing D invokes the Directory command. This displays a drop-down menu that lists a set of sub-
commands. These sub-commands let you manipulate directories; with them, you can create a directory,
remove a directory, change permissions, and other common tasks. You can also manipulate a ‘‘directory
stack,’’ which lets you jump quickly from one directory to another without having to retype its name.

The following discusses each sub-command in detail:

Change
This lets you change the current directory. When you invoke this subcommand, vsh displays the
following pop-up window:

Enter destination path

Type the full path name of the directory you wish to enter. If this directory does not exist, or if you
cannot access it, vsh leaves you in the current directory; otherwise, it moves you to the requested
directory.

Home This moves you to your home directory.

User’s Home
This moves you to the home directory of another user. When you invoke this sub-command, vsh
asks you to name the user whose home directory you wish to enter. To abort, press <Esc>. If the
user you enter does not exist or if you do not have permission to read her home directory, vsh
leaves you in the current directory; otherwise, vsh moves you into that user’s home directory.

Set dest
Set the destination directory. This directory is saved in your .vsh file, and is restored the next
time you invoke vsh.

Push The next three sub-commands makes it easy for you to maneuver your way around the COHERENT

file system. The work by using what is called a ‘‘directory stack’’. In effect, you can tell vsh to
remember the directory you are in (this is termed ‘‘pushing’’ the directory onto the stack); then,
when you have switched to another directory, you can returned to this directory simply by
‘‘popping’’ this pushed directory from the directory stack. This lets you move around among
directories without having to retype them continually.

The Push sub-command pushes the current directory onto the directory stack. When you push a
directory, vsh increments the number next to the entry Dir. Stack in the Status Window. This
tells you how many directories you have pushed onto the directory stack.
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Pop & cd
This sub-command moves you to the last directory you pushed onto the directory stack. It also
removes that directory from directory stack. When you pop a directory from the directory stack,
vsh decrements the number next to the entry Dir. Stack in the Status Window. This tells you
how many directories remain on the directory stack.

Note that directories are popped in the order opposite from that in which they were entered. For
example, if you pushed directory /usr/bin/sys onto the directory stack, then directory
/usr/lib/mail, then /bin, invoking the Pop sub-command will return you to directory /bin, then
to /usr/lib/mail, and finally to directory /usr/include/sys.

Switch This command switches the current directory and the top entry in the directory stack.

Copy This copies the highlighted directory plus all of its contents into another directory whose name you
type into a pop-up window. It behaves much like the command cpdir.

Delete This deletes the highlighted directory. It does not work with files. If the directory has files in it,
vsh will prompt you and ask if you want the directory to vanish. If you answer ‘Y’, then vsh
removes it, files and all — just as if you had executed the command rm -rf.

vsh will not delete a directory that you do not own.

Rename
This sub-command renames the highlighted directory. vsh opens a pop-up window and prompts
you to type the new name of the directory. Press <Esc> to abort this sub-command. Note that
you can rename only directories that you own. This sub-command does not work with files.

Create This sub-command creates a new directory in the current directory. vsh prompts you for the
name of the new directory, and then creates it. Note that you can create a directory only if you
have write permission in the current directory.

Access This lets you reset the access permission on the highlighted directory. This is the directory
equivalent of the File command’s Access sub-command.

Owner This lets you reset the user and group that own a given directory. This is the directory equivalent
of the File command’s Owner sub-command. Note that only the superuser root can run this
command.

Read new
This tells vsh to re-read the current directory. vsh copies the contents of the current directory
into memory for its own use; thus, if other people manipulated the directory and its contents after
vsh read its contents, what you see in the File Window will not reflect the true state of affairs in
that directory. If you are working with a directory that is being manipulated by one or more other
people, you should issue this command from time to time, to ensure that you are working with an
accurate image of the directory’s contents.

Switch CWD
This command switches the current working directory with the destination directory.

Switch TOS
This switches the destination directory with the directory on top of the stack.

Info This is the same as the File info sub-command under the File command, described above.

Options
Pressing O invokes the Options command. Its sub-commands let you perform common system tasks. The
following discusses each sub-command in detail:

Shell This command invokes an interactive shell. When you exit from the shell (either by typing exit or
<ctrl-D>), you will be returned to vsh.

By default, vsh invokes the Bourne shell sh; to change the default shell, use the Shell sub-
command under the Install command, which is described below.

Lock terminal
This command locks your terminal. When the terminal is locked, no command can entered into it;
this lets you walk away from your terminal briefly without worrying whether anyone (e.g., your cat)
will do anything untoward under your login. The terminal remains locked until you retype the
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secret password that you entered when you invoked this sub-command

When you invoke this sub-command, a pop-up window appears with the following:

Lock Enter Password

vsh prints a ‘#’ to echo each character that you type. If you wish to abort the Lock sub-command,
press <Esc>. When you have finished entering your password, press (¢). When you have entered
the password, the following window appears:

This Terminal is locked!

Enter Password to unlock
or hit return to logoff

Type the password to return to vsh. If you (or someone else) presses (¢), you will be logged out of
COHERENT.

Messages
This sub-command lets you receive or ignore messages. A message can be sent to your terminal
by another user or another process; for example, the mail command may send a prompt to your
screen when new mail is received.

When you invoke this sub-command, vsh displays the following pop-up window:

Do you want to receive messages ?

Yes No

Use the (Æ) and (æ) keys to select the option you want, then press (¢). When you change your
message status, the information in the Status Window changes. For example, when you turn off
messaging, the following appears at the bottom of the Status Window:

You can’t get messages

For information on how COHERENT sends messages to your terminal, see the Lexicon entry for
mesg. Also, see the description of the Status Window, below.

Online manual
This lets you select an entry from the COHERENT system’s on-line manual pages. When you invoke
this sub-command, vsh displays the following pop-up window:

Enter topic, chapter is optional :

Topic:

Chapter:

Type the title of the Lexicon entry that interests you; for example, to see the Lexicon entry for the
command vsh, enter vsh in the Topic slot, then type (¢). Do not enter anything into the
Chapter slot; this does not apply to the COHERENT system. You will see on your screen the
Lexicon entry that you are now reading. If you change your mind, press <Esc> to abort this
command.

Note that if you did not install or uncompress the manual pages when you installed your
COHERENT system, this sub-command will not work. For more information on the COHERENT

manual pages, see the Lexicon entries for the commands help and man.

System news
Display news about your current system. By default, this invokes the COHERENT command msgs.

Internet news
Invoke a reader for Internet news. By default, this command invokes rn, should you have it
installed.
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Electronic mail
Invoke your mail reader. By default, this invokes mail.

Install Pressing I invokes the Install command. Its sub-commands let you modify some of vsh’s default
behaviors; in particular, it lets you program your function keys to execute some tasks you select with one
keystroke. The following discusses each sub-command in detail:

Display
This command lets you customize appearance of vsh. When you invoke this sub-command, vsh
displays the following pop-up window:

Display Attributes

Menubar
Menu color
Menu attribute
Dialog box

The entry Menubar lets you select the display attribute for the menu bar, which can be one of
bold, underline, or reverse.

The entry Menu color lets you set the menu color, which can be either normal or reverse. (This
may vary, depending on the type of terminal you are using.)

The entry Menu attribute lets you set the display attribute for pulldown menus, which can be one
of bold, underline, bold, or normal.

Finally, the entry Dialog box lets you set the display attribute for dialogue boxes, which can be
one of bold, underline, or both.

