

Table of Contents

Introduction . 1
C and the Standard. 1
The X3J11 Committee . 1
Differences from Kernighan & Ritchie C. 2
The Standard and This Manual. 4

The Lexicon. 5
Example Give an example of the Lexicon format 7
! Logical negation operator . 8
!= Inequality operator . 8
´’ String literal character . 8
. String-ize operator . 9
. Token-pasting operator . 10
#define Define an identifier as a macro . 11
#elif Include code conditionally. 13
#else Include code conditionally. 13
#endif End conditional inclusion of code 14
#error Error directive . 14
#if Include code conditionally. 14
#ifdef Include code conditionally. 15
#ifndef Include code conditionally. 16
#include Read another file and include it 16
abort(). End program immediately . 1
abs(). Compute the absolute value of an integer. 2
acos() Calculate inverse cosine . 2
additive operators. 3
address . 3
aggregate types . 3
alias. 3
alignment . 4
argc . 5
argument. 5
argv . 5
arithmetic types . 6
array declarators . 6
array types . 7
ASCII . 7
asctime() Convert broken-down time to text 10
as if rule . 11
asin() Calculate inverse sine . 11
assert() Check assertion at run time. 12
assert.h. Header for assertions. 13
assignment operators . 13
atan() Calculate inverse tangent . 14
atan2() Calculate inverse tangent . 14
atexit() Register a function to be performed at exit 15
atof() Convert string to floating-point number. 16
atoi(). Convert string to integer . 16
atol(). Convert string to long integer . 17
auto Automatic storage duration . 17

i

ii Contents

basic types . 18
behavior . 18
bit . 19
bit-fields . 19
bitwise operators . 20
block . 22
break Exit unconditionally from loop or switch 22
broken-down time . 23
bsearch() Search an array . 23
buffer . 25
BUFSIZ Default size of buffer . 25
byte . 26
calendar time . 27
calloc() Allocate and clear dynamic memory 27
case Mark entry in switch table. 28
cast operators Convert the type of an expression 28
ceil() Integral ceiling. 29
char . 29
CHAR_BIT . 30
CHAR_MAX . 30
CHAR_MIN . 30
character-case mapping . 31
character constant . 32
character display semantics. 33
character handling . 34
character sets . 35
character testing . 35
clearerr() Clear a stream´s error indicator 37
CLK_TCK . 37
clock(). Get processor time used . 38
clock_t System time . 38
close. 39
command processor . 39
comment . 39
compatible types . 40
compile . 41
compliance. 41
composite types . 41
compound statement. 42
conditional inclusion . 42
const Qualify an identifier as not modifiable. 43
constant expressions. 44
constants. 45
constraints. 45
continue Force next iteration of a loop . 46
control character . 46
conversions . 46
cos() Calculate cosine. 48
cosh() Calculate hyperbolic cosine . 49
create . 49
ctime() Convert calendar time to text . 49
ctype.h Header for character-handling functions 50
date and time . 51

A LEXiCAL GUIDE TO ANSI C

Contents iii

EDOM. Domain error . 1
else Conditionally execute a statement 1
enum Enumerated data type . 2
enumerated types. 3
enumeration constant . 3
environment list. 4
EOF Indicate end of a file . 4
equality operators. 4
ERANGE Range error . 5
errno External integer that holds error status. 6
errno.h Define errno and error codes . 6
error handling . 7
errors . 7
escape sequences . 7
exception . 9
execution environment. 9
exit(). Terminate a program gracefully. 9
EXIT_FAILURE Indicate program failed to execute successfully 10
EXIT_SUCCESS. Indicate program executed successfully. 10
exp(). Compute exponential function . 11
explicit conversion . 11
exponent-log functions. 11
expression statement. 12
extern. External linkage. 12
external definitions . 12
external name . 13
fabs() Compute absolute value . 14
false . 14
fclose() Close a stream. 14
feof(). Examine a stream´s end-of-file indicator 15
ferror() Examine a stream´s error indicator 16
fflush() Flush output stream´s buffer . 16
fgetc() Read a character from a stream 17
fgetpos() Get value of file-position indicator 17
fgets() Read a line from a stream . 19
file . 20
FILE. Descriptor for a stream. 22
file access . 22
FILENAME_MAX Maximum length of file name . 22
file operations . 23
file-position indicator. 23
file positioning. Manipulate file-position indicator 23
float . 24
float.h. 25
floating constant . 27
floating types . 28
floor() Numeric floor . 28
FLT_DIG . 28
FLT_EPSILON . 29
FLT_MANT_DIG . 29
FLT_MAX. 29
FLT_MAX_10_EXP . 29
FLT_MAX_EXP. 30

A LEXICAL GUIDE TO ANSI C

iv Contents

FLT_MIN . 30
FLT_MIN_10_EXP. 30
FLT_MIN_EXP . 30
FLT_RADIX. 31
FLT_ROUNDS . 31
fmod Calculate modulus for floating-point number 31
fopen() Open a stream for standard I/O 32
FOPEN_MAX. Maximum number of open files. 33
for Loop construct . 34
fpos_t Encode current position in a file 34
fprintf() Print formatted text into a stream 35
fputc(). Write a character into a stream. 36
fputs(). Write a string into a stream . 37
fread() Read data from a stream. 37
free(). Deallocate dynamic memory . 38
freestanding environment . 38
freopen() Re-open a stream . 39
frexp() Fracture floating-point number. 40
fscanf() Read and interpret text from a stream. 40
fseek(). Set file-position indicator . 42
fsetpos(). Set file-position indicator . 43
general utilities . 1
getc() Read a character from a stream . 2
getchar() Read a character from the standard input stream. 2
getenv() Read environmental variable . 3
gets() Read a string from the standard input stream 4
gmtime() Convert calendar time to universal coordinated time 5
goto Unconditionally jump within a function. 6
header . 7
header names . 8
hosted environment . 8
HUGE_VAL. Represent unrepresentable object 9
hyperbolic functions . 9
identifiers . 10
if Conditionally execute an expression. 11
implementation . 11
implicit conversions . 12
incomplete types . 12
initialization . 13
initialized. 16
input-output. 16
int . 17
INT_MAX . 17
INT_MIN . 18
integer-value-remainder . 18
integer arithmetic . 18
integer constant. 19
integral promotion . 20
integral types . 20
internal name . 22
interpret . 22
isalnum() Check if a character is a numeral or letter 22
isalpha() Check if a character is a letter . 23

A LEXiCAL GUIDE TO ANSI C

Contents v

iscntrl() Check if a character is a control character 23
isdigit() Check if a character is a numeral 24
isgraph() Check if a character is printable 24
islower(). Check if a character is a lower-case letter. 24
isprint() Check if a character is printable 25
ispunct() Check if a character is a punctuation mark 25
isspace() Check if character is white space. 26
isupper() Check if a character is an upper-case letter 26
isxdigit() Check if a character is a hexadecimal numeral 27
iteration statements . 27
jmp_buf. Type used with non-local jumps 29
jump statements . 29
keywords . 31
L_tmpnam Define maximum size of temporary file´s name 32
label. 32
labelled statements . 32
labs() Compute the absolute value of a long integer 33
Language. 33
LC_ALL All locale information. 34
LC_COLLATE Locale collation information. 35
LC_CTYPE Locale character-handling information 36
LC_MONETARY Locale monetary information . 36
LC_NUMERIC Locale numeric information . 36
LC_TIME Locale time information . 37
lconv Hold monetary conversion information 37
LDBL_DIG . 39
LDBL_EPSILON . 39
LDBL_MANT_DIG . 40
LDBL_MAX. 40
LDBL_MAX_10_EXP . 40
LDBL_MAX_EXP . 40
LDBL_MIN . 41
LDBL_MIN_10_EXP. 41
LDBL_MIN_EXP . 41
ldexp(). Load floating-point number . 41
ldiv(). Perform long integer division . 42
ldiv_t Type returned by ldiv() . 42
letter . 43
lexical elements . 43
Library . 44
limits . 48
limits.h . 48
link . 49
linkage . 50
local time. 51
locale.h Localization functions and macros. 51
localeconv(). Initialize lconv structure . 51
localization. 52
localtime() Convert calendar time to local time 55
log() Compute natural logarithm . 56
log10() Compute common logarithm . 56
logical operators. 57
LONG_MAX . 57

