

Copyright 1992 by Mark Williams Company.
Copyright 1992 by Rod Manis.

All rights reserved.

This publication conveys information that is the property of Mark Williams Company
and Revolutionary Software, Inc. It shall not be copied, reproduced or duplicated in
whole or in part without the express written permission of Mark Williams Company
and Revolutionary Software, Inc. Mark Williams Company and Revolutionary
Software, Inc., make no warranty of any kind with respect to this material and
disclaims any implied warranties of merchantability or fitness for any particular
purpose.

COHERENT is a trademark of Mark Williams Company. /rdb is a trademark of
Revolutionary Software, Inc. /act is a trademark of Revolutionary Software, Inc.
UNIX is a trademark of AT&T. MS-DOS is a copyright of Microsoft Corporation.
dBASE is a copyright of Borland International. All other products are trademarks or
registered trademarks of the respective holders.

Revision 1 Printing 5 4 3 2 1

Published by Mark Williams Company, 60 Revere Drive, Northbrook, Illinois 60062.

E-mail: uunet!mwc!support (Technical Support)
support@mwc.com
uunet!mwc!sales (General Information)
sales@mwc.com

BIX: join mwc
CompuServ: 76256,427

This manual was written under the COHERENT operating system, using the
MicroEMACS and ed text editors. Text formatting was performed by the
COHERENT edition of the troff text formatter, using its PostScript output
function. Typesetting of this manual, from the table of contents through the
index, was performed by one script written in the COHERENT Korn shell.
Camera-ready copy was printed on a Hewlett-Packard LaserJet IIP printer using
the Pacific Page PostScript cartridge.

Printed in the U.S.A.

Table of Contents

Introduction . 1
Installing /rdb. 1

European Keyboards . 1
Data Bases and COHERENT . 2

Tables and COHERENT . 2
Operating Systems that Support COHERENT-Style Environments 2
Applications Development . 2
Data Bases. 3
COHERENT Environment . 3
Fourth Generation Systems . 3
Attempts at a Definition . 3

Previous Generations. 4
Data Structures in the Data. 5
A Revolution in Computing . 5
A Paradigm. 6
The Shell . 7

Shell Operators . 8
Compatibility with MS-DOS. 8
Conclusion. 8

Relational Data Bases. 11
Files. 11
Columns . 12
Rows . 12
Columns and Rows . 12
Shell Programming and Flat ASCII Files . 13
Lists. 13
Review . 13
Normal Relations . 14
How Is Information Accessed? . 14

Selected /rdb Commands . 14
Creating Tables and Entering Data . 16
Reports . 17
The Big Text Field Problem . 18
Non-Text Data Structures . 18
Large Tables . 19
Architectural Performance Enhancements . 19
SQL . 19
Fifth-Generation Systems . 20
References . 20

Commands, I/O, Pipes . 23
compute: Compute a New Result . 24
justify: Align Columns . 25
total: Compute Arithmetic Totals. 26
subtotal: Compute a Subtotal . 26
Quoting Commands . 28
Pipes . 28
Syntax: How To Enter Commands Correctly . 29
COHERENT Shell Scripts . 30
Report Writing. 32

i

ii The COHERENT System

Conclusion. 33
Entering Data into Tables . 35

ve: The Forms Editor . 35
Text Editor or Word Processor?. 36
enter: Mass Entry of Data . 36
update: Update a Table . 36
Programs and Other Formats . 36
Rules for Table and List File Set up . 36

Table Format . 37
List Format . 37
Tab Problems . 38
Seeing the Tabs . 38
Table-Width Problems . 38

Special Characters . 39
Data Validation: How To Get Data Right . 39

ve Form and Screen Editor . 41
ve Commands . 41

Moving Around. 41
Displaying Your Data. 42
Getting the Right Row . 43
Inserting Text . 43
Deleting Text. 44
Targets . 44
Yank, Put, and Undo . 45
For Your Information. 45
Writing Rows . 46
Getting Back to COHERENT . 46
Quit Commands. 46
Colon Commands. 47
Macros . 47
Shell Macros. 48

The Command Line. 48
File Options . 49
File Creation . 49
Using the Default File Names . 50
Automatic Row Numbering (-n) . 50
Start-up Mode Specification. 51
Initialization Option . 51

The Screen File . 51
Screen File Format . 52
Protecting Columns. 52
Setting the Cursor . 53

The Validation File . 53
Validation File Format . 53
Validation File Creation . 53
Character Range Specification . 53
Column Length Restrictions. 54

Look-Up Tables . 55
Table Creation. 55
Decode Columns . 55
Unique Columns . 56
Column Inclusion. 56

Multi-User Considerations. 56

CONTENTS

The COHERENT System iii

/rdb-ve Compatibility . 56
Limits . 57
ve Validation. 57
Control-Key Mapping. 61

Command-line Options . 62
Screen Size and Column Limits . 63

User Column in Audit Files . 63
Fast-Access Indexing From ve . 63
What Is the Cost of Indexed Searching?. 63

Data-Base Design . 65
One-to-One Relationships in One Table . 65
One-to-Many Relationships in Two Tables . 65
Many-to-many Relationships in Three Tables . 66
Planning . 67
Normalization . 68

Functional Dependency . 68
Keys. 68
Universal Relation . 69
Redundancy Problems . 69
Update Problems . 69
Insert and Delete Problems . 69
First Normal Form . 69
Second Normal Form. 70
Third Normal Form . 70
Normalizing Example. 71

Complex Queries with Joins . 73
Pipeline Join . 73
tmp1 . 74
tmp2 . 74
tmp3 . 75
Phone Book . 75

Shell Programming . 77
Data-Base Programming in COHERENT Shell Language . 77
COHERENT Utilities . 77

awk: Language to Produce Complex Reports . 78
cat: Display a Table or List File . 78
echo: Repeat a Statement . 78
grep: Find All Rows That Contain a Given String . 78
od -c: Octal Dump All Bytes as Characters . 78
sed: Stream Editor to Edit File in a Pipe . 78
sh: COHERENT Shell Programming Language . 78
spell: Check Spelling in a Table or List File . 78
tail: Display Bottom Rows of a Table or List File . 78
wc: Word Count . 79
Text Editor to Enter and Update Files . 79

Reading and Writing Data Base Files . 79
Parsing Rows . 80
Tables to Shell Variables. 80
Lists to Shell Variables. 82
Report Writing. 83

Shell Menus . 87
Example Shell Menu Program. 87
case Actions . 87

CONTENTS

iv The COHERENT System

termput and tput Commands. 88
clear Command . 88
cursor Command . 89

Tables and Forms . 91
Building a Screen Form . 91

Fast-Access Methods . 93
Appropriate Use . 93
The index and search Commands . 93

Searching . 94
Interactive . 94
Pipe Key . 94
File Input. 94
File Input by Pipe . 95
Multi-Rows, Multi-Columns, and Multi-Keys. 95

Methods of Searching . 95
Sequential . 95
Record . 96
Binary . 96
Hash . 97
Inverted or Indexed Sequential . 98
Partial Inital Match . 98
B-tree . 98

Analysis . 99
Management. 99

Miscellaneous Commands . 101
Record Locking: One at a Time . 101

Finding What to Lock . 101
lock and unlock . 101
Blanking a Record . 101

Dates: Conversion and Arithmetic . 102
Julian and Gregorian. 102
Difference . 103
Formats . 104
Conversions . 104

Set-Theory Commands. 105
Concatenating Tables . 105
Subtract One Table From Another . 105
Intersect Between Tables . 106

Combining /rdb with COHERENT . 107
Multi-User Concurrent Access to Files . 107
Screen Form Entry . 107
Security. 107
Backup . 107
Checkpoint and Recovery . 108
Validation . 108
Audit Trails and Logging. 108

Other Data-Base Systems . 109
Resource Use . 109
C Programming Unnecessary . 109
Speed . 110
Size . 110

Can You Say that in English?. 113
Data-Base Models. 113

CONTENTS

The COHERENT System v

Hierarchical . 113
Network. 114
Relational . 114
Entity-Relationship. 114
Binary . 115
Semantic Network . 115
Infological . 115
PROLOG: Programming in Logic . 115

The Grand Unified Field Theory of Information . 115
PROLOG and AI . 117

PROLOG Language and Environment . 117
Predicate Calculus . 117
Facts . 117
Questions . 118
Rules . 118

/rdb Interface to PROLOG. 118
tabletofact . 118
tabletorule . 119

Problems of PROLOG. 120
searchtree: Data-Base Tree Searching . 120

/rdb and C. 123
Don´t Do It . 123
system(): Tell Shell to Execute a Program . 123
execl(): Execute a Call . 124
execl() Shell Programs . 125
fork(): Create a Child Process. 126
Pipes . 127

One-Way Pipe . 127
Pipe to Standard Input. 128
Two-Way Pipe . 130

Programming Style . 132
Fast Access . 133
tabletostruct: Convert a Table to a C struct . 135
Read Table into Memory: getfile() and fsize() . 137
/rdb Functions: librdb.a. 139
Colroutines . 139
Display Example . 139
Debugging . 142
Fast-Access Example . 144

Manual Pages . 151
accounting terms . 153
act List all /act commands . 154
addcol. Add a column to a table . 155
adjust Create adjusted trial balance table. 155
append Add a row to a table and update index tables 156
ascii Return the ASCII value of a character 158
backup . 159
balance Create balance sheet from adjusted trial balance 159
blank Replace all data in a record with spaces. 160
bom Produce bill-of-materials from parts list 161
calcpay Post payroll to ledgerpay. 162
calculate Compute each tax form listed. 162
cap Convert first letter of each word to upper case 163

CONTENTS

vi The COHERENT System

cashflow Compute balance column of cash table 163
chartdup Check for duplicate names and accounts in chart. 165
check.rdb. Report any rows in which columns do not match head line . . 166
chr. Display the character corresponding to a number. 167
clear.rdb Clear the terminal´s screen . 168
close. Close accounting period creating journal for next 168
column display columns of a table in any order 169
commands Describe /rdb commands . 170
compresss Squeeze out all leading and trailing blanks. 170
compute Calculate columns of a table . 171
computedate. Add given number of days to a date 175
consolidate. Combine all subsidiary journals to general journal 176
cpdir.rdb Copy one directory tree to another directory 177
cstate Produce customer statement . 177
cursor. Move the cursor to the row and column requested 178
dash line . 180
datatype Display the data type of each column selected 180
dBASE crossreference . 181
dbdict Print a data-base dictionary. 184
delete Blank record and update index file. 185
difference. Output table of rows that are in only one table 186
display Write table or list file to standard output 187
domain Display invalid values in a column. 187
enter Add rows to a table or list file without an editor 190
explode Produce table of subparts and their count for a part 193
fd Test for functional dependency of columns 194
filesize Return the number of characters in a file. 195
fillform Fill a tax from with adjusted trial balance data 196
fixtotable Converts fixed length format to /rdb table format 196
foot Foot or subtotal Debits and Credit of ledger 197
getjournal Copy journals for sales, purchasing, pay systems 199
gregorian Convert column of dates for arithmetic and format change . . 199
hashkey Return the hash offset for key strings 202
head line . 202
headoff Remove an /rdb head from both table and list files 203
headon Add an /rdb header to a table 203
helpme List the help commands available 204
howmany. Display the number of commands in a directory. 204
index Set up table for search . 205
insertdash Insert dash line as second line in table 207
intersect Write table of rows that are in both input tables. 207
invoice Print invoice for a sale order . 208
jointable Join two tables into one where keys match. 209
julian Convert column of dates for arithmetic and format change . . 213
justify Left or right justify the columns of a table 213
label. Print mailing labels from a mailing list 215
length Return the length of its argument or input file. 216
letter Print form letters from a mailing list 216
like Find names that sound like another name 218
listtosh Convert list format to shell variable 218
listtotable. Convert from list to table format 219
lock Lock a record or field of a file . 221
lowercase. Transform text to lower case . 222

CONTENTS

The COHERENT System vii

maximum Display the maximum value in a column 223
mean Display the mean of a column 223
menu Root menu with some COHERENT commands. 223
minimum. Display the minimum of each column selected 226
not. Logical not, to reverse return status of command 227
number Insert a column-row number into a table or list 227
Number. Insert a column-row number into a table or list 228
pad Add extra spaces at end of last column 229
padstring Return string with blanks to fill a field 230
paste.rdb Paste together two or more tables 231
path Find the full path of a command 233
precision Display the precision of a column 233
project Write selected projects (same as column) 234
prompt Echo a string on the standard output 234
rdb List all /rdb programs in directory $RDB/bin 235
record. Find and output a record from a table. 235
rename Rename a column. 236
replace Insert a record into a file at specified location 237
report Write reports using a form and a table 239
reportwriter Sample program to write standard reports 241
rmblank Remove blank rows from a table 242
rmcore Remove all core files . 243
row Make a new table where rows match logical condition 244
sale Enter sale order, and item, update customer. 246
schema Print a table´s schema . 247
screen. Convert a form into a screen-input shell program 248
search. Search a table . 250
searchtree Seek a string node in tree table. 253
see. Display nonprinting as well as printing characters 255
seek Return the beginning and ending offset of a row. 256
select Output selected rows. 257
sorttable Sort a table by one or more columns 257
soundex Convert a name into soundex code. 259
splittable Divide a table horizontally . 260
substitute Replace old string with new string 261
subtotal. Output subtotals of columns in a table 262
tableorlist Report whether a file has table or list format. 264
tabletofact Converts a table to PROLOG fact-file format 264
tabletofix Convert /rdb table format to fixed-length format 265
tabletolist. Convert a table to list format . 266
tabletom4 Convert a table to m4 define-file format 267
tabletorule Convert a table to PROLOG rule-file format. 268
tabletosed Convert table format to sed file format 269
tabletostruct Convert table to C-language struct declaration 270
tabletotbl Convert /rdb table format to UNIX tbl/nroff format. 271
tax. Compute tax from income and tax table 272
termput. Get terminal capability from /etc/termcap file 273
testall Test all /rdb programs in directory $RDB/demo 274
testsearch Test the fast-access methods . 274
timesearch Time fast-access methods . 274
todaysdate Print today´s date in YYMMDD format. 275
total Sum a column. 275
translate Word-for-word substitution using a translation file 276

CONTENTS

viii The COHERENT System

trim Trim excess white space from a table 277
trimblank. Remove leading and trailing blanks from a string 281
tset Fetch termcap entry for a terminal type. 281
union Concatenate tables . 283
uniondict Combine three tables into translation dictionary 284
unlock Unlock a record or field of a file. 284
update.inv Multi-user update with screen form and record locking 285
update.rdb Display and edit records in any sized file 286
uppercase Convert input to all upper-case characters 289
validate Find invalid data . 291
ve Visually edit a table. 292
vilock Lock a table before editing, unlock afterward. 297
vindex. Create and display ve look-up tables 297
whatis. Display the command description and syntax 298
whatwill Display commands with functions in description 298
widest. Output the width of the widest entries in a table 299
width Display the width of each column 299
word. Convert text file into list of unique words 300

Index . 301

CONTENTS

Introduction

/rdb is a relational data-base management system for COHERENT, MS-DOS, UNIX, and other
operating systems. It is designed to use the full power of the COHERENT shell and supplemental
tools, including awk, sed, and the C language.

With /rdb, you can implement a full-featured relational data base, including a menu-driven data
input and a report writer. Also, because large portions of /rdb are written in the shell and related
COHERENT tools, /rdb serves as an excellent tutorial in learning how to use the full power of
COHERENT.

Installing /rdb
To install /rdb, log in as the superuser root. Then cd to the directory in which you want /rdb to
live, say /usr. Then use the COHERENT command install to install the program. install has the
following syntax: install version device disks, where version is the version number of the program
being installed, device is the floppy-disk drive from which the program will be installed, and disks is
the number of disks that compose the installation.

The version number appears on your /rdb manual. The number of disks is one. If you are
installing from a high-density 5.25-inch floppy disk in drive 0 (drive A), device is /dev/rha0; if you
are installing from a 3.5-inch floppy disk in drive 1 (drive B), then device is /dev/fva1. See the
COHERENT Lexicon entry for floppy disks for a table of disk sizes and devices.

For example, if you are installing version 2.0 from a 3.5-inch disk in drive 0, use the command:

/etc/install 2.0 /dev/fva0 1

COHERENT will take care of the rest.

Be sure to edit your .profile to include the directory $RDB/bin, where $RDB is the directory into
which you installed /rdb. For example, if your .profile the PATH variable as follows:

PATH=/usr/bin:/bin:$HOME/bin:.

and you have installed /rdb into directory /usr/rdb (which is the default), then you should edit
your PATH statement to read as follows:

PATH=/usr/bin:/bin:/usr/rdb/bin:$HOME/bin:.

European Keyboards

COHERENT version 3.2 lets you install any number of predefined keyboard definitions into your
keyboard driver. These let COHERENT support the keyboard layouts and national character sets for
most European countries.

If you are using /rdb with one of COHERENT’s European-ized keyboard definitions, you must
rework three programs. These programs are the table editors ve and jve, and vindex, ve’s hash
indexer. The European versions of these programs are located in directory $RDB/europe.

To use them in place of the default US keyboard versions, put the path $RDB/europe before
$RDB/bin in your PATH variable. For example, if /rdb’s home directory is /usr/rdb, then insert
the following entry into your .profile file:

export PATH=:/usr/rdb/europe:/usr/rdb/bin:"$PATH"

Or you can simply replace the US versions with the European ones:

1

2 Introduction

cd /usr/rdb
mv ./europe/* ./bin

A side effect of the European versions of these programs is that characters that exceed the decimal
value of 127 are highlighted. In other words, characters such as umlauted and accented vowels,
tilded n’s, currency symbols, etc., will be highlighted in the screen displays for ve, jve, and vindex.
To suppress highlighting of eight-bit characters, make a new entry in your /etc/termcap file by
copying the entire description for your terminal type and deleting the so (or standout) and us (or
underscore) entries, up to and including the ‘:’. For example, the following copies the termcap entry
ansipc, modifies it for European use, and makes it into a new termcap entry called an-e. The
portions in boldface are deleted:

ap-e|ansipc-eur|ansipc for european kbs:\
:al=\E[L:am:bs:bt=\E[Z:bw:cd=\E[O:ce=\E[K:ch=\E[%i%d‘:cl=\E[2O:\
:cm=\E[%i%d;%dH:co#80:cs=\E[%i%d;%dr:cv=\E[%i%dd:dl=\E[M:ho=\E[H:\
:k0=\E[0x:k1=\E[1x:k2=\E[2x:k3=\E[3x:k4=\E[4x:\
:k5=\E[5x:k6=\E[6x:k7=\E[7x:k8=\E[8x:k9=\E[9x:\
:kb=^h:kd=\E[B:kh=\E[H:kl=\E[D:kr=\E[C:ku=\E[A:\
:li#24:ll=\E[24;1H:hd=\E[C:se=\E[m:sf=\E[S:sg#0:so=\E[7m:sr=\E[T:\
:te=\Ec:ue=\E[m:up=\E[A:us=\E[4m:\
:KI=\E[5x:KD=\E[3x:Kd=\E[P:KB=\E[6x:KU=\E[4x:Ku=\E[@:KM=\E[7x:KJ=\E[8x:\
:Kt=\E[Z:KT=\t:KL=\E[1x:KR=\E[2x:KP=\E[U:Kp=\E[V:KX=\E[9x:KC=\E[0x:\
:KE=\E[24H:KW=^F:Kw=^R:Kr=^N:do=\E[B:

Once you have installed the new termcap entry, set your TERM variable in your .profile to your new
termcap entry:

export TERM=ap-e

Data Bases and COHERENT
There are two fundamental ideas that are necessary for application development in a COHERENT
environment. One is the relational model, which allows you to see all applications as simple
operations on tables. The other is the idea of using COHERENT tools to pass data through pipelines
and filter programs, instead of traditional programming.

Tables and COHERENT

First, we will introduce you to tables. All information can be entered into and manipulated in
tables. This is the fundamental idea of relational data bases. The COHERENT system itself
provides a rich and varied environment in which tables can be manipulated. After covering basic
operations, you’ll see simple data-base design principles. Then you will learn how to use
COHERENT tools. You will also be introduced to advanced data-base problems and solutions.
There are a number of examples illustrating common data-base problems and solutions, and a
model business operation and accounting-system tutorial and manual is included as a case study.
Finally, all the manual pages are appended.

Operating Systems that Support COHERENT-Style Environments

By the COHERENT environment, we mean file redirection, pipes, and COHERENT-style tools like
awk, grep, and sed. This environment can be on a computer running COHERENT, any of the
various flavors of COHERENT, or MS-DOS with UNIX tools added.

Applications Development

When a person uses a computer in his work, he usually needs to have it programmed for his
particular application. A scientist might study the data from his experiment, an entry clerk takes
orders or reservations, a business person manges his business, an accountant prepares financial
statements and tax forms, a lawyer does research and prepare briefs, and so forth. Some users can

TUTORIALS

Introduction 3

develop their own applications with COHERENT tools themselves. But most users need to have
computer professionals set up applications for them. In this case, the power of the COHERENT
environment eases the job of the developers and extends what can be done.

Data Bases

Almost all applications require some form of data base. Typically, a data-base management system
is a computer program that maintains data and performs tasks such as easing the input and
validation of data, finding data, computation and transformation of data, reporting, and so forth.

COHERENT Environment

The COHERENT system is not just an operating system. It has hundreds of programs that work
together to do most of the common computer jobs. COHERENT tools provide an entire support
environment for software application development and operation. It does so much of the work, that
the jobs of both the developer and the user are enormously simplified. But since this environment
is new to the computer profession, it is seldom used to its maximum potential. Often, developers
don’t know how to do on the COHERENT system many of the things they are used to doing on other
systems. Frequently, developers do things in the COHERENT environment in difficult or slow ways
that could be done much better if they knew how.

Many data base systems are now available on the market. But almost all are software prisons that
you must get into and leave the power of COHERENT behind. Most were developed on operating
systems other than UNIX or COHERENT. Consequently, their developers had very few software
features to build upon, and wrote the functionality they needed directly, without regard for the
features provided by the operating system. The resulting data base systems are large, complex
programs that degrade total system performance, especially when they are run in a multi-user
environment.

COHERENT provides hundreds of programs that can be piped together to easily perform almost any
function imaginable. Nothing comes close to providing the functions that come standard with
COHERENT. Programs and philosophies carried over from other systems put walls between the
user and COHERENT, and the power of COHERENT is thrown away.

The shell, extended with a few relational operators, is the fourth-generation language most
appropriate to the COHERENT environment.

Fourth Generation Systems

In recent years, a variety of developments in programming language design have emerged. Object-
oriented languages are becoming common, and languages explicitly supporting multiple tasks and
inter-task communication are also gaining popularity. Unfortunately, these efforts have resulted in
productivity increases too small to offset the growth in the size and complexity of software systems.
A response to this has been the development of fourth-generation programming languages.
Although not commonly thought of as such, the COHERENT shell is one of the most powerful and
flexible fourth-generation languages available.

Attempts at a Definition

There is no consensus on the definition of what constitutes a third- or fourth-generation language.
Mainstream third-generation languages are typed, procedural languages. They are standardized and
largely hardware independent. Operations in the language must be specified in a detailed, step-by-
step algorithmic fashion. Third-generation languages do very little implicit processing. Third-
generation languages are general purpose, even most of those that were ostensibly designed as
special purpose languages.

Fourth-generation languages are usually intended as design tools for a particular application
domains. They are usually free form in their use of variables, often not requiring type definitions
and allowing dynamic typing of variables. They don’t emphasize a modular, procedure-based style

TUTORIALS

4 Introduction

of coding. Instead, they contain a number of predefined procedures for performing various high-
level operations. The high-level operations involve large amounts of implied processing. For
example, a ‘‘sort’’ operator is usually available. The facilities of a fourth-generation language are
usually both more powerful and less flexible than the facilities available in a third-generation
language.

A fourth-generation programming language (4GL) should let you simply write what it is you want,
rather than a detailed procedure of how to produce it. Although many products call themselves
4GLs today, they are mostly rewrites of COBOL and report writers. They are too low level and
tedious. This is definitely not what a 4GL should be.

Previous Generations
The first generation of computer languages was the sequence of zeroes and ones that were the
machine instructions. In the beginning people had to code in this way.

The second generation was ‘‘assembly language,’’ which has a one-to-one correspondence with
machine instructions. For example, this assembly-language code adds register 1 to register 2:

add r1,r2

One line of code produced one computer instruction. Then, in about 1956, FORTRAN was written to
do formula translation, and it became much easier to write programs. Each line of code produced
several computer instructions. The third generation has come to encompass sophisticated macro
assembly languages, and other so-called high-level languages like C, COBOL, Pascal, LISP, PL/1,
and many others. There are advanced constructs close to English like if, then, and else, but the
types of statements are constrained to mostly arithmetical operations, with limited string
capabilities. A typical third generation program consists of statements like:

for i=1 to 10
print i, sqrt(i)

next i

The next step comes in describing what you want and letting the computer figure how to give it to
you. The fourth-generation has English-like words, but statements typically deal with more than
numbers, and are ‘‘non-procedural.’’ A fourth-generation environment, for example, reduces a
program to sort all the lines in a file to:

sort file

Fourth-generation language primitives often include relational operators, while third-generation
languages generally do not. And, when you need to mix procedural with non-procedural
instructions, that is easy to do. For example:

for file in file1 file2 file3
do

sort $file
done

At the COHERENT shell level, you can in many cases say what you want without saying how (non-
procedural), and you will get it. For example, type the command

sort file

in the the COHERENT shell and you get a sorted file. Or, type

spell file

and you get a list of words in your file that are not in the dictionary. One line of commands calls
one or more programs, each of which may have thousands of instructions.

TUTORIALS

Introduction 5

With the shell, you can put together an application in minutes or hours, instead of the weeks or
months required with 3GL code. In a 4GL, you should be able to write most applications in a line or
two. With the shell, you can say things like:

column Account Amount Description < file |
grep expenses |
sort |
lpr

This short program extracts some of the columns in a file, pipes them through another program to
select the rows that contain the string expenses, sorts the selected strings, and prints them.

This same report would take tens to hundreds of lines in COBOL, PL/I, C, and most commercial
4GLs. In those languages, you write instructions one at a time, to process records from the file one
at a time. This is very tedious compared to writing one instruction to operate on the entire file.

Data Structures in the Data
In an ideal environment, the structure of data is in the data. Newline-separators for records and
column-separators for fields can tell any program where the fields and records are. 3GL languages
must have the data structure hard-coded into them, so that a program can read only one kind of
file.

In a traditional third-generation environment, the structure of the file must be hard coded into the
program. In a fourth-generation environment, files have their structure embedded with newline and
tab record and field separators. Any program can find a record by just looking at the stream of
characters. Add a single character to the data file read by a COBOL program and all is changed or
lost, so you must do file conversions in the COBOL environment all of the time. And these are done
in COBOL. Any changes require that you edit and recompile all of the programs that read that file.

In addition, there are no file operators in 3GLs, only field-at-a-time instructions. Therefore, you
must write loops to process each record. This takes much more code than just processing a whole
file at a time.

Most commercial 4GLs are very similar to COBOL. You still have to do record-at-a-time processing.
If the COBOL program takes 100 lines, the 4GL will take anywhere from 50 to 100 lines, to do what
we did above in one pipeline.

A Revolution in Computing
If you write C programs on COHERENT, you miss most of the advantages of shell-level
programming. It’s been suggested that since C and other languages on COHERENT give you the
system() function call, this converts them into 4GLs. This is equivalent to saying that assembler is
a 4GL if it has a system() function. But on non-COHERENT operating systems like MS-DOS and
VMS, there is not as rich a variety of tools available as in COHERENT, except to the extent that
COHERENT has influenced these systems.

The COHERENT system itself offers an integral tree index approach to data organization: the
hierarchical file system itself. Many utilities traverse these trees, search them, add and delete
nodes, and in general provide procedural tools with which to deal with files. The same is true of
MS-DOS and Macintosh systems. The opportunity is afforded to avoid re-inventing the wheel.

This really is a revolution in computing. Working with great tools will spoil you, but most of the
computing world is still writing COBOL. To have to go back and forth between such environments
is painful.

A good 4GL should be written in C — once. It should be written to be so general in purpose and so
easy to use that its functionality can be used from then on, rather than recoded in each application.
Then these good programs can be used to put together applications, not coding each entire
application in C, unless there is some critical need.

TUTORIALS

6 Introduction

As you become more familiar with their environment, you will become more able to use the power of
these advanced systems, if only to shorten repetitive command sequences — another key feature of
4GLs. Every computing environment has facilities to collapse a sequence of keystrokes; these
include aliasing, scripting, and macro construction.

Marketing people got wind of 4GL and turned it into a big marketing hype. Most data base
management systems wrote their own procedural language like COBOL or RPG and called it a 4GL.
They are usually worse than COBOL, because you have to learn their new language, rather than use
a classic. Few 4GL designers put as much time and energy into designing their language as was put
into COBOL.

The driving force behind fourth-generation languages comes from several needs. Programming
projects commonly involve man-years of work. The shortage of experienced software engineers and
the need to increase productivity pushes us towards tools allowing faster development cycles. The
increased use of computers by users who do not have formal computer science education requires
very high-level tools that let novice programmers concentrate on algorithms rather then
implementation details. As more work is done on computers, there is more demand for single-use
programs to perform a specific task. The relatively high expense of coding a software tool with a one
time use encourages the use of any method available for simplifying the development process.

As third-generation languages are becoming increasingly less able to meet the diverse needs of
computer users, several principles of software design are gaining great popularity, especially within
the UNIX/COHERENT community:

• Data should be kept in flat ASCII files, not binary, so that we can always see what we are
doing, and do not have to depend upon some special program to decode our data for us.

• Programming should be done in fourth-generation languages, except when the expected heavy
use and/or resource consumption of the program justify the expense of a more efficient coding
in a third generation language.

• Programs should be small and should pass data on to other programs. Software prisons, or
large programs with self-contained environments, must be avoided because they require
learning and they make extracting data difficult.

• We should build software and systems to meet interface standards so we can share software
and stop dreaming that any individual or company can do it all from scratch.

Approaching software engineering with principles like these does have some drawbacks. The major
drawback is that fourth-generation languages almost always produce slower code then third
generation languages do. As computers increase in speed and power, this drawback becomes less of
a consideration. As improved compiler optimization techniques spread, the difference between code
produced by 3GLs and 4GLs will become smaller.

A Paradigm
A programming paradigm is important for ensuring that a language is robust and has a consistent
style to its syntax and semantics. Paradigms for fourth-generation languages must meet
requirements more stringent than those for third-generation languages. To start, a fourth-
generation language should provide a consistent interface to high-level facilities working with a
variety of complex data types, while simultaneously providing fundamental low-level language
constructs for coding any functionality missing from the predefined facilities. Too many 4GL’s are
good only for projects within a narrow application area. It’s difficult to allow for high-level
constructs from a variety of fields without the programmer having to specify the level of detail
required in a 3GL.

TUTORIALS

Introduction 7

The paradigm we choose for fourth-generation languages is the operator/stream paradigm. In this
model, data flows in unidirectional ‘‘streams’’ on which operators are placed. Each operator
transforms the data as it passes by. The set of streams in a program form a directed graph, possibly
with cycles. This paradigm concentrates on what needs to be done to the data, and deemphasizes
the techniques used in the transformation.

Fourth-generation languages that attempt to use only the procedural paradigm of mainstream third-
generation languages usually end up being limited to a specific application domain. The procedural
model doesn’t describe data in an abstract enough way. Different types of operations require too
much detailed code to work with, and the languages do not have the simple relation between all
data and operators the way an operator/stream paradigm does.

A side benefit of using the operator/stream paradigm appears in the design of graphical
programming tools. Traditional third-generation languages haven’t been well adapted to a graphical
programming interface. The problem stems, in part, from the difficulty of expressing the numerous
possibilities in an intuitive pictorial way. With operator/stream as the basis for a language, a
graphical programming aid can easily convey the process of placing an operator on a stream.

The operator/stream paradigm has proven effective in more domains than just language design.
Some UNIX kernels make use of the paradigm to reduce the complexity of the operating-system
code. Rather than having one large, complex piece of code handling all the functionality of a
particular aspect of the operating system (such as a device driver), data in the kernel is run through
a linked set of operators, each operator performing one small, well-defined function. This lets users
modify the system by introducing new operators, without having to understand the innards of other
operators on the stream.

The Shell
The shell and the set of COHERENT utilities form a fourth-generation language based on the
operator/stream paradigm. The critical feature of the shell that puts it in the class of 4GL’s is the
COHERENT pipe, which allows a shell to start a sequence of processes, each reading its input from
its predecessor process and writing its output to a successor process. The pipe is one of the major
reasons leading to the adoption of UNIX and its offspring, including COHERENT, as the standard
multi-user operating system. Unfortunately, few people fully understand the philosophy behind it;
most software developers are still producing large, self-contained applications using data formats
incompatible with anything else.

For the shell, the COHERENT pipe provides the data streams, and the hundreds of standard
COHERENT utilities provide the core set of operators. The power of this approach is tremendous.
Because the data streams are flat ASCII, all the operators can read each other’s data. COHERENT
includes a few standard utilities that can perform most of the data formatting needed to transform
one program’s output to the form required by another. In addition, using stand-alone programs as
operators allows easy use of custom or commercial packages of operators, such as statistics or data
base packages. This modularity encourages code reuse, and the flat ASCII stream format makes it
easy to get operators from a variety of sources talking to each other. Finally, because the operators
can only transform the data stream running through them, side effects can’t surprise the software
engineer by giving unexpected results.

The COHERENT file system also provides a hierarchal storage medium for data. Because
COHERENT files are flat ASCII data files, and COHERENT deliberately attempts to make all data
sources look the same, most utilities can’t distinguish between data coming from a stream and data
coming from a file. This gives great flexibility, allowing the shell to store the results of a pipeline
into a file, and then feed that data back into a stream at some future point.

There are two frequent criticisms of fourth-generation languages. It is often noted that 4GL’s tend to
be suited for a particular application area, and that their low-level facilities are not up to the task of
providing complex functions that don’t already exist in the high-level library. The shell escapes this
problem: COHERENT utilities can be written in any language, from shell scripts to assembly

TUTORIALS

8 Introduction

language. If a tool is needed which isn’t currently available, the developer is free to pick the
language most suited to solving the problem, whether it’s a CASE tool or standard C. This ability to
combine the shell with products of all other existing development tools results in a uniquely general
4GL.

Many also complain that fourth-generation languages sacrifice too much efficiency for the sake of
short source code and high-speed development. The ability to use operators from any source is an
answer to this complaint as well. It allows a shell programmer to code speed-critical routines in a
language more suited to efficiency considerations. If an application requires floating-point number
crunching, one codes the appropriate routines in FORTRAN and the non—time-critical sections of
the code can still be done in the high-level shell code.

With the shell, development is quite easy for even the novice programmer. The interpreted
environment allows easy access to the internals of the script as it runs, as well as a fast test-
change-test cycle. The flat ASCII data format and lack of operator side-effects make it easy to
examine the effect different operators have on the stream of data.

Shell Operators

The shell relies heavily on its operators. For example, it has no built-in ability to evaluate
expressions; instead, it uses the test utility to to that.

The ‘‘string’’ data type is the only one the shell supports. The shell assumes that there are operators
which will do any more advanced data type a programmer might need. Operators exist to perform
numerical functions. For multi-field records, operators commonly use the space or tab character as
a field separator and the newline character as a record terminator. This allows great flexibility,
despite the overhead incurred of converting data into and out of ASCII for non-string operations.

One of the greatest strengths of the shell is the ability to process an entire file with a single
command. The shell does allow for defining procedures, as well as execution control constructs like
if, while, and case. However, these flow-control constructs are often not needed. For example, the
script presented in the following section explicitly performs no looping, because the operators
implicitly loop, acting on each line of the program.

Compatibility with MS-DOS
MS-DOS shares key underlying features with COHERENT, enough so that the operator/stream
paradigm can be utilized identically in both environments. Except for minor limitations on file name
syntax, the MS-DOS hierarchically structured file system appears to the user to be functionally
identical to the COHERENT file system. The multi-tasking capabilities of COHERENT, while missing
from DOS, are not essential elements of the paradigm. Although DOS shells use intermediate
temporary files to implement pipes, the interface presented to users, even using command.com, can
be described with the operator/stream terminology we use here. The COHERENT shell and awk are
available as MS-DOS shell replacements and enhancements.

Conclusion
The shell is quite a powerful tool indeed. It is not without limitations, however. First, only a few
companies are currently producing tools oriented towards use in shell scripts. /rdb remedies the
shell’s weakness of not being able to store complex data types, and there are many additional tools
for for correcting some of the other major limitations, such as numerical computation, statistical
analysis, and business graphics output. Although COHERENT has applications dedicated to
mathematics and numerical analysis, most are themselves large self-contained programs. A
programmer who needed matrix inversions, for example, must adapt existing tools, like System S or
SAS, to work within shell scripts, or write a special purpose tool.

The shell needs improvement in the ability to connect multiple pipes together more freely. The
original designers didn’t anticipate the need for more than linear pipelines. Although more complex,
non-linear pipes can be created by the use of temporary files, this method is only barely adequate

TUTORIALS

Introduction 9

for constructing complex structures such as cyclic streams. Finally, more operators are needed that
allow incoming data to be split between or duplicated on multiple output pipes.

The shell shares another problem with weakly typed languages: errors in the format of that data
stream can lead to unexpected output. Because no method of type- or format-checking is built into
the shell, the programmer must write code that avoids the problem. The interpreted environment
does allow careful examination of the stream data as it passes through each operator, which
reduces the difficulty of writing error free code. The shell won’t lend itself to the sort of correctness
proofs offered by the newer CASE tools unless a formal definition is proffered, specifying not only
syntax but all the operators as well.

The operator/stream paradigm has produced a simple, powerful, general purpose tool. It allows one
to prototype or generate a proof of concept in hours or days, when it might have required weeks with
C. Although the shell produces slower code than a third-generation language, the increasing power
of modern computers makes this a minor concern for many tasks. This framework provides an
easily visualizable way of manipulating large (or small) amounts of structured data.

Although there is currently a shortage of utilities designed for general-purpose use within shell
scripts, awareness of the potential of shell programming is spreading, and more packages are being
written outside of the traditional monolithic program tradition. In this way, computing is coming
full circle, returning to the original concepts of Von Neumann, whose computing paradigm embodies
the stream of sequential memory passing by the operator of the central processing unit.

TUTORIALS

10 Introduction

TUTORIALS

%Von Neumann, John=9

Relational Data Bases

The central idea of relational data bases is that all information can be put into tables and can be
manipulated by a few simple operations. This is a revolutionary idea and takes some thinking to
understand. It means that all of our information needs can be handled in a simple way. All
information, data, knowledge, facts, or whatever you call it, can be put into tables. For example, a
table named expenses might look like this:

Date Amount Account Description
------ ------ ------- ----------------------------
850125 67.00 4120 plane ticket
850126 12.00 4120 meal with client
850127 150.00 4120 hotel bill

At the top of the table are the column names. The dashed line makes it easier to read, and
separates the header from the data rows. Each row of the table holds information about a particular
expense item.

We see information in tables every day — train schedules, scientific data, phone books, restaurant
menus, price lists, catalogs, math tables, conversion tables, accounting and financial reports, tax
forms, and so on. We all understand tables: we know how to fill them in and how to look up
information in them. Tables and our operations on tables are independent of the information they
contain. The purpose of this book is to help you to think about your information problems in terms
of tables and operations on tables.

In accounting, information is collected in journals, then manipulated to create financial statements
that you can review to see the state of the business. Scientists have instruments in their labs that
collect data and store it in their computers. Statistical programs compress masses of data into
simple tables and graphs for the scientist to look at to see responses of systems to various inputs
and to discover causal relationships. Employee information is stored in tables and can be extracted
to print pay checks, make phone books, and so on.

Files
When we take these abstract ideas to the COHERENT system, we find a friendly environment for
storing tables and manipulating them. Computers store tables in files that live on hard disks. They
have names by which they can be called up. Tables can be created with a text editor, with
COHERENT commands, from other tables, or imported from other COHERENT data base systems,
or even foreign systems. Once tables are implemented as ordinary COHERENT files, there is
available a plethora of COHERENT utilities for maintaining security, data integrity, and ancillary
information about tables.

There are only three rules for creating a table in the COHERENT and /rdb environment:

• A tab is inserted between each column.

• On the first line of the table, each column is given a name.

• The second line of the table has lines of dashes for each column, showing the width of the
column.

This is much easier for the user than systems that require the overhead of setting up schema and
special files. Once tables are created, they can be manipulated by COHERENT and /rdb. Using the
ve forms editor to initially create tables and enter data from your terminal avoids potential problems
caused by (among other things) the wrong number of tabs.

11

12 Relational Data Bases

Columns
When we try to look up information in a table, we usually find that there is a lot more information
there than we want. We have to find the single fact we want from all the rest. Often, there are more
columns than we need. Therefore, we want to reduce the table to only those columns we need.
When we look at a table with our eyes, we try to ignore the extra columns. Or we use our fingers to
scan down the column we want.

When using the computer we have a command called column, which is a program that inputs one
table and outputs another table that has only the columns you specify. For example consider our
expenses table. One can project some of the columns of a table by typing this simple command,
which says to project columns Amount and Description from the input expenses table:

column Amount

This produces:

Amount Description
------ ----------------------------
67.00 plane ticket
12.00 meal with client

150.00 hotel bill

Note that now we have a new, smaller table with only the two columns we want to see. For another
example, you might project just the names and phone numbers from the employee table to make a
phone book. In other words, the company phone book is a projection of the name and phone
columns of the employee table.

Rows
The most common operation is to search the table for a specific piece of information. We want to
know when the next plane leaves, the price of the scallops on the menu, the degrees Centigrade for
72˚ Fahrenheit, the ball player with the highest batting average, the grade for a class on a report
card, the amount spent on phone calls by the company last year, and so on. Each search requires
that we select just one, or a few, rows from a table.

On the computer, you can select only the rows desired with the row command. Here we select all
rows in the expenses table in which Amount is greater than 50:

row ’Amount > 50’ < expenses

This produces:

Date Amount Account Description
------ ------ ------- ----------------------------
850125 67.00 4120 plane ticket
850127 150.00 4120 hotel bill

With one simple operation you can select information from any table containing any data.

Columns and Rows
Often you want to find one or a few rows and see only a few columns. On COHERENT you can put
these two commands together. The COHERENT pipe symbol ‘|’ means to take the table that is
output from the column command on the left and input it into the row command on the right:

column Amount Description < expenses | row ’Amount > 50’

This produces:

TUTORIALS

Relational Data Bases 13

Amount Description
------ ----------------------------
67.00 plane ticket

150.00 hotel bill

Since the output of one program can be piped into the input of another, you can create report
programs with one or a few lines of commands and pipes. For example, you can project some
columns of a table with the column command, pipe the output to a row program which will select
certain rows, pipe that output to a sorttable program which sorts it, then on to a jointable to pick
up other columns from another table. All of this can be done by typing one line on your terminal.
Or this line can be typed into a shell program file with a text editor, and given a name, like
weeklyreport. Then, by simply typing weeklyreport, the report can be produced when you wish.
Several reports can be invoked by a higher level shell script. This is called shell programming.

These reports, and other programs, can be placed in a menu and selected with a few keystrokes, or
if you have a terminal with a mouse, by pointing and clicking. Therefore, you can automate whole
operations in hours and days, rather than the months and years that it takes on other systems.

Shell Programming and Flat ASCII Files
The key to this approach is shell programming and flat ASCII files. Flat means there is no structure
to them. COHERENT thinks of them as a stream of characters. ASCII is a standard code for
converting characters to numbers for storage in the computer. The files have variable length records
and fields. This is a break from the IBM tradition of structured binary files with fixed length records
and fields. Breaking with this old tradition is an essential part of the COHERENT revolution.

This does not mean that /rdb cannot manipulate binary data. We will discuss manipulating
arbitrary binary objects later.

Lists
In addition to the table format shown previously, /rdb also has a list format for data that is hard to
fit into a table, such as mailing lists. For example:

Number 1
Name Rambo
Company One Man Army
Street 123 Mac Attack
City Anywhere
State Thirdworld
ZIP 30000
Phone (111) 222-3333

Number 2
Name Chuck
Company ...

Note that the list format begins with a blank line, unlike the table format, and that a single tab
separates the field name from the data for each field. You can use the COHERENT vi text editor or
/rdb’s ve form editor to initially create tables, and to enter and edit data in a table. You can convert
from table to list and from list to table format easily with the tabletolist and listtotable commands.

Review
A relational data base is a collection of relations or tables that may be related on one or more
common columns. Relational data bases implemented like this are easily transportable from one
environment to another.

TUTORIALS

14 Relational Data Bases

Relational data bases have a solid mathematical base in relational set theory, relational algebra, and
relational calculus. There are theorems in this relational math that prove that any data put into a
relational data base can be extracted. The mathematical base also assures that manipulations
performed will have correct results, just as arithmetic assures us that the math functions we
perform on the computer have correct results.

Normal Relations
An /rdb relation, or table, is an ordinary ASCII file. An /rdb table has rows, or records, separated
by newlines. It has fields, or columns, separated by a tab character. Every row must have the same
number of columns. This is first-degree normalization.

The first row of a table contains the names of the columns; the second row contains columns of
dashes. Any kind of information can be represented in such a table: numbers, words, file names,
etc: /rdb commands and relational set theory doesn’t care about the content of the table — just as
long as these rules are followed for the form of tables. Another important rule to remember when
designing a data base is:

If many columns are used in a single row to describe the same type of information, it’s time to make a
new table.

For example, consider a table of family members:

id mom dad kid1 kid2
-- ---- --- ---- ----
1 mary jack billy bobby
2 nancy joe terry susie
3 sally john adam

In this example there are two kid columns in each row. The right way to express this relationship is
with two tables: one for parents and one for kids. They are related or linked by a common column,
id.

id mom dad
-- --- ---
1 mary jack
2 nancy joe
3 sally john

id kid
-- ---
1 billy
1 bobby
2 terry
2 susie
3 adam

How Is Information Accessed?
Tables are accessed through /rdb and shell commands issued at the COHERENT prompt or from
within shell or C programs. Here is a list of some common /rdb commands which are used or
mentioned in these examples.

Selected /rdb Commands

/rdb Command Description
column, projectSelectonly certain columns
row, select....................................Selectonly certain rows
mean...Computethe mean of selected columns

TUTORIALS

Relational Data Bases 15

jointableJointwo tables
sorttable.......................................Sorta table
computeDocalculations on columns
subtotal ..Subtotalselected columns
total..Totalselected columns
rename ...Changethe name of a column
justify...Makea table line up properly
headoff ...Removethe first two header rows
report ...Reportwriter
ve..vi-liketable editor

/rdb commands are programs that read tables from the standard input and write tables to the
standard output. Suppose there’s a table that looks like this:

Item Amount Cost Value Description
---- ------ ---- ----- --------------
1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

Then a sample query might be:

column Item Cost Amount < inventory

This produces:

Item Cost Amount
---- ---- ------
1 50 3
2 5 100
3 80 5
4 19 23
5 24 99
6 147 89
7 175 5

This is read aloud as: ‘‘Select the Item, Cost, and Amount columns from the inventory table.’’ It’s
important to voice queries because people often type stuff in that they would never say out loud.

The query:

row ’Cost > 50’ < inventory

This produces:

Item Amount Cost Value Description
---- ------ ---- ----- --------------
3 5 80 500 clamps
6 89 147 16353.8 bunsen burners
7 5 175 1093.75 scales

This reads, ‘‘Select rows where the Cost column is greater than 50 from the inventory table.’’ To put
commands together:

column Item Cost Value < inventory | row ’Cost > 50’

This produces:

TUTORIALS

16 Relational Data Bases

Item Cost Value
---- ---- -----
3 80 400
6 147 13083
7 175 875

This is pronounced, ‘‘Select the Item, Cost and Value columns from the inventory file and select those
rows where Cost is greater than 50.’’ Inside the apostrophes the < and > symbols are pronounced
less than and greater than respectively, whereas outside apostrophes they are pronounced from and
to. The pipe symbol ‘|’ is pronounced and.

To take the mean of the result while listing each line:

column Item Cost Value < inventory | row ’Cost > 50’ | mean -l Value

This produces:

Item Cost Value
---- ---- -----
3 80 400
6 147 13083
7 175 875
---- ---- -----

4786

Creating Tables and Entering Data
There are many different ways to create tables; editors, programs, shell commands such as sed or
awk, etc. Most often, however, when /rdb tables are entered from scratch, ve, the /rdb table editor
is used. ve allows the creation of tables quickly and in a familiar and easy way. It’s a lot like vi.
The first step in the creation of a table with ve is to create a screen definition file with any editor.
This can be accomplished with any editor. Here is a ‘screen’ file for the states file:

The States File
st < st >
state < state >

ve uses this screen file to create the table. The rules for screen files are simple:

1. Column names go inside the angle brackets.

2. Anything outside of angle brackets is just text that appears on the screen.

The space between angle brackets is the viewable window over the field, and isn’t a restriction on
how wide the field can really be. After creating a screen file like this:

ve states

and the states file will be created. Let’s say ve has been used to add new records to our states table
so that it looks like this:

st state
-- -----
CA California
NV Nevada
NY New York

A mailing list can be created the same way, by making a ‘screen’ file and then using ve to add a few
rows:

TUTORIALS

Relational Data Bases 17

Yet Another Mailing List

Name <name >
Street <address >
City <city >
State <st>

The command justify adjusts the mailing list, to make it appear neater. For example, the command

justify < mlist

produces:

name address city st
---- ------- ---- --
Evan Main St. Santa Cruz CA
Rod Broadway Ithaca NY

The next command

column st name < mlist |
sorttable |
jointable - states

reads, ‘‘Select the st and name columns from mlist and join it with the states table.’’ It produces the
following:

st name state
-- ---- -----
CA Evan California
NY Rod New York

The sorttable command was silent. But it has to be there. Both files to be joined must be sorted.
The states file is already sorted. The dash in the jointable command means use the standard
input, just like the COHERENT join command.

Reports
For numeric information, /rdb’s standard table output adjusted with a justify or trim command is
often sufficient, especially when combined with tabletotbl and the UNIX tbl and the COHERENT
nroff/troff formatters. In addition to these methods, /rdb has a report command that uses a
prototype report form and has built-in command processing capabilities.

Let’s look at a sample report form. It’s like the screen file for ve: text is outside brackets, and
column names are inside brackets. Other commands can also go inside the brackets. Here’s a
report form for the mlist file:

<name>
<address>
< city >, <st>

<! date +%D !>
Dear < name >,
This is a computer chain letter.
I am also sending it to:

<! column name city < mlist |
row ’name != "<name>"’ | justify !>
Bye, <! echo <name> !>.

Thus, the command

row ’name ~ /Evan/’ < mlist | report mlist.form

produces the following output:

TUTORIALS

18 Relational Data Bases

Evan
Main St.
Santa Cruz, CA

09/03/89
Dear Evan:
This is a computer chain letter.
I am also sending it to:

name city
---- ------
Rod Ithaca

Bye, Evan.

Arbitrary text goes outside the angle brackets; column names go inside angle brackets, and any
arbitrary command or shell program or shell command(s) can go between exclamation marks within
angle brackets, and you can still specify columns from the current record therein. You can even
have reports within reports.

The Big Text Field Problem
The ‘‘bug report,’’ ‘‘long text column,’’ and ‘‘every word indexed’’ problems are all facets of the same
situation. Let’s say a file has some relatively short columns, and one or more long text columns on
which you’d like to use vi.

Take the case of a bug report data base with associated arbitrarily long narrative descriptions: a
solution is to keep the descriptions in a sub-directory called, for example, bugreports, one file per
record, with the file name being bugreports/recid where recid is the record identifier from the
current record. Then, a control key is mapped in the .verc file (analogous to the vi’s .exrc file) to
the command vi bugreports/<recid>. This grabs an identifying column from the record, constructs
the name of the associated file(s), and pops the user into vi on the named file(s). This is quite
flexible even if there is more than one file associated with each record, switching between ve files
with a keystroke, thus effecting multiple screens: map a control-key to write the record and switch
the files, and another to switch back.

A simple report makes a two column table with record id and word for each word in each narrative,
allowing for queries like Give me all the bugs mentioning word ‘xyzzy’:

#!/bin/sh
(echo "word id"
echo "---- --"
for i in [0-9]*
do

word < $i | awk ’{print $1,"’$i’"}’
done) |
sorttable -u

Now records having a particular word can be found easily. If speed is a consideration, build
an(other) inverted index on the word/id concordance list just created:

cd bugreports
wordy > bugwords
index -mi -x bugwords word
echo xyzzy | search -mi -x bugwords word

This produces a list of record ID numbers on the standard output. Once you have the record ID
numbers, one more search is necessary to find the original record in the bugs table. Of course, with
the record ID numbers, no search is necessary to find the narrative, because the file name is the
record id.

Non-Text Data Structures

TUTORIALS

Relational Data Bases 19

Suppose a field is a picture, or a sound, or some other non-textual object. The /rdb approach is to
identify an object resource, with text, within a field in a table, describing the type and location of the
object. Fields from the current record can be referenced in the .verc file by the same
<column_name> specification used in the report program and customized ve screen files.

Large Tables
Large tables are often as easily handled as small tables. When working with very large tables some
form of indexing is desirable: hash, inverted sequential secondary, binary (sorted relations), or some
form of tree (linked list).

The shell approach is to use the COHERENT directory structure as the first (few) levels of tree index.
One financial application using /rdb involves the 80-megabyte file of time series from the
International Monetary Fund. As distributed, it takes several large machine CPU minutes to peruse
this big file and extract a single time series. The file was divided into a directory for each country
and within each country directory, a file for each time series, with the file name being the time
series code as given by the IMF. Each of those time series files is a /rdb file, with columns YR ANN
Q1 Q2 Q3 Q4 and so forth. A separate ‘‘description’’ file in each country directory has a line for
each file in the directory, giving CODE DESCRIPTION UNITS.

Thus, the time to retrieve any time series (if the country and time series code are known) is
independent of the size of the data base. Queries like ‘‘which countries have this time series in
common?’’ are answered with the ls command. More than one level of index can of course be
implemented just by adding directory hierarchies.

COHERENT has many commands to traverse directory trees, and to add, delete, and otherwise
manipulate nodes. With this approach, nodes are tables, and the plethora of COHERENT directory
and file handling commands are all relational data base manipulation commands.

Architectural Performance Enhancements
Learning to use the COHERENT utilities has a much greater value than learning yet another special
programming language. Once a small critical mass of COHERENT familiarity is achieved,
application development becomes little more than writing simple yet powerful scripts to perform
tasks which used to be laboriously performed by hand, or just not done at all.

All these techniques comprise a marriage of the facilities that come with the COHERENT system
itself, and relational capabilities provided by /rdb.

This attitude of not reinventing the wheel is the basis of the shell and /rdb approach. All
COHERENT knowledge is knowledge about data bases, and experiences with data bases teach more
about COHERENT. That’s why the combination of the /rdb extensions to COHERENT and the shell
command language is a 4GL most appropriate to the COHERENT environment.

SQL
SQL is another language for querying a data base. It’s used as the foundation for many
contemporary 4GLs. It does not use the stream/operator paradigm, but ‘‘nests’’ queries to pass data
from one operator to another. When SQL was developed, COHERENT had not yet been invented, so
an entire environment had to be developed to express queries. SQL is another system to learn, with
little use outside of itself, and typically no relation to the operating environment surrounding it.

SQL does not specify any particular file format. Although there is an ANSI standard SQL for
expressing queries, implementors are free to store data however they want. In a way, this is a
contradiction, because getting away from these walls that stand between data is very important, and
was the principal reason that the concept of a data base came about. The idea goes under the name
of integrated and modeless software, and most recently, interoperability.

TUTORIALS

20 Relational Data Bases

There are reasons why SQL-based systems are popular, even desirable. SQL-based systems are
widely available and there is a large body of expertise also readily available. Many U.S.-government
agencies require access to corporate data bases via SQL, especially in the defense industry. SQL is
valuable in non-COHERENT environments. Partly because SQL is difficult for novices to
understand and use, SQL providers typically field a large, helpful support organization. Of course,
this drives the price up, and doesn’t adequately address the needs that prompted the development of
these tools in the first place: making non-experts proficient and productive in the construction of
basic data base applications.

SQL queries can be converted to shell scripts:

SQL COHERENT and /rdb

select col1 col2 from filename......column col1 col2 < filename
where column - expressionrow ’column == expression’
compute column = expressioncompute ’column = expression’
group by ..subtotal
having ..row
order by column...................................sorttable column
unique ..uniq
count ..wc -l
outer join ..jointable -a1
update ..delete, replace
nesting ..pipes

Fifth-Generation Systems
There is a distinction to be made between fourth-generation languages and CASE tools. The
programmer of a fourth-generation system must still specify the fundamental algorithms for
completing a task, perhaps at a higher level of abstraction, especially of data types. CASE tools, on
the other hand, require only a specification of the task, and generate not only the code, but also the
algorithm. CASE tools tend to be of very limited domain. An example would be a screen layout tool.
The developer draws the positions of the windows wanted, and the tool generates the code to create
the windows, manage the text and graphics inside them, and deal with icons and menus.

Some graphical CASE tools are examples of what we might call 5GLs. Using a graphical user
interface, these tools allow applications to be built by example. Some force the user to specify
actions algorithmically, and some do not. There’s even less agreement about what constitutes a 5GL
than there is about 4GLs.

The operator/stream paradigm has produced a simple, powerful, general purpose tool. It allows one
to prototype or generate a proof of concept in hours or days, when it might have required weeks with
C. Although the shell produces slower code than a third-generation language, the increasing power
of modern computers makes this a minor concern for many tasks. This framework provides an
easily visualizable way of manipulating large (or small) amounts of structured data.

Although there is currently a shortage of utilities designed for general purpose use within shell
scripts, awareness of the potential of shell programming is spreading, and more packages are being
written outside of the traditional monolithic program tradition. In this way, computing is coming
full circle, returning to the original concepts of Von Neumann, whose computing paradigm embodies
the stream of sequential memory passing by the operator of the central processing unit.

References
Kernighan B., Pike R.: The UNIX Programming Environment. Englewood Cliffs, NJ: Prentice Hall,
1985.

TUTORIALS

Relational Data Bases 21

Kochan S., Wood P.: UNIX Shell Programming. Hayden Book Company, 1985.

Prata S.: Advanced UNIX — A Programmers Guide. Indianapolis: Howard W. Sams and Co., Inc.,
1985.

A. Winston: ‘‘4GL Faceoff: A look at Fourth-Generation Languages,’’ UNIX/World, July 1986, pp. 34-
41.

Misra S., Jalics P.: ‘‘Third-Generation versus Fourth-Generation Software Development,’’ IEEE
Software, July 1988, pp. 8-14.

Manis R., Schaffer E., Jorgensen R.: UNIX Relational Database Management. Englewood Cliffs, NJ:
Prentice Hall, 1988.

Verner J., Tate G.: ‘‘Estimating Size and Effort in Fourth-Generation Development,’’ IEEE Software,
July 1988, pp 15-22.

Matos V., Jalics P.: ‘‘An Experimental Analysis Of The Performance Of Fourth Generation Tools On
PCs,’’ Communications of the ACM, November 1989, pp. 1340-1351.

Manis R., Meyer M.: UNIX Shell Programming. Indianapolis: Howard W. Sams Inc., 1987.

TUTORIALS

22 Relational Data Bases

TUTORIALS

%references=20

Commands, I/O, Pipes

/rdb commands are programs that read tables from the standard input and write tables to the
standard output. Once data are entered into tables, they are accessed through /rdb and shell
commands issued at the COHERENT prompt or from within shell or C programs. This is an easy
way to ask questions of, or query, the data base. Here is a list of some common /rdb commands
which are used or mentioned in the following example queries:

/rdb command Description

column, projectSelectonly certain columns
row, select....................................Selectonly certain rows
mean...Computethe mean of selected columns
jointableJointwo tables
sorttable.......................................Sorta table
computeDocalculations on columns
subtotal ..Subtotalselected columns
total..Totalselected columns
rename ...Changethe name of a column
justify...Makea table line up properly
headoff ...Removethe first two header rows
report ...Reportwriter

Suppose there’s a table that looks like this:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

Then a sample query might be:

column Item Cost Amount < inventory

Which produces:

Item Cost Amount
---- ---- ------

1 50 3
2 5 100
3 80 5
4 19 23
5 24 99
6 147 89
7 175 5

This is read aloud as: ‘‘Select the Item, Cost, and Amount columns from the inventory table.’’

In another example, the command

row ’Cost > 50’ < inventory

23

24 Commands, I/O, Pipes

This is, ‘‘Select rows where the Cost column is greater than 50 from the inventory table.’’ This yields:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

3 5 80 400 clamps
6 89 147 13083 bunsen burners
7 5 175 875 scales

The next example puts the commands together:

column Item Cost Value < inventory | row ’Cost > 50’

This is pronounced, ‘‘Select the Item, Cost and Value columns from the inventory file and select those
rows where Cost is greater than 50.’’ This yields:

Item Cost Amount
---- ---- ------

3 80 5
6 147 89
7 175 5

Between the apostrophes, the < and > symbols are pronounced ‘‘less than’’ and ‘‘greater than’’
respectively, whereas outside apostrophes they are pronounced ‘‘from’’ and ‘‘to’’. The pipe symbol
‘|’symbol is pronounced ‘‘and’’.

To take the mean of the result while listing each line, do the following:

column Item Cost Value < inventory | row ’Cost > 50’ | mean -l Value

This yields:

Item Cost Amount
---- ---- ------

3 80 5
6 147 89
7 175 5

---- ---- ------
4786

You can use the name select instead of row. The Korn shell has a select command, and /rdb uses
row as a synonym for select. We give the same program two names by using the COHERENT link
command ln.

compute: Compute a New Result
The command compute lets you calculate one column as a function of other columns, or constants.
For example, you could calculate the Value column in your inventory table as Onhand times Cost
with this command:

compute ’Value = Onhand * Cost’ < inventory

This yields

Item Onhand Cost Value Description
---- ------- ---- ----- ---------------

1 3 5 15 rubber gloves
2 100 1 100 test tubes
3 5 8 40 clamps
4 23 2 46 plates
5 99 3 297 cleaning cloth
6 89 18 1602 bunsen burners
7 5 175 875 scales

For a fancier example, add $5 to the Cost of item 4 only, and recompute the Value column:

TUTORIALS

Commands, I/O, Pipes 25

compute ’if (Item == 4) \
Cost += 5; Value = Onhand * Cost’ < inventory

This yields:

Item Onhand Cost Value Description
---- ------ ---- ----- ---------------

1 3 5 15 rubber gloves
2 100 1 100 test tubes
3 5 8 40 clamps
4 23 7 161 plates
5 99 3 297 cleaning cloth
6 89 18 1602 bunsen burners
7 5 175 875 scales

Note that the Cost of item 4 is now 7 (2+5). You can also write commands down the page. From
the line on which you open the apostrophe until you enter the closing apostrophe, the shell will
keep reading lines. You can do lots of powerful calculations with compute. See the /rdb manual
pages for compute, and read the awk tutorial in your COHERENT documentation.

justify: Align Columns
Often when you type in a table, or for other reasons, the columns containing numbers might be left
justified. For example:

Item Onhand Cost Value Description
---- ------ ---- ----- ---------------
1 3 5 15 rubber gloves
2 100 1 100 test tubes
3 5 8 40 clamps
4 23 7 161 plates
5 99 3 297 cleaning cloth
6 89 18 1602 bunsen burners
7 5 175 875 scales

In this inventory table, you may not like looking at number columns left justified. It is not the way
we usually see numbers in tables. But it is an easy way to enter data into a table with a text editor
because we do not have to space over to line up our numbers. To make our table a lot prettier, the
justify command is available. It right-justifies numbers and left-justifies strings. It also blank fills
the character columns, so that they can be placed in any order and the columns to their right will
still line up.