The best way to see what these commands do is to try them out. As mentioned above, the
behavior may change from device to device, depending upon the type of terminal that you are
using.

Function keys
This lets you ‘‘program’’ up to nine function keys, so you can invoke selected commands easily.
Each user can have her own list of programmed function keys.

When you invoke this sub-command, vsh displays the following drop-down menu:

Function keys

Function key 1
Function key 2

...
Function key 9

Press 1 through 9 to program the corresponding function key (or use the (ª) and (º) keys to
move then highlighting bar, then press (¢)). vsh asks you to enter the label for the function key
and the command you want that function key to invoke. When you have finished, the new label
will appear in the corresponding function-key tag at the bottom of the screen; and when you press
that function key, vsh executes the corresponding command.

For example, to make the game chase one of your function key entries, do the following: First,
press I to invoke the Install command. The press k to invoke the Function keys sub-command.
When the function-keys drop-down menu appears, press 2, for function-key F2. When the label
pop-window appears, type chase into the first slot, which holds the label Press <Tab> to jump to
the second slot, which holds the command to execute, then type /usr/games/chase. When you
have done typing, press (¢).

As you can see, the F2 stub at the bottom of the screen shows chase; and when you press F2, vsh
launches you into chase. You can program the first nine function keys to work in the same way.

You can embed the token %F as a placeholder for the current file. For example, to count the
number of lines in the current file, put the following command into a function-key definition:

wc -l %F
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Because some computers still do not have function keys (e.g., the NeXT machine), you can also
use the number keys to execute commands installed on the function keys.

By the way, for information on the highly amusing game chase, see its entry in the Lexicon.

Shell This sub-command lets you set the default shell that vsh runs when you invoke its Shell
command. When you invoke this sub-command, vsh displays the following pop-up menu:

Enter command to run a shell
(Coherent default is ’/bin/sh’)

/bin/sh

Type the shell that you want, either /bin/sh or /bin/ksh, and press (¢). (You can enter another
program if you like, but you may get some strange results if you do.) For information on each
shell, see its entry in the Lexicon.

Editor This lets you set the editor that vsh invokes when you select the Edit sub-command under the
File command. When you invoke the Editor sub-command, vsh displays the following pop-up
window:

Enter command to run an editor
(Coherent default is ’vi’)

vi

Type the editor that you want, one of ed, me, or vi; then press (¢). For information on each
editor, see its entry in the Lexicon.

Print spooler
This lets you set the spooler that vsh invokes when you select the Print sub-command under the
File command. When you invoke the Print spooler sub-command, vsh displays the following
pop-up window:

Enter command to run a print-spooler
(Coherent default is ’lpr -B’)

lpr -B

Enter the spooler that you want. For more information on the spooling commands available under
COHERENT, see the Lexicon entry printer.

Beginning with release 2.7 of vsh, this feature works with pipes. vsh understands that the token
%F represents the current file. For example, if you have a PostScript printer, you will want every
file to be processed by the command prps before you print it. Thus, enter the command:

prps %F | hpr -B

This tells vsh to filter each file through prps and pipe the output to the laser-printer spooler hpr.

Some of this functionality may not be necessary under COHERENT release 4.2, which implements
the System-V lp print spooler. See the Lexicon article printer for details.

File viewer
This lets you set the viewer that vsh invokes when you select the View sub-command under the
File command. When you invoke the File viewer sub-command, vsh displays the following pop-
up window:

Enter command to run a file view utility
(Coherent default is ’more’)

more

Enter one of more or scat. For information on how these commands differ, see their entries in the
Lexicon.
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File action
As noted above, vsh has a list of default actions that it takes when you select a file of a given type.
For example, if you invoke the File command, move the highlighting bar to a file with the suffix .c
and press (¢), vsh by default invokes the C compiler cc to compile that file.

vsh stores in the file $HOME/.vsh the list of its default actions. The File actions sub-command
invokes a special editor so you can edit this list.

When you invoke this option, vsh displays the following pop-up window:

Edit actions list
Configure action

Use the (ª) and (º) keys to move the highlighting bar to the item you want; then press (¢).

When you select Edit actions list, vsh displays a pop-up window that contains all of the default
actions. The syntax of the default actions is described above. Use the (ª) and (º) keys to move
the highlighting bar to the action you wish to edit. To erase the current line, press <ctrl-D>; to
open a new line, press <ctrl-I>.

To modify the line that is currently highlighted, press (¢). When you do so, the highlighting bar
disappears and a cursor appears. Use the (æ) and (Æ) keys to move the cursor to the point you
wish to change; typing inserts new text into the command, whereas pressing <Backspace> erases
text. When you have finished modifying the current line, press (¢). To abort modifying the
current line, press <Esc>.

When you have finished modifying the action list, press <Esc>. vsh records your changes into file
$HOME/.vsh, and returns you to the File window.

When you select the option Configure action, vsh displays a window with the prompt

Show file actions before execution ?

The cursor is under the response y, for yes. If you accept this option, vsh will prompt you for your
confirmation before it performs a default action. If you want vsh simply to go ahead and perform
its default without asking for your approval, press the (Æ) key to move the cursor to the option n,
for no, and press (¢).

Sys. news reader
Tell vsh what system news program you want it to invoke by default.

Internet news
Tell vsh what Internet news reader you want it to invoke by default.

Electronic mail
Tell vsh what mail reader you want it to invoke by default.

Command
The command Command lets you send a command directly to a COHERENT shell. This lets you invoke
commands that ordinarily are not available through vsh.

Suppose, for example, that you decided you wanted to play a session of the game tetris, and that you have
not yet programmed tetris as one of your function keys. Press C to invoke Command. vsh moves the
cursor moves to the bottom of the screen, and erases the row of boxes that describe the function keys.
You can now type the command you want, in this case /usr/games/tetris. To run the command, press
(¢); to abort entering a command and return to vsh, type <Esc>.

When you press (¢), vsh runs the command you typed. When you have finished playing tetris and have
exited from it, vsh clears the screen and displays the message:

Hit any key to continue ...

When you press a key, vsh redraws itself on your screen and returns the cursor to the File Window.

(By the way, the COHERENT version of tetris is available as part of COHware volumes 2 and 3. For
information on obtaining COHware, see the release notes that came with your copy of COHERENT.)
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Command remembers the last 40 commands that you have issued. To invoke a command that you
previous issued through Command, press the (ª) key. The last command you issued will appear in the
command slot. If you continue to press the (ª) key, others commands appear, in reverse order from when
you issued them. If you overshoot the command that you want to re-run, press the (º) key to walk back
down the list of previously issued commands. When you find the previously issued command that you
wish to rerun, just press (¢) and vsh runs it again.

You can also edit a previously issued command. The following gives lists the available editing commands:

← Move the cursor one character to the left
→ Move the cursor one character to the right
<del> Delete the character to the left
<backspace> Delete the character to the left
<ctrl-D> Delete the character over the cursor
<ctrl-P> Go to last character of the command
<ctrl-N> Go to first character of the command

A command can use environmental variables, such as $HOME. vsh will expand all environmental
variables correctly before it tries to execute the command.

You can also embed the following tokens in a command:

%F Represent the currently highlighted file
%T Represent all tagged files
%D Represent the destination directory

For example, the command

cp %T %D

copies all tagged files into the destination directory.

Refresh
The command Refresh redraws the screen. It does no other work. This is helpful if your screen has
become jumbled or scrambled for any reason — such as a message being written onto your screen by
another user.