A LEXICAL GUIDE TO ANSI C

vi Contents

LONG_MIN . 58
long double . 58
long int . 59
longjmp() Execute a non-local jump . 59
lvalue . 60
macro replacement . 62
main . 62
malloc() Allocate dynamic memory . 63
manifest constant. 63
math.h Header for mathematics functions 64
mathematics. 64
MB_CUR_MAX. Largest size of a multibyte character in current locale 65
MB_LEN_MAX Maximum size of MB_CUR_MAX 66
mblen() Return length of a string of multibyte characters 66
mbstowcs() Convert sequence of multibyte characters to wide characters . . 66
mbtowc() Convert a multibyte character to a wide character 67
member. 68
memchr() Search a region of memory for a character 68
memcmp() Compare two regions . 70
memcpy() Copy one region of memory into another 71
memmove(). Copy region of memory into area it overlaps 71
memory management . 72
memset() Fill an area with a character . 73
minimum maxima . 74
mktime() Turn broken-down time into calendar time 74
modf() Separate floating-point number. 75
multibyte characters . 76
multiplicative operators . 77
name space . 79
NDEBUG Turn off assert() . 80
nondigit. 81
non-local jumps. 81
NULL Null pointer . 82
null character . 82
null directive. Directive that does nothing . 82
null pointer constant. 83
null statement. 83
numerical limits. 83
object . 84
object definition . 84
object types . 85
obsolescent . 85
offsetof() Offset of a field within a structure 85
open. Open a file or device . 86
operators . 86
ordinary identifier. 87
parameter . 89
perror() Write error message into standard error stream 89
pointer . 90
pointer declarators . 93
portability . 94
postfix operators . 94
pow() Raise one number to the power of another 95

A LEXiCAL GUIDE TO ANSI C

Contents vii

power functions . 95
preprocessing numbers . 96
primary expressions . 96
printf() Format and print text into the standard output stream 97
printing character. 103
program execution . 103
program startup. 104
program termination . 104
pseudo-random numbers . 105
ptrdiff_t Numeric difference between two pointers 105
punctuators . 106
putc() Write a character into a stream. 106
putchar() Write a character into the standard output stream 107
puts() Write a string into the standard output stream 108
qsort() Sort an array . 109
qualified types . 110
quiet change . 110
raise() Send a signal . 114
rand() Generate pseudo-random numbers 115
RAND_MAX Largest size of a pseudo-random number 116
range error . 116
Rationale . 117
realloc() Reallocate dynamic memory. 117
register Quick access required . 118
relational operators. 119
remove() Remove a file. 120
rename() Rename a file . 120
return. Return to calling function . 121
rewind(). Reset file-position indicator . 122
rvalue . 122
scalar types . 123
scanf(). Read and interpret text from standard input stream 123
SCHAR_MAX. 126
SCHAR_MIN . 126
scope . 126
searching-sorting . 128
SEEK_CUR. Seek from current position of file-position indicator. 128
SEEK_END. Seek from the end of a file . 129
SEEK_SET Seek from beginning of a file . 129
selection statements . 129
sequence point . 130
setbuf() Set alternative stream buffer . 130
setjmp() Save environment for non-local jump 131
setjmp.h Declarations for non-local jump 131
setlocale(). Set or query a program´s locale. 132
setvbuf() Set alternative stream buffer . 133
short int . 134
SHRT_MAX. 134
SHRT_MIN . 135
side effect. 135
sig_atomic_t Type that can be updated despite signals 135
SIG_DFL Pointer to default signal-handling function 135
SIG_ERR Pointer to error-handling function 136

A LEXICAL GUIDE TO ANSI C

viii Contents

SIG_IGN Pointer to function that ignores signals 136
SIGABRT Abort signal . 136
SIGFPE Signal error in floating-point arithmetic. 137
SIGILL Illegal instruction signal . 137
SIGINT Process asynchronous interrupt signal 137
signal() Set processing for a signal. 138
signal.h. Signal-handling routines . 139
signal handling . 139
signals/interrupts . 140
signed. 141
signed char . 141
SIGSEGV. Signal invalid reference to memory. 141
SIGTERM. Program-termination signal . 142
sin() Calculate sine . 142
sinh() Calculate hyperbolic sine . 143
size_t Type returned by sizeof operator 143
sizeof . 144
source file . 145
spirit of C. 145
sprintf() Print formatted text into a string 145
sqrt() Calculate the square root of a number 146
srand() Seed pseudo-random number generator 147
sscanf() Read and interpret text from a string 149
Standard . 150
standard error . 151
standard input . 151
standard output. 151
statements . 151
static Internal linkage . 152
stdarg.h. Header for variable numbers of arguments 152
stddef.h. Header for standard definitions. 153
stderr Pointer to standard error stream 153
stdin Pointer to standard input stream. 154
STDIO. Standard input and output . 154
stdio.h Declarations and definitions for STDIO 156
stdlib.h General utilities . 157
stdout. Pointer to standard output stream. 158
storage-class specifiers. 158
storage duration. 159
strcat() Append one string onto another 159
strchr() Find a character in a string . 160
strcmp(). Compare two strings . 161
strcoll() Compare two strings, using locale-specific information. 162
strcpy() Copy one string into another . 162
strcspn() Return length a string excludes characters in another 163
stream . 164
strerror() Translate an error number into a string. 164
strftime() Format locale-specific time . 165
string . 167
string.h . 167
string comparison. 168
string concatenation . 168
string conversion . 168

A LEXiCAL GUIDE TO ANSI C

Contents ix

string copying . 169
string handling . 169
string literal . 170
string miscellaneous . 171
string searching. 171
strlen() Measure the length of a string 172
strncat() Append n characters of one string onto another 173
strncmp() Compare one string with a portion of another 174
strncpy() Copy one string into another . 175
strpbrk() Find first occurrence of a character from another string 176
strrchr(). Search for rightmost occurrence of a character in a string. . . 177
strspn() Return length a string includes characters in another 178
strstr() Find one string within another 179
strtod() Convert string to floating-point number. 180
strtok() Break a string into tokens. 181
strtol(). Convert string to long integer . 183
strtoul() Convert string to unsigned long integer 183
struct . 186
strxfrm() Transform a string . 186
switch. Select an entry in a table . 187
system(). Suspend a program and execute another 188
tag. 190
tan() Calculate tangent . 190
tanh() Calculate hyperbolic tangent . 190
time() Get current calendar time . 191
UCHAR_MAX . 1
UINT_MAX . 1
ULONG_MAX . 1
unary operators . 2
ungetc(). Push a character back into the input stream. 2
union . 4
universal coordinated time . 5
unsigned . 5
unsigned char . 6
unsigned int . 6
unsigned long int . 6
unsigned short int . 7
USHRT_MAX. 7
va_arg() Return pointer to next argument in argument list. 8
va_end(). Tidy up after traversal of argument list 8
va_list. Type used to handle argument lists of variable length 9
va_start() Point to beginning of argument list 9
value preserving. 10
variable arguments . 11
vfprintf() Print formatted text into stream 12
void Empty type. 13
void expression . 15
volatile Qualify an identifier as frequently changing 15
vprintf() Print formatted text into standard output stream 16
vsprintf() Print formatted text into string . 17
wchar_t Typedef for a wide character . 18
wcstombs() Convert sequence of wide characters to multibyte characters . . 18
wctomb() Convert a wide character to a multibyte character 19

A LEXICAL GUIDE TO ANSI C

x Contents

while Loop construct . 20
Index . 21

A LEXiCAL GUIDE TO ANSI C

Introduction

ANSI C: A Lexical Guide describes the American National Standards Institute (ANSI) standard for
the C programming language. It discusses in clear English every library function, every macro, and
every technical term that appears within the Standard. All entries are fully cross-referenced
internally to the Standard and to the second edition of The C Programming Language; many are
illustrated with full C programs.

All material is presented in a lexical format to make it easy for you to find exactly the information
you need.

The Mark Williams Company is a software company based in Chicago. Since 1976, we have written
operating systems and C compilers for minicomputers and microcomputers.

In this book, Mark Williams Company presents a reading of the ANSI C Standard, based both on our
participation on the committee that wrote it, and on our experience as writers of C compilers and
operating systems. This book contains all the information you need to write strictly conforming C
programs that can be compiled and run on every computer for which a conforming implementation
of C exists.

C and the Standard
The original definition of the C programming language is The C Programming Language, by Brian W.
Kernighan and Dennis M. Ritchie (Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978). The language
was developed at Bell Laboratories; they wanted to implement the UNIX operating system in a high-
level language that was easy to maintain, powerful, and portable.

From this beginning, C has been widely used as a systems programming language. Compilers,
operating systems, and utilities have all been written in C. In time, C began to outgrow its origin as
a systems programming language. It attracted programmers who wished to write applications that
could be easily ported to many different computer environments in order to broaden their markets.

Constant usage of C revealed areas that had not been considered by its authors, or were ambiguous.
To address the limitations of C, each compiler vendor chose to extend C in its own way. The result
was the splintering of C into a number of dialects, especially in the way that preprocessor worked
and in the suite of library functions available to the programmer. The advent of UNIX system V and
Berkeley UNIX version 4.X accelerated this divergence.