For example, it might be easier to enter the inventory table as shown previously. Then the justify
command can be used to right justify the numerical columns:

justify Onhand Value Cost < inventory

This yields:

Item Onhand Cost Value Description
---- ------ ---- ----- ---------------
1 3 5 15 rubber gloves
2 100 1 100 test tubes
3 5 8 40 clamps
4 23 7 161 plates
5 99 3 297 cleaning cloth
6 89 18 1602 bunsen burners
7 5 175 875 scales

Only the columns selected were justified, including their column headings. Item was not selected
and was not justified. Now if we project the columns in inventory in a different order, the columns
will line up correctly:

TUTORIALS

26 Commands, I/O, Pipes

column Description Item Onhand Cost Value < inventory

which yields:

Description Item Onhand Cost Value
--------------- ---- ------ ---- -----
rubber gloves 1 3 5 15
test tubes 2 100 1 100
clamps 3 5 8 40
plates 4 23 2 51
cleaning cloth 5 99 3 297
bunsen burners 6 89 18 1602
scales 7 5 175 875

total: Compute Arithmetic Totals
To total columns of a table simply type:

total < inventory

This yields:

Item Onhand Cost Value Description
----- ------ ---- ----- ---------------
28 324 212 2980

Note that we have totaled the Item, Onhand, and Cost columns. Summing these columns does not
make much sense, but total, in this automatic or default mode, operates on all numeric columns.
Naming specific columns will result in your getting only those columns totaled. Only numeric
columns can be totaled.

The -l option lets you see the whole table. (The l in -l is the letter ‘‘el’’, not the number one.) For
example, the command

total -l Value < inventory

yields:

Item Onhand Cost Value Description
---- ------- ---- ----- ---------------
1 3 5 15 rubber gloves
2 100 1 100 test tubes
3 5 8 40 clamps
4 23 2 51 plates
5 99 3 297 cleaning cloth
6 89 18 1602 bunsen burners
7 5 175 875 scales
------- ------- ---- ----- ---------------

2980

subtotal: Compute a Subtotal
To subtotal, enter the break column first, followed by the columns to be subtotaled. The break
column is the column watched by the program. If, on a new row, the value in the break column is
the same as the previous value in that break column, the values in the other columns are added.
But if the value in the break column changes (breaks), then subtotal draws a line and prints the
subtotals of the other columns. As long as the value in the break column remains the same row
after row, the values in the selected columns are accumulated. When the break column’s value
changes, the subtotal is printed and a new subtotal is started.

TUTORIALS

Commands, I/O, Pipes 27

For example, we might have the following ledger table:

Account Date Debit Credit
------- ------ ----- ------
101 820102 25000
101 820103 5000
101 820104 15000
130 820104 30000
150.1 820103 10000
211.1 820104 15000
211.1 820102 25000
211.1 820103 5000

In this example, Account is the break column and Debit and Credit are to be summed. (This is
done to foot the ledger at the end of an accounting period.)

subtotal -l Account Debit Credit < ledger

This yields:

Account Date Debit Credit
------- ------ ----- ------
101.0 820102 25000
101.0 820103 5000
101.0 820104 15000
------- ------ ----- -----
101.0 25000 20000

130.0 820104 30000
------- ------ ----- -----
130.0 30000 0

150.1 820103 10000
------- ------ ----- -----
150.1 10000 0

211.1 820104 15000
211.1 820102 25000
211.1 820103 5000
------- ------ ----- -----
211.1 0 45000

Columns Debit and Credit are named on the command line, so only they are totaled, and not
column Date, which would be pointless to total. Note that the value in the break column is carried
down to identify the subtotal. The Account values are not subtotaled. That would also be
meaningless.

The -l tells subtotal to output the whole table, not just the subtotals. Without the -l, we would get
only the subtotals. For example,

subtotal Account Debit Credit < ledger

yields:

Account Date Debit Credit
------- ---- ----- ------
101.0 25000 20000
130.0 30000 0
150.1 10000 0
211.1 0 45000

TUTORIALS

28 Commands, I/O, Pipes

Quoting Commands
Note that the apostrophe (’) goes before and after the conditional expression in the row command.
This protects the expression from the COHERENT shell. The shell is the program within the
COHERENT system that reads the commands you type and executes them. Without the
apostrophe, the shell would see the left arrow (<) and think we were inputting a table named 10.
The apostrophe is also needed to put the whole expression together as one argument for the row
command. If you need to quote something within the expression, use quotation marks ("). For
example, if you had a column name with special characters (including spaces) in it, you must put it
in quotation marks. For example:

row ’"Net Pay" == "Gross-Pay"’ < payroll

A column name consists of upper- and lower-case letters, numbers, and the underscore character
‘_’. Therefore, if you put special characters and spaces in column names, you will have to keep
putting the quotation marks around them every time you refer to them. (This is true of C language
versions of column and row. It is safest to stick with one-word column names).

Note that we use a double equals ‘==’ instead of just one ‘=’. This comes from the C language and
the awk program, that the row and compute commands use. The rule is to use the ‘=’ to mean,
‘‘Assign the value on the right of the equal sign, to the variable on the left.’’ Use the ‘==’ to mean
logically equal, as we used it in the row command. Another way to remember this, is that you
usually use the logical equal ‘==’ in row commands, and the assignment equal ‘=’ in compute
commands. In advanced usage, you will find that you need both in row and compute for very
powerful commands.

Pipes
Pipes ‘|’ are a COHERENT shell mechanism that sends the output of one program to the input of
another program. This allows you to perform a series of operations on a table. You now can begin
to see the real power of this system. In a single line we can produce a report. If you wished to
select only rows where Value was greater than 100, but wanted to see only the Description and
Value columns sorted in alphabetical order, you could pipe the row command’s output into the
column command, which would be piped into the sorttable command like this:

row ’Value > 100’ <inventory |
column Description Value |
sorttable

This yields:

Description Value
--------------- -----
bunsen burners 1602
cleaning cloth 297
scales 875

The pipe symbol ‘|’ means that the output from the program to the left becomes the input to the
program on the right, or below. As with quotes, the shell will keep accepting lines ending with
pipes. Therefore, you can write long pipe programs down the page, which is easier to read and
debug. The sorttable program, without any columns named, defaults to sorting on the first and
subsequent columns.

Warning: Never use the same file as input and output in one command or pipe. If you want to save
the output that normally comes to your terminal screen in a file, use > tmp. The tmp file name is a
common name for a file that has only temporary use. It should always be ok to remove it later. For
example:

sorttable < inventory > tmp

TUTORIALS

Commands, I/O, Pipes 29

You can then move tmp to inventory:

mv tmp inventory

Now your inventory table is sorted. If you type:

sorttable < inventory > inventory

your inventory table will be zeroed out (have zero characters or lines in it). The reason is that the
COHERENT shell, in opening the inventory file for output, zeros the file’s size. Then, when the
sorttable program (or any COHERENT program) reads it in, it gets EOF on the first read. It closes
the file, empty! You’ll get the same disastrous effect even if you pipe the output through several
programs and then try to write it into the original input file. Do not do it! Also, get in the habit of
looking at your tmp file before moving it onto your original good data. You may have made an error
and be moving or copying bad data onto good. Finally, be careful not to type

> file

when you mean:

< file

The first wipes out the file, rather than reading it.

Syntax: How To Enter Commands Correctly
In the manual, you will see a synopsis of each command and its syntax. Syntax is the rules for
forming a correct command. Semantics is what the resulting command will do. Computer
programmers are familiar with this way of expressing the syntax rules. If you are not, read this
chapter. We will start with simple syntax and go to complex. The simplest syntax is a command
with no options:

commands

You just type commands and you get all of the commands’ descriptions and their syntax rules.
Most commands require an input table. For example:

column < table

Substitute the name of your table for the table in the syntax rule. But you type the column <
exactly as specified. If you have a table named inventory you would type:

column < inventory

Many commands allow you to input tableorlist. This means they can handle both table and list
formatted files:

column < tableorlist

Options are placed in brackets ‘[]’ because you do not have to type them unless you want them.
For example:

justify [column ...] < table

The brackets here mean that you can optionally name columns to be justified. The ellipsis ‘...’
means that you can have many column names. But since there are brackets around the column ...,
you can also leave them out. In which case, all the columns would be justified. Note that there are
no brackets around the < table. This part is not optional. You must have it to tell the COHERENT
shell which file to open for input.

You should know that whenever you see < table you can also use a pipe to input a table into the
command:

TUTORIALS

30 Commands, I/O, Pipes

cat table | justify

This has the same effect as:

justify < table

If you see a vertical bar ‘|’ within brackets, it means or, not a pipe. Other commands give lists of
options in brackets. For example:

jointable [-a[n] -n -] [-j[n] column] table1 [table2]

This means that each option may or may not be selected. Note that there are brackets within
brackets. This means that if you chose the -a, for example, you have the further option of adding a
number n to specify which table number. The brackets around the -jcolumn mean that the two
strings go together, as well as being optional. The column should be replaced by the name of one of
the columns in one of the tables. Finally, the second table is in brackets, meaning it is optional.
But the manual page goes on to explain that if it is not there, and the - option is not chosen, then
the jointable command will get its second table from the standard in.

The most complex syntax is for compute. It can only be hinted at with the rule:

compute ’column = expression’ < table

expression can be quite complex. You must look at the manual pages for compute and awk to get
an idea of all of the things you can do.

COHERENT Shell Scripts
You can also put commands (including pipes) into a file and execute the file by simply typing its
name. These new commands are called views in the data-base literature because they give you a
particular view of your data. Use a text editor to type the commands into a file, just as you would at
the screen. Use a name for the file that you will remember and that reminds you of what you are
trying to do with the series of commands, like weeklyreport. After leaving the text editor, type:

chmod 755 weeklyreport

or

chmod a+w weeklyreport

This COHERENT command makes the file executable. chmod means change mode. Whenever you
want the series of commands that make up weeklyreport, just type:

weeklyreport

You can also use this new program in other COHERENT shell script files. If you want the new
program to be available to others, put it in /usr/local/bin, or some other bin that is in the path of
your users.

Suppose that at the end of each day, after making changes and updates to your inventory file, you
wanted to fix up the file. If you wanted to recompute the Value column, right justify the number
columns and left justify (blank fill the character columns); you could pipe together compute and
justify. But since you will need to perform these functions often, you could create a program. The
commands to fix up a table could be saved in a file with an easy-to-remember name. For example,
the fix command could look like this:

fix is a little routine to compute
and right justify the number columns

compute ’Value = Onhand * Cost’ < inventory | justify

Remember to type:

TUTORIALS

Commands, I/O, Pipes 31

chmod 755 fix

or

chmod a+w fix

to make it executable. If you don’t, you’ll see

Permission denied

when you type the name of the file. (You may also see this when you type the chmod command if
you don’t have the right permissions.) To run fix just type its name:

fix

This yields:

Item Onhand Cost Value Description
---- ------ ---- ----- ---------------

1 3 5 15 rubber gloves
2 100 1 100 test tubes
3 5 8 40 clamps
4 23 2 46 plates
5 99 3 297 cleaning cloth
6 89 18 1602 bunsen burners
7 5 175 875 scales

You can see how easy it is to write programs in the COHERENT environment. This is called shell
programming. /rdb is an extension to the COHERENT system that adds data-base commands to the
COHERENT commands.

COHERENT is good at this kind of levels of power. With most systems, you are limited to the
functions the developers programmed into the system. With COHERENT and /rdb, you are limited
only by your own imagination.

There are other useful COHERENT commands. pr will set up your output with head lines, and it
will break on, and number, pages. nroff and troff can format your text and data for attractive
printouts.

There are many different ways to initially create tables: editors, programs, shell commands such as
sed or awk, etc. When /rdb tables are entered from scratch, ve, the /rdb table editor, is often used.
ve allows the creation of tables quickly and in a familiar and easy way. It’s a lot like vi. The first
step in the creation of a table with ve is to create a screen definition file with any editor. Here is a
screen file for the states file:

The States File
st < st >
state < state >

ve uses this screen file to create the table. The rules for screen files are simple:

1. Column names go inside the angle brackets.

2. Anything outside of angle brackets is just text that appears on the screen.

The space between angle brackets is the viewable window over the field, and isn’t a restriction on
how wide the field can really be. After creating a screen file like this:

ve states

and the states file will be created. Let’s say ve has been used to add new records to our states
table so that it looks like this:

TUTORIALS

32 Commands, I/O, Pipes

st state
-- -----
CA California
NV Nevada
NY New York

A mailing list can be created the same way, by making a ‘screen’ file and then using ve to add a few
rows:

Yet Another Mailing List

Name <name >
Street <address >
City <city >
State <st>

This yields:

name address city st
---- ------- ---- --
Joe Main St. Santa Cruz CA
Bob Broadway Ithaca NY

To ‘‘Select the st and name columns from mlist and join it with the states table.’’ When we run the
command

column st name < mlist |
sorttable |
jointable - states

it yields:

st name state
-- ---- -----
CA Joe California
NY Bob New York

The sorttable command was silent. But it has to be there. Both files to be joined must be sorted.
The states file is already sorted. The dash in the jointable command means use the standard input,
just like the COHERENT join command.

Report Writing
As with querying, report writing is also very easy. In fact, any query can be printed as a report by
directing its output to your printer. Likewise, any report can be a query by directing it to your
terminal (which is usually the default anyway).

For numeric information, /rdb’s standard table output adjusted with a justify or trim command is
often sufficient, especially when combined with tabletotbl and the COHERENT nroff/troff
formatters. In addition to these methods, /rdb has a report command that uses a prototype report
form and has built-in command processing capabilities. It can be used to write form letters from a
mailing list, produce invoices, packing slips, purchase orders, and so on.

Let’s look at a sample report form. It’s like the screen file for ve: text is outside brackets, and
column names are inside brackets. Other commands can also go inside the brackets. Here’s a
report form for the mlist file:

TUTORIALS

Commands, I/O, Pipes 33

<name>
<address>
< city >, <st>

<! date +%D !>
Dear < name >,
This is a computer chain letter.
I am also sending it to:

<! column name city < mlist |
row ’name != "<name>"’ | justify !>
Bye, <! echo <name> !>.

This yields:

Joe
Main St.
Santa Cruz, CA

09/03/89
Dear Joe:
This is a computer chain letter.
I am also sending it to:

name city
---- ------
Bob Ithaca

Bye, Joe.

Arbitrary text goes outside the angle brackets; column names go inside angle brackets, and any
arbitrary command or shell program or shell command(s) can go between exclamation marks within
angle brackets, and you can still specify columns from the current record therein. You can even
have reports within reports ...

Conclusion
In school you learned how to add, subtract, multiply, and divide. On the foundation of those simple
operations can be built all the rest of arithmetic. These four operations work on numbers. A
relational data base gives you a simple set of operations on tables of information. With column, row,
join, and so on you can do enormously powerful things, but you will have to start thinking about
what you want in terms of these operations.

Just as the add command does not care if it is adding apples or space shuttles, column does not
care what the information in the tables is. Therefore, these commands can manipulate any data.
This is an incredibly powerful idea that will take some time to get used to. These relational
operations are a well thought out, pretty complete set of all of the things you will want to do with
your data. It is up to your imagination to discover all of the powerful, yet quick and easy tricks you
can do with these extensions of COHERENT.

TUTORIALS

34 Commands, I/O, Pipes

TUTORIALS

+1Conclusion 33

Entering Data into Tables

You have seen how to access your data, now we have to think of how to get your data into the data
tables. This is the real work of any data base system, so there are many tools to make data entry as
easy as possible.

ve: The Forms Editor
ve was created to serve as the principal data entry and data editing system for /rdb data bases. It
has much the same interface as the COHERENT text and program editor vi. We wrote it that way so
as to minimize the amount of user training required to bring a new data entry person up to speed
and to minimize the amount of confusion that could be caused by switching back and forth between
the COHERENT text editor vi and the /rdb forms editor ve. Like the vi text editor, ve is a very
powerful editor. Unlike vi, however, ve edits data in forms rather than in the free-form manner of
vi and ve has optional features you can invoke to check the validity of your entries as you enter
data, create an audit trail of your entries (or changes), automatically number your rows, and much,
much more. ve also allows you to create /rdb tables directly from the forms editor and has a built
in help facility so that you can review any of its features or commands in the middle of your editing
session.

ve is called a forms editor. This means that you, the user, have control over the way your screen
looks and the placement of the various fields that you will enter data into on the screen. The form
definition of your ve screen is defined by a screen file or screen template that you create. To create a
screen file use any text editor to set up a one screen form that consists of:

• The labels you want to have on the screen to prompt you for each column, and

• The other text or symbols you want on the screen to identify the row.

This procedure is called painting the screen. The labels on your screen are to be followed by the
actual names of your columns, enclosed in angle brackets <columnname>. This is much the same
format that you use to create a report template. For example, if you want to create a telephone list
form for data entry, you might create a screen form that looks like this:

Black Book*
Name <Name > Phone <Number>
Street <Street >
City <City > State <State> Zip <Zip >

The column names must be butted up against the left angle bracket. You can have spaces after the
column name. Because ve is designed to handle variable length columns (and rows) you don’t need
to be concerned if the space you leave between the angle brackets in your form isn’t enough to
record all the data you plan to put into any particular column. ve will allow you to enter data in
columns of variable length, even if you exceed the space available between the brackets on your
screen, by shifting the window containing your data if you key in more data than you have space for
on the screen. ve also provides a scroll left or right command and a zoom command so that you can
see the full text of any column for which there is insufficient space on the screen to display.

Once you have created the screen form, you then create the table by invoking ve. If you tell ve to
check the validity of your entries as you enter data into your table (with the -v switch), then ve will
prompt you for validation constraints when you create your table. You can then set limits on
column size, eligible characters to be keyed in, and table lookups in other tables to cross-check the
validity of your entry. These validation constraints can always be modified later, so you do not have
to get it perfect the first time.

35

36 Entering Data into Tables

ve also supports multi-user data entry or editing of the same table. It provides record locking
features that will allow you to avoid the problems that could be caused by having two or more users
attempting to edit the same row at the same time. With ve’s multi-user record locking, only one
user has access to a row at a time. Subsequent requests for a row in use are inhibited, and a
message is displayed.

This is a brief and general introduction to forms editing with ve. We have omitted a discussion of
the special data security features provided with ve, issues such as protected fields in ve,
instructions for optional cursor positioning, a ve command summary, a discussion of the default list
screen format, auxiliary indexing, and more. These are covered in a subsequent chapter, in the ve
manual pages, and in the on-line help screens of ve.

There are methods for data entry into /rdb tables other than ve.

Text Editor or Word Processor?
Another simple way to start a data table is to use a text editor or word processor. Type the column
head lines and dash lines and the first few rows of your table. Then save it, leave the editor and try
some of the query programs to see if you have set it up correctly. See the section on Rules for Table
and List File Set up, below.

This approach is good for starting your data bases and for small data bases, but at some point a
database may get too large for text editors. Then special purpose programs are needed. Each has
its advantages and disadvantages.

enter: Mass Entry of Data
The enter command is an easy but limited way to type in a lot of data. For example, you or your
operators might have to enter card files, or mailing lists, or other bulk data. You may not have time
to train them to use a word processor or ve. With the enter program, they just type

enter

and the name of the file. The program then prompts them for each column of each row, which they
type in. Each new row is simply appended to the table. It lets them go back to an earlier column if
they make a mistake, but there is no validation or browsing of the table. It requires the lowest skill
level and is the quickest to learn.

update: Update a Table
The update program lets you browse through a table file of any size, find a record with fast access
methods if you wish, edit the record found with any text editor you like, and return the record to the
file where it came from, or append the record to the end of the file if it is too big to fit back in where
it came from.

Programs and Other Formats
Another great thing about COHERENT and /rdb is the ease of converting data files into different
formats. The /rdb table and list formats can be converted to and from all of the other data base and
word processor formats with simple shell, awk, sed, and other COHERENT program tools. You can
use other programs, instruments, computers, tapes, floppy disks, networks, bar-code readers,
natural-speech recognizers, expert systems, deep space probes, and more to get your data, then
simply transform it into /rdb table and list format and use /rdb commands to do whatever
processing you want. There are, therefore, a multitude of ways to get your data in. After
processing, you can transform it again and send it back out.

Rules for Table and List File Set up

TUTORIALS

Entering Data into Tables 37

If you use ve to create and enter your tables you won’t have to worry a lot about these rules. But if
you don’t use ve, you’ll need more detail about setting up a data file. Your data is kept in files
which can have either of two formats: table or list.

Table Format

A table looks like this:

Name Title Wage
----- ------- ----
Mary Pres. 4.98
Shawn V.P. 2.98

To repeat, there are only three rules for making tables that the /rdb programs can understand.
They are:

• There must be a single tab between each column.

• Put a column name, in the first line of the table, at the head of each column. Be sure there is a
tab between each column name.

• Put a dashed line as the second line of each table above each column. There must also be a
tab between each column’s dashes.

• It is best if the dashed line is as wide as the widest string in each column, but it is not
necessary.

The justify command will set it to that width for you, if you wish. Remember to use the dash or
minus character ‘-’, not the underline character ‘_’.

There are several ways to make your tables pretty and to handle special problems. These programs
all require that you follow the three rules in order to work.

List Format

In addition to table format there is also list format, which looks like this:

Name Mary
Title Pres.
Wage 4.98

Name Shawn
Title V.P.
Wage 2.94

The rules for lists are similar to those for tables:

• The first character of a list-formatted file must be a newline. A newline character is what you
get when you hit your <return> key. It appears on the screen as a blank line. Be careful that
there are no unseen spaces or tabs in this first line that would also look like a blank line, but
would confuse the programs into thinking they are looking at a table-formatted file. The
programs use this first character to decide the format of the file so they can handle both list
and table-formatted files.

• The file has exactly two columns. There must be a tab between the column name (i.e., Name)
and the value (Mary).

• Each row (or record, corresponding to a row in a table) must be separated from the next row by
a newline character. It looks like a blank line on the screen. (Note the blank line between
Wage [for Mary] and Name [for Shawn] in the list example). There must also be a blank line at
the end of the list file. Remember that a blank line has no characters in it. The programs can
detect these two newline characters in a row. That is how they know that the end of the row

TUTORIALS

38 Entering Data into Tables

(record) has been reached.

Tab Problems

The use of tabs to separate columns in /rdb has many advantages, but they create a few problems.
The advantages include:

• Ease of input. When you press the tab key, the cursor jumps to the next column. This is very
natural to typists.

• Tabs look nicer in tables then printable characters. They line up columns and are a natural
separator.

• COHERENT utilities like awk, sort, and others, know about tabs and handle them correctly.

• File size. No extra characters are needed to fill out the table (unless the table is justified).

• No schema or other special file must be created and maintained to tell the programs where data
fields start and end, as is true with most other data base management systems. COBOL
programs, for example, are even worse. They have the exact length of each field and record
defined at the beginning of their code. This creates extreme inflexibility. If you need to change
any of your data, such as making a string longer or adding a column, a COBOL program would
have to be modified by a programmer and recompiled. The output of one COBOL program is
unacceptable as input to another COBOL program unless the fields and their widths are
exactly the same.

Some of the problems and their solutions are as follows:

Seeing the Tabs

You can see the effect of the tab, but not the tab character itself. So, if you make an input error,
how do you know? You should often use the check program. It is especially important for large
files. It will report any lines that don’t have the same number of columns (tabs) as the head line. It
will also display the line to simplify finding where the missing or extra tabs are located within the
row. In most editors there are facilities for seeing ^I for every tab on the line or in the table
respectively. Outside the editor you can also use the see command or od -c table to see the special
characters in the file. The see command turns tab characters into ^I. After running od, out comes a
strange-looking table showing each character including nonprinting characters converted so that
they can be seen. od means octal dump, but the -c option means to convert the bytes of the file
into their ASCII character representation. A tab is printed as: \t, as in the C programming
language.

Table-Width Problems

Your screen is usually 80 characters wide. What if a table is wider than that?

• Use ve to view your table. If a field is wider than the screen, you can shift the field left and
right. The default screen format tries to make a multiple column list of each field of a record.

• Use the list format when you create your table. See the manual pages for listtotable and
tabletolist commands.

• You might decide simply to live with letting a long row in a table wrap around to the next line
on the screen.

• Break the table into two or more smaller tables. You may join them back with the jointable
command if you occasionally need to.

• A table created by jointable, in a pipe, can be up to the maximum character width that your
available computer memory will hold.

TUTORIALS

Entering Data into Tables 39

• You can project only the columns you want to look at from your big table.

• You can get a wider terminal (some are 132 characters wide instead of the standard 80) or
printer (some allow compressed print).

Special Characters
You can use special characters in the column names (in the header lines), but it is best not to. If
you do, you will need to put quotation marks (") around the names when you type them at the
terminal to protect them from the COHERENT shell. The rules for quotation marks, on COHERENT
shell command lines, are: apostrophes (’...’) absolutely protect everything enclosed and quotation
marks ("...") protect every character except the dollar sign ($).

Therefore, put apostrophes around the whole string you are passing to row, compute, and validate.
Use quotation marks around column names that contain special characters including spaces. For a
complex example:

compute ’"Item#" == 15 { len = length ("col 1") }’ < table

Note that Item# has a special character in it, and that col 1 has a space in it. All of these must be
quoted ("). Also, the entire command must be enclosed within apostrophes (’). Even when you take
these precautions, some COHERENT systems just don’t like special characters. It’s best not to use
them. Limit column names to alphanumerics, don’t begin them with numbers, and don’t use any of
the awk reserved words as column names.

Data Validation: How To Get Data Right
Data can be validated in many ways and at many times. ve allows you to specify validation
constraints at data entry time, checking each entry as it’s made to make sure it passes tests on
what’s allowed and what isn’t. There is also a validate command which allows you to specify the
conditions that are invalid, and the error message that should print out when the invalid data is
found. The validate command is like the row and compute commands. They all pass their
instructions on to awk, which does all of the hard work. First a simple example. If you had an
inventory table like this:

Item# Onhand Cost Value Description
----- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 X 500 test tubes
3 -5 80 -400 clamps
4 23 19 437 plates
5 -99 24 -2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

There are several invalid values that have gotten into your table. You might want to check that no
Onhand item is less than zero. You can type this command:

validate ’Onhand < 0 {
print "negative Onhand in line " NR
}’ < inventory

This yields:

TUTORIALS

40 Entering Data into Tables

Item# Onhand Cost Value Description
----- ------ ---- ----- --------------
1 3 50 150 rubber gloves
2 100 X 500 test tubes
3 -5 80 -400 clamps
negative Onhand in line 3
4 23 19 437 plates
negative Onhand in line 5
5 -99 24 -2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

You can also put the command into a file and call it something like checkinventory. It would then
be a shell program that can be run regularly. See the validate command in the manual for more
examples and information.

TUTORIALS

%data validation=39

ve Form and Screen Editor

ve is a table editor designed for use on /rdb tables. Users who are familiar with the vi text editor
will enjoy the advantage of understanding ve’s mode of operation and will already know most of the
ve commands.

This section describes the commands and what they mean, how to set up /rdb tables, how to use
the optional features to tailor ve to your application, and other considerations which will help you in
both designing and using your tables.

ve Commands
Most ve commands are described in detail in the following sections; a complete command reference
list is provided in the first ve on-line help page. ve’s command language is very much like the
command language used by the vi COHERENT editor, in that both editors use regular letters and
symbols as commands. As such, the keys you hit are interpreted either as commands to ve or as
text that is being entered into your table depending on the mode ve is in when you type them: insert
mode or command mode. For a summary of the vi editor, see the COHERENT Lexicon’s entry for
elvis, which is COHERENT’s implementation of vi.

Because ve is essentially a visual experience, the best way to understand it is by sitting down at a
terminal, creating a ve table, and experimenting with it.

Moving Around

The following table lists commands that move your cursor to a desired position on the screen. It
indicates whether a given command scrolls, if it knows about counts, and if it can be used as a
target.

Command Scroll Count Target

<Return> <tab> no yes no
B no yes yes
l <space> yes yes yes
h yes yes yes
k j no yes no
^ $ yes no yes
G no yes no
H L no no no
w b e yes yes yes
< > yes no no
f F ; yes yes yes

The following describes each command in detail.

<Return> <tab>
Move the cursor to the next column in top-to-bottom, left-to-right order on your screen.
The <Return> key also works in insert mode.

B Moves the cursor to the next column in bottom-to-top, right-to-left order on your screen.

l <space>
Move the cursor one character to the right.

41

42 ve Editor

h Move the cursor one character to the left.

k j The k and j commands move the cursor, respectively, up and down the screen one row.

^ $ The ^ and $ keys move the cursor to, respectively, the beginning and end of the column.

G Move the cursor to the last row in your table. When you precede the G command with a
count, ve displays the row in the count position in the table. For example, 100G means
‘‘display the 100th row.’’

H L The H key moves to the beginning of the first column on the screen; the L key moves to the
the beginning of the last column on the screen.

w b e The w key moves the cursor one word to the right; the b command moves the cursor one
word to the left; and the e command moves the cursor to the end of the word.

< > The > command scrolls continuously through the column, left to right, until it reaches the
end. The < command scrolls continuously through the column, right to left, until it reaches
the beginning.

f F ; The f command looks left to right from your cursor for the character you specify; the F
command looks looks right to left from your cursor for the specified character. The key you
hit immediately after typing f or F is assumed to be the character you are seeking. When ve
finds the character, your cursor moves to its position in the column. The ; command
repeats your last f or F request. It remembers both the character you last found, and the
direction in which you were moving.

Occasionally, your screen will not be able to display all the data in a column or row because its
width exceeds that of the the screen window. To compensate for this, many movement commands
scroll left and right through the data, allowing you to see the entire contents of columns which are
too long for the screen space allowed.

Some commands let you to specify how many times ve repeats the command before it repositions
the cursor. These counts are entered as a number before the command. For example, the command
4l moves the cursor to the fourth character in the column (left to right). The command 2b moves
the cursor two words to the left of your current cursor position.

When ve beeps or flashes at you instead of moving, it means that the command is inappropriate or
that your cursor is already at your destination.

Displaying Your Data

There are two basic methods for displaying data on your screen. One is to display it sequentially,
which is the way they appears in the table. The other way is to look for specific rows by searching
the table.

Sequential display: n, -
The n (or next) command displays the row in the table that immediately follows the one now
displayed. If n is the first command you give ve, it begins at the first row in your table.
The - displays the row in the table that immediately precedes the one now displayed. If - is
the first command you give ve, then it begins at the last row in your table. Both sequential
display commands wrap around to the beginning/end of your table after the last/first row
has been displayed.

Searching: /
When you use the / command, ve traverses your table row by row, looking for the pattern
you specified. It can repeat a search without making you retype the pattern or character. If
you have denied access to some columns by excluding their names from your screen file, ve
will omit these columns in its search.

TUTORIALS

ve Editor 43

The / command begin its search at the position of your cursor in the row and is complete
when the pattern you specify is found or when the entire table has been examined. For
example, to search for John Doe in your blackbook table (which is described below), use the
command /John Doe. For you to see what you are typing, ve provides the last line of your
screen to display the pattern as you type it in. You can use your erase character to edit this
line. When you are done typing in the pattern, hit <Esc> or <Return> to tell ve that you
are done. If John Doe is a pattern in your table, then the row which contains John Doe will
be displayed on the screen.

Because ve remembers your search pattern, you need only type / and Esc> or <Return>, to
repeat your search of a specified pattern. Each time you enter a search pattern, ve forgets
the previous one.

Getting the Right Row

Usually the only requirement ve enforces when trying to match a search pattern to data is that the
entire pattern is contained in a single column, regardless of which column it is or its position in the
column.

Sometimes a search pattern will match data in many rows when you are looking for a specific row.
Choosing a search pattern which is unique to the row you want displayed will speed up the search
process. If this is not possible, you can limit the way ve searches by forcing the pattern to match
the beginning or end of a column, or by specifying a particular column to which ve should limit the
search.

Position matching: ^, $
The character ^, when it is the first character of a search pattern, tells ve that the pattern
following it must match data at the beginning of a column. The character $, when it is the
last character of a search pattern, tells ve that the pattern preceding it must match data at
the end of a column.

If you are searching for the ‘^’ character in the first position of your pattern, or the ‘$’
character in the last position of your pattern, you must precede these characters with a
backslash (\).

Search column selection: m, M
Another way to limit your search is to make ve search only one column in each row, using
the m command. When you mark a specific column to be searched, ve doesn’t bother
trying to match your search pattern with data in any other column. As such, the search is
quicker and the results are more likely to yield the desired row on the first search.

To use the m command, simply position your cursor at the column you want to search and
hit m. All subsequent searches will be limited to data in that column only. Hitting the m
key on a different column changes the search column to that column.

If you have marked a search column and you want to go back to searching all of the
columns in each row, hit the M key to unmark your columns.

Inserting Text

Because most ve commands are ordinary characters, how do you tell when you are executing a
command, and when you are entering text?

When you type one of the insert commands listed below, ve switches from command mode to insert
mode. When you are in insert mode, everything you type is data and is displayed on your screen.
You know you’re in insert mode because the <Insert/append mode> message is printed at the
bottom of your screen. If you don’t see that message, then you are in command mode.

TUTORIALS

44 ve Editor

The only way to get out of insert mode is to hit the <Esc> key. When you do this, ve erases the
insert message at the bottom of the screen and returns to command mode.

Several commands put ve into insert mode. Some commands destroy existing text (indicated by ‘*’),
whereas others add to it. All of the commands except O take effect on the column at which your
cursor is positioned, and, with the exception of the o command, at the actual position of your cursor
in the column. The C, c, and s commands mark your text with a $ symbol to show you the text that
will be changed. This symbol disappears when you type over it, or when you hit the <Esc> key from
insert mode.

The r or replace command is the only command which substitutes text without entering insert
mode. To use the r command, position your cursor at the character in the column you wish to
change, type r and the character to replace it. The r command can be used with counts. For
example, to replace the next four characters with the letter ‘x’, use the command 4rx.

Command Means

a Append text to the right of the cursor
A Append text at the end of the column
i Insert text to the left of the cursor
I Insert text at the beginning of the column
o* Open the column and insert text at the beginning
O Open a blank row
ctarget* Change the text between the cursor and target
C* Change text from the cursor to the end of the column
s* Substitute the character at the cursor for text
R* Replace (overwrite) text character by character

Deleting Text

The delete commands let you delete entire rows and columns, partial columns, or characters from
your table:

Command Means

dd Delete the entire row
D Delete text from the cursor to the end of the column
x Delete the character(s) at the cursor
dtarget Delete text from the cursor to target

The x command also knows about counts.

Targets

The insert command c and the delete command d require that you specify a target. A target is
exactly what it implies — a destination for the command being executed. Commands that can be
used as targets are listed in the section on moving around. The table below shows sample d and c
commands and what they mean when used with different targets.

Command Means

3dw Delete the next three words
de Delete to the end of the word
c2fg Change the text to the second g found moving right
c^ Change the text to the beginning of the column
c$ Change the text to the end of the column
d; Delete text to character specified by last f or F command

All targets assume that the delete or change action begins from the position of the cursor and

TUTORIALS

ve Editor 45

counts must be specified before the actual target.

Yank, Put, and Undo

Sometimes accidents will happen when you are editing — you will hit the wrong key, or decide that
you really don’t like a modification. You may even delete an entire row and then realize it shouldn’t
have been deleted. Or perhaps you are entering rows which are almost identical and you are sick of
typing in the same thing over and over again. ve has a number of commands that help you to
efficiently deal with a change of mind after a change of text, mistakes and repetitive data entry.
These commands are known as yank, put and undo commands.

Yank commands copy data from the row displayed on the screen into a special buffer. Put
commands put the yanked data from the buffer into the row on the screen.

Yanking data does not alter the row from which it is copied. Generally, once data has been yanked,
it can be put indefinitely without having to yank it again. Because ve remembers only the text last
yanked for each column displayed, yanking data from the same column in another row overwrites
previously yanked data in that column with the text that is currently displayed. When entire rows
are yanked or deleted, all yanked columns are overwritten with the text in the displayed row.

Selected columns are yanked with the y command. To use it, position your cursor on the column
you want to yank and hit the y key. Different columns may be yanked from different rows.

All columns on the screen can be yanked with the Y command, and it works by hitting the Y key
from any position on the screen.

Putting data replaces the data in the row or column being displayed with the data last yanked by a
y, Y, or dd command. Data can be put only in columns from which it was yanked. For example,
you can’t yank text from a phone number column and put it in a customer name column.

The p command replaces the data in the column at which your cursor is positioned with data that
has previously been yanked from that column.

The P command replaces the data in all columns currently displayed with data that has previously
been yanked from each column. Since veconsiders deleted rows to be yanked text, using the P
command after mistakenly deleting a row will restore it.

ve remembers the data in the last column modified prior to the last command which modified it.
You can restore the data to that state by hitting the u key. The u command works only for undo-ing
modifications made to the row currently being displayed, and will not undo what’s already been
undone.

For Your Information

The # command displays the list of topics in the on-line ve help files available for perusal. To select
a help file, position your cursor at the ==> symbol to the left of the desired topic by using the j,
<Return>, -, and k keys to move down and up the list. Then, hit any other key (except q) to view
your selection a page at a time. The j and <Return> keys display successive pages, and the - and k
keys display previous pages. Any other key (except the q key) returns to the table of contents. Hit
the q key to get back to your data display.

Other commands which provide assistance with or information about the current screen contents:

• The v command displays the validation requirements for the column on which your cursor is
positioned.

• The t command prints the look-up table for the column upon which your cursor is positioned,
if such a table exists.

TUTORIALS

46 ve Editor

• Use the S command to redraw your screen if your data display gets messed up.

• The z command draws a window under the column your cursor is on and displays the contents
of the column in the window. This command comes in handy when the data for a particular
column does not fit in the screen space allowed. The next key you hit will erase the window.

Writing Rows

Whenever you change the data by adding or changing a row or column, you must use a W or ZZ
write command to make your changes or additions part of your table. When you use the W or ZZ
command, ve re-checks the data to make sure that all validation tests (if any) have been passed.

When you are using the W command, and the data does not pass your validation tests (if any), ve
will complain and refuse to write your row in the table. In this case, your cursor will land on the
column which contains the bad data and you can fix it. If there are no tests, or when the data
passes your tests, ve will write your row in the table, and await your next command.

The ZZ command is a quick way to write your row and exit from ve. If the row on the screen has
been added or modified and it passes your validation tests (if any), ve will put it in the table before
quitting. It will not tell you whether or not it writes the row.

If your data has been changed and you attempt to display a different row with a before using the W
command, ve will warn you that the row has not yet been written. Repeating the command will
override the warning, and the row on your screen will not be written in your table.

Getting Back to COHERENT

There are two kinds of commands which will get you back to COHERENT: shell commands (!,%) and
quit commands (q,ZZ). Shell commands let you talk to a new COHERENT shell while your ve
process is suspended in the background, waiting for you to return. Quit commands end the ve
process and return you to your COHERENT shell.

The % command displays a % symbol at the bottom of your screen and puts ve into suspended
animation. When you see your login prompt appear at the bottom of the screen, COHERENT is
ready for your command. To resume your conversation with ve, hit <ctrl-D> (your EOF character).
If you are not familiar with COHERENT processes and shells, remember that it is easy to get carried
away with COHERENT and forget that ve is still patiently waiting for your return. You will know
something odd is happening when you try to log out and COHERENT keeps saying not your login
shell. You must first return to ve and give it a proper quit command. If COHERENT still complains,
it means that you have repeated the % command a succession of times, and you must repeat the
<ctrl-D>q sequence until you can log out.

The ! command before a COHERENT command executes the COHERENT command at the bottom of
the screen and then immediately return to ve. To read the results of your COHERENT command,
the message

[Hit RETURN to continue]

appears and ve awaits your response before it redraws your screen. The ‘%’ symbol, when used in
the ‘!’ form of the shell command, is replaced with the name of the table you are currently editing.
To repeat a ! command, type !!.

Quit Commands

When you are finished using ve, you can use the q or ZZ command to exit. The only difference
between the q and ZZ commands is that q complains if the row on the screen has not been written
after a modification has been made. (A second q command simply exits without writing the row.)
The ZZ command will automatically write your row before exiting ve.

TUTORIALS

ve Editor 47

Colon Commands

People accustomed to using the COHERENT editor vi are already familiar with colon commands.
Colon commands are always preceded by a colon (:). When the colon key is hit, it appears at the
bottom of the screen and the remainder of the command appears next to the colon as you type it.
You must enter at least the first letter of the colon command for it to work (letters enclosed in []’s
show how much of the command you don’t need to type). You must end colon commands with
<Return> or <Esc> to let ve know you are done.

Colon Command Is the Same As Described in Section

:n[ext] n Sequential Display
:o[pen] O Inserting Text
:h[elp] # For Your Information
:w[rite] W Writing Rows
:s[hell] % Shell Commands
:!command, !! ! Shell Commands
:q[uit] q Quit Commands

Macros

A macro command is defined as one or more ve or COHERENT shell commands mapped to a single
control key. Each time the control key is hit, the command or sequence of commands defined by
that control key will be executed.

Macro commands can be used to simplify an often-repeated sequence of commands into a single
keystroke. Because control keys are non-printable characters and cannot be confused with
potential data (unlike regular ve commands), they work from both command mode and insert mode.
The mode from which you execute the macro is restored after successful completion of all the
commands which define it. It is even possible to design a set of macro commands that makes ve
appear to be a single-mode editor. This might be desirable for beginning users who find two edit
modes confusing.

A maximum of 23 macro commands may be defined for the <ctrl-A> through <ctrl-Z> keys. If your
erase character or your interrupt character is a control key in this range, then it (they) are excluded
from the list of control keys available for macros. Macro commands that include a second macro in
their list of commands will replace whatever commands follow the second macro in the list with the
list of commands in the second macro. Embedding macros in macros is confusing and it is not
recommended.

Macro definitions are stored in a ve table named .verc. If you want to define your own macros, this
file must be in your home directory where it can be shared by all ve tables in your account. If you
don’t have your own .verc file, ve will use its own.

The first column in the .verc file contains the letter which is hit simultaneously with the control key
to make the control key code. The second column in the .verc file is the command or commands
that are executed when the that key is hit. Four non-printable commands which you may want to
use in your macros are <Tab>, <Esc>, <Return>, and <Backspace>. They should be indicated by
\t, \e, \n, and \b, respectively. Below is a copy of the default .verc file ve uses.

TUTORIALS

48 ve Editor

Control Key Command
a #
d ddn
o O
q ZZ
r S
s %
t t
w W

For example, let’s say we’re editing the blackbook table and we forgot to type in the area codes for
local phone numbers with 429 prefixes. If we mark the phone column using the m command, and
the macro

p /^429\eI(408)\eW

is a row in our .verc file, then every time we hit <ctrl-P>, ve finds rows in which the first three
characters of the phone column are 429. ve will then insert (408) at the beginning of the column
and write the row.

Shell Macros

If the command column in the .verc table begins with ‘!’, then the remainder of the command
column, up to the end of the column or another ‘!’, is passed directly to the shell. If the command
contains valid column names enclosed in ‘<’ and ‘>’, then the contents of the named column(s)
currently displayed on the screen will be substituted before the shell is called.

Using the blackbook table, let’s add a macro which will dial the emergency phone number when we
hit <ctrl-E>:

e !dial <phone>\n

Like regular shell commands, shell macros also expand ‘%’ to the name of the current table.

For example, let’s say we have a subdirectory named Personnel containing text files about each
employee in the personnel table. To keep these files distinct and unique, each is named by the
Social-Security number of the employee. See if you can figure out what the following shell macro
will do:

g !cat ‘echo % | cap‘/<ss number>\n

ve will echo the interpreted shell command on the message line, send it to the shell for execution,
and then print the

[Hit RETURN to continue]

message before refreshing your ve screen. Placing a ‘-’ after the ‘!’ in the shell command line will
suppress the command echo, the pause and the screen refresh.

To see a list of the .verc commands in effect while you are using ve, hit <ctrl-?>.

The Command Line
The files ve uses and the way it displays and formats your data are determined by entering a single
command line at the prompt. The syntax for ve is:

ve [data [-s [file] -h [file] -a [file] -v [file] -n[n] -fc -mc -i]] [-b]

Dashes which are followed by a single letter are called switches (-s, -h, -a, -v, -n, -m, -i, -b). Each
switch tells ve to perform a specific job when it is invoked.

TUTORIALS

ve Editor 49

Words, symbols, and letters that directly follow each switch, when substituted for file names,
numbers, and characters, further define how ve should do the job indicated by the switch. The
word data shows where you would type in the name of your table; the file words show where you
would substitute the names of any files you might use. The n symbol shows where you would
substitute a number, and the c (as in -fc or -mc) shows where you would put a letter or character.

The brackets ([]) are used to indicate items on the command line that are optional, and should not
be used in an actual command line. Note that with the exception of the word ve, everything on the
command line is optional. Thus, the command

ve

is a perfectly valid ve command that displays the on-line help file index.

File Options

The first four switches in the command line apply to files that, with the exception of the screen file,
are in /rdb table format. They let the user define how the screen displays the data (-s), separate the
header lines from the data rows (-h), keep track of each modification made to the table (-a), and
impose various restrictions on the data as it is entered (-v). Each of these switches can be used
with the name of a file.

File Creation

How do we use the file options when the table or the files don’t exist? The best and simplest way is
to let ve create, format and store the necessary files. This can be done in a single command, so that
all files are created and initialized at the same time. The following table shows the conditions under
which each type of file is created:

ve will create When

The table There is a screen or a header file
The header file There is a screen file and no table
The audit file There is a screen or a data or a header file
The validation file There is a screen or a data or a header file
The screen file Never — the user must do this

By examining the table above, it is apparent that the only file ve really needs in order to create all of
the other files, including the table, is a screen file. The preferred method for initializing a ve table
(starting up from scratch with no files), is:

A. Create a screen file, making sure to include all of the column names you want to be part of
your table.

B. On the ve command line, type in:

1. The name of your table,

2. the -s switch with the name of the screen file you’ve just created,

3. and the file option switch followed by a name for each file you wish ve to create.

For example, let’s say we want to create a table named blackbook. Also, we want to impose certain
limitations on how the data is entered in some of the columns, and put these limitations in a
validation file called limits. So far, neither of these files exist.

The first thing we do is create a screen file which we name display. In the display file, we include
all of the column names we want in our blackbook table. When we finish making our screen file,
and type in the command

ve blackbook -s display -v limits

TUTORIALS

50 ve Editor

the following steps are performed:

A. ve looks in the blackbook file for the header rows. But blackbook doesn’t exist, so ve creates
it.

B. ve then reads the screen file we have created named display. It creates the header rows from
the column names in the screen file, and puts them in the new blackbook table.

C. ve creates a validation file named limits and uses the column names in the first header row to
create the rows in limits.

When ve is finished making all the new files, it draws your screen according to the display screen
file, and puts you in ve edit mode, exactly as if the files had already existed before issuing the ve
command.

Typing in the ve command line can be time consuming and tedious when using the file option
switches, especially if you are using any of the other switches as well. ve has a built-in method of
naming optional files associated with a table. When you take advantage of this feature, the
command line is greatly simplified.

Using the Default File Names

Whenever a ve command is issued with the name of a table, ve looks for files with names that begin
with the name of the table and end with each of the four file option switches. These files are called
default files, or files which are used by ve in the absence of specified files. For example, consider
the table named blackbook:

File Switch File Type ve Looks For

-s Screen blackbook-s
-v Validation blackbook-v
-a Audit blackbook-a
-h Header blackbook-h

If any of the default files exist, ve automatically includes them in the command line.

Specifying a file option switch with a file name overrides ve’s inclusion of the existing default file in
the command line. As a corollary to this, files that are to be included in the ve editing session
which do not have default names must always be typed in the command line, following the
appropriate file option switch. For example, suppose you want to use a screen file named myscreen
instead of the default screen file named blackbook-s:

ve blackbook -s myscreen

Creating files from scratch also becomes much easier when using the default ve file names. The
same rules apply as above for creating files, but the names of the files do not need to be typed in.
Let’s assume that we are starting out fresh with no files. We want to start a new table named
blackbook, with a validation file and an audit file. If we create a screen file and name it blackbook-
s, then the command line

ve blackbook -v

is all that is necessary to create the table named blackbook, and the validation file named
blackbook-v.

Automatic Row Numbering (-n)

The -n switch tells ve to give each row a unique numerical identifier automatically as it is written.
ve looks for and stores this number in the first column of each row.

TUTORIALS

ve Editor 51

If you are initializing a new table and you use the -n switch, you must reserve the first column for
this number. Of course, you may name the column anything you like — it just has to be there. ve
will start the row numbering at one.

If your table already exists, ve figures out what to number new rows by scanning the first column of
each row in the table and adding one to the largest number it finds.

The n option to the -n switch, when substituted with a number, tells ve to start new rows with that
number. If the number you specify is less than the greatest numbered row in your table, ve simply
ignores your request, since it would mean duplicating existing row numbers.

Once the -n switch has been specified in the command line for a particular table, it is not necessary
on subsequent calls to ve to include -n in the command line (unless you are resetting the number
with the n option), since ve keeps track of the largest numbered row. The command

ve blackbook -n2001

is an example of using the -n switch to invoke automatic row numbering beginning with 2001.
When you are editing a table that uses automatic row numbering, and the first column is displayed
on the screen, your cursor will not land on it. This is ve’s way of making sure that you don’t mess it
up.

Start-up Mode Specification

The -m switch tells ve to enter the editing session in a particular mode. This mode is specified by a
character which must follow the -m switch, and can be i for insert mode, / for search mode, or n for
next mode. ve will return to this mode whenever a row is written. If, for example, we want ve to
start up in the insert mode, we would use the command:

ve blackbook -mi

Initialization Option

ve creates and maintains an index of the rows in your table. During ve edit sessions, this index
keeps track of which rows are being accessed by other users and which rows have been deleted.
When the table is quiet, ve uses the index to clean up the table by removing the deleted rows and
putting the updated rows in order. The index is also used to store the last automatic row number (if
applicable) and the column separation used by your table.

If your table has been modified using using a method other than ve, the index must be recreated.
This is done with the -i switch, which means initialize the table. It is not necessary to use the -i
option when you are creating the table.

The Screen File
A screen file is an ordinary text file which is created with any editor. It visually describes the way
the data are displayed during a ve edit session. If there is no screen file, ve displays your column
names in columns on the screen with the corresponding data adjacent to the name. There are
several reasons for using a custom screen file:

• It is the simplest and most accurate way to create your table.

• It allows you to take advantage of ve’s security features.

• It allows you to customize or expand your column labels and helps to make your screen display
match specific hard copy forms.

• It allows you to rearrange the order or placement of your column names to accommodate the
size of data in the column.

TUTORIALS

52 ve Editor

• it allows you to set the column on which your cursor will land each time a row is displayed.

Screen File Format

The screen file should be formatted to look the way you want ve to display your data. Use the
following guidelines when creating a screen file:

A. For each column, indicate the beginning and ending positions for data display in the screen file
with the ‘<’ and ‘>’ angle brackets, respectively. Both brackets must appear on the same line.
Type the name of the column between the brackets. If ve identifies text surrounded by <>’s to
be a valid column name, then data in that column will be displayed between the brackets, and
the brackets themselves will become blank.

B. If you are using the screen file to create a table, keep in mind that the names of all columns
must be included in the screen file, and that their top-to-bottom, left-to-right order on the
screen will determine the order in which ve arranges your data. (This consideration is usually
important only when you are planning to use automatic row numbering or an audit file with
your table. In that case, the uppermost, leftmost column name will be assumed to be the name
of the number column.)

If your table already exists, you must be sure that the column names in the screen file are
identical to those listed in the first header row of the table.

C. The entire screen file should be no longer than 23 lines and no wider than 80 characters, since
this is the most information that standard screens accommodate (the 24th line is reserved by
ve for messages).

Here is the screen file for our address-book table (blackbook):

*** Black Book ***

Name: <name > number: <phone >
Address: <street >

City/State/Zip: <city > / <state> / <zip >

Protecting Columns

Once a table has been created, a screen file can be used to selectively protect specific columns by
denying or limiting access to those columns. When you ve a table with a screen file, only the data
for columns which are named in the screen file will be displayed. Thus, the simple omission of the
names of confidential columns in the screen file protects those columns from being displayed. Data
in columns not named in the screen file are also excluded from searching.

This feature comes in handy when you want to use ve to edit a specific subset of columns and do
not need to see the entire row.

By limiting access, we mean simply disallowing modification of designated columns. In the screen
file, column names preceded by an exclamation point (!) indicate to ve that they cannot be modified.

To illustrate the security features, let’s use the personnel table described earlier. For the sake of
this example, we’ll add two columns for the name of the person to contact in an emergency, and the
phone number of that person. The header rows for such a table look like this:

employee ss number emp. date salary emergency phone
-------- --------- --------- ------ --------- -----

Let’s assume that this table exists, and we simply want to update it. We want to be able to search
for employees by their name or their Social Security number, but we don’t want these columns
modified. Also, because the salary column is confidential, we don’t want it displayed at all. Our
screen file might look like this:

TUTORIALS

ve Editor 53

Company X-Y-Z Employee Information Card

Employee !<employee >
Social Security !<ss number > Date employed <emp. date >

In case of emergency <emergency > number <phone >

Setting the Cursor

Unless you are searching for a particular pattern, ve will position the cursor at the uppermost,
leftmost column name on the screen.

The column name on which your cursor automatically lands can be changed by preceding the
desired column name with an asterisk (‘*’). For example, if we were updating the emergency name
and phone number columns in the personnel table, we could make the cursor land automatically
on the emergency column as each row is displayed, by changing the last line of the screen file to
look like this:

In case of emergency *<emergency > number <phone >

The Validation File
A validation file describes column-by-column requirements that data must meet as it is entered in
the table. There are three different kinds of tests that you may force your data to pass before
allowing it to become part of your table: character range specification, column length restriction,
and table look-up.

Validation File Format

The validation file is a regular ve table. The header rows look like this:

name characters length table
---- ---------- ------ -----

For each column in your table which must pass one or more validation test, there is a row in the
validation file. The first column of each row in the validation file contains the name of the table
column.

Validation File Creation

ve can create your validation file, but you must supply the validation parameters. To make this
task easier, ve calls on itself to edit the validation file, before opening up and displaying your table.

If you don’t want to make a column pass validation tests, simply delete the row which contains the
column name from the validation file. When you are finished editing your validation file with ve,
your table will be displayed on the screen, and the validation parameters will take effect
immediately.

Character Range Specification

This validation option allows you to specify exactly which characters are acceptable (or not
acceptable) in a named column. For example, the ss number column of the personnel table should
be comprised of numbers and dashes. The employee column can be letters (upper case and lower
case), dashes, periods, commas, and blanks. The zip column of the blackbook table must be
numbers only.

ve allows you to specify these parameters in terms of ranges, or as single characters, in the second
column of your validation file. A range is defined as a low limit character and a high limit character
separated by a dash ‘-’. When more than one characters or range of characters are specified, they
are separated by a comma ‘,’. Using the above examples, the character specifications for ss number

TUTORIALS

54 ve Editor

is ‘0-9,-’; for employee is ‘A-Z,a-z, ,-,,,.’; for zip is ‘0-9’.

Let’s say we have a column which can contain anything except upper case letters:

a-z,0-9,?, ,,,.,:,;,!,=,+,<,>,[,],(,),*,&,^,%,$,#,@,{,},|,~,‘,-

The ‘!’ symbol, when it precedes a range or character, means not this range, or not this character.
Sometimes, as in the example above, the ‘!’ syntax can greatly simplify the parameter list: ‘!A-Z’.

The ‘!’ can also be used to exclude specific members of a range. For example, one way to specify all
numbers except 8 is:

0,1,2,3,4,5,6,7,9

A simpler way is:

0-9,!8

Column Length Restrictions

ve looks at the third column in each row of the validation file for column length limits. These limits
are used for several reasons. For example, we know that zipcodes should be exactly five numbers
long. We know that Social-Security numbers are exactly 11 characters. Data entered in these
columns which are not the proper length make them meaningless.

Also, it is sometimes the case that other limits indicate the necessity for a column-length restriction.
If, for example, we use the blackbook table to produce labels, then we should restrict the length of
the columns in the table to conform to the size of the labels.

Another use of column length might apply when you want to force a column to contain data, but
you don’t care (or don’t know) what the length should be. For example, in the date column of the
personnel table, you might require that something be entered, but it might be of indeterminate
length (October 1981, 10/1/81, 10/81, etc.).

Four specifications describe exactly how ve should pass data for the column length test:

=n The column length must be exactly equal to n
<n The column length must be less than n
>n The column length must be greater than n
! The column can be blank (length 0)

Using the above examples, the column length for zip column in the blackbook table is =5, which
means exactly equal to five characters. If the size of our labels is 32 characters, then the column
length for the name and street columns of the blackbook table is <33, which means less than 33
characters. The column length for the date column of the personnel table might be >0, which
means there must be at least one character in this column.

When more than one of these specifications is used, they are separated by a comma ‘,’. The ‘!’
column length specification, when used in conjunction with other specifications, tells ve to ignore
other length specifications if the column is blank. For example, if you specify the zip column length
mentioned above to be !,=5, then ve will allow you to skip over that column — however, if you enter
any data in this column, ve will force you to make it exactly five characters long.

You can also indicate column length ranges by using the < and > specifications together. (In fact,
another way of saying !,=5 is !,<6,>4.) In the personnel table, the least number of characters
needed to specify date is four (1/82); the greatest number is 18 (September 11, 1949). You may
wish to place an upper limit on this column simply to preclude the user from typing in something
silly like, ‘‘Gosh, I don’t know, I guess Bud joined the firm round about September, a few years back,
because I first met him at the company’s Labor Day barbeque.’’ In any case, the specification is
>3,<19, which means any data in this column must have more than three characters and less than
nineteen characters.

TUTORIALS

ve Editor 55

Look-Up Tables
The fourth column in the validation file is for the name of a look-up table. If you use table look-up
validation on a particular column, then each time you enter data in that column, ve compares it
with data in the table. ve makes this comparison based on how you specify the name of the table: if
it is preceded by ‘!’, then it passes the table look-up test only if it is not in the table; otherwise, it
passes only if it is in the table.

ve updates all tables created from a table as you change, delete, and add data to columns in that
table. As such, you need to create each table only once. As long as you always use ve to maintain
your table, your tables will be current.

Table Creation

The vindex command is used to create look-up tables. To use vindex to create a new look-up table
(or overwrite an existing one), you must specify the name of the table and the names of the columns
in the table you want to index.

For example, if we want to create look-up tables for the ss number and the employee columns of
the personnel table, we would use the command:

vindex personnel employee "ss number"

vindex creates two files for each table it makes, using the naming convention column-A and column-
B. If the name of the column you are vindexing is longer than 14 characters, it will be truncated to
14 characters before the -A and -B extensions are appended to the resulting index files. Spaces are
converted to ‘_’ and special characters which may be part of the column name are omitted. In this
example, the index files for the ss number table would be named ss_number-A and ss_number-B.
The ss number table is referred to in the validation file simply as ss_number.

Decode Columns

An optional feature when creating and using look-up tables is the cross-indexing capability. When
you are creating a table for a column in a table, you can select a second column which should be
displayed when your data matches a pattern in the table. The displayed data is called a decode
column. The decode column must also be in the table, and, because each indexed or key column
can have only one associated decode column, vindex assumes that data in the key column is
unique. Similarly, when ve is used to update tables which contain decode columns, the contents of
the key column must be unique.

For example, consider the following states table:

state code name
---------- -------------
NY New York
CA California
MA Massachusetts

In each row of the states table, the state code column contains a standard state abbreviation: the
name column contains the name of the state that corresponds to the abbreviation. To create a look-
up table on the state code column and cross-index the name column, we use the command:

vindex states "state code" : name

The colon ‘:’ character in the command above is used to indicate that the following column name
(name) is a decode column for the column name preceding the colon (state code).

TUTORIALS

56 ve Editor

Unique Columns

We can use the ss_number table created previously to illustrate the use of look-up tables to enforce
unique column entries. In order to make sure that we don’t enter duplicate employee rows, we can
make ve check each Social Security number as it is entered against a table of those already in the
table by specifying the name of the look-up table in the fourth column of the validation row for ss
number, using the ‘!’ symbol:

name characters length table
--------- ---------- ------ ----------
ss number 0-9,- !,=11 !ss_number

In this case, the column passes the test if ve does not find an identical Social Security number in
the table. When we are editing the personnel table using ve, each time we add a new Social
Security number ve will look it up in the table: if it’s already there, ve will complain; otherwise, ve
will add the new number to the table.

Column Inclusion

The blackbook table will illustrate how table validation can be used to make sure that the data we
enter in the st column are included in a table which lists all of the standard state abbreviations.

We specify the name of the State_code look-up table in the blackbook validation file. Each time we
enter a state abbreviation in the st column of the blackbook table, ve will look it up in the
State_code table. If it’s there, ve will print the name of the state next to the abbreviation.

name characters length table
---- ---------- ------ ----------
st A-Z =2 State_code

Multi-User Considerations
ve is a multi-user table editor. This means that any number of users can be entering or editing data
in the same table at the same time. When a row is displayed on your screen, it belongs to you until
you release it by moving to another row, writing the row, or deleting it. That means that anyone else
who may be using the table at the same time will be prevented from viewing or editing that row until
you are finished with it.

Because ve knows which rows are in use at any given time, you will sometimes see the message

1 other match(es) currently in use

when you search for a pattern in a row which belongs to someone else. This is to let you know that
the pattern is in your table, but the row which contains the pattern simply isn’t available.

When you use a sequential display command (n, -), ve will skip over rows which belong to other
users until it finds a free one. When ve has to skip over rows, it will let you know how many.
Similarly, the G command will let you know that it can’t land on a specified row because either it is
currently in use or it has been deleted during the edit session.

/rdb-ve Compatibility
If you are planning to use /rdb on tables that are created and maintained by ve, taking the
following precautions when setting up your tables will help you avoid trouble later on.

Because many /rdb commands use table column names as command line arguments, care must be
taken to exclude symbols or words which have special meaning to the shell from your column
names. Specifically, stay away from the ‘|’, ‘#’, and ‘!’ characters; if column names can be confused
with shell commands (ie., date, who), remember to protect them from shell interpretation by
enclosing them in quotes (") when you use them as arguments to /rdb commands.

TUTORIALS

ve Editor 57

When using ve in a shell script, care must be taken not to access the original file until ve is done
with it. You can check for this by testing for the existence of a data+lck file. If the data+lck exists,
wait until it’s gone.