To invoke this command, type R. vsh pauses very briefly, then the screen flickers as vsh redraws. If the
screen had been confused for any reason, invoking this command should restore to its proper state. If you
need to refresh the screen while a pop-up menu or a pop-up window is active, press <cntl-L>.

Exit The command Exit exits you from vsh. To exit from vsh, press E. In response, vsh pops the following
window onto your screen:

Do you really want to quit?

Yes No

The window is in reverse video, for emphasis. The option Yes is underlined, to show that it is the default
choice. If you really do wish to exit, press (¢); and vsh returns to the COHERENT shell.

If you changed your mind, however, and do not wish to exit, press the (Æ) key to change the option; this
will shift the underlining from option Yes to option No. Pressing enter at this point selects the No option;
vsh in response removes the pop-up window from the screen and returns you to the File Window.

If you change your mind again, though, and really do wish to exit, then press the (æ) key. The
underlining shifts back to the Yes option; and when you press (¢) you exit from vsh and return to the
shell.

Status Window
The Status Window is the lower window on the right side of the screen. The cursor never enters this window;
rather, this window gives information about how vsh is functioning, and in particular about the files that are
currently displayed in the File Window.

The Status Window contains the following entries:
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Files This gives the number of files being shown in File Window. Note that this is all files that can be scrolled
through that window, not the files that are shown in that window at this moment.

File size
This gives the total size, in bytes, of all files available through in the File Window.

Files tagged
This gives the number of files that you have tagged. See the description of the File command, above, for
details.

File size ta.
This gives the total size of all tagged files. See the description of the File command, above, for details.

Dir. Stack
This gives the number of directories that currently reside on the directory stack. As noted above, you can
‘‘push’’ directories onto the directory stack or ‘‘pop’’ them from it. By doing so, you have an easy way to
jump about from one directory to another, without having to type directory names repeatedly. See the
above description of the Directory command for more details.

You can have a maximum of ten directories on the stack.

Mail This line indicates whether you have mail waiting to be read. If you don’t, this line will say

None

whereas if you do, the line will say

Avail

and flash at you. If new mail arrives, vsh flashes

New

in that slot.

mailbox
This line gives the name of your mailbox — that is, the file that mail reads.

messages
This indicates whether your terminal can receive messages — e.g., whether a message will pop up on your
screen if someone wishes to communicate with you via the write command. For more information on how
to change the message status of your terminal, see the Lexicon entry for the command mesg.

Function Keys
The bottom of the screen show nine small boxes in reverse video. These are labelled F1 through F9. If you have
defined the key using the Function Key command, vsh displays the box the tag that you gave that key.

For example, in our above example we set key F1 to run the command ps -a, and gave it the tag ps. At the bottom
of the screen, the box labelled F1 should show ps.

For more details, see the description of the Function Key command, above.

Configuration File
vsh reads the file $HOME/.vsh to configure itself.

A typical .vsh file reads as follows:
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cwd=/v/fwb
shell=/bin/ksh
editor=me
print-spooler=hpr -B
view=more
make=make
me-disp-attr=reverse
pd-disp-color=normal
pd-disp-attr=bold
se-disp-attr=underline
pfkey1= mail mail
pfkey9=tetris /usr/games/tetris
cmd=

tetris
tetris
echo foo

cwd points to the current working directory, that is, the directory in which you have last worked with vsh. vsh
returns you to that directory when you next invoke the shell.

shell, editor, print-spooler, view, and make give, respectively, the shell, editor, print-spooler, viewer, and make
utility that you selected with the Install command. If you change one of these values, the behavior of vsh changes
to reflect the change. For example, if you change the line

editor=me

to

editor=ed

then vsh will invoke ed the next time you request the File command’ Edit sub-command.

me-disp-attr, pd-disp-color, pd-disp-attr, and se-disp-attr give the display features for, respectively, the menu
bar, the menu color, the menu attribute, and the dialogue box.

The lines pfkey1 through pfkey9 set the behavior of the function keys. The first seven characters after the equal
sign ‘=’ give the text that appears in stub at the bottom of the screen. Everything after the first seven characters
describes the command to be executed when you press that function key.

The text that follows the line cmd= lists the commands that you have executed with the command Command. You
can embed the following tokens in a command:

%F Represent the currently highlighted file
%T Represent all tagged files
%D Represent the destination directory

These are used just as they are with the Command command, described above.

Command-line Options
vsh recognizes the following options:

-ddirectory
Enter vsh and begin to work in directory. If no directory is named, then begin work in the current directory
vsh normally begins in the last directory used in your last vsh session.

-e Do not use the graphic character set. This option coarsens the appearance of vsh, but gives it a fighting
chance to run on cheap terminals that do not implement the full alternate character set of the DEC VT-100
terminal.

-i Restrict the user’s ability to run the Install command. In this mode, vsh can be used as a restricted shell,
especially if it is embedded in /etc/passwd.

-r Restrict the shell. This option turns off the following:

• The command Command
• No interactive shell can be called from the Options menu
• Most options from the Directory menu
• Most options from the Install menu
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This lets the system administrator restrict the activity of users fairly strongly.

-t This command-line option tells vsh to assume the entire VT-100 mapping. This is useful with terminals
whose system definitions are incomplete, or the alternate character set is ignored.

Files
$HOME/.vsh — Configuration file

See Also
commands, ksh, sh, terminfo, ttytype, Using COHERENT

Notes
vsh was written by Udo Munk:

To reach Udo, send e-mail to udo@mwc.com.

vsprintf() — STDIO Function (libc)
Print formatted text into string
#include <stdarg.h>
#include <stdio.h>
int
vsprintf(string, format, arguments)
char *string, *format; va_list arguments;

vsprintf() constructs a formatted string in the area pointed to by string. It translates integers, floating-point
numbers, and strings into a variety of text formats. vsprintf() can handle a variable list of arguments of various
types. It is roughly equivalent to the ‘%r’ conversion specifier to sprintf().

format points to a string that can contain text, character constants, and one or more conversion specifications. A
conversion specification describes how to convert a particular data type into a particular text format. Each
conversion specification is introduced with the percent sign ‘%’. (To print a literal percent sign, use the escape
sequence ‘%%’.) See printf() for further discussion of the conversion specification and for a table of the type
specifiers that can be used with vsprintf().

After format comes arguments. This is of type va_list, which is defined in the header file stdarg.h. It has been
initialized by the macro va_start() and points to the base of the list of arguments used by vsprintf(). For more
information, see va_arg().

arguments should access one argument for each conversion specification in format of the type appropriate to the
conversion specification. For example, if format contains conversion specifications for an int, a long, and a string,
then arguments access three arguments, being, respectively, an int, a long, and a char *. If there are fewer
arguments than conversion specifications, then vsprintf()’s behavior is undefined (and probably unwelcome). If
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there are more, vsprintf() evaluates and then ignores every argument without a corresponding conversion
specification. If an argument is not of the same type as its corresponding type specification, then the behavior of
vsprintf() is undefined; thus, accessing an int where vsprintf expects a char * may generate unwelcome results.

If it writes the formatted string correctly, vsprintf() returns the number of characters written; otherwise, it returns
a negative number.

See Also
fprintf(), libc, printf(), sprintf(), vprintf(), vsprintf()
ANSI Standard, §7.9.6.9

Notes
vsprintf() can construct a string up to at least 509 characters long.

vtkb — Device Driver
Non-configurable keyboard driver, virtual consoles

The device driver vtkb drives the keyboard on your system’s console — that is, the keyboard that is plugged
directly into your computer.