By 1983, the C language had matured to the point where many thought that it needed a standard.
A standard would resolve ambiguities in the original definition of C, legalize commonly used
extensions to C, and address issues upon which the original definition was silent.

The X3J11 Committee
ANSI committee X3J11 was formed in 1983 to write the standard for the C language. The
Committee consists of representatives from compiler vendors who write for mainframes,
minicomputers, microcomputers, and embedded systems, as well as users. In addition, the
Committee has observers who participate in the standards process.

At the time of this writing (March 1988), the Committee has submitted two draft review copies of the
standard for public comment. Thus, the C community has had an opportunity to review the
document, make suggestions, and participate. ANSI requires that the Committee respond in a
timely fashion to every comment it receives. It is hoped that the final version of the Standard will be
approved by the Committee before the end of 1988.

1

2 Introduction

The Committee used the following principles to guide its work:

• Existing code is important, existing implementations are not. The Committee attempted to
write the Standard in such a way that it broke as little existing code as possible. To break a
mass of code simply to preserve an idiosyncrasy of one implementation or another is wrong-
headed, and was avoided.

• C code is portable. The Standard describes the C language in such a way that a program that
conforms strictly to its description has a fighting chance of being ported to other environments
without change. This meant that the Committee had to break a number of programming
habits, such as assuming that all users of C programs speak English, or that all computing
environments are based upon ASCII or eight-bit bytes.

• C code can be non-portable. The Standard does not stop a programmer from writing code that
is tailored to a particular machine or environment

• Avoid quiet changes. A change may cause a legal program to behave differently when compiled
by an ANSI-compatible compiler than it did when compiled by a pre-ANSI implementation; and
a quiet change does so without warning the programmer that something has changed. Given
the variety of the implementations of C, some quiet changes were unavoidable. However, they
have been noted both in the Rationale and in this manual.

• A standard is a treaty between implementor and programmer. This means that, among other
things, the Standard compromises the needs of the programmer and those of the implementor.

• Keep the spirit of C. This is the hardest principle to articulate, although the spirit of C was
invoked repeatedly during the Committee’s debates. The Rationale describes the following
principles as embodying the spirit of C:

Trust the programmer.
Don’t prevent the programmer from doing what needs to be done.
Keep the language small and simple.
Provide only one way to do an operation.
Make it fast, even if it is not guaranteed to be portable.

The Committee’s original goal was to write one standard that would be acceptable throughout the C
community. Soon, however, it became obvious that the entire C community is not homogeneous
and that concessions had to be made to sub-communities.

The international community became involved when the International Standards Organization (ISO),
which consists of members from various nations, decided in 1985 to write its own standard for C.
The ISO’s effort used the ANSI standard, as it existed at that time, as a starting point. Both
organizations felt that the greatest benefit would be wrought if the two standards synchronized, and
in final form, were identical. This goal has been achieved. Some features were introduced to give C
a more international scope. These include multibyte characters, locales, and some specialized
library functions.

The state of the art in the scientific community has been toward increasing parallelization. To
encourage the use of C in scientific endeavors required the adoption of certain idiosyncrasies from
FORTRAN, which has long been the principal scientific programming language. To accomodate
these users, and give users a chance to port their code from a simple machine to a state-of-the-art
supercomputer, a mechanism was developed to specify parameters that do not overlap.

Because C is a language that maps closely to machine code and exploits the architecture of the
machine, the Committee made some accomodations to optimization. In particular, it added a new
keyword, noalias, to solve some longstanding problems in the production of the best possible code
from state-of-the-art optimizing compilers.

Differences from Kernighan & Ritchie C

A Lexical Guide to ANSI C

Introduction 3

The following summarizes the major differences between ANSI C and the C language described by
the first edition of The C Programming Language.

Function prototyping
A function prototype is a detailed form of function declaration. It lists the number of
arguments the function takes, and the type of each argument. This allows the compiler to
compare every function call against the prototype to ensure that the call has the right
number and type of arguments. Because some machines allow function calls to be passed
quickly if the number of arguments is known, function prototyping allows the compiler to
use the faster function-call mechanism because it knows the number of arguments that a
call should take.

Keywords
The Standard introduces the keywords const, enum, noalias, signed, void, and volatile.
The old keyword entry, which was undefined, was allowed to die.

Library
The Standard describes the C library in some detail. The library includes 127 functions
that perform most common programming tasks. Each function has a function prototype
that is declared in a standard header file.

Limits
The Standard sets minimum maxima for the range of all arithmetic types. These are
defined in the headers float.h and limits.h. It also sets minimal limits on the complexity of
programs that can be compiled, e.g., on the number of case labels that can be used in a
switch statement. These must be met by every implemetation that conforms to the
Standard.

Locales
The Standard introduces the concept of program locales. A locale may change the way a
program executes so that it can conform to local practices. For example, by changing the
locale, a program may recognize the comma instead of the period as marking a decimal
point, print a different symbol to represent monetary values, and use a locale-specific
format for printing the date and time.

long double
The type long float is no longer a synonym for double, but can be used for a quadruple-
precision floating-point number.

New types
The type size_t was introduced to hold the object returned by sizeof. The type ptrdiff_t
holds the difference when one pointer is subtracted from another. Both increase the
portability of C programs.

Preprocessing
The Standard describes the preprocessor in detail. It introduces the directives #elif and
#pragma. It introduces the preprocessing operators # and ##. The former creates a string
literal that names the value that replaces a preprocessing token, and the latter pastes two
preprocessing tokens into one. The keyword defined was introduced for use with the
directive #if; it allows construction of a more complex version of the directive #ifdef.

String literals
ANSI C now concatenates adjacent string literals.

Structure passing
The Standard allows a structure to be passed to a function, to be assigned to another
structure, and to be returned by a function.

A Lexical Guide to ANSI C

4 Introduction

Trigraph sequences
The Standard creates three-character, or trigraph, sequences that can be used to render the
characters of the C character set that do not appear in the ISO 646 character set.

Type qualifiers
Types can now be qualified with the keywords const, noalias, and volatile. These qualifiers
direct the compiler in producing efficient code.

Type suffixes
The suffixes U, L, and F are introduced, to allow more precision in the use of numeric
constants.

void
The keyword void is now formally incorporated into the language. The type void * has been
introduced to serve as the generic pointer, and replaces char * in that role.

Wide characters
The Standard describes mechanisms to build and manipulate strings of wide characters.
These characters are used to print such languages as Japanese, whose character set is too
large to be encoded within one byte.

The Standard and This Manual
No description resolves all ambiguity or covers all aspects. That is to say, no standard is ever
perfect. The members of X3J11 had the advantage of working with excellent base documents and a
well-defined language. On the other hand, they had the disadvantage of trying to standardize a
language that grew and changed even as they worked for the heterogeneous group of users who
have become accustomed to excellence in the descriptions of their language.

As we worked with the Standard, we found that the members of X3J11 performed their work very
well indeed. However, no language standard makes easy reading. The language must be highly
technical and in order to be precise and complete, it must at times seem convoluted. The structure
of a standard can also make it difficult for a programmer to find precisely the information that is
needed to solve a problem.

ANSI C: A Lexical Guide is a reading of the Standard. This reading is based on our experience in
writing C compilers and operating systems and in documenting the C language. It presents the
ideas and terms of the Standard in clear English. Descriptions that are spare or difficult in the
original have been expanded to make them more easily understood. Topics are illustrated with full
C programs, many of which are useful or entertaining.

It is not our intention to replace the ANSI Standard. The Standard is, of course, the final authority
concerning the C language. We hope, however, that this manual makes the Standard’s description
of C accessible to the entire C community. ANSI C is a powerful, graceful language, and the C
community stands to benefit from using it.

A Lexical Guide to ANSI C

The Lexicon

This book uses the lexicon format that Mark Williams Company designed for its documentation. It
consists of 589 articles, each of which discusses one topic in depth. A topic may be a term that the
Standard uses, a library function, a macro, or an overview discussion of a number of related topics.

The articles are printed in alphabetical order so that each can be found easily. The index contains
several thousand entries and cross-references to help you find exactly the material you need.

The Lexicon as a whole has a logical structure that mimics the structure of the Standard. For an
overview of the Lexicon’s structure, see Appendix A.

Each article shows its place in the logical structure in two ways: First, the heading for each article
includes a path name that names its position in the logical structure of the manual as a whole.
Second, each article includes cross-references to related topics. It is possible to read from any one
article within the Lexicon to any other article, simply by following either the path name or the chain
of cross-references. Thus, the Lexicon allows you to find every topic easily, and it makes it easy for
you to find related topics and material.