Some /rdb commands use the awk program, which has its own command language. Below is a list
of awk words which should not be used as column names:

BEGIN exit in next sqrt
break exp index print substr
continue for int printf while
else getline length split
END if log sprintf

Limits

Two basic size limits imposed by ve are the the maximum number of columns and the maximum
number of characters or bytes in each row. On the COHERENT installation, the maximum number
of columns is 66 and the maximum row length is 2,048 bytes.

ve will be able to accommodate most tables. If you need more than 66 columns in a row we
recommend that you create two separate tables, each with a common column, and use the jointable
command to merge the two tables after data entry has been completed.

There are no limits on the number of rows in your table or on the size of columns within a row, as
long as the 2,048 byte per row limit is not exceeded.

If you use the look-up table validation feature, you should be aware that a 64-byte limit is imposed
by truncation for the the lengths of the key and decode columns.

ve Validation

The validation table is used to specify, column by column, requirements that data must meet as
they are entered into the data table by associating a shell-level command with the name of the
column to be validated.

By default, all columns with associated validation commands are tested when the column contents
change or when the record is written, by executing the associated command and using its return
status to determine success or failure. A non-zero return status means the test failed. ve will beep
and the cursor will remain at the column until the contents are modified to comply with the
validation requirements.

Unless the # symbol precedes the command, the command is also executed whenever the cursor
passes through the field, unless nothing has changed since the last time the field was passed.
However, if the ‘@’ symbol precedes the command in the validation file, the command is executed
even if nothing has changed. If the ‘#’ symbol precedes the command, the command is executed
only when the record is written (or deleted).

Unless the command is preceded by ‘—’, the exit status of the command determines whether the
data in the field pass the validation test.

The shell that executes the validation command has some variables and constructs made known to
it by ve. Fields from the current record are passed to the validation command by enclosing the field
name in angle brackets, as in the screen file. The construct <@field> is used to denote the contents
of a field when the record was first displayed on the screen, before any changes were made to it.
The ‘%’ symbol in the command line expands to the current file name; the shell variables $ROW and
$COL are defined in the environment for the executed shell to correspond to the start position of the
current field, and $COLEND is defined as the first available white space after the field.

TUTORIALS

58 ve Editor

The validation file is a table with two columns:

column command
------ -------

The first characters of the ’command’ column have special meaning:

@ This means execute the command even if nothing in it changes This is typically used in
conjunction with the ‘!’ prefix, to put something into the field without having the operator
type it in, like the date.

— This means ignore the exit status of the command and always pass validation. This is used
when the command to be executed doesn’t really have anything to do with validation. For
example, it can be used to pop up a new window and display an image. The window might
be thrown away, producing a ‘‘fail’’ exit status, but we really don’t care.

! This means replace the field contents with the output of the command and can be used to
force the output of the date command into a field, or to calculate a field based on one or
more other fields.

This indicates that the command should only be executed only when the record is written or
deleted, and not when the field is merely changed or passed through.

The standard error of the validation command is sent to the status line of the ve screen, so you can
customize the error message to include the field being validated or other arguments passed to the
validation command.

These commands used to be called ‘‘user exits’’ when this technique was used on IBM systems.

Here’s a sample validation file for the inventory file:

name command
---- -------
number lookup inventory <number> $ROW $COLEND
Item unique Item % <Item> <number>
Amount valid.chars <Amount> "[0-9]"
Value @!echo "2k <Amount> <Cost> * 1.25 *p" | dc

This validation file looks complicated, but only because it’s used to give examples of what we’ve
discussed. Suppose we want to look up the description for an inventory item, and place it next to
the record number. The first field, number, is validated by running the program lookup with four
arguments: first, the file name in which we want to look; <number> is replaced by the contents of
the number field, and $ROW and $COLEND become the location on the screen of the first available
white space after the viewable window over the number field as specified in the screen file. Bear in
mind that $COLEND becomes the last column on the screen if there’s no screen file, so it shouldn’t
be used without a screen file.

The lookup program moves the cursor to the specified position and prints the Description field:

#!/bin/sh
FILE=$1 NUMBER=$2 ROW=$3 COLEND=$4
cursor $ROW $COLEND
echo $NUMBER |
search -ms $FILE number |
column Description |
headoff

This guarantees uniqueness. Here’s the unique program:

TUTORIALS

ve Editor 59

#!/bin/sh
COLUMN=$1 FILE=$2 VALUE=$3 NUMBER=$4
FAIL=1 SUCCESS=0
exec 1>&2
if test -z "$VALUE"
then

echo -n $COLUMN may not be empty
exit $FAIL

fi
FOUND=‘row "$COLUMN == \"$VALUE\" && number != $NUMBER" < $FILE | \

column number | headoff‘
if test ! -z "$FOUND"
then

echo -n "DUPLICATE $COLUMN $VALUE in $FILE (number $FOUND)"
exit $FAIL

fi
exit $SUCCESS

In all these commands, the standard error is directed to the status line. That’s the purpose of
redirecting the standard output to the standard error with the first exec command. The algorithm
to determine uniqueness looks to see that there’s no other record with this value besides the current
one.

One of the most common validation procedures is to limit the allowable characters. The following
script accepts a string to test, and a regular expression in the standard form expected by the tr
command of valid characters:

#!/bin/sh
exec 1>&2
VALUE="$1"; RE="$2"

SUCCESS=0 FAIL=1
LEFT=‘echo $VALUE | tr -d "$RE"‘

if test -z "$LEFT"
then

exit $SUCCESS
else

echo $LEFT from $VALUE is not "$RE"
exit $FAIL

fi

The effect of this command is to delete the allowable characters from the field, and if there’s
anything left over, they must be invalid characters, and the script exits with a FAIL status.
Similarly, the script for specifying invalid characters deletes the complement of the invalid
characters (the ones that are not invalid), and if there’s anything left over exits with a FAIL status.

The validation command for the Value column runs the dc command to calculate Value on the
basis of Amount and Cost, putting the calculated result into the field. This is how you compute
one field based on the value of one or more others.

To illustrate how the ‘#’ can be used in the validation file, let’s consider the case where we need to
update other tables if and only if we actually make a change in the current table — say for auditing
purposes. Certainly we do not want to have to check each field as we pass through it — it is costly
and there is no guarantee that the user will commit the changes made on the screen to the table.
We only know and can only timestamp and record changes as the user make that commitment by
writing the row. Therefore, we use the ‘#’ validation key, which wakes up and performs the
indicated operations only when records are committed (changed, deleted, or added) to the disk.
Because auditing does not apply to a particular column, we can link it to any column in the
validation file that doesn’t require other validation.

TUTORIALS

60 ve Editor

We’ll use a customers table as an example and we’ll keep track of changes in contacts and their
phone numbers. First, the table layout:

cust_id name company street city st zip phone
------- ---- ------- ------ ---- -- --- -----

And its verification table:

column command
------ -------
cust_id @lookup customer "<cust_id>"
name #audit hist o "<@name>" "<@phone>"; audit hist n "<name>" "<phone>"
company #putkey customer "<cust_id>" "<@cust_id>" "<company>"
city !exchange "<city>" "Santa Cruz"
st @lookup st "<st>"

The audit command takes an output file name argument (hist), an initial key argument, (o for old
values and n for new values), and selected columns to be recorded. Thus, whenever we write a row,
audit gets the o key and the original contents of the name and phone columns; then we hand audit
an n key, with the current contents of the name and phone columns. Let’s see what audit does:

#!/bin/sh
USAGE="$0 audit_file key <[@] column>... "

AUDITFILE=$1
shift

echo -n ‘date +%y%m%d%H%M%S‘ >> $AUDITFILE
echo -n $1 >> $AUDITFILE
shift

while [$# -gt 0]
do

echo -n " $1" >> $AUDITFILE
shift
done
echo "" >> $AUDITFILE

Another good example of when to use the ‘#’ form of shell validation is when you’re updating hash
keys and decodes created by jvindex. This is another time when you only want to record changes
which have been committed, rather than contemplated. The putkey command updates hash keys
in jvindex’ed look-up tables. By executing putkey as key columns are modified, we are able to
maintain a fast and up-to-date index as we edit. In the example above, putkey replaces the original
contents of the cust_id column (<@cust_id>) with the current contents of the cust_id column
(<cust_id>) in the customer look-up table. The jvindex command which created the customer
look-up table is:

jvindex customers -ocustomer cust_id : company

Similarly, the lookup program used to display the cust_id calls getkey to locate the key column
cust_id in the lookup table customer. Here’s what this version of lookup does:

#!/bin/sh

if [$# -lt 2]
then

exit 0
fi

TUTORIALS

ve Editor 61

TABLE=$1; KEY="$2"

DECODE=‘getkey $TABLE $KEY‘
STATUS=$?

if [$STATUS -gt 0]
then

if ["$DECODE" != ""]
then

cursor $ROW $COLEND
echo -n "$DECODE"

fi
exit 0

else
exec 1>&2
echo "$KEY: no such $TABLE"

fi
exit 1

The exchange script substitutes the last argument for the first if the first argument is blank, and
puts the result in the city column. For example, pressing <Return> at the city column will cause
exchange to insert the words Santa Cruz. This is handy for columns which are often, but not
always, a single value. Here’s what exchange looks like:

if ["$1" = ""]
then

echo $2
else

echo $1
fi

Control-Key Mapping

Control-key mapping allows you to define a set of ve commands or shell commands to be executed
when you strike the specified control key. Control-key definitions are usually tailored to reflect
often-repeated command sequences used by particular applications.

Both edit commands and shell commands may be combined for execution by a single control key.
For example, let’s say you want a command to display a particular file (an image, perhaps) during a
ve edit session, and then refresh your screen when you are finished examining it. Your .verc file
might look like this:

CTRL-key command
-------- -------
p !-pic part.sn112 | preview!S

In the command above, the first ‘!’ means that a shell command follows; the ‘-’ tells ve to be silent,
forcing the suppression of

Hit RETURN to continue

messages and shell newlines that roll your screen up. The remainder of the line, up to a newline or
another ‘!’, (whichever comes first) is handed directly to the shell. All information after the ‘!’ are ve
edit commands. In this example, ‘S’ will redraw the screen.

The ‘%’ symbol in the mapped command means substitute the name of the current database at this
position. It works both interactively and in .verc shell commands. Try typing the sequence :!cat %
next time you’re editing with ve.

TUTORIALS

62 ve Editor

You can pass column contents from the record being displayed by ve to the shell via the .verc file.
The syntax is similar to that used by the report program: column names enclosed in ‘<’ and ‘>’ are
replaced by the contents of the column when the command is executed. We can illustrate a simple
solution to the ‘‘long text field’’ problem. In this example, ve is used to maintain a table of bug
reports:

number date customer staff product
------ ------ -------- ------ -------

1 891212 cray evan /rdb
2 891107 sun wright ve
2 891107 sun wright ve

Because the description of bugs and fixes might be a few paragraphs, we do not want to confine it to
a column in a table. How, then, can we tie it to our data base and manipulate it from ve?

We use the contents of the (unique) number column as the name of a text file which contains the
bug description. To keep these files in an orderly manner, we will collect them in a separate
directory and use the name of the data base to name the directory. To distinguish between the
name of the table and the name of the directory of reports, we’ll capitalize the first letter of the
directory name (Bugs). Because the reports will be open-ended text files, we will use a text editor to
enter and modify their contents.

All of this can be accomplished by mapping a control key to a shell command which edits the
desired file name in the appropriate directory:

CTRL-key command
-------- -------
e !vi ‘echo % | cap‘/<number>\n

If we are on record number 43 and we hit <ctrl-B>, ‘%’ will be replaced by bugs; <number> will be
replaced by 43; the shell will evaluate

‘echo bugs | cap‘

to be Bugs, and the resulting path name, Bugs/43 will become an argument to vi.

Finally, use <ctrl-?> to see the contents of your .verc file from ve.

The approach of allowing broad shell access from within ve opens the door to all kinds of powerful
and time-saving data base routines that can be designed and implemented by relatively naive users.
The following rules should be followed to avoid pitfalls and confusion:

1. Do not put spaces between the enclosing angle brackets and the column name when you
are specifying a column name for content substitution. This will cause ve to assume that ‘<’
is redirect the standard input and ‘>’ is redirect the standard output, and the column name
will be passed to the shell uninterpreted.

2. Use ‘\’ to send the ‘%’ symbol through to the shell without being replaced by the name of
the data base.

3. Use ‘-’ after the ‘!’ in shell commands to suppress the normal messages and newlines issued
by ve and the shell. This is handy when you don’t want to disturb the current screen or
window — for example, if you simply want to pop up a subwindow in an unused portion of
your screen and you do not wish ve to redraw over it.

4. Use ‘!’ to ensconce shell commands between edit commands.

Command-line Options
ve recognizes the following command-line options:

TUTORIALS

ve Editor 63

-d This was implemented to prevent accidental deletion of rows, both by the dd command, and
by attempting to write a record in which each column has been deleted.

+<cmd>
A more flexible way to start up ve with a particular command (as opposed to the -m or
mode option) is with the ‘+’ command. The remainder of the ‘+’ argument is handed directly
to ve’s command parser. Of course, because it is part of a shell command, it must be
constructed to escape shell interpretation. An example of this is a command which
searches for the word sun in the bugs table and appends the word shine to it:

ve bugs +/sun\\eAshine\\e

The \e at the end of sun ends the search pattern; the \e at the end of shine exits insert
mode. The extra \’s are swallowed up by the hungry shell.

Screen Size and Column Limits
The column limit of 66 fields has been expanded to 512.

ve screens can handle up to 158 columns by 64 rows. The size of the window in which ve is
executed determines how ve sets up default screens and uses blank space. To override the
absorption by ve of available window space, screen files should be terminated by a final blank row.
This row is interpreted by ve as the vertical position, after which the message line is to be displayed.

User Column in Audit Files

The login name of the user is now recorded in the second column of the audit file. Existing audit
files must be modified to reflect the addition of the new column prior to appending rows with the
new version of ve.

Fast-Access Indexing From ve

Hash look-up on columns has been implemented for ve. Key columns are associated with the row
number stored in the -i file, effectively linking searches on keys to the G command. The following
rules apply for initiating key searches:

1. The key column must be marked with the m command prior to specifying the search pattern.

2. Column contents must contain unique information.

3. The entire column must be entered in order for a key search to be initiated (which makes it a
good idea to keep key columns short).

Key columns are created with vindex by preceding the column name with the -k switch. For
example, to key the number column of the bugs table and have it decode to the customer column:

vindex bugs -k number : customer

Searching for key columns is done in the ordinary way: simply precede the search pattern with ‘/’.
If it matches a hash key, the row is retrieved by it’s indexed position in the table. Otherwise, row-
by-row pattern matching is performed. The method ve uses to find hits is not obvious to the user
(except in the case of large tables, where indexed searching is significantly faster) and requires no
additional expertise.

What Is the Cost of Indexed Searching?

When the last user exits an edit session on a table, the squeeze program is executed in the
background to clean up the table, putting records back in entry order and removing the holes left by
deleted records. This process reconstructs the table-i file, which keeps track of row positions.
Because indexed keys also use this information, they too must be updated after the table has been
‘‘squeezed.’’ This process happens automatically when squeeze is finished. The cost is the amount
of time it takes to re-vindex each of the key columns for the entire table.

TUTORIALS

64 ve Editor

To protect the table during the squeeze and vindex processes, a lock file (table+lck) is created.
When both the squeeze and vindex processes are complete, the table+lck file disappears. It is
important not to tamper with the table until the lock file is gone. Depending on the size of the table
and the number of indexed key columns which must be updated, this can take a few minutes. So,
the more keys you create, the longer it will take to put it all back together after everyone has exited.
For transaction processing, the best strategy is to keep the table active (at least one ve user) during
busy times.

TUTORIALS

+2What Is the Cost of Indexed Searching? 63

Data-Base Design

When you try to design your first data base, you are likely to be quite confused. Which data go into
which tables? Can you have just one big table? Should you have lots of little tables? How do you
find out? It turns out that there is a simple way to decide how to lay out your data base. Once you
learn it, any application will be easy. This chapter will show you how.

One-to-One Relationships in One Table
When you look at your data, you will notice that some information has what we call a one-to-one
relationship. For example, each person has a first name, a last name, a birthdate, a sex, an ID
number, and so on. All of these items of information can be put into one table. Here is such a table
that is called employee:

Id First Last Birth Sex
-- ----- ---- ----- ---
1 Howard Ho 450503 Male
2 Jane Dobbs 540129 Female

The rule then is put all one-to-one relationships into a single table. Another example is
department:

Dept Name Head Address
---- ---- ---- -------
1 act Jones Basement
2 sales White 4th Floor

One-to-Many Relationships in Two Tables
Another relationship is one-to-many. People have a one-to-many relationship with their children. A
person can have from zero to many children. Relational data base theory insists that one-to-many
relationships cannot be put into one table, but require two. In addition to the employee table, you
will need a child table:

Parent Name
------ -----
1 Sally
1 Lynn

Note that Howard Ho (Id 1) has two children, Sally and Lynn. However, Jane Dobbs (Id 2) has no
children, because her Id (Parent) number is not in the child table. To put this information back
together, use the jointable command:

jointable employee child

This yields:

Id First Last Birth Sex Name
-- ----- ---- ----- --- -----
1 Howard Ho 450503 Male Sally
1 Howard Ho 450503 Male Lynn

Here we have the two tables, employee and child, joined together on the employee Id and the child
Parent key columns. These connect the two tables for the jointable command.

65

66 Data-Base Design

Note that since Howard Ho has two children, he has two rows in the table. Also note that Sally
Dobbs was not included in the table because she has no children.

You can begin to see why we need to keep these kind of data in separate tables. We need
information on employees, even when they have no children. Of course, we could include Sally
Dobbs and leave her children column empty, but that will complicate processing.

More seriously, we have all of the information on Howard Ho repeated for each child. This not only
wastes space, but requires that when we update the table we have to find every entry for Howard Ho
and correctly make the update. The extra time and effort, plus the risk of errors, make the single
table approach unacceptable. Therefore, we must keep one-to-many relationships in separate tables
and join them together only when needed.

Many-to-many Relationships in Three Tables
There are also several many-to-many relationships. For example, students take zero to many
courses and courses have zero to many students. This relationship requires three tables.

First we need a student table:

Student First Last Year
------- ----- ---- ----

1 Jim Clark 2
2 Mary Witte 1

We also need a course table:

Course Credit Room Day Time
------ ------ ---- ---- ----
art-1a 3 RB-8 MWF 10am
chem-1 4 HA-18 TTh 2pm

To connect these two tables, a third table is needed that we will call course.student:

Course Student
------ -------
art-1a 1
chem-1 1
chem-1 2

We can join these tables together with two jointable commands. First let’s use the jointable
command to see individual joins:

jointable course course.student

This yields:

Course Credit Room Day Time Student
------ ------ ---- ---- ---- -------
art-1a 3 RB-8 MWF 10am 1
chem-1 4 HA-18 TTh 2pm 1
chem-1 4 HA-18 TTh 2pm 2

Next, the command

jointable -j Student student course.student

yields:

TUTORIALS

Data-Base Design 67

Student First Last Year Course
------- ----- ---- ---- ------

1 Jim Clark 2 art-1a
1 Jim Clark 2 chem-1
2 Mary Witte 1 chem-1

All together now:

jointable -j Student student course.student | \
jointable -j Course - course

which gives us:

Student First Last Year Course Credit Room Day Time
------- ----- ---- ---- ------ ------ ---- ---- ----

1 Jim Clark 2 art-1a 3 RB-8 MWF 10am
1 Jim Clark 2 chem-1 4 HA-18 TTh 2pm
2 Mary Witte 1 chem-1 4 HA-18 TTh 2pm

So we can bring it all together when we want to see it, but we keep many-to-many relationships in
three separate tables.

Planning
When you look at your application, look for the kind of relationships that you have and group your
data accordingly. Continuing the college example above, we will also need tables for instructors,
rooms, and so on. There is a one-to-many relationship between instructors and classes: instructors
often teach several classes, but classes have one instructor (unless there is team teaching).

Note that you have to think of exceptions. If the exceptions are very rare, you might choose to
ignore them. But if there are more than a rare instance of classes having more than one instructor,
it becomes a many-to-many relationship. Then you will need three tables, because you will need a
connector table.

Our college data base will also need a room table. What is the relationship between rooms and
courses? Can you see that it is one-to-many? A course is in only one room. (Is it always? What
about labs? Or are labs separate courses?) But rooms have more than one course in them at
different times, unless we have a terribly inefficient college. So how many tables will we need? One-
to-many requires two tables. Which tables do we need? In this case a course table and a room
table. The course table will have the room number in it, but the room table will have no mention of
the courses in it because there are many.

To find the size of the room for each course, join the room table with the course table:

Course Credit Room Day Time Teacher
------ ------ ---- ---- ---- -------
art-1a 3 RB-8 MWF 10am 3
chem-1 4 HA-18 TTh 2pm 1
cs-101 4 DB-1 MWF 2am 2
econ-1 3 RB-8 TTH 1pm 2
his-10 3 HA-18 MWF 11am 3

And we need a Room table:

Room Type Size Hall
---- ---- ---- ----
DB-1 Lecture 250 Daddy Bucks
HA-18 Lab 17 Hillary Addler
RB-8 Tacky 23 Roberta Bucks

Then, use the commands sorttable and jointable to combine them:

TUTORIALS

68 Data-Base Design

sorttable Room < course |
jointable -j Room - room |
column Course Room Size > room.size

This creates the table room.size, as follows:

Course Room Size
------ ---- ----
cs-101 DB-1 250
chem-1 HA-18 17
his-10 HA-18 17
art-1a RB-8 23
econ-1 RB-8 23

So, it turns out that designing a data base is easy. Just practice thinking about these principles
with different applications.

Normalization
The approach we have just discussed is the easiest way to think about designing your data base.
However, most of the data base literature approaches the problem from a different angle. To help
you understand that literature, these other approaches are discussed in the following sections. It is
more technical and can be skipped on first reading, or if you are just beginning to use data bases.
In the technical relational data base literature, this process of correctly grouping data into tables is
called normalizing.

Functional Dependency

Before discussing normalization, several concepts must be understood. Functional dependency
refers to whether the data in one column determine the data in another. In other words, if you
know the data in one column, can you tell what the data in another column will be? If the data in
one column are repeated, are the corresponding data in the other column also repeated? If so, there
is a functional dependency, otherwise not.

For example, look at these two tables. First, the room.size table we previously created:

Course Room Size
------ ---- ----
cs-101 DB-1 250
chem-1 HA-18 17
his-10 HA-18 17
art-1a RB-8 23
econ-1 RB-8 23

Note that when a value in the Room column is repeated, the corresponding Size value is also
repeated. (See RB-8 is in the Room column with the same Size of 23. Also the same for HA-18 and
17). Therefore, Room functionally determines Size or an equivalent way of saying it, Size is
functionally determined by Room. Ordinarily, we do not want to have tables with functional
dependencies in them. It is acceptable here, because we used a join to put this table together. It is
a query of our data base and not a proper table of the data base.

Keys

Key columns are the unique identifiers of each row in the table. The key column or columns of a
table should always determine each of the other columns of the table. The function of a key is to
uniquely identify the data in the other columns. So the rule is that only key columns can
functionally determine other columns. Nonkey columns should not functionally determine other
columns in a normalized data base.

TUTORIALS

Data-Base Design 69

Universal Relation

The opposite of normalization is the universal relation. Imagine one large table that has all of the
tables joined together. It has all of the columns of all of the tables across the top. It is the worst
case of a unnormalized data base. Why? What is wrong with such a table?

We need to avoid unnormalized tables because they create severe problems for us.

Redundancy Problems

One problem is that we have a lot of redundant data. Look at the room.size table again and note
that the size information for each room is repeated:

Course Room Size
------ ---- ----
cs-101 DB-1 250
chem-1 HA-18 17
his-10 HA-18 17
art-1a RB-8 23
econ-1 RB-8 23

This takes up more space than necessary and slows down the programs that must process it.

Update Problems

Another problem is the extra work and errors that result from trying to update such a table.
Suppose we add more chairs to HA-18. We have to update the new Size twice. In this simple table,
that is not much work, but in a large data base it is overwhelming. And what happens when we
make an error in our updating? It is hard to find and correct. After a while, we will not know which
conflicting value is correct. Our data base will become hopelessly corrupted.

Insert and Delete Problems

There are also insert and delete problems. Suppose we want to add a room and its size to this data
base. If it does not yet have a course in it, we can’t put it into the table unless we give it a blank
course. This creates problems when searching and joining. How do you handle blank or null
values?

Likewise with deleting. What if a course is still assigned to the room after the building has been
demolished? You don’t want to drop the course, but you need to delete the room from the data
base.

First Normal Form

For relational functions to work, tables must be simple or, as it is called in the literature,
normalized. There are a number of steps to simplifying, or normalizing, a table. Most importantly,
you must never have a variable number of columns in a table. For example, in a file of college
employees, you might be tempted to have a column for the first name of the children of employees:

Emp# Name Dept Child
------- ------- ------- -------
1 Martin 1204 Sally, Fido
2 Moore 1339
3 Mapes 1045 Jan, Shawn, Peter, Barbara

This creates many problems, not the least of which is that the relational functions will not work.
The answer is to have two files, one for employees and another for their children. The child file
would look like this:

TUTORIALS

70 Data-Base Design

Emp# Child
---- -------

1 Sally
1 Fido
3 Jan
3 Shawn
3 Peter
3 Barbara

When you need to put the two files together, you do so with a join (jointable in /rdb because there
is a COHERENT command named join, which works on files without headers). This is another way
of saying that one-to-many relations must be represented in two tables. When all of the one-to-
many relations are in separate tables, we say that the data base is in first normal form.

Second Normal Form

Both second and third normal forms require that nonkey functional dependencies be removed by
creating additional tables. In the case of second normal form, we look for dependencies on columns
within the key. Keys can consist of more than one column. For example, consider a grade table:

Course Student Grade
------ ------- -------
art-1a 1 3
art-1a 4 4
chem-1 1 3
chem-1 2 2
chem-1 3 2
cs-101 2 1
cs-101 4 4
econ-1 1 3
econ-1 2 3
econ-1 3 2
his-10 1 3

Note that it takes two columns to make a unique key for each row. Both the Course and the
Student columns make up the key. Grade is a nonkey column. What we must look for is a
dependency between one of the columns in the key and the other columns. In this case there are
none, so this table is in second normal form.

But suppose we added a column for class rooms. Since the Room column depends upon the
Course column, we would not be in second normal form. This is called a partial dependency
because columns are dependent on a partial key, that is, less than all of the columns of the key.

Third Normal Form

Third normal form requires that we also eliminate any dependencies between nonkey columns.
These are called transitive dependencies.

Consider, for example, the room.size table:

Course Room Size
------ ---- ----
cs-101 DB-1 250
chem-1 HA-18 17
his-10 HA-18 17
art-1a RB-8 23
econ-1 RB-8 23

Here the Size column depends on the Room column. To reach third normal form we must make
two tables: one called course.room, with the Course and Room columns; and the other called
room, with the Room and Size columns.

TUTORIALS

Data-Base Design 71

Normalizing Example

Let’s start with a simple universal table and normalize it step by step. Suppose we go to the dean of
the college to work out the college data base for grades. Since the dean does not know about
normalization, she lists all of the items she wants to keep track of, but our job is to put them into
tables. The universal table she builds might look like this:

Course Student Grade Teacher Title Child
------ ------- ----- ------- ----- -----
chem-1 1 3 1 Assist. Sally, Mike, Joy
chem-1 2 2 1 Assist. Fred
chem-1 3 2 1 Assist.
cs-101 2 1 2 Prof. Fred
cs-101 4 4 2 Prof.
econ-1 1 3 2 Prof. Sally, Mike, Joy
econ-1 2 3 2 Prof. Fred
econ-1 3 2 2 Prof.
his-10 1 3 3 Assoc. Sally, Mike, Joy

Look at this unnormalized table and see if you can normalize it before we show you how.

First normalization requires that we get rid of the one-to-many relationship between students and
their children to remove multiple values in the Child column. We create a new table for children of
the students:

Student Child
------- -----

1 Sally
1 Mike
1 Joy
2 Fred

We could add more columns about each child to this table as long as we are careful not to include
information about the student-parent which should be put into the student table. We also remove
the Child column from the big table. The command column accomplishes this task:

column Course Student Grade Teacher Title < universe

This yields:

Course Student Grade Teacher Title
------ ------- ----- ------- -----
chem-1 1 3 1 Assist.
chem-1 2 2 1 Assist.
chem-1 3 2 1 Assist.
cs-101 2 1 2 Prof.
cs-101 4 4 2 Prof.
econ-1 1 3 2 Prof.
econ-1 2 3 2 Prof.
econ-1 3 2 2 Prof.
his-10 1 3 3 Assoc.

For second normal form we have to realize that we have a multi-column key: Course and Student,
which uniquely determines each row. Let’s look for dependencies between either of these columns
and the other columns. As you can see, Course determines Teacher. So, let’s use column to create
a new course.teacher table:

column Course Teacher Title < universe > course.teacher

This table appears as follows:

TUTORIALS

72 Data-Base Design

Course Teacher Title
------ ------- -----
chem-1 1 Assist.
chem-1 1 Assist.
chem-1 1 Assist.
cs-101 2 Prof.
cs-101 2 Prof.
econ-1 2 Prof.
econ-1 2 Prof.
econ-1 2 Prof.
his-10 3 Assoc.

And, then use column to create a table called grade:

column Course Student Grade < universe > grade

This yields:

Course Student Grade
------ ------- -----
chem-1 1 3
chem-1 2 2
chem-1 3 2
cs-101 2 1
cs-101 4 4
econ-1 1 3
econ-1 2 3
econ-1 3 2
his-10 1 3

Note that there are many redundant rows in the course.teacher table. We can reduce the table to
unique rows by using the COHERENT uniq command to remove duplicate rows:

uniq < course.teacher

This yields:

Course Teacher Title
------ ------- -----
chem-1 1 Assist.
cs-101 2 Prof.
econ-1 2 Prof.
his-10 3 Assoc.

The grade table is now in second and third normal form, but the new course.teacher table is only
in second normal form. Note that Title depends upon Teacher. We need another table; so we’ll use
column to create it, as follows:

column Teacher Title < course.teacher | uniq > teacher

The new table, called teacher, contains the following:

Teacher Title
------- -----

1 Assist.
2 Prof.
3 Assoc.

Now, we’ll use column to check the contents of course.teacher:

column Course Teacher < course.teacher

This writes the following onto the screen:

TUTORIALS

Data-Base Design 73

Course Teacher
------ -------
chem-1 1
cs-101 2
econ-1 2
his-10 3

So now the teacher and course.teacher tables are in third normal form. How many tables do we
have? What are their names? What columns are in each table? How would you explain to the dean
what you have done to her nice big table? Why have you done it?

Complex Queries with Joins
When data are distributed to many tables, how can we get the information we want? It is easy to
project columns and select rows from a single table and join two tables. But what if the information
we want is widely separated?

As an example, let us imagine that you are an instructor in a college and want a phone book of all of
your students, just in case you need to call to tell them that the class was canceled or that the final
exam date or room had changed. Suppose all you know is your own name and the different tables
in the data base:

Table of College Data Base Tables

Table Columns
----- -----------
teacher Teacher First Last Address City State Phone Title
teacher.course Teacher Course
course Course Credit Room Day Time Teacher
course.student Course Student
student Student First Last Year Phone

Such a phone book or listing can be produced with a single pipeline. First let’s think through the
solution. Then we will build the one-line query.

You know your name, so you can find your ID number in the teacher file. With your teacher ID
number, you can get a table of all of your class ID numbers from the teacher.course connector file.
Then you can pick up the student ID numbers from the course.student connector file. Finally, you
can project the information you want about each of your students.

Pipeline Join

Now let’s look at the pipeline. It has been written down the page to make it easier to read and
modify. When the Bourne and Korn shells sees the pipe symbol at the end of a line, they know to
continue to the next line because this line is not finished:

row ’First == "Joy" && Last == "Xi" ’ < teacher |
column Teacher |
tee tmp1 |
jointable - teacher.course |
column Course |
sorttable |
tee tmp2 |
jointable - course.student |
column Student Course |
sorttable |
tee tmp3 |
jointable - student |
column Course Last First Phone |
sorttable > phonebook

TUTORIALS

74 Data-Base Design

This probably looks overwhelming, but don’t worry, we are going to go through each part.

First, let’s look at the output so that we will know where we are going with all of this.

Course Last First Year Phone
------ ---- ----- ---- --------
cs-101 Dunce Boris 2 765-4321
cs-101 Early Mary 4 123-4567
econ-1 Early Mary 4 123-4567
econ-1 Farkel Freddy 3 123-1234
econ-1 Knott Why 1 123-7654

Note that the command

tee tmp

has been inserted in three places in the pipeline. The COHERENT tee command writes the
standard input to the standard output, but also write the stream of characters into the file tmp. By
looking at the tmp files, we have a peephole into the pipeline so that we can see how the data look at
each point. Therefore, we can see and discuss the data at three points in the pipeline.

tmp1

Assuming your name is ‘‘Joy Xi’’, you can select the row in the teacher file in which the first name,
First, is ‘‘Joy’’ and the last name, Last, is ‘‘Xi’’. Then you can project the Teacher ID number
column only. column throws away the other columns. This is to reduce the amount of data flowing
through the pipe to speed up the execution. It also avoids conflicts in the names of columns:

row ’First == "Joy" && Last == "Xi" ’ < teacher |
column Teacher |
tee tmp1 |

Now let’s see what the data look like by looking at the tmp1 file:

Teacher

2

Here we have gotten the Teacher ID number in a little table that we can now use to find more data.

tmp2

The next four lines join the single-line table above with the teacher.course table to pickup the
courses that ‘‘Joy Xi’’ teaches. Then only the Course column is projected. It must be sorted for the
next join:

jointable - teacher.course |
column Course |
sorttable |
tee tmp2 |

By taking a look at our data now, we see that ‘‘Joy Xi’’ teaches two courses:

Course

cs-101
econ-1

TUTORIALS

Data-Base Design 75

tmp3

Now we can join this two-row table to the course.student table to pick up the students in her
classes. This time we project not only their ID numbers but the courses because we want that
information carried on to the phone book. The Student column also must be sorted for the next
join. We have to tell the sorttable command that the Student column is numeric, instead of string,
to get a correct sort:

jointable - course.student |
column Student Course |
sorttable -n |
tee tmp3 |

Here is the output of these lines:

Student Course
------- ------

1 econ-1
2 cs-101
2 econ-1
3 econ-1
4 cs-101

Note that we have only the Student and the Course columns, and that the Student column is
correctly sorted.

Phone Book

The last lines join this table above with the student file to get the student information. Then the
columns we want for the phone book are projected. Note that we project the Course column that
was carried along as well as columns from the student table. We must sort the new phone book by
course so that the teacher can see all of the students in one class:

jointable - student |
column Course Last First Phone |
sorttable > phonebook

Let’s see the final output phone book again:

Course Last First Year Phone
------ ---- ----- ---- --------
cs-101 Dunce Boris 2 765-4321
cs-101 Early Mary 4 123-4567
econ-1 Early Mary 4 123-4567
econ-1 Farkel Freddy 3 123-1234
econ-1 Knott Why 1 123-7654

Note that we have done this in such a way that some students’ information is repeated if they are
taking more than one class from this teacher. Mary Early, in the table above, is an example. We
accept this repetition so that the teacher can call all of the students in a particular class. If we had
just a list of all the students, we would not know which student was in what class. But you can
change this example many different ways by changing the column, sorttable, and jointable
commands.

TUTORIALS

76 Data-Base Design

TUTORIALS

+2Phone Book 75

Shell Programming

The great advantage of the COHERENT system is that most of the work is done for you. Most data
base systems create a new language that you must learn, but /rdb uses COHERENT programs and
the shell programming language. If you already know these COHERENT tools, there is little more to
learn. If you don’t know the COHERENT system, it is much better to learn the general-purpose
COHERENT system than a special language that is only good for a single data base package.
COHERENT tools as they are delivered on your system can do much of the data base application.
/rdb only extends the COHERENT system by adding more than a hundred commands that will
make data base handling easier and faster.

Data-Base Programming in COHERENT Shell Language
It is the shell programming language that make this approach so easy and powerful. The shell is
the user interface to the COHERENT system. It prompts you for commands, rewrites your
command line to save you typing, and executes the programs you request. It is extremely simple to
learn. You start by putting commands that you would type at the terminal, into files called shell
programs. These files can be executed simply by typing their names.

But the shell is also a powerful string-oriented programming language with control flow statements
like if, for, and while. You can mix procedural with nonprocedural statements.

Procedural programs are the traditional step-by-step instructions that tell the computer how to do
something. Nonprocedural statements simply tell the computer what to do. For example, a
traditional procedural program will tell the computer how to sort a file. A nonprocedural statement
in the COHERENT system would be

sort file

where file is the name of the file we want sorted. The COHERENT sort command knows how to sort
a file, so we get what we want with out worrying about details. If we had to write the sort program,
it would take ten to 100 lines of code, or more. Nonprocedural is much easier and saves a lot of
time. It is also much faster to fix. Options to the sort program can reverse the sort. Editing a sort
program is much trickier.

Of course, nonprocedural is best, but if a system is all nonprocedural, it has to anticipate everything
you will ever want to do! Most fourth-generation systems have this problem: they give you a lot of
functions, but lack procedural language statements to let you program what they don’t have. Third-
generation languages let you program anything, but force you to carefully code too many basic
functions over and over. The COHERENT system gives you a nice mix of predeveloped programs
that cover all of the basic actions, and the shell programming language to allow you to code more
complex functions by building up basic functions.

In the COHERENT environment, you are constantly in a process of automating your work. First,
you try out a simple program. Then call it, and other programs, from a higher-level program. Soon
you are able to do many things with simple keystrokes.

There are a number of books on shell programming, in addition to the COHERENT documentation.
Before we discuss shell programming further, we will need some COHERENT programs to build
applications.

COHERENT Utilities

77

78 Shell Programming

In addition to the /rdb commands, there are several COHERENT utilities that you will probably
need often. Your COHERENT documentation provides detailed descriptions of these commands; we
briefly describe some of their data base uses.

awk: Language to Produce Complex Reports

awk is the heart of several /rdb commands. awk provides the engine for the row, compute, and
validate commands. It can be used by itself to do powerful things to tables. For more advanced
applications, you must refer to the awk Lexicon entry and tutorial.

cat: Display a Table or List File

cat is used all the time to list out your tables.

echo: Repeat a Statement

This command repeats text. It lets you easily pass arguments to command and expand
environmental variables.

grep: Find All Rows That Contain a Given String

grep lets you search a table or any text file for a string of characters. If a match is found, the line is
printed. It is a primitive search, but easy to use.

od -c: Octal Dump All Bytes as Characters

od lets you see special characters and can be used to see if your tabs are in place. (The /rdb see
command is better for this purpose.)

sed: Stream Editor to Edit File in a Pipe

sed is a very powerful program for editing your tables in a pipe stream. Many of the /rdb shell
programs use it. You can perform almost any editor command with it.

sh: COHERENT Shell Programming Language

sh is the COHERENT shell program that interfaces to the user. It prompts with a dollar sign ($) or
other prompt, then reads the commands that the user types. It is a powerful string-oriented
programming language. You can create any complex application with it and the COHERENT and
/rdb commands.

ksh is the other COHERENT shell programming language. It is, for the most part, a superset of sh.
It differs from sh mainly in that it lets you recall, edit, and resubmit command that you had typed
earlier, using MicroEMACS-style editing commands. See the COHERENT manual’s Lexicon entries
on sh and ksh for descriptions of each language, and how they differ.

spell: Check Spelling in a Table or List File

You may find this quite useful for checking spelling in a file. It is also a good example of the power
of shell programming.

tail: Display Bottom Rows of a Table or List File

tail outputs the end of a file. You can use it to ‘‘behead’’ a table. Consider table mailtable:

for the same purpose.
Number Name Company Phone
------ --------------- ------------- --------------

1 Ronald McDonald McDonald’s (111) 222-3333
2 Chiquita Banana United Brands 1234

The command

TUTORIALS

Shell Programming 79

tail +3 mailtable

yields:

1 Ronald McDonald McDonald’s (111) 222-3333
2 Chiquita Banana United Brands 1234

As you can see, the first two ‘‘head’’ lines of the table have been thrown away.

There is also the /rdb command headoff

wc: Word Count

This command counts the characters, words, and lines in a file.

Text Editor to Enter and Update Files

A text editor is important to your work, because you will use it to set up tables and lists and to write
your shell program applications. COHERENT comes with three interactive text editors:

ed This is a powerful, line-oriented editor. This editor is best for making mass transformations
of a file, because you can use normal expressions to tell it what to do. ed is also useful in
editing files that are too large for a screen-oriented editor to handle, at least in the 80286
edition of COHERENT.

me This is the MicroEMACS editor. It is the preferred editor of most COHERENT users. As its
name implies, it is a smaller, more efficient version of Richard Stallman’s famous EMACS
editor. With it, you can display multiple files in multiple windows upon your screen, move
text from one file or window to another. Unlike ed, MicroEMACS lets you address the text
to be edited by moving the cursor to it — hence, it is considered to be a ‘‘screen-oriented’’
editor.

vi This is the COHERENT implementation of the UNIX standard editor. It has features of both
ed and MicroEMACS, plus many features of its own.

Each editor is summarized at length in the COHERENT Lexicon. The COHERENT manual also
contains tutorials for ed and me. Any of these three editors will do the job for you; which you select
is largely up to your personal preference. Each editor has its strengths and weaknesses; an editing
job that takes hours with one editor might take only minutes with another. You would do well to
learn at least the riduments of each editor, so you can select the right editor for a given editing job.

Reading and Writing Data Base Files
When you write programs, you have to open files. In the COHERENT environment, files usually
come to the program from standard-in and output is sent to standard-out. But sometimes you have
a shell program that is talking to the user at the terminal through the standard-in and -out, but has
to open one or more files for reading and writing. This is done with the exec command. This code
opens filein for input (read) and assigns the file descriptor 3. fileout is opened for output (write) and
assigned file descriptor 4. Then programs can use those file descriptors with the <&3 and >&4
conventions:

exec 3< filein
exec 4> fileout
cat <&3 >&4

The COHERENT shell’s read command cannot have its input redirected to a file other than
standard-in, except by a trick:

exec 0< inventory
read HEAD

Here, we have set the environmental variable HEAD to contain:

TUTORIALS

80 Shell Programming

Item Amount Cost Value Description

In a loop you can read a whole file line by line. The while statement is a control statement that
executes the lines within the do and done until read tries to read the end-of-file and returns a
status code indicating false.

exec 0< inventory
while read HEAD
do

echo "$HEAD"
done

This yields:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

Parsing Rows
You can use the set command to parse strings in the shell. For example, if you want to get at any
field in a row you can read the row into a shell variable and set the words in the row to the shell
positional arguments $1 and $2:

exec 0< inventory
read HEAD
set $HEAD
echo "The first field is $1 and the fifth field is $5."

The final command, echo, displays its first and fifth arguments. This prints the following:

The first field is Item and the fifth field is Description.

Tables to Shell Variables
It would be very nice if we could use the column names from a table to refer to the column values in
a shell program. Often people assume they have to walk through the row with for and, perhaps,
shift commands. This slow method is not necessary. Here is a neat trick for using column heads
as variables in shell programs.

Consider, to begin, table inventory:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

Now consider the shell script onhand:

TUTORIALS

Shell Programming 81

USAGE=’usage: onhand Item < inventory’
FOUND=0
NOFOUND=1
read HEAD
read DASH
while read $HEAD
do

if test "$Item" -eq "$1"
then

echo We have $Amount $Description on hand.
exit $FOUND

fi
done
exit $NOFOUND

Now, the command

onhand 2 < inventory

yields:

We have 100 test tubes on hand.

Now, let’s walk through onhand and see just what it does.

The first three lines

USAGE=’usage: onhand Item < inventory’
FOUND=0
NOFOUND=1

set some environmental variables that are used for printing an error message should a mistake
occur.

Next, the line

read HEAD

reads the first line of inventory into a shell variable called HEAD.

The next line

read DASH

reads the dash line into an environmental variable called DASH. We want to throw away the dash
line, and this is an easy way to do it.

Next comes the while loop:

while read $HEAD
do

if test "$Item" -eq "$1"
then

echo We have $Amount $Description on hand.
exit $FOUND

fi
done

Look carefully at the read statement. It examines HEAD, which the shell expands into the list of
column names, before read is called. So read really sees all of the column names as arguments:

read Item Amount Cost Value Description

read assigns the first word it reads from standard-in to Item, then the next to Amount, and so on.

TUTORIALS

82 Shell Programming

Therefore, it has automatically assigned the column values to the column names for us and we can
use them in the shell program with $ in front.

The test and echo commands both use the variables that hold the values from the current row.
Let’s see this with the shell execution trace option -x turned on:

+ read HEAD
+ read DASH
+ read Item Amount Cost Value Description
+ test 1 -eq 2
+ read Item Amount Cost Value Description
+ test 2 -eq 2
+ echo We have 100 test tubes on hand.
We have 100 test tubes on hand.

This lets you see how the column names and values are rewritten as each row is read, tested, and
processed.

Lists to Shell Variables
Here is an example of how to get records from a list formatted file and make each column name-
value pair a shell variable=value pair. It uses the /rdb program listtosh to convert the list record to
shell format. Consider the list maillist:

Number 1
Name Ronald McDonald
Company McDonald’s
Street 123 Mac Attack
City Menphis
State TENN
ZIP 30000
Phone (111) 222-3333

The command

listtosh < mail.list

yields:

Number=’1’
Name=’Ronald McDonald’
Company=’McDonald\’s’
Street=’123 Mac Attack’
City=’Menphis’
State=’TENN’
ZIP=’30000’
Phone=’(111) 222-3333’

See the tabs converted to equal signs ‘=’ and the data protected absolutely by apostrophes (’). Also
note that each apostrophe within the data is protected with a backslash ‘\’. This is the format for
the shell variable=value assignments. This program can be executed in a shell program and the
variable=value pair will become known to the program. The command:

column Name Phone < mail.list | listtosh

yields:

Name=’Ronald McDonald’ Phone=’(111) 222-3333’

This one line output from the command substitution is exactly the format the shell uses to assign
values to its variables. As you can see, the shell can read multiple assignments on one line. The
apostrophes allow anything to be in the data without being expanded by the shell. In this example,
we projected only Name and Phone, to keep from having a long line and to show that we can use

TUTORIALS

Shell Programming 83

any command to get the variables we want.

In the next example, eval is used to rescan and assign the line:

eval ‘column Name Phone < mail.list | listtosh‘
echo "$Name’s phone number is $Phone."

This yields:

Ronald McDonald’s phone number is (111) 222-3333.

Now we can use the values of the variable in a shell program. This example contains an echo
statement to see that the variable had been correctly assigned to the current shell, and not to some
subshell.

The next example is more complex. A table is searched for a record and converted to list and then
used in the shell program:

echo ‘row ’Item == 3’ < inventory | tabletolist | listtosh‘
eval ‘row ’Item == 3’ < inventory | tabletolist | listtosh‘
echo "We have $Amount $Description."

This yields:

Item=’3’ Amount=’5’ Cost=’80’ Value=’400’ Description=’clamps’
We have 5 clamps.

Report Writing
UNIX World magazine printed two articles by Alan Winston about fourth-generation programming
languages (July 1986 and April 1987). Several competing companies were invited to produce a
sample report using their 4GL systems. Most of these languages looked more like COBOL or RPG.
Here are two ways of producing the sample report with the COHERENT shell and /rdb.

The first example is a simple default report (which we think looks better than the report format
required in the article):

number fname lname code hours rate total
------ ------- -------- ---- ----- ---- -----

1 John Wilson 2 3 75 225
1 John Wilson 2 4 75 300

------ ------- -------- ---- ----- ---- -----
1 7 525

2 Fred Jackson 1 4 85 340
2 Fred Jackson 2 5 85 425

------ ------- -------- ---- ----- ---- -----
2 9 765

3 Anne Rowan 2 5 75 375
3 Anne Rowan 1 6 75 450

------ ------- -------- ---- ----- ---- -----
3 11 825

2115

Following is the shell script that produces this default report. Note that it only takes only 11 lines
of simple, readable code. Actually, it could be written in two lines, but we put each command on a
separate line. This example does not require counting columns or characters. There is no ‘‘line-at-
a-time’’ processing, as with the other so-called 4GLs — rather, whole files are processed at once:

TUTORIALS

84 Shell Programming

jointable hours employee |
sorttable code |
jointable -j1 code -j2 number - task |
sorttable number |
column number fname lname code hours rate total |
compute ’total = hours * rate’ |
justify > tmp

subtotal -l number hours total < tmp
total total < tmp |

justify |
tail -1

The data used in the UNIX World samples were not included in the articles, primarily because their
format is virtually unprintable. /rdb data are flat ASCII files. Table hours is as follows:

number hours code
------ ----- ----

1 3 2
1 4 2
2 4 1
2 5 2
3 5 2
3 6 1

Table employee is as follows:

number fname lname rate
------ ------- -------- ----

1 John Wilson 75
2 Fred Jackson 85
3 Anne Rowan 75

And table task is as follows:

number name
------ ------------------

1 unix/world
2 \rdb

Here is the exact report format required in the UNIX articles of July 1986:

number Employee Name code hours rate total
1 John Wilson 2 3.00 75.00 225.00
1 2 4.00 75.00 300.00

* Employee Total 7.00 525.00

2 Fred Jackson 1 4.00 85.00 340.00
2 2 5.00 85.00 425.00

* Employee Total 9.00 765.00

3 Anne Rowan 2 5.00 75.00 375.00
3 1 6.00 75.00 450.00

* Employee Total 11.00 825.00

** Report Total 2115.00

And here is the COHERENT shell and /rdb program that produces the exact format:

TUTORIALS

Shell Programming 85

jointable hours employee |
sorttable code |
jointable -j1 code -j2 number - task |
sorttable number |
column number hours code fname lname rate name total |
compute ’total = hours * rate; name = sprintf("%s %s",fname,lname)’ |
column number name code hours rate total > tmp
compute ’if (name == prev) name = ""; prev = name;\
hours = sprintf("%4.2f",hours); rate = sprintf("%6.2f",rate);\
total = sprintf("%7.2f",total)’ < tmp |
subtotal -l number hours total |
compute ’if (code ~ / / && code !~ /-/) code = "* Employee Total";\
if (code ~ / / && code !~ /-/) number = ""’ > tmp1
rename name "Employee Name" < tmp1 |
justify -r number hours rate total -l "Employee Name" -c code |
sed "/---/d" | sed "s/^/ /" | sed "s/rate/ rate/" |
sed "s/total / total/"
TOTAL=‘column total < tmp |\
total | compute ’total = sprintf("%10.2f",total)’| headoff‘
echo " \
** Report Total $TOTAL"

This is still only 22 lines. The powers of the COHERENT shell, awk, and sed programs are used for
string and arithmetic processing. The user only needs to know COHERENT tools, not yet another
language. If you know COHERENT tools, you understand this; and if you do not, learning them has
much greater value than learning yet another special programming language from a single vendor.
As COHERENT and MS-DOS/UNIX systems become the standard, you can use your COHERENT
skills on almost all computers.

TUTORIALS

86 Shell Programming

TUTORIALS

%sed=85

Shell Menus

When setting up software applications, it can be important to provide menus to the user. These tell
the users what options are available, and make it easy for them to choose the ones they want. As
more functions are added to the system, they can also be added to the menus. In this chapter a
simple shell program menu is discussed.

Example Shell Menu Program
A simple way to create menus in COHERENT is with a shell script. The advantage of using shell
programming is that it is so easy and you can do anything with it. A sample menu program is
included with /rdb. You can copy it into your own directory and edit it to be one or more menus for
your system. For details see the menu manual page.

The menu program is in two parts. The first half of the menu simply paints the menu selections on
the CRT terminal. It is a simple COHERENT cat or echo command:

cat <<SCREEN
$CLEAR COHERENT MENU

Number Name For
------- ------- --

0 exit leave menu or return to higher menu
1 Menu goto another local menu (if any)
2 sh get unix shell
3 vi edit a file
4 mail read mail
5 send send mail to someone
6 cal see your calendar
7 who see who is on the system
8 ls list the files in this directory
9 cat display a file on the screen

10 rdb display rdb commands

Please enter a number or name for the action you wish or DEL to exit:

SCREEN

The cat command shown uses the here file feature of the shell: all of the text from the <<SCREEN to
the line that consists of only SCREEN is sent to the standard input of the cat command. cat sends
its output to your terminal. So the text between the two SCREEN lines is displayed on your screen.

This lets you edit any menu you wish. The one shown is only one example. Use your text editor to
set up any menu format you desire. Whatever you type will be displayed on the user’s terminal
screen.

case Actions
Whatever the user types is assigned to the shell variable ANSWER. (After the first word of the reply,
any more words are assigned to the shell variable COMMENT).

87

88 Shell Menus

read ANSWER COMMENT

case $ANSWER in

0|exit) exit 0 ;;
1|Menu) Menu ;;
2|sh) sh ;;
3|vi)

echo ’Which file or files do you wish to edit’
read ANSWER COMMENT
vi $ANSWER $COMMENT
;;

4|mail) mail ;;
5|send)

echo ’Please enter login name of person to send mail to’
read ANSWER COMMENT
echo ’Type you letter, and end by typing Ctrl-d’
mail $ANSWER
;;

6|cal) (cd ; calendar) ;;
7|who) who ;;
8|ls) ls ;;
9|cat)

echo ’Please enter the name of the file you wish to see’
read ANSWER COMMENT
cat $ANSWER
;;

10|rdb) menu.rdb ;;
*) echo ’Sorry, but that number or name is not recognized.’ ;;
esac

After the user’s answer is read in, the shell case statement is used to match the answer to a number
of possible cases. If the user types a number 8 or ls, then the ls command is executed. This sample
gives the user the choice of two ways to indicate a menu selection: numbers or short mnemonic
string names.

After the case pattern, you can type any shell command or call any shell program, or any
combination of both. This gives you complete power to do anything, as a result of a user’s choice.
In the previous examples, you can see how to simply execute a command, invoke another menu, ask
for more information and use it in a command, and so on. The *) case is selected if the user does
not type any of the patterns previously listed. This gives an error message.

To make this system work, two commands are needed. A clear command clears the screen so that
the form can be written on it and the cursor command moves the cursor to each field of the screen.

termput and tput Commands
There are many CRT terminals with different capabilities and commands. Terminal capabilities are
described in the termcap file, which contain capability descriptions for a number of commonly used
terminals. You only need to find out what it calls your terminal and assign that name to the shell
variable TERM. (Be sure to also export TERM). To pick up the command string for a terminal
capability /rdb provides the termput command. It searches for the terminal name you assigned to
TERM and then for the capability you indicate.

clear Command
The clear command clears the screen. To speed up clearing the screen, assign the clear command
sequence to the shell variable CLEAR. Then you can use $CLEAR in echo and cat <<HERE
statements. This is ten to a hundred times faster because it does not require that you look up the
sequence in a file first:

TUTORIALS

Shell Menus 89

CLEAR=‘termput cl‘ # /rdb command
export CLEAR
echo $CLEAR

cursor Command
For the cursor command to work correctly, you must set up a shell variable called CURSOR:

CURSOR=‘termput cm‘
CURSOR=‘tput cup‘
export CURSOR
cursor 20 40

The cursor command moves the cursor to line (row) 20, character (column) 40 on the screen. It
uses the sequence in the CURSOR variable.

TUTORIALS

90 Shell Menus

TUTORIALS

%command^cursor=89

Tables and Forms

Simple forms can be used to for data entry and to display data on CRT screens. The two can be
mixed with a form in which some fields are filled in and the data from the data base is written into
the remaining form fields. /rdb comes with several forms systems: ve, described earlier, and a shell
level forms system, described here. ve was designed to make creating and entering data into /rdb
data bases easy, using a vi-style interface. The screen program, on the other hand, can be a more
general-purpose application development tool that can be customized for any specific application.
It’s an example of a program generating a program.

To make the shell-level system work, you need the clear and cursor commands, described in the
previous chapter.

Building a Screen Form
You can write a shell script that paints a screen and accepts input. You can clear the screen and
use the cursor command to move to any location. There you can use the echo or cat command to
display whatever you wish. You can use the read command to read in anything the user types and
assign it to a shell variable. You can take the users information and look up data in the data base,
using the database query commands, and display it anywhere on the screen. The update.inv
command found in the $RDB/lib directory is an example of this.

The screen program uses a screen definition form, which you create with any text editor (just like
the /rdb report program form):

Makeapile, Inc. Inventory Update <!date!>

Item Number: <Item>

Item Cost Value Description
---- ---- ----- -----------
<Item> <Cost> <Value> <Description>

Amount Onhand: <Amount>

Then you input that form into the screen program:

screen < inv.f > inv.s

This yields:

: paint crt screen
exec 3>&1 1>&2
cat <<SCREEN
${CLEAR}Makeapile, Inc. Inventory Update

Item Number:

Item Cost Value Description
---- ---- ----- -----------

Amount Onhand:
SCREEN

91

92 Tables and Forms

: read user input
cursor 0 56 ; date;
cursor 2 13 ; read Item;
cursor 6 0 ; read Item;
cursor 6 12 ; read Cost;
cursor 6 23 ; read Value;
cursor 6 34 ; read Description;
cursor 8 15 ; read Amount;

: output table head
exec 1>&3
echo "Item Item Cost Value Description Amount"
echo "---- ---- ---- ----- ----------- ------"

: append row
echo "$Item $Item $Cost $Value $Description $Amount"

The output is a shell program that will paint the screen, read the user’s input, and output a table of
the user’s responses. This shell program is simple, but you can edit it to do any advanced operation
you like.

TUTORIALS

%update.inv=91

Fast-Access Methods

Fast-access methods allow you to get rows from a table or list file faster than sequentially reading
the file. This is very important for larger data bases. Where sequentially reading a huge file would
take minutes, the right fast-access method might take only a few seconds to find the records you
want. Traditionally, these methods were very important to data-base management systems. For
very large data bases, they will continue to be important. But one or a few users on a
microprocessor with small to medium-sized tables will seldom need these speedups.

Appropriate Use
It is important to point out that these methods are not always faster and usually require significant
time to set up. They are almost never justified unless the file is large (more than 1,000 rows), and
the extra time to index or sort the table is worthwhile.

The command row finds rows that match complex logical conditions and regular expression (string
patterns). But these fast-access methods require that the key value be expressed more specifically.
No greater than, less than, or string pattern matches: only equals, and partial initial matches (for
example, the first few letters of a key).

We’ve implemented five fast-access methods: sequential, record, inverted, binary, and hash. /rdb
has two commands that use these methods: index and search.

The index and search Commands
We will use a two-row table to show the index and search commands. Here is a mailtable:

Number Name Company Phone
------ --------------- ------------- --------------

1 Ronald McDonald McDonald’s (111) 222-3333
2 Chiquita Banana United Brands 1234

The hash method is often the fastest, so let’s use it as an example.

index -mh mailtable Name

The -m means method, and the h specifies hash. The index command builds a hash secondary
index table. You can see it, if you are curious, by listing out the table name followed by the .h
secondary index extension; for example, mailtable.h:

Offset

0
156

0
104

0

Each of the names in the Names column of the mailtable was hashed into row 4 (104) or 2 (156).
The offset in the hash table (the nonzero numbers) is the location (in bytes) in the main file, of the
row with that key value.

93

94 Fast-Access Methods

Searching

The search command allows you to search for one or more rows in the table in four different ways.
You can input a key two ways, and you can input a table of keys two ways.

Interactive

Now you can search the mailtable by name in an interactive way:

search -mh mailtable Name

The search command first prints out the table head line

Number Name Company Phone
------ --------------- ------------- --------------

then waits for you to type in a key value. In this case, if you type

Ronald McDonald

search prints the following from maillist:

1 Ronald McDonald McDonald’s (111) 222-3333

After you type the name and hit the return key, the row will print almost immediately, even if the file
is huge. You may continue to type keys. When you are finished, type <ctrl-D>.

Pipe Key

The search command can also be used in a pipe. You can input a table or list of keys through a
pipe and the search command will output a table or list of rows which match your input keys. This
becomes a fast join, with keys coming in and a table of rows coming out. For example, the
command

echo "Ronald McDonald"| search -mh mailtable Name

yields:

Number Name Company Phone
------ --------------- ------------- --------------

1 Ronald McDonald McDonald’s (111) 222-3333

File Input

In addition to sending a single key to search, you can also send a whole table of keys. search will
look up each key and output a whole table of matching rows. It is like a high speed join; keys in,
records out.

Here we have our name keys in a table called name:

Name

Ronald McDonald
Chiquita Banana

The following command directs it to the standard input of the search command and gets the
matching records out.

search -mh mailtable < name

This yields:

TUTORIALS

Fast-Access Methods 95

Number Name Company Phone
------ --------------- ------------- --------------

1 Ronald McDonald McDonald’s (111) 222-3333
2 Chiquita Banana United Brands 1234

Note that you do not have to tell the search command the name of the column to search on, if you
send it a table with the column name, because search can pick up the column name from that
input table.

File Input by Pipe

You can also put the search program in a pipeline and it will send to its right a table of rows that
match the table of keys coming from its left. In other words, keys in, matching records out.

As an example, consider again the table name:

Name

Ronald McDonald
Chiquita Banana

The command

cat name | search -mh mailtable

writes the following to the standard output:

Number Name Company Phone
------ --------------- ------------- --------------

1 Ronald McDonald McDonald’s (111) 222-3333
2 Chiquita Banana United Brands 1234

The cat command simulates any program or pipeline that produces a table of keys, including other
search commands.

Multi-Rows, Multi-Columns, and Multi-Keys

The search command will produce multiple rows, if more than one row matches the key. You can
have multi-column keys consisting of more than one column. You can also send more than one
key, multi-keys, to search and it will output all matching rows.

Methods of Searching
The five different fast access methods each have their own advantages and disadvantages. It is an
art and a science to figure out which to use in a given situation, or whether to use them at all.

Sequential

Sequential is the simplest and slowest method. It is hardly a fast access method at all, but is
included for completeness. This method simply looks at every record in the table for a match. With
a big file, this will take a long time.

When might you use it? It is better than grep because a sequential search will look at only a single
column for a match, instead of the whole row. Thus it avoids matching strings in the wrong
columns of the row.

Also, use the sequential method to time how fast it takes. You will often be surprised that this
method is fast enough for your system. If it is fast enough, use it since it requires no indexing or
overhead to use. The table can be in any order and can be updated randomly.

TUTORIALS

96 Fast-Access Methods

Record

One problem with variable-length records is that there is no simple computation of where a row
such as number 7 is. Without this method, we would have to sequentially search the table,
counting records, until we came to the one we wanted. On the average we would have to search half
the file. When we index with this method, the index program runs through the whole file and
builds a secondary file which contains the offsets to each row. The secondary index table is named
by adding a .r to the end of the table name. It contains fixed length rows so that the record number
can be computed. At that address is the offset of the corresponding record in the data-base table.
For example, consider the following mailtable:

Number Name Company Phone
------ --------------- ------------- --------------

1 Ronald McDonald McDonald’s (111) 222-3333
2 Chiquita Banana United Brands 1234

The command

index -mr mailtable

produces index table mailtable.r, which appears as follows:

Offset

104
156

Note that each of the offsets in the secondary index table mailtable.r is the byte address of that row
in the main mailtable table.