This driver recognizes the standard 83-, 101-, and 102-key AT-protocol keyboards, using the keyboard layout used
in the United States. These codes are ‘‘hard-wired’’ into the driver. Unlike the other COHERENT keyboard driver,
vtnkb, you cannot modify these settings.

vtkb is, in general, more robust than vtnkb in handling inexpensive keyboards that do not conform fully to
accepted standards.

For details on how to select a given keyboard driver, see the Lexicon entry for keyboard.

See Also
device drivers, keyboard, vtnkb

vtnkb — Device Driver
Configurable keyboard driver, virtual consoles

The device driver vtnkb drives the keyboard on your system’s console — that is, the keyboard that is plugged
directly into your computer.

Unlike the related driver vtkb, vtnkb uses a loadable translation table to interpret keystrokes. This permits you to
use any number of national keyboard mappings on your COHERENT system without changing the kernel in any
way. You can select among any number of configuration programs stored in directory /conf/kbd, or you can
create your own keymapping table to suit your preferences.

To change the layout and function-key bindings, run one of the keyboard-mapping programs kept in directory
/conf/kbd. This directory contains the C source code for the mapping tables, as well as a Makefile that helps you
rebuild the mapping programs. This rest of this article describes the structure of the driver vtnkb, and describes
how you can write or modify a keyboard-mapping program.

Internal Structure of the Driver
vtnkb understands the following ‘‘shift’’ and ‘‘lock’’ keys:

scroll Scroll lock
num Keypad <num> lock
caps <shift> or <caps> lock
lalt Left <alt> key
ralt Right <alt> key
lshift Left <shift> key
rshift Right <shift> key
lctrl Left <ctrl> key
rctrl Right <ctrl> key
altgr <alt graphic> key (non-U.S. keyboards)

vtnkb records the internal shift state, as defined by the current positions of the shift and lock keys. The shift state
is a logical combination of internal states SHIFT, CTRL, ALT, and ALT_GR. The <lshift> and <rshift> keys
combine to form the current SHIFT state for non-alphabetic keys. Alphabetic keys generally use the current state
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of the <caps-lock> key plus the left and right <shift> keys. Numeric keys on the keypad generally use the state of
the <num lock> key plus the left and right <shift> keys. The left and right <ctrl> keys form the internal CTRL
state. Likewise, the left and right <alt> keys form the internal ALT state. Note that 102-key keyboards generally
replace the right <alt> key with the <altgr> (alt graphics) key, to allow access to the alternate graphics characters
found on some keyboards.

vtnkb lets you configure or read the internal mapping tables via the following requests to ioctl(), as defined in
header file <sgtty.h>:

TIOCGETF Get function key bindings
TIOCSETF Set function key bindings
TIOCGETKBT Get keyboard table bindings
TIOCSETKBT Set keyboard table bindings

Requests TIOCGETF and TIOCSETF reference a data structure of type FNKEY, which is defined in header file
<sys/kb.h>. Structure member k_fnval is a character array that contains a series of contiguous function
key/value bindings; the end of the bindings is marked by manifest constant DELIM. You can use any value other
than DELIM as part of a function-key binding. Structure member k_nfkeys indicates how many function keys
have associated entries in k_fnval. Function keys are numbered from zero through k_nfkeys-1.

How To Write a Keyboard Table
The main difference between the keyboard drivers vtnkb and vtkb is that vtnkb uses a ‘‘supplemental’’ process to
interpret keystrokes. You can re-construct the interface to the vtnkb driver by modifying a keyboard-mapping file
and then using a support module to link that file to the driver.

As noted above, directory /conf/kbd contains the source code for a series of such supplemental programs. These
programs differ from each other only in the keyboard binding or mapping tables each uses; by selecting one such
program and linking it into vtnkb, you can switch easily from the standard keyboard layout used in the U.S. to
any of a number of layouts used in other countries. /conf/kbd also contains compiled executables, and a
Makefile that you use to construct the executables from the corresponding source files.

The keyboard-mapping file is a C program that consists of initialized tables and strings. In addition, several header
files provide the scan codes and other constants required for the key tables. This format makes the file easy to
edit, and also lets you enter characters in several different formats.

The support module, in turn, performs several tasks. These include scanning the keyboard-mapping file for errors,
reformatting the table for use by the device driver, and passing the reformatted table to the driver.

A keyboard-mapping source file consists primarily of three data structures that you must modify to support a given
keyboard mapping. The first, and simplest, of the structures is tbl_name. This is a character string that describes
the keyboard. For example, the stock 101-key U.S. AT keyboard mapping file /conf/kbd/us.c initializes this
string to:

"U.S. AT keyboard table"

The second data structure, kbtbl, is an array of key-mapping entries. It has one entry (or row) for each possible
key location. Each entry in this structure consists of 11 fields, which hold, respectively, the key number, nine
possible mapping values, and a mode field. The following example is for physical key location 3 from key-mapping
source file /conf/kbd/belgian.c:

{ K_3, 0x82, ’2’, none, none, 0x82, ’2’, ’~’, none, ’~’, O|T },

Field 1 contains the scan code set 3 code value for the desired key. Header file <sys/kbscan.h> contains manifest
constants of the form K_nnn that map the AT keyboard’s physical key number nnn to the corresponding scan code
set 3 value generated by the keyboard. In the above example, K_3 corresponds to key location three.

Fields 2 through 10 contain the key mappings corresponding to the following shift states, as follows:
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2 base or unshifted
3 SHIFT
4 CONTROL
5 CONTROL+SHIFT
6 ALT
7 ALT+SHIFT
8 ALT+CONTROL
9 ALT+CONTROL+SHIFT

10 ALT_GRAPHIC

For ‘‘regular’’ keys, the values for these nine fields are eight-bit characters; for ‘‘function’’ or ‘‘shift’’ keys, they are
special values. The symbolic constant none indicates that you want no output when the key is pressed in the
specified shift state.

In the case of a function key, the value specified is the number of the desired function key. Header file <sys/kb.h>
defines a set of symbolic constants of the form fn, where n is the number of the desired function key. You should
use these constants; they will improve the readability of your code, and they will protect your keyboard mapping
source files from any future changes in the structure of the keyboard driver.

In the case of a ‘‘shift’’ key, all nine entries must be identical and must consist of one of the following symbolic
constants: scroll, num, caps, lalt, ralt, lshift, rshift, lctrl, rctrl, or altgr. These are defined in the header file
<sys/kb.h>. Note that 83-key XT-layout keyboards only have one ‘‘control’’ and ‘‘alt’’ key, so not every shift-key
combination may be possible on your target keyboard.

The last (11th) field in the key entry is the ‘‘mode’’ field. The following symbolic constants specify the mode of the
current key:

S The specified key is a ‘‘shift’’ or ‘‘lock’’ key. Note that all entries in array k_val must be identical for a
‘‘shift’’ or ‘‘lock’’ key to work correctly.

F The specified key is a ‘‘function’’ or special key. The value of all elements of array k_val must specify a
function key number.

O The specified key is ‘‘regular’’ and requires no special processing.

C The <caps-lock> key affects this key.

M Make: generate an interrupt only upon key ‘‘make’’ (i.e., when the key is depressed). This mode is useful
for keys that do not repeat. Note that using this mode with a ‘‘shift’’ key stops you from unshifting upon
release of the key!