For example, suppose you were interested in reading about standard input and output. You could
look up standard input and output in the index, which would refer you to the article entitled
STDIO. This, in turn, will describe all library routines that perform STDIO, and introduce related
articles and topics. Or, you could look up a STDIO routine that you already know, such as printf,
and follow either its path name or its cross-references until you arrive at the article that has exactly
the information you need. Or, most easily, you could just look for the topic that interests you by
name; the chances are good that you will find it right there.

5

6 Lexicon

A Lexical Guide to ANSI C

Example

Example — Example
Give an example of the Lexicon format
#include <sample.h>
sample *Example(sample variable, sample anothervariable);

This page gives an example of a Lexicon entry. The first line of each entry gives its name and the
category of the entry, e.g., Definition or C keyword. The second line of each entry gives the entry’s
path name. The path name is the entry’s position in the logical structure of the Lexicon as a whole.
Appendix A gives the full logical structure of the Lexicon. If the entry describes a library function,
the path name is followed by the function prototype. The body is followed in many instances by a
full C program that demonstrates the subject being discussed.

The example is followed by cross-references to the Standard, to second edition of The C Programming
Language, and to related articles within the Lexicon.

Example
This gives an example of an example program.

#include <stdio.h>
#include <stdlib.h>
main()
{

printf("Many entries have complete C programs\n");
printf("as examples.\n");
return(EXIT_SUCCESS);

}

Cross-references
A reference to the Standard
A reference to The C Programming Language

See Also
all related articles in the Lexicon

Notes
Into this section go warnings, information of historical interest, and all other information that does
not relate directly to the topic under discussion.

LEXICON

Example 7

! to ~

! — Operator
Logical negation operator
!operand

The operator ! is the logical negation operator. Its operand must be an expression with scalar type.
! then inverts the logical result of its operand. This result has type int.

If operand is nonzero, !operand yields zero; if operand is zero, then !operand yields one.

The expression !operand is equivalent to (0==operand).

Cross-references
Standard, §3.3.3.3
The C Programming Language, ed. 2, p. 204

See Also
!=, ~, unary operators

!= — Operator
Inequality operator
operand1 != operand2

The operator != compares operand1 with operand2. The result of this operation is one if the
operands are not equal, and zero if they are.

The operands must be one of the following:

• Arithmetic types.

• Pointers to compatible types (ignoring qualifiers on these types).

• A pointer to an object or incomplete type, and a pointer to void.

• A pointer and NULL.

If both operands have arithmetic type, they undergo usual arithmetic conversion before being
compared. If one operand is a pointer to an object and the other is a pointer to void, the pointer to
an object is converted to a pointer to void for purposes of the comparison.

Example
For an example of using this operator in a program, see bitwise operators.

Cross-references
Standard, §3.3.9
The C Programming Language, ed. 2, pp. 41, 207

See Also
!, ==, equality operators

’’ — Punctuator
String literal character

The quotation mark ‘"’ marks the beginning and end of a string literal. To embed a quotation mark
within a string literal, use the escape sequence \".

LEXICON

8 ! —

Cross-references
Standard, §3.1.2.5
The C Programming Language, ed. 2, p. 194

See Also
string literal

— Operator
String-ize operator

The operator # is read and translated by the preprocessor. It must be followed by one of the formal
parameters of a function-like macro. The token sequence that would have replaced the formal
parameter in the absence of the # is instead converted to a string literal, and the string literal
replaces the both the # and the formal parameter. This process is called string-izing.

For example, the consider the macro:

#define display(x) show((long)(x), #x)

When the preprocessor reads the following line

display(abs(-5));

it replaces it with the following:

show((long)(abs(-5)), "abs(-5)");

The preprocessor replaced #x with a string literal that names the sequence of token that replaces x.

The following rules apply to interpreting the # operator:

1. If a sequence of white-space characters occurs within the preprocessing tokens that replace the
argument, it is replaced with one space character.

2. All white-space characters that occur before the first preprocessing token and after the last
preprocessing token is deleted.

3. The original spelling of the token that is stringized is retained in the string produced. This
means that as the string is formed, the translator appropriately escapes any backslashes or
quotation marks in the tokens.

Example
The following uses the operator # to display the result of several mathematics routines.

#include <errno.h>
#include <math.h>
#include <stddef.h>
#include <stdio.h>

void show(double value, char *name)
{

if (errno)
perror(name);

else
printf("%10g %s\n", value, name);

errno = 0;
}

#define display(x) show((double)(x), #x)

LEXICON

9

main(void)
{

extern char *gets();
double x;
char string[64];

for(;;) {
printf("Enter a number: ");
fflush(stdout);
if(gets(string) == NULL)

break;

x = atof(string);
display(x);
display(cos(x));
display(sin(x));
display(tan(x));
display(acos(cos(x)));

}
}

Cross-references
Standard, §3.8.3.2
The C Programming Language, ed. 2, pp. 90, 230

See Also
##, #define, macro replacement

— Operator
Token-pasting operator

The operator ## is is used by the preprocessor. It can be used in both object-like and function-like
macros. When used immediately before or immediately after an element in the macro’s replacement
list, it joins the corresponding preprocessor token with its neighbor. This is sometimes called token
pasting.

As an example of token pasting, consider the macro:

#define printvar(number) printf("%s\n", variable ## number)

When the preprocessor reads the following line

printvar(5);

it substitutes the following code for it:

printf("%s\n", variable5);

The preprocessor throws away all white space both before and after the ## operator.

The ## operator must not be used as the first or last entry in a replacement list.

All instances of the ## operator are resolved before further macro replacement is performed.

Cross-references
Standard, §3.8.3.3
The C Programming Language, ed. 2, pp. 90, 230

See Also
#, #define, macro replacement

LEXICON

10 ##

Notes
Some pre-ANSI translators supported token pasting by replacing a comment in a macro replacement
list with no space. ANSI translators always replace a comment with one space, no matter where
that comment appears.

The order of evaluation of multiple ## operators is unspecified.

#define — Preprocessing directive
Define an identifier as a macro
#define identifier replacement-list
#define identifier (parameter-list

opt
) replacement-list

The preprocessing directive #define tells the preprocessor to regard identifier as a macro.

#define can define two kinds of macros: object-like, and function-like.

Object-like Macros
An object-like macro has the syntax

#define identifier replacement-list

This type of macro is also called a manifest constant.

The preprocessor searches for identifier throughout the text of the translation unit, excluding
comments, string literals, and character constants, and replaces it with the elements of replacement-
list, which is then rescanned for further macro substitutions.

For example, consider the directive:

#define BUFFERSIZE 75

When the preprocessor reads the line

malloc(BUFFERSIZE);

it replaces it with:

malloc(75);

Function-like Macros
A function-like macro is more complex. The preprocessor looks for identifier(argument-list)
throughout the text of the translation unit, excluding comments, string literals, and character
constants. The number of comma-separated arguments in argument-list must match the number of
comma-separated parameters in the parameter-list of the macro’s definition. The list is optional in
the sense that some function-like macros do not have any parameters.

In the following description, argument means the sequence of tokens in argument-list that occupies
the same relative position as the parameter under discussion occupies in parameter-list. The
preprocessor replaces identifier(argument-list) with the replacement-list specified in the definition
after it performs the following substitutions: If a parameter is followed or preceded by the operator
##, then the parameter is replaced by the argument. If a parameter is preceded by #, then the #
and the parameter are replaced by a string literal that contains the argument. All other instances of
parameters are replaced by the argument after the argument has first been exhaustively scanned for
further preprocessor macro expansions. All instances of ## are converted to token-paste operations.

For example, the consider the macro:

#define display(x) show((long)(x), #x)

LEXICON

#define 11

When the preprocessor reads the following line

display(abs(-5));

it replaces it with the following:

show((long)(abs(-5)), "abs(-5)");

When an argument to a function-like macro contains no preprocessing tokens, or when an
argument to a function-like macro contains a preprocessing token that is identical to a
preprocessing directive, the behavior is undefined.

Macro Rescanning
As noted above, the preprocessor searches for macro identifiers throughout the text of the
translation unit, excluding comments, string literals, and character constants. The text of replaced
macros is also scanned for macro replacements, but it is not part of the text of the translation unit
(i.e., source file), so it does not follow the same rules.

After it replaces the identifier of an object-like macro or the identifier(argument-list) of a function-like
macro with the appropriate replacement-list, the preprocessor continues to scan for further macro
invocations, starting with the replacement-list.

While the preprocessor scans the replacement-list, it suppresses the definition of the macro that
produced the list. If the preprocessor recognizes a second macro invocation and replaces it before it
processes the tokens that replace the first invocation, then it suppresses the definitions of both the
first and the second macros while it processes the replacement-list of the second macro.