Binary

The binary method requires that the table be sorted on the key columns. With this method, the
index command simply sorts the table. The search command can find the desired row by first
looking at a row in the middle of the table. It can use the COHERENT system call seek() for fast
access to any byte in the file. search compares the key value of that center row with the key it is
looking for. If the row’s key is too high, it jumps to the one-quarter point in the file, if too low, to the
three-quarter point in the file. Each probe cuts the file in half so that the record can be found
quickly.

If there are a thousand records in the table, only ten probes are needed to find the record you wish.
One million records require only 20 probes. A billion records need only 30. This is called log n
search time, where n is the number of records in the file and the log to the base of 2 is the number
of probes needed to find a record. The sorting takes n log n time with the fastest sort routines.

To prepare mailtable for this type of search, use the command:

index -mb mailtable Name

mailtable now looks like:

Number Name Company Phone
------ --------------- ------------- --------------

2 Chiquita Banana United Brands 1234
1 Ronald McDonald McDonald’s (111) 222-3333

Note that the Name column is now sorted so that the binary search will work. This is a good
method when you have to keep the file in sorted order anyway. Then your sorting pays off twice. It
is a painful method, however, if you are adding and deleting records often and have to resort often.

TUTORIALS

Fast-Access Methods 97

Hash

The hash method takes the key and performs a mathematical operation on it that converts it into a
single number. Each ASCII character in the key is added together and modulo-ed with the size of
the hash table to produce a number that is its location in the hash table. That number is an index
into a secondary hash table. At that location should be the offset to the record in the main table.
The row at that offset in the main table is checked to see if its key column(s) match the key we are
looking for. If it is, we have found our record.

It might not match because more than one key may hash to the same number by accident. If it
does not match, the next offset in the hash table is selected and tested. Each offset is tested until a
match is found, or until a value of zero is found. This indicates that there is no matching record in
the data-base table. So the search fails. No error message is produced, just no record is output.

As an example, consider again our mailtable:

Number Name Company Phone
------ --------------- ------------- --------------

1 Ronald McDonald McDonald’s (111) 222-3333
2 Chiquita Banana United Brands 1234

To prepare mailtable for a hash-table search, use the command:

index -mh mailtable Name

This hashes the contents of the Name column, and writes the results into file mailtable.h:

Offset

0
156

0
104

0

For example The 104 in the fourth row of the hash table mailtable.h is the byte offset of the first
record in the data base mailtable table. The value ‘4’ (for fourth row) is the result of adding the
ASCII values of Ronald McDonald together and modulo with 5, the number of rows in the hash
table. The size of the hash table is two times the number of rows in the table to be indexed, plus
one. Having twice as many hash rows makes it likely that there will be lots of zeros to stop the
search for keys. If the hash table is twice as big as the number of keys to hash, then only two
probes are needed on average.

Thus, when the search command is searching a table via a hash-key index, it does the following:

• Read the field on which the key has been built.

• Sum the key’s ASCII values.

• Modulo the sum by the number keys in the hash table (that is, the number of rows in the data
table, times two, plus one. This yields the number of the row to read in the hash table.

• Read the appropriate row in the hash table to find the offset of the row in the data table that we
want.

• Use that offset to read the row out of the data table.

Hash is usually the fastest method. But it is best for a static file that you are not updating and do
not need to keep sorted.

TUTORIALS

98 Fast-Access Methods

Inverted or Indexed Sequential

The inverted method projects the key columns and the offset of each row and sorts on the key
columns to create a secondary index file. Then the search command can use a binary search on the
key columns to find the right offset into the data-base table.

Consider once again our mailtable:

Number Name Company Phone
------ --------------- ------------- --------------

1 Ronald McDonald McDonald’s (111) 222-3333
2 Chiquita Banana United Brands 1234

To prepare an inverted index for on its column Name, type:

index -mi mailtable Name

This yields table mailtable.i, which appears as follows:

Offset Name
--------- -------

156 Chiquita Banana
104 Ronald McDonald

Note that the Name column has been projected and sorted and that the offset column contains the
corresponding offset in the main table.

Partial Inital Match

The -x option specifies that partial initial match is to be used. This means you can use only the first
few letters of a key, and a match will be made on all those records whose key is matched up to that
point. When you type:

search -mi -x mailtable Name

search prints the head line and dash line, then wait for you type the key for which to search. If you
type:

Ron

then search prints:

1 Ronald McDonald McDonald’s (111) 222-3333

As you can see, Ron matched the first few characters in ‘‘Ronald McDonald’’.

This method of searching helps save you unnecessary keystrokes; but on large tables it will retrieve
more rows than you really want.

B-tree

B-tree subroutines are now a standard on computer systems, for those who want to return to
software prisons; but of course the easiest to use and most general tree routines are to be found, as
usual, in the power of COHERENT itself. What is the hierarchical directory structure but a
collection of shell level programs to manipulate a tree? You can use the directory structure itself to
implement the first few levels of (tree structured) indices.

For example, in a company data base, you can have a directory for each city; within each city
directory, a directory for each department; within each department directory, a file for each
employee, each such file having header records and one employee record. Then, to retrieve all the
New York sales employees whose names begin with J, one could say:

union nyork/sales/J*

TUTORIALS

Fast-Access Methods 99

and, to retrieve all sales employees:

union */sales/*

COHERENT itself has many programs to manipulate trees. So there was no point in duplicating the
power of COHERENT.

The tree method is occasionally appropriate, but usually the most expensive in space requirements.
Its advantages are in rapid updates, deletes, and inserts of new records in very large data bases. If
you have a very large data base that requires lots of updates, it’s really quite fast to build the first
few levels of indexing into the COHERENT directory structure, but it does involve extra file system
overhead.

Analysis
It takes analysis and testing to determine which is the best method for a given situation. Each
method has its advantages and disadvantages. Theory only takes one so far. You can time the
different methods on your computer to determine the fastest.

To determine the best method to use in a situation, you must both analyze and test your different
options. The advantages and disadvantages of each method is discussed earlier. You should also
test any strategy you adopt. You might find that a simpler method is fast enough, or the overhead
of a fast method outweighs the benefits of speed.

Management
Fast-access methods need to be managed. If the files are being updated, they may have to be
reindexed. Reindexing takes time. You may want to schedule it when users are not accessing the
data and perhaps when the computer is not being used much. A nightly reindexing may be
appropriate.

The COHERENT command at lets you schedule big jobs like this, at say 3 A.M., when the system is
more likely to be quiet. When you choose an access method, you must plan for any management
that is needed. This can also be accomplished by writing a command into the system file
/etc/crontab.

TUTORIALS

100 Fast-Access Methods

TUTORIALS

%crontab=99

Miscellaneous Commands

/rdb has more than 100 programs to help you develop software applications. Here is a brief
discussion of some of them, grouped together by subject.

Record Locking: One at a Time
When your application requires that several people update the same file at the same time, you must
lock records. When one user gets a record to change, it is important that no other user pull out the
same record and edit it also. If you allow this, the second record written back will clobber the first
record, thus destroying the results of the first user’s changes.

Many complain that the COHERENT system does not have a record-locking system. But it is trivial
to create record locking with COHERENT tools. /rdb provides lock and unlock commands that you
can use or modify for this purpose.

Finding What to Lock

To lock a record, /rdb must first find its location within the table where it ‘‘lives’’.

To find the location of a record, use the seek command. It uses the fast-access method of your
choice to find the record and returns the starting and ending byte location, which can be assigned
to a shell variable.

For example, consider the command:

LOCATION=‘echo 5 | seek -mb -o tmp inventory Item‘

A lot is going on here so let’s take it step by step.

The echo command sent the number ‘5’ to the seek command. seek looks for an Item numbered 5
in the inventory file using the binary fast access method (-mb), and writes the record into the tmp
file (-o tmp). seek sends a string of four numbers to standard out which is assigned to the shell
variable LOCATION. Echoing LOCATION gives us a resulting of the form:

207 245 0 9

The four numbers are the offsets of the first byte and last byte of the record in the data file, and of
the first byte and last byte of the offset in the secondary index file. (In this case it is meaningless,
because the binary method does not use a secondary file.)

lock and unlock

Now that we know where a record is, we can use the command lock to lock it while we work with it,
and the command unlock to unlock it once we’re done with it.

The lock command writes the string from the LOCATION shell variable into a file in the /tmp
directory. It checks to see if that area of the file has been previously locked. The unlock command
removes the location line from the lock file.

Blanking a Record

For added protection, or as an alternative, you can also blank out the record in the file. Use seek to
get the location, use blank to blank the record, and use replace to write the blank record into the
file.

101

102 Miscellaneous Commands

For example, the following command blanks out line 5 in table inventory:

LOCATION=‘echo 5 | seek -mb -o tmp inventory Item‘
blank < tmp | replace -mb inventory $LOCATION

When we look at inventory, it now appears as follows:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates

6 89 147 13083 bunsen burners
7 5 175 875 scales

Line 5 has been replaced by a row of blanks. Since the data are no longer there, no other user can
grab them for manipulation. Users must be instructed, however, that a blank row means that the
record has been locked. If they retrieve a blank record, they must not replace it with anything.

Dates: Conversion and Arithmetic
One of the basic tasks a data-base system must perform is manipulating dates. Each date must be
translated into a standard format, and users must be given a way to perform arithmetic on dates.
/rdb includes several programs help you handle dates.

Julian and Gregorian

Gregorian is the kind of dates we are all familiar with: January 1, 1989, 1/1/89, 890101, and so on.
Unfortunately, there are two problems with this kind of date: Gregorian dates can not be added or
subtracted, and they have several different formats. Fortunately, there is another form of date,
called Julian, that solves these problems. A Julian date is a number of days since January 1, 4713
B.C., the date that marked the beginning of the Julian calendar. Because a Julian date is an
integer, you can add days to and subtract days from a Julian date and get the correct new date.

/rdb has two commands that are used for this purpose. julian converts a date from the standard
Gregorian to Julian. It converts a whole column of dates so that they can be operated upon. After
the Julian dates have been manipulated, the column can be converted back to Gregorian dates with
the gregorian command.

For example, suppose you are planning a project, and have written a schedule into table project,
which appears as follows:

Date Description
------ -----------
890601 Start project
890701 Project crises
890801 Abandon project
890901 Coverup blame
891001 Write off losses

Now you find that you need to put off the start date of the project by 45 days. To update your table
to reflect this change, do the following:

• First, use the command julian to convert the Date column to Julian dates:

julian Date < project > tmp

The output has been written into table tmp, which appears as follows:

TUTORIALS

Miscellaneous Commands 103

Date Description
------- -----------
1752623 Start project
1752653 Project crises
1752684 Abandon project
1752715 Coverup blame
1752745 Write off losses

Those huge numbers under Date are Julian days.

• We can now add 45 days to the column with the compute command:

compute ’Date += 45’ < tmp > tmp1

The result is written into table tmp1, which appears as follows:

Date Description
------- -----------
1752668 Start project
1752698 Project crises
1752729 Abandon project
1752760 Coverup blame
1752790 Write off losses

Note that all of the Julian dates are 45 days later.

• Now we can convert back to Gregorian:

gregorian Date < tmp1 > project

The result is written back into our original table, project, which now appears as follows:

Date Description
------ -----------
890716 Start project
890815 Project crises
890915 Abandon project
891016 Coverup blame
891115 Write off losses

This can also be done in one pipeline:

julian Date < project |
> compute ’Date = Date + 45’ |
> gregorian Date > tmp
mv tmp project

Difference

You can also find the difference between two dates.

For example, a building contractor may have a table called house, which contains the start dates
and stop dates for each phase of building a home:

Start Stop Days Step
----- ------ ---- ----
890101 890118 Lay concrete
890121 890212 Setup frame
890215 890302 Build walls
890305 890401 Install fixtures
890408 890425 Sell at a loss

To compute the number of days for each step, we can use the julian and gregorian programs on the

TUTORIALS

104 Miscellaneous Commands

house table:

julian Start Stop < house |
compute ’Days = Stop - Start’ |
gregorian Start Stop > tmp
mv tmp house

house now appears as follows:

Start Stop Days Step
----- ------ ---- ----
890101 890118 17 Lay concrete
890121 890212 22 Setup frame
890215 890302 15 Build walls
890305 890401 27 Install fixtures
890408 890425 17 Sell at a loss

Formats

There are a number of different formats that people use to express dates. The julian and gregorian
programs also allow you to convert between three different formats.

Computer
Computer date format is YYMMDD. For example, January 31, 1989, translates to ‘‘890131’’.
This format is best because it can be sorted, and is the most compact. You can also test to
see if one date is greater than another. Most users can quickly get used to it.

US In the United States, dates are written in the sequence MMDDYY. For example, January 31,
1989 translates to ‘‘1/31/89’’.

European
The Europeans use the sequence DDMMYY. For example, January 31, 1989, translates to
31/01/89.

Conversions

The /rdb commands julian and gregorian let you convert dates from one format to another. Simply
specify the current format to the julian command and another format that you want to the
gregorian command, and the format will change. The default format is computer format.

For example, let’s change the computer format in the project table to US format:

julian Date < project | gregorian -u Date

project now appears as follows:

Date Description
-------- -----------
6/01/89 Start project
7/01/89 Project crises
8/01/89 Abandon project
9/01/89 Coverup blame

10/01/89 Write off losses

You can see one of the problems of the standard date is that it is eight characters. Since the tabs
are also eight characters, the next column has to move over. You can use the justify command to
pretty things up:

julian Date < project | gregorian -u Date | justify Date

project now appears as follows:

TUTORIALS

Miscellaneous Commands 105

Date Description
-------- ----------------
6/01/89 Start project
7/01/89 Project Crises
8/01/89 Abandon project
9/01/89 Coverup blame

10/01/89 Write off losses

Set-Theory Commands
In addition to the basic relational commands, there are several that come from relational set theory.

Concatenating Tables

The union command appends one table to another, making a larger table consisting of all of the
rows of each.

For example, consider a set of accounting tables. The first table is called journalcash:

Date Account Debit Credit Description
------ ------- ----- ------ ----------------------------------
891222 101 25000 cash from loan
891223 101 5000 cash payment
891224 101 15000 cash payment to CCPSC for parts

The second is called journalloan:

Date Account Debit Credit Description
------ ------- ----- ------ ----------------------------------
891222 211.1 25000 loan number #378-14 Bank Amerigold
891223 211.2 5000 note payable to Zarkoff Equipment

And the third is called journaladjust:

Date Account Debit Credit Description
------ ------- ----- ------ ----------------------------------
891224 130 30000 inventory - parts from CCPSC

Note that all three tables consist of the same set of columns.

Now, we use the union command to consolidate these subsidiary journals to create a general
journal:

union journalcash journalloan journaladjust > journal

Table journal appears as follows:

Date Account Debit Credit Description
------ ------- ----- ------ ----------------------------------
891222 101 25000 cash from loan
891223 101 5000 cash payment
891224 101 15000 cash payment to CCPSC for parts
891222 211.1 25000 loan number #378-14 Bank Amerigold
891223 211.2 5000 note payable to Zarkoff Equipment
891224 130 30000 inventory - parts from CCPSC

Subtract One Table From Another

The command difference lets us subtract one table from another to give the rows that are in the
first table but not in the second table.

TUTORIALS

106 Miscellaneous Commands

For example, the following command finds the difference between two of the above-described tables:

difference journal journalloan

This prints the following on the standard output:

Date Account Debit Credit Description
------ ------- ----- ------ ----------------------------------
891222 101 25000 cash from loan
891223 101 5000 cash payment
891224 101 15000 cash payment to CCPSC for parts
891224 130 30000 inventory - parts from CCPSC

Intersect Between Tables

The command intersect lets us find the rows that are in both tables, the intersection of the set.

For example, the following command finds the intersection between two of the above tables:

intersect journal journaladjust

It prints the following on the standard output:

Date Account Debit Credit Description
------ ------- ----- ------ ----------------------------------
891224 130 30000 inventory - parts from CCPSC

TUTORIALS

%table^find intersection=106

Combining /rdb with COHERENT

Much of your data-base work can be done with COHERENT commands. Many of the traditional
problems of data bases disappear when you have a COHERENT system. If you have only one or a
few users, problems like security, distributed data, concurrent access to files, backup, checkpoint
and recovery, validation, audit trails and logging, and others, are minimized.

This chapter gives suggestions for combining /rdb with COHERENT tools to develop solutions to
these problems. This is not to say that there are no longer any problems. There is still a role for
programmers and system/analysts. But it is important for these professional people, who got their
experience on older systems, to re-think what they know in light of the new tools and the new
economics of our changing technology.

Multi-User Concurrent Access to Files
On small systems, you can assign each file to only one person. Then only one person need access it
at a time. Any number can append new records to a file at one time with the enter command. Also,
any number of users can read a table into their /rdb and COHERENT commands, since reading
does not change the table.

The only problem that arises is when two or more people must edit a table or list file at the same
time. Files can be locked in several ways. There is a lock and an unlock command for this
purpose. With the blank and replace commands, you can blank out a record while you have it out
for edit. The update commands does this.

Each user can move (mv) the file to a new name before editing it. Perhaps they might move it into
their own directories, make their changes and move it back. That way other users will not find the
file when they try to edit it. This is how the vilock command works. Application programs can
change the permission of a file so that it is read only to others on the system, when our user is
updating it.

There are also the lock and unlock commands, which are shell scripts to show how easy it is to
solve this problem with COHERENT tools.

Screen Form Entry
If you want to put forms on the terminal screen for the users to input data into, you can use ve or
the screen program. screen takes a form you create in a text editor, as with the report command,
and creates a shell script that will display the form, read the user’s input and output a table.
Because it is a shell script, it can be edited to do a lot more including validation, table lookup, and
others. ve also takes a form, like the report command’s form, and creates a table.

Security
You can handle security by physically protecting the computer and the terminal, by using the
COHERENT security permissions on files and directories, and by encrypting files. ve contains
special security features like unwriteable and invisible fields. There are read, write, and execute
permissions for the owner of the file, the group, and anyone on the computer. See the COHERENT
commands chmod and crypt.

Backup
You should backup the /rdb tables and list files just like regular COHERENT files. You can simply
copy a file or a whole directory to a backup media like magnetic tape, cassette tape, or floppy disk,
or transmit to another computer for backup. The COHERENT ustar and cpio commands can be

107

108 /rdb and COHERENT

used for putting an entire directory structure into a single file.

Checkpoint and Recovery
You can always create a copy of a file that you are working on. /rdb commands do not alter their
input files. They simply create new files or pass their output (pipe) to another program. In a crash,
the original file is not harmed. Only the editors modify the existing file and at least one, vi, has a
crash recovery system.

Validation
ve provides programmable validity checks for data as it is entered. awk scripts and other programs
can be developed to check the validity of operator input. The vi editor has the ability to assign to a
single key a complex program. It can be used to validate each line typed. The /rdb command
validate is available to do any data validation from simple to complex. See the sections on
validation in the /rdb manual and the ve chapter.

Audit Trails and Logging
This is very easy because of the diff command.

At the end of each day’s work the diff program can be run like this:

diff todaysfile yesterdaysfile > todayslog

The file todayslog will contain all lines that have changed since yesterday. Save it and you have a
log or audit trail. It can also be used for recovery to any date in the past.

TUTORIALS

%diff=108

Other Data-Base Systems

Many data-base management systems are available. Each has its strengths and weaknesses.
However, they usually take a traditional approach. Such systems were developed on operating
systems that provide only a fraction of the services that COHERENT provides. Therefore, the data-
base developers had to write as much functionality into their data-base packages as they could.
When these data-base management systems are moved to the COHERENT environment, they
require that you leave COHERENT tools and all of their power behind, and go into a software box
where you are limited to the functions that the data base developers have supplied.

There are many other data-base packages running on COHERENT systems, but they all take this
traditional big box approach. One usually finds that functions COHERENT tools could provide are
not available inside those data-base system boxes. There is usually no good way to get the data out
to COHERENT and back. It was the frustration of knowing that we could do what we needed to do
with COHERENT tools, but that our data was locked up in the data base package, that originally
prompted the development of /rdb.

With /rdb you always have access to the full power of the COHERENT system, because /rdb
commands are COHERENT commands that can be piped together with other COHERENT
commands. They extend the power of COHERENT tools rather than waste it. /rdb works at the
shell level and allows you to use all of the COHERENT utilities and powers. With shell programming
you can build applications easily with both COHERENT and /rdb commands mixed and piped
together.

With other data-base systems, you must learn a whole new language/syntax that is unique to that
data-base package. Learning /rdb is learning the COHERENT system, which is useful in many
applications. Or you can use the COHERENT knowledge you have already acquired. In fact, it is an
excellent way to learn COHERENT tools, just as many people learned computers starting with a
spreadsheet program.

Resource Use
When conventional data base systems duplicate COHERENT functions, programs become huge.
These programs take up tremendous amounts of computer memory and other resources. Most data
base packages will severely impact even large expensive computers with only a few users. By doing
things the COHERENT way, only the small programs that are needed are brought in from the disk,
putting only a light load on the system. This can save hundreds of thousands of dollars in
computer hardware, to say nothing of software.

C Programming Unnecessary
The COHERENT system has many programming languages, including the C language. Although
many programmers naturally think they must use such programs in their work, it is usually
unnecessary. Putting together COHERENT programs will usually accomplish whatever is needed.

Although much can be done with the basic COHERENT system as delivered, some data-base
facilities and tools are missing or are hard to create. Therefore, a number of relational data-base
management systems have been developed for the COHERENT system. Unfortunately, most come
from other operating systems and ignore the power of COHERENT. On other operating systems,
virtually nothing exists to help the developer and user. Everything must be programmed from
scratch. If the developer or the user is to have a feature, it must be programmed into the data base
program.

109

110 Other Data-Base Systems

On COHERENT the reverse is true. Much of what you need is already available in the COHERENT
environment. The traditional data base management systems, when moved to COHERENT,
discourage the developer and user from getting access to these powerful and familiar COHERENT
tools. It is as if these systems create an unfamiliar box that you must go into, leaving the power of
COHERENT behind.

/rdb, however, was built for the COHERENT environment. It consists of over 100 COHERENT-like
commands that fit together nicely with other COHERENT commands. It has the tools that were
found to be needed from real experience of developing software applications. Using COHERENT
shell programming, developers can quickly put together applications from both COHERENT and
/rdb commands. Users face a unified environment. They may not know or care whether the
commands they use come from the COHERENT system or /rdb. This is the correct way to extend
the COHERENT system: keeping the power and genius of the COHERENT system and adding
functions to it.

Speed
Most of the research on data bases and their problems assumes that you have huge files, need to
find a record (row) very quickly, and have many users. Not many years ago, few could afford to have
the power that a microcomputer offers today. Then computers cost millions of dollars and had to be
shared by many users. Only large volume applications were cost effective enough to computerize,
leading to a tremendous concern for speed and size. Early eight-bit microcomputer systems
reinforced this thinking. With weak computers, small memories, and floppy disks, size and speed
were still overriding issues.

Today, and more so in the future, we have powerful 16- and 32-bit microcomputers with large
memories and big disks, but so inexpensive that they are ubiquitous. Applications will run faster
and handle larger data bases. Now we want ease of use and powerful systems. The bulk of data
base applications are for relatively small data files of a few hundred to several tens of thousands of
records, with a small number of frequently asked queries. If you think of something new to do that
was not planned for in the development of the application, you will usually find it very difficult or
impossible to do. These traditional data bases often require complicated setups, lots of training to
use and are difficult to modify. Worse still, they are huge programs that take up much of the
memory and CPU cycles of the computer. Only a few users can slow a big expensive computer down
to an unacceptable response. These traditional data base systems have features built into a large
program. The COHERENT system has lots of features, but they are in the hundreds of programs
stored on the hard disk. COHERENT only brings in the code it needs for a particular function. The
average COHERENT utility is about 40 kilobytes. Traditional data base programs are often a quarter
of a megabyte and larger.

/rdb takes a much different approach. It is much closer to the ideas of a text editor, spreadsheet
and, of course, the COHERENT system. It handles small data bases as well as large. /rdb is aimed
at ease of use and maximum power. Even so, it is usually very fast. But when more speed is
needed, /rdb also has not one but five fast-access methods to give a variety of ways to access large
files. /rdb is as fast or faster than most other data base management system. Furthermore, even
grep with its sequential search is not so bad. grep is a COHERENT program which looks for a
string pattern and prints out each line in which it finds a match. Remember that there is
computing overhead for the traditional fast access methods. Binary searches require sorting, hash
tables must be computed, B-trees must split their pages when they fill, linked lists must maintain
their pointers, and so on. As the size of our tables diminishes, so do the advantages of the fast
access methods. bm, an implementation of the Boyer-Moore linear search algorithm that is quite a
bit faster than grep but limited to fixed strings (not patterns), is distributed with /rdb. in the
$RDB/lib directory.

Size

TUTORIALS

Other Data-Base Systems 111

Many data-base comparisons put great emphasis on the size of the data base that can be handled.
This is really a problem for data-base systems that are one large program. /rdb, however, is a group
of small programs which can be piped together. Its only limits are those of your hardware and
COHERENT itself.

A table can be as big as the available free space on your disk, or as big a file as your COHERENT
system can handle. Use the COHERENT commands df to see how much space is left on the disk,
and use the COHERENT command du to see how much disk space a given directory uses. For
details, see these commands’ entries in the Lexicon.

TUTORIALS

112 Other Data-Base Systems

TUTORIALS

%du=111

Can You Say that in English?

If you are not a mathematician, you may find the literature on relational data bases to be
incomprehensible. One problem is the terms used in the literature. Different terms are used by the
mathematicians, computer people, and other humans.

We try to use human terms throughout the /rdb documentation. We lapse into computer terms
either by mistake, or when we think we are talking to programmers and analysts about the more
technical details. We ignore the mathematicians, since they seem to ignore us. But we love them.
Without them we would not have relational theory. Here is a table that will help each group
translate terms used by another group:

Humans Hackers Mathematicians
table.....................................file..relation
column.................................field......................................attribute(domain)
row.......................................record...................................tuple
number of columns..............numberof fieldsdegree
number of rowsnumberof records................cardinality
list of tables..........................schema.................................datamodel
user’s tablesuserview..............................datasubmodel
simplifiedsimplified.............................normalized
no repeated columns............no multi fieldsnormalized
one concept per table ..3rdnormalized
get rows................................getrecordsselect
get columns..........................getfields...............................project
combine tablesconcatenate..........................join(union)
new command......................shellscriptview

Data-Base Models
A data-base model is a way of structuring and thinking about data. We use the relational model,
but there are several others. There are three major types of data base models that have been
implemented in several commercially successful data base management systems: relational,
network, and hierarchical. In addition there are at least four more important models discussed in
the literature, but for which few implementations exist as yet: entity-relationship, binary, semantic
network, and infological [Tsichritzis, 1982]. We will probably see more of them in the future.

The major difference between these models is their structure. As you read through these
descriptions, you will probably have a sense of deja vu. Each is quite similar to the other with some
differences. Remember that information in each model can be converted or transformed into the
other models.

Hierarchical

The hierarchical data base has a tree structure. (In computer science, trees have their roots at the
top and grow their branches and leaves downward.)

This type of data base was popularized by IBM. Their IMS data-base management system has been
widely used in the past. When the users build a data base, this structure must be imposed upon
their data. Some searches are speeded up (such as from classes to grades). Others become difficult
or impossible, e.g., What grades did an instructor give? The emphasis is on speedy responses from
older, slower, and usually heavily burdened computers. The speed is achieved by anticipating
standard searches and optimizing them. But ad hoc queries (ones you just think up as you are
working) are not only slow, but are often difficult, even impossible, to do.

113

114 Say It in English

Network

The network type of data base has a two-level structure. Both Total and Image/Query are
examples of this approach. This model comes from a CODASYL committee standard. This system is
a little easier to build and use than hierarchical, but still requires that the user know the structure
and navigate through the links. It is difficult, if not impossible to get from one detail file to another.

Relational

Relational data bases have what are called a flat file structure. All files are at the same level. With
such a structure and a set of commands like project, select, and join, one can get all of the
information out of the data base that has been put into it.

E. F. Codd of the IBM San Jose Research Laboratory proposed this relational model in the early
1970s [Codd 1970]. Since then, the relational approach has captured the attention and approval of
most of the academic, and now business, researchers in the field. IBM is converting to relational
with its new System R data base management system. It uses SQL for a user interface. Almost all
of the data-base systems that have been built for COHERENT are relational.

A relational data base management system is considered by most researchers in the field as the best
for several reasons. Relational data bases have a solid mathematical base in relational set theory,
relational algebra and relational calculus. There are theorems in this relational mathematics that
prove that any data put into a relational data base can be extracted. The mathematical base also
assures us that the manipulations we perform will have correct results, just as arithmetic assures
us that the mathematics functions we perform on the computer have correct results.

The relational structure is the simplest. All information is kept in simple tables. The user does not
have to navigate through complex networks (network model) or tree structures (hierarchical model).
Relational theory has tables (relations) with rows (tuples) and columns (attributes of domains),
which anyone can understand.

It also has functions on tables: project (column), select (row), join (jointable), and so on. These
functions both input and output tables, just as the functions in algebra which we are familiar with
input and output numbers (scalars), lists of numbers (vectors), or arrays of numbers (matrixes).
These commands we’ve discussed earlier. They are the most frequently used.

There are also several commands from set theory that are not as often used but are important for
completeness. There has been a lot written on relational data base systems and theory. See the
Bibliography.

Entity-Relationship

The entity-relationship model was put forth by Chen [Chen 1976]. This model sees the universe, or
more practically the company or institution, as composed of entities and relations between them.
Things, people, departments, and so on, are entities. Entities have relationships between them. A
department is part of an enterprise. People work in departments as staff members. Equipment is
assigned to departments. Some people are heads of departments. One can draw a diagram of these
entities and relationships.

There is a one-to-many relationship. A department can have many staff people and many pieces of
equipment. But each employee and piece of equipment is assigned to only one department. If the
rules of the organization change, so will this graph.

This model has similarities to the three classic models. The relational model holds entities in tables
(also called relations). It provides the jointable command to combine tables on keys in which there
is a relationship between the entites of one table and another. It can also be seen as hierarchical
and network because of the structures. This model trys to capture the overall structure of the
enterprise regardless of how it is implemented. It is the big picture.

TUTORIALS

Say It in English 115

Binary

The binary model sees data as a graph in which each node is a simple column or field of data and
the arcs that join the nodes represent simple relationships between them. It is based on graph
theory. As we move to computer systems with powerful graphic screens, this model might become
more common.

Semantic Network

The semantic-network model comes from the field of artificial intelligence (AI). (See Quillian [1968]
and Sowa [1983]). AI is the part of computer science that trys to get computers to be intelligent. Its
subfields are games, expert systems, vision, robotics, natural-language recognition, and others.
Researchers came up with this model in trying to structure data for these efforts, trying to
understand the human associative memory, and trying to understand natural language.

There are many variations of the semantic network model because many researchers have written
about different versions in the technical literature. In the broadest sense any graph model is a
semantic network model, including the entity-relationship and the binary model.

The new graphic terminals will make this graph model easier to display and input. Since all
information can be represented in this way, it will be a very powerful way to interact with
computers.

Infological

An infological model is the user’s view of the application. There is a dream that some day a user can
simply communicate the structure of the application to the computer and the data base system will
be set up automatically — somewhere between a general data-base management system and a
specific application. Some elements exist today. The new graphic terminal systems provide
powerful tools to communicate with the user and give the user the ability to specify needed
applications pictorially. Work in this field will be fun and productive for future users.

PROLOG: Programming in Logic

Finally, the PROLOG language adds logic programming on top of a data base model. PROLOG is
discussed more in the next chapter.

The Grand Unified Field Theory of Information
The Grand Unified Field Theory of Information is that all of the different structures of information are
simply transformations of each other. Natural language sentences and their parses, predicate
calculus, tables and relational algebra, graphs, and semantic networks are simply different
representations and transformations of information.

Each has its advantages and uses. People speak language and understand graphs. Computers can
parse language, store tables, and manipulate them through relational algebra and predicate logic.
Sentences can be converted to predicate calculus formulas and solved by comparing with the table
data base.

This offers enormous power and possibilities. In the years ahead the written literature of many
fields can be scanned by computer, parsed, and inserted into tables. Then written or spoken
queries can be parsed and converted into predicate calculus formulas which can be evaluated
against the relational table data base. The computer can then speak, write, or draw a graph or a
picture of the answer.

TUTORIALS

116 Say It in English

TUTORIALS

%information^grand unified theory=115

PROLOG and AI

Artificial-intelligence programs, like most programs, rely heavly on data bases. /rdb has several
facilities to assist AI, and especially expert system programs.

PROLOG Language and Environment
PROLOG is a programming language that allows you to program in logic. It was developed in
Europe, and has been adopted as the language for the Japanese Fifth Generation Computer project.
It is used in artificial intelligence work. It provides a powerful new method to make logical
inferences from data bases. Instead of being able to find data only, it can reason from that data to
answer questions that are not in the data base, but are logically derivable from the data. This is an
enormous leap in getting the computer to be smart.

PROLOG is an entire programming language and environment, mainly because it was developed on
non-UNIX operating systems where almost nothing was provided. But we are only interested in the
logical searching features which are its major contribution. The logic programming of PROLOG
would be best placed in a UNIX/COHERENT environment with its many tools, rather than in the
primitive PROLOG environment.

If you are interested in working with PROLOG, COHware volume 2 contains, among many other
items, the source code for a PROLOG interpreter.

Predicate Calculus

The branch of logic that PROLOG uses is predicate calculus. This is not the calculus you learned in
math classes, but refers to the manipulation of formulas, of which the calculus you are familiar with
is only one form.

Almost all sentences in a natural language can be converted into predicate calculus statements and
manipulated logically. The sentence: Bill loves Kathy is written: loves(Bill, Kathy). This says that
there is a relationship, love, and that the first argument, Bill, has that relationship with the second
argument, Kathy. This predicate calculus formula can also be expressed as a table:

Subject Object
------- ------
Bill Kathy

Facts

PROLOG stores facts in the predicate calculus notation. Since almost any sentence can be
expressed, almost any information can be stored in the data base.

PROLOG Means
female(michele)..michele is a female
female(jane)...jane is a female
male(john) ...john is a male
male(shawn)..shawn is a male
parent(shawn, jane).................................shawn is a parent of jane
parent(michele, jane)...............................michele is a parent of jane

These facts are entered into PROLOG by simply typing them in or having PROLOG get them from a
file with the PROLOG consult command.

117

118 PROLOG and AI

Questions

Once the above data are entered into the PROLOG data base, you can ask questions. The following
gives a sample PROLOG ‘‘question time’’ — the user’s questions appear in Roman, and PROLOG’s
replies in italics.

parent(shawn,jane)
yes
female(shawn)
no
mother(michele,jane)
no

The first query is found in the data base and yes is returned. The second and third queries are not
found in the data base, so no is returned. None of this is very exciting because any data-base
management system can do this. However, we humans know that the third query is true because
we know that if michele is the parent of jane and that michele is female, then michele must be
the mother of jane. But no data base can know this rule and logically deduce this conclusion except
PROLOG.

Rules

This great innovation of PROLOG comes when we add rules and logical inference to the data base of
facts. A rule is stated in this form:

mother(X,Y) :- parent(X,Y), female(X).

In English this rule says that the relationship mother exists between two entities X and Y if (:-) X is
the parent of Y and (,) X is a female. This rule is stored by PROLOG. Now we can ask again:

mother(michele,jane)
yes

This time PROLOG gives the right answer. Not because it found the fact in the data base, but
because it inferred the fact from facts and rules in the data base. PROLOG failed to find the fact in
the data base, so it searched its list of rules for one that started with mother. It then assigned
michele to X and jane to Y. It went to the facts after the if (:-) symbol. PROLOG first looked for the
fact parent(michele,jane). It found that successfully, so it then searched for the fact
female(michele). This was also successful, so it responded with yes.

With a simple mechanism, we now have the ability to logically infer facts from other facts and rules!

/rdb Interface to PROLOG
/rdb provides an interface to PROLOG with two commands: tabletofact and tabletorule. These
convert /rdb tables into the predicate calculus formulas that PROLOG needs to see. Therefore, we
can logically query our data base.

tabletofact

The tabletofact command converts a table to predicate calculus. First let’s look at our /rdb fact
tables. First, table female:

Female

michele
beth
sandy
jan

Table male:

TUTORIALS

PROLOG and AI 119

Male

kirk
rod
shawn
durk

Table parent:

Parent Child
------ -------
michele rod
kirk rod

And finally, table isa:

Name Isa
---- ---
rod human
human mammal
mammal animal
animal lifeform

Now let’s convert them all to PROLOG fact format.

tabletofact female male parent isa > fact

File fact appears as follows:

female(michele).
female(beth).
female(sandy).
female(jan).
male(kirk).
male(rod).
male(shawn).
male(durk).
parent(michele,rod).
parent(kirk,rod).
isa(rod,human).
isa(human,mammal).
isa(mammal,animal).
isa(animal,lifeform).

tabletorule

Rules can also be stored in /rdb tables and converted to PROLOG format with the tabletorule
command. For example, consider table ruletable, as follows:

True If
-------------- -----------------------
mother(X,Y) female(X) , parent(X,Y)
father(X,Y) male(X) , parent(X,Y)
son(X,Y) male(X) , parent(Y,X)
isa(X,Y) isa(X,Z) , isa(Z,Y)

The command

tabletorule ruletable > rule

writes the following into file rule:

TUTORIALS

120 PROLOG and AI

mother(X,Y) :- female(X) , parent(X,Y).
father(X,Y) :- male(X) , parent(X,Y).
son(X,Y) :- male(X) , parent(Y,X).
isa(X,Y) :- isa(X,Z) , isa(Z,Y).

Then you can consult these files within PROLOG with the consult command.

Now you are ready to ask questions. With this data base you can now ask questions about
motherhood and fatherhood, and questions like is rod a lifeform?

Problems of PROLOG
Richard Forsyth [Forsyth 1984, page 16] lists many complaints about PROLOG. These include the
following:

‘‘PROLOG provides a relational data base for free — a big bonus, but the trouble is that it resides in
main memory, and is consequently very greedy on storage.’’

He also quotes Feigenbaum and McCorduck [1983]: ‘‘The last thing a knowledge engineer wants is
to abdicate control to an ‘automatic’ theorem-proving process that conducts massive searches without
step-by-step control exerted by knowledge in the knowledge base.’’

The reason for all of the problems in PROLOG is that it is a great idea and a programming
environment. On non-COHERENT systems, when you want to do something, you wind up having to
do everything else also. You have to write editors, floating-point handlers (some PROLOGs don’t),
trace, input/output, and on, and on. In addition, both PROLOG and LISP do everything in memory.
This is fine for small prototype and demonstration programs in a university AI research lab, but
unworkable for large data bases.

The same is true for LISP. Peter Jackson [Jackson 1986] writes about a classic expert system: ‘‘The
difference between MYCIN’s score and those of Stanford experts was not significant, but its score is
as good as the experts and better than the non-expert physicians. However, MYCIN is not currently
used in wards for a number of reasons ... it is written in INTERLISP, is slow and heavy on memory
...’’

This problem is not new to the computer world. It was solved decades ago in commercial
computing. There needs to be a shift from memory to secondary storage as AI moves from the
research labs to real users. See Expert Database Systems: Proceedings From the First International
Workshop [Kerschberg 1986].

We also need to shift from PROLOG and LISP to UNIX/COHERENT and a powerful data-base
management system like /rdb. As radical as this sounds, one of the leading expert system
companies converted its system from LISP to COHERENT and C. They got a fifty-fold increase in
speed! The other expert-system companies are in various stages of converting to UNIX.

On UNIX/COHERENT, you can simply add a new capability to an excellent environment. PROLOG’s
environment is quite primitive and its inference system narrow and limited. The PROLOG rule
inference and search mechanism should be added to COHERENT as simply more programs. We
expect to see all of the AI ideas added to COHERENT in the years ahead. We should see different
logics, that is, fuzzy logic, Bayesian logic, multi-valued logic and certainty factors. We should also
see many new search strategies. Heuristic searches guided by data in the data base are needed.
Then we will see many new expert systems developed with these vastly enhanced tools.

By concentrating on only what is new, developers can do a much better job. They won’t have to
waste most of their time reinventing environment wheels.

searchtree: Data-Base Tree Searching

TUTORIALS

PROLOG and AI 121

Most AI programs search data bases that can be visualized as trees or networks. Speeding those
searches and controlling them is a very important area of research. Usually, these trees are kept in
memory and searched with pointers. This limits the size of the data base that a LISP or PROLOG
program can handle. It is not as fast as one might imagine. Memory searches are fast, but the
overhead of bringing the data in off the disk, and hogging so much memory that programs must
swap frequently, quickly wipes out any theoretical speed advantage.

searchtree is a /rdb shell program that shows another way to search a tree. It can use the fast
access methods to do a breadth first search of any sized data table. It is a shell program example
which can be edited to handle many search situations. Heuristics can be built into the code to
speed, or otherwise improve, the performance of the search.

TUTORIALS

122 PROLOG and AI

TUTORIALS

%command^searchtree=121

/rdb and C

You can call COHERENT and the /rdb data-base commands from C programs. This chapter gives
you several example programs starting from the most simple to the most complex.

Don’t Do It
Before we start, it is strongly recommended that you think twice before writing C or other language
programs. The shell, COHERENT tools, and /rdb commands are so powerful, fast, and easy to
develop, you seldom need to bother with the old third-generation programming languages. If you
think of writing a program in C by habit, try to break the habit. Always try to do things in the
COHERENT shell and /rdb first. Only resort to C when there is a compelling reason, as opposed to
a compulsion. We consider resorting to C as a failure of imagination, or lack of knowledge or
insight, in most cases. If you think you need a C program, you may really need to know more shell
programming tricks. Think of your problems as a more general problem, and check to see if there is
a COHERENT or /rdb program that will do the job.

Speed is the most common excuse for descending to C coding. Remember that computers are
getting faster and cheaper. The RAM disk can greatly speed up COHERENT programs. Also, try
using the shell to implement a prototype. You can see if it is too slow before coding. Often our
intuitions are wrong in these matters. Also, the users might change their minds and decide on a
different way to approach the problem. Your prototype will then have saved you a lot of
unnecessary C coding.

If you do descend to C, try to write small programs that can be used in future shell programming.
Only write what you need. Read from the standard input and write to the standard output. Make
your programs table driven and use /rdb data-base table and list formats so that the full power of
COHERENT and the data base can manipulate the tables that drive your programs.

system(): Tell Shell to Execute a Program
The easiest way for C programs to access both COHERENT and the /rdb data base is with the
COHERENT function system(). It only needs a character string, or pointer to a character string that
contains a shell command. system() will execute the command, just as though you typed the
command at the terminal or entered it into a shell program.

In the example below are three different ways of setting up the command string:

#define COMMAND "ls | wc"

main (argc, argv)
int argc;
char *argv [];
{

system ("echo hello word");
system (COMMAND);
system (argv [1]);

}

The first call to system() hard-codes the command in the code of the function call. The second call
uses a previously defined name COMMAND. Note the line

#define COMMAND

at the beginning of the code. Finally, the first argument on the command line is used as a
command string for system():

123

124 /rdb and C

system (argv [1]);

This allows the user to type a command as the first argument and it will be executed.

The COHERENT command make is used to compile the program. It uses the Makefile, whose
contents are as follows:

system: system.o
cc system.o -o system

Thus, typing the command

make system

prints the following on the screen:

cc -O -c system.c
cc system.o -o system

This shows the steps COHERENT uses to compile and link your program. (For a full description
make, the programmer’s best friend, see its tutorial in your COHERENT manual.)

Now that the system program has been compiled, it can be run with a command as an argument:

system date

This produces something like:

hello word
7 7 65

Thu Apr 3 02:10:04 PST 1986

Note that the first system call produced the hello world line. The second call executed the defined
command

ls | wc

Note the output on the second line probably will differ on your system.

Finally, the date and time were displayed when the date argument to the system program was
executed by the call to system().

execl(): Execute a Call
The next step from simple to complex is the execl() function. This function will replace the current
process with another program. It is usually called chaining. Once called, the calling process dies
and is never reentered. The executed program takes over the process table entry of the calling
program and all of the open input and output files. Here is an example.

#include <stdio.h>
#define FIRST "First"

char *p1 = "argument";
char *p2;

TUTORIALS

/rdb and C 125

main (argc, argv)
int argc;
char *argv [];
{

p2 = "is:";
fflush (stdout);
execl ("/bin/echo", "echo", FIRST, p1, p2, argv[1], NULL);

}

When we run the command

execl ARG1 ARG2

we see:

First argument is: ARG1

All of the arguments to execl() are pointers to strings; you can have as many as you want. The last
one must be NULL, as a sentinel or end marker.

In the first argument, the full path to the program to be executed must be given because execl()
does not search the PATH environmental variable. It is not good to hard code paths.

The second argument is the zero’th argument, which is the name of the called program. The rest of
the arguments are the normal arguments as you would type on the command line at the shell level.
Several possible ways of setting up the arguments are shown. The first regular argument is a
defined constant. p1 and p2 are each pointers to strings. The first is initialized to a string when it
is declared and the second is assigned later in the code. Finally, the first argument passed to the
calling program is passed on through the second pointer in the argv array of pointers.

execl() Shell Programs
If you try to use execl() to execute a shell script file, it will fail. You have to execute a sh shell
program to read the text of the shell file. Here a shell file called listargs is executed. It simply
echoes out its arguments separated by newlines:

for I in $*
do

echo $I
done

Now, the program execl.sh.c, which executes listargs via execl():

#include <stdio.h>
#define FIRST "First"

char *p1 = "argument";
char *p2;

main (argc, argv)
int argc;
char *argv [];
{

p2 = "is:";
fflush (stdout);
execl ("/bin/sh", "sh", "listargs", FIRST, p1, p2, argv[1], NULL);

}

When executed with the command

execl.sh arg1

TUTORIALS

126 /rdb and C

you see:

First
argument
is:
arg1

Note that sh is the program executed, and that its first argument is listargs. This is like typing:

sh listargs

fork(): Create a Child Process
Sometimes we want to run another program without killing ourselves. The system call fork()
creates a child process that is identical to the calling program. The return value of the fork()
command can be tested to see which process the code is in, parent or child. Therefore, the same
program, with the same code, can branch to different statements, depending upon whether it is the
parent or child process. The child code can do its thing, including executing another program. The
parent process can wait for the child to finish before going on. But it does not have to, because the
COHERENT system is a multi-processing environment.

The following program, fork.c, gives an example of using fork() in a C program:

#include <stdio.h>

#define FAIL -1
#define CHILD 0
#define PARENT 1

main (argc, argv)
int argc;
char *argv [];
{

switch (fork()) {
case -1: /* error */

fprintf (stderr, "fork system call failed.\n");
exit (FAIL);

case 0: /* child process */
execl ("/bin/echo", "echo", "I am the child.", NULL);
exit (CHILD);

default: /* parent process */
if (wait(NULL) != -1) {

fflush (stdout);
printf ("I am the parent.\n");

} else {
fflush (stdout);
fprintf (stderr, "wait system call failed.\n");

}
}

exit (PARENT);
}

When this program is compiled and invoked, you see the following on the standard output:

TUTORIALS

/rdb and C 127

I am the child.
I am the parent.

This example uses the C switch() keyword execute fork(), because it has three different return
values. A -1 return indicates a failure to fork a new process. Perhaps the number of processes has
reached a limit. We want to handle this error condition.

A zero return means that the code is now in a child process, so the code should do the child’s thing.
In this case, the child process executes an echo command with execl(). Thus, it changes into
another program.

Finally, the parent process gets the child’s process ID number, which is some number greater than
zero. Here the parent waits for the child to die before printing its message. It flushes the standard-
out buffers before printing its own message.

You can see when we execute this program, both processes write to the standard output.

Pipes
A very important use of this mechanism is to use the pipe() system call to open a pipe between the
two processes so that they can exchange data. This can go either way, from parent to child, or from
child to parent.

One-Way Pipe

The first example here is of a one-way pipe. The next section will demonstrate a two-way pipe.

#include <stdio.h>

#define FAIL -1
#define CHILD 0
#define PARENT 1
#define MESSAGE "Hi, kid"

main (argc, argv)
int argc;
char *argv [];
{

int pd [2];
char childbuf [BUFSIZ];

if (pipe(pd) == FAIL) {
fprintf (stderr, "pipe system call failed.\n");
exit (FAIL);

}

switch (fork()) {
case -1: /* error */

fprintf (stderr, "fork system call failed.\n");
exit (FAIL);

case 0: /* child process */
if (close (pd [1]) == FAIL) {

fprintf (stderr, "close pipe failed.\n");
exit (FAIL);

}

TUTORIALS

128 /rdb and C

read (pd [0], childbuf, BUFSIZ);
execl ("/bin/echo", "echo",

"child read:", childbuf, NULL);
exit (CHILD);

default: /* parent process */
if (close (pd [0]) == FAIL) {

fprintf (stderr, "close pipe failed.\n");
exit (FAIL);

}

printf ("parent wrote: %s\n", MESSAGE, sizeof(MESSAGE));
if (write (pd[1], MESSAGE, sizeof(MESSAGE)) == FAIL) {

fprintf (stderr, "pipe write filed\n");
exit (FAIL);

}
}
exit (PARENT);

}

When compiled and run, this program prints the following on the standard output:

parent wrote: Hi, kid
child read: Hi, kid

pd is the pipe-descriptor buffer, which holds two integers, one for each pipe direction. The parent
writes into pd[1] and the child reads from pd[0]. Each closes its other pipe with the system call
close(). fork() creates the child process. The parent process writes its message to the pipe with the
system call write(). It used the C sizeof operator to count the characters of the MESSAGE. This
allows us to edit the message and not have to look through the code to find, count and change its
size.

The child process reads the pipe with the system call read() and executes the echo command to
display the message it got from the parent process.

Of course this is not very useful, but it is simple enough to follow. It can be used in any situation in
which we want to crank up a background process and periodically send it data to act upon. This
mechanism is especially useful in COHERENT because there are so many programs that are
available to save us the effort of writing them.

Pipe to Standard Input

In the example above, write() was used to read the pipe and the message was passed on to the
executed echo program as an argument. But we also want to write to the standard input of a
COHERENT program. In the example below, the child executes a process that reads from its
standard input. The child connected the pipe to its standard input using the system call dup():

#include <stdio.h>

#define FAIL -1
#define CHILD 0
#define PARENT 1
#define PM "Hi, kid"
#define CM "Hi, parent"

TUTORIALS

/rdb and C 129

main (argc, argv)
int argc;
char *argv [];
{

int pd [2];
char buffer [BUFSIZ];

if (pipe(pd) == FAIL) {
fprintf (stderr, "pipe system call failed.\n");
exit (FAIL);

}

switch (fork()) {
case -1: /* error */

fprintf (stderr, "fork system call failed.\n");
exit (FAIL);

case 0: /* child process */
if (close () == FAIL) {

fprintf (stderr, "close pipe failed.\n");
exit (FAIL);

}

if (dup (pd [0]) != 0) {
fprintf (stderr, "dup pipe failed.\n");
exit (FAIL);

}

if (close (pd [0]) == FAIL || close (pd [1]) == FAIL) {
fprintf (stderr, "dup pipe failed.\n");
exit (FAIL);

}

execl ("/bin/cat", "cat", NULL);
fprintf (stderr, "execl cat failed.\n");
exit (FAIL);

default: /* parent process */
if (close (pd [0]) == FAIL) {

fprintf (stderr, "close pipe failed.\n");
exit (FAIL);

}

printf ("parent wrote: %s\n", PM, sizeof(PM));
if (write (pd[1], PM, sizeof(PM)) == FAIL) {

fprintf (stderr, "pipe write filed\n");
exit (FAIL);

}

if (close (pd [1]) == FAIL) {
fprintf (stderr, "close pipe failed.\n");
exit (FAIL);

}

TUTORIALS

130 /rdb and C

/*
read (pd [0], buffer, BUFSIZ);
printf ("parent read: %s\n", buffer);

*/
}
exit (PARENT);

}

When compiled and run, this program writes the following to the standard output:

parent wrote: Hi, kid
Hi, kid

This is similar to the example before, except that the cat command reads from its standard input.
The parent process then uses the system call close() to close the pipe after writing. This sends an
end-of-file character to the pipe and the standard input of the cat program, so that the program will
terminate.

Two-Way Pipe

In addition to sending data one way, we sometimes want to get replies. Two-way pipes make
possible co-routines that exchange data. The following gives an example of how to implement a two-
way pipe:

/*
pipe2 - sends first argument thru pipe to child program,

and reads the childs replay and sends it to standard-out.
*/

#include <stdio.h>

/* program return status */
#define OK 0
#define FAIL -1

/* fork return codes distinguished child from parent process */
#define CHILD 0
#define PARENT 1

/* pipe descriptor array elements */
#define READ 0
#define WRITE 1

/* standard-io file descriptors */
#define STDIN 0
#define STDOUT 1
#define STDERR 2

/* program for child to execl */
#define PATH "/usr/bin/bc"
#define PROGRAM "bc"

/* standard-error handling macro */
#define error(message) {fprintf (stderr,"%s: %s\n", argv [0], message);\

exit (FAIL); }

char buffer [BUFSIZ]; /* buffer to read into */

TUTORIALS

/rdb and C 131

main (argc, argv)
int argc;
char *argv [];
{

register char *p; /* pointer for scanning strings */
int pcpipe [2]; /* pipe from parent to child */
int cppipe [2]; /* pipe from child to parent */

if (pipe (pcpipe) == FAIL || pipe (cppipe) == FAIL)
error("pipe system call failed.");

switch (fork()) {
case FAIL: /* error */

error("fork system call failed");

case CHILD: /* child process */

/* close stdin to free for pipe connection */
if (close (STDIN) == FAIL)

error("close stdin failed");

/* connect pipe to stdin of child */
if (dup (pcpipe [READ]) != STDIN)

error("dup stdin pipe failed");

/* close stdout to free for pipe connection */
if (close (STDOUT) == FAIL)

error("close stdout failed");

/* connect pipe to stdout of child */
if (dup (cppipe [WRITE]) != STDOUT)

error("dup stdout pipe failed");

/* close all pipes so child reads from stdin/out */
if (close (pcpipe [READ]) == FAIL ||

close (pcpipe [WRITE]) == FAIL ||
close (cppipe [READ]) == FAIL ||
close (cppipe [WRITE]) == FAIL)
error("close child pipes failed");

/* execute basic calculator */
execl (PATH, PROGRAM, NULL);

/* if we get here, execl failed */
error("execl failed");

default: /* parent process */

/* close unused ends of the pipes */
if (close (pcpipe [READ]) == FAIL ||

close (cppipe [WRITE]) == FAIL)
error("parent close pipe failed");

TUTORIALS

132 /rdb and C

/* write command line argument into pipe to child */
if (write (pcpipe [WRITE], argv [1], strlen(argv [1]))

== FAIL)
error("parent pipe write argv failed");

/* bc needs a newline to execute a line */
if (write (pcpipe [WRITE],"\n", 1) == FAIL)

error("parent pipe write nl failed");

/* close pipe sends end-of-file to kill child */
if (close (pcpipe [WRITE]) == FAIL)

error("parent close pipe failed");

/* read childs reply */
if (read (cppipe [READ], buffer, sizeof(buffer))

== FAIL)
error("parent pipe read failed");

/* be sure string is terminated by NULL */
for (p = buffer; *p != ’\n’; p++);
*p = NULL;

/* output the answer */
puts (buffer);

exit (OK);
}

}

When this program is compiled and run with the command

pipe2 ’2+2’

you’ll see the following on the standard output:

4

Likewise, the command

pipe2 ’scale=2 ; (100/3) * 5’

prints:

166.65

The bc command is the COHERENT calculator program. It reads equations from the standard input
and writes solutions to the standard output. Our program reads an equation from its first
command-line argument, and writess it through one pipe to a child process. The child process
connects pipes to its standard input and standard output, then executes bc. bc reads the equation
and sends the answer to the parent through the second pipe. The parent reads the second pipe and
sends the solution to its standard output.

This program is not very useful, but is a template. You can use this mechanism to give your C
programs access to all of the COHERENT, /rdb, and other programs as if they were subroutines.
This will save you a lot of programming. If a program exists to do what you want, use it.

Programming Style

TUTORIALS

/rdb and C 133

The program above also introduces a more advanced programming style. Most magic numbers have
been defined to mnemonic constants to make the code easier to read and to simplify changes. A
zero appearing in the code usually means nothing to the reader, but a name helps us understand
what it is. In addition, if you have to change a magic number, it is much easier to edit it once at the
top of the code than to search through all of the code to find it. It is especially difficult when the
magic number is a common number like zero or one. You can not globally change such numbers,
because they are used in many different ways. You must carefully search the code for the correct
numbers to change.

Notice that the error condition is now handled by a simple macro called error(). It saves a lot of
typing, makes the code easier to read, and standardizes the way errors are handled and reported.

Finally, every major section of code is commented. It takes a little more time, but saves a lot of time
when we are debugging, changing, and maintaining the program.

Fast Access
The final example shows a more practical program. This fastaccess program creates the search
program and sends it a key through the first pipe. This child process finds a row in the inventory
table and sends it back through the second pipe to the parent. In this example, the parent merely
writes the retrieved row to the standard output, but you can modify the parent to do other things to
the row.

/*
fastaccess - sends first argument thru pipe to child seek program,

and reads the childs offset replay, seeks the record,
reads it and sends the record to standard-out.

*/

#include <stdio.h>

/* program return status */
#define OK 0
#define FAIL -1

/* fork return codes distinguished child from parent process */
#define CHILD 0
#define PARENT 1

/* pipe descriptor array elements */
#define READ 0
#define WRITE 1

/* standard-io file descriptors */
#define STDIN 0
#define STDOUT 1
#define STDERR 2

/* program for child to execl */
#define PATH "/usr/rdb/bin/search"
#define PROGRAM "search"
#define METHOD "-mb"
#define TABLE "inventory"
#define KEY "Item"

TUTORIALS

134 /rdb and C

/* standard-error handling macro */
#define error(message) {fprintf (stderr,"%s: %s\n", argv [0], message);\

exit (FAIL); }

char buffer [BUFSIZ]; /* buffer to read into */

main (argc, argv)
int argc;
char *argv [];
{

register char *p; /* pointer for scanning strings */
int pcpipe [2]; /* pipe from parent to child */
int cppipe [2]; /* pipe from child to parent */
int file; /* file descriptor for table file */
int from, to; /* offsets of record in table */
int xfrom, xto; /* offsets in secondary index file */

if (pipe (pcpipe) == FAIL || pipe (cppipe) == FAIL)
error("pipe system call failed.");

switch (fork()) {
case FAIL: /* error */

error("fork system call failed");

case CHILD: /* child process */
/* close stdin to free for pipe connection */
if (close (STDIN) == FAIL)

error("close stdin failed");

/* connect pipe to stdin of child */
if (dup (pcpipe [READ]) != STDIN)

error("dup stdin pipe failed");

/* close stdout to free for pipe connection */
if (close (STDOUT) == FAIL)

error("close stdout failed");

/* connect pipe to stdout of child */
if (dup (cppipe [WRITE]) != STDOUT)

error("dup stdout pipe failed");

/* close all pipes so child reads from stdin/out */
if (close (pcpipe [READ]) == FAIL ||

close (pcpipe [WRITE]) == FAIL ||
close (cppipe [READ]) == FAIL ||
close (cppipe [WRITE]) == FAIL)
error("close child pipes failed");

/* execute program */
execl (PATH, PROGRAM, METHOD, TABLE, KEY, NULL);

/* if we get here, execl failed */
error("execl failed");

TUTORIALS

/rdb and C 135

default: /* parent process */
/* close unused ends of the pipes */
if (close (pcpipe [READ]) == FAIL ||

close (cppipe [WRITE]) == FAIL)
error("parent close pipe failed");

/* write command line argument into pipe to child */
if (write (pcpipe [WRITE], argv [1], strlen(argv [1]))

== FAIL)
error("parent pipe write argv failed");

/* needs a newline to execute a line */
if (write (pcpipe [WRITE],"\n", 1) == FAIL)

error("parent pipe write nl failed");

/* close pipe sends end-of-file to kill child */
if (close (pcpipe [WRITE]) == FAIL)

error("parent close pipe failed");

/* read childs reply */
if (read (cppipe [READ], buffer, sizeof(buffer))

== FAIL)
error("parent pipe read failed");

/* output the answer */
puts (buffer);

exit (OK);
}

}

After you compile this program, the command

fastaccess 2

prints the following on the standard output:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

2 100 5 500 test tubes

This is similar to the last example. But here, several arguments are given to the search program.
These are defined with the #define preprocessor statements, but they could be passed from the
command line arguments of the parent program or created within the program, or read from another
file, a technique which is called table driven programming.

The best way to program is to write simple code that gets its parameters and data from data-base
tables. Then the programs can be easily modified by simply editing the driving data tables, without
having to reedit and recompile the source code. Users can modify these programs without calling
back the programmer.

tabletostruct: Convert a Table to a C struct
A useful /rdb command is tabletostruct. It converts an /rdb table to a C-language struct type and
initializes it to the values in the table. You can compile this struct into your C program and access
any field. This makes possible table-driven code. You can use the data base to enter and update
your tables, and recompile the program when you wish. This is the fastest access to tables, but
requires compiling, and the inflexibility of not being able to change the programs internally compiled
tables while the program is running.

TUTORIALS

136 /rdb and C

Here we start with a simple table, convert it to struct, make it a header file, and compile it into a
simple program that prints out each field.

To begin, we create a table called table, which appears as follows:

A B C
- - -
1 2 3

Now, we use tabletostruct to covert table to a struct:

tabletostruct Table table < table > table.h

The output is written into the header file table.h, which appears as follows:

struct Table
{
char *A;
char *B;
char *C;
} table [] =
{ "1","2","3" }
;

The following program displays the structed contents of table.h:

#include "table.h"

main ()
{

printf ("A=%s\n", table[0].A);
printf ("B=%s\n", table[0].B);
printf ("C=%s\n", table[0].C);

}

When compiled and run, the program prints the following onto the standard output:

A=1
B=2
C=3

Note that the struct is an array and that we have to give a subscript for each row we want. We can
also put the tabletostruct into the Makefile to further automate the re-compilation:

printtable: table.h printtable.o
cc -o printtable printtable.o

table.h: table
tabletostruct Table table < table > table.h

This says that the printable program depends upon table.h being up to date, and table.h depends
upon table being up to date. If you modify table since the last compile, make will re-execute the
tabletostruct command.