T Typematic: generate an interrupt when the key is depressed, and generate subsequent key-depression
interrupts while the key is depressed. The rate at which interrupts are generated is specified by the
typematic rate of the keyboard. This type is usually associated with a ‘‘regular’’ key.

MB Make/Break: generate an interrupt when the key is depressed and when it is released. No additional
interrupts are generated no matter how long the key is depressed. This mode is used for ‘‘shift’’ keys.

TMB Typematic/Make/Break: generate an interrupt when the key is first depressed; generate subsequent key
depression interrupts while the key remains depressed; and generate an interrupt when the key is
released.

The above example specifies a mode field of O|T, which corresponds to a ‘‘regular’’ key with typematic repeat, and
no special handling of the ‘‘lock’’ keys.

The last data structure, funkey, consists of an array of function-key initializers, one per function key. The
initializers are simple, quoted character strings delimited by either hexadecimal value 0xFF, octal value \377, or
symbolic constant DELIM. Note that any other value can be used as part of a function-key binding. Function keys
are numbered starting at zero.

Function keys are useful not only in the classic sense of the programmable function keys on the keyboard, but also
as a general purpose mechanism for binding arbitrary length character sequences to a given key. For example,
physical key location 16 is usually associated with the <tab> and <back tab> on the AT keyboard; and
/conf/kbd/us.c sets the key mapping table entry for key 16 as follows:

{ K_16, f42, f43, none, none, f42, f43, none, none, none, F|T },
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For traditional reasons, the <back tab> key outputs the sequence <esc>[Z whereas the <tab> key simply outputs
the horizontal-tab character <ctrl-I>. Because at least one of the mapping values for this key is more than one
character long, the key must be defined as a ‘‘function’’ key and all entries for the the key must correspond to
function-key numbers. In this example, function key number 42 was chosen for <tab>, and function key number
43 was chosen for <back tab>. The constant none indicates that you want no output when the key is pressed in
the specified shift state. The corresponding funkey initialization entries for function keys f42 and f43 are as
follows:

/* 42 */ "\t\377", /* Tab */
/* 43 */ "\033[Z\377", /* Back Tab */

We strongly recommend that you comment your function-key bindings.

You can also change function-key bindings via the command fnkey. This command lets you temporarily alter one
or more function-key mappings without changing your key-mapping sources.

Examples
Prior to the release of the 101- and 102-key, enhanced-layout AT keyboards, the <ctrl> key was positioned to the
left of ‘A’ key. Most terminals also locate the <ctrl> key there. The first example shows how to swap the left <ctrl>
key and the <caps-lock> key on a 101- and 102-key keyboard. The <caps-lock> key is physical key 30, whereas
the left <ctrl> key is physical key 58. Their respective entries in file /conf/kbd/us.c source file are as follows:

{ K_30, caps, caps, caps, caps, caps, caps, caps, caps, caps, S|M },
{ K_58, lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl, S|MB },

Note that the <caps-lock> key is defined with mode M as it is a ‘‘lock’’ key. The keyboard will interrupt only on key
depressions, because releasing a ‘‘lock’’ key has no effect. The left <ctrl> key is defined with mode MB as it is a
‘‘shift’’ key. The keyboard generates an interrupt on both key depression and key release, because the driver must
track the state of this key.

To swap the aforementioned keys, simply change all occurrences of caps to lctrl and vice-versa, as well as
swapping the mode fields. After making the changes, the entries now appear as:

{ K_30, lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl, S|MB },
{ K_58, caps, caps, caps, caps, caps, caps, caps, caps, caps, S|M },

The second example converts a 101- or 102-key keyboard table to support an XT-style 83-key keyboard layout.
The following section summarizes the ‘‘typical’’ differences found when comparing the two keyboard layouts.
Needless to say, given the extreme variety in keyboard designs, your mileage may vary:
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Location 101/102 Value 83-key Value Comments
14 none Various Keyboard-specific
30 caps lctrl
58 lctrl lalt
64 rctrl caps
65 none F2 Function Key
66 none F4 Function Key
67 none F6 Function Key
68 none F8 Function Key
69 none F10 Function Key
70 none F1 Function Key
71 none F3 Function Key
72 none F5 Function Key
73 none F7 Function Key
74 none F9 Function Key
90 num Esc
95 / num
100 * scroll
105 - none <SysReq> not used
106 + *
107 none -
108 <Enter> +
110 esc none Not on XT layout

112-123 F1-F12 none Not on XT layout
124 none none <PrtScr> not used
125 scroll none Not on XT layout
126 none none <Pause> not used

Building New Binaries
After you have modified an existing keyboard-mapping table, use the following commands to rebuild the
corresponding executables:

cd /conf/kbd
su root
make

If you have created a new keyboard mapping table, you must edit /conf/kbd/Makefile. Duplicate an existing entry
from the Makefile, and change the duplicated name to match the name of your new keyboard-mapping table.
After you have finished your editing, build an executable from your source file by simply executing the above series
of commands.

To load your new keyboard table, simply type the name of the executable that corresponds to your keyboard-
mapping file. For example, if you just built executable french from source file french.c, type the following
command:

/conf/kbd/french

If the keyboard-support module finds an error, it will print an appropriate message. If it finds no errors, it will
update the internal tables of the vtnkb keyboard driver, reprogram the keyboard, and print a message of the form:

Loaded French AT keyboard table

To ensure that the keyboard-support module is loaded automatically when you boot your COHERENT system, edit
file drvld.all to name the module you wish to use. For example, to ensure that the French keyboard table is loaded
automatically when you boot your system, insert the following command into /etc/drvld.all:

/conf/kbd/french

Disabling <Ctrl><Alt><Del>
By convention, function-key 0, when enabled, causes the computer system to reboot. This function key is usually
bound to the key sequence <ctrl><alt><del>, but you can disable it by setting the value of driver-variable KBBOOT
to zero. The installation script for configuring your console asks you if you want to turn off this feature; and if so,
it sets KBBOOT to the correct value.
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Problems With Incompatible Keyboards
If you are experiencing problems with respect to key mappings, and you installed one of the loadable keyboard
mapping tables from the keyboard selection menu, you may have an incompatible keyboard. Please note that the
COHERENT vtnkb driver (and loadable tables) only work with well-engineered keyboards, such as those built by
IBM, Cherry, MicroSwitch, or Keytronics; it may not work correctly with a poorly engineered ‘‘clone’’ keyboard.

The preferred action is to replace your keyboard with one made by one of the above-named manufacturers. If,
however, you wish to use a ‘‘clone’’ keyboard with COHERENT, your best bet is to re-install COHERENT and select
the vtkb driver instead of vtnkb. vtkb is not loadable and supports only the U.S., German, and French keyboard
layouts. For details on how to replace vtnkb with vtkb, see the Lexicon entry for keyboard.

See Also
device drivers, keyboard, vtkb
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wait — Command
Await completion of background process
wait [pid]

Typing the character ‘&’ after a command tells the shell sh to execute it as a background (or detached) process;
otherwise, it is executed as a foreground process. You can perform other tasks while a background process is
being executed. The shell prints the process id number of each background process when it is invoked. ps reports
on currently active processes.

The command wait tells the shell to suspend execution until the child process with the given pid is completed. If
no pid is given, wait suspends execution until all background processes are completed. If the process with the
given pid is not a child process of the current shell, wait returns immediately.

The shell executes wait directly.