The preprocessor suppresses a definition as long as any of the tokens that remain to be processed
are derived directly from the original macro replacement or from further macro replacements that
use parts of the original macro replacement. Thus, when the object-like macro definition

#define RECURSE RE ## CURSE

is invoked by the token RECURSE, it is replaced by the token RECURSE formed by pasting RE and
CURSE together, but the scanning of the replacement list would not invoke the macro RECURSE a
second time. Likewise, the function-like macro definition

#define RECURSE(a, b) a ## b(a, b)

when invoked with the sequence RECURSE(RE, CURSE) would be replaced by the token sequence
RECURSE(RE, CURSE), but the scanning of the replaced token sequence would not invoke the
macro RECURSE() again.

Be warned that you should not test a PC-based compiler for compliance with these macro
definitions unless you are prepared to turn off your machine. If the compiler fails to detect the
recursion, it may become locked in an infinite loop, and there may be no other way to terminate the
substitution.

Example
For an example of using a function-like macro in a program, see #.

Cross-references
Standard, §3.8.3
The C Programming Language, ed. 2, pp. 229ff

See Also
#, ##, #undef, macro replacement

LEXICON

12 #define

Notes
A macro expansion always occupies exactly one line, no matter how many lines are spanned by the
definition or the actual parameters.

A macro definition can extend over more than one line, provided that a backslash \ appears before
the newline character that breaks the lines. The size of a #define directive is therefore limited by
the maximum size of a logical source line, which can be up to at least 509 characters long.

A macro may be redefined only if the new definition matches the old definition in all respects except
the spelling of white space.

#elif — Preprocessing directive
Include code conditionally
#elif constant-expression <newline> group

opt

The preprocessing directive #elif conditionally includes code within a program. It can be used after
any of the instructions #if, #ifdef, or #ifndef, and before #endif that ends the chain of conditional-
inclusion directives.

If the conditional expression of the preceding #if, #ifdef, or #ifndef directive is false and the
constant-expression that follows #elif is non-zero, then group is included within the program up to
the next #elif, #else, or #endif directive. An #if, #ifdef, or #ifndef directive may be followed by any
number of #elif directives.

The constant-expression must be an integral expression, and it cannot include a sizeof operator, a
cast, or an enumeration constant. All macro substitutions are performed upon the constant-
expression before it is evaluated. All integer constants are treated as long objects, and are then
evaluated. If constant-expression includes character constants, all escape sequences are converted
into characters before evaluation. The implementation defines whether the result of evaluating a
character constant in constant-expression matches the result of evaluating the same character
constant in a C expression. For example, it is up to the implementation whether

#elif ’z’ - ’a’ == 25

yields the same value as:

else if (’z’ - ’a’ == 25)

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

See Also
#else, #endif, #if, #ifdef, #ifndef, conditional inclusion

#else — Preprocessing directive
Include code conditionally
#else newline group

opt

The preprocessing directive #else conditionally includes code within a program. It is preceded by
one of the directives #if, #ifdef, or #ifndef, and may also be preceded by any number of #elif
directives. If all preceding directives evaluate to false, then the code introduced by #else is included
within the program up to the #endif directive that concludes the chain of conditional-inclusion
directives.

A #if, #ifdef, or #ifndef directive can be followed by only one #else directive.

LEXICON

#elif — #else 13

Example
For an example of using this directive in a program, see assert.

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

See Also
#elif, #endif, #if, #ifdef, #ifndef, conditional inclusion

#endif — Preprocessing directive
End conditional inclusion of code
#endif

The preprocessing directive #endif must follow any #if, #ifdef, or #ifndef directive. It may also be
preceded by any number of #elif directives and an #else directive. It marks the end of a sequence of
source-file statements that are included conditionally by the preprocessor.

Example
For an example of using this directive in a program, see assert.

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

See Also
#elif, #else, #if, #ifdef, #ifndef, conditional inclusion

#error — Preprocessing directive
Error directive
#error message newline

The preprocessing directive #error prints message when an error occurs.

Cross-references
Standard, §3.8.5
The C Programming Language, ed. 2, p. 233

See Also
preprocessing

Notes
The intent of this directive is to have translation cease immediately. However, this is not required.

#if — Preprocessing directive
Include code conditionally
#if constant-expression newline group

opt

The preprocessing directive #if tells the preprocessor that if constant-expression is true, then include
the following lines of code within the program until it reads the next #elif, #else, or #endif directive.

The constant-expression must be an integral expression, and it cannot include a sizeof operator, a
cast, or an enumeration constant. All macro substitutions are performed upon the constant-
expression before it is evaluated. All integer constants are treated as long objects, and are then
evaluated. If constant-expression includes character constants, all escape sequences are converted

LEXICON

14 #endif — #if

into characters before evaluation.

It is up to the implementation whether the result of evaluating a character constant in constant-
expression matches the result of evaluating the same character constant in a C expression. For
example, it is up to the implementation whether

#if ’z’ - ’a’ == 25

yields the same value as:

if (’z’ - ’a’ == 25)

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

See Also
#elif, #else, #endif, #ifdef, #ifndef, conditional inclusion

Notes
The keyword defined determines whether a symbol is defined to #if. For example,

#if defined(SYMBOL)

or

#if defined SYMBOL

is equivalent to

#ifdef SYMBOL

except that it can be used in more complex expressions, such as

#if defined FOO && defined BAR && FOO==10

#ifdef — Preprocessing directive
Include code conditionally
#ifdef identifier newline group

opt

The preprocessing directive #ifdef checks whether identifier has been defined as a macro. If
identifier has been defined, then the preprocessor includes group within the program, up to the next
#elif, #else, or #endif directive. If identifier has not been defined, however, then group is skipped.

An #ifdef directive can be followed by any number of #elif directives, by one #else directive, and
must be followed by an #endif directive.

Example
For an example of using this directive in a program, see assert.

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

See Also
#elif, #else, #endif, #if, #ifndef, conditional inclusion, defined

Notes
This is the same as:

LEXICON

#ifdef 15

#if defined IDENTIFIER

#ifndef — Preprocessing directive
Include code conditionally
#ifndef identifier newline group

opt

The preprocessing directive #ifndef checks whether identifier has been defined as a macro. If
identifier has not been defined, then the preprocessor includes group within the program up to the
next #elif, #else, or #endif directive. If identifier has been defined, however, then group is skipped.

An #ifndef directive can be followed by any number of #elif directives, by one #else directive, and
by one #elif directive.

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

See Also
#elif, #else, #endif, #if, #ifndef, conditional inclusion, defined

Notes
This is the same as:

#if !defined IDENTIFIER

#include — Preprocessing directive
Read another file and include it
#include <file>
#include "file"

The preprocessing directive #include tells the preprocessor to replace the directive with the contents
of file.

The directive can take one of two forms: either the name of the file is enclosed within angle brackets
(<file>), or it is enclosed within quotation marks ("file"). The name of the file can be enclosed within

LEXICON

16 #ifndef — #include
anglebrackets (<file.h>) or quotation marks ("file.h").

troff: unexpected end of file

abort() — General utility (libc)
End program immediately
void abort(void)

abort terminates a program’s execution immediately. It is used to bail out of a program when a
severe, unrecoverable problem occurs. It does not return.

The implementation defines whether abort cleans up a program by flushing buffers or closing
streams.

abort may call the signal handler established for the signal SIGABRT, if present, as if the call

raise(SIGABRT);

had been invoked. This handler will indicate to the environment that the program has terminated
unsuccessfully.

Example
This example simply aborts itself. For an example that uses abort in a more realistic manner, see
signal.

#include <stdlib.h>
#include <stdio.h>

main(void)
{

puts("...Dave ... I can feel my memory going ...");
abort();

}

Cross-references
Standard, §4.10.4.1
The C Programming Language, ed. 2, p. 252

See Also
atexit, environment communication, exit, getenv, program termination, system

Notes
Some implementations of abort, specifically the one included with UNIX system V, permit it to
return. The Standard forbids abort to return.

LEXICON

abort() 1

abs() — General utility (libc)
Compute the absolute value of an integer
#include <stdlib.h>
int abs(int n);

abs returns the absolute value of integer n. The absolute value of a number is its distance from
zero. This is n if n>=0, and -n otherwise.

Example
This example checks whether abs is defined for all values on your implementation.

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>

main(void)
{

if(INT_MAX != abs(INT_MIN))
printf("abs of %d is undefined\n", INT_MIN);

return(EXIT_SUCCESS);
}

Cross-reference
Standard, §4.10.6.1
The C Programming Language, ed. 2, p. 253

See Also
div, integer arithmetic, labs, ldiv

Notes
On two’s complement machines, the absolute value of the most negative number may not be
representable.

In some implementations, abs was originally declared in the header math.h. The Standard moved
this function to stdlib.h on the grounds that it does not return double. This change may require
that some existing code be altered.

acos() — Mathematics (libm)
Calculate inverse cosine
#include <math.h>
double acos(double arg);

acos calculates the inverse cosine of arg, which should be in the range of from -1.0 to 1.0. Any
other argument will trigger a domain error.

acos returns the result, which is in the range of from zero to π radians.