Our next example begins with a bigger table, called inventory. The command

tabletostruct Inventory inventory < inventory

writes the following to the standard output:

TUTORIALS

/rdb and C 137

struct Inventory
{
char *Item;
char *Amount;
char *Cost;
char *Value;
char *Description;
} inventory [] =
{ "1"," 4"," 50"," 150","rubber gloves" }
,{ "2"," 100"," 5"," 500","test tubes" }
,{ "3"," 5"," 80"," 400","clamps" }
,{ "4"," 23"," 19"," 437","plates" }
,{ "5"," 99"," 24"," 2376","cleaning cloth" }
,{ "6"," 89"," 147","13083","bunsen burners" }
,{ "7"," 5"," 175"," 875","scales" }
;

You can refer to the Description of the third item with this code:

printf ("Item Name = %s\n", inventory [2].Description);

Remember that tables in C start with element 0. You can convert the strings to integers with the
function atoi():

int item; /* current inventory item number */
int row; /* current row number starting from 0 */

item = atoi (inventory [row].Item);

Read Table into Memory: getfile() and fsize()
To get tables from the data base at run time, you can read the table into memory and set up an
array of pointers to reference any field by row and column number. Use the COHERENT system
calls open() and stat() to get the size of the table, and the function malloc() to get that much
memory. Then use read() to copy the whole table into memory and run through it with a loop that
sets a two-dimentional array of pointers to point to every field in the array. Then you can reach any
field with:

char *field, *p_table [][];
int row, column;

field = p_table [row][column];

To keep from having to hard code the size of your pointer table, first find out how many columns
and rows you have by running through the memory counting newline characters. You might turn
tabs and newlines into NULs while you go. Then malloc() enough memory to hold this array of
pointers and run through the memory again to set the pointer array to pointing to fields.

Here are some routines that show examples of how to do this.

/*
Copyright (c) 1990, 1991 Schaffer and Wright
getfile - reads a file into memory and returns pointer and size
*/

#include "rdb.h"
#include <sys/types.h>
#include <sys/stat.h>

TUTORIALS

138 /rdb and C

char *filebuffer, *malloc();
int file, open(), read();
long fsize ();

char *getfile (filename, p_size)
char *filename;
unsigned *p_size;
{

*p_size = 0;

/* open the file */
if ((file = open (filename, 0)) < 0) {

fprintf (stderr, "Can’t open file %s.\n", filename);
fflush (stderr);
perror ("getfile");
return (NULL);

}

/* get the memory to hold the table */
/* get size adding a byte for a trailing NUL */
p_size = (unsigned) (fsize (file) + 1); / byte for NUL end */

/* get a buffer in memory for the system */
if ((filebuffer = malloc ((unsigned) *p_size)) == NULL) {

fprintf (stderr,
"Can’t malloc the size of file %s.\n", filename);

fflush (stderr);
perror ("getfile");
return (NULL);

}

/* read in the file and reset p_size to number of bytes read */
if ((*p_size = (unsigned) read (file, filebuffer, *p_size)) < 1) {

fprintf (stderr, "Can’t read file %s.\n", filename);
fflush (stderr);
perror ("getfile");
return (NULL);

}

/* write NULL at the end of the buffer */
*(filebuffer + *p_size) = NULL;

return (filebuffer);
}

getfile() calls fsize(), which gets the file size from the operating system via the system call fstat():

/*
Copyright (c) 1990, 1991 Schaffer and Wright
fsize get the size of a file by calling the fstat routine
*/

#include "rdb.h"
#include <sys/types.h>
#include <sys/stat.h>

TUTORIALS

/rdb and C 139

extern int Debug; /* global for debugging */

long fsize (file)
int file;
{

int fstat (); /* system call */
struct stat statusbuffer; /* info on file */

/* get status information including size */
if ((fstat (file, &statusbuffer)) < 0) {

fprintf (stderr,
"fsize: Can’t get the size of file %d\n", file);

perror ("fsize");
return (FAIL);

}

if (Debug)
fprintf (stderr, "fsize: file size=%d\n",

statusbuffer.st_size);

/* return size */
return ((long) statusbuffer.st_size);

}

/rdb Functions: librdb.a
In the directory, $RDB/lib is the archive librdb.a, which contains all of the functions called by the
/rdb programs. You can call them like any function if you link the archive into your program. For
example, the command

cc -o prog prog.c librdb.a

compiles program. prog.c into executable prog, and links the contents of archive librdb.a into the
final executable.

If you, or your system administrator, moves the file to directory /usr/lib you only need to add -lrdb
to you compile line:

cc -o prog prog.c -lrdb

Colroutines
Another file in $RDB/lib is named Colroutines. ‘‘Col’’ stands for ‘‘column,’’ because the functions
largely handle the columns of a table. Colroutines contains documentation on each of the C
functions in librdb.a. It is the header of the source code for each routine. It shows the description,
function name, arguments and argument types. It should be enough information to use the
function, without being able to see the code.

Display Example
The example display.c calls the /rdb functions:

static char Copyright []="Copyright (c) 1990, 1991 Schaffer and Wright";
/*
display will read a table or list file and send to standard-out
*/

TUTORIALS

140 /rdb and C

#define USAGE "usage: display < tableorlist\n"
#include "rdb.h"

int Debug; /* global for debugging */

struct rowstruct row; /* row information */
int colgeth (), colgetr (); /* input functions */
int colputh (), colputr (); /* output functions */
int colinit (), coldump (); /* utility functions */

main (argc, argv, envp)
int argc;
char *argv [];
char *envp [];
{

register columns; /* columns returned */
register i; /* index for loops */

/* handle command line arguments */
for (i = 1; i < argc; i++) {

if (argv [1][0] == ’-’) {
switch (argv [1][1]) {

case ’D’:
if (argv [1][2] != EOS) {

Debug = atoi (&(argv [1][2]));
} else {

Debug = TRUE;
}
break;

/* add other options here */

default:
break;

}

} else {
/* get non-option arguments, like files, here */

}
}

/* get table or list headlines */
if ((columns = colgeth (&row)) == EOF)

exit (EOF);

/* output headlines */
colputh (&row);

/* read in each row till end-of-file */
while ((columns = colgetr (&row)) != EOF) {

/* output each row, or do other row processing */
colputr (&row);

}

TUTORIALS

/rdb and C 141

/* return status code becomes shell $? variable for testing */
exit (OK);

}

Compile it with the command:

cc display.o -o display librdb.a

This assumes that librdb.a is in the current directory. If it is not, use its full path name.

When invoked with the command

display < inventory

display displays the following on the standard output:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

Likewise, the command

display < maillist

displays the following on the standard output:

Number 1
Name Ronald McDonald
Company McDonald’s
Street 123 Mac Attack
City Menphis
State TENN
ZIP 30000
Phone (111) 222-3333

Number 2
Name Chiquita Banana
Company United Brands
Street Uno Avenito De La Revolution
City San Jose
State Costa Rica
ZIP 123456789
Phone 1234

The first line is the copyright notice. It is declared to be a static char so that it will appear in the
object module and the binary code.

The next comment is a description of the purpose of the program. The USAGE definition gives the
syntax of the program. It can be displayed when a syntax error is detected. The debugging system
is described in the next section.

The row structure is defined in the rdb.h header file that can be included in your programs. row
contains lots of information about the headline and rows of the input table or list file. It is passed to
the various col functions, which are declared below row.

TUTORIALS

142 /rdb and C

After main(), the command line arguments are handled. Only the Debug variable is set, but this
code can be edited to get all expected options and other arguments.

The col functions read in the headline and display it, followed by each row in the table or list.

The return command returns an exit status so that the program can be tested with the shell’s if,
while, and for statements.

You can copy this program to start your own program. You can process each row of the table as it
is read in by inserting your code within the while loop. Have fun, but remember, shell programming
is much easier.

Debugging
The Debug variable is an external global variable that can be seen by all of the functions. The
advantage of this method of debugging is that it is in the final product so that diagnostics can be
run when errors are found by users and service people.

On the command line one can put -D to turn on debugging traces. These messages are printed out
as the program runs to show the value of certain key variables. To control the quantity of output,
one can follow the option with a number. The higher the number, the more output. -D9 turns on
all output, which is a lot to wade through, but shows everything.

In the example below, all diagnostics are dumped. Each function gives its name and the value of
variables. colgeth() is the column-get-header function which calls colinit() to initialize the row
buffers.

The COHERENT function malloc() is invoked to get memory for head and row data. This is part of
the dynamic buffering that allows the programs to get as much memory as they can to handle large
heads and rows. In this way the /rdb programs are not limited by software, but only by available
hardware memory.

Because pointers are often a problem in C, several pointers are printed out. Their values don’t mean
much, but can be checked to see that they have been set to reasonable numbers. coldump lists all
of the variables and their values in the row structure. You can also call coldump() from your
program if you wish. (Of course, you can use the COHERENT debugger db, if you prefer.)

colgetr() also displays the columns as they are read, so that you can see what it is seeing. All of
this is coming to you through the standard error (aka stderr), so that you can redirect it. It is not
buffered, so it comes out before the table which is coming through the buffered standard output,
and is not sent until the buffer is full or the stream is closed on program termination.

The command

display -D9 < inventory

prints the following to the standard error:

colgeth: row=14976 filein=0
colinit: row=14976
colinit: bufsize=2048
colinit: colsize=2
colinit: p_buffer allocated
colinit: maxcolumns=1024
colinit: p_heads allocated
colinit: p_columns allocated
colinit: p_collengths allocated
coldump:---------------------------------------

row pointer
row=14976

TUTORIALS

/rdb and C 143

file pointer for input file
row->p_filein=14754

fileout pointer for input fileout
row->p_fileout=0

points to buffer to write into
row->buffer=16224

points to (offset) buffer to write into
row->p_buffer=16224

buffer size
row->bufsize=2048

points to end of buffer
row->p_endbuffer=18272

points to each head found in lists
row->p_heads=18274

to number of head columns found
row->heads=0

points to each column found
row->p_columns=20324

number of columns
row->columns=0

number of colsize
row->colsize=2

number of maxcolumns
row->maxcolumns=1024

each column’s length
row->collengths=22374

entire row length
row->rowlength=0

boolean fixed or variable
row->fixed=0

boolean list or table
row->list=0
coldump:---------------------------------------
Item
Amount
Cost
Value
Description
colgetr: end-of-row.nrow->rowlength = 37
colgeth: row->heads=5

colgetr: end-of-row.nrow->rowlength = 37
colgeth: row->columns=5 length=38 fixed=0 list=0
colputh: row->p_fileout=0

1
3

50
150

rubber gloves
colgetr: end-of-row.nrow->rowlength = 36

TUTORIALS

144 /rdb and C

2
100
5

500
test tubes
colgetr: end-of-row.nrow->rowlength = 33

3
5

80
400

clamps
colgetr: end-of-row.nrow->rowlength = 29

4
23

19
437

plates
colgetr: end-of-row.nrow->rowlength = 29

5
99

24
2376

cleaning cloth
colgetr: end-of-row.nrow->rowlength = 37

6
89

147
13083
bunsen burners
colgetr: end-of-row.nrow->rowlength = 37

7
5

175
875

scales
colgetr: end-of-row.nrow->rowlength = 29
colgetr: eof
Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

We did warn you that there was a lot of it.

Fast-Access Example
The program inverted.c, found in directory $RDB/lib, demonstrates how to use the inverted method from
within a C program:

TUTORIALS

/rdb and C 145

/* inverted.c is a sample program which illustrates the usage of the
fast access librdb.a routines (index and search).
specifically, this program exercises xinverted() and sinverted().
the search and index programs do essentially the same thing for
all fast access methods, and provide more command line options.
The following compile command assumes that the include file rdb.h and
library archive (distributed in the lib directory of rdb’s home dir)
are in the current directory: "cc -O inverted.c librdb.a -o xinverted"
Link the resulting xinverted binary to sinverted.nCall xinverted to
perform indexing and sinverted to perform searching.

*/

char Copyright[] = "Copyright (c) 1990 by Schaffer and Wright";

/*
index index the given file according to the method specified.

It calls the xinverted (for index) routine.
search search the given file using the method specified.

It calls the sinverted (for search) routine.
*/

#define USAGE "usage: %s [-n -x] tableorlist [keycolumn ...] [< keytable]\n"

/*
-n = numeric comparison of key and column value
-x = partial match and upper or lower case insensitive
*/

#include "rdb.h"
int Debug; /* global for debugging */
char *Program; /* argv [0] program name */
char *Function = "main"; /* current function name */

/* error message table(make into include and automatic error handling)*/
#define NOTABLE 1
#define EOPTION 2
#define NOMEM 3
#define NOFILENAME 4
#define NOFILE 5
#define NOPUT 6
#define NOKEYHEADS 7

/* structures */
struct rowstruct rowfile;
struct rowstruct rowkey;
struct keystruct key;

/* functions called */
int sinverted ();
int xinverted ();

int (*method)(); /* method function pointer */

TUTORIALS

146 /rdb and C

/* comparison routines */
int colcmp (); /* default: ignore blanks */
int collook (); /* -x partial match, case insensitive */
int numcmp (); /* -n numeric comparison */
int strcmp (); /* -x exact character match */

/* flags */
int foldcase = FALSE; /* -x sort fold upper and lower case */

main (argc, argv, envp)

int argc;
char *argv [];
char *envp [];
{

register a; /* index for arguments */
register r; /* row found index */
char *p; /* character pointer */
int rows=0; /* number of rows matched */
int search=FALSE; /* search or index */
int matches; /* columns matched */
FILE *fopen (); /* functions used */
char *rindex();

/* get arguments */
if (Debug) fprintf (stderr, "argc=%d\n", argc);
if (argc < 2) {

fprintf (stderr, USAGE, argv [0]);
exit (NOTABLE);

}

/* initialize key structure */
if (keyinit (&key) == FAIL)

exit (NOMEM);
key.singlerow = FALSE;

/* initialize rowkey structure */
if (colinit (&rowkey) == FAIL)

exit (NOMEM);

/* initialize: called by search or index */
/* handle path names, walk to end looking for slash */
if (p = rindex(argv[0], ’/’)) ++p;
else p = argv[0];

/* if the command name begins with ’s’ assume search procedures */
if (*p == ’s’)

search = TRUE; /* search */
else search = FALSE; /* index */

if (search)
method = sinverted;

else method = xinverted;

TUTORIALS

/rdb and C 147

/* default comparison method is ignore blanks */
key.compare = colcmp;

/* loop through arguments looking for flags and file name */
for (a = 1; a < argc; a++) {

if (Debug)
fprintf (stderr, "argv [%d]=%s\n", a, argv [a]);

if (argv [a][0] == ’-’) {
switch (argv [a][1]) {

case ’D’:
if (isdigit(argv [a][2]))

Debug = atoi (&argv [a][2]);
else Debug = TRUE;
break;

case ’n’:
key.compare = numcmp;
break;

case ’x’:
foldcase = TRUE;
key.compare = collook;
break;

default:
fprintf (stderr,
"%s: %s option not recognized\n",
argv [0], argv [a]);
fprintf (stderr, USAGE, argv [0]);
exit (EOPTION);

}

} else {
if (key.p_filename == NULL) {

key.p_filename = argv [a];
} else {

rowkey.p_heads [rowkey.heads++] = argv [a];
}

}
}

/* do we have a file to open */
if (key.p_filename == NULL) {

fprintf (stderr, "%s: no file name\n", argv [0]);
fprintf (stderr, USAGE, argv [0]);
exit (NOFILENAME);

}

/* open the file */
key.file = rowfile.p_filein = fopen (key.p_filename, READ);

rowfile.p_fileout = stdout;

TUTORIALS

148 /rdb and C

if (rowfile.p_filein == NULL) {
fprintf (stderr,
"%s: Can not open %s\n", argv [0], key.p_filename);

exit (NOFILE);
}

if (Debug)
fprintf (stderr, "%s: rowfile.columns=%d\n",

argv [0], rowfile.columns);

/* get the head line of the file */
if ((rowfile.columns = colgeth (&rowfile)) == EOF)

exit (EOF);

if (Debug)
fprintf (stderr, "%s: rowfile.columns=%d\n",

argv [0], rowfile.columns);

/* put the head line of the file */
if (search) {

if (colputh (&rowfile) == FAIL)
exit (NOPUT);

}

/* if the key columns are not in the command line,
get from the stdin */

rowkey.p_filein = stdin;
rowkey.p_fileout = stdout;

if (rowkey.heads == 0) {
/* get from key head */
if ((rowkey.heads = colgeth (&rowkey)) == EOF)

exit (EOF);
}

/* get first row if list */
if (rowfile.list)

if ((rowfile.columns = colgetr (&rowfile)) == EOF)
exit (EOF);

if (rowkey.list)
if ((rowkey.columns = colgetr (&rowkey)) == EOF)

exit (EOF);

/* find key columns in the file columns */
matches = colmatch (rowfile.p_heads, rowfile.heads,

rowkey.p_heads, rowkey.heads, key.keytocolumn);

if (matches != rowkey.heads) {
fprintf (stderr,
"%s: Can not find your keys in column heads.\n",
argv [0]);

TUTORIALS

/rdb and C 149

exit (NOKEYHEADS);
}

/* if index, go and index and then exit */
if (! search) {

if (Debug) fprintf (stderr,
"%s: rowfile.p_filein=%d\n", argv [0], rowfile.p_filein);

/* call method */
if ((rows = (*method) (&key, &rowfile, &rowkey)) < 0) {

perror (argv [0]);
exit (rows);

}
exit (OK);

}

/* get first row of keys if table */
if (Debug) {

fprintf (stderr, "%s: before colgetr (&rowkey)\n",
argv [0]);

colputh (&rowkey);
}

if (rowkey.list == FALSE)
if ((rowkey.columns = colgetr (&rowkey)) == EOF)

exit (NOKEYHEADS);

if (Debug) {
fprintf (stderr,

"%s: after colgetr (&rowkey)\n", argv [0]);
colputh (&rowkey);
colputr (&rowkey);

}

/* loop getting key(s) from stdin */
do {

if (Debug) {
fprintf (stderr,

"%s: Before method rowkey.columns=%d\n",
argv[0], rowkey.columns);

}

/* don’t look if no keys */
if (rowkey.columns == 0)

continue;

/* call method */
rows = (*method) (&key, &rowfile, &rowkey);

if (Debug) fprintf (stderr,
"%s: After method rows=%d key.rowoffsets [0]=%d\n",

argv[0], rows, key.rowoffsets [0]);

TUTORIALS

150 /rdb and C

if (rows <= 0) {
continue;

}

for (r = 0; r < rows; r++) {
if (fseek (rowfile.p_filein,

key.rowoffsets [r], BEGINNING)
== BADSEEK)

fprintf (stderr, "search: Bad seek.\n");

colgetr (&rowfile);

colputr (&rowfile);
}

}
while ((rowkey.columns = colgetr (&rowkey)) != EOF);

exit (OK);
}

TUTORIALS

%colputr()=150

Manual Pages

The following gives manual pages for all /rdb commands. These include the commands used by the
/act accounting system, which is included as an example of /rdb programming.

151

152

TUTORIALS

+0Manual Pages 151

accounting terms — Definition
The following defines several of the more commonly used accounting terms. These are included to
help you understand the descriptions of /rdb’s accounting package.

Financial information that records the day-to-day operation of a business is recorded in an account.
A simple account is made up of three parts:

1. A title that describes the name of the information being stored in the account;

2. The left side of the account, used to record a debit; and

3. The right side of the account, used to record a credit.

This simple configuration is referred to as a ‘T’ account because its shape resembles a capital T:

Title
===================================

Debit | Credit

A ledger is the combination of all the accounts maintained by a business. Transactions are posted
to accounts through a journal entry, as in the following example:

Cash | 500.00 |
Sales | | 500.00

Entries recorded on the far left are debits; entries indented from the left are credits.

Accounts fall into the following classifications:

Assets Anything that is owned and has a monetary value.

Liabilities
Amounts owed to others.

Capital This is the owner’s equity in the business. It is equal to the total assets minus the total
liabilities.

Revenue
Proceeds obtained in the course of doing business.

Expenses
Costs incurred in the course of doing business.

Further information on accounting terms may be obtained from any textbook on accounting
principles. Your local public library should contain several examples.

LEXICON

accounting terms 153

See Also
act

Notes
Please note that /rdb’s accounting system is meant to serve as an example of data-base
programming with /rdb. It is not designed to be an exhaustive accounting package, nor is it
designed to teach you how to perform accounting. Mark Williams technical support will help you if
you have a problem with an /rdb command, but not with problems that involve the principles of
accounting. Caveat utilitor.

act — /rdb Command
List all /act commands
act

/rdb comes with a set of commands that implement a basic accounting system, suitable for running
a small business. These commands, called /act commands, are kept in directory $RDB/act.

The accounting system consists of the following sub-systems:

gl General ledger

inv Inventory

opr Operations, for manufacturing

pay Payroll

pur Accounts payable and purchasing

sales
Accounts payable and sales

The command act lists all /act commands.

Example
Typing act displaying the following on your screen:

act close income postap shorttoaccount
adjust consolidate invoice postar start
balance cstate makecatalog postpay tax.calc
bom fillform onhand purchase trial
calculate foot po sale vstate
chartdup getjournal post ship w2

Many act commands have their own entries in this manual.

See Also
accounting terms

Notes
Please note that /rdb’s accounting system is meant to serve as an example of data-base
programming with /rdb. It is not designed to be an exhaustive accounting package, nor is it
designed to teach you how to perform accounting. Mark Williams technical support will help you if
you have a problem with an /rdb command, but not with problems that involve the principles of
accounting. Caveat utilitor.

LEXICON

154 act

addcol — /rdb Command
Add a column to a table
addcol newcolumn < table

The command addcol appends one or more new columns to table. The column is initialized to blank
spaces, and is given the name newcolumn.

Example
The command

addcol New < inventory

modifies table inventory to appear as follows:

Item Amount Cost Value Description New
---- ------ ---- ----- -------------- -------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

Note that column New has been added to the table.

See Also
jointable, number

adjust — /act/gl Command
Create adjusted trial balance table
adjust

The command adjust is part of the accounting/general ledger system that is included with /rdb. It
produces the adjusted trial balance sheet, called adjusttrial, by adding the trial-balance table
trialbalance with the journal-of-adjustments table journaladjust.

The accountant makes adjustments at the end of the accounting period, to reflect changes in
inventory, depreciation, depletion, amortization, and so on. These are computed costs of doing
business that are assigned to each accounting period.

Example
The following gives an example of table trialbalance:

Account Debit Credit Format Taxline Short Name
------- ----- ------ ------ ------- ------- -----------------
1010 11178 B-A 4L01 cash Cash
3010 13500 I-I 101a sales Sales
3080 250 I-I 106 royalty Gross royalties
3100 3286 I-I 108 income Other Income
4020 3601 I-COGS 102-A2 merch Misc Merchandise
4030 2100 I-COGS 102-A3 wages Salary and Wages
4370 2 I-E 122 parking Business parking
4380 41 I-E 122 travel Business travel
4384 114 I-E 122 hotel Business hotel

The following gives an example of table journaladjust:

LEXICON

addcol — adjust 155

Account Debit Credit Format Taxline Name
------- ------- ------- ------- ------- ---------------------
1110 20000 B-A 4L06 Beginning Inventory
1110 22130 B-A 4L06 Ending Inventory
1310 0 B-A 4L09a Accum Depreciation
1330 0 B-A 4L10a Accum Depletion
1420 0 B-A 4L12a Accum Amortization
4010 20000 I-COGS 102-A1 Beginning Inventory
4080 22130 I-COGS 102-A4 Ending Inventory
4170 0 I-E 121 Depreciation
4180 0 I-E 118 Depletion
4215 0 I-E 122 Amortization

The command adjust then produces the table adjustedtrial by combining trialbalance with
journaladjust. In this example, adjustedtrial appears as follows:

Account Debit Credit Format Taxline Short Name
------- ----- ------ ------ ------- ------- -----------------
1010 11178 B-A 4L01 cash Cash
1110 2130 B-A 4L06 inv Inventory
1310 0 B-A 4L09a adeprec Accum Depreciation
1330 0 B-A 4L10a adeplet Accum Depletion
1420 0 B-A 4L12a aamort Accum Amortization
3010 13500 I-I 101a sales Sales
3080 250 I-I 106 royalty Gross royalties
3100 3286 I-I 108 income Other Income
4010 20000 I-COGS 102-A1 beginv Begin Inventory
4020 3601 I-COGS 102-A2 merch Misc Merchandise
4030 2100 I-COGS 102-A3 wages Salary and Wages
4080 22130 I-COGS 102-A4 endinv Ending Inventory
4170 0 I-E 121 deprec Depreciation
4180 0 I-E 118 deplet Depletion
4215 0 I-E 122 amor Amortization
4370 2 I-E 122 parking Business parking
4380 41 I-E 122 travel Business travel
4384 114 I-E 122 hotel Business hotel

See Also
act, balance

append — /rdb Command
Add a row to a table and update index tables
append [-h -m[bhirs]] table [keycolumn ...] < tableorrow

The command append appends the row in table tableorrow onto the end of table. It also updates the
appropriate index table so that the next search will find it. For the record method of indexing,
append adds the new record’s offset to the end of the index table. For the inverted method of
indexing, it adds the record and then sorts the table.

Options
append recognizes the following options:

-h tableorrow has no /rdb head line and dash line. This option is useful when you only have a
row to append to a table, but it does not have a head line.

-m[bhirs]
Use a fast-access method. See the manual page for search for a description of the fast-
access methods and how to invoke them.

LEXICON

156 append

Example
Consider the table inventory, which is defined as follows:

Item Amount Cost Value Description
---- ------ ---- ----- -----------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

This table has an index table, called record, which appears as follows:

Offset

76
113
147
177
207
245
283

Finally, consider the table newrecord, which is as follows:

Item Amount Cost Value Description
---- ------ ---- ----- -----------

8 35 105 0 pipettes

Note that newrecord has the same columnar layout as inventory.

The following command appends newrecord onto the end of inventory:

append -mr inventory < newrecord

After append has done its work, inventory appears as follows:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales
8 35 105 0 pipettes

inventory’s index table now appears as follows:

Offset

76
113
147
177
207
245
283
313

LEXICON

append 157

The new ‘‘313’’ entry in the secondary index table inventory.r is the offset to record 8 — that is, the
number of bytes for the beginning of the file to record 8.

See Also
delete, index, replace, search

ascii — /rdb Command
Return the ASCII value of a character
ascii character...

The command ascii converts each of the characters in its first argument to a space-delimited series
of numbers. You can use this command to find the internal computer representation of a character.
Any strings following the first are ignored. If you have spaces in your string, be sure to put
quotation marks around them.

Example
The command

ascii aA1

produces:

97 65 49

The command

ascii ’ ’

produces:

32

Note that the single space character, enclosed within apostrophes, is converted to its ASCII code in
decimal (32).

See Also
chr
COHERENT Lexicon: ASCII

LEXICON

158 ascii

backup — Technical Information
When you are using /rdb to store and manipulate your data, you must back up your data regularly.
If you do not back up your data and your disk should fail for whatever reason, your data will be
irretrievably lost.

See the COHERENT manual section 2, Using the COHERENT System, for a detailed description of
how to back up your data. Also see the Lexicon articles on ustar and cpio for descriptions of how to
use these tools to back up your data.

balance — /act/gl Command
Create balance sheet from adjusted trial balance
balance

The command balance is part of the accounting/general-ledger system included with /rdb. It reads
table adjustedtrial and writes a balance sheet into table and writes it into file balancesheet.

Example
Consider the table adjustedtrial, as follows:

Account Debit Credit Format Taxline Short Name
------- ----- ------ ------ ------- ------- ------------------
1010 11178 B-A 4L01 cash Cash
1110 2130 B-A 4L06 inv Inventory
1310 0 B-A 4L09a adeprec Accum Depreciation
1330 0 B-A 4L10a adeplet Accum Depletion
1420 0 B-A 4L12a aamort Accum Amortization
3010 13500 I-I 101a sales Sales
3080 250 I-I 106 royalty Gross royalties
3100 3286 I-I 108 income Other Income
4010 20000 I-COGS 102-A1 beginv Begin Inventory
4020 3601 I-COGS 102-A2 merch Misc Merchandise
4030 2100 I-COGS 102-A3 wages Salary and Wages
4080 22130 I-COGS 102-A4 endinv Ending Inventory
4170 0 I-E 121 deprec Depreciation
4180 0 I-E 118 deplet Depletion
4215 0 I-E 122 amor Amortization
4370 2 I-E 122 parking Business parking
4380 41 I-E 122 travel Business travel
4384 114 I-E 122 hotel Business hotel

The command balance writes the balance sheet into balancesheet, which appears as follows:

Makeapile, Inc.
31 December 1985

Balancesheet

LEXICON

backup — balance 159

11178 Cash
2130 Inventory

0 Accumulated Depreciation
0 Accumulated Depletion
0 Accumulated Amortization

----- ------------------------
13308 Total Assets

13308 Retained Earnings (Profit)
------ --------------------------
13308 Total Liabilities and Equity

See Also
act, adjust

blank — /rdb Command
Replace all data in a record with spaces
blank < tableorlist

The command blank replaces with spaces every values in each record of tableorlist.

The command update uses blank when it updates a record. update temporarily replaces the record
it is updating with a blank record. This blank record serves as a record lock; this ensures that other
users cannot read or update the record while it is being updated, but it leaves the rest of the table
available for use.

Please note that when you pull up a blank record, it means that that record is being updated by
someone else. Come back to it later.

Example
To blank out the data fields in table maillist and then see the result, you could type the following:

blank < maillist | see

This command produces the following output:

Number^I $
Name^I $
Company^I $
Street^I $
City^I $
State^I $
ZIP^I $
Phone^I $
$
Number^I $
Name^I $
Company^I $
Street^I $
City^I $
State^I $
ZIP^I $
Phone^I $

Note the spaces between the tab (^I) and the dollar sign ‘$’ that indicates the end of the line. The
spaces replaced the characters, including spaces, that were in the original records.

Note too that the column names are untouched, so that this is a perfectly correct file as far as the
/rdb commands are concerned, it just contains no data.

LEXICON

160 blank

See Also
see, update

bom — /act/opr Command
Produce bill-of-materials from parts list
bom

The command bom is part of the accounting/operations system included with /rdb. It creates a bill-
of-materials table from table part, which holds all of the items that are required to make a product,
and the table saleitem, which holds all sales items from the sales department. This tells how many
items must be manufactured or purchased to meet current sales orders.

bom writes its output into table bom.

Example
Assume the table saleitem contains the following data:

Order Number Code Backord Qty Price Total Name
----- ------ ---- ------- --- ----- ------- ----

1 1 rdb 10 1 1500 1500.00 /rdb
2 1 rdb 10 2 1500 3000.00 /rdb
3 1 rdb 10 5 1500 7500.00 /rdb
3 2 act 10 10 1500 15000.00 /act
4 1 rdb 10 5 1500 7500.00 /rdb
4 2 rdb 10 19 1500 28500.00 /rdb
5 1 rdb 10 5 1500 7500.00 /rdb
5 2 act 10 9 1500 13500.00 /act

Assume, too, that the table part contains the following data:

Code Subpart Count
------- ------- -------
act binder 2
act actdoc 2
act f1 10
rdb binder 2
rdb rdbdoc 2
rdb f1 10

The command bom reads these tables to produce the following summary table:

Code Qty
------- -------
actdoc 38
binder 112
f1 560
rdbdoc 74

You can see that we have orders for 19 copies of acts in the salesitem table. Each package has two
documents, for a total of 38 actdocs. Note that table bom lists 560 floppies ((19 act x 10) + (37 rdb x
10)). We can order these, regardless of which software packages are being put onto them.

See Also
act

LEXICON

bom 161

calcpay — /act/pay Command
Post payroll to ledgerpay
calcpay

The command calcpay is part of the accounting/payroll system that is included with /rdb. It posts
the payroll-journal table journalpay to the payroll-ledger table ledgerpay. This ledger groups the
pay checks by employee, and is used to create the W2 form.

Example
Assume that table journalpay has the following data:

Date Number Hours Salary Rate Gross Federal State Net
---- ------- ------ ------ ---- ------ ------- ----- ---
860518 1 80 1000 0 1000 70 10 920
860518 2 80 0 10 800 42 6 752
860518 3 30 0 10 300 0 0 300

Typing calcpay copies it to table calcpay.

See Also
act, getjournal

calculate — /act/gl Command
Compute each tax form listed
calculate taxform ...

The command calculate is part of the accounting/general-ledger system that is included with /rdb.
It is a simple shell script that calculates each tax form listed on its command line.

Example
The following command calculates the IRS 1040 form

calculate 1040

See Also
act, fillform

Notes
Please note that the tax tables included with /rdb are from 1987. They are included solely to serve
as examples, and no claim is made as to their accuracy when calculating current taxes. Caveat
utilitor.

LEXICON

162 calcpay — calculate

cap — /rdb Command
Convert first letter of each word to upper case
cap < textfile

The command cap capitalizes the first letter of each word in textfile. It writes its results to the
standard output.

Example
Assume that table Inventory has the following data:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

As you can see, the column Descriptions has consists of words all in lower case. To capitalize the
first letter of each word in Inventory file, type:

cap < Inventory

This writes the following on the screen:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 Rubber Gloves
2 100 5 500 Test Tubes
3 5 80 400 Clamps
4 23 19 437 Plates
5 99 24 2376 Cleaning Cloth
6 89 147 13083 Bunsen Burners
7 5 175 875 Scales

See Also
lowercase, uppercase

cashflow — /rdb Command
Compute balance column of cash table
cashflow < cashtable

The command cashflow helps you manage your cash flow. It reads cashtable, which you design,
then computes a running balance in a Balance column (which must be column 3) from an Amount
column (which must be column 2).

Cash-flow analysis lets you see if you will always have enough money in hand to cover each day’s
bills. It makes cash management possible by telling you whether to put off an expense until a check
arrives, ask for an advance, get to work and make more money, or control your spending.

Example
The following gives an example cashtable, called cash:

LEXICON

cap — cashflow 163

Date Amount Balance Description
------ ------ ------- -----------
890101 512 current balance
890101 -450 rent check
890101 1000 pay check
890115 -300 estimated tax payment
890115 1000 pay check
890115 -1000 living expenses
890120 -900 big purchase

890201 1000 pay check
890201 -450 rent check
890215 1000 pay check
890115 -1000 living expenses

The command cashflow needs two columns, named Amount and Balance. (If you use different
column names, you must edit the cashflow shell script). All other columns are optional. Each row
in your table represents a projected income item (positive) or a projected expense (negative). This is
your flow of cash. To summarize the cash flow in our example table cash, type:

cashflow < cash

This prints the following on your screen:

Date Amount Balance Description
------ ------ ------- -----------
890101 512 512 current balance
890101 -450 62 rent check
890101 1000 1062 pay check
890115 -300 762 estimated tax payment
890115 1000 1762 pay check
890115 -1000 762 living expenses
890120 -900 -138 big purchase

890201 1000 862 pay check
890201 -450 412 rent check
890215 1000 1412 pay check
890115 -1000 412 living expenses

That big purchase gives us a negative balance in 890120. Now that you know, you can do
something about it. One move is to put the big purchase off until the first of February. After you
edit table cash to reflect this change, it appears as follows:

Date Amount Balance Description
------ ------ ------- -----------
890101 512 current balance
890101 -450 rent check
890101 1000 pay check
890115 -300 estimated tax payment
890115 1000 pay check
890115 -1000 living expenses
890201 1000 pay check
890201 -900 big purchase
890201 -450 rent check
890215 1000 pay check
890115 -1000 living expenses

Running cashflow again will tell us if this strategy works:

LEXICON

164 cashflow

Date Amount Balance Description
------ ------ ------- -----------
890101 512 512 current balance
890101 -450 62 rent check
890101 1000 1062 pay check
890115 -300 762 estimated tax payment
890115 1000 1762 pay check
890115 -1000 762 living expenses
890201 1000 1762 pay check
890201 -900 862 big purchase
890201 -450 412 rent check
890215 1000 1412 pay check
890115 -1000 412 living expenses

As you can see, this works — there’s no negative cash flow for any period. You can also try other
options.

You can do all of the inputting and editing in the text editor. You can execute commands in vi by
using the exclamation ‘!’ shell feature; or from MicroEMACS by typing <ctrl-X>!. You also might
want to write out to a tmp file and use mv to overwrite your cash table so that it is file is up to date.
For example, in vi you can type:

:!cashflow < cashtable > tmp ; mv tmp cashtable
:e!

The first line computes the Balance column, writes the result into a tmp file, and moves tmp to be
the new cashtable. All of this is necessary because in COHERENT you cannot have one file as both
input and output without wiping out the file. The second line, :e! pulls the new file into the vi
editor and displays it on your screen.

See Also
COHERENT Lexicon: ksh, me, sh, vi

chartdup — /act/gl Command
Check for duplicate names and accounts in chart
chartdup

The command chartdup is part of the accounting/general-ledger system that is included with /rdb.
It checks to see if there are any duplicates among the account numbers or the short names within
the chart of accounts. This is the most common error that people make when they update the chart
of accounts.

Example
The following gives example output of chartdup:

Duplicate Account numbers in chart. See chart.Account
4150 I-E 115 taxes Taxes
4150 I-E 115 taxes Taxes
Duplicate Short names in chart. See chart.Short
4150 I-E 115 taxes Taxes
4150 I-E 115 taxes Taxes

LEXICON

chartdup 165

check.rdb — /rdb Command
Report any rows in which columns do not match head line
check.rdb < tableorlist

The command check.rdb counts the columns (number of tabs plus one) in the head line of an /rdb
table or list formatted file. Then it displays information on each row that does not match the
number of columns in the first head-line row. You should use it to see if your data entry is correct.
If your head-line row is incorrect, then all of your rows will be reported as errors.

check.rdb returns zero when all is correct, and nonzero when it has found an error. You can use
this status value ($?) in a shell script to take different actions, depending upon the validity of the
table or list file.

Examples
Here is a bad table, called badtable:

Date Account Debit Credit Description
------ ------- ------ ------ -----------
820102 101 25000 cash from loan
820102 211.1 25000 loan #378-14 Bank Amerigold
820103 150.1 10000 test equipment from Zarkoff
820103 101 5000 cash payment
820103 211.2 5000 note payable to Zarkoff
820104 130 30000 inventory - parts from CCPSC
820104 201.1 15000 accounts payable to CCPSC
820104 101 15000 cash payment to CCPSC for parts

It is hard to see anything wrong with it. However, when we run the command

check.rdb < badtable

we see the following output:

check.rdb: Columns (4) do not equal headline columns (5) in row 3 (line 5).
820103 150.1 10000 test equipment from Zarkoff

The command

see < badtable

gives us the following output:

Date^IAccount^IDebit^ICredit^IDescription$
----^I ------^I-----^I------^I-----------$
820102^I101^I25000^I^Icash from loan$
820102^I211.1^I^I25000^Iloan number #378-14 Bank Amerigold$
820103^I150.1 10000^I^Itest equipment from Zarkoff$
820103^I101^I^I5000^Icash payment$
820103^I211.2^I^I5000^Inote payable to Zarkoff Equipment$
820104^I130^I30000^I^Iinventory - parts from CCPSC$
820104^I201.1^I^I15000^Iaccounts payable to CCPSC^I$
820104^I101^I15000^I^Icash payment to CCPSC for parts$

Note that a tab is missing from row 3 (line 5) of badtable, between values 150.1 and 10000. The
spaces hide the fact that it is missing.

When you work with a large file, run check.rdb first. It will find the tab problems and give you the
information you need to find them. Then use a text editor to correct the problem.

You can move down to the first bad line by typing the following vi command :5. This takes you to
line 5. Then to see the line, type the list command l:. (This is the letter el, not the number one). Or

LEXICON

166 check.rdb

to do it in one step (move and list), type :5l. Or you can using the following colon command to set all
of the lines in the file to display tabs:

:set list

To return it to normal display, use the command:

:set nolist

Edit in whatever changes you need, then go to the next bad line. You can change a space to a tab
with the following command:

:s/ /^I/

where the ^I is the key on your keyboard that produces a tab. If you want to list three lines above
and below the bad line, type:

:-3,+3l

If you use ve to enter your data, you will have fewer problems like this. Data from foreign sources
should be checked carefully before you use it with /rdb.

See Also
see, ve
COHERENT Lexicon: elvis, me, vi

Notes
This command is named check.rdb rather than check, as in other implementations of /rdb, to
avoid clashing with the COHERENT command check, which does something very different.

chr — /rdb Command
Display the character corresponding to a number
chr number ...

chr converts each of the integers on its command line to its corresponding ASCII character. You
can use it to send special characters to the screen. This gives you a good way to produce special
characters that are hard to type or are interpreted by the shell.

Example
Here we convert several characters.

chr 97 65 49
aA1

chr 7
[beep]

echo ‘chr 7‘Wake up
[beep]Wake up

The [beep] is the sound. It does not print on your terminal.

See Also
ascii
COHERENT Lexicon: ASCII

LEXICON

chr 167

clear.rdb — /rdb Command
Clear the terminal’s screen
clear.rdb

The command clear.rdb clears your terminal screen of all characters and leaves the cursor in the
upper left corner. It is useful for menus and forms that look better on a clear screen.

clear.rdb uses the termcap file of terminal capabilities to find the string of special characters that
are needed to clear your screen. To work correctly, the TERM environmental variable must be set
correctly to the name of your terminal as listed in /etc/termcap.

The COHERENT command clear.rdb also clears the screen.

The /rdb command termput can also clear the screen, as follows:

termput cl

Speed
clear.rdb is quite fast, but there is a much faster way. Set a shell variable CLEAR to the output of
the command clear.rdb like this:

export CLEAR=‘clear‘

Then you can use:

echo "$CLEAR"

in your shell programs for a fast clear. Put it into your .profile so that it will always be available.
Use quotation marks around the shell variables in case they have special characters in them.

See Also
termput
COHERENT Lexicon: clear, export, .profile, sh, TERM, termcap

Notes
This command is named clear.rdb rather than clear, as in other implementations of /rdb, to avoid
clashing with the COHERENT command clear.

close — /act/gl Command
Close accounting period creating journal for next
close

The command close is part of the accounting/general-ledger system that is included with /rdb. It
closes an accounting period, such as a month, quarter, or year, and creates the next period’s
journal, the table journalnext. When you start the next period, carry the journalnext forward by
mving it to file journallast.

Example
The command close creates a file whose output resembles the following:

Account Date Debit Credit Ref Description
------- ------- ----- ------ ------- ---------------
1010 850101 11178 jl brought forward
1110 850101 22130 jl brought forward
1310 850101 0 jl brought forward
1330 850101 0 jl brought forward
1420 850101 0 jl brought forward
4997 850101 33308 jl brought forward

LEXICON

168 clear.rdb — close

See Also
act

column — /rdb Command
display columns of a table in any order
column [Column ...] < tableorlist

The command column reads tableorlist and writes a new table (or list) that consists of each Column,
in the order you list them on the command line.

If you give a column name that is not one of the columns for tableorlist, column creates a new
column with that name, in that location, and leaves it empty. This lets you to create new columns.
If you want to compute a column that does not exist, use this column facility to create it, then use
the compute command to compute it. However, if you misspell a column name, you will get an
empty column.

If you name no Column on the command line, column writes all of tableorlist to the standard output
without change.

Example
Assume that you have an inventory table, as follows:

Item Amount Cost Value Description
---- ------ ----- ----- -----------

1 3 5.00 0 rubber gloves
2 100 0.50 0 test tubes
3 5 8.00 0 clamps
4 23 1.98 0 plates
5 99 2.45 0 cleaning cloth
6 89 14.75 0 bunsen burners
7 5 175 0 scales

The command:

column Cost Amount Description < inventory

produces the following output:

Cost Amount Description
----- ------ -----------
5.00 3 rubber gloves
0.50 100 test tubes
8.00 5 clamps
1.98 23 plates
2.45 99 cleaning cloth

14.75 89 bunsen burners
175 5 scales

Note that the columns Cost and Amount have been reversed. We only have the columns we asked
for and in the order we requested.

column can also manipulate list-formatted files. For example, the mailing list called maillist looks
like this:

LEXICON

column 169

Number 1
Name Ronald McDonald
Company McDonald’s
Street 123 Mac Attack
City Memphis
State TENN
ZIP 30000
Phone (111) 222-3333

Number 2
Name Chiquita Banana
Company United Brands
Street Uno Avenido de la Reforma
City San Jose
State Costa Rica
ZIP 123456789
Phone 1234

If you want only the names and numbers, type:

column Name Phone < maillist

This produces the following output:

Name Ronald McDonald
Phone (111) 222-3333

Name Chiquita Banana
Phone 1234

See Also
project, row
COHERENT Lexicon: awk

commands — /rdb Command
Describe /rdb commands
commands

The command commands displays a table of /rdb commands, with a one-line description and the
syntax of each command.

See Also
act, helpme, rdb, whatis, whatwill

compresss — /rdb Command
Squeeze out all leading and trailing blanks
compresss [-b] < tableorlist

The command compresss removes all leading and trailing blanks from every column or field in
tableorlist. You an use it to save disk space.

Please note that the name compresss is not a typographical error. The command is spelled in this
way to avoid collision with the COHERENT command compress, which behaves very differently from
compresss.

compresss is almost the opposite of the command justify. Your files are not as pretty when
compressed as they are when justified, but they are smaller — usually one third the size or less.
Therefore, they take less disk space and are much faster to process; after all, most of the time used
to execute data-base programs consists of moving data from the disk to the memory and,

LEXICON

170 commands — compresss

sometimes, back to the disk.

Multiple blanks that separate words are left alone.

Options
compresss recognizes the following option:

-b Drop blank lines. Don’t use this option with list files!

Example
For example, consider table oldjournal, which is as follows:

Date Account Debit Credit Description
------ ------- ----- ------ -----------
890102 101 25000 cash from loan
890102 211.1 25000 loan number #378-14 Bank Amerigold
890103 150.1 10000 test equipment from Zarkoff
890103 101 5000 cash payment
890103 211.2 5000 note payable to Zarkoff Equipment
890104 130 30000 inventory - parts from CCPSC
890104 201.1 15000 accounts payable to CCPSC
890104 101 15000 cash payment to CCPSC for parts

After we run the command

compresss <old.journal | see

old.journal has no extra spaces. We prove this by piping the output to the /rdb command see,
which displays the following output:

Date^IAccount^IDebit^ICredit^IDescription$
----^I-------^I-----^I------^I-----------$
890102^I101^I25000^I^Icash from loan$
890102^I211.1^I^I25000^Iloan number #378-14 Bank Amerigold$
890103^I150.1^I10000^I^Itest equipment from Zarkoff$
890103^I101^I^I5000^Icash payment$
890103^I211.2^I^I5000^Inote payable to Zarkoff Equipment$
890104^I130^I30000^I^Iinventory - parts from CCPSC$
890104^I201.1^I^I15000^Iaccounts payable to CCPSC$
890104^I101^I^I15000^Icash payment to CCPSC for parts$

Note that see turns all of the tabs into ^I and puts a dollar sign ‘$’ at the end of each row to show
us that there are no spaces at the end.

See Also
justify, rmblank

Notes
Do not confuse this command with the COHERENT system’s command compress, which produces
binary output that cannot be read by any /rdb command.

compute — /rdb Command
Calculate columns of a table
compute ’column = expression [; ...]’ < tableorlist

The command compute lets you to do arithmetic on columns. A column can be computed as a
function of other columns, of itself, and of constants.

compute uses the COHERENT command awk to perform its work, as does the command row. awk
is a a powerful, interpreted programming language in which you can write programs to perform

LEXICON

compute 171

complex transformations on text. The advantage of compute, over awk is that compute knows
about the names of columns in a table; this permits you to use column names instead of column
positional numbers. (In awk the second column is named $2.) To grasp the full power of compute
and row, read the COHERENT system’s awk tutorial. If you must perform very complex
manipulations of tables, use awk.

If you must create a new empty column for compute to put values into, use the command column.
This command creates an empty column for any column it cannot find in the header line.

Example
This example computes a column from other columns:

compute ’Value = sprintf("%5.2f", Cost * Amount)’ < inventory

Item Amount Cost Value Description
---- ------ ----- ------ ---------------

1 3 5.00 15.00 rubber gloves
2 100 0.50 50.00 test tubes
3 5 8.00 40.00 clamps
4 23 1.98 45.54 plates
5 99 2.45 242.55 cleaning cloth
6 89 14.75 1312.75 bunsen burners
7 5 175.00 875.00 scales

Here are more examples of what you can do with compute. You can change the format of column
by using a C-style sprintf:

compute ’column = sprintf ("%8.2f", column)’ < tableorlist

You can set column equal to the length of the string in column2:

compute ’column = length (column2)’ < tableorlist

You can also Set column equal to the natural logarithm of column2:

compute ’column = sprintf("%f", log (column2))’ < tableorlist

Or, you can increment column2 whenever column is greater than number:

compute ’if (column > number) column2 = \
sprintf("%d", column2+1)’ < tableorlist

Expressions
As you can see, you can write rather complex expressions for compute. By expression, we mean
many kinds of equations. For example, a variable or a column is an expression. So is variable +
variable. So are rather complex equations. The following symbols indicate some of the more
complex expressions:

column
Name of a column, exactly as it appears at the top of the column.

= Make the column on the left equal the expression on the right.

+ Add

- Subtract

* Multiply

/ Divide.

LEXICON

172 compute

% Modulo (zero if left value is equally divisible by right).

; Statement separator needed if more than one equation

log()
Natural logarithm of value or column within parentheses.

length()
String length of string in column.

You can also use C language-like statements:

if (expression) equation [else equation];
For example:

if (Value > 10000) Status = "Special"; else Status = "Normal";

while (expression) equation;
For example:

while (column => 0) column -= 1 ;

for (expression; condition; expression) equation;
For example:

for (i = 0; i < column1; i++) array [i] = column2 + i ;

You can also use the awk format pattern { action }. For example:

compute ’length > 80 { print NR, "Line too long." }’ < table

awk recognizes length as a function that returns the length of the row and NR as the line number.
Note that the line numbers of a file starts with the head line, while row numbers of a table starts
after the dash line (line 3).

What Is a Column Name?
compute looks up, in the column header of the input file, each word that it finds in its command-
line program. If there is a match, compute converts the column name to its position (first, second,
third, etc.) depending upon the relative location of the column. These column numbers are needed
by awk.

compute defines a column name to be a string of the following characters:

1. Upper and lower letters, numbers, and the underscore ‘_’.

2. Any string that is enclosed by apostrophes or quotation marks.

Therefore, if you want special characters in your column names, put quotation marks around them
when you use them. For example:

compute ’ "Item#" = NR ’ < inventory

Note the quotation marks around the column head Item# because of the number character ‘#’.
Also, note that we used quotation marks, because the whole program was enclosed in apostrophes.
If you use one kind of mark around the whole program, use the other kind of mark around the
column names that have special characters in them.

Reserved Words to Avoid in Column Names
Some words are understood by awk. Therefore, they should not be used in column names. A simple
way to avoid a conflict is to start your column names with a capital letter. awk does not confuse
Print with print. Here is a list of awk’s built-in functions.

Reserved Words Description

LEXICON

compute 173

BEGIN..............................Pattern that matches before first input record
ENDPattern that matches after last input record
breakGet out of for or while loop
continue..........................Go to next iteration of for or while loop
elseUsed in "if then else" expression
exitLeave program entirely as if end of input
exp...................................Raise number to a power
for....................................for (expression ; condition ; expression) statement
getlineGet next input line
ifif (condition) statement [else statement]
infor (variable in array) statement
indexindex (string1, string2)
int....................................Truncate argument to integer
lengthReturn current line length, or length of argument
log....................................Return log (to base 2) of argument
nextSkip to next record and reexecute all commands
printOutput variables
printfprintf ("format", variable, ...)
splitsplit (string, arrayname, separator)
sprintfsprintf ("format", variable, ...)
sqrtReturn square root of argument
substrsubstr (string, start, number)
while................................while (condition) statement

Using Shell Variables in Programs
Often you want to use a shell variable in a compute command. It is easy, if you understand what is
going on. For example, the following commands:

DATE=860101
compute "Date = $DATE" < journal

produce the following output:

Date Account Debit Credit Description
------ ------- ----- ------ ----------------------------------
860101 101 25000 cash from loan
860101 211.1 25000 loan number #378-14 Bank Amerigold
860101 150.1 10000 test equipment from Zarkoff
860101 101 5000 cash payment
860101 211.2 5000 note payable to Zarkoff Equipment
860101 130 30000 inventory - parts from CCPSC
860101 201.1 15000 accounts payable to CCPSC
860101 101 15000 cash payment to CCPSC for parts

We set a shell variable named DATE to a date. Then we used the variable in the compute command
line program. But note that we had to use quotation marks (") instead of our usual apostrophes (’).
To the shell, apostrophes protect absolutely. With apostrophes, the shell would not see the dollar
sign ‘$’ in front of DATE and would not convert it to its value. The quotation mark protects the
enclosed from the shell, also, except for shell variables and command substitution (‘cmd‘). With
quotation marks, the shell will still replace variables (which start with a dollar sign character).

There is one further complication. The previous worked fine because the value of date was a
number. But if we want to use strings in awk, they must have quotation marks (not apostrophes)
around them. For example:

COMPANY=’Makeapile, Inc.’
compute "Company = \"$COMPANY\"" < maillist

LEXICON

174 compute

produces the following:

Number 1
Name Ronald McDonald
Company Makeapile, Inc.
Street 123 Mac Attack
City Memphis
State TENN
ZIP 30000
Phone (111) 222-3333

Number 2
Name Chikeeta Banana
Company Makeapile, Inc.
Street Uno Avenito De La Revolution
City San Jose
State El Salvadore
ZIP 123456789
Phone 1234

Here we set a shell variable COMPANY to a company name. We want to update the mail list
because these characters have been hired by a new company. Note what we had to do. We needed
quotation marks around the whole program to let the shell substitute the value of the shell variable.
But we also needed quotation marks around the string ‘‘Makeapile, Inc.’’ for awk. So we have to
protect the innermost quotation marks with backslashes.

There is another way, which opens up a little window in the program for the shell to insert strings.
But it fails when there are spaces in the window string. So use the method previously discussed.

Problem With awk Floating-Point Format
With some implementations of awk, the value column is computed to much greater precision than
you are likely to want. For example, version produces this table:

Item# Amount Cost Value Description
------- ------- ------- ------- ---------------

1 3 5.00 15 rubber gloves
2 100 0.50 50 test tubes
3 5 8.00 40 clamps
4 23 1.98 45.539997100830078125 plates
5 99 2.45 242.5499725341796875 cleaning cloth
6 89 14.75 1312.75 bunsen burners
7 5 175.00 875 scales

To control the precision of the floating-point values in a column, you can use the sprintf function
from the C programming language that has been implemented in awk. For example:

compute ’Value = sprintf ("%7.2f", (Cost * Amount))’ < inventory

These commands will produce the first table under Examples, above.

See Also
COHERENT Lexicon: awk, ksh, sh

computedate — /rdb Command
Add given number of days to a date
computedate date days

The command computedate adds days to a date, and displays the new date. date must be the
format YYMMDD; days can be negative or positive. computedate displays the new date in the same
format. This is the best format for entering dates in a column because they sort correctly and take

LEXICON

computedate 175

only six characters.

Internally, computedate converts the date to julian, adds days, then converts the date back to
gregorian. Suppose we want to know the date 45 days from March 31, 1989. We can type:

computedate 890331 45

This command returns the string:

890515

That is May 15, 1989.

Another trick is to combine the todaysdate and the computedate programs. todaysdate gives the
date of today in the preferred format of YYMMDD. For example, the following command shows us
the date 45 days from today:

computedate ‘todaysdate‘ 45

Data Validation
You can use computedate to validate a date. If you add zero days to a date and get a different date,
then the original date was not valid. For example, let’s test the 32nd day of January 1989:

computedate 890132 0

This returns the string 890201 or February 1, 1989. As we expected, we received a different date.
We can test this with the following shell program:

if test $DATE = ‘computedate $DATE 0‘
then

echo OK
else

echo Invalid DATE
fi

See Also
gregorian, julian, todaysdate

consolidate — /act/gl Command
Combine all subsidiary journals to general journal
consolidate nextdate

The command consolidate is part of the accounting/general-ledger system that is included with
/rdb. It assembles all of the subsidiary journals, such as journalincome, journalexpense, and
journaldeposit, into the general journal named journal. It also converts from single-entry to double-
entry bookkeeping by totaling Debits and Credits and inserting counterbalancing adjustments to
the cash account. It needs the nextdate for these accounts.

Example
The command

consolidate $NEXTDATE

writes into file journal data that resemble the following:

LEXICON

176 consolidate

Date Account Debit Credit Ref Description
------ ------ ------- ------- ------ ----------------------
890101 4370 2 r parking at clients
890103 4380 15 c115 shuttle bus to airport
890104 4380 13 v meal
890105 4380 13 c116 meal
890106 4384 114 r hotel
890118 3100 3286 c101 consulting
890125 3080 250 c1459 book fees
891231 1010 5858 double-entry
891231 1010 17036 double-entry
891231 3010 13500 deposit from sales/deposit
891231 4020 3601 check from pur/check
891231 4030 2100 payroll from pay/journalpay

Note the double-entry adjustments, and the totals of journals from sales, purchasing, and pay
departments. The Date came from the NEXTDATE shell variable, which you must set in your
.profile.

See Also
getjournal

cpdir.rdb — /rdb Command
Copy one directory tree to another directory
cpdir.rdb fromdirectory todirectory

The command cpdir.rdb copies a directory tree — that is, all directories and their files — from
fromdirectory to todirectory.

cpdir.rdb uses the tar command in a special way. It is a shell program so you can read it and see
how it does it. It performs almost exactly the same work as the COHERENT command cpdir.

Example
You might use this to back up a large directory:

cpdir.rdb /usr/rdb /usr/rdb.backup

The following moves a directory to a preferred place:

cpdir.rdb /usr/he.left/goodstuff /usr/project/goodstuff

See Also
COHERENT Lexicon: cpdir, tar

Notes
This command is named cpdir.rdb rather than cpdir, as in other implementations of /rdb, to avoid
clashing with the COHERENT command cpdir.

cstate — /act/sales
Produce customer statement
cstate

The command cstate is part of the accounting/sales system that is included with /rdb. It generates
the customer statement from the tables salesorder and deposit. It shows what the customer has
ordered and paid, and the net. The result is printed as a form to be sent to the customer as a bill.

LEXICON

cpdir.rdb — cstate 177

Example
The following gives an example of the output of cstate:

Please enter customer number (or all or Return to exit): 3
Customer Statement

Makeapile, Inc., 123 Bigbucks Blvd., Dallas, TX 12345, 1-800-SOF-WARE

Mailing Address for Customer Number 3

Ms Ute Unix Ph.D. President

UniUniUniUni Software Sellers
12345 Nixuni Street
Union, New Jersey 11111 USA

Now Due and Payable is your balance of: 107550.00

Details of Your Orders and Payments

Cust Date Amount Ref
---- ------ --------- ----

3 850902 -6300.00 17
3 850902 -14175.00 16
3 850902 -22050.00 15
3 850902 -23625.00 12
3 850902 -37800.00 13
3 850903 -12600.00 23
3 860105 9000.00 3347

---- ------ --------- ----
-107550.00

Please enter customer number (or all or Return to exit):

See Also
act, vstate

cursor — /rdb Command
Move the cursor to the row and column requested
cursor row col [CURSOR]

The command cursor move the cursor to screen position row and column. You can cursor and the
/rdb command clear.rdb to perform complex screen handling from within a shell script. You can
paint your screen with cursor moves and echo commands; then use the read command to read the
user’s input; and finally use various COHERENT and /rdb commands to examine and confirm the
input. You can also clear fields of the screen by moving the cursor and writing blanks.

You must give the row and column you want. cursor also needs the cursor movement (cm) entry
from file /etc/termcap. This can be given as an argument, but the easiest way is to set up the shell
variable called CURSOR then cursor will find it in its environment automatically. To set up the
CURSOR variable, do the following:

CURSOR=‘termput cm‘

Another way is to use your text editor to find the entry in /etc/termcap and copy its cm entry for
your terminal to your .profile:

CURSOR=^[[%p1%d;%p2%dH

This is the entry for the pc terminal. The uparrow bracket (^[) is the ESC character (<ctrl-[>). The
function tgoto function from the termcap library converts it into the proper escape string.

LEXICON

178 cursor

Example
The following moves the cursor to the middle of an 80-by-24 screen:

cursor 11 38

Speed
cursor is fast, but there is a much faster way. Set a shell variable like L22 to move to the 22nd line:

L22=‘cursor 23 0‘

Then you can use:

echo "$L22$MESSAGE\c"

in your shell programs for a fast cursor movement and to print a message. Note the quotation
marks around the messages in case there are special characters. Also note the \c, which tells echo
not to print a carriage return.

An even better trick is to use the shell feature that tests to see if a variable has been set and only
gives it a value when it needs one:

echo "${L22:=‘cursor 22 0‘}$MESSAGE\c"

All of this magic causes the shell to check if L22 has a value. If not, it executes the cursor
command and assigns the value to L22. Then, if this line is called in a loop, the next time the value
will have been set and will be about 20 times faster.

See Also
termput
COHERENT Lexicon: .profile, termcap

LEXICON

cursor 179

dash line — /rdb Definition

The dash line is the second line in an /rdb table. It underscores each entry in the table’s head line.
Each entry in the dash line must be separated by a tab character.

Example
The table inventory appears as follows:

Item Amount Cost Value Description New
---- ------ ---- ----- -------------- -------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

The dash line is:

---- ------ ---- ----- -------------- -------

Note that there is one entry in the dash line for each entry in the head line.

See Also
head line, listtotable, tabletolist

datatype — /rdb Command

Display the data type of each column selected
datatype [-l] [column ...] < table

The command datatype displays the type of data contained in each column. If you do not name a
column on the command line, datatype calculates and displays all of table’s columns.

Options
The -l option tells datatype to print the entire contents of table, in addition to information about
each column.

Code

-1 Character strings with nonnumeric data.

0 Integer number.

1,2... Floating-point number (number of digits to the right of the decimal).

LEXICON

180 dash line — datatype

Example
The following shows a sample output of datatype:

Int Char Float2 Float4
--- ---- ------ ------
1 a 1.2 1.1234
745 zzzz 8.54 12.3
--- ---- ------ ------

0 -1 2 4

Note that the Int column has only integers in it (code 0), the Char column has characters in it (code
-1), and the two Float columns have different precisions (positive numbers codes). Note that the
float precision is the maximum.

See Also
ascii, chr, dbdict

dBASE crossreference — Technical Information

dBASE was developed and marketed by Ashton-Tate; this company was purchased recently by
Borland International.

The following table gives the /rdb and COHERENT equivalents for most common dBASE commands.
The slug in bold characters gives the dBASE command; the following description gives the
equivalent in /rdb and COHERENT commands:

ACCEPT Comment TO Variable
echo Comment ; read Variable

APPEND BLANK
echo >> Fileout

APPEND FROM Filename FOR Condition
row ’Condition’ < Filename >> Fileout

BROWSE
more, scat, update, or any text editor

CANCEL
DEL (any character set with stty)

CHANGE Range FIELD Fieldname FOR Condition
compute ’Range && Condition {Fieldname = Value}’ < Filein

CLEAR
CLEAR GETS

clear

CONTINUE
continue [shell statement]

COPY TO Filename FIELD Fieldnames FOR Condition
row ’Condition’ < Filein | column Fieldnames > Filename

COUNT FOR Condition TO Variable FOR Condition
row ’Condition’ < Filein | tail +3 | wc -l

CREATE Filename
> Filename ; vi Filename ; ve Filename ; cmd > Filename

DELETE RECORD Number
(sed $NUM+1}q Filename ; tail +$NUM+3}) > tmp; mv tmp Fieldname

LEXICON

dBASE crossreference 181

DELETE NEXT Number
DELETE ALL

sed 2q Filename > tmp ; mv tmp Filename

DELETE NEXT Number FOR Condition
DELETE FILE Fieldname

> Filename

DISPLAY Range FOR Bedingung Field OFF
row ’Range && Dedingung’ < Filename | column Fieldnames

DISPLAY STRUCTURE
for I in * do sed 2q; done

DISPLAY MEMORY
df ; du

DISPLAY FILES ON Disk LIKE Datatype
ls *Datatype ; ls Disk/*Datatype

) Program
Program

CASE Condition
Condition) [shell case statement]

OTHERWISE
*) [shell case statement]

DO WHILE Condition CR ENDDO
while Condition CR do done

EDIT
vi, ve, update, ex, ed, me, other editors and commands

ECT
ENDDO

do [in shell while, until, for statements]

ERASE
clear

FIND Text
/Text (in vi, ve, update)

INDEX ON Fieldname TO Filename
index Filename Fieldname ...