See Also
commands, ksh, ps, sh

Notes
If a subshell invokes a background process and then terminates, wait returns immediately rather than waiting for
the termination of the grandchild process.

wait.h — Header File
Define wait routines
#include <sys/wait.h>

Header file wait.h declares prototypes for the functions wait() and waitpid(). It also defines manifest constants
used with those functions.

See Also
header files, wait(), waitpid()

wait() — System Call (libc)
Await completion of a child process
#include <sys/wait.h>
wait(statp)
int *statp;

wait() suspends execution of the invoking process until a child process (created with fork()) terminates. It returns
the process identifier of the terminating child process. If there are no children or if an interrupt occurs, it returns
-1.

If it is successful, wait() returns the process identifier of the terminated child process. In addition, wait() fills in
the integer pointed to by statp with exit-status information about the completed process. If statp is NULL, wait()
discards the exit-status information.

wait() fills in the low byte of the status-information word with the termination status of the child process. A child
process may have terminated because of a signal, because of an exit call, or have stopped execution during
ptrace(). Termination with exit(), which is normal completion, gives status 0. Other terminations give signal
values as status (as defined in the article on signal()). The 0200 bit of the status code indicates that a core dump
was produced. A status of 0177 indicates that the process is waiting for further action from ptrace().

The high byte of the returned status is the low byte of the argument to the exit() system call.
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If a parent process does not remain in existence long enough to wait() on a child process, the child process is
adopted by process 1 (the initialization process).

Example
For an example of this system call, see the entry for msgget().

See Also
_exit(), fork(), ksh, libc, ptrace(), signal(), sh, waitpid(), wait.h
POSIX Standard, §3.2.1

waitpid() — System Call (libc)
Wait for a process to terminate
#include <sys/types.h>
#include <sys/wait.h>
pid_t waitpid(pid,status, flags)
pid_t pid; int *status, flags;

waitpid() waits until a given process terminates. pid identifies the child process whose termination is awaited.
The value of pid sets the behavior of waitpid(), as follows:

pid>0 Wait for the termination of the child process whose identifier is pid.

pid=0 Wait for the termination of any child in the current process group.

pid=-1 Wait for the termination of any child process. In this mode, waitpid() behaves the same as the system call
wait().

pid<-1 Wait for termination of any child in the group given by -pid.

status points to the place where you want waitpid() to write the termination status of pid.

flags is the logical OR of the following values:

WNOHANG
If pid has already terminated, write its termination status into status; but if pid has not yet terminated, do
not wait for it to do so.

WUNTRACED
Report the status of every child process of pid that is stopped, and whose status has not been returned
since it stopped.

By default, waitpid() returns the process identifier of the chid process whose status is being reported, or -1 if
something went wrong. If flags includes WNOHANG, waitpid() returns zero if no status information is available.

See Also
libc, wait(), wait.h
POSIX Standard, §3.2.1

wall — Command
Send a message to all logged-in users
/etc/wall

wall types a message to every user currently logged into the COHERENT system, with the exception of the sender. It
can be used to inform users of information of general interest; for example, that man has landed on the moon, or
that the system is going down in 15 minutes.

wall reads the message to be broadcast from the standard input until end of file. When it sends the message, it
prefaces it with the herald ‘‘Broadcast message ...’’, which includes an audible warning. Only the superuser should
invoke /etc/wall (to override access protections of the target terminals).

Files
/etc/utmp — Current users file
/dev/tty*
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See Also
commands, msg, who, write

Diagnostics
The message ‘‘Cannot send to user on ttyname’’ indicates that wall cannot write to the given user.

wc — Command
Count words, lines, and characters in text files
wc [-clw] [file...]

wc counts words, lines, and characters in each file. If no file is given, wc uses the standard input. If more than
one file is given, wc also prints a total for all of the files.

wc defines a word to be a string of characters surrounded by white space (blanks, tabs, or newlines). It defines the
number of lines to be the number of newline characters in the file, plus one.

wc recognizes the following options:

-c Count only characters.

-l Count only lines.

-w Count only words.

The default action is to print all counts.

See Also
commands

welcome — System Administration
Welcome a new user
/etc/default/welcome

The command login normally displays the contents of file $HOME/.lastlogin when you log in. This file holds the
date and time that you last logged into your COHERENT system.

If this file does not exist, login assumes that you are logging in for the first time, and executes the script
/etc/default/welcome. This script displays information about COHERENT, to help welcome you to it and provide
you with a ‘‘friendly’’ environment.

For information on what this file does, you should read it. If you wish, you can modify this file to suit the layout
and special features of your system.

See Also
Administering COHERENT, login, newusr

whence — Command
List a command’s type
whence [-v] command ...

The command whence is built into the Korn shell ksh. It lists the type for each command. Option -v lists function
and alias values as well.

See Also
commands, ksh

whereis — Command
Locate source, binary, and manual files
whereis [-bmrsu] [-BMS dir ... -f] name ...

The command whereis locates source files, binary files (executables), and manual pages (documentation) that
match a given name. Prior to searching, whereis strips name of any path information, extensions, and the s. prefix.

By default, whereis searches the following directories:
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Sources Binaries Manual Pages
/usr/src/cmd /bin /usr/man/*
/usr/src/games /usr/bin
/usr/src/local /usr/games
/usr/src/alien /usr/local
/usr/include /etc
/usr/include/sys /lib

/usr/lib

Options
whereis recognizes the following command-line options:

-b Search only for binary files.

-B Use the directory list specified by dir instead of the default directory list for binary files.

-f Terminate the directory list introduced by options -B, -M, or -S, and treat any additional command-line
arguments as file names to be searched for.

-m Search only for manual pages (documentation files).

-M Use the directory list specified by dir instead of the default directory list for manual pages.

-r Search recursively downward from the directories specified by dir or from the default directories. This option
is useful when the searched directories contain sub-directories. By default, whereis searches only the
directories specified or the default directories.

-s Search only for source files.

-S Use the directory list specified by dir instead of the default directory list for source files.

-u Search for ‘‘unusual’’ files. A file is said to be unusual if it does not have one entry for each of the three
search categories.

Please note that if you use options -B, -S, or -M, you must use the -f option to terminate the directory list specified
by dir.

Example
The following example finds all commands in directory bin that have either no corresponding source code in
directory src or no corresponding documentation in directory doc:

whereis -u -M doc -S src -B bin -f bin/*

See Also
commands, find, qfind, which

Notes
whereis is copyright  1980,1990 by The Regents of the University of California. All rights reserved.

whereis is distributed as a service to COHERENT customers, as is. It is not supported by Mark Williams
Company. Caveat utilitor.

which — Command
Locate executable files
which command ...

which displays the full path name associated with command. It searches the directories named by environment
variable PATH for the first executable that matches command and that you have permission to execute. If which
can find no executable that matches your request, an error message is displayed.

Example
The following example displays the path names that correspond to commands write, vi, myprog, and fsck:

which write vi myprog fsck
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See Also
commands, find, PATH, qfind, whereis

while — Command
Execute commands repeatedly
while sequence1 [do sequence2] done

The shell construct while controls a loop. It first executes the commands in sequence1. If the exit status is zero,
the shell executes the commands in the optional sequence2 and repeats the process until the exit status of
sequence1 is nonzero. Because the shell recognizes a reserved word only as the unquoted first word of a
command, both do and done must occur unquoted at the start of a line or preceded by ‘;’.