Cross-references
Standard, §4.5.2.1
The C Programming Language, ed. 2, p. 251

See Also
asin, atan, atan2, cos, sin, tan, trigonometric functions

LEXICON

2 abs() — acos()

additive operators —
C has two additive operators: + and -. The former adds two operands together; the latter subtracts
its right operand from its left operand.

Cross-references
Standard, §3.3.6
The C Programming Language, ed. 2, p. 205

See Also
+, -, expressions

address — Definition
An address designates a location in memory.

Example
The following prints the address and contents of a given byte of memory.

#include <stdio.h>
#include <stdlib.h>
main(void)
{

char byte = ’a’;
/* Note use of the ‘%p’ format specifier */
printf("Address==%p Contents==\"%c\"\n",

&byte, byte);
return EXIT_SUCCESS;

}

Cross-reference
The C Programming Language, ed. 2, p. 94

See Also
&, Definitions, pointer

aggregate types —
The term aggregate type refers to arrays and structure types, which are aggregates of individual
members.

Cross-reference
Standard, §3.1.2.5

See Also
array types, struct, types

alias — Definitions
An alias for an object is alternative way to access that object.

Because C uses pointers, it can be impossible for the translator to keep track of all possible aliases
for an object. Often, the translator must use worst-case aliasing assumptions when memory is
read. These assumption are explained below.

The Standard refers to aliasing in the section on expressions (3.3). It allows the translator to
assume that the only way to reference a given object is by an object of the same type, a pointer to an
object of that type, or by a character pointer. Type qualifiers and sign do not count in this situation.
The reason a character pointer is assumed to point to any type of object is one of historical practice.

LEXICON

additive operators — alias 3

By making use of this information concerning types, a translator is said to make more favorable
aliasing assumptions, and produce better code. For example, consider the following code fragment:

fn(int *ip, float *fp)
{

int i;
float f;

ip = &i; /* line 1 */
fp = f; / line 2 */

}

Normally in an assignment to a dereferenced pointer (line 2), the translator must assume that such
a statement can overwrite the values of all global variables and the values of all local variables that
have had their addresses taken.

Because fp is a pointer to float, the assignment to *fp need not invalidate the value of i. The
translator must assume only that the current values of other floats may have been changed.

Any attempt to trick the translator, such as with a statement of the form

*fp = (float) i;

generates undefined behavior.

See Also
Definitions, type qualifier

alignment — Definition
The term alignment refers to the fact that some environments require the addresses of certain data
types to be evenly divisible by a certain integer. Different processors have different alignment
requirements. For example, the Motorola 68000 requires that every int have an address that is even
(i.e., that is evenly divisible by two). The translator must ensure that data objects are aligned
properly so that fetches to memory will be performed efficiently and on the correct data types.

The environment may require that empty bytes of padding be inserted into structures to ensure that
every type is aligned properly. For example, on the M68000 the following structure

struct example {
char member1;
int member2;

};

will actually consist of four bytes: one byte to hold the char, two bytes to hold the int, and between
them, one byte of padding to ensure that the int is aligned properly. Often, the alignment of a
struct member will be the maximum alignment required to align any of its members’ data types.

Because different environments require different forms of alignment, a program that is intended to
be portable should not assume that the members of a structure abut each other.

An object of type char * has the least strict alignment.

Cross-references
Standard, §1.6
The C Programming Language, ed. 2, p. 185

See Also
char, Definitions, struct

LEXICON

4 alignment

argc — Definition
argc is the conventional name for the first argument to the function main. It is of type int. It gives
the number of strings in the array pointed to by argv, which is the second argument to main.

By definition, the value of argc is never negative.

Cross-references
Standard, §2.1.2.2
The C Programming Language, ed. 2, p. 114

See Also
argv, execution environment, hosted environment, main

Notes
In most UNIX implementations, argc will be at least one.

argument — Definition
An argument is an expression that appears between the parentheses of a function call or invocation
of a function-like macro. Multiple arguments are separated by commas. For example, the following
function call

example(arg1, arg2, arg3);

has three arguments.

Cross-references
Standard, §1.6
The C Programming Language, ed. 2, p. 201

See Also
conversions, Definitions, parameter

Notes
The Standard uses the term argument when it refers to the actual arguments of a function call or
macro invocation. It uses the term parameter to refer to the formal parameters given in the
definition of the function or macro.

argv — Definition
char *argv[];
argv is the conventional name for the second argument to the function main. It points to an array of
pointers to type char. The strings to which argv points are passed by the host environment. Each
may change the behavior of the program, and each may be modified by the program. Thus, the
strings are called program parameters.

The number of pointers in the argv array is given by argc, which is the first argument to main. By
definition, argv[0] always points to the name of the program. If the name is not available from the
environment, then *argv[0] must be a null character. argv[1] through argv[argc-1] point to the set
of program parameters; argv[argc] must be a null pointer.

Cross-references
Standard, §2.1.2.2
The C Programming Language, ed. 2, p. 114

LEXICON

argc — argv 5

See Also
argc, execution environment, hosted environment, main

Notes
The pointers in the argv array are usually passed on the command-line that invokes the program.
Environments in which programs are represented by visual icons selected by a mouse may have
other mechanisms for passing command-line parameters.

arithmetic types —
The set of arithmetic types includes all integral and floating types. The former consists of all integer
types, char, and enumerated types; the latter consists of the types float, double, and long double.
The arithmetic types can be used with arithmetic operators to form arithmetic expressions.

Cross-references
Standard, §3.1.2.5
The C Programming Language, ed. 2, p. 196

See Also
types

array declarators — Definition
An array declarator declares an array. It can also establish the size of the array and cause storage
to be allocated for it. Its syntax is as follows; opt indicates optional.

array-declarator [constant-expression
opt

]

For example, consider the declaration:

int example[10];

The brackets [] establish that example is an array; the constant 10 establishes that example has
ten elements. Thus, example is established to be an array of ten ints; memory is reserved for the
ten members.

The constant expression that sets the size of an array must be an integral constant greater than
zero. It must be known by translation phase 7 so the appropriate amount of storage can be
allocated.

An array declarator may be empty; for example:

int example[];

In this case, example is an incomplete type. It will be completed when it is initialized.

Cross-references
Standard, §3.5.4.2
The C Programming Language, ed. 2, p. 216

See Also
[], declarators, initialization

Notes
For two array types to be compatible, the type of element in each, the number of dimensions in
each, and the size of each corresponding dimension (except the first) must be identical.

LEXICON

6 arithmetic types — array declarators

array types —
An array type is a set of objects, all of which have the same type and which are stored contiguously
within memory. The type of the elements is called the element type.

For example, int array[32] it is an array with an element type of int and 32 elements. The array is
called an array of int.

An incomplete array type is an array whose size is not yet known.

An array with more than one dimension is called a multidimensional array. Such an array is stored
in row-major order, unlike an array in FORTRAN, which stores multidimensional arrays in column-
major order.

Cross-reference
Standard, §3.1.2.5

See Also
[], array declarators, types

ASCII — Definition
ASCII is an acronym for the American Standard Code for Information Interchange. It is a table of
seven-bit binary numbers that encode the letters of the alphabet, numerals, punctuation, and the
most commonly used control sequences for printers and terminals.

The extended ASCII character set defines eight-bit encodings. The lower 127 characters are those of
standard ASCII, and the higher 127 characters are also defined.

The Standard has purposely not specified the character encoding required by an implementation.
Though other language standards have been described purely in terms of ASCII, C has been
implemented in enough non-ASCII environments that it would have been overly constraining to
describe C in ASCII.

Though the standard ASCII character set is used commonly throughout the United States, other
countries use the ISO 646 character set, which is an invariant subset of standard ASCII. See the
entry on trigraphs for a discussion of the representing C characters in environments in which not
all of the 127 ASCII characters are available.

The following table gives the lower 127 ASCII characters in octal, decimal, and hexadecimal
numbers.