USE Filename INDEX Keyfield
search Filename Keyfield

INPUT Text To Variable
Variable=Text

INSERT
sed ${NUM}q Filename; echo $RECORD; tail +$NUM Filename

JOIN TO Filename FOR Condition FIELDS Fieldnames
jointable Filename1 Filename2
row ’Condition’ < Filename2 | jointable Filename1 -
column Fieldnames < Filename2 | jointable Filename1 -

LEXICON

182 dBASE crossreference

Column,Row SAY Comment GET Variable PICTURE
tput Column ; tput Row ; echo Comment ; READ Variable

GO
GOTO
GO RECORD n

ve nG

GO Fieldname
ve /

GO TOP
ve H

GO BOTTOM
ve L

IF Condition Statement2 ELSE Statement2 ENDIF
if Condition then Statement1 else Statement2 fi

LOCATE FOR Condition
row ’Condition’ < Filename

LOOP
while, until, for [shell statements]

MODIFY STRUCTURE
column New Fieldnames < Filename

NOTE
REMARK

: Old Comment
New Comment

MOVE Old-Filename TO New-Filename
mv Old-Filename New-Filename

REPLACE Range Fieldname WITH Expression FOR Condition
compute ’Fieldname = Expression’ < Filename
compute ’Range && Condition {Fieldname = Expression}’ < Filename

REPORT Form FOR Condition TO PRINT
report Form < Filename
row ’Condition’ < Filename | report Form | print

PACK
compress, uncompress [COHERENT]

QUIT
<ctrl-D>

READ
read Variable

RECALL Condition
row ’Condition’ < Filename

RELEASE Variable
Variable=

RESET

LEXICON

dBASE crossreference 183

RESTORE FROM Filename
RETURN

return [shell]

SAVE TO Filename
SELECT

row, column, etc.

SET
set [shell]

SKIP
SORT ON Fieldname TO Filename

sorttable Fieldname > Filename

STORE Expression TO Variable
Variable=‘Expression‘

SUM Fieldname TO Variable FOR Condition
Variable=‘row ’Condition’ < Filename | column Fieldname‘

TOTAL ON Keyfield TO Filename FIELDS Fieldnames FOR Condition
row ’Condition’ | subtotal Keyfield Fieldnames > Filename

UPDATE FROM Filename ON Keyfield
update, vi, ve, replace, append, delete, etc.

USE Filename
cmd < Filename

WAIT
wait [shell]

@ Row,Column SAY expression
cursor Row Column; echo EXPRESSION
ve screen and validation file

All data-base systems have some method for importing text files. Sometimes you’ll be able to use
the header information that comes with /rdb tables, and sometimes you’ll have to specify this
information to the target system anyway.

dbdict — /rdb Command

Print a data-base dictionary
dbdict < table

The command dbdict prints a table of two columns: The first gives the names of each field in table,
and the second gives the field numbers.

Example
For example, we might have a table named journal that looks like this:

LEXICON

184 dbdict

Date Account Debit Credit Description
------ ------- ----- ------ ----------------------------------
861222 101 25000 cash from loan
861222 211.1 25000 loan number #378-14 Bank Amerigold
861223 150.1 10000 test equipment from Zarkoff
861223 101 5000 cash payment
861223 211.2 5000 note payable to Zarkoff Equipment
861224 130 30000 inventory - parts from CCPSC
861224 201.1 15000 accounts payable to CCPSC
861224 101 15000 cash payment to CCPSC for parts

The command

dbdict < journal

produces the following:

field name
----- ----
1 Date
2 Account
3 Debit
4 Credit
5 Description

delete — /rdb Command

Blank record and update index file
delete [-m[bhirs]] table keycolumn ... < keytable

The command delete writes a blank record on the row in table whose key matches the row in the
keytable. It also deletes the offset row in the appropriate fast-access offset table, or, in the case of
the hash method, replaces the deleted offset with -1.

Options -m[bhirs] lets you select a type of fast-accessing to locate the row to delete. For information
on the type of fast accessing that each option invokes, see the manual entry for index.

Example
Consider table inventory, which appears as follows:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

The record index looks like this:

Offset

76
113
147
177
207
245
283

LEXICON

delete 185

The following command deletes the first record Item1:

echo 1 | delete -mr inventory Item

inventory now appears as follows:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

inventory.r now appears as follows:

Offset

113
147
177
207
245
283

Note that we have blanked out the record and removed the offset.

See Also
append, index, replace

difference — /rdb Command

Output table of rows that are in only one table
difference table1 table2

The command difference uses the COHERENT commands sort and uniq to subtract logically table2
from table1. Its output consists of the rows that are in table1 but not in table2. The two input tables
must have the same columns (union compatible in the technical data-base literature), and the rows
must be exactly identical — including every space, tab, and nonprinting character. If two rows look
the same to you but not to difference, try the see command to discover any blank spaces and
nonprinting characters.

Example
In this example, consider the table journal, which appears as follows:

Date Amount Account Ref Description
------- ------- ------- ------- --------------------------------
820107 14.00 meal v meal with jones
820113 101.62 car v car repairs
820114 81.80 insur c car insurance allstate
820114 93.00 car c car registration dmv
820119 81.72 vitamin c sundown vitamins
820121 20.83 meal v meal with scott
820121 2500.00 keogh c keogh payment
820125 99.00 dues v dues to uni-ops unix conference

And consider the table carexpense, which appears as follows:

LEXICON

186 difference

Date Amount Account Ref Description
------- ------- ------- ------- --------------------------------
820113 101.62 car v car repairs
820114 81.80 insur c car insurance allstate
820114 93.00 car c car registration dmv

The command

difference journal carexpense

logically ‘‘subtracts’’ carexpense from journal, to produce the following output:

Date Amount Account Ref Description
------- ------- ------- ------- --------------------------------
820107 14.00 meal v meal with jones
820119 81.72 vitamin c sundown vitamins
820121 20.83 meal v meal with scott
820121 2500.00 keogh c keogh payment
820125 99.00 dues v dues to uni-ops unix conference

See Also
COHERENT Lexicon: diff, diff3, sort, uniq

display — /rdb Command

Write table or list file to standard output
display < tableorlist

The command display copies tableorlist from the standard input to the standard output. This is not
a very useful program, but is a template for the C interface programs. If you have its source code,
you have an example of how to process tables and lists and can modify it for your own programs.

display is slower than the COHERENT command cat because it does more processing. display
knows about table and list formats, and reads and writes one row at a time.

See Also
COHERENT Lexicon: cat, more

domain — /rdb Command

Display invalid values in a column
domain domaintable [string ...] [< one-column-table]

The command domain displays all strings or all rows in one-column-table that do not match any
entry in the domaintable.

domain is useful for validating that each item in a column is legitimate. First, build a file that
consists of a list of all legal values. In relational theory, these values are called the domain of the
column. (You can also use the command validate to validate numbers and short lists of valid
strings.)

To check the domain of a column in a multicolumn table, simply use the command column to
project the column you want.

The domaintable must be sorted because it be searched by the command search using the binary
fast-access method (-mb). domain is a shell script, so you can edit it to change its search method,

Example
You might have an order file for cars like this:

LEXICON

display — domain 187

Qty Model Colors Options
------- ------- ------- -------
1 sedan black 3
1 sedan green 1
1 sedan farble 4
3 sedan red 5
2 convert white 1
1 sedan purple 2
1 sedan yellow 4
3 convert blue 2

You would also need a sorted file of possible car colors:

Colors

black
blue
carmel
green
purple
red
silver
white

Now we can validate the Color column and see all unacceptable colors:

column Colors < orders | domain colors

This produces the following output:

Colors

farble
yellow

domain complains about farble and yellow because neither color is in our domain list.

You can invoke orders in the text editor and edit it, or add those colors to the approved list. In vi
use the /pattern command to find all of the patterns in the orders file. Another approach is to type
something like this:

:g/farble/s//purple/g

This vi command will find all instances of farble and change them to purple.

You can also validate strings written on the command line. For example, the command

domain colors red blue purple farble yellow green

also prints the output:

farble
yellow

These command-line stings should be quoted if they have any special characters in them. They are
sought by the command grep. If they contain a dollar sign ‘$’, it should be protected with three
backslashes: this expression is scanned both by the shell and by grep, and it takes three
backslashes to get one backslash through to grep.

See Also
column, search, validate, ve
COHERENT Lexicon: egrep, grep, sort, uniq

LEXICON

188 domain

LEXICON

domain 189

Example

enter — /rdb Command

Add rows to a table or list file without an editor
enter [-limit] tableorlist

The command enter is a simple way to append one or more rows to the end of tableorlist. It displays
each column name and waits for you to type each item.

enter is a substitute for the form-editor ve. It is easier to use, but very limited.

Note that this is one of the few /rdb commands that does not use the less-than symbol ‘<’ to input a
table, but requires the name of a table to which it is to append data.

If you make an error in entering a record, you can return to the last line by typing a caret ‘^’; enter
then prompts you with the previous line. If you return two lines, keep typing carets until you are
prompted for the line you wish to reenter.

Options
The option -limit lets you limit the number of rows to be entered. For example, -1 prompts for one
row and then exits. Thus, it can be used in a shell script.

Rules
To set up and enter a file in list format instead of table format, there are several rules and
suggestions.

First, let’s discuss terminology. A list is like a table that is turned sideways. For example, a wide
table looks like this:

Number Name Company Street City State ZIP
Phone
------ ---- ------- ------ ---- ----- ---

1 Ronald McDonald McDonald’s 123 Mac Attack
Memphis TENN 30000 (111) 222-3333

Note that the row is so long that it wrapped around to the next line. Also, the column names and
column data do not line up. Names, Companies, and Street Addresses are usually too long to fit
nicely into such a table. Therefore, we need a list format like this:

Number 1
Name Ronald McDonald
Company McDonald’s
Street 123 Mac Attack
City Memphis
State TENN
ZIP 30000
Phone (111) 222-3333

These two formats (table and list) are made interchangeable by using two programs: listtotable and
tabletolist. You can enter and keep a file in list format. When you want to use several commands,
you can convert it to table format and pipe it into the regular commands for faster execution. For
example, the command

listtotable < maillist | column Name Phone | justify

produces the following output:

LEXICON

190 enter

Name Phone
--------------- --------------
Ronald McDonald (111) 222-3333

It is best, therefore, to remember that Name and Phone are column names. The information that
follows them in the list is the first row of a table (that can be created by the command listtotable).

1. First use an editor to create the list file. Type each column name followed by one, and only
one, tab. Also enter the information for the first row (record).

2. Be sure to put a newline (blank line) as the first line of the file.

3. Be sure to put a blank line at the end of each row (record). In the previous example, it
should appear after the row Phone. This tells the program that it has reached the end of the
row.

You can then save the file and use the enter program. Type:

enter maillist

Name _

enter responds with the first column name and a tab, and waits for you to enter whatever
you wish for Name. The underscore ‘_’ shows where the cursor of your terminal will be
waiting for you to input data.

4. Type in your data for the item. Use the return key to end the information for this item. If
you type more than 80 characters or so, your terminal will wrap around. You can continue
to type and wrap around until you reach your editor’s line limit or press <Return>. Then
enter gives you the name of the next column head, a tab, and waits for your entry.

5. When enter has given you the first column name of a new record and is waiting for a
response, exit from it by typing <ctrl-D>. enter then returns you to the COHERENT shell.

For list-formatted files, it is better to use the enter command than an editor. If you do your
entry with a text editor, you must include all of the column names, in the same order and
spelled correctly.

Example
To add a line to file maillist, type the following:

enter maillist

The editing session may go as follows:

Number 2
Name Chiquita Banana
Company Standard Brands
Street ^
Company United Brands
Street Uno Avenido de la Reforma
City San Jose
State Costa Rica
ZIP 123456789
Phone 1234

Name <ctrl-D>

Note we made an error entering Company and did not realize it until we were at Street. We typed a
caret ‘^’ that reprompted us for Company, which we then reentered. enter then went on to prompt
us for Company again.

LEXICON

enter 191

The entered file now appears as follows:

Number 1
Name Ronald McDonald
Company McDonald’s
Street 123 Mac Attack
City Memphis
State TENN
ZIP 30000
Phone (111) 222-3333

Number 2
Name Chiquita Banana
Company United Brands
Street Uno Avenido de la Reforma
City San Jose
State Costa Rica
ZIP 123456789
Phone 1234

Note that the last row (actually eight lines and the bottom newline) is the one we entered. Just
press <Return> if you have no data to enter after a prompt.

Now for an example of entering a table. If you want to add a line to inventory, type:

enter inventory

Item# Amount Cost Value Description
------- ------- ------- ------- ---------------

Then start typing your rows. Remember to insert tabs between columns:

8 123 5.98 0 widget
9 29 15.50 0 another widget
<ctrl-D>

The inventory file now looks like this:

Item# Amount Cost Value Description
------- ------- ------- ------- ---------------
1 3 5.00 0 rubber gloves
2 100 0.50 0 test tubes
3 5 8.00 0 clamps
4 23 1.98 0 plates
5 99 2.45 0 cleaning cloth
6 89 14.75 0 bunsen burners
7 5 175 0 scales
8 123 5.98 0 widget
9 29 15.50 0 another widget

Note that the last two lines are the ones we entered.

See Also
listtotable, tabletolist, ve

LEXICON

192 enter

explode — /rdb Command

Produce table of subparts and their count for a part
explode Part Amount [table]

The command explode takes a part number or name and looks it up in a part table to find all of its
subparts. It then finds the subparts of those subparts, and so forth, until it can seek no farther.
explode also multiplies the number of parts times the subpart counts at each interaction, so the
final subpart table lists all of the subparts of the original part and the total number of subparts
needed to make the part.

You can use explode to generate a list of all items needed to make a product. The cost of these
subparts, times the count, gives the value that can be totaled to arrive at the total cost of the
product.

explode assumes that the Part, Subpart, and Count columns are the first three columns of the
table, and that the third column is actually named Count.

Example
If you had a parttable, like this:

Part Subpart Count
---- ------- ------
10001 10010 3
10001 10020 4
10010 10100 2
10020 10100 5

and you wanted to find the subpart list and count for two part 10001s, you would type:

explode 10001 2

The result would be:

Part Amount
---- ------
10001 2
10010 6
10020 8
10100 52

Note that both 10010 and 10020 have 10100 as a subpart, but explode uses subtotal to combine
the 10100 subparts into one row. The table is also sorted.

See Also
bom, subtotal

LEXICON

explode 193

fd — /rdb Command
Test for functional dependency of columns
fd determinecolumn dependcolumn < table

The command fd reads table and tests whether its determinecolumn determines dependcolumn. A
column in a table functionally depends upon another column when there is only one value in the
second column for each value in the first. This helps you to determine if a table is normalized. (See
the section on Normalization, below, for details on what this means.)

Example
First let’s look at our inventory table:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

Note that the first column, Item, is the key column for the table. It functionally determines all of
the other columns. Each value in column Item is unique, so each value determines, or is the key,
to its row and all of the column values on it.

However, column Cost does not functionally depend upon Amount because there are two ‘5’ values
in Amount and each has a different value for Cost associated with it (on the same row or line). The
common sense (technically called the ‘‘semantics’’) of the table is that knowing the number of items
we have in inventory does not tell us how much they cost.

Now let’s see if fd can find the dependencies. The command

fd Item Cost < inventory

returns the message true. This is correct, because Item is the key column. However, the command

fd Amount Cost < inventory

returns the message false. This, too, is correct.

Normalization
A key column should aways functionally determine all of the other columns in the table. But
nonkey columns should not depend upon each other.

If there are too few data in the table, a pseudo-dependency may be discovered. Be sure your table
has lots of data before you test it.

LEXICON

194 fd

To normalize your tables, you must check for functional dependencies. When functional
dependency is found with non-key columns, the columns should be projected and uniqued to form a
second table. Then the functionally dependent column, but not the determining column, should be
removed from the first table. For example:

column column1 column2 < table | uniq > newtable
column ‘sed 1q table | sed s/column2//‘ < table > tmp
mv tmp table

In the second table, the column that determines the other column is the key for that table. If you
need to recreate the original first table, you can join the two new tables by using the command
jointable, as follows:

jointable -j column1 table newtable > oldtable

Normalization, or simplification, is an important process. Normalized files are smaller and are
easier to maintain.

See Also
column, jointable, paste.rdb
COHERENT Lexicon: cut, false, mv, paste, sed, true

filesize — /rdb Command
Return the number of characters in a file
filesize file ...

The command filesize displays the number of bytes in each file. It is much faster than the
COHERENT command wc because it uses the system call stat() to get the number from the i-node
table, rather than counting the bytes in the file.

If you ask filesize to size only one file, it sends one number to the standard output. This number
can be assigned to a shell variable. With more than one file, it produces a table of sizes.

Example
The following command returns the size of file filesize.1, which holds the ‘‘raw’’ form of what you
are reading:

filesize filesize.1

This displays one value on the standard output, e.g.:

532

The following command asks for the size of files ascii.1 and filesize.1:

filesize ascii.1 filesize.1

This form of the command returns a tabular output, e.g.:

Offset Filename
-------- --------

464 ascii.1
532 filesize.1

See Also
COHERENT Lexicon: ls, stat(), wc

LEXICON

filesize 195

fillform — /act/gl Command
Fill a tax from with adjusted trial balance data
fillform form

The command fillform is part of the accounting/general-ledger system included with /rdb. It fills in
the tax form form, which must be one of 1120 (corporate), 1120S (S corporation), C (schedule C), or
partnership tax form. It writes its output into a file with the name form.

Example
The following example fills in the S corporation form:

fillform 1120S

When you post-process the output with the command

sed 10q 1120S

you see output that resembles the following:

Taxline Amount Description
------- ------ --------------------------------------
101a 13500 Sales
101b 0 Returns and Allowances
101c 13500 Net Sales
102 0 Cost of Goods Sold
102-A1 20000 Beginning Inventory
102-A2 3601 Misc Merchandise
102-A3 2100 Salaries and Wages
102-A4 0 Other Costs

See Also
calculate
COHERENT Lexicon: sed

Notes
Please note the tax tables and forms included with /rdb are from 1987. These are examples, and no
claim is made for their accuracy in computing this year’s taxes. Caveat utilitor.

fixtotable — /rdb Command
Converts fixed length format to /rdb table format
fixtotable column [= n1,n2] ... < fixtdb

The command fixtotable converts a data base from fixed-length format to variable length /rdb
format. It does so by selecting n2 bytes of data from table fixtdb, beginning at the n1 position for
each column specified. It inserts tabs between columns and calls the /rdb command compress to
remove leading and trailing blanks. It generates header records from the column names. Column
names that do not specify start position (n1) and field width (n2) are considered empty columns, and
appear as such in the output. Blank records are removed.

Example
For example, let’s look at a file named journal:

LEXICON

196 fillform — fixtotable

1 10 20 30
----+----|----+----|----+----|
820102101 25000
820102211.1 25000
820103150.1 10000
820103101 5000
820103211.2 5000
820104130 30000

The first six bytes are the date field; the next six bytes, starting at position 7 are the account
number field; the next seven bytes, starting at position 13 are the credit field; and the last seven
bytes, starting at position 20 are the debit field.

The following command yanks the account number and the credit and debit fields from journal,
makes a new table with a new field for the description:

fixtotable Account=7,6 Debit=13,7 Credit=20,7 Description < journal

This produces the following table:

Account Debit Credit Description
------- ----- ------ -----------
101 25000
211.1 25000
150.1 10000
101 5000
211.2 5000
130 30000

See Also
compress, tabletofix

foot — /act/gl Command
Foot or subtotal Debits and Credit of ledger
foot

The command foot is part of the accounting/general-ledger system included with /rdb. It subtotals
the accounts in table ledger.

Example
The command foot produces a table that resembles the following:

Account Date Debit Credit Ref Short Description
------- ------ ----- ------ ------- ------- ------------------
1010 851231 1758 cash
1010 851231 5137 cash
------- ------ ----- ------ ------- ------- ------------------
1010 5137 1758

3010 1601 deposit sales
------- ------ ----- ------ ------- ------- ------------------
3010 0 1601

3080 850125 250 c1459 royalty book fees
------- ------ ----- ------ ------- ------- ------------------
3080 0 250

3100 850118 3286 c101 income sales
------- ------ ----- ------ ------- ------- ------------------
3100 0 3286

LEXICON

foot 197

4020 1601 check merch
------- ------ ----- ------ ------- ------- ------------------
4020 1601 0

4370 850101 2 r parking parking at clients
------- ------ ----- ------ ------- ------- ------------------
4370 2 0

4380 850103 15 c115 travel shuttle bus
4380 850104 13 v travel meal
4380 850105 13 c116 travel meal
4380 850106 114 r travel hotel
------- ------ ----- ------ ------- ------- ------------------
4380 155 0

See Also
act

LEXICON

198 foot

getjournal — /act/gl Command
Copy journals for sales, purchasing, pay systems
getjournal journalname

The command getjournal is part of the accounting/general-ledger system included with /rdb. It
copies, totals, and adjusts journals from other parts of the business system. These subsidiary
journals are created automatically by the operations of sales, purchasing, and other departments. It
also gets the inventory value for the table journaladjust.

Example
The command

getjournal journaldeposit

reads the table journaldeposit and prints on the standard output a table that resembles the
following:

Date Amount Account Ref Description
------- ------- ------- ------- --------------------------
891231 13500.00 sales deposit from sales/deposit

See Also
act, consolidate

gregorian — /rdb Command
Convert column of dates for arithmetic and format change
gregorian [-ceu] [Column ...] < tableorlist

The command gregorian converts Julian dates in one or more Columns to Gregorian date. When
used with the command julian, you can do the following:

1. Add days to a date.

2. Subtract days from a date.

3. Subtract two dates to find the number of days between them.

4. Change the format of a date.

A Gregorian date is a string that presents the date of the current year, month, and day; for example
‘‘911231’’. A Julian date, however, is the number of days since the beginning of the Julian calendar
(January 1, 4713 BC). This system is used by astronomers, computer programmers, and other
people who wish to store dates in a form that can be easily translated from one system of dating to
another, without having to worry about leap years, dates of the births of religious figures, etc.
Because Julian dates are integers, you can subtract one from another to find the number of days
between two dates.

LEXICON

getjournal — gregorian 199

To perform arithmetic on dates, first use the command julian to convert the dates from Gregorian
form to Julian. Then, use the command compute to add or subtract the dates (or add a constant to
a date). Finally, use gregorian to convert the sum or the difference back to Gregorian form.

Options
gregorian recognizes the following options:

-c Output computer date format, i.e., YYMMDD. /rdb uses this format by default for its Gregorian
dates because it can be sorted and selected in correct numerical sequence.

-e Output European date format, i.e., DD/MM/YY.

-u Output U.S. date format, i.e., MM/DD/YY.

Example
The first example shows how to add dates. Suppose we have a file called journal, as follows:

Date Account Debit Credit Description
------ ------- ----- ------ ----------------------------------
861222 101 25000 cash from loan
861222 211.1 25000 loan number #378-14 Bank Amerigold
861223 150.1 10000 test equipment from Zarkoff
861223 101 5000 cash payment
861223 211.2 5000 note payable to Zarkoff Equipment
861224 130 30000 inventory - parts from CCPSC
861224 201.1 15000 accounts payable to CCPSC
861224 101 15000 cash payment to CCPSC for parts

Now, suppose that we want to add 45 days to each of the dates. First, see what julian does. Typing

julian Date < journal

prints the following on the standard output:

Date Account Debit Credit Description
------ ------- ----- ------ ----------------------------------
1752827 101 25000 cash from loan
1752827 211.1 25000 loan number #378-14 Bank Amerigold
1752828 150.1 10000 test equipment from Zarkoff
1752828 101 5000 cash payment
1752828 211.2 5000 note payable to Zarkoff Equipment
1752829 130 30000 inventory - parts from CCPSC
1752829 201.1 15000 accounts payable to CCPSC
1752829 101 15000 cash payment to CCPSC for parts

The Date column now holds a Julian date. Note we gave no option because computer format is the
default.

The next command adds 45 days to each entry in the Date column:

julian Date < journal | compute ’Date += 45’ | gregorian Date

This command prints the following on the standard output:

LEXICON

200 gregorian

Date Account Debit Credit Description
------ ------- ----- ------ ----------------------------------
870205 101 25000 cash from loan
870205 211.1 25000 loan number #378-14 Bank Amerigold
870206 150.1 10000 test equipment from Zarkoff
870206 101 5000 cash payment
870206 211.2 5000 note payable to Zarkoff Equipment
870207 130 30000 inventory - parts from CCPSC
870207 201.1 15000 accounts payable to CCPSC
870207 101 15000 cash payment to CCPSC for parts

As you can see, every date is now 45 days later than they originally were.

The next example converts one format of Gregorian date to another. To convert the Date column in
our example table from computer format to U.S. format, type the following:

julian Date < journal | gregorian -u Date | justify Date

The result is as follows:

Date Account Debit Credit Description
-------- ------- ----- ------ ----------------------------------
12/22/86 101 25000 cash from loan
12/22/86 211.1 25000 loan number #378-14 Bank Amerigold
12/23/86 150.1 10000 test equipment from Zarkoff
12/23/86 101 5000 cash payment
12/23/86 211.2 5000 note payable‘to Zarkoff Equipment
12/24/86 130 30000 inventory - parts from CCPSC
12/24/86 201.1 15000 accounts payable to CCPSC
12/24/86 101 15000 cash payment to CCPSC for parts

Because the U.S. format is two characters wider than the computer format, we included the
command justify in our command line to line things up.

See Also
compute, computedate, julian
COHERENT Lexicon: awk, date

LEXICON

gregorian 201

hashkey — /rdb Command

Return the hash offset for key strings
hashkey rows keystring ...

The command hashkey adds the ASCII value of each character in the keystrings (except spaces or
tabs), and returns the modulo of rows. This is for computing the hash offset into hash-index table
for the hash fast-access method. It is used by the command append to update the hash-index
table.

Example
Here we convert several characters. The command

hashkey 11 ABCD

returns 2. (That is, ASCII values 65 plus 66 plus 67 plus 68 yields 266; which, when divided by 11
yields a remainder of 2). The command

hashkey 29 abcdefg

returns 4.

See Also
append ascii, chr
COHERENT Lexicon: ASCII

head line — /rdb Definition

The head line is the first line in an /rdb table. It names each column in the table. Each entry in
the head line must be separated by a tab character.

Example
The table inventory appears as follows:

Item Amount Cost Value Description New
---- ------ ---- ----- -------------- -------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

The first line

Item Amount Cost Value Description New

LEXICON

202 hashkey — head line

is this table’s head line.

See Also
dash line, listtotable, tabletolist

headoff — /rdb Command

Remove an /rdb head from both table and list files
headoff < tableorlist

The command headoff ‘‘beheads’’ tableorlist; that is, it strips off its header. Tables have two-line
column heads; list files have only one line that consists of a single newline character. The
COHERENT command tail +3 does the same thing for a table; and tail +2 for a list.

The command union uses headoff to assemble files. Only the first file keeps its head.

Example
To behead the table inventory, type:

headoff < inventory

This writes something like the following on the standard output:

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

See Also
headon, insertdash, union
COHERENT Lexicon: head, tail

headon — /rdb Command

Add an /rdb header to a table
headon < table

The command headon appends an /rdb header onto table. Tables have a two-line column head.
When you have a table without an /rdb header, perhaps created by another program, you can add a
head to it. You can also do this in a pipe and send the new table to other /rdb commands for
processing.

Example
If you want to treat the file /etc/passwd as a table for /rdb command processing, use headon, as
follows:

tr ’:’ ’ ’ < /etc/passwd | headon | justify

Note the use of the COHERENT command tr to translate a colon ‘:’ into a tab character; and the use
of the /rdb command justify to align the columns. This produces something like the following:

LEXICON

headoff — headon 203

1 2 3 4 5 6
------ ------------- --- --- --------------- -------------
root dVAYxSsJy10Fg 0 3 Super User /
daemon 1 12 background /
bin rVOhF49RpZXEY 2 2 binary programs /bin
uucp 5 1 UUCP /usr/lib/uucp
lp 71 2 Line Printer /usr/spool/lp
guest 100 100 Guest User /usr/guest
rod 0 0 Rod Manis /usr/rod

Be sure the first line of the table has no blank fields or headon counts the wrong number of fields.

See Also
headoff, insertdash, justify, rmblank
COHERENT Lexicon: passwd, tr

helpme — /rdb Command

List the help commands available
helpme

The command helpme lists all other /rdb help commands.

Example
Typing helpme prints the following on the standard output:

Command Description
------------------ --
"menu" a menu with some commands
"rdb" a list of the available commands
"commands" description and syntax of all the commands
"whatis command" description and syntax of command
"whatwill feature" info on commands with that feature
"man command" the manual page for that command

howmany — /rdb Command

Display the number of commands in a directory
howmany

The command howmany displays the number of the commands it finds in directory $RDB/bin.

See Also
rdb, whatis, whatwill

LEXICON

204 helpme — howmany

index — /rdb Command

Set up table for search
index [-m[bhirs]] [-x] [-hsl [2> location]] tableorlist [keycol ...] [< keytable]

The command index sets up a table for the program search. The indexing it performs increases the
speed with which search can find a row in a table or list file. This is very important for large files.

Exactly what index does depends upon the method of indexing you choose. For some methods, it
builds another table, called a secondary index file, that the specified method requires. It is possible
to index one file by all five methods. Some methods can index all of a table’s columns.

Please note that these fast-access methods are static. If the table or list is changed — by a text
editor, for example — it may have to be reindexed. Applications should manipulate the table or list
files and their secondary index to update them together. Forms packages should dynamically
maintain these files.

There is a trick to allow you to index any or all of the columns in a file. Simply use the COHERENT
command ln to link the file to as many different names as you have columns to index. Then index
the table through each of its link aliases. For details, see the COHERENT Lexicon’s entry for ln.

Options
The following options control the method of indexing that index produces:

-m Index using the default method, which is sequential. See -ms, below.

-mb Binary indexing. index simply sorts the file on the specified key column. No secondary file
is created. Because a file can only be sorted on one column, only one column can be
indexed using this method. The command sorttable gives the same result as this option.

-mh Hash indexing. index builds a secondary-index file, named tableorlist.h, hashes all of the
key-column’s values, and writes them and their offsets to the secondary-index file. Please
note that because the COHERENT system places a limit of 14 characters on a file name, the
name of tableorlist must not exceed 12 characters, or index will not be able to name
correctly the secondary-index file.

-mi Inverted or indexed indexing. index builds a secondary-index file of keys and offsets, then
sorts on the keys. The secondary file is named tableorlist.i. The trick to index more than
one column, previously discussed, alsos work for the inverted method.

If you plan on using the incomplete-match feature of search (which works only with the
inverted method), you must specify the -x flag, so the secondary index is sorted properly.

-mr Record-number indexing. index builds a secondary file named tableorlist.r, which is one
fixed-length column of row offsets.

LEXICON

index 205

-ms Sequential or linear indexing. index does nothing in this case, because search simply looks
through the whole file.

The following options control details of index’s output:

-h No head line on the output table.

-l Write to the standard error the starting and stopping location of each row, and the offset
entry in the secondary-index file. These numbers are used by the commands replace, lock,
and unlock. The command seek uses this option to find the locations of rows. The
locations are sent to standard-error device, which under the Bourne and Korn shells is file
descriptor 2; thus, you can redirect them into a file by using the shell operator 2>. You can
store these data until they are needed by your shell programs.

This option produces four integers. If there is no secondary-index file, the start location is
zero.

-s Only one row is found. This speeds up some of the methods because they do not have to
continue searching after they find the first match. The sequential method will, on average,
run twice as fast; whereas the hash, binary, and inverted methods will run slightly faster.
The record-access method will not change, as it only finds one match anyway.

Methods and Suffixes
The following gives suffixes that index appends to names of tables, in order to name its secondary-
index files.

Method Suffix Example
-b None ...
-h .h inventory.h
-i .i inventory.i
-r .r inventory.r
-s None ...

Example
Let’s look at the first ten lines of an accounts chart, named chart:

Account Name
------- ----------------------
100 Assets
101 Cash
111 Accounts Receivable
111.1 Allowance for Bad Debt
115 Notes Receivable
120 Deposits
130 Parts Inventory
150 Equipment

Access to the data in chart can be sped up by indexing it and using the command search to find
the row you want. To index chart using the binary (sorted) search method, type:

index -mb chart Account

index quietly returns when it finishes. You are now ready to use search to find an Account
number in the chart

See Also
append, delete, lock, replace, search, unlock, update
COHERENT Lexicon: ln

LEXICON

206 index

insertdash — /rdb Command

Insert dash line as second line in table
insertdash < table-without-dashline

The command insertdash writes a line of dashes (hyphens) as the second line of the table. It makes
the dash line by copying the head line and turning every character in the first into a hyphen except
the tabs.

This command is useful for files created by the system or non-COHERENT programs that do not
have the dash line. However, you will also need to convert field separators into tabs. You can do
this with the COHERENT commands tr or sed.

Example
insertdash assumes a table that resembles the following:

Item Amount Cost Value Description
1 3 50 150 rubber gloves

After running insertdash on it, this table looks like this:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves

See Also
dashline, headoff, headon
COHERENT Lexicon: sed, tr

intersect — /rdb Command

Write table of rows that are in both input tables
intersect table1 table2

The command intersect is a shell script that uses the COHERENT commands sort and uniq to
perform a logical AND on two tables. It produces a new table that consists only of the rows that are
in both of the input tables. The two input tables must have the same number of columns (called
union compatible), and rows must match exactly to be considered the same.

Example
Consider the table journal, which appears as follows:

Date Amount Account Ref Description
------- ------- ------- ------- --------------------------------
820107 14.00 meal v meal with jones
820114 81.80 insur c car insurance allstate
820119 81.72 vitamin c sundown vitamins
820121 20.83 meal v meal with scott
820121 2500.00 keogh c keogh payment
820125 99.00 dues v dues to uni-ops unix conference

And consider the table carexpense, which appears as follows:

Date Amount Account Ref Description
------- ------- ------- ------- --------------------------------
820113 101.62 car v car repairs
820114 81.80 insur c car insurance allstate
820114 93.00 car c car registration dmv

LEXICON

insertdash — intersect 207

To see if any rows in journal are also in carexpense, type the command:

intersect journal carexpense

In this example, you would see the following on the standard output:

Date Amount Account Ref Description
------- ------- ------- ------- --------------------------------
820114 81.80 insur c car insurance allstate

As you can see, the insurance expense was already posted to the general journal.

See Also
difference, jointable, union
COHERENT Lexicon: sort, uniq

invoice — /act/sales Command

Print invoice for a sale order
invoice

The command invoice is part of the accounting/sales system that is included with /rdb. It prompts
for the number of a sales order and then prints an invoice for that order.

Example
The following walks you through an example session with invoice:

Please enter order number (or Return to exit): 1
Invoice

Makeapile, Inc., 123 Bigbucks Blvd., Dallas, TX 12345, 1-800-SOF-WARE

Order Number 1
Date Ordered 850723
Date Shipped 0

Mailing Address for Customer Number 2
Customer Number 2
Mr. Thomas Boomer President

Ye Olde Thermonuclear Bombe Shoppe
54321 Blooy Road
Livermore, California USA

Order Number Code Backord Qty Price Total Name
------- ------- ------- ------- ------- ------- ------- ----
1 1 rdb 10 1 1500 1500.00 /rdb

Gross 1500.00
Tax 75.00
Total 1575.00

Please enter order number (or Return to exit):

See Also
act, cstate

LEXICON

208 invoice

jointable — /rdb Command

Join two tables into one where keys match
jointable [-a[1|2]] [-j[1|2] column]... -n -] table1 [table2]

The command jointable joins table1 to table2 on column, which is common to both tables (called
the key column). If no column is named, jointable assumes that the first column in each table is the
key column.

Each table must be sorted on the key column. jointable writes a new table that has one row for the
rows in the tables whose values in the key column match. The columns of the new table are all the
columns in table1 followed by all the columns in table2— with the sole exception that the key
column is not repeated.

This is called a natural join. An equi-join repeats the key column.

The COHERENT system’s command join will also join two tables in the manner described above,
but it does not know about /rdb head lines.

String vs. Numeric Sort
The commonest problem seen with jointable is when users attempt to join tables that have been
sorted numerically on the key columns (that is, the columns that the tables are going to be joined
on). They use sorttable with the -n option (for numeric) to sort a table, then call jointable.
jointable, however, expects to see a string sort fails to join the tables correctly.

The following compares a string sort with a numeric sort:

String Numeric
1 1
10 2
2 10
20 20

Can you see why? Numeric is the way we count and is obviously correct. But string sort looks at
the first character, then the second. A space sorts ahead of ‘0’, so ‘1’ comes before ‘‘10’’. More
importantly, ‘1’ comes before ‘2’ regardless of the characters to the right. That is why ‘‘10’’ comes
before ‘‘2’’ followed by a space. This problem shows up as empty output from a jointable, when you
know some of the rows should be joined.

Right-justification makes numeric and string sorts the same. The leading spaces help the string
sort to sort numbers correctly.

To make it easy for users to avoid this problem, jointable has the option -n, for symmetry with the
COHERENT command sort.

If you want to join two tables through a numeric key column, you must either call the sorttable
without its -n numeric sort option, so that it defaults to string sort; or if you use the -n option for
sorttable, be sure to use it also with jointable.

LEXICON

jointable 209

Options
jointable recognizes the following options:

-an All or one of the files (1 or 2) is output, whether it matches or not. In addition to the normal
output, jointable produces a line for each unpairable line in file n, where n is 1 or 2. For
example, the command

jointable -a1 ledger chart

forces jointable to print every row in table ledger, regardless of whether any value in
ledger’s Account column matches any value in chart’s Account column.

-jn column
Join on the column column in table number n. If n is missing, use the column column in
each table. For example, the command

jointable -j1 Account -j2 account ledger chart

joins tables ledger and chart using the Account column in ledger and the account column
in chart. If no columns are specified with this option, jointable joins the tables by the first
column in each. Thus, this option lets you join on any column defined in either file, even
when they have different names and locations.

-n Numeric join. This means that table1 and table2 were sorted with the numeric option -n.
Remember that if you use -n with the command sorttable, you must also use it with
jointable.

- Read the standard input in place of a table. For example, the command

sorttable < journal | jointable - chart

means to sort table journal, then join it with table chart so that journal is on the left of the
output table and chart is on the right.

Note that this option is used only in place of table1. If table2 is absent from the command
line, jointable automatically reads the standard input for that table’s data.

Note that most of these options are about the same as for the COHERENT command join.

Example
Consider table chart, as follows:

Account Name
------- ----
100 Assets
101 Cash
111 Accounts Receivable
111.1 Allowance for Bad Debt
115 Notes Receivable
120 Deposits
130 Parts Inventory
...

and table ledger, as follows:

LEXICON

210 jointable

Account Date Debit Credit
------- ---- ----- ------
101 820102 25000
101 820103 5000
101 820104 15000
130 820104 30000
150.1 820103 10000
201.1 820104 15000
211.1 820102 25000
211.2 820103 5000

Note that each is sorted in string fashion on its first column. To join them, use the command:

jointable ledger chart

This joins the tables on the first column in each, and writes the following to the standard output:

Account Date Debit Credit Name
------- ---- ----- ------ ----
101 820102 25000 Cash
101 820103 5000 Cash
101 820104 15000 Cash
130 820104 30000 Parts Inventory
150.1 820103 10000 Test equipment
211.1 820102 25000 Notes Payable - BA
211.2 820103 5000 Notes Payable - Z Equip

As you can see, column Name has been added to the columns of the ledger table, and that column
Account is not repeated. Also note that jointable wrote only the rows whose values in column
Account match. If a table has several rows with repeated key values (e.g., the three 101s in the
Account column), the joined table’s rows are also repeated (see the three Cashs in column Name).

If you have a table named journal that is sorted on column Account, as follows

Date Account Debit Credit
---- ------- ----- ------
820104 101 15000
820103 101 5000
820102 101 25000
820104 130 30000
820103 150.1 10000
820104 201.1 15000
820102 211.1 25000
820103 211.2 5000

you could join it with table chart by typing this command:

jointable -j Account journal chart

The following gives another way for the same result (because chart’s join column defaults to column
1):

jointable -j1 Account journal chart

Both commands produce the following output:

LEXICON

jointable 211

Date Account Debit Credit Name
------ ------- ----- ------ ----
820104 101 15000 Cash
820103 101 5000 Cash
820102 101 25000 Cash
820104 130 30000 Parts Inventory
820103 150.1 10000 Test equipment
820102 211.1 25000 Notes Payable - Bank of Amerigold
820103 211.2 5000 Notes Payable - Z Equipment

The -a option lets you see all of one table whether or not there is a match. For example, the
command

jointable -a1 ledger chart

writes the following:

Account Date Debit Credit Name
------- ---- ----- ------ ----
101 820102 15000 Cash
101 820103 5000 Cash
101 820104 25000 Cash
130 820104 30000 Parts Inventory
150.1 820103 10000 Test equipment
201.1 820104 15000
211.1 820102 25000 Notes Payable - Bank of Amerigold
211.2 820103 5000 Notes Payable - Z Equipment

Note that column Account’s value 201.1 in the ledger shows up here, even though it is not in
chart. This shows us that 201.1 is an error. All account numbers should be in the chart of
accounts. We should either add 201.1 to the chart of accounts, or find the correct number in the
chart of accounts and replace 201.1 in the journal with the correct account number.

If you pipe a file into a jointable, you can control which table it will be (first or second) by using the
dash option. For example:

sorttable Account < journal | jointable -j Account - chart

This produces the following output:

Date Account Debit Credit Name
---- ------- ----- ------ ----
820103 101 5000 Cash
820104 101 15000 Cash
820102 101 25000 Cash
820104 130 30000 Parts Inventory
820103 150.1 10000 Test equipment
820102 211.1 25000 Notes Payable - Bank of Amerigold
820103 211.2 5000 Notes Payable - Z Equipment

Note the - before chart. It says that the standard input file will be file 1 or on the left side of the
table.

See Also
column, sorttable
COHERENT Lexicon: join

LEXICON

212 jointable

julian — /rdb Command

Convert column of dates for arithmetic and format change
julian [-ceu] [Column ...] < tableorlist

The command julian converts Gregorian dates in one or more columns to Julian format. For details
on the differences between Gregorian and Julian dates, and how to use these commands in scripts,
see the manual entry for the command gregorian.

See Also
computedate, gregorian, todaydate

justify — /rdb Command

Left or right justify the columns of a table
justify [-elrct’c’] [column ...] < table

The command justify right-justifies the columns that contain only numbers, and left-justifies the
columns that contain any nonnumeric characters. It also lines up floating-point numbers on their
decimal points.

justify improves the appearance of a table. This makes it easier for you to read and edit. It also
makes a column of variable-length strings into one length, by padding each string with spaces on
the right. Note that the extra spaces inserted to improve a table’s appearance could easily double or
triple the size of the table. This increased size not only takes up disk space, but slows processing of
table. You must decide whether appearance or size is more important.

Options
justify recognizes the following options:

-e Expand the column to the next tab stop. Ordinarily, a column is only as wide as the widest
data or column name. This improves the appear, but increases the size of the file.

The following options override the default justifications (left-justify character strings, right-justify
numbers):

-l (This is the letter ‘‘el’’, not the number one.) Left-justify all named columns.

-c Center all named columns.

-r Right justify all named columns.

These options are sticky, meaning that if you follow an l, c, or r option with several column names,
each is treated according to the option. For example, -l Description Account left justifies both
Account and Description, regardless of the data each contains.

-t´c´ Use the character c as the column separator instead of tab. c can be any ASCII character.
Note, however, that once you process a table with this option, you can no longer use /rdb
commands on it, because all /rdb commands require tabs as column separators. See the
command trim for a discussion of how you can protect special characters from the shell.

Example
One use of justify is to align columns. Variable-length character columns (like names and
descriptions) destroy the alignment of columns. For example, notice how the variable-length names
cause the tabs to break at different points in the following table:

LEXICON

julian — justify 213

Name Credit
---- -------
Anderson 23.49
Ho 145.98
Johnson 1.15

One solution is to move the variable length column to the last column:

column Credit Name < credit

The table now appears as follows:

Credit Name
------- ---------------
23.49 Anderson
145.98 Ho
1.15 Johnson

Another solution is to use justify to right-pad the Name column, and (while we’re at it) align the
floating point number in the Credit:

Name Credit
-------- ------
Anderson 23.49
Ho 145.98
Johnson 1.15

Remember that the file is now larger. All of those extra blank spaces can double or triple the size of
your file.

It is easier to enter the initial data into a table without the padding characters. Then you can use
justify to pretty up the table.

When using the command listtotable to convert a list-format file to a table, you may wish to use
justify to make the resulting table readable.

See Also
column, compresss, listtotable, trim

LEXICON

214 justify

label — /rdb Command

Print mailing labels from a mailing list
label < list

The command label prints mailing labels from a mailing list, in list format. This command is
obsolete because the command report can make labels more easily; but it is is retained as an
example of shell programming.

label is a shell script so you can change it easily to handle different lists and labels.

Example
If you had a file called maillist that looked like this:

Number 1
Name Ronald McDonald
Company McDonald’s
Street 123 Mac Attack
City Memphis
State TENN
ZIP 30000
Phone (111) 222-3333

Number 2
Name Chiquita Banana
Company United Brands
Street Uno Avenido de la Reforma
City San Jose
State Costa Rica
ZIP 123456789
Phone 1234

The command

label < maillist

generates mailing labels that look like this:

Ronald McDonald
McDonald’s
123 Mac Attack
Memphis, TENN 30000

Chiquita Banana
United Brands
Uno Avenido de la Reforma
San Jose, Costa Rica 123456789

LEXICON

label 215

See Also
letter, report

length — /rdb Command

Return the length of its argument or input file
length [string] [< file]

The command length outputs the number of characters in its first argument. If there is no
argument, it reads the standard input.

Because length counts only its first argument, you must put quotation marks around all of the
words on the command line to make them one argument.

length uses wc -c to do the counting.

Example
Here we find the length of a string and a file.

length aA1

This returns 3.

The next command

length ’word1 word2’

returns 11 — that is, the length of word1 plus word2 plus the space between them.

The final example measures the number of characters in file length.1:

length < length.1

Note that you need must quote strings if they have spaces or tabs in them.

See Also
COHERENT Lexicon: wc

letter — /rdb Command

Print form letters from a mailing list
letter letter.1 ... < maillist

The command letter prints form letters from a standard letter and a mailing list. It is obsolete,
because the command report is so much more powerful and easier to use; but it is retained for
compatibility and as an example of shell programming.

letter is a shell script, so you can be easily changed it to handle different lists and letters. To
modify it, copy letter from $RDB/bin/letter to your local directory, then use your text editor to edit
it. Then you can modify it with a text editor to handle any special features of your mailing list and
letters.

Example
If you have a file called maillist that looks like this:

LEXICON

216 length — letter

Name Ronald McDonald
Company McDonald’s
Street 123 Mac Attack
City Memphis
State TENN
ZIP 30000
Phone (111) 222-3333

Name Chiquita Banana
Company United Brands
Street Uno Avenido de la Reforma
City San Jose
State Costa Rica
ZIP 123456789
Phone 1234

Assume, too, that the two parts of your letter are in two files. letter.1 contains:

We have a new product that we want to sell to everyone at

And letter.2 contains:

Please have everyone send us an order. We will be very grateful.

Sincerely,

Mr. Marketing
Makeapile, Inc.

To assemble the letter files and the mailing list into one set of mail-merged letters, type the following
command:

letter letter.1 letter.2 < maillist

This produces:

Ronald McDonald
McDonald’s
123 Mac Attack
Memphis, TENN 30000

Dear Ronald McDonald:

We have a new product that we want to sell to everyone at
McDonald’s. Please have everyone send us an order. We will be
very grateful.

Sincerely,

Mr. Marketing
Makeapile, Inc.

< ... spaces to bottom of letter ... >

LEXICON

letter 217

Chiquita Banana
United Brands
Uno Avenido de la Reforma
San Jose, Costa Rica 123456789

Dear Chiquita Banana:

We have a new product that we want to sell to everyone at United
Brands. Please have everyone send us an order. We will be very
grateful.

Sincerely,
Mr. Marketing
Makeapile, Inc.

< ... spaces to bottom of letter ... >

The following sample letter program prints out the mailing name and address, and the salutation
Dear Name. It then cats letter.1, echos the company name, and finally cats letter.2. letter writes
its output to temporary file TMP, then nroff’s the TMP file to the standard output. nroff reformats
the file (left and right justified) for each company name’s length.

By studying the letter shell script and the COHERENT shell’s documentation (sh or ksh), you can
assemble fancy, complex form letters.

See Also
label, report
COHERENT Lexicon: cat, ksh, nroff, troff, sh

like — /rdb Command

Find names that sound like another name
like similar-name file [name-column]

The command like converts a name to Knuth’s soundex code and looks it up in the .x secondary-
index file of a name. To work, you must have first run the command soundex, to create the
soundex file.

Example
See soundex for examples.

See Also
soundex

listtosh — /rdb Command

Convert list format to shell variable
listtosh < list

The command listtosh converts a list-format file (column<tab>data) to a shell variable format
(VARIABLE=’value’). You can use this to move a record into a shell variable.

Example
Consider file maillist:

LEXICON

218 like — listtosh

Number 1
Name Ronald McDonald
Company McDonald’s
Street 123 Mac Attack
City Menphis
State TENN
ZIP 30000
Phone (111) 222-3333

Number 2
Name Chiquita Banana
Company United Brands
Street Uno Avenito De La Revolution
City San Jose
State Costa Rica
ZIP 123456789
Phone 1234

The command

eval ‘row ’Number == 2’ < maillist | listtosh‘

transforms the mailing list into the following format:

Number=’2’
Name=’Chiquita Banana’
Company=’United Brands’
Street=’Uno Avenito De La Revolution’
City=’San Jose’
State=’Costa Rica’
ZIP=’123456789’
Phone=’1234’

Once this is done, test the transformation by typing:

echo "$Name’s phone number is $Phone."

This writes the following on the standard output:

Chiquita Banana’s phone number is 1234.

See Also
tabletolist

listtotable — /rdb Command

Convert from list to table format
listtotable [-el] < listfile

listtotable converts a file in list format to table format. Some /rdb programs must see files in table
format, so the conversion is necessary.

In addition, table-formatted files are processed faster than list-formatted files. Any time you send a
list-formatted file through a pipe of two or more programs, even if they can handle list format,
convert them to table format so that the programs in the pipe will run two or three times faster on
average.

The reason that table-formatted files run so much faster is that a list file is often two or three times
larger than a table because of the repeated column names. Therefore, when handling list-formatted
files, the programs have to process two or three times as many characters.

LEXICON

listtotable 219

Options
listtotable recognizes the following options:

-e Expand each column to next tab stop. Ordinarily, table columns heads are only as wide as list
column heads.

-l No head line in the list file. This option makes it possible to convert and sometimes use the
older list-formatted files.

Earlier versions of /rdb did not require the leading newline in the list-formatted file; however,
this requirement was added by later editions of /rdb to make it easy for its commands to
distinguish a list file from a table.

List and Table-Format Rules
List format looks like this:

Number 1
Name Ronald McDonald
Company McDonald’s
Street 123 Mac Attack
City Memphis
State TENN
ZIP 30000
Phone (111) 222-3333

Number 2
Name Chiquita Banana
Company United Brands
Street Uno Avenido de la Reforma
City San Jose
State Costa Rica
ZIP 123456789
Phone 1234
...

Remember there are three rules for constructing a list-format file:

1. The first character in the file is a newline. Be sure that there are no unseen spaces, tabs, or
nonprinting characters on the first line, or things will get quite messed up.

2. Each line consists of two columns separated by a tab. The first column is gives the column’s
name, and the second column gives its values.

3. A newline character follows each row (record).

And there are three rules for contructing a table, as follows:

1. One tab between each column in a row, and a newline at the end.

2. Name of the column at the top of the column, in the first line of the file.

3. A dash line as the second line in the file.

Example
The command

listtotable < maillist

converts list file maillist into table format. The result appears as follows:

LEXICON

220 listtotable

Number Name Company Street City State ZIP Phone
------- ------- ------- ------- ------- ------- ------- -------
1 Ronald McDonald McDonald’s 123 Mac Attack Memphis
TENN 30000 (111) 222-3333
2 Chiquita Banana United Brands Uno Avenito De La
Revolution San Jose Costa Rica 123456789 1234

When you look at this messy table, you can see the need for list format. The information in each
column is often too wide for the screen and wraps around to the next line.

See Also
tabletolist

Notes
If you use this command with a table instead of a list file, you will see a mess.

lock — /rdb Command

Lock a record or field of a file
lock filename processid from to indexfrom indexto

The command lock locks filename by writing a row into the lock file /tmp/Lfilename, which
contains one line for each locked record or field. Its command line contains the following
arguments:

processid
The process identifier of the program that locks filename.

from The beginning point of the bytes to be locked.

to The end point of the bytes to be locked.

indexbegin
The beginning point of the index entry for the data being locked.

indexend
The end point of the index entry for the data being locked.

When a process attempts to lock a string of bytes that is already locked, lock returns an error
condition. You can test for this by using the COHERENT command test to test the shell variable
$?.

Example
Let’s use lock on table inventory, which appears as follows:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

First, use seek to locate the record and return the offset and size, as follows:

LOCATION=‘echo 5 | seek -mb inventory Item‘
echo $LOCATION
207 245 0 8

LEXICON

lock 221

This means that the record is offset 207 bytes into file inventory, and that it is 38 bytes long,
ending at byte 245. The 0 and 8 mean that there is no secondary index file.

Now we can call lock to lock the record:

lock inventory $$ $LOCATION

Note that we use the shell variable $LOCATION to supply the arguments from and to. We also use
the built-in shell variable $$ to write the process identifier on the command line.

The lock /tmp/Linventory has the following contents:

207 245 0 8

See Also
seek, unlock
COHERENT Lexicon: test

lowercase — /rdb Command

Transform text to lower case
lowercase [string ...] [< file]

The command lowercase converts to lower case every letter in string or file. If there are no
arguments, it reads and converts the standard input. It uses tr, the COHERENT character-
translation command, to do the converting.

Example
The command:

lowercase BIG WORDS

prints

big words

on the standard output.

If the file CAPITALS contains the string

THESE ARE ALL CAPS.

then the command

lowercase < CAPITALS

prints on the standard output:

these are all caps.

See Also
cap, uppercase
COHERENT Lexicon: tr

LEXICON

222 lowercase

maximum — /rdb Command

Display the maximum value in a column
maximum [-l] [column ...] < table

The command maximum displays the maximum value of each column. If no column appears on the
command line, maximum returns the maximum value in every column in table.

The -l option writes the table to the standard output, as well as the minimum value for each named
column.

Example
For an example of this command, see the entry for total.

See Also
mean, minimum

mean — /rdb Command

Display the mean of a column
mean [-l] [column ...] < table

mean displays the mean value of each column. If no column appears on the command line, mean
returns the mean value for each column in table.

mean assign the value of zero to a blank line. This changes the value of the mean. If that is not
what you want, use the command rmblanks or compress -b to remove blank lines. mean also
treats blank values as zero

The option -l prints the contents of the table, as well as the mean value for each named column.

Example
For an example of this command, see the entry for total.

See Also
maximum, minimum

menu — /rdb Command

Root menu with some COHERENT commands
menu

The command menu displays a table of commands that you can execute by simply typing a number
or a name. Menus are useful for inexperienced users. Experienced users can set up a menu very
easily.

menu is a shell script that simply echos the menu table of choices, then waits for the user to type a
number or name. Then menu uses a shell case statement to execute a command or series of

LEXICON

maximum — menu 223

commands for each choice. To set up your own menus, simply copy the menu shell command from
the $RDB/bin into your directory, then edit it. You should change its name to Menu or
Menu.something, to keep from confusing /rdb.

There is a sample local menu, named Menu in directory $RDB/demo.

Example
The following gives an example menu:

COHERENT MENU
Number Name For
------- ------- --

0 exit leave menu or return to higher menu
1 Menu goto another local menu (if any)
2 sh get COHERENT shell
3 vi edit a file
4 mail read mail
5 send send mail to someone
6 cal see your calendar
7 who see who is on the system
8 ls list the files in this directory
9 cat display a file on the screen

10 rdb display rdb commands

Enter a number or name for the action you wish or DEL to exit:

menu waits for you to type your choice of number or name. Numbers are quicker to type, but
names are more easily remembered, and help you learn how to do things at the shell level.

Setting Up Your Own Menus
You can automate your operations with menus. If you have naive users who might have trouble
learning or remembering the COHERENT or /rdb commands, you can set up menus for them. Also,
when you have an operation in which a few commands are repeatedly executed, you can put them
into a menu for simple choice.

You can put your menus in the directories in which they will be used or in your $HOME/bin or
other bin directory.

To start, go to the directory of your choice and copy the $RDB menu to your directory:

cp $RDB/bin/menu Menu

or

cp $RDB/demo/Menu .

We suggest the convention of using the name Menu with the capital ‘M’ so it appears at the top of
your list of files when you do an lc command.

You can then name submenus; for example, Menu.other where other is something that suggests the
kinds of commands the menu displays.

Now edit the Menu file. As you study the code, you will find that it is very easy to create your own
directory.

Menu is in two parts. The first part is the menu table:

LEXICON

224 menu

cat << SCREEN
$CLEAR COHERENT MENU
Number Name For
------- ------- -------------------------

0 exit leave menu or return to higher menu
1 Menu goto another local menu (if any)
2 sh get unix shell
3 vi edit a file
4 mail read mail
5 send send mail to someone
6 cal see your calendar
7 who see who is on the system
8 ls list the files in this directory
9 cat display a file on the screen

10 rdb display rdb commands

Please enter a number or name for the action you wish or DEL to exit:

SCREEN

The command cat simply sends to the screen everything after the command and before the line that
begins with SCREEN, including the line that begins Please enter a number.

The shell replaces $CLEAR on the first line with a sequence of characters that clears the terminal.
$CLEAR must have been set by the following command in the menu or in the .profile file of the
user:

CLEAR=‘clear‘

The second part of Menu is a large case statement that you can edit to do what you want. Here is a
sample:

read ANSWER COMMENT

case $ANSWER in

0|exit) exit 0 ;;
1|Menu) Menu ;;
2|sh) sh ;;
3|vi)

echo ’Which file or files do you wish to edit’
read ANSWER COMMENT
vi $ANSWER $COMMENT
;;

4|mail) mail ;;
5|send)

echo ’Please enter login name of person to send mail to’
read ANSWER COMMENT
echo ’Type you letter, and end by typing Ctrl-d’
mail $ANSWER
;;

6|cal) (cd ; calendar) ;;
7|who) who ;;
8|ls) ls ;;
9|cat)

echo ’Please enter the name of the file you wish to see’
read ANSWER COMMENT
cat $ANSWER
;;

LEXICON

menu 225

10|rdb) menu.rdb ;;
*) echo ’Sorry, but that number or name is not recognized.’ ;;
esac

The command read waits for the user to enter his choice. The first word typed is assigned to the
shell variable ANSWER. If the user types any more words, they are assigned to variable COMMENT,
which might be used in your commands.

Next is the case statement that examines $ANSWER to decide which command to execute. Note
that the number and name are separated by a vertical-bar character ‘|’ to mean or:

0|exit) exit 0 ;;

This line is selected if type either 0 or exit. The command exit is then executed. The double
semicolons ‘‘;;’’ are required to show the end of the commands for this case statement.

Each case statement can hold any command or series of commands that you could type at your
terminal. esac at the bottom is case spelled backwards; it marks the end of the whole case
statement.

The expression *) catches any pattern that does not match earlier patterns. In this case, a message
is displayed. The pound sign ‘#’ marks the beginning of a comment.

You have great power to do things as a result of the user selecting a choice. Of course, you need to
match the name and number in your menu table with the patterns in the case statement; it is easy
to edit the first part and forget to edit the second.

See Also
COHERENT Lexicon: case, cat, clear, echo, esac, ksh, read, sh

minimum — /rdb Command

Display the minimum of each column selected
minimum [-l] [column ...] < table

The command minimum returns the lowest value of each column in table. If no column is named on
the command line, minimum returns the minimum value for every column in table. Blank lines are
given the value of zero.

Option -l returns the contents of table, as well as the minimum value of each column.

Example
For an example of using the command in a script, see the total

See Also
maximum, mean, total

LEXICON

226 minimum

not — /rdb Command

Logical not, to reverse return status of command
not command ...

The command not converts a return status of zero to 255, and any nonzero return status to zero.
Thus, true becomes false and vice versa. This is used to test a command for not true or false.

Example
This example shows how not reverses the return code of the COHERENT command true:

true ; echo $?

This command returns zero. On the other hand, the command

not true ; echo $?

returns 255.

See Also
COHERENT Lexicon: false, true

number — /rdb Command

Insert a column-row number into a table or list
Number < tableorlist

The command number creates appends a new column to the beginning of a table, or as the first
field in a list. The newly created column contains the number of each row in the table. Unlike the
related command Number, number writes the word ‘‘number’’ in lower-case letters as the header on
the column.

Example
For example, consider the following table, called inventory:

Item# Amount Cost Value Description
------- ------- ------- ------- ---------------

1 3 5.00 15.00 rubber gloves
2 100 0.50 50.00 test tubes
3 5 8.00 40.00 clamps
4 23 1.98 45.54 plates
5 99 2.45 242.55 cleaning cloth
6 89 14.75 1312.75 bunsen burners
7 5 175.00 875.00 scales

Typing the command

number < inventory

LEXICON

not — number 227

yields the following result:

number Item# Amount Cost Value Description
------- ------- ------- ------- ------- ---------------

1 1 3 5.00 15.00 rubber gloves
2 2 100 0.50 50.00 test tubes
3 3 5 8.00 40.00 clamps
4 4 23 1.98 45.54 plates
5 5 99 2.45 242.55 cleaning cloth
6 6 89 14.75 1312.75 bunsen burners
7 7 5 175.00 875.00 scales

Note that the first column is the new number column.

See Also
Number, addcol, column, jointable, rename

Notes
To change the name of a column, use the command rename. To move the row-number column to a
different position within its table, use the command column. If you want to change the name of the
number column to something else, use the command rename.

Number — /rdb Command

Insert a column-row number into a table or list
Number < tableorlist

Number creates appends a new column to the beginning of a table, or as the first field in a list. The
newly created column contains the number of each row in the table. Unlike the related command
number, Number capitalizes the column heading — that is, the name of the command sets the
name of the column.