The shell commands break and continue may be used to alter control flow within a while loop. The until
construct has the same form as while, but the sense of the test is reversed.

The shell executes while directly.

See Also
break, commands, continue, ksh, sh, test, until

while — C Keyword
Introduce a loop
while(condition)

while is a C keyword that introduces a conditional loop. condition is tested on reiteration of the loop, and the loop
ends when condition is no longer satisfied. For example,

while (foo < 10)

introduces a loop that will continue until the variable foo is reset to ten or greater. Note that the statement

while (1)

will loop forever, unless interrupted by a break, goto, or return statement.

See Also
break, C keywords, continue, do, for
ANSI Standard, §6.6.5.1

who — Command
Print who is logged in
who [file] [am i]

The command who prints the names of the users who are logged in to the system. For each user, who prints her
name, terminal name, login date, and login time. The form who am i prints this information only about yourself.

If file is specified, who uses it instead of /etc/utmp to obtain information about who is logged in. This is useful,
for example, with the file /usr/adm/wtmp, which contains a continuous record of logins, logouts and reboots.
When file is specified, who displays logouts; otherwise, they are suppressed.

Files
/etc/utmp — To get user information

See Also
ac, commands, sa

wildcards — Definition
Wildcards are characters that, in some circumstances, can represent a range of ASCII characters. Another name
for them is ‘‘metacharacters’’. The wildcards available under COHERENT are as follows:

? Match any one character.

* Match any number of characters, or no characters at all.
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[ ] A set of characters enclosed between ‘[’ and ‘]’ match any one character of the set. Sets of characters may
include ranges, such as [a-z] for all lower-case letters or [0-9] for all numerals.

[! ] A set of characters enclosed between ‘[!’ and ‘]’ match any one character except one of the set. Sets of
characters may include ranges, such as [a-z] for all lower-case letters or [0-9] for all numerals. For
example, the command

ls [!abc]*

prints the names of all files except those that begin with a, b, or c.

\ Ignore the special meaning of a wildcard.

See Also
egrep, pattern, pnmatch(), Using COHERENT

write — Command
Converse with another user
write user [ tty ]

The COHERENT system provides several commands that allow users to communicate with each other. write allows
two logged-in users to have an extended, interactive conversation.

write initiates a conversation with user. If tty is given, write looks for the user on that terminal; this is useful if a
user is marked as being logged in on more than one device. Otherwise, write holds the conversation with the first
instance of user found on any tty.

If found, write notifies user that you are beginning a conversation with him. All subsequent lines typed into write
are forwarded to the user’s terminal, except lines beginning with ‘!’, which are sent to the shell sh. Typing end of
file (usually <ctrl-D>) terminates write and sends user the message ‘‘EOT’’ to tell him that communication has
ended.

Two users typing lines to write at about the same time can cause extreme confusion, so users should agree on a
protocol to limit when each is typing. The following protocol is suggested. One user initiates a write to another,
and waits until the other user replies before beginning. The first user then types until he wishes a reply and
suffixes ‘‘o’’ (over) to indicate he is through. The other user does the same, and the conversation alternates until
one user wishes to terminate it. This user types ‘‘oo’’ (over and out). The other user replies in the same way,
indicating he too is finished. Finally each of the users leave write by typing end-of-file (usually <ctrl-D>).

Any user may deny others the permission to write to his terminal by using the command mesg.

Files
/etc/utmp
/dev/*

See Also
commands, mail, mesg, msg, sh, wall, who

Notes
You should use write only for extended conversations. Use msg to send brief communications to a logged in user,
and mail to communicate with a user who is not logged in. wall broadcasts a message to all logged in users.

write() — System Call (libc)
Write to a file
#include <unistd.h>
int write(fd, buffer, n)
int fd; char *buffer; int n;

write() writes n bytes of data, beginning at address buffer, into the file associated with the file descriptor fd. Writing
begins at the current write position, as set by the last call to either write() or lseek(). write() advances the position
of the file pointer by the number of characters written.

Example
For an example of how to use this function, see the entry for open().
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See Also
libc, unistd.h
POSIX Standard, §6.4.2

Diagnostics
write() returns -1 if an error occurred before the write() operation commenced, such as a bad file descriptor fd or
invalid buffer pointer. Otherwise, it returns the number of bytes written. It should be considered an error if this
number is not the same as n.

Notes
write() is a low-level call that passes data directly to COHERENT. Do not use it with the STDIO routines fread(),
fwrite(), fputs(), or fprintf().

wtmp — System Administration
File that records past login events
/usr/adm/wtmp

File /usr/adm/wtmp records every login event that has concluded — that is, the user has logged in and logged out
again. You can comb this file to trace which user have logged onto your system, and when.

wtmp records each active login event as a record of type utmp, which is defined in header file <utmp>. For details,
see the Lexicon entry utmp.h.

See Also
Adminstering COHERENT, utmp utmp.h
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xargs — Command
Execute a command with many arguments
xargs command argument ... argument

COHERENT limits the amount of memory available to hold a command’s arguments; therefore, a command will fail if
its list of arguments exceeds this limit. This limit is set by the constant BUFSIZ, which is defined in the header file
stdio.h.

To avoid this problem, COHERENT offers the command xargs. This command executes command and passes to it
every argument. An argument can be an option to command, the name of a file, or anything else that commands
expects. xargs then redirects the standard input into command. xargs is careful not to exceed the system-imposed
limit, which is expected to be greater than BUFSIZ. It continues to execute command with the read-in arguments
until it reaches end-of-file.

See Also
commands, exec, execution

Notes
The COHERENT implementation of xargs performs only the most basic — and most important — behaviors of xargs.
You must rewrite all scripts that depend upon the more exotic behaviors of the System-V implementation of xargs.

xgcd() — Multiple-Precision Mathematics (libmp)
Extended greatest-common-divisor function
#include <mprec.h>
void xgcd(a, b, r, s, g)
mint *a, *b, *r, *s, *g;

xgcd() is an extended version of the greatest-common-division function. It sets the multiple-precision integer (or
mint) pointed to by g to the greatest common divisor of the mint pointed to by a and that pointed to by b. It also
sets the mints pointed to by r and s so the following relation holds:

g = a × r + b × s

r, s, and g must all be distinct.

See Also
libmp
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yacc — Command

Parser generator
yacc [option ...] file
cc y.tab.c [-ly]

Many programs process highly structured input according to given rules. Compilers are a familiar example. Two
of the most complicated parts of such programs are lexical analysis and parsing (sometimes called syntax
analysis). The COHERENT system includes two powerful tools called lex and yacc to assist you in performing these
tasks. lex takes a set of lexical rules and writes a lexical analyzer, whereas yacc takes a set of parsing rules and
writes a parser; both output C source code that can be compiled into a full program.

The term yacc is an acronym for ‘‘yet another compiler-compiler’’. In brief, the yacc input file describes a context
free grammar using a BNF-like syntax. The output is a file y.tab.c; it contains the definition of a C function
yyparse(), which parses the language described in file. The output is ready for processing by the C compiler cc.
Ambiguities in the grammar are reported to the user, but resolved automatically by precedence rules. The user
must provide a lexical scanner yylex(), which you may generate with lex. The yacc library includes default
definitions of main, yylex, and yyerror, and may be included with the option -ly on the cc command line.

yacc recognizes the following options:

-d Enable debugging output; implies -v.

-hdr headerfile
Put the header output in headerfile instead of y.tab.h.