000 0 0x00 NUL <ctrl-@> Null character
001 1 0x01 SOH <ctrl-A> Start of header
002 2 0x02 STX <ctrl-B> Start of text
003 3 0x03 ETX <ctrl-C> End of text
004 4 0x04 EOT <ctrl-D> End of transmission
005 5 0x05 ENQ <ctrl-E> Enquiry
006 6 0x06 ACK <ctrl-F> Positive acknowledgement
007 7 0x07 BEL <ctrl-G> Alert
010 8 0x08 BS <ctrl-H> Backspace
011 9 0x09 HT <ctrl-I> Horizontal tab
012 10 0x0A LF <ctrl-J> Line feed
013 11 0x0B VT <ctrl-K> Vertical tab
014 12 0x0C FF <ctrl-L> Form feed
015 13 0x0D CR <ctrl-M> Carriage return
016 14 0x0E SO <ctrl-N> Shift out
017 15 0x0F SI <ctrl-O> Shift in

LEXICON

array types — ASCII 7

020 16 0x10 DLE <ctrl-P> Data link escape
021 17 0x11 DC1 <ctrl-Q> Device control 1 (XON)
022 18 0x12 DC2 <ctrl-R> Device control 2 (tape on)
023 19 0x13 DC3 <ctrl-S> Device control 3 (XOFF)
024 20 0x14 DC4 <ctrl-T> Device control 4 (tape off)
025 21 0x15 NAK <ctrl-U> Negative acknowledgement
026 22 0x16 SYN <ctrl-V> Synchronize
027 23 0x17 ETB <ctrl-W> End of transmission block
030 24 0x18 CAN <ctrl-X> Cancel
031 25 0x19 EM <ctrl-Y> End of medium
032 26 0x1A SUB <ctrl-Z> Substitute
033 27 0x1B ESC <ctrl-[> Escape
034 28 0x1C FS <ctrl-\> Form separator
035 29 0x1D GS <ctrl-]> Group separator
036 30 0x1E RS <ctrl-^> Record separator
037 31 0x1F US <ctrl-_> Unit separator
040 32 0x20 SP Space
041 33 0x21 ! Exclamation point
042 34 0x22 " Quotation mark
043 35 0x23 # Pound sign (sharp)
044 36 0x24 $ Dollar sign
045 37 0x25 % Percent sign
046 38 0x26 & Ampersand
047 39 0x27 ’ Apostrophe
050 40 0x28 (Left parenthesis
051 41 0x29) Right parenthesis
052 42 0x2A * Asterisk
053 43 0x2B + Plus sign
054 44 0x2C , Comma
055 45 0x2D - Hyphen (minus sign)
056 46 0x2E . Period
057 47 0x2F / Virgule (slash)
060 48 0x30 0
061 49 0x31 1
062 50 0x32 2
063 51 0x33 3
064 52 0x34 4
065 53 0x35 5
066 54 0x36 6
067 55 0x37 7
070 56 0x38 8
071 57 0x39 9
072 58 0x3A : Colon
073 59 0x3B ; Semicolon
074 60 0x3C < Less-than symbol (left angle bracket)
075 61 0x3D = Equal sign
076 62 0x3E > Greater-than symbol (right angle bracket)
077 63 0x3F ? Question mark
0100 64 0x40 @ At sign
0101 65 0x41 A
0102 66 0x42 B
0103 67 0x43 C
0104 68 0x44 D
0105 69 0x45 E

LEXICON

8 ASCII

0106 70 0x46 F
0107 71 0x47 G
0110 72 0x48 H
0111 73 0x49 I
0112 74 0x4A J
0113 75 0x4B K
0114 76 0x4C L
0115 77 0x4D M
0116 78 0x4E N
0117 79 0x4F O
0120 80 0x50 P
0121 81 0x51 Q
0122 82 0x52 R
0123 83 0x53 S
0124 84 0x54 T
0125 85 0x55 U
0126 86 0x56 V
0127 87 0x57 W
0130 88 0x58 X
0131 89 0x59 Y
0132 90 0x5A Z
0133 91 0x5B [Left bracket (left square bracket)
0134 92 0x5C \ Backslash
0135 93 0x5D] Right bracket (right square bracket)
0136 94 0x5E ^ Circumflex
0137 95 0x5F _ Underscore (underbar)
0140 96 0x60 ‘ Grave
0141 97 0x61 a
0142 98 0x62 b
0143 99 0x63 c
0144 100 0x64 d
0145 101 0x65 e
0146 102 0x66 f
0147 103 0x67 g
0150 104 0x68 h
0151 105 0x69 i
0152 106 0x6A j
0153 107 0x6B k
0154 108 0x6C l
0155 109 0x6D m
0156 110 0x6E n
0157 111 0x6F o
0160 112 0x70 p
0161 113 0x71 q
0162 114 0x72 r
0163 115 0x73 s
0164 116 0x74 t
0165 117 0x75 u
0166 118 0x76 v
0167 119 0x77 w
0170 120 0x78 x
0171 121 0x79 y
0172 122 0x7A z
0173 123 0x7B { Left brace (left curly bracket)

LEXICON

ASCII 9

0174 124 0x7C | Vertical bar
0175 125 0x7D } Right brace (right curly bracket)
0176 126 0x7E ~ Tilde
0177 127 0x7F DEL Delete

See Also
Definitions, trigraph sequences

asctime() — Time function (libc)
Convert broken-down time to text
#include <time.h>
char *asctime(const struct tm *timestruct);

The function asctime converts the data pointed to by timestruct into a text string of the form:

Wed Dec 10 13:57:33 1987\n\0

The structure pointed to by timestruct must first be initialized by either the function gmtime or the
function localtime before it can be used by asctime. See the entry for tm for further information on
this structure.

asctime returns a pointer to the string it creates.

Example
This example uses asctime to display Universal Coordinated Time.

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

main(void)
{

printf(asctime(gmtime(NULL)));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.12.3.1
The C Programming Language, ed. 2, p. 256

See Also
ctime, gmtime, localtime, strftime, time conversion, time_t, tm

Notes
asctime writes its string into a static buffer that will be written by another call to either asctime or
ctime.

The name asctime is short for ASCII time; its use, however, is not limited to implementations on
ASCII systems.

The Standard describes the following algorithm with which asctime can generate its string:

LEXICON

10 asctime()

char *
asctime(const struct tm *timeptr)
{

static const char wday_name[7][3] = {
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"

};
static const char mon_name[12][3] = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};
static char result[26];

sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);

return result;
}

as if rule —
The Standard’s as if rule defines how implementors should treat some models and examples within
the Standard. The Standard does not command implementors to implement all of its models and
standards. Rather, implementors should write their implementations to bring about the same
result, as if the model had been implemented directly.

For example, consider the following expression:

char c1, c2, c3;
c2 = c1 + c3;

The Standard states that such an expression must be performed as if c1 and c3 had been promoted
to ints before performing the arithmetic. An implementation may do precisely that promote the
chars to ints before performing the arithmetic. An implementor, however, may choose not to
promote the operands to ints if the same result is obtained. It is as if the operands were promoted
and integer arithmetic performed, when in fact, the program was optimized by performing character
arithmetic.

Cross-reference
Rationale, §2.1

See Also
Rationale

asin() — Mathematics (libm)
Calculate inverse sine
#include <math.h>
double asin(double arg);

asin calculates the inverse sine of arg, which must be in the range of from -1.0 to 1.0; any other
value will trigger a domain error.

asin returns the result, which is in the range π/2 to π.

Cross-references
Standard, §4.5.2.2
The C Programming Language, ed. 2, p. 251

LEXICON

as if rule — asin() 11

See Also
acos, atan, atan2, cos, sin, tan, trigonometric functions

assert() — Diagnostics (assert.h)
Check assertion at run time
#include <assert.h>
void assert(int expression);

assert checks the value of expression. If expression is false (zero), assert sends a message into the
standard error stream and calls abort. It is useful for verifying that a necessary condition is true.

The error message includes the text of the assertion that failed, the name of the source file, and the
line within the source file that holds the expression in question. These last two elements consist,
respectively, of the values of the preprocessor macros _ _FILE_ _ and _ _LINE_ _.

Because assert calls abort, it never returns.

To turn off assert, define the macro NDEBUG prior to including the header assert.h. This forces
assert to be redefined as

#define assert(ignore)

Example
This program generates an error if your implementation does not conform to the Standard.

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>

main(void)
{
#ifdef STDC

assert(STDC);
#else

fprintf(stderr, "Not ANSI C\n");
#endif

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.2.1.1
The C Programming Language, ed. 2, p. 253

See Also
abort, assert.h, diagnostics, NDEBUG

Notes
The Standard requires that assert be implemented as a macro, not a library function. If a program
suppresses the macro definition in favor of a function call, its behavior is undefined.

The Standard requires that assert handle integer expressions correctly. Some implementations may
also evaluate scalar expressions, but this is not required.

Turning off assert with the macro NDEBUG will affect the behavior of a program if the expression
being evaluated normally generates side effects.

assert is useful for debugging, and for testing boundary conditions for which more graceful error
recovery has not yet been implemented.

LEXICON

12 assert()

assert.h — Header
Header for assertions
#include <assert.h>

assert.h is the header file that defines the macro assert.