See Also
number

Notes
To change the name of a column, use the command rename. To move the row-number column to a
different position within its table, use the command column. If you want to change the name of the
number column to something else, use the command rename.

LEXICON

228 Number

pad — /rdb Command

Add extra spaces at end of last column
pad [-number] < tableorlist

The command pad adds extra spaces to the end of the last column of each record in tableorlist.
number gives the number of spaces to add to the last column. The default is 70.

pad is useful for preparing up a file for updating by the command update. update writes an edited
record back into the file in the same place it was taken out. If you add characters while editing the
record, it will not fit.

The command replace looks for trailing and leading spaces to trim, to fit the record back. If it does
not find enough room, it appends the record to the end of the file. Padding gives each record a fixed
number of extra spaces to be trimmed as needed.

The traditional solution is to use fixed-length records and fields. To do this, you can use the
command justify to pad the file; but this often increase the file by two or three times. That makes
the file much larger, and increases the time needed to process it. pad lets you control how much
larger each record will be.

Example
To pad file maillist, type:

pad < maillist > tmp

To see the results, pipe the results to the command see:

pad < maillist | see

The following appears on the standard output:

LEXICON

pad 229

Number^J1$
Name^JRonald McDonald$
Company^JMcDonald’s$
Street^J123 Mac Attack$
City^JMenphis$
State^JTENN$
ZIP^J30000$
Phone^J(111) 222-3333 $
$
Number^J2$
Name^JChachita Banana$
Company^JUnited Brands$
Street^JUno Avenito De La Revolution$
City^JSan Jose$
State^JEl Salvadore$
ZIP^J123456789$
Phone^J1234 $
$

Note the dollar signs, which mark the end of the line, are far to the right of the last column, Phone.
Those are the 70 extra spaces that have been added; 70 being the default number of spaces. On
such a small record, that is probably far too many.

Technical
Note that column Phone already had a value in it. If a value is already in the last column, pad
overwrites the spaces. If the value is longer than the number of spaces, pad writes the value but
adds no spaces.

We recommend that you have a last column named Comment or Remarks to act as a catch-all for
both comments and padding.

See Also
justify, replace, see, update

padstring — /rdb Command

Return string with blanks to fill a field
padstring [-]length string

The command padstring adds blanks to the end of string to make it the requested length. This
command useful for screen and report writing, where you want to line up everything.

The option -length means to left-justify the string in the field, that is, write the padding blanks to the
end of string. The option length, without the hyphen, right justifies the string — that is, it adds the
spaces to the beginning of string.

Example
The first example

padstring 10 string

displays the string:

string

Note that the string is right-justified; that is, the spaces were added to the left of string.

Now we can use this in a report form file to make fixed-length fields. An ordinary form has the files
to the right of a field, moving all around. For example, the command

LEXICON

230 padstring

report form < mailtable

writes the output:

Name : Ronald McDonald Company: McDonald’s
Street: 123 Mac Attack
City : Menphis State : TENN ZIP: 30000
Phone : (111) 222-3333

Name : Chiquita Banana Company: United Brands
Street: Uno Avenito De La Revolution
City : San Jose State : Costa Rica ZIP: 123456789
Phone : 1234

This result is rather messy. However, if we edit the file form to include the padstring command,
then we will get a fixed form, as follows:

Name : <!padstring -17 ’<Name>’!> Company: <Company>
Street: <Street>
City : <!padstring -17 ’<City>’!> State : <State> ZIP: <ZIP>
Phone : <Phone>

Now, running report on this file yields:

Name : Ronald McDonald Company: McDonald’s
Street: 123 Mac Attack
City : Menphis State : TENN ZIP: 30000
Phone : (111) 222-3333

Name : Chiquita Banana Company: United Brands
Street: Uno Avenito De La Revolution
City : San Jose State : Costa Rica ZIP: 123456789
Phone : 1234

Note that State has not been done yet, and therefore ZIP moves back and forth; but Company and
State stay lined up correctly.

Note that if padstring is too long a name, use the COHERENT link command ln to link it to a
shorter name.

See Also
report, screen
COHERENT Lexicon: ln

paste.rdb — /rdb Command

Paste together two or more tables
paste.rdb table1 table2 ...

The command paste.rdb displays table1, table2, and so on, side by side. This is almost identical to
the COHERENT command paste.

The /rdb version of paste.rdb uses the COHERENT command pr to list the tables side by side:

pr -m -t -s table1 table2 [...]

paste.rdb differs from the command jointable in that jointable looks for matching values in key
columns and writes only the rows in which it finds a match. paste.rdb does not care what it is
pasting together. You can get some interesting garbage with paste.rdb.

You can also do a kind of visual diff in which you can see an old and new file lined up side by side.
You could do this with two list files, but be careful, because the output will generally not be
acceptable by other /rdb programs.

LEXICON

paste.rdb 231

Example
The following commands break the table inventory:

column Item Value < inventory > tmp1
column Cost Amount Description < inventory > tmp2

This yields table tmp1

Item Value
----- -----

1 150
2 500
3 400
4 437
5 2376
6 13083
7 875

tmp2:

Cost Amount Description
---- ------ --------------

50 3 rubber gloves
5 100 test tubes

80 5 clamps
19 23 plates
24 99 cleaning cloth

147 89 bunsen burners
175 5 scales

Now, you can use paste.rdb to put them back together:

paste.rdb tmp1 tmp2

This writes the following onto the standard output:

Item Value Cost Amount Description
----- ----- ---- ------ --------------
1 150 50 3 rubber gloves
2 500 5 100 test tubes
3 400 80 5 clamps
4 437 19 23 plates
5 2376 24 99 cleaning cloth
6 13083 147 89 bunsen burners
7 875 175 5 scales

This is not an efficient way use column; one command could do the job, instead of two. paste.rdb,
however, it is a good way to put tables together if jointable is inappropriate. If you had wanted to
use jointable here, you should project column Item into both tables.

See Also
column, jointable
COHERENT Lexicon: diff, paste, pr

Notes
This command is named paste.rdb rather than paste, as in other implementations of /rdb, to avoid
clashing with the COHERENT command paste.

LEXICON

232 paste.rdb

path — /rdb Command

Find the full path of a command
path [command ...]

The command path finds the directory path to a command, if it is in one of the directories in your
shell’s PATH environment variable.

A path means two things in COHERENT:

1. It means the list of nested directories within which a file is located. For example, file FOO may
have the path of /usr/local/src/; this means that FOO is kept in directory src, which in turn
is in directory local, which in turn is in directory usr, which in turn is in directory /.

2. It means a list of directories that the shell searches to find an executable program that matches
the command typed in. Each user has his path stored in the environmental variable PATH; to
see your path, type the command:

echo $PATH

path searches the directories named in your PATH to find the path of command. If path cannot find
command or if command is not executable, it returns nothing.

Example
If you type:

path column

If this command returns

/usr/rdb/bin

then column lives in directory: /usr/rdb/bin.

Please note that for path to work, you must insert into your PATH the directory that holds the /rdb
commands.

See Also
COHERENT Lexicon: PATH, .profile

precision — /rdb Command

Display the precision of a column
precision [-l] [column ...] < table

The command precision returns the maximum number of digits to the right of the decimal point in
each column. If no column is named on the command line, precision returns information on every
numeric column in table.

The option -l tells precision to return the entire table, in addition to the precision of each column.

Example
For example of this command, see the entry for total.

LEXICON

path — precision 233

project — /rdb Command

Write selected projects (same as column)
project [column ...] < tableorlist

The command project is another name for the command column.

See Also
column

prompt — /rdb Command

Echo a string on the standard output
prompt string ...

The command prompt echoes a string onto the standard output. It resembles the COHERENT
command echo, but it does not write a newline character after the echoed string. Thus, you can
use prompt to write a prompt onto the screen.

Example
The command

prompt "Please enter your name: "

writes the following on the standard output:

Please enter your name: _

The underscore character marks where this command leaves the cursor.

See Also
chr
COHERENT Lexicon: echo

Notes
prompt looks for an environmental variable called ECHONOCR. If the variable is missing or not
equal to -n, then prompt calles the COHERENT command echo with its -n option, which drops the
newline. If ECHONOCR is set to anything other than -n, then prompt calls \c option, which is
used by some UNIX systems. When using /rdb under the COHERENT system, it is best just to not
set ECHONOCR.

LEXICON

234 project — prompt

rdb — /rdb Command

List all /rdb programs in directory $RDB/bin
rdb

The command rdb prints on the standard output all commands in directory $RDB/bin. This
command is a shell script, which you should edit if its output is not to your liking.

See Also
act, helpme, whatis, whatwill

record — /rdb Command

Find and output a record from a table
record number < table

The command record searches through table for the record with the serial number number. If it
finds the record, it prints it and the table’s header on the standard output.

Example
To retrieve the third record from table inventory, type:

record 3 < inventory

You will see something like the following:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

3 5 80 400 clamps

The following shell script uses record and read to find specific values in table inventory. The
command read uses the head line of inventory to assign values to each column name.

: describe - gives the description for an item in inventory
USAGE=’usage: describe Item < table’

record $1 < inventory |
(read HEAD

read DASH
read $HEAD
echo "Item $Item is $Description"

)

When you type

describe 1 < inventory

you see output in the following format:

Item 1 is rubber gloves

LEXICON

rdb — record 235

See Also
row, search
COHERENT Lexicon: read

rename — /rdb Command

Rename a column
rename [oldcolumn newcolumn ...] < tableorlist

The command rename changes the name of oldcolumn to newcolumn within tableorlist. You can
name on the command line as many oldcolumn/newcolumn pairs as you wish.

Example
Consider the table inventory:

Item# Amount Cost Value Description
----- ------ ----- ------- --------------

1 3 5.00 15.00 rubber gloves
2 100 0.50 50.00 test tubes
3 5 8.00 40.00 clamps
4 23 1.98 45.54 plates
5 99 2.45 242.55 cleaning cloth
6 89 14.75 1312.75 bunsen burners
7 5 175.00 875.00 scales

The command

rename Amount Qty Description Name < inventory

renames Amount to Qty, and Description to Name. The table now appears as follows:

Item# Qty Cost Value Name
----- --- ------ ------- --------------

1 3 5.00 15.00 rubber gloves
2 100 0.50 50.00 test tubes
3 5 8.00 40.00 clamps
4 23 1.98 45.54 plates
5 99 2.45 242.55 cleaning cloth
6 89 14.75 1312.75 bunsen burners
7 5 175.00 875.00 scales

If you have a list-formatted file, you can also rename the column names. For example, consider the
list maillist:

Number 1
Name Ronald McDonald
Company McDonald’s
Street 123 Mac Attack
City Memphis
State TENN
ZIP 30000
Phone (111) 222-3333

Number 2
Name Chiquita Banana
Company United Brands
Street Uno Avenido de la Reforma
City San Jose
State Costa Rica
ZIP 123456789
Phone 1234

LEXICON

236 rename

The command

rename Number Num ZIP Zip < maillist

changes Number to Num, and ZIP to Zip. The list now appears as follows:

Num 1
Name Ronald McDonald
Company McDonald’s
Street 123 Mac Attack
City Memphis
State TENN
Zip 30000
Phone (111) 222-3333

Num 2
Name Chiquita Banana
Company United Brands
Street Uno Avenido de la Reforma
City San Jose
State Costa Rica
Zip 123456789
Phone 1234

See Also
column

replace — /rdb Command

Insert a record into a file at specified location
replace [-a] [-m[bhirs] tableorlist from to [xfrom xto] < intableorlist

The command replace replaces the row at offsets from through to in tableorlist with the contents of
intableorlist. replace will not insert a record larger than to minus from. It adds spaces to the last
column of records within tableorlist that are smaller than the input record.

xfrom and xto give the beginning and end of the offsets of the index entry within tableorlist’s
associated fast-access table, should there be one.

To obtain painlessly the offsets of the record and its index entry, use the command seek. This is
demonstrated in the following example.

The command update remembers the location and size of the record it takes out of a file and passes
it to replace so that only a correctly sized file goes back into that file.

Options
replace recognizes the following options:

-a Do not append the record in intableorlist to the end of tableorlist. The default to append if
the record is too big to fit back into the location from which it was taken. This option allows
you to prevent appending. If you want a binary file to stay sorted, you will either have to
resort it or not allow appending.

-m[bhirs]
Fast access methods. See the manual page for index for a description of what each of these
options means.

Example
If table recordtable contains one record, you use can insert that record into table bigfile with the
following command:

LEXICON

replace 237

replace bigfile 1421 1487 0 8 < recordtable

Note that the contents of recordtable replace rows 1421 through 1487 within bigfile.

For the second example, consider again table inventory, as follows:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

First, let’s use the command seek to extract a record, and save its offset in the shell variable
LOCATION:

LOCATION=‘echo 5 | seek -mr -o tmpfile inventory Item‘

$LOCATION is initialized to the following

207 245 54 62

and tmpfile contains the following:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

5 99 24 2376 cleaning cloth

Here we use the record fast-access method.

Now let’s change 99 to 199 within tmpfile, so we can see a change:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

5 199 24 2376 cleaning cloth

Now we can replace the edited record in inventory:

replace -mr inventory $LOCATION < tmpfile

inventory now appears as follows:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 199 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

You can see that row 5 has been updated, because it now has 199 in it.

See Also
seek, update

LEXICON

238 replace

report — /rdb Command

Write reports using a form and a table
report form < tableorlist

The command report produces reports, form letters, mailing labels, invoices, and so forth, for each
row in tableorlist, following the template within file form.

You must use a text editor to fill out form to determine how the form will appear. Insert column
names from tableorlist between angle brackets (< >) where you want the data to appear within the
report.

You can even call shell commands from within a form, pass them data from tableorlist, print their
output within your formatted form. This is a powerful extension to COHERENT shell programming.

report mostly replaces the older commands label and letter. These commands are still part of /rdb,
in part for compatibility with older versions, and in part as examples of shell programming.

Form Syntax
The following describes the format of a form:

regular text
form prints any characters in your form that do not match the symbols shown below.

<column-name>
Angle brackets indicate that data from column-name in the current row of tableorlist should
be inserted in place of the column name.

<!command!>
Angle brackets and exclamation points indicate that the shell is to execute command. Any
output from command appears at this point in the report.

<!cmd <col>!>
This is an insertion within a command. The data from column col in the current row of
tableorlist are passed to cmd. This passes the contents of col as an argument to command.
The output of command then replaces this entry within the form.

If report does not recognize a column name, it prints <column-name> as if it were normal text. This
allows you to use the angle brackets as literal characters within your form, if you wish. It also helps
you debug your form: if the data from the table are not replacing <column-name>, then column-name
does not exactly match the column name in the table. Check for spelling errors, upper- and lower-
case discrepancies, embedded blanks, and nonprinting characters.

Example
Consider table maillist, as follows:

Name Ronald McDonald
Company McDonald’s
Street 123 Mac Attack
City Memphis
State TENN
ZIP 30000
Phone (111) 222-3333

LEXICON

report 239

Name Chiquita Banana
Company United Brands
Street Uno Avenido de la Reforma
City San Jose
State Costa Rica
ZIP 123456789
Phone 1234

You could use an editor to develop a form like the following:

<Name>
<Company>
<Street>
< City >, <State> <ZIP>

Hi < Name >:

The date and time is <!date!>

We are also sending this letter to:

<! column Name City < mailtable | row ’Name != "<Name>"’ | justify !>
Bye <! echo <Name> !>

Note that we have used all three types of inserts: column name, command, and command insert.
Now with these two files ready, you only need type

report form < maillist

to see the following output:

Ronald McDonald
McDonald’s
123 Mac Attack
Memphis, TENN 30000

Hi Ronald McDonald:

The date and time is Wed Aug 19 01:58:19 PST 1983

We are also sending this letter to:

Name City
--------------- -------
Chiquita Banana San Jose

Bye Ronald McDonald

LEXICON

240 report

Chiquita Banana
United Brands
Uno Avenido de la Reforma
San Jose, Costa Rica 123456789

Hi Chiquita Banana:

The date and time is Wed Aug 19 01:58:40 PST 1983

We are also sending this letter to:

Name City
--------------- -------
Ronald McDonald Memphis

Bye Chiquita Banana

Some users have noted that the shell escape places an extra line in the output. If you don’t want
the extra line say something like:

<! echo -n ‘date‘ !>

See Also
label, letter
COHERENT Lexicon: echo

reportwriter — /rdb Command

Sample program to write standard reports
reportwriter

The command reportwriter is a sample shell program that writes a sample standard report. It uses
the command splittable to divide a table into page-sized tables. It shows several tricks for using
COHERENT shell programming and /rdb tools to put together reports.

Example
Here is what reportwriter produces (with the middle of each page replaced with an ellipsis to keep
the listing short):

LEXICON

reportwriter 241

Prices of Computers that ran UNIX(TM) in 1983
From Urban Software of New York City

Report Date: 9 Feb 1985

Price Company City
----- ------- ----

Advanced Micro Devices Santa Clara
Alcyon Corporation San Diego
American Telephone & Telegraph
BASIS Microcomputer GmbH D-4400 Muenster
Corvus Systems San Jose
David Computers Inc. Kitchener
Digital Computers Ltd. Tokyo 102
Heurikon Corp. Madison

...
Western Digital Irvine
Western Electric Corp.

4.2 Venturcom/IBM PC Cambridge
...
13.9 Victory Computer Systems, Inc. San Jose

Page 1

See Also
splittable

rmblank — /rdb Command

Remove blank rows from a table
rmblank < table

The command rmblank deletes from table all input rows that consist of only white space (spaces
and tabs). The related programs delete and replace blank out records. They can be used in
transaction processing where the files are too large to process and several users are updating them.
At a quiet time, the files can be compacted and reindexed.

Be sure to reindex any file that is processed by either rmblank or compress.

Example
First we have table inventory, as follows:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

Then we delete record 4

echo 4 | delete inventory Item

and inventory now appears as follows:

LEXICON

242 rmblank

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

The command see shows the contents of inventory actually to be as follows:

Item^IAmount^ICost^IValue^IDescription $
----^I------^I----^I-----^I--------------$

1^I 3^I 50^I 150^Irubber gloves$
2^I 100^I 5^I 500^Itest tubes$
3^I 5^I 80^I 400^Iclamps$
^I ^I ^I ^I $

5^I 99^I 24^I 2376^Icleaning cloth$
6^I 89^I 147^I13083^Ibunsen burners$
7^I 5^I 175^I 875^Iscales$

Now the command

rmblank < inventory

removes lines that consist only of blanks. After we run this command, inventory appears as
follows:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

Remember to reindex a file after you run rmblank on it.

See Also
compress, delete, index, replace, rmblank

rmcore — /rdb Command

Remove all core files
rmcore

The command rmcore uses the COHERENT system’s command find to search for files named core
in the current directory and all subordinate directories. As its name implies, it removes all such
files that it finds.

Run this command first when you begin to fill up your disk. rmcore starts at the directory you are
in and goes down the file tree. If you are superuser, you can issue this command at the root
directory ‘/’ and clean the whole system.

See Also
COHERENT Lexicon: core, find, rm

LEXICON

rmcore 243

row — /rdb Command

Make a new table where rows match logical condition
row ’column condition column-or-value ..’ < table

The command row creates a new table from table. The new table consists of only those rows that
meet condition.

row uses a script written in the awk language, which gives you great power for specifying the logical
condition.

Several conditional expressions can be combined with the logical AND (&&) and OR (||) operators.
Because the logical conditions are represented by special characters, they must be enclosed by
apostrophes, to protect them from being interpreted by the shell. If you have special characters
within a column name, enclose the column name in quotation marks.

Example
First a simple example. Consider table inventory

Item Onhand Cost Value Description
---- ------ ---- ----- -----------
1 3 5 15 rubber gloves
2 100 1 100 test tubes
3 5 8 40 clamps
4 23 2 51 plates
5 99 2 97 cleaning cloth
6 89 18 1602 bunsen burners
7 5 175 875 scales

To make a table of all of the parts that cost more that $5, type:

row ’Cost > 5’ < inventory

The new table appears as follows:

Item Onhand Cost Value Description
---- ------ ---- ----- -----------
3 5 8 40 clamps
6 89 18 1602 bunsen burners
7 5 175 875 scales

Now a more complex example. If you want a table of all the burners and of all of the items of which
we have fewer than ten in stock, type:

row ’Description ~ /burner/ || Onhand < 10’ < inventory

The new table appears as follows:

Item Onhand Cost Value Description
---- ------ ---- ----- -----------
1 3 5 15 rubber gloves
3 5 8 40 clamps
6 89 18 1602 bunsen burners
7 5 175 875 scales

The string ~ /burner/ searches for the string ‘‘burner’’ anywhere in the column. The double pipe
(||) means logical OR.

Column Names
The commands row, compute, and validate recognize column names as upper- and lower-case
letters, digits, and the underscore ‘_’. The regular expression is [A-Za-z0-9_]. If you have any other
characters in your column names, put apostrophes or quotation marks around them.

LEXICON

244 row

row compares the recognized strings with the table’s head line. Only if it finds a match does it
convert the string to the $1, $2... column positions that awk needs.

awk’s Reserved Words
awk is the pattern-scanning language that does all of the work for the commands row, compute,
and validate.

awk recognizes the following words as having special significance. If you name a columns with any
of these reserved words and then try to use them in a query, the /rdb commands that are built
around awk turn them into column positions and awk does not see them. It is best to avoid these
names as column heads or simply capitalize the first letter of each of your column names.

This list also indicates the many functions you have with awk. However, do not rely on the following
descriptions. The tutorial section of your COHERENT manual contains a summary of the awk
language.

Please note that this list of awk functions and reserved words comes from UNIX System V. Other
implementations of awk may not contain all of these functions.

Reserved Word Description
BEGIN...........................Pattern that matches before first input record
ENDPattern that matches after last input record
breakExit the nearest for or while loop
continue.......................Go to next iteration of for or while loop
elseUsed in if then else expression
exitLeave program entirely, as if at end of input
exp................................Raise number to a power
for.................................for (expression ; condition; expression)
getlineGet next input line
ifif (condition) statement [else statement]
infor (variable in array) statement
indexindex (string1, string2)
int.................................Truncate argument to integer
lengthReturn current line length, or length of argument
log.................................Return log (to base 2) of argument
nextSkip to next record and reexecute all commands
printOutput variables
printfprintf ("format", variable, ...)
splitsplit (string, arrayname, separator)
sprintfsprintf ("format", variable, ...)
sqrtReturn square root of argument
substrsubstr (string, start, number)
while.............................while (condition) statement

Although row is built around the awk language, row has the advantage of knowing about the names
of the columns. Therefore, you can use column names instead of column positional numbers. To
grasp the full power of row and compute, read the COHERENT manual’s tutorial on awk.

See Also
compute, row, select, validate
COHERENT Tutorials: Introduction to the awk Language

LEXICON

row 245

sale — /act/sales Command

Enter sale order, and item, update customer
sale

The command sale is part of the accounting/sales system included with /rdb. It enters a sales order
into table saleorder and items into table saleitem. It also permits an order-taker to add a new
customer to the customer-information table customer, or to update information on an existing
customer.

Example
sale is interactive, to allow you to confirm each action. First, it asks for customer number. If you
give it a number, it looks the number up in table customer. If it finds a customer with that number,
it displays information on that customer for you to confirm. If you do not have the customer’s
number, you can search with the slash string option or enter the question mark to enter customer.
There, you can search for the customer or add a new customer.

The following gives an example order-entry session:

MakeaPile, Inc. saleorder
Enter Customer Number (? for new, /string search, Return to exit) 1
Vendor Number 1
Mr. Luke Skywalker CEO

Rebel Enterprises
123 Lea Street
Space Port City, Far Side 123456789 Tatooy

Code Qty
------- -------
rdb 1
Order Number Code Backord Qty Price Total Name
------- ------- ------- ------- ------- ------- ------- -------
1 1 rdb 10 1 1500 1500.00 /rdb
Number Cust Date Shipped Gross Tax Total
------ ---- ------- ------- ------- ------- -------
1 2 850723 0 1500.00 75.00 1575.00

Is this correct? (y, n) y

After you have confirmed the order, table sale modifies table salesorder, as follows:

Number Cust Date Shipped Gross Tax Total
------ ---- ------- ------- ------- ------- -------
1 2 850723 860525 1500.00 75.00 1575.00
2 2 850724 860525 3000.00 150.00 3150.00
3 3 850902 860525 22500.00 1125.00 23625.00
4 3 850902 0 36000.00 1800.00 37800.00
5 3 850902 0 21000.00 1050.00 22050.00

LEXICON

246 sale

It also modifies table salesitem, as follows:

Order Number Code Backord Qty Price Total Name
------- ------- ------- ------- ------- ------- ------- ----
1 1 rdb 10 1 1500 1500.00 /rdb
2 1 rdb 10 2 1500 3000.00 /rdb
3 1 rdb 10 5 1500 7500.00 /rdb
3 2 act 10 10 1500 15000.00 /act
4 1 rdb 10 5 1500 7500.00 /rdb
4 2 rdb 10 19 1500 28500.00 /rdb
5 1 rdb 10 5 1500 7500.00 /rdb
5 2 act 10 9 1500 13500.00 /act

Once you enter the correct customer number, sale gives you a table of items to enter. Type in Code
and Qty, and the program looks up the other information in the inventory. Verify that the
information is correct and make sure that you have enough in inventory to satisfy the order.
Continue entering items until you are through. Pressing <Return> indicates that you are finished;
sale then calculates the totals for the order, including tax.

This program uses the commands cursor and termput to maneuver about the screen.

See Also
cursor, invoice, postar, termput

schema — /rdb Command

Print a table’s schema
schema tableorlist ...

The command schema prints the schema, or a data-base dictionary, for each tableorlist.

Other data-base systems require that you define a schema prior to creating a table. In /rdb, you
can derive a schema from an existing table or tables.

Example
The following command combines the schemas for tables inventory and maillist. The example
pipes the concatenated schema through the command justify to ‘‘pretty up’’ the output:

schema inventory maillist | justify

This produces the following:

Table Field Name
--------- ----- -----------
inventory 1 Item
inventory 2 Amount
inventory 3 Cost
inventory 4 Value
inventory 5 Description
maillist 1 Number
maillist 2 Name
maillist 3 Company
maillist 4 Street
maillist 5 City
maillist 6 State
maillist 7 ZIP
maillist 8 Phone

Because schema is a shell script, you can modify it to give widths of columns, data types, and so
on.

LEXICON

schema 247

See Also
datatype, precision, width

screen — /rdb Command

Convert a form into a screen-input shell program
screen < form > shellprogram

The command screen reads form and writes a COHERENT shell program that paints the screen and
reads a user’s input. Because the output of screen is a shell script, you can edit it to validate data,
read data and write it onto the screen, and so on. form must be in the same format as described in
the manual entry for the command report.

screen writes a simple shell script. The script works ‘‘as is’’ to read data typed onto the screen and
to write a standard table. It uses the /rdb command cursor to move to each input field on the
screen.

A script output by screen can be used in many ways. You can use it as a form, to enter data into a
new table. You can edit the script to have it append its output into an existing table, to pass its
data via a pipe to another command, or to read data from a table and display them on the screen.
Commands can be edited into the screen-form script. You can add calls to the /rdb command
validate, to confirm that the user has added data that are at least sensible. You can even embed
the script within another shell script, to perform screen entry for it.

Setup Steps
To create a screen-entry form, do the following:

1. Use your text editor to write the screen-form file.

2. Run screen to read the form file. Redirect its output into the file in which you wish to store
the form’s executable script.

3. Edit the shell script to meet your requirements, such as adding validation, record locking,
and so forth.

4. Run the executable shell script to input data and write a new table.

Example
A simple form looks like this:

Mail List Entry Form
<!date!>

Name : <Name> Company: <Company>
Street: <Street>
City : <City> State : <State> ZIP: <ZIP>
Phone : <Phone>

Everything is written to the screen except what is between angle brackets ‘‘<>’’, which are variables
to be input. Exclamation marks within angle brackets (e.g., <!date!>) mark commands to execute
when the program is running.

When screen reads the above form and compiles it, it writes the following shell script:

: paint crt screen
exec 1>/dev/tty
cat <<SCREEN
${CLEAR} Mail List Entry Form

LEXICON

248 screen

Name : Company:
Street:
City : State : ZIP:
Phone :

SCREEN

: read user input
cursor 1 23 ; date;
cursor 3 8 ; read Name;
cursor 3 36 ; read Company;
cursor 4 8 ; read Street;
cursor 5 8 ; read City;
cursor 5 36 ; read State;
cursor 5 55 ; read ZIP;
cursor 6 8 ; read Phone;

: output table head
exec 1>&2
echo "Name Company Street City State ZIP Phone"
echo "---- ------- ------ ---- ----- --- -----"
: append row
echo "$Name $Company $Street $City $State $ZIP $Phone"

This shell progam is in three parts, each introduced by a comment:

paint crt screen
This section clears the screen, then paints the form onto it.

read user input
This section moves the cursor to each input field, then waits for the user to enter a string of
characters. Each field is linked to a column; that is, what the user types in that field will be
written into the column to which the field is linked.

output table head
The final section writes the new table in standard /rdb format; that is, a column header
followed by the row of data entered by the user.

To let you use the screen program in a pipe, the generated commands send the interactive output to
the screen through the standard output temporarily tied to /dev/tty, and to the output table
through the standard-error device. To accomodate COHERENT’s implementation of exec, you must
tie the standard error to the standard output when you run the script screen has created. For
example

mail.s > mail.t 2>&1

The following shows the form compiled above, with example data:

Mail List Entry Form
Wed Sep 4 14:09:30 EDT 1987

Name : Hi Ho Company:
Street: 1st St.
City : LA State : CA ZIP: 90024
Phone : 213-555-1212

The above input creates the following table:

LEXICON

screen 249

Name Company Street City State ZIP Phone
---- ------- ------ ---- ----- --- -----
Hi Ho HH Inc. 1st St. LA CA 90024 213-555-1212

You can redirect output into a file or pipe. Here, it was directed into table mail.t. You can use this
table as its stands alone, or you can append it to another table by by piping it to the append
command. For example:

mail.s 2>&1 | append mail.t

See Also
cursor, lock, unlock, validate
COHERENT Lexicon: cat, echo, exec, ksh, read, sh

search — /rdb Command

Search a table
search [-m[bhirs]] [-hsnx +x] [-l [2> location]] tableorlist [keycolumn ...] [< keytable]

The command search finds a row quickly. It searches tableorlist for each row in which the value
keycolumn matches one or keys you supply. The key or keys can either be entered interactively, or
read from keytable. You must use the /rdb command index to index tableorlist before you can use
search to search it.

By default, a key’s value must match exactly the string within keycolumn. The options -x and +x
modify this behavior; they are described below.

You can use search in any of several different ways. Because it reads the key values from the
standard input, you can input the keys by typing them interactively at the terminal, by diverting the
contents of keytable into it, or by piping the output of a command into it. Each method is
demonstrated in the examples given below. Therefore, it is easy to use search on a command line or
in a shell script. For example, the command domain is a shell script that uses search to speed its
searches. If you use a pipe to pass data to search, think of a stream of keys going into it and a
stream of matching rows coming out.

search can use a number of different methods of searching. There are advantages and
disadvantages to each; different sizes and structures of tables are best suited to different methods of
searching. If you are not sure which method to use, you can try them all on your tableorlist. Use
the COHERENT command time to find how long each method takes, then pick the one that runs
the fastest. Another /rdb command, timesearch, runs each form of search on the sample
unixtable, which is kept in directory $RDB/demo. Because timesearch is a shell script, you can
modify it to time the different methods for your own file.

The behavior of search depends upon which method of searching you choose. With some methods,
it first searches another table (called the ‘‘secondary index file’’) built by the command index. One
method, sequential, searches every row in tableorlist.

If you change tableorlist, such as when you add a new row or delete an old one, you must reindex it.
If you develop application programs, you can have them update secondary index files to handle
dynamic file-processing.

Methods of Searching
The following describes the different methods of searching a table. Each method is introduced by
the command-line option with which you can invoke it:

-m Perform a sequential search. This is the default method.

LEXICON

250 search

-mb Binary search. This first looks at the middle record of the file. If the key column’s value is
greater than that of the key that search is seeking, then search look at the record one
quarter of the way through the file. search continues to bifurcate the table until it finds the
row, or finds that the row is not there.

The method of searching requires that you first sort the table on the key column.

A binary search takes log(2)n accesses:

Accesses No. of Records
10 1 thousand
20 1 million
30 1 billion
40 1 trillion

Binary searching is a good method for searching tables that must remain sorted on the key
column.

-mh Hash searching. A hash search computes an address from the key and looks into a
secondary file at that address. If the key matches, it retrieves the address of the row you
want in the main file and then retrieves it. If the address search hashes to is empty (i.e.,
has a value of zero), then the key does not match and the row is not in the file.

Occasionally, another key is there that happens to hash to the same address; this is called a
collision. When a collision occurs, search will keep looking at subsequent entries in the
secondary table until it either finds a match or finds an empty or deleted (-1) entry.

A hash search usually takes two disk accesses when the hash table is half full. For this
reason, /rdb sets up hash tables that are twice as large as the number of records being
hashed. As the data table grows, it must be reindexed to keep the hash speed up.

Hashing is a good method for tables that are static or change only rarely.

-mi Inverted or indexed searching. An inverted search uses a secondary file that must have
been created by index. This index table has two columns: the key column from the data
table, sorted to allow binary searching; and the offset of each key-column value within the
data table. When search finds the key in the index table’s key column, it then uses value
from the address column to retrieve the row from the data table in a single disk read. The
inverted method takes a little longer than binary, but sorting the index file is much faster
than sorting the data table.

-mr Record number searching. A record search simply retrieves the row requested. For
example, if you enter ‘5’, you will get the fifth row in the data table.

To retrieve a record by its row number, search reads a secondary file that that contains the
offset for each record in the data table. The record method is a faster way to retrieve a
record; however, you must know the number of the record you want, and you must either
keep the data table in that order, or reindex it. You can use the command replace to move
a row to the of its table and update the secondary index to point to the row’s new location.

-ms Sequential or linear searching. A sequential search examines all records in the data table in
the order in which they appear. It is not a fast-access method, although it may still be
faster than that used by the command row. It is provided as a benchmark for timing other
methods. If your file is not big enough to make the other access methods worthwhile, just
use sequential search or row and save yourself the overhead of building and maintaining an
index.

A sequential search can search multiple key columns, and and can search any column. The
sequential method is better than the COHERENT command grep because it looks at one
column, whereas grep scans the entire row for a pattern match.

LEXICON

search 251

Other Options
search also recognizes the following command-line options:

-h Do not print the table’s head line. By default, search prints the head line of the table it
searches as well as all rows it finds. The -h option suppresses the printing of the head line
and prints only the rows you are seeking.

-l Output the location of the record in the data table and the location of the index record in
the index table. These locations is in the form fromtoxfromxto , and can be piped to the
commands replace, lock, and unlock. search writes these data to the standard-error
device, to separate them from the table it writes to the standard output.

Because search is a shell program, it demonstrates how you can do this in your own
programs. Turning on this option also turns on the -s option because /rdb allows you to
lock or replace one record at a time. Therefore, all keys in your file must be unique, or
some will never be found.

-s Search for only one row. This speeds the search because search quits when it finds the
first match and continue searching the file.

-x Partial match and case insensitive, like the Berkeley command look.

+x Exact match, including blank characters. The default matching ignores blank characters.

Examples
Assume you have a file called inventory, which appears as follows:

Item Amount Cost Value Description
---- ------ ---- ----- --------------
1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

If you had indexed the column Description, then you have several ways to find rows:

1. Interactively type key values. search immediately prints the rows it finds. For example, type:

search -mh inventory Description

search responds with the head line of the inventory table. Now you can type names, in this
example scales; if search finds a match, it returns the row that contains the key.

2. Divert a table or list file to search. You can create a table with a column of key values; for
example:

Description

scales
clamps

The following command line diverts this table into search

search -mh inventory Description < description

and produces the following output:

LEXICON

252 search

Item Amount Cost Value Description
---- ------ ---- ----- --------------
7 5 175 875 scales
3 5 80 400 clamps

3. Input keys through a COHERENT pipe. For example, the command

column Description < sometable | search -mh inventory | column Value

returns the following:

Value

875
400

If you wish to justify a table like this, just pipe the output of search to the command justify.

This lets you use the COHERENT command echo to pipe a key value:

echo scales | search -mh inventory Description

which returns the following to the standard output:

Item Amount Cost Value Description
---- ------ ---- ----- --------------
7 5 175 875 scales

In shell programming, you can capture the output of a program or a pipe by putting it within two
grave (‘) symbols. In a shell script, you can set an environmental variable like this:

RECORD=‘echo key | search -mh -h bigtable column‘

The command echo $RECORD displays the data diverted into this variable; for example:

7 5 175 875 scales

Now the RECORD environmental variable is equal to the matching row in the table. Note the -h is
important to keep the head line from being written into RECORD.

Search vs. Select
search is important for application programs written in shell scripts, the C programming language,
or other code. It can be used interactively, but the command row is much more powerful because it
can seek combinations of logical conditions, regular expressions, and conditions such as greater
than, whereas search needs a key (either exact or partial). But for pulling a row out of a big table,
search can speed things up enough to be preferred. In summary, search is for high-speed access
with keys, whereas row should be used to retrieve rows that match complex logical conditions and
regular expressions.

See Also
append, column, delete, index, replace, row, seek, update
COHERENT Lexicon: egrep, grep, look, time

searchtree — /rdb Command

Seek a string node in tree table
searchtree [-m[bhirs]] table root goal column1 column2

The command searchtree searches table to see if string root in column1 is associated with goal in
column2. It returns TRUE to the shell if it find that root is associated with goal, or FALSE if it is not.

goal may be within table, in which case the COHERENT command grep can also find it; searchtree,
however, will also see if goal be reached by a path from root.

LEXICON

searchtree 253

The options -m[bhirs] name the fast-access method to use. The default is sequential (-ms). See the
entry for the command search for a full description of each method of searching.

searchtree is a breadth-first search that uses the search fast-access methods to find all of the
children at each level of a tree. This is the kind of search often done in artificial intelligence
programs. However, searchtree stores its data in a temporary file rather than in memory, so that it
will work on very large data bases.

Because searchtree is a shell script, you can modify it to serve many kinds of searches. For
example, you can add a message like yes/no or true/false. You can also add shell code to print out
a path. You might want to use heuristics to guide the search at each level, and side effects to
update data or print messages along the way.

This kind of searching is also used by the PROLOG language. searchtree, however, differs from
PROLOG in two significant respects. First, PROLOG must have its data base in memory, which
limits the size of the database it can handle. Second, PROLOG uses depth-first searching, which
requires it to backtrack.

Example
Consider the tree represented by table isa, as follows:

Name Isa
---- ---
barbara human
bill human
evan human
rod human
human primate
primate mammal
cat mammal
dog mammal
mammal animal
bird animal
fish animal
animal lifeform
plant lifeform

Remember that all trees, in fact all graphs, can be listed as tables when the nodes (vertices) that are
connected by a line (arcs) that is on each row. A directional graph is handled by having one column
be From and another be To.

The following command uses searchtree to examine table isa to see if entity rod in column Name is
of type lifeform as given in column Isa:

searchtree isa rod lifeform Name Isa ; echo $?

The command echo $? prints the value returned by searchtree. In this case, you see ‘0’ (or FALSE),
because rod is not a lifeform; rather it (or he) is a human.

Because searchtree returns only a status code, you can use it as a test condition. Your shell
program could have a statement like this:

LEXICON

254 searchtree

prompt "What is your name: "
read NAME
if searchtree isa $NAME lifeform Name Isa
then

echo "So, I am talking to a lifeform."
else

echo "So, I am talking to another machine."
fi

The following gives an sample exchange with this script; text in bold gives what the user types:

What is your name: rod
So, I am talking to a lifeform.

The result of the search of the tree was tested by the if statement, and used to decide which
message to print.

See Also
search

Notes
If you wish to experiment with PROLOG, volume 2 of COHware includes the source code to a
PROLOG interpreter.

see — /rdb Command

Display nonprinting as well as printing characters
see < tableorlist

The command see displays the contents of tableorlist. Unlike the COHERENT command cat, see
represents all nonprinting characters by converting them to the form ^some-printing-character. It is
essentially the same as the Berkeley UNIX commands see or cat -v.

see is very useful for seeing if you have placed tabs into your tables or lists. Tabs print out as ^I
because they are also obtained by typing <ctrl-I>. see is also helpful for finding nonprinting
characters.

Example
To see the if the tabs are placed correctly in table badtable, type:

see < badtable

You’ll see something like:

Date^IAccount^IDebit^ICredit^IDescription$
------^I-------^I-------^I-------^I--------------------------$
820102^I101^I25000^I^Icash from loan$
820102^I211.1^I^I25000^Iloan number #378-14 Bank Amerigold$
820103^I150.1 10000^I^Itest equipment from Zarkoff$
820103^I101^I^I5000^Icash payment$
820103^I211.2^I^I5000^Inote payable to Zarkoff Equipment$
820104^I130^I30000^I^Iinventory - parts from CCPSC$
820104^I201.1^I^I15000^Iaccounts payable to CCPSC$
820104^I101^I^I15000^Icash payment to CCPSC for parts$

See Also
COHERENT Lexicon: ASCII

LEXICON

see 255

Notes
see assumes ASCII characters with a value between 0 and 127. see adds 128 to negative characters
and to characters with values greater than 127. It then adds the value of ASCII ‘A’ to characters
with a value less than that of a blank character (ASCII 32) so they map to the upper-case
characters.

For example, NUL is printed as ^@, a tab character as ^I, and a form-feed character as ^L.

seek — /rdb Command

Return the beginning and ending offset of a row
seek [-m[bihrs]] [-o outfile] tableorlist [keycol...] < file

The command seek returns the offsets of the beginning and end of a record in tableorlist. It uses the
command search with its location option -l.

The offset and size integers returned can be used by the replace to write a new record. They are
also used by the commands lock and unlock to set and remove record locks.

Options
seek recognizes the following options:

-m[bhirs]
Fast access methods. See the manual entry for the command search for a full description
of various search options and how you can invoke each.

-o Write the found record into outfile.

Example
Let’s use seek on the table inventory, which is as follows:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

The following command invokes seek to find row 5:

echo 5 | seek -mb inventory Item

This writes the following to the standard output:

207 245 0 8

This means that the record is 207 bytes into the file and that it is 38 bytes long, ending at byte 245.

The next example extracts a row from inventory blanks it out, then writes the row back into
inventory on top of the original row. First, extract the row:

LOCATION=‘echo 5 | seek -mb -o tmp inventory Item‘

The location of the selected record is stored in environmental variable LOCATION. The option -o
tmp writes the record with key equal to 5 into table tmp, which appears as follows:

LEXICON

256 seek

Item Amount Cost Value Description
---- ------ ---- ----- --------------

5 99 24 2376 cleaning cloth

The next command blanks the contents of tmp, then writes the blanked row back into inventory at
the location stored earlier at LOCATION:

blank < tmp | replace inventory $LOCATION

inventory now appears as follows:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates

6 89 147 13083 bunsen burners
7 5 175 875 scales

See Also
index, lock, replace, search, unlock

select — /rdb Command

Output selected rows
select ’column condition column-or-value’ < table

The command select writes a new file that consists of the rows of table that match the expression
condition in column.

select is a link to the command row. It is included for those users who prefer the name select
(which is a relational theory name) to row.

See Also
row

sorttable — /rdb Command

Sort a table by one or more columns
sorttable [sort options] [columnname ...] < tableorlist

The command sorttable uses the COHERENT command sort to sort tableorlist. Unlike sort, it
knows about table head lines and column names.

With sorttable you use the column names rather than column numbers, as in sort. sorttable also
tells sort to use tabs as field separators, instead of white space (i.e., blanks and tabs).

sorttable completely sorts by the first column you name. If there are any duplicate values in that
column, it goes to the second column and sort on those values. It continues across the named
columns until it either finds a column that consists of unique values, or it runs out of columns. For
example, if you sort a ledger on columns Account and Date, sorttable sorts the entire table on
column Account, and sorts by Date within each account.

If no columns are named, sorttable sorts tableorlist by all of its columns from left to right.

Options
sorttable passes all the options you give it to sort. See the entry for sort in the COHERENT
manual’s Lexicon for details on this command’s options.

LEXICON

select — sorttable 257

Example
Consider table inventory, which is structured as follows:

Item# Amount Cost Value Description
------- ------- ------- ------- ---------------

1 3 5.00 15.00 rubber gloves
2 100 0.50 50.00 test tubes
3 5 8.00 40.00 clamps
4 23 1.98 45.54 plates
5 99 2.45 242.55 cleaning cloth
6 89 14.75 1312.75 bunsen burners
7 5 175.00 875.00 scales

To see inventory sorted with the highest Cost items on top, type:

sorttable -n -r Cost < inventory

This produces:

Item# Amount Cost Value Description
------- ------- ------- ------- ---------------

7 5 175.00 875.00 scales
6 89 14.75 1312.75 bunsen burners
3 5 8.00 40.00 clamps
1 3 5.00 15.00 rubber gloves
5 99 2.45 242.55 cleaning cloth
4 23 1.98 45.54 plates
2 100 0.50 50.00 test tubes

Note that Cost is in reverse order (the -r option) and that it was treated as a number (-n option)
instead of a character string.

If you use sorttable frequently, you should carefully study the COHERENT Lexicon entry for sort.
For example, you can control which columns sorttable sort on. If you name several columns, sort
sees each column’s numbers proceeded by a ‘+’. The ‘+’ means ‘‘start sorting on this column’’, the
hyphen ‘-’ means ‘‘stop on the next column’’. To see this, use the -D (debug) option for sorttable.
(By the way, it is because sort has a -d option that we use a capital -D for the debug option for the
/rdb commands). For example, typing

sorttable -D Cost Description < inventory

yields:

Item Onhand Cost Value Description
------- ------- ------- ------- ---------------
sorttable: command executed: sort -t’ ’ +2 -3 +4 -5
2 100 1 100 test tubes
4 23 2 51 plates
5 99 3 297 cleaning cloth
1 3 5 15 rubber gloves
3 5 8 40 clamps
6 89 18 1602 bunsen burners
7 5 175 875 scales

The line beginning with sort is the line passed to COHERENT. Note the +1, -2, and so on. That
tells sort to sort on columns 2 and 4 (where the first column is 0). Thus, sorttable correctly turns
the column names you type into a sort command by looking up the column names in the table head
line and converting them to column numbers for the COHERENT command sort.

People are often confused by sort because it does not behave the way one would expect. Study its
entry in the COHERENT Lexicon.

LEXICON

258 sorttable

See Also
COHERENT Lexicon: sort

soundex — /rdb Command

Convert a name into soundex code
soundex < file > file.x ; index -mb file.x Soundex

The command soundex creates a secondary index to file based on Knuth’s soundex code. It is used
by the /rdb command like to find a name that sounds like another name.

The output must be written into file file.x; then run the command index on column Soundex within
table.x to ensure a high-speed search.

Example
Consider table name, which has many similar names in it:

Name

Abraham
Abraham
Ackerman
Actor
Adams
Adams
Adams
Adams
...

Use soundex to create the secondary index file, as follows:

soundex < name > name.x ; index -mb name.x Soundex

The soundex’d index file appears as follows:

Name Soundex
---- -------
Avila A140
Avila A140
Avila A140
Abraham A160
Abraham A160
Aissen A220
Ajeska A220
Augustine A223
...

Now you can use the like command to find a name. For example, the command

like Manis name

produces something like:

LEXICON

soundex 259

Name

Mann
Mann
Means
Mink
Monahan
Moniz
Mooney
Mooney
Munoz
Munoz

Or the command

like Schaffer name

produces something like:

Name

Schaeffer
Schaffer
Schiffrin

See Also
like

splittable — /rdb Command

Divide a table horizontally
splittable [-n] table

The command splittable uses the COHERENT command split to split table horizontally into several
smaller tables, each with its own head line. n is the number of rows to write into each new table,
not counting the two head lines.

This command is most useful for report writing because it can split tables into page-sized chunks.

Like split, splittable creates file names that end with aa, ab, ac, and so on. This give 676 (26 x 26)
possible output files.

Example
Here is an example using a very short table, called inventory:

Item# Amount Cost Value Description
----- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

The command

splittable -4 inventory

splits inventory into two tables, one with the first four lines of inventory and the other with the
last three. Each new table also has the same head line as table.

LEXICON

260 splittable

The command

ls inventory*

shows us that the current directory now contains files:

inventory
inventoryaa
inventoryab

The two new tables are named, respectively, inventoryaa and inventoryab.

See Also
COHERENT Lexicon: ls, split

Notes
Because a COHERENT file can have no more than 14 characters in its name, splittable will not
work correctly with tables whose names are longer than 12 characters. Caveat utilitor.

substitute — /rdb Command

Replace old string with new string
substitute oldstring newstring file ...

The command substitute replaces oldstring with newstring throughout each file. Because it uses
the COHERENT command sed, be sure to protect with backslash ‘\’ all sed’s special characters: ‘*’,
‘^’, ‘$’, and ‘\’.

Example
Again, consider table inventory, as follows:

Item Amount Cost Value Description
----- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

To replace string rubber with latex throughout inventory, type:

substitute ’rubber’ ’latex’ file

inventory now appears as follows:

Item Amount Cost Value Description
----- ------ ---- ----- --------------

1 3 50 150 latex gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

See Also
COHERENT Lexicon: sed

LEXICON

substitute 261

subtotal — /rdb Command

Output subtotals of columns in a table
subtotal [-l] [break-column column ...] < table

The command subtotal computes subtotals in each numeric column within table.

subtotal uses break-column to mark where computation should begin and end: as long as a value in
break-column remains the same, the values in the other columns are accumulated. When the value
in the break-column changes, subtotal prints the value or values accumulated since the last break.

If no columns are specified on the command line, splittable uses the first, or leftmost, column of the
table as the break column, and computes subtotals for all other columns.

The option -l prints whole table, not just the subtotals.

Example
There are two forms of output. One produces only the subtotals. If you wanted to see the daily
subtotals of table journal, type:

subtotal Date Debit Credit < journal

This produces something like the following:

Date Account Debit Credit Description
------ ------- ----- ------ ----------------------------------
891222 25000 25000
891223 10000 10000
891224 30000 30000

Note that columns Description and Account are blank, because they contain non-numeric data.

The -l prints the entire table, as well as the subtotals. For example, the command

subtotal -l Date Debit Credit < journal

produces:

Date Account Debit Credit Description
------ ------- ----- ------ ----------------------------------
891222 101 25000 cash from loan
891222 211.1 25000 loan number #378-14 Bank Amerigold
------ ------- ----- ------ ----------------------------------
891222 25000 25000

891223 150.1 10000 test equipment from Zarkoff
891223 101 5000 cash payment
891223 211.2 5000 note payable to Zarkoff Equipment
------ ------- ----- ------ ----------------------------------
891223 10000 10000

891224 130 30000 inventory - parts from CCPSC
891224 201.1 15000 accounts payable to CCPSC
891224 101 15000 cash payment to CCPSC for parts
------ ------- ----- ------ ----------------------------------
891224 30000 30000

This lets you see each row as well as the subtotals. This could help you find out when you got out
of balance.

See Also
compute, maximum, mean, minimum

LEXICON

262 subtotal

LEXICON

subtotal 263

tableorlist — /rdb Command

Report whether a file has table or list format
tableorlist [tableorlist ...] [< tableorlist]

The command tableorlist checks whether tableorlist is a table or a list. If it is a list (that is, its first
character is a newline), then tableorlist prints the string ‘‘list’’ and returns status code 1 to the
shell; otherwise, it prints the string ‘‘table’’ and returns status code 0.

Example
To check if inventory is a table or list, type:

tableorlist inventory

This prints

table

on the standard output. To check what status value tableorlist returned, type:

echo $?
You’ll see:

0

See Also
listtotable, tabletolist
COHERENT Lexicon: file

tabletofact — /rdb Command

Converts a table to PROLOG fact-file format
tabletofact table ... > prologfactfile

The command tabletofact converts each table into a file of facts in predicate calculus functor form,
which can be input to a PROLOG interpreter.

Facts
PROLOG facts are in the form relationship(subject,object). For example, the fact

parent(sally,fred)

means that ‘‘sally is the parent of fred’’.

PROLOG is a programming language whose name is a contraction of the phrase programming in
logic. Its input consists of facts, rules, and questions. If you build a data base of facts and rules, you
can ask questions and get answers. If a question you ask does not have a corresponding fact in the
data base, PROLOG looks through its rule file to see if other facts might logically deduce the fact
requested.

LEXICON

264 tableorlist — tabletofact

Example
Suppose we have these simple table parent

Parent Child
------- -------
Sally Fred
Mike Fred
Fred Jane

the simple table female

Name

Jane
Sally

and the simple table male:

Name

Fred
Mike

The command

tabletofact parent female male > fact

produces the following facts:

parent(Sally,Fred).
parent(Mike,Fred).
parent(Fred,Jane).
female(Jane).
female(Sally).
male(Fred).
male(Mike).

As you can see, the relationship is set by the name of the table, and the subject and object (if any)
are set by the data in each row.

PROLOG can now use its command consult to read this file. If PROLOG had rules about father,
mother, grandparent, and so on, then it could answer questions like: mother(sally,fred)? That fact
is not in the data base, but can be deduced from rules like:

mother(X,Y) if parent(X,Y) and female(X)

See Also
tabletorule

Notes
If you wish to experiment with PROLOG, volume 2 of COHware includes the source code for a
PROLOG interpreter.

tabletofix — /rdb Command

Convert /rdb table format to fixed-length format
tabletofix column=n [r] ... < tableorlist

The command tabletofix converts tableorlist from variable-length /rdb format to the fixed-length
format used by many other data-base management systems.

tabletofix works by either padding or truncating each column to make it n characters wide. If the

LEXICON

tabletofix 265

letter r is used with the width specification, tabletofix right-justifies the column in question — that
is, it pads the column with leading blanks, assuming any are necessary. Otherwise, the column is
left justified — that is, it pads the column with trailing blanks.

tabletofix also throws away the head lines, as well as all tab characters and blank records.

Example
Consider table journal, which looks like this when viewed with the command see:

Date^IAccount^IDebit^ICredit^IDescription$
----^I-------^I ----^I -----^I-----------$
820102^I101^I25000^I^Icash from loan$
820102^I211.1^I^I25000^Iloan number #378-14 Bank Amerigold$
820103^I150.1^I10000^I^Itest equipment from Zarkoff$
820103^I101^I5000^I^Icash payment$
820103^I211.2^I^I5000^Inote payable to Zarkoff Equipment$
820104^I130^I30000^I^Iinventory - parts from CCPSC$

The symbol ^I indicate a tab, and the symbol $ indicates a newline.

Now, let’s generate a fixed-length field data base from journal. We’ll use the fields Date, Account,
Credit, and Debit. We’ll give the first two fields six bytes each; and we’ll give the last two fields
seven bytes each, right justified:

tabletofix Date=6 Account=6 Debit=7r Credit=7r < journal > newjournal

This commands writes its output into file newjournal, which appears as follows:

820102101 25000
820102211.1 25000
820103150.1 10000
820103101 5000
820103211.2 5000
820104130 30000

See Also
column, fixtotable, see

tabletolist — /rdb Command

Convert a table to list format
tabletolist [-l] < table

The command tabletolist converts table to list format.

Option -l tells tabletolist not to write a newline at the beginning of the new list file. This is for
compatibility with the older list format and for other uses. Note that most /rdb commands cannot
read a list file if it lacks the initial newline.

Example
Consider mailtable, which has the following format:

Number Name Company Street City State ZIP Phone
------- ------- ------- ------- ------- ------- ------- -------
1 Ronald McDonald McDonald’s 123 Mac Attack Memphis
TENN 30000 (111) 222-3333
2 Chiquita Banana United Brands Uno Avenito De La
Revolution San Jose Costa Rica 123456789 1234

As you can see, the information in each row is often too wide for the screen; these data would be
better stored in a list-format file. To convert mailtable to list format, type the following:

LEXICON

266 tabletolist

tabletolist < mailtable

This writes the following to the standard output:

<newline>
Number 1
Name Ronald McDonald
Company McDonald’s
Street 123 Mac Attack
City Memphis
State TENN
ZIP 30000
Phone (111) 222-3333

Number 2
Name Chiquita Banana
Company United Brands
Street Uno Avenido de la Reforma
City San Jose
State Costa Rica
ZIP 123456789
Phone 1234
...

See Also
listtotable

tabletom4 — /rdb Command

Convert a table to m4 define-file format
tabletom4 < table > definefile

The command tabletom4 converts a two-column table into a file of define statements that can be
input to the COHERENT macro processor m4. Define macros are in the form define(old,new).

m4 can do many things, including word-for-word substitution. It can be used for language
translation (in a stiff, inflexible way) and for other conversions of data bases.

The definefile that tabletom4 produces is required by the /rdb command translate. Only words
that have a corresponding translation in the second column will be put into definefile. In this way,
you can use the file before you have all of the translations entered.

Example
Consider the simple translation table ed.t:

English Deutch
------- -------
I Ich
love liebe
you dich
widgit

The following command converts ed.t to m4 format and writes its output into file ed:

tabletom4 < ed.t > ed

ed now contains the following:

define(I,Ich)
define(love,liebe)
define(you,dich)

LEXICON

tabletom4 267

Note that widgit was not converted because it did not have a translation string in the second
column of the table. ed can now be used by m4 or translate. For example, if file text contains the
following:

I love you.

The command

m4 ed text

writes

Ich liebe dich.

onto the standard output.

See Also
translate
COHERENT Tutorials: Introduction to the m4 Macro Processor
COHERENT Lexicon: m4

tabletorule — /rdb Command

Convert a table to PROLOG rule-file format
tabletorule table ... > prologrulefile

The command tabletorule converts each table into a file of rules in predicate-calculus implication
form that can be input to a PROLOG interpreter.

PROLOG rules are in the form:

relationship(X,Y) :- class(X), relationship(X,Y).

For example

mother(X,Y) :- female(X), parent(X,Y).

means that ‘‘X is the mother of Y, if X is female and X is the parent of Y.’’

PROLOG is a programming language used for artificial-intelligence applications. Its name is a
contraction of the phrase programming in logic. Input to PROLOG consists of facts, rules, and
questions. If you build a data base of facts and rules, you can ask questions and get answers. If a
question you ask does not have a corresponding fact in the data base, PROLOG will look through its
rule file to see if other facts might logically deduce the fact requested.

Example
Suppose we have the simple table parent

Parent Child
------- -------
Sally Fred
Mike Fred
Fred Jane

the simple table female

Name

Jane
Sally

LEXICON

268 tabletorule

the simple table male

Name

Fred
Mike

and the simple table ruletable:

True If
----------- -------------------------
mother(X,Y) female(X), parent(X,Y)

The command

tabletorule ruletable > rule

writes the following into file rule:

mother(X,Y) :- female(X), parent(X,Y).

Now PROLOG can use its consult command to read rule. It could then answer questions like:

mother(sally,fred)?

See Also
tabletofact

Notes
If you wish to experiment with PROLOG, volume 2 of COHware includes the source code for a
PROLOG interpreter.

tabletosed — /rdb Command

Convert table format to sed file format
tabletosed < table > sedfile

The command tabletosed converts a two-column table into a file of sed statements that can be
input to the sed stream editor. sed macros are in the form:

s/old/new/g

sed can do many things, including word-for-word substitution. sedfile produced is used by the
/rdb command translate. It can be used for language translation (in a stiff, inflexible way) and for
other conversions of data bases.

Example
Suppose we have a simple translation table, called ed.t

English Deutch
------- -------
I Ich
love liebe
you dich
widgit

The following command turns ed.t into a file of sed editing instructions, called ed.sed.1:

tabletosed < ed.t > ed.sed.1

ed.sed.1 appears as follows:

LEXICON

tabletosed 269

s/I/Ich/g
s/love/liebe/g
s/you/dich/g

We can now use ed.sed.1 with sed or translate. For example, if file text contains the sentence

I love you.

then typing

sed -f ed.sed.1 text

prints the following on the standard output:

Ich liebe dich.

You can also use this command to construct form letters.

See Also
translate
COHERENT Tutorials: Introduction to the sed Stream Editor
COHERENT Lexicon: sed

tabletostruct — /rdb Command

Convert table to C-language struct declaration
tabletostruct tag name < table > table.h

The command tabletostruct converts a standard /rdb table into a C-language struct declaration.
struct is the C language’s record format.

tabletostruct is useful for writing table-driven C code. The tables used by your programs can be
manipulated by the data base and your users, or by nonprogrammer developers (engineers, experts,
managers, operators), then converted to a struct and compiled into the C code for high-speed
access.

tag gives the struct tag for declaring other variables. name is the struct name to reference the
structure values.

Please note once code compiled from a table, changing that tables no longer affects the program
until you recompile it. Therefore, you gain maximum speed at the price of recompiling the system
and losing the flexibility of being able to modify the tables during execution.

Example
Here we start with a simple table, convert it to struct, make it a header file, and compile it into a
simple program that prints out each field. To begin, consider table table, which is structured as
followed:

A B C
- - -
1 2 3

The following commands converts table to a struct and writes it into file table.h:

tabletostruct Table table < table > table.h

table.h now holds the following:

LEXICON

270 tabletostruct

struct Table
{
char *A;
char *B;
char *C;
} table [] =
{ "1","2","3" }
;

The following gives some C code that prints the contents of the struct we call Table:

#include "table.h"

main ()
{

printf ("A=%s\n", table[0].A);
printf ("B=%s\n", table[0].B);
printf ("C=%s\n", table[0].C);

}

When compiled with the command

cc -o printtable printtable.o

the newly created command printtable yields the following output:

A=1
B=2
C=3

Note that the data are stored in an array of structs, so we must give a subscript for each row we
want.

We can also put the command tabletostruct into a Makefile, so that the COHERENT command
make can automate the building of the struct and its compilation. For example:

printtable: table.h printtable.o
cc -o printtable printtable.o

table.h: table
tabletostruct Table table < table > table.h

This says that the printable program depends upon table.h being up to date, and table.h depends
upon table table being up to date. If you had modified table since the last compile, make
reexecutes the command tabletostruct.

See Also
listtotable, tabletolist
COHERENT Tutorials: The C Language, The make Programming Discipline
COHERENT Lexicon: array, make, struct

tabletotbl — /rdb Command

Convert /rdb table format to UNIX tbl/nroff format
tabletotbl < tablefile > tblfile

The command tabletotbl converts an /rdb table to UNIX tbl format. tbl is a UNIX program that
formats tables for the nroff/troff formatting and typesetting programs.

Notes
The COHERENT system’s version of nroff and troff do not yet support tbl.

LEXICON

tabletotbl 271

tax — /rdb Command

Compute tax from income and tax table
tax income < taxtable

The command tax reads tax-table information from taxtable and computes taxes from it. income is
the income you wish to check. taxtable must be in the three-column format shown in the following
example.

tax writes to the standard output the computed tax rounded off to the nearest dollar.