-items N
Allow N items per state. This option is designed to help yacc users deal with the ANSI C grammar.

-l listfile
Place a description of the state machine, tokens, parsing actions, and statistics in file listfile.

-sprod N
Allow N symbols per production; default, 20. This option is designed to help yacc users deal with the ANSI
C grammar.

-st Print statistics on the standard output.

-v Verbose option. Like -l, but places the listing in file y.output by default.

The following options are useful if table overflow messages appear:

-nterms N
Allow for N nonterminals; default, 100.

-prods N
Allow for N productions (rules); default, 350.

-states N
Allow for N states; default, 300.

-terms N
Allow for N terminal symbols; default 100.

-types N
Allow for N types; default, ten.
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Files
y.tab.c — C source output
y.tab.h — Default C header output
y.output — Default listing output
/lib/yyparse.c — Protoparser
/tmp/y[ao]* — Temporaries
/usr/lib/liby.a — Library

See Also
cc, commands, lex, Programming COHERENT
Introduction to yacc, Yet Another Compiler-Compiler

Diagnostics
yacc writes onto the standard error the number of R/R (reduce/reduce) and S/R (shift/reduce) conflicts
(ambiguities).

Notes
The version of yacc shipped prior to release 4.2 of COHERENT included the header file <action.h> in its output.
This file’s data are now built into parser skeleton in /lib/yyparse, thus obviating <action.h>. This header has
been dropped from COHERENT. You should re-run yacc to update the source files generated by previous versions
of yacc.

yes — Command

Print infinitely many responses
yes [ string ]

With no argument, yes prints the string y\n forever. If a string is named on the command line, then yes prints it
forever.

Example
The following example scribbles the string foo\n over a high-density, 5.25-inch floppy disk in drive 0 (drive A):

yes foo >/dev/fha0

See Also
commands
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zcat — Command
Concatenate a compressed file
zcat [ file[.Z|.gz] ... ]

zcat uncompresses each file ‘‘on the fly,’’ and prints the uncompressed text onto the standard output. Each file
must have been compressed by the command compress and have the suffix .Z, or by the command gzip and have
the suffix .gz.

If the command line names no file, zcat uncompresses matter read from the standard input.

Example
zcat is useful for extracting selected items from archives; it spares you the overhead of having to uncompress the
entire archive just to get at one or two files. For example, to extract myfile from the compressed archive
backup.tar.Z, use the following command line:

zcat backup.tar.Z | tar xvf - myfile

See Also
commands, compress, gzip, ram, uncompress

zcmp — Command
Compare compressed files
zcmp [-ls] file1[.gz] file2[.gz] [skip1 skip2]

zcmp compares two compressed files in a byte-by-byte fashion. It behaves exactly the same as cmp, except that it
de-compresses compressed files ‘‘on the fly.’’ For details on the options to zcmp see the Lexicon entry for cmp.

See Also
cmp, commands, gzip, zdiff

zdiff — Command
Compare two compressed files
zdiff [-bdefh] [-c symbol] file1 file2

zdiff compares two compressed text files, and outputs a summary of their differences. It behaves exactly the same
as diff, except that it de-compresses compressed files ‘‘on the fly.’’ For details on the options to zdiff see the
Lexicon entry for diff.

See Also
commands, diff, gzip, zcmp

zerop() — Multiple-Precision Mathematics (libmp)
Indicate if multi-precision integer is zero
#include <mprec.h>
int zerop(a)
mint *a;

zerop() returns true if the multiple-precision integer (or mint) pointed to by a is zero; otherwise, it returns false.

See Also
libmp
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zforce — Command
Force the suffix .gz onto every gzip file
zforce [ file ... ]

The command zforce examines each file, and adds the suffix .gz to it if it had been compressed with gzip. If adding
.gz would make the file’s name longer than 14 characters, zforce truncates the file’s original name to make room
for the suffix.

You should use zforce to prompt name compressed files, to ensure that gzip does not compress a file twice. You
can also zforce can be used to examine files whose names were truncated during file transfer, and properly stamp
those that were compressed.

See Also
gzip, commands

zgrep — Command
Search compressed files for a regular expression
zgrep [-abcefhilnsvxy] [pattern] [file ...]

The command zgrep searches for a string within a file that had been compressed by gzip. It behaves exactly like
grep, except that it de-compresses compressed files ‘‘on the fly.’’ For details on the options to zgrep see the Lexicon
entry for grep.

See Also
commands, grep, gzip

zip — Command
Zip files into a compressed archive
zip [-options] [-b path] [-t mmddyy] zipfile file ... [-x file ...]

The command zip compresses and archives one or more files. It resembles the program pkzip which is widely
used under MS-DOS.

zip recognizes the following command-line options:

-b pathname
Write temporary files into directory pathname.

-c Add one-line comments to the archive.

-d Delete each file from zipfile.

-e Encrypt the zipfile. zip prompts you for the encryption key.

-ee Verify the encryption key.

-f ‘‘Freshen’’ the contents of zipfile: replace the files with the files on disk, but only if the file on disk is newer
than that in zipfile.

-g ‘‘Grow’’ zipfile: that is, append files onto it.

-h Display a help message.

-i Only implode the files.

-j ‘‘Junk’’ (that is, do not record) directory names.

-k Mimic a PKZIP-made zip file.

-l Show the software license.

-m Delete each file from zipfile.

-n Do not compress special suffixes.

-o Make zipfile as old as latest entry.
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-q Operate quietly.

-r Recurse — that is, if a file is a directory, manipulate its files and those in all of its subdirectories.

-s Only compress the files — do not archive them.

-t Manipulate only the files updated since mmddyy.

-u Update: manipulate only changed or new files.

-x Exclude each file from those manipulated.

-z Add a zipfile comment.

-0 Use level-0 compression. This compress faster.

-9 Use level-9 compression. This compresses smaller.

The default action is to add or replace each file. The file ‘—’ names the standard input.

See Also
commands, compress, gunzip, gzip, unzip

Notes
Do not confuse this command with gzip.

zmore — Command
Display compressed text one page at a time
zmore [ -cdflsu ] [ -window_size ] [ +line_number ] [ +/pattern ] [ file ... ] [ - ]

The command zmore is a filter for paging through text one screenful at a time. file is a text file; the operator - tells
more to read and display the standard input.

Unlike the command more, zmore can display the contents of compressed files. It works on files compressed with
the commands compress or gzip, as well as on files that are uncompressed. If it cannot find file, zmore looks for
a file of the same name that has any of the suffices .gz, .z, or .Z.

zmore recognizes the same command-line options as more, and recognizes the same commands. For details, see
the Lexicon entry for more.

See Also
commands, gzip, more

znew — Command
Recompress .Z files to .gz files
znew [ -ftv9PK ] [ file.Z ... ]

The command znew recompresses files from .Z (compress) format to .gz (gzip) format.

znew recognizes the following command-line options:

-9 Use the slowest, most thorough compression method.

-f Force recompression of file even if file.gz already exists.

-K Keep a .Z file when it is smaller than the .gz file.

-P Use pipes for the conversion to reduce disk space usage.

-t Test the new files before deleting the originals.

-v Verbose mode: display the name and percent by which the size of each recompressed is reduced.

See Also
commands, gzip

Notes
To recompress a file already in gzip format, rename the file to replace the suffix .gz with the suffix .Z, and then
invoke znew.

LEXICON

zmore — znew 1345



znew does not maintain the time stamp if you invoke it with command-line option -P.
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