Example
The following table, X83, holds the federal income tax for single taxpayers for 1983 (Schedule X):

income tax percent
------ --- -------
2300 0 11
3400 121 12
4400 251 15
6500 566 15
8500 866 17
10800 1257 19
12900 1656 21
15000 2097 24
18200 2865 28
23500 4349 32
28800 6045 36
34100 7953 40
41500 10913 45
55300 17123 50

If your taxable income is $20,000, type the following:

tax 20000 < X83

taxtable writes the following to the standard output:

3369

That is, according to the data in X83, a single person with an income of $20,000 in 1983 owed the
IRS $3,369.

You can also catch the output in a shell variable, like this:

TAX=‘tax 20000 < X83‘

This initializes environmental variable TAX to 3369. You can now use TAX to write the tax into a
table. For example:

compute "line == 35 { value = $TAX }" < form1040

Note that this command uses the quotation mark (") instead of the apostrophe (’), because we want
the shell to substitute the value of tax where we have typed $TAX. To quote something within
quotation marks ("), you must use apostrophes (’).

Notes
Please note that the tax tables included with /rdb are for 1987. Mark Williams Company makes no
claim as to their accuracy, or their usefulness in computing current taxes. Caveat utilitor!

LEXICON

272 tax

termput — /rdb Command

Get terminal capability from /etc/termcap file
termput capability

The command termput reads and returns the current capabilities for your terminal, as set in file
/etc/termcap. A two-letter capability code is followed by a string of characters that, when sent to
the terminal screen, turn on or off that capability. This assumes, of course, that your terminal is
properly described in /etc/termcap.

Capabilities
The capabilities are two-letter codes recognized by termcap. Here are some examples:

cl Clear the terminal screen
cm Cursor movement
so Start standout mode (e.g., reverse video)
se End standout mode

Using most of these codes is straightforward: just echo the appropriate code to the terminal to get
the effect you want. Cursor movement, however, is more complicated; the cursor-movement code
that termput returns must be edited to hold the row and column to which you wish to move the
cursor. For details, see the manual page for the command cursor.

Example
You can embed termput in a shell script to help invoke reverse video, blinking, and any other your
terminal has defined in /etc/termcap.

The first example clears the screen:

termput cl

The next example puts the screen into reverse video:

termput se

and the following turns off reverse video:

termput so

You can use termput to initialize environmental variables, which you can then invoke in a shell
script. This is much faster than making repeated calls to termput. To set up these shell variables,
insert the following commands your file $HOME/.profile:

export AE=‘termput ae‘ # end alternate character set - graphics
export AS=‘termput as‘ # start alternate character set - graphics

export CLEAR=‘termput cl‘ # clear the screen
export CURSOR=‘termput cm‘ # cursor movement - for the cursor command
export MB=‘termput mb‘ # start blinking mode
export ME=‘termput me‘ # turn off all attributes
export SE=‘termput se‘ # end stand out mode
export SO=‘termput so‘ # start stand out mode
export UE=‘termput ue‘ # end underline mode
export US=‘termput us‘ # start underline mode

Once this is set up, you can use these environmental variables in your shell program. For example,
if you want a message to stand out, bracket it with $SO and $SE:

echo "${SO} LOGOFF NOW ${SE}"

LEXICON

termput 273

See Also
clear, cursor, screen
COHERENT Lexicon: console, stty, termcap, terminal-independent operations

testall — /rdb Command

Test all /rdb programs in directory $RDB/demo
testall [> testall.new]

The command testall runs most of the /rdb programs with the files in the $RDB/demo. You should
run testall in directory $RDB/demo, because the test files are there.

testall writes the output of each example to the standard output. We suggest that you store the
output in file $RDB/demo/testall.old. Thereafter, you can check if the behavior of a test program
has changed, by using the COHERENT command diff to compare the output of testall with the
contents of $RDB/demo/testall.old. /rdb performs this testing when the /rdb database is installed
on a computer, and when code is changed.

Example
First go to the demo directory, assuming the path is /usr/rdb/demo:

cd /usr/rdb/demo
testall > testall.new
diff testall.old testall.new

The command diff finds and displays any differences between testfile.old and testfile.new. After
careful checking, if differences are correct, type:

mv testall.new testall.old

or

rm testall.new

This saves space, because these files are large.

See Also
COHERENT Lexicon: diff

testsearch — /rdb Command

Test the fast-access methods
testsearch

The command testsearch runs and times the /rdb commands index and search.

You must cd to directory $RDB/demo before you run testsearch, because it uses tables unixtable
and unixlist in that directory. If you wish, you can edit testsearch to time the search of a big list or
table that you are manipulating.

See Also
testall, timesearch
COHERENT Lexicon: time

timesearch — /rdb Command

Time fast-access methods
timesearch [> timesearch.new]

The command timesearch runs and times the /rdb commands index and search. Its purpose is to
find the fastest fast-access method for a given situation. Theory often fails when working with
access methods; a sequential search by the select command may prove faster than one of the fast-

LEXICON

274 testall — timesearch

access methods when the overhead of building the index is included in the evaluation.

timesearch is in directory $RDB/demo rather than in $RDB/bin because it is written to test just
the tables unixtable and unixlist. Because it is a shell script, you can edit it to test searching on a
big table you are manipulating.

Example
The following command test-runs timesearch:

cd $RDB/demo ; timesearch | more

timesearch writes to the standard output the outputs of the /rdb commands index and search,
plus the output of the COHERENT command time that it uses to time the programs.

See Also
index, search, testall, testsearch
COHERENT Lexicon: time
COHERENT tutorials: Introducing sh, the Bourne Shell

todaysdate — /rdb Command

Print today’s date in YYMMDD format
todaysdate

The command todaysdate displays the today’s date in the form: YYMMDD. Under /rdb, this format
is called the ‘‘computer format.’’ It is the best format for entering data in a column because it sorts
correctly.

See Also
computedate, gregorian, julian
COHERENT Lexicon: date, time, timezone

total — /rdb Command

Sum a column
total [-l] [column ...] < table

The command total adds up the values in each column in table. If no column is named on the
command line, it totals every column in table.

The option -l prints the entire table as well as the total for each column.

Several other commands behave just like total, except that the value they produce is not a total but:
datatype, maximum, minimum, mean, precision, width, length, and so on. The all call the same
program, but decide what to print depending upon the name used to call it.

Example
There are two formats. Without the option -l, total just gives the head lines and the total line. For
example, to find the totals of columns Debit and Credit in table journal, type:

total Debit Credit < journal

This returns something like:

Date Account Debit Credit Description
---- ------- ----- ------ -----------

65000 65000

However, if you wish to see the whole table, as in a report, type:

total -l Debit Credit < ledger

LEXICON

todaysdate — total 275

This returns something like:

Account Date Debit Credit
------- ------- ------- -------
101 890102 25000
101 890103 5000
101 890104 15000
130 890104 30000
150.1 890103 10000
201.1 890104 15000
211.1 890102 25000
211.2 890103 5000
------- ------- ------- -------

65000 65000

See Also
maximum, mean, minimum, subtotal

translate — /rdb Command

Word-for-word substitution using a translation file
translate language < text > translatedtext

The command translate performs word-for-word replacement on text. You can use it to perform
crude translations from one language to another.

translate uses either m4, sed, or both. For m4, translate needs a define file generated by the /rdb
command tabletom4; the define file must be named language. For sed, it needs a preprocessing file
and can also use a postprocessing file, both generated by the command tabletosed; the
preprocessing file must be named language.sed.1, and the postprocessing file must be named
language.sed.2. See the manual pages for these /rdb commands for a description of the sort of
table they require as input.

Example
Suppose we have a simple translation for English to Deutsch (German), called ed.t:

English Deutsch
------- -------
I Ich
love liebe
you dich
widgit

The command

tabletom4 < ed.t > ed

generates the m4 definition file ed, which contains the following:

define(I,Ich)
define(love,liebe)
define(you,dich)

Note that tabletom4 did not convert widgit because this word had no translation in the table.

Now, if file text contains the sentence

I love you.

you can use translate to translate it into German. Typing

LEXICON

276 translate

translate ed text

prints the following on the standard output:

Ich liebe dich.

translate has also been used in a biomedical expert system. The idea is to convert each word into
its value after looking it up in a table. For example:

Var Value
------- -------
age 42
weight 80
...

This is something the Lisp language does frequently.

translate can also be used to construct form letters.

See Also
tabletom4, tabletosed, word
COHERENT Lexicon: m4, sed

trim — /rdb Command

Trim excess white space from a table
trim [-[l|n|ln] col...][-r[n] col...][-t’c’]...< table

The command trim trims excess white space from each column in table. This lets you print a wide
table with the minimum width for each column. Please note that trim removes all tabs from table,
which renders it unreadable by any /rdb command, including trim itself.

trim without any options does the best it can to squeeze table without discarding any information.
It make each column as wide as its widest column name or data item. You can also tell trim to
reduce a column’s width, even if it has to throw away characters.

Note that trim trim all columns, even if some are listed with the options. Most other /rdb
commands, such as justify, affect only the columns named on the command line — unless none are
listed, in which case they do the same thing to all of them.

Options
trim recognizes the following options:

n The number of characters remaining after the trim.

-n column ...
Return only n characters from the left of column.

-ln column ...
Return only n characters from the left of column.

-rn column ...
Return only n characters from the right of column.

-t´c´ Use character c as the column separator. For example, you may want to keep the tab
character so that the table can be used by other /rdb commands.

When use this option, remember that the COHERENT shell gives special treatment to
certain characters, such as the tab and the vertical bar ‘|’. You must quote these
characters by enclosing them between apostrophes.

LEXICON

trim 277

The above options affect the columns named. The options are sticky, which means that you can
follow an option with as many column names as you wish.

Example
Consider, once again, table inventory, which appears as follows:

Item Amount Cost Value Description
------- ------- ------- ------- --------------
1 3 5.00 15.00 rubber gloves
2 100 0.50 50.00 test tubes
3 5 8.00 40.00 clamps
4 23 1.98 45.54 plates
5 99 2.45 242.55 cleaning cloth
6 89 14.75 1312.75 bunsen burners
7 5 175.00 875.00 scales

To trim it, type:

trim < inventory

This prints the following:

Item Amount Cost Value Description
---- ------ ------ ------- --------------
1 3 5.00 15.00 rubber gloves
2 100 0.50 50.00 test tubes
3 5 8.00 40.00 clamps
4 23 1.98 45.54 plates
5 99 2.45 242.55 cleaning cloth
6 89 14.75 1312.75 bunsen burners
7 5 175.00 875.00 scales

Note that the length of the column names Item and Amount determined the width of their columns,
but in all other columns the data determined the width.

To examine what trim did exactly, you can use the command see For example:

Item Amount Cost Value Description
---- ------ ------ ------- --------------
1 3 5.00 15.00 rubber gloves
2 100 0.50 50.00 test tubes
3 5 8.00 40.00 clamps
4 23 1.98 45.54 plates
5 99 2.45 242.55 cleaning cloth
6 89 14.75 1312.75 bunsen burners
7 5 175.00 875.00 scales

Note that there are no tabs ^I. This table is only for printing. Don’t input or pipe this output to
another /rdb command unless you use the -t option, which retains the tab as a column separator.

We can further squeeze the table with the options -n, -ln, and -rn. For example, the command

trim -1 Item < inventory

reduces column Item to only one character. This produces the following:

LEXICON

278 trim

I Amount Cost Value Description
- ------ ----- ------- --------------
1 3 5.00 15.00 rubber gloves
2 100 0.50 50.00 test tubes
3 5 8.00 40.00 clamps
4 23 1.98 45.54 plates
5 99 2.45 242.55 cleaning cloth
6 89 14.75 1312.75 bunsen burners
7 5 175.00 875.00 scales

Note that to reduce Item to one character, trim had to throw away all but the ‘I’ of the column name
Item. Note that the other columns were trimmed normally.

Because options are sticky, you can name several columns after one option: For example, the
command

trim -5 Item Amount Cost Description < inventory

reduces the four named columns to a maximum of five characters. This produces the following:

Item Amoun Cost Value Descr
----- ----- ----- ------- -----
1 3 5.00 15.00 rubbe
2 100 0.50 50.00 test
3 5 8.00 40.00 clamp
4 23 1.98 45.54 plate
5 99 2.45 242.55 clean
6 89 14.75 1312.75 bunse
7 5 175 875.00 scale

You can use the option -rn both to save the n right characters of a column and to line up numbers
on the right. For example, the command

trim -r3 Amount < inventory

produces:

Item Amo Cost Value Description
---- --- ----- ------- --------------
1 3 5.00 15.00 rubber gloves
2 100 0.50 50.00 test tubes
3 5 8.00 40.00 clamps
4 23 1.98 45.54 plates
5 99 2.45 242.55 cleaning cloth
6 89 14.75 1312.75 bunsen burners
7 5 175.00 875.00 scales

Note that the column name Amount has been reduced to Amo. Also, the column is right justified as
a result of removing the right three characters of each field in the column.

A complex trim might be done like this:

trim -1 Item -r3 Amount -r5 Cost -l7 Value Description < inventory

This command produces:

LEXICON

trim 279

I Amo Cost Value Descrip
- --- ----- ------- -------
1 3 5.00 15.00 rubber
2 100 0.50 50.00 test tu
3 5 8.00 40.00 clamps
4 23 1.98 45.54 plates
5 99 2.45 242.55 cleanin
6 89 14.75 1312.75 bunsen
7 5 175.0 875.00 scales

We have squeezed this table a lot.

We have been working with an unjustified table. What if the table had been justified? First let’s
justify the table:

justify < inventory > tmp ; mv tmp inventory

Now inventory is justified, as follows:

Item Amount Cost Value Description
------- ------- ------- ------- ---------------

1 3 5.00 15.00 rubber gloves
2 100 0.50 50.00 test tubes
3 5 8.00 40.00 clamps
4 23 1.98 45.54 plates
5 99 2.45 242.55 cleaning cloth
6 89 14.75 1312.75 bunsen burners
7 5 175.00 875.00 scales

Now, if we trim, you see:

Item Amount Cost Value Description
---- ------ ------ ------- --------------

5.0 15.00 rubber gloves
10 0.5 50.00 test tubes

8.0 40.00 clamps
2 1.9 45.54 plates
9 2.4 242.55 cleaning cloth
8 14.7 1312.75 bunsen burners

175.0 875.00 scales

This mess results from trimming the right characters in the right justified columns Item, Amount,
and Cost. This preserved the blank spaces, which are to the left in each column, and threw away
the data. One way to fix this is to tell trim that the columns are right justified, like this:

trim -r Item Amount Cost < inventory

This produces:

Item Amount Cost Value Description
---- ------ ------ ------- --------------
1 3 5.00 15.00 rubber gloves
2 100 0.50 50.00 test tubes
3 5 8.00 40.00 clamps
4 23 1.98 45.54 plates
5 99 2.45 242.55 cleaning cloth
6 89 14.75 1312.75 bunsen burners
7 5 175.00 875.00 scales

You can also compress the file before piping it into trim. For further compression, use the
command:

LEXICON

280 trim

trim -r1 Item -r3 Amount -r6 Cost -l11 Description < inventory

This produces:

I Amo Cost Value Description
- --- ---- ----- -----------
1 3 5.00 15.00 rubber glov
2 100 0.50 50.00 test tubes
3 5 8.00 40.00 clamps
4 23 1.98 45.54 plates
5 99 2.45 242.55 cleaning cl
6 89 14.75 1312.75 bunsen burn
7 5 175.00 875.00 scales

See Also
compresss, justify, trimblank

trimblank — /rdb Command

Remove leading and trailing blanks from a string
trimblank [string] [< file]

The command trimblank trims all white-space characters from the beginning and end of string. This
is useful in shell programming, in which you need to trim white space from a string that has been
padded (justified) with space characters.

Example
The command

echo ’ here is the good stuff ’ | trimblank

prints:

here is the good stuff

See Also
compresss, justify, trim

tset — /rdb Command

Fetch termcap entry for a terminal type
tset [TERM]

The command tset duplicates the Berkeley UNIX program by the same name. It finds the entry in
file /etc/termcap for terminal type TERM. If no terminal type is named on the command line, it
returns the termcap entry for the type of terminal you are now using.

You can use tset to initialize an environmental variable, which you then filter with other /rdb or
COHERENT commands.

Example
If you are working on your computer’s console, your terminal type is probably ansipc. In that case,
the command tset prints the following on the standard output:

LEXICON

trimblank — tset 281

:al=\E[L:am:bs:bt=\E[Z:bw:cd=\E[O:ce=\E[K:ch=\E[%i%d‘:cl=\E[2O:\
:cm=\E[%i%d;%dH:co#80:cs=\E[%i%d;%dr:cv=\E[%i%dd:dl=\E[M:ho=\E[H:\
:is=\E[25f\E[7m 1=Line_L 2=Line_R 3=D_Ln 4=Und_Ln 5=Undo 6=Und_Blk 7=Tag\
8=Join 9=Rptx 10=Rptd \E[m\E[H:\

:k0=\E[0x:k1=\E[1x:k2=\E[2x:k3=\E[3x:k4=\E[4x:\
:k5=\E[5x:k6=\E[6x:k7=\E[7x:k8=\E[8x:k9=\E[9x:\
:kb=^h:kd=\E[B:kh=\E[H:kl=\E[D:kr=\E[C:ku=\E[A:\
:li#24:ll=\E[24;1H:hd=\E[C:se=\E[m:sf=\E[S:sg#0:so=\E[7m:sr=\E[T:\
:te=\Ec:ue=\E[m:up=\E[A:us=\E[4m:\
:KI=\E[5x:KD=\E[3x:Kd=\E[P:KB=\E[6x:KU=\E[4x:Ku=\E[@:KM=\E[7x:KJ=\E[8x:\
:Kt=\E[Z:KT=\t:KL=\E[1x:KR=\E[2x:KP=\E[U:Kp=\E[V:KX=\E[9x:KC=\E[0x:\
:KE=\E[24H:KW=^F:Kw=^R:Kr=^N:do=\E[B:

The command

TERMCAP=‘tset‘

initializes the environmental variable TERMCAP to your terminal’s termcap entry. Storing this
information in an environmental variable greatly speeds processing of programs that manipulate the
screen.

See Also
termput
COHERENT Lexicon: termcap

LEXICON

282 tset

union — /rdb Command

Concatenate tables
union tableorlist ... [-] [< tableorlist]

The command union concatenates all of the tableorlists named on the command to form a new table
or list. The new table or list contains all the rows in the first input table or list followed by the rows
of the second, and so on. The input tables or lists must have the same number of columns. It is
best that the columns have the same name and the same type of data, in the same order.

The hyphen ‘-’ tells where in the list of files the standard input is to go. This gives you the freedom
to use union in a pipe and to place the input file anywhere in the output.

Example
Consider table journal, as follows:

Date Amount Account Ref Description
---- ------ ------- --- -----------
820107 14.00 meal v meal with jones
820119 81.72 vitamin c sundown vitamins
820121 20.83 meal v meal with scott
820121 2500.00 keogh c keogh payment
820125 99.00 dues v dues to uni-ops

and table carexpense, as follows:

Date Amount Account Ref Description
---- ------ ------- --- -----------
820113 101.62 car v car repairs
820114 81.80 insur c car insurance allstate
820114 93.00 car c car registration dmv

The command

union journal carexpense

produces the following output:

Date Amount Account Ref Description
---- ------ ------- --- -----------
820107 14.00 meal v meal with jones
820119 81.72 vitamin c sundown vitamins
820121 20.83 meal v meal with scott
820121 2500.00 keogh c keogh payment
820125 99.00 dues v dues to uni-ops
820113 101.62 car v car repairs
820114 81.80 insur c car insurance allstate
820114 93.00 car c car registration dmv

LEXICON

union 283

The command

echo journal | union - carexpense

accomplishes the same thing as the previous example, but shows demonstrates how to use union
with a pipe.

See Also
jointable, split
COHERENT Lexicon: cut, paste

uniondict — /rdb Command

Combine three tables into translation dictionary
uniondict langtolang > definefile

The command uniondict creates an m4 define-file out of three tables. langtolang is a two-letter
code that indicates which language is being translated to which; for example, ed stands for ‘‘English
to German’’ (Deutsch).

uniondict expects one table of lower-case letters, such as ed.low, and one of all capital letters, such
as ed.allcap, and builds its own table with initial capitals. Finally uniondict uses the /rdb
command tabletom4 to create a definefile for m4.

Example
To generate a definefile for English-to-German translation, type the command:

uniondict ed

If the two precursor files already exist, then this command generates a new file named ed that can
be used by translate.

See Also
tabletom4, translate, word
COHERENT Lexicon: m4

unlock — /rdb Command

Unlock a record or field of a file
unlock tableorlist processid from to indexfrom indexto

The command unlock unlocks a record or file by removing a row from a common unlock file. File
/tmp/Ltableorlist contains one line for each locked record or field plus processid of the process that
locked it. from and to give, respectively, the offsets of the beginning and end of the locked record or
field; and indexfrom and indexto give, respectively, the offsets of the beginning and end of the row or
field’s entry in the secondary index file.

Example
Let us use unlock on table inventory, which is as follows:

Item Amount Cost Value Description
---- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 5 500 test tubes
3 5 80 400 clamps
4 23 19 437 plates
5 99 24 2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

LEXICON

284 uniondict — unlock

First, we use the /rdb command seek to locate the record and return the offset and size:

LOCATION=‘echo 5 | seek -mb inventory Item‘

The above command returns the offset and size of column Item in row 5 of table inventory, and
writes the informatio into environmental variable LOCATION. When we look at the contents of
LOCATION, we see the following:

207 245 0 8

This means that the record begins 207 bytes into the file, ends 245 bytes into the file, and therefore
is 38 bytes long.

Now we can call unlock to unlock the record:

unlock inventory $$ $LOCATION

Note that we use the environmental variable $LOCATION to supply the location. We also use the
shell’s built-in variable $$ to write the process identifier onto the command line.

Let’s see what the lock file looks like. Since we’re locking table inventory, the lock file is named
Linventory. If we type the command:

cat /tmp/Linventory

we see the message:

cat: cannot open /tmp/Linventory

unlock removes the lock file if it removes the last lock line.

See Also
lock, seek

update.inv — /rdb Command

Multi-user update with screen form and record locking
update.inv

The command update.inv is a sample shell program that demonstrates several features of /rdb,
including multiuser input, fast access, screen-form input, and record locking. It updates an
inventory file named inv that is in the directory $RDB/demo Use it to see how to use the
COHERENT shell to tie /rdb and COHERENT programs together to form fast, multiuser, large-file
applications.

The environmental variable TERM must be set to the correct name of your terminal, as described in
the COHERENT system file /etc/termcap. To make the reverse video and underlining work, you
will have to initialize environmental variables in your .profile.

Example
cd to directory $RDB/demo and run update.inv:

cd rdb/demo
update.inv

You’ll the following template on your screen:

LEXICON

update.inv 285

Makeapile, Inc. Inventory Update Mon Jan 8, 1990

Item Number: _______ (or hit Return key to exit.)

Item Cost Value Description
---- ---- ----- -----------

Amount Onhand: _______

Try the program for yourself and study the program source.

See Also
lock, search, seek, replace, unlock
COHERENT Lexicon: TERM, termcap

update.rdb — /rdb Command

Display and edit records in any sized file
update.rdb [-l -m[bhirs] -v] tableorlist [keycolumn ...]

The command update.rdb lets you find a record in tableorlist, display it, and update it.

update.rdb can find a record in any of several different ways: by moving up and down in the file, by
record number, by matching a string pattern in a record, and a fast-access method search.

update.rdb lets you use a text editor to edit the record you find. To lock out other users who might
be looking at your file, update.rdb uses the /rdb command lock to lock the record being edited.
When you finish editing, update.rdb replaces the edited record back into tableorlist.

If the new record is smaller than the old record, it adds space characters to the end of the last
column to pad out the record. If the new record is larger than the old record, it trims trailing and
leading spaces from the columns. If update.rdb cannot find enough blank spaces to trim, it does
not replace the record, but appends it to the end of the table and updates the fast-access method
indexes, if any. If this happens, you have several options: You can reedit the record. You can
append the record to the end of the file using enter and delete the current record. You can also pad
each record with extra spaces so that there will be room when you do updates. To add padding, use
the command pad.

Because update.rdb replaces an edited record to where the original was extracted, you do not have
to rebuilt entirely any fast-access indexes that fileorlist owns. As long as you don’t change the key
columns, the fast-access methods can still find the records. This can mean a considerable savings
in the time needed to update a record.

Also, update.rdb can handle any sized file, whereas the text editors and word processors mostly
cannot handle files of more than a few thousand characters.

Options
update.rdb recognizes the following options:

-l No lock. Do not lock the record by blanking out the record in the file while updating. This is
much faster than using record-locking; but it is truly safe if you are the only person who can
update tableorlist. If more than one person can access tableorlist at the same time, do not use
this option.

-m Fast access method. See the manual page for the /rdb command search for a description of
these options.

-v Verbose. With this option, update.rdb prints information about what it is doing during each
step of updating a record. You can use this information to find the bottlenecks in updating; for
example, you may find that you are not using the best method of accessing the records you

LEXICON

286 update.rdb

wish to update.

Getting
To invoke update.rdb to edit tableorlist, simply type:

update.rdb tableorlist

update.rdb prompt you with a ‘>’.

You can exit from update.rdb by any of three methods: Type <ctrl-D>, type ‘‘quit’’, or simply type ‘q’
(because update.rdb looks at only the first character of the one-word commands).

Finally, the kill character on your terminal (usually <ctrl-C>) kills the program, as it does other
COHERENT commands.

Help Menu
update.rdb has a help menu built into it. To see it, type help at the ‘>’ prompt. You will see the
following:

Command Description | update.rdb [-l -m[bhirs] -l] file

CTRL-d exit, hold down CTRL key and press d

(see quit below)
Return key display next record
number display record number you enter

(number = 1,29,...)
+number move forward the number of records in the file
-number move backwards the number of records in the file
/pattern find next record with pattern
=key find records with key matching what you type
!command execute the unix command while still in update.rdb
!enter file enter new records at end of the file

(You need only type the first letter of the commands below)

delete delete the current record
m[bhirs] [col] set up fast access method for key column

b=binary, h=hash, i=index, r=record, s=sequential
lock lock update.rdb record by blanking (toggle, true)
search key find records with matching key
help help list displayed (this help list)
quit quit (also cntl-d)
update.rdb update current record, allows you to edit, replace
verbose report internal actions (toggle, false)

Finding a Record
There are several ways to find the record you want.

When update.rdb comes up, it displays the first record in tableorlist. To move to the next record,
simply press <Return>. You can move forward any number of records with a plus sign and a
number, for example, +5; and you can move backwards with a minus sign and a number, for
example: -16. You can also select a specific record by typing its number. Record numbers are
displayed with each record.

Pattern Search
If you try to go beyond the last record or before the first record, update.rdb warns you.

You can also search for a record that has a given string by typing a slash character followed by
string. For example, to search for pattern ‘‘Ronald’’, type: /Ronald. update.rdb searches forward
starting with the next record, then wraps around and goes to the first record in the file and

LEXICON

update.rdb 287

continues till it finds a match or returns to the current record.

Fast-Access Methods
update.rdb can use fast-access methods to find a record within tableorlist. You can turn on the fast-
access methods in either of two ways:

1. Use the appropriate option on the command line. For example, the command

update.rdb -mh inventory Description

invokes the fast-access method for table inventory.

2. Type the appropriate option at update.rdb’s prompt. For example, typing

mh Description

at update.rdb’s ‘>’ prompt invokes the fast-access method for column Description.

Both ways tell update.rdb which method to use and which column is the key column.

Once invoked, you can search with either the = or s commands. For example:

> =keyvalue
> s keyvalue

Updating
To update the current record, simply type:

> update

Just the letter u is sufficient.

The steps in using update.rdb are as follows:

1. Invoke update.rdb with the name of the table or list to be edited.

2. Find the record you want by entering its row number, a string it contains, or through a fast-
access method.

3. When the record is found, type u to update it.

4. update.rdb copies the record to a file with a header so that it is a one record table or list.

5. update.rdb replaces the selected record with a string of blanks of the same length, hold the
record’s place within its table, and to lock out other users.

6. update.rdb then copies the temporary record file to a backup file in case you damage it.

7. update.rdb then reads environmental variable EDITOR and calls the editor it names to let you
edit the record you selected. If EDITOR is not set in your environment, it invokes vi by
default.

8. Use the editor to edit the record.

9. When you exit your editor, update.rdb returns the edited the record into its table or list. It
adds or removes trailing spaces to make the record fit into the same amount of space it
previously occupied in its table or list. If the record doesn’t fit into its old space, update.rdb
lets you choose whether to re-edit the record, or append it to the end of the table or list.

You can also validate a record before leaving your editor by typing:

validate file.v < file

LEXICON

288 update.rdb

See the COHERENT Lexicon entries for the editor you are using for information on how to pass that
command to the shell without exiting from the editor. The entry for the command validate in this
manual describes how it works.

Other Useful Commands
If you need to see the current record again because it has run off the screen, simply type a period at
update.rdb’s prompt.

To execute a COHERENT shell command, type an exclamation point and the command you wish to
execute. For example, to execute the command ls from within update.rdb, type

> !ls

This feature also lets you append new records to a table while still within update.rdb. To do so, just
type:

> !enter thisfilename

When you leave the enter command, you will be back in update.rdb.

You can also index the file you are working with from within update.rdb. Just type:

> !index -mi filename keycolumn

This command creates index file filename.i, which update.rdb can then use for fast-access
searching of file you are updating.

Padding
When you set up a table that you intend to update, you probably should pad it — that is, add extra
space characters to each record. Then you can add characters to a record and update.rdb will trim
off the space characters to fit it back into the file. For details, see the manual page for the command
pad.

Notes
This command is named update.rdb rather than update, as in other implementations of /rdb, to
avoid clashing with the COHERENT command update, which does something very different.

uppercase — /rdb Command

Convert input to all upper-case characters
uppercase [string ...] [< file]

The command uppercase converts to to upper-case characters every letter in string. If you do not
pass it a string, it reads the standard input. It uses the COHERENT command tr to perform
conversion.

Example
Here we convert a string to upper case:

uppercase little words

This displays

LITTLE WORDS

on the standard output.

If the file lowers contains the text

these are all lowercase.

LEXICON

uppercase 289

then the command

uppercase < lowers

prints the following on the standard output:

THESE ARE ALL LOWERCASE.

See Also
cap, lowercase
COHERENT Lexicon: tr

LEXICON

290 uppercase

validate — /rdb Command

Find invalid data
validate ’pattern { action } ...’ < tableorlist

The command validate checks your tables and a list of invalid data. It also prints messages of your
choosing, and shows you the line that caused the error. It is almost identical to a combination of
the commands row and compute.

validate passes your commands to awk after it has converted your column names to $1, $2, and so
on, which is how awk refers to columns.

pattern is a logical condition that indicates invalidity in the data; for example, it may give values that
are negative and should not be, or greater than they should be. action is what to do about it;
usually, this is to print a message.

Example
The first example is simple. Once again, consider table inventory, which is as follows:

Item# Onhand Cost Value Description
----- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 X 500 test tubes
3 -5 80 -400 clamps
4 23 19 437 plates
5 -99 24 -2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

Several invalid values have crept into this table. You might wish to check that no item in column
Onhand is less than zero. To do so, type the command:

validate ’Onhand < 0 {print "negative Onhand in line " NR}’ < badinventory

This prints the following on the standard output:

Item# Onhand Cost Value Description
----- ------ ---- ----- --------------

1 3 50 150 rubber gloves
2 100 X 500 test tubes

negative Onhand in line 3
3 -5 80 -400 clamps
4 23 19 437 plates

negative Onhand in line 5
5 -99 24 -2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

LEXICON

validate 291

The variable NR means number of record or row. This variable is built into awk, which replaces it
with the number of the line it is processing.

The next example is complex. Note that if you wish, you can write a command line for validate into
a file, to create a customized validation command. You can put many tests and messages in one
validation file. For example, the following command file, called validateinv, thoroughly checks table
inventory:

echo validating badinventory

validate ’{if (Onhand < 0) print "negative Onhand in line " NR; \
if (Value < 0) print "negative Value in line " NR; \
if (Cost ~ /[A-Za-z]/) print "letter in Cost in line " NR; }’ \
< badinventory

To validate table inventory, just type:

validating badinventory

This prints the following on the standard output:

Item# Onhand Cost Value Description
----- ------ ---- ----- --------------

1 3 50 150 rubber gloves
letter in Cost in line 2

2 100 X 500 test tubes
negative Onhand in line 3
negative Value in line 3

3 -5 80 -400 clamps
4 23 19 437 plates

negative Onhand in line 5
negative Value in line 5

5 -99 24 -2376 cleaning cloth
6 89 147 13083 bunsen burners
7 5 175 875 scales

You may wish to redirect the output of validate to a file, bring it into your editor, and correct the
errors and remove the error lines as you go. To make it easier to find those error lines in the editor,
you could have all error lines contain a string that is easy to find, such as ERROR.

If you only want to see the error lines, use the command row.

See Also

Logical Conditions
compute, row
COHERENT Tutorials: Introduction to the awk Language

ve — /rdb Command

Visually edit a table
ve [table [-n[n] -fc -mc -i -s [file] -h [file] -a [file] -v [file]]][-b]

ve is an editor that is designed to edit tables in a multi-user environment. Because it is designed to
work with tables, it understands rows and columns; and because it is designed for a multi-user
environment, it knows how to lock records and perform other useful tasks to protect the integrity of
of your data.

ve defines a row, or record, as containing a fixed number of columns, or fields. It defines a field as
being a string delimited by an exclusive column separation character. Normally, the first two rows in
a ve table are header records that describe the columns in each row. Each field in the first header

LEXICON

292 ve

record names its column; fields in the second header record are hyphens ‘-’. When you invoke ve
without an argument, it displays a menu of on-line ve help topics and instructions.

table is the table you wish to edit. When you name a table on the command line, all other
arguments must follow it. If table does not exist, ve create sthe necessary header records from a
screen file or a header table.

Options
ve recognizes the following options:

-b Use the terminal’s highlighting capability. If specified, ve does its best to emphasize non-
data text and the on-line help file’s keywords by displaying them in high intensity. This
may produce odd results if the entry in file /etc/termcap for your terminal is incorrect or
missing, or if your terminal type is set incorrectly.

-nn Use automatic record numbering. ve assumes that the data in the first column of each
record are unique numbers, and keeps track of the largest value in this column. As you
add new records to the table, ve increments this number and stores it in the first column of
the new record.

When you specify n, ve begins numbering records at that value. For example, -n2001
means, ‘‘Use automatic record numbering and begin the numbers at 2001.’’

-fc Use the character c to delimit columns instead of the default tab character. With the
exception of the screen file, all files associated with the ve table must use the same column
separation character.

-mc Invoke ve in mode c, where c is one of the following:

i Insert mode
n Next mode
/ Search mode

ve returns to this mode after each successful write. Invoking ve in insert mode is
convenient when entering data.

-i Initialize the table. ve maintains a private sequential index of all records in a table, so it
can track the records in use and the records that have been deleted during an editing
session. It also uses this index to clean up the table when the edit session is over. If the
table is modified by a program other than ve, then you must use the -i switch during the
next ve edit session to reinitialize its private index. You can use this index for fast
searching by record number if each record has a number and no records are ever deleted.

If the current directory contains any files that follow ve’s naming convention data-c, where -
c is a file-option switch (-s, -h, -a, -v), ve incorporates them automatically into the command
line before it processes the argument list. You must name on the command line all files
that not named according to this convention; please note that this overrides the inclusion of
any default names in the command line.

-s file Tell ve to use file as the screen file, which contains a template of how you want the screen
to appear. The entire screen file should not exceed 23 lines. ve scans the screen file for
column names enclosed between angle brackets (<>) and displays the data in those
columns between the brackets. Both brackets must be on the same line. If file is used to
initialize the table, all column names must be listed; otherwise, excluding a column name
from a template also keeps data in those columns from being viewed, sought, or modified. If
a column name is preceded by an exclamation point, ve lets you search for that column’s
data and display them, but no user can modify them.

LEXICON

ve 293

-h file The header records are in file. If no file is named, ve assumes that the header records are in
file data-h. ve can create a header file only when the table is initialized with a screen file.

-a file If the audit table does not exist, tell ve to create it and write it into file. If you do not name
file, ve writes the audit table into data-a.

ve audits a table by recording each addition, modification, and deletion you make to it, and
storing this information in its audit table. The audit table looks like the table, with the
addition of two columns in the beginning of each record: the time stamp column and the
modification code column.

The first column of each row in the table must be a unique number so that rows can be
tracked accurately. ve manages these numbers and assigns new ones to the rows you add.
If the table already exists, ve begins record numbering at the largest record number in the
table plus one; for new tables, ve begins record numbering at one.

Each time you add a record (code a), change a record (code c), or delete one (code d), ve
records in the audit table the date and time, the modification code, and the number of the
record. When you change or delete a record, ve also stores it in the audit table the data
that the record contained before you changed or deleted it.

-v file Use file as the validation table. If you do not name file, ve uses data-v by default. If the
validation table does not exist, ve creates it, then uses itself to edit the new validation table
so you can enter validation requirements for desired columns before you edit the table.

When you include a validation table in the command line, ve checks the data as it is entered into
columns, which are specified in the validation table, to make sure they meet certain requirements.

The first header record of the validation table contains a name column, a character column, a length
column, and a table look-up column, in that order.

name column
This names a column from the table being validated.

character column
Give the valid characters or ranges of characters for data in this column Characters and
ranges must be separated by commas (,). Ranges or characters that are preceded by an ‘!’
exclude that range or character from the valid list. For example, the validation string a-
z,!y,1-9,#,., ,,, means that all lower-case characters with the exception of y are valid, as are
numerals from 1 to 9, pound symbols, periods, blanks, and commas. By contrast, the
string !0-9 excludes all numerals from the column.

length column
Set the length limit of the column, as follows:

<n The column cannot exceed n characters in length.

>n The column cannot be less than n characters long. The < and > symbols can be
used with each other. For example, >10,<28 specifies that the length of the data in
this column must be at least 11 and not more than 27 characters long.

=n The column can contain only n characters.

! Zero indicator. This can used with any of the above symbols to indicate that the
column can also have a length of zero. For example, !,=5 means that the column
can contain zero characters; if it does not contain zero characters, it must contain
exactly five characters.

LEXICON

294 ve

table look-up column
Tell ve to check the data entered against the contents of an existing table. When the name
of the table is preceded by ‘!’, data entered in the column must not be in the table; otherwise
they must be in the table.

You can create an index table with the command vindex. It names them after the column
you are vindexing, which is called the key column. If the name of the key column is longer
than 11 characters, vindex truncates the name to 11 characters. It also converts blanks in
the key column’s name to ‘_’.

For example, the specification !name tells ve to check the data against a table comprised of
all text located in a column named name. If the data are not found in the table, then it
passes validation.

Commands
The following table gives the ve edit commands. ve uses two modes when editing a table: command
mode and insert mode. Commands that switch ve from command to insert mode are indicated by
<ESC>. The ESC (escape) key switches ve from insert to command mode.

The commands c and d commands require targets. A target is the destination for the command
being executed. For example, the command dfa means, ‘‘delete text from the cursor up to and
including the first a character encountered.’’ In this case, the target command is f. In the table,
commands that can be used as targets for the c and d commands are indicated by (t).

Some commands recognize a number that indicates how many times it should execute. For
example, the command 5l means, ‘‘Move right five characters’’; the command 3rP means, ‘‘Replace
the next three characters with the character P.’’ Counts may also be used with targets; for example,
command c2w means, ‘‘Change the next two words.’’ Commands that recognize counts are indicated
by a (c).

Command Description
............Atext<ESC>Append text at field end
............atext<ESC>....................Append text after cursor
............BBack field (c)
............b....................................Back word (t,c)
............C<ESC>.........................Change to field end
............c<ESC>Change to target
............DDelete to field end
............d....................................Delete to target
............dd..................................Delete record
............e....................................End of word (t,c)
............Fx..................................Find x left (t,c)
............ fx...................................Find x right (t,c)
............GGo to last record (c)
............HFirst field
............hLeft character (t,c)
............ Itext<ESC>Insert text at field start
............ itext<ESC>Insert text before cursor
............ j.....................................Down field (c)
............k....................................Up field (c)
............L....................................Last field
............ l.....................................Right character (t,c)
............mMark search field
............M...................................Unmark search field
............nGet next record
............Otext<ESC>...................Open new record

LEXICON

ve 295

............otext<ESC>....................Open new field

............P....................................Put yanked record

............p....................................Put yanked field

............q....................................Quit ve

............R<ESC>.........................Replace

............ rxReplace with x

............S....................................Redraw the screen

............ s<ESC>Substitute text (c)

............ tTable display

............u....................................Undo last command

............v....................................Validation display

............W...................................Write record

............wNext word (t,c)

............x....................................Delete character (c)

............YYank current record

............y....................................Yank current field

............ZZ..................................Write record & quit

............zField display

............ ;.....................................Repeat F/f cmd (t)

............^....................................Start of field (t)

............$....................................End of field (t)

............/text<ESC>....................Search for text

............/<ESC>Repeat search

............ -.....................................Get preceding record

............%...................................Execute the shell

............ !.....................................Shell escape

............ !!Repeat shell escape

............>....................................Scroll field left

............<....................................Scroll field right

............#....................................Help file(s) display

............ RETURN........................Next field (c)

............ TABNext field (c)

............ SPACE...........................Right character(t,c)

The next table gives two other kinds of ve commands — colon commands and control-key
commands, all of which map directly to commands in given in the previous table. Colon commands
are provided for users familiar with vi or ed. Control-key commands let you define command
macros by specifying the control key character and the command or commands to be executed each
time the control key is hit. These definitions, or macros are defined in the /rdb-formatted file .verc
located in the your home directory. If there is no .verc file, then the default control-key commands
apply. If you are in insert mode when a control key is hit, ve attempts to restore that mode after
successful execution of the macro.

Command Maps to Command Maps to
:h[elp] # <ctrl-A> #
:n[ext] n <ctrl-R> S
:o[pen] O <ctrl-T> t
:q[uit] q <ctrl-Q> ZZ
:s[hell] <ctrl-S> %
:w[rite] <ctrl-W> W
:!cmd !cmd <ctrl-V> v

:!! !! <ctrl-D> dd

See Also
vindex

LEXICON

296 ve

COHERENT Lexicon: elvis, vi

vilock — /rdb Command

Lock a table before editing, unlock afterward
vilock tableorlist

The command vilock stops others from editing the same file you are editing. It locks the table,
invokes the vi with which you can edit the table, then unlocks the table when you have finished
editing.

To lock tableorlist, vilock changes its name to LOCKtableorlist; this is a temporary file that exists
only as long as you are editing. vilock then invokes vi for LOCKtableorlist. When you finish editing
and exit from vi, vilock moves LOCKtableorlist back to its original name. If anyone else trys to edit
tableorlist while you are editing it with vilock, he receives a message that the file is locked or
missing.

See Also
lock, unlock, ve
COHERENT Lexicon: elvis, vi

vindex — /rdb Command

Create and display ve look-up tables
vindex table [key-column [: decode-column] ...]]

The command vindex creates and displays tables composed of columns in ve tables. These tables
are used by ve when validating column entries. table names the ve table. When no options are
specified, vindex displays the contents of all existing column tables associated with table.

For each key-column, vindex collects the text from that column and stores it in two files; each is
prefixed by the name of the key-column and is suffixed by -A or -B. If the name of the key column
exceeds 14 characters, the table-name prefix is truncated to 14 characters. Key column whose
names contain blanks must be surrounded by quotation marks; blanks are converted to
underscores ‘_’ in the table name. These files are referred to in the fourth column of ve validation
files by the table-name prefix.

When the colon ‘:’ argument follows a key-column name, the column name following this argument
is assumed to be the name of a decode-column. As key-column text is collected in the table, the
associated vindex links the decode-column’s text to it as a cross-reference.

Example
The following vindex command create a look-up table for the key columns Snumber and State in
table personnel; it also cross-references the information in Snumber with the text in the decode-
column Employee:

vindex personnel "Snumber" : Employee State

The resulting tables are named Snumber and State.

See Also
ve

LEXICON

vilock — vindex 297

whatis — /rdb Command

Display the command description and syntax
whatis command

The command whatis displays the description and syntax of command. It resembles the COHERENT
command help, except that it handles /rdb commands.

Example
The command

whatis column

displays the following:

column - display columns of a table in any order
column column ... < tableorlist

And the command

whatis whatis

displays:

whatis - displays the command description and syntax
whatis command

See Also
whatwill
COHERENT Lexicon: help, man

whatwill — /rdb Command

Display commands with functions in description
whatwill function

The command whatwill displays the description and syntax of the command that performs function.
It resembles the Berkeley UNIX command appropos. It also resembles the /rdb command whatis
except that it seeks function anywhere in the name of the command, the description, and the syntax.
For example, if you ask for total, whatwill returns both total and subtotal.

Example
The first command looks for information about columns:

whatwill column

This returns:

column - display columns of a table in any order
column column ... < table

LEXICON

298 whatis — whatwill

And the command

whatwill total

returns:

subtotal - outputs the subtotal of columns in a table
subtotal [-l][break-column column ...] < table
total - sums up each column selected and displays
total [-l][column ...] < table

See Also
whatis
COHERENT Lexicon: help, man

widest — /rdb Command

Output the width of the widest entries in a table
widest < table

The command widest reads table and writes to the standard output a second table that gives the
width of the widest entry in each column.

Example
The command

widest < inventory

reads table inventory and writes something like the following to the standard output:

Item Amount Cost Value Description
---- ------ ---- ----- --------------
4 6 4 5 14

Each number is the width, in characters, inventory’s the widest entry in that column. You can use
this information for formatting. /rdb does not require a schema because it gets the parameters of
the tables from the tables themselves.

See Also
width

width — /rdb Command

Display the width of each column
width [-l] [column ...] < table

The command width displays the maximum width of each column in table. If no column is named, it
returns this information for every column in table. The option -l displays the entire table as well as
information about the maximum width in each column.

Example
For an example of this command, see the entry for total.

See Also
total, widest

LEXICON

widest — width 299

word — /rdb Command

Convert text file into list of unique words
word < text > table

The command word reads text converts it to a list of the unique words it contains, and writes the
list to the standard output. You can use word to help construct tables for the /rdb command
translate.

Example
If you were to type the above paragraph into a file called FOO, the command

word < FOO

would print the following to the standard output:

The
You
a
and
can
command
construct
contains
converts
for
help
it
list
of
output
rdb
reads
standard
tables
text
the
to
unique
use
word
words
writes

See Also
translate
COHERENT Lexicon: sort, tr, uniq

Notes
Because word is a shell script, you can modify it to map upper-case characters to lower case, if you
wish.

LEXICON

300 word

The COHERENT System 301

Index

to _

#define . 123

*). 88

- . 30

... 29

.profile . 1

.verc. 18-19

/rdb
documentation 139
function library 139
selected commands 14

/rdb & shell programming. 77
/rdb header 202
/rdb installation 1

3GL . 3

4GL . 3-4

5GL . 20

< . 16, 29

= . 28
== . 28

> . 16, 29

[] . 29

A

account
subtotal 197

accounting period
close . 168

accounting system 154
accounting terms 153
accounts payable 154
act . 154
add column to table 155
add head to table 203
add row. 190
addcol. 155
adjust . 155
adjust balance sheet 155
ANSI SQL. 19
apostrophe 16, 24, 28
append . 156
append row 190

append row to table. 156
append row-number column 227
argc . 123
argv . 123
arithmetic

column 171
date . 175

artificial intelligence 117
ASCII 6, 8, 13, 158
ascii . 158
ASCII

convert from integer. 167
Ashton-Tate 181
assembly language 4
at . 99
atoi(). 140
audit trails 108
awk 2, 8, 16, 25, 28, 30-31, 36, 38-39, 85, 108

description 78

B

b-tree indexing 98
backup . 159
balance . 159
balance sheet 159
bc . 132
behead table 203
bibliography 20
bill of materials 161
binary data base 115
binary searching 96
blank . 160

command 107
blank a row 160
blank row

delete . 242
blanking a record 101
bom . 161
Borland International 181
Bourne shell 73
Boyer-Moore search algorithm 110
break column 26

C

C. 4-5, 14
pointers 125

C language 109, 123
struct . 270

calcpay . 162
calculate . 162
calculate tax form. 162
cap . 163
capitalize text 163
CASE . 8, 20
case 8, 87, 126, 182, 225
cash flow . 163
cashflow . 163
cat 78, 87, 91, 95, 130, 187

INDEX

302 The COHERENT System

chaining . 124
chartdup . 165
check.rdb. 166
chmod 30, 107
chr. 167
clear. 88, 181, 225

command 91
clear screen 168
clear.rdb . 168
close. 168
close() 127, 129-130, 134
COBOL 4-6, 38
Codd, E.F. 114
COHERENT environment 2
COHERENT file system 5
COHware 255, 265, 269
coldump(). 142
colgeth() 140, 142
colgetr() . 142
colinit() . 142
colmatch() 148
colputh() 140, 149
colputr() 140, 149-150
Colroutines 139
column 11, 169, 181

add. 275
add to table 155
append row number. 227
arithmetic. 171
command . . . 12, 15-16, 23, 25, 72, 82-84
compute subtotal 262
count . 166
find precision. 233
find widest entry 299
find widest rows 299
functional dependency 194
justify . 213
key . 68
maximum 223
mean value 223
minimum value 226
number 184
position 184
print maximum width. 299
recompute 171
rename 236
reorder. 169
select . 169
subtotal 262
trim white space 277
verify. 166

column separator
tab . 38

command
/rdb, selected 14
blank . 107
clear . 88
column 12, 15-16, 23, 25
compute. 24-25, 30, 78
cursor 88-89

INDEX

dBASE to /rdb 181
difference 105
enter 36, 107
fastaccess 133
find path 233
gregorian 102
input. 15
intersect. 106
jointable. 13, 30, 32
julian . 102
justify 17, 25, 37
list . 204
list all . 235
listtosh . 82
listtotable 38
menu 87, 223
miscellaneous 101
output . 15
print summary 298
print syntax. 298
quoting . 28
replace. 107
row. 12, 15, 23-24, 78, 93
screen . 91
searchtree. 121
see . 38
seek . 101
select . 24
selected . 23
semantics 29
show /rdb commands. 170
sorttable. 13, 17, 32, 67
subtotal . 26
syntax . 29
tabletofact. 118
tabletolist 38
tabletorule 118
tabletostruct 135
tabletotbl 17
total . 26
trim . 17
union 98, 105
update. 36, 107
validate 39, 78, 108

commands 170
complex queries & joins 73
compress table 170
compresss 170
compute 83-84, 171, 181, 183

command 24-25, 30, 39, 78
compute cash flow 163
computedate. 175
computer format 104
concatenate tables 283
consolidate. 176
consolidate journals 176
continue 149, 181
convert integer to ASCII 167
convert list to shell 218
convert list to table 219

The COHERENT System 303

convert name to soundex 218
convert string to lower case 222
convert string to uppercase 289
convert table format 196
convert table to PROLOG facts 264
copy directory 177
copy file. 187
core

remove. 243
count columns 166
cpdir . 177
cpdir.rdb . 177
cpio . 107
crontab . 99
crypt . 107
cstate . 177
cursor. 178

command 88-89, 91
move . 178

customer statement 177

D

dash line 11, 180
insert . 207
remove. 203

data
entering . 16
logging. 108
non-text . 19
normalization. 68
validate 291

data base
model . 113

binary . 115
delete problems 69
design . 65
entity-relationship. 114
hierarchical. 113
infological 115
insert problems 69
network 114
print schema 247
PROLOG. 115
redundancy problems. 69
relational 114
semantic network 115
update problems. 69

data base, relational 2, 11
data dictionary 184
data editing 35
data entry . 35

multi-user. 36
data stream . 7
data type . 180
data validation. 39, 108
datatype . 180
date

arithmetic. 175
computer format 104

conversion 102
convert 199, 213
European format. 104
formats 104
get today 275
Gregorian 102, 199
Julian 102, 213
US format 104

db . 142
dBASE . 181
dBASE crossreference 181
dbdict . 184
debugging 142
default 126, 134
define file . 284
delete 185, 242
delete row 185
df . 111, 182
diff. 108
difference. 186

command 105
directory

copy . 177
search . 253

display . 187
do . 80
do() . 149
domain . 187
domain table. 187
done. 80
du . 111, 182
dup() 128, 131, 134
duplicate name

check for 165

E

echo . 78, 80, 82-84, 87-88, 91, 127, 181, 234
ed . 79
editor

ve. 35, 292
editors . 79
English . 4
enter . 190

command 36, 107
entity-relationshipo data base 114
environmental variable. 81

PATH. 125
TERM . 88

EOF . 140
European format 104
eval . 83
exec . 79
execl() 124-125, 129, 131, 134
exit(). 126, 129
explode . 193
explode part into subparts. 193
export . 88

F

INDEX

304 The COHERENT System

fast access 133
fast-access methods 93
fastaccess

command 133
fd . 194
fflush() . 138
fifth-generation language 20
file

convert to soundex 259
copy . 187
display contents 255
multi-user access 107
recovery 108
size. 195
write . 187

file format
list . 37
table . 37

files, and tables 11
filesize . 195
fill tax form. 196
fillform . 196
find record by number 235
find row. 256
first normal form 69
first-degree normalization 14
fixtotable . 196
foot . 197
for . 77, 80, 182
fork() 126, 134
form. 91

editor . 292
form, screen 35
forms editor

ve. 35
FORTRAN 4, 8
fourth-generation language 3
fourth-generation system 3
fprintf() . 127
fstat() . 139
functional dependency 68, 70

test. 194

G

general ledger 154
getjournal 199
gregorian . 199

command 102
Gregorian date. 102, 199
grep 2, 78, 95, 110, 251

H

hash-key indexing 202
hash-table indexing. 93
hash-table searching 97
hashkey . 202
head line . 202

INDEX

remove. 203
header file 136
headoff . 203
headon . 203
help message, print. 298
helpme . 204
hierarchical data base 113
howmany. 204

I

if . 77, 84
if() . 8
index 182, 205

binary . 205
command 93
hash table. 205
inverted 205
linear . 206
record number 205
sequential. 206
test. 274

indexed-sequential searching 98
indexing 19, 93

analyzing methods. 99
b-tree . 98
hash key 202

infological data base 115
information

grand unified theory. 115
insertdash 207
installing /rdb. 1
integer

convert to ASCII 167
integrated software 19
intersect . 207

command 106
intersection of tables 207
inventory . 154

update. 285
inverted indexing 98
invoice . 208
isdigit() . 147

J

join . 70
command 114

join tables 209
join, pipeline. 73
joining tables 73
jointable83-84, 182, 209, 13, 30, 32, 38, 65-66, 114
journal . 11

consolidate 176
manipulate 199

julian . 213
command 102

Julian date. 102
Julian dates 213
justify 17, 83, 213, 25, 37, 104

The COHERENT System 305

justify columns 213

K

key column 68
Knuth, Donald. 218, 259
Korn shell 24, 73
ksh . 24, 78

L

label. 215
language, fourth generation. 3
language, third generation. 3
ledger

close . 168
length . 216
length of string 216
letter . 216
letters, print 216
librdb.a . 139
like . 218
LISP . 4
list

check if file is. 264
convert from table 266
convert to shell. 218
convert to table. 219
definition 13

list all commands 235
list commands. 204
list format . 37
listtosh 82, 218
listtotable. 38, 219
ln . 24, 205
lock 101, 107, 206, 221, 252
lock table while editing. 297
locking records 101
log n. 96
logical NOT. 227
lowercase. 222
ls 19, 123, 182

M

m4. 267, 284
machine instructions. 4
Macintosh . 5
mailing list . 32
main() . 131
make . 124
Makefile 124, 136
makefile . 124
malloc() 137, 142
manipulate journals 199
many-to-many relationship 66
many-to-one relationship 65
match

partial initial 98
mathematics. 113

maximum 223
me. 79
mean . 223
menu . 223

command 87
create . 87
shell . 87

MicroEMACS. 79
minimum. 226
modeless software 19
modularity . 7
more . 181
move cursor 178
MS-DOS 2, 5, 8
multi-user access to files 107
multi-user data entry. 36
mv. 107, 182

N

name, convert to soundex 218
network data base 114
nonprocedural statements. 77
normal form

first . 69
second. 70
third . 70

normalization 14
definition 68
example . 71
first degree 14

not. 227
nroff. 31
Number. 228
number . 227

O

od . 38, 78
one-to-one relationship 65
one-way pipe. 127
open() . 137
operations 154

P

pack. 183
pad . 229
padstring . 230
paradigm, buddy can you 6
parsing rows 80
partial initial match 98
Pascal. 4
paste tables 231
paste.rdb . 231
PATH . 125
path . 233
payroll . 154

calculate 162
pd . 128

INDEX

306 The COHERENT System

perror() 138-139
pipe 7, 12, 28, 94, 127

one way 127
to standard input 128
two-way 130

pipe key . 94
pipe() 127, 131, 134
pipeline join 73
PL/1 . 4
planning . 67
post payroll 162
pr . 31
precision . 233
predicate calculus 117
print invoice 208
print letters 216
print mailing labels 215
procedural programs 77
program

test. 274
time execution 274

programming style 133
project . 234

command 114
PROLOG 115, 117, 253

convert table to facts 264
convert table to rules 268
facts . 117
problems 120
questions 118
rules . 118
tabletofact. 118
tabletorule 118

prompt . 234
purchasing. 154
puts() 132, 135

Q

quotation mark 28
quotation marks 28, 39
quoting commands 28

R

rdb . 235
rdb.h . 141
read 79, 81, 87, 91, 181, 183, 225
read() 127-128, 135, 137
record. 235

blanking. 101
convert to fixed-length 265
update. 286

record locking 101, 221, 284, 297
record searching 96
references . 20
register . 131
relational data base. 2, 11, 114
relational model 2
relationship

INDEX

many-to-many 66
many-to-one 65
one-to-one 65

remove core files 243
remove header. 203
rename . 236
reorder columns. 169
replace 206, 237, 242, 252

command 107
replace string 261
report 183, 239
report template 35
report writing 32, 83
reports . 17
reportwriter 241
reposition cursor 178
return. 184
return value

invert . 227
return() . 138
rmblank . 242
rmcore . 243
row 12, 181, 244

append 190
append to table. 156
blank out 160
command 12, 15, 23-24, 39, 78, 93
delete . 185
delete blank. 242
find. 256
find quickly 250
find r. by number 235
number column 227
offset. 256
pad with spaces 229
parse. 80
replace. 237
select by expression 257
select via expression. 244

RPG . 6

S

sale . 246
sales. 154
sales order 246
SAS . 8
scat . 181
schema . 247
screen. 248

clear . 168
command 91, 107
make input form 248
paint . 35

screen file . 35
rules . 16

screen form 35
build . 91

screen template 35
script . 30

The COHERENT System 307

search. 93-94, 182, 250
binary . 251
command 135
hash . 251
indexed 251
inverted 251
linear . 251
record . 251
sequential. 250-251
test. 274

searching
binary . 96
hash table. 97
indexed sequential. 98
inverted . 98
record . 96
sequential. 95

searchtree 121, 253
second normal form 70
security. 107
sed . . 2, 16, 31, 36, 78, 84-85, 181, 207, 269
see. 255

command 38
seek 206, 256, 101
seek() . 96
select 257, 24, 114
select columns. 169
selected commands. 23
semantic-network data base 115
semantics . 29
sequential searching 95
set . 80, 184
sh . 78, 125
shell. 5

Bourne . 73
Korn . 73
trace option. 82

shell menus 87
shell programming 77

definition 13
shell scripts 30
shell, definition 7
shift . 80
size of table 195
sizeof() . 128
sort 4, 38, 186, 207
sorttable 17, 73, 83-84, 257

command 13, 32, 67
soundex 218, 259
special characters. 39
spell . 4, 78
splittable . 260
sprintf() . 84
SQL . 19, 114
standard error 142
standard input 15, 128, 130, 187
standard output. 15, 74, 187
stat() 137, 195
static char 141
stderr 129-130, 133, 142

stdin 133, 148
stdout. 133
stream . 7
string

convert to lower case 222
convert to soundex 259
convert to uppercase 289
length . 216
pad with spaces 230
prompt 234
replace. 261
trim white space 281

strlen() . 131
struct 135, 270
stty . 181
style

programming 133
substitute 261
subtotal. 83-84, 184, 262

command 26
subtotal table 197
subtract tables 186
switch() . 126
syntax. 29
System S . 8
system(). 5, 123

T

tab
column separator 38

table. 11
add. 275
add head 203
add row 190
append row 156, 190
append row-number column. 227
behead. 203
check if file is. 264
compress 170
compute tax 272
concatenate. 105, 283
convert format 196
convert to C struct. 270
convert to fixed-length 265
convert to list. 266
convert to m4. 267, 284
convert to PROLOG facts 264
convert to PROLOG rules. 268
convert to sed commands 269
convert to tbl 271
create . 16
create new 244
difference 186
editor . 292
explode part 193
find intersection 106
fixed length 196
from list 219
index. 205

INDEX

308 The COHERENT System

insert dash line 207
intersect. 207
join two t. 209
justify . 213
lock while editing 297
logical AND 207
pad. 229
paste. 231
print schema 247
rules for creation. 11
rules for making 37
size. 195
sort. 257
split . 244
split horizontally 260
subtotal 197
subtract 105, 186
trim white space 277
unlock . 284
update. 286
validate 187, 291, 297

table format 37
table width . 38
table, definition 2
tableorlist 264
tables and forms 91
tabletofact 118, 264
tabletofix . 265
tabletolist. 38, 266
tabletom4 267
tabletorule 119, 268
tabletosed 269
tabletostruct 270

command 135
tabletotbl 17, 271
tail. 78, 83, 181
tax. 272
tax form

calculate 162
fill . 196

tbl . 271
tee . 73
template, report 35
TERM . 88, 168

find. 281
termcap. 88, 168, 273

find entry for TERM 281
terminal

get capability 273
terminology 113
termput. 88, 273
test . 8, 82
test functional dependency 194
testall . 274
testsearch 274
text

capitalize 163
find unique words 300
translate. 276

third normal form. 70

INDEX

third-generation language 3
time execution. 274
timesearch 274
todaysdate 275
total . 275

command 26
tput . 88, 183
tr . 207
transitive dependencies 70
translate . 276
tree

search . 253
trim . 17, 277
trimblank. 281
troff . 31
tset . 281
two-way pipe. 130
type of data 180

U

union . 283
command 98, 105

uniondict . 284
uniq 72, 186, 207
universal relation 69
UNIX World 83
unlock 101, 107, 206, 252, 284
update 181, 36, 107
update inventory 285
update table 286
update.inv 91, 285
update.rdb 286
uppercase 289
US format 104
ustar . 107

V

validate 78, 291, 39, 108
validate data 108
validate table 187, 297
ve . 11, 13, 16, 31, 35, 91, 107-108, 181, 292
verify columns. 166
vi 13, 16, 18, 31, 35, 79, 108, 181

lock table 297
vilock 107, 297
vindex. 297
VMS. 5
Von Neumann, John 9, 20

W

wc 79, 123, 195, 216
whatis. 298
whatwill . 298
wheel, reinvent 5
while 77, 80-81, 182
while(). 8
white space

The COHERENT System 309

trim from string 281
trim from table 277

widest. 299
width . 299
Winston, Alan 83
word. 300
write file . 187
write() 128-129, 132, 135

| 12, 16, 24, 28

INDEX