Cross-references
Standard, §4.2
The C Programming Language, ed. 2, pp

See Also
assert, diagnostics, header, NDEBUG

assignment operators —
The C language comes equipped with the following assignment operators:

= simple assignment
+= add and assign
-= subtract and assign
*= multiply and assign
/= divide and assign
%= modulus and assign
&= bitwise AND and assign
<<= bitwise left shift and assign
>>= bitwise right shift and assign
|= bitwise inclusive OR and assign
^= bitwise exclusive OR and assign

They have the following syntax:

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= += -= *= /= %= &= <<= >>= |= ^=

The assignment operator = simply copies the value of its right operand into its left operand. The
other assignment operators perform an arithmetic or bitwise operation that involves both operands,
and then assigns the result to the left operand. For this reason, they are called compound
assignment operators. For example,

a += b

is equivalent to:

a = a+b

The left operand must be a modifiable lvalue. The types of the operands vary from operator to
operator. See the entry for each for more information. The resultant type is the unqualified type of
the left operand.

The other operators work in similar fashion with their respective operations.

Cross-references
Standard, §3.3.16
The C Programming Language, ed. 2, p. 50, 208

LEXICON

assert.h — assignment operators 13

See Also
expressions, operators

Notes
The Standard states that the order of evaluation of operands is unspecified. Although it may seem
logical that the right operand would be evaluated first and the result then stored into the left
operand, this is not necessarily the case.

Obsolete assignment operators of the form =+ are no longer recognized.

Each assignment operator is now described as one token. This means that the characters of an
assignment operator can no longer be separated by white space.

atan() — Mathematics (libm)
Calculate inverse tangent
#include <math.h>
double atan(double arg);

atan calculates the inverse tangent of arg, which may be any real number.

atan returns the result, which is in the range of from -π/2 to π/2 radians.

Cross-references
Standard, §4.5.2.3
The C Programming Language, ed. 2, p. 251

See Also
acos, asin, atan2, cos, sin, tan, trigonometric functions

atan2() — Mathematics (libm)
Calculate inverse tangent
#include <math.h>
double atan2(double num, double den);

atan2 calculates the inverse tangent of the quotient of its arguments num and den. These may be
any real number except zero.

atan2 returns the result, which is in the range of from -π to π. The sign of the return value is drawn
from the signs of both arguments.

Cross-references
Standard, §4.5.2.4
The C Programming Language, ed. 2, p. 251

See Also
acos, asin, atan, cos, sin, tan, trigonometric functions

Notes
atan2 is provided in addition to atan, to compute arc tangents for numbers that yield very large
results.

LEXICON

14 atan() — atan2()

atexit() — General utility (libc)
Register a function to be performed at exit
#include <stdlib.h>
int atexit(void (*function)(void));

atexit registers a function to be executed when the program exits. function points to the function to
be executed. The registered function returns nothing. atexit provides a way to perform additional
clean-up operations before a program terminates.

The functions that atexit registers are executed when the program exits normally, i.e., when the
function exit is called or when main returns. The functions registered by atexit can perform clean-
up is needed, beyond what is ordinarily performed when a program exits.

atexit returns zero if function could be registered, and nonzero if it could not.

Example
This example sets one function that displays messages when a program exits, and another that
waits for the user to press a key before terminating.

#include <stdlib.h>
#include <stdio.h>

void
lastgasp(void)
{

perror("Type return to continue");
}

void
get1(void)
{

getchar();
}

main(void)
{

/* set up get1() as last exit routine */
atexit(get1);
/* set up lastgasp() as exit routine */
atexit(lastgasp);

/* exit, which invokes exit routines */
exit(EXIT_SUCCESS);

}

Cross-references
Standard, §4.10.4.2
The C Programming Language, ed. 2, p. 253

See Also
environment communication, exit

Notes
atexit must be able to register at least 32 functions.

Functions registered by atexit are executed when exit is called. They are executed in reverse order
of registration.

LEXICON

atexit() 15

atof() — General utility (libc)
Convert string to floating-point number
#include <stdlib.h>
double atof(const char *string);

atof converts the string pointed to by string into a double-precision floating point number, and
returns the number it has built. It is equivalent to the call

strtod(string, (char **)NULL);

string must point to the text representation of a floating-point number. It can contain a leading
sign, any number of decimal digits, and a decimal point. It can be terminated with an exponent,
which consists of the letters e or E followed by an optional leading sign and any number of decimal
digits. For example,

1.23
123e-2
123E-2

are strings that can be converted by atof.

atof ignores leading blanks and tabs; it stops scanning when it encounters any unrecognized
character.

Cross-references
Standard, §4.10.1.1
The C Programming Language, ed. 2, p. 251

See Also
atoi, atol, string conversion, strtod, strtol, strtoul

Notes
The character that atof recognizes as representing the decimal point depends upon the program’s
locale, as set by the function setlocale. See localization for more information.

The functionality of atof has largely been subsumed by the function strtod, but the Standard
includes it because it is used so widely in existing code.

atoi() — General utility (libc)
Convert string to integer
#include <stdlib.h>
int atoi(const char *string);

atoi converts the string pointed to by string into an integer. It is equivalent to the call

(int)strtol(string, (char **)NULL, 10);

The string pointed to by string may contain a leading sign and any number of numerals. atoi
ignores all leading white space. It stops scanning when it encounters any non-numeral other than
the leading sign character and returns the int it has built.

Cross-references
Standard, §4.10.1.2
The C Programming Language, ed. 2, p. 251

See Also
atof, atol, string conversion, strtod, strtol, strtoul

LEXICON

16 atof() — atoi()

Notes
The functionality of atoi has largely been subsumed by the function strtol, but the Standard
includes it because it is used so widely in existing code.

atol() — General utility (libc)
Convert string to long integer
#include <stdlib.h>
long atol(const char *string);

atol converts the string pointed to by string to a long. It is equivalent to the call

strtol(string, (char **)NULL, 10);

The string pointed to by string may contain a leading sign and any number of numerals. atol
ignores all leading white space. It stops scanning when it encounters any non-numeral other than
the leading sign and returns the long it has built.

Cross-references
Standard, §4.10.1.3
The C Programming Language, ed. 2, p. 251

See Also
atof, atol, string conversion, strtod, strtol, strtoul

Notes
The functionality of atol has largely been subsumed by the function strtol, but the Standard
includes it because it is used so widely in existing code.

auto — C keyword
Automatic storage duration
auto type identifier

The storage-class specifier auto declares that identifier has automatic storage duration.

Cross-references
Standard, §3.5.1
The C Programming Language, ed. 2, p. 210

See Also
storage-class specifiers, storage duration

LEXICON

atol() — auto 17

basic types —
The basic types are the integer and floating types. These are the types that C defines, and they are
all scalar rather than aggregate. All other types are constructed from the basic types.

Cross-references
Standard, §3.1.2.5
The C Programming Language, ed. 2, p. 195

See Also
floating types, integer types, types

behavior — Definition
The term behavior refers to the way an implementation reacts to a given construct. When a
construct conforms to the descriptions within the Standard, then its behavior should be predictable
from the Standard’s descriptions alone. When a construct does not conform to the descriptions
within the Standard, then one of the following four types of abnormal behavior results:

Unspecified behavior
This is behavior produced by a correct construct for which the Standard supplies no
description. An example is the order in which a program evaluates the arguments to a
function.

Undefined behavior
This is behavior produced by an erroneous construct for which the Standard supplies no
description. An example of a construct that generates undefined behavior is attempting to
divide by zero.

The Standard does not mandate how a conforming implementation reacts when it detects a
construct that will produce undefined behavior: it may pass over it in silence, with
unpredictable (and usually unwelcome) results; generate a diagnostic message and continue
to translate or execute; or stop translation or execution and produce a diagnostic message.

A portable program, however, should not depend upon undefined behavior performing in
any predictable way. Undefined behavior is precisely that: undefined. Whatever happens,
happens from printing an error message to reformatting your hard disk.

Implementation-defined behavior
This is behavior produced by a correct construct that is specific to a given implementation.
An example is the number of register objects that can actually be loaded into machine
registers. The Standard requires that the implementation document all such behaviors.

Locale-specific behavior
This is behavior that depends upon the program’s locale. An example is the character that
the function atof recognizes as marking a decimal point. The Standard requires that an
implementation document all such behaviors.

LEXICON

18 basic types — behavior

Cross-reference
Standard, §1.6

See Also
compliance, Definitions

Notes
For a program to be maximally portable, it should not rely on any of the above deviants of behavior.

bit — Definition
The term bit is an abbreviation for binary digit. It is the element of storage that can hold either of
exactly two values. A contiguous sequence of bits forms a byte. A byte consists of at least eight
bits. The macro CHAR_BIT specifies the number of bits that constitute a byte for the execution
environment.

On most machines a bit cannot be addressed directly; a byte is the smallest unit of storage that can
be addressed.

Cross-reference
Standard, §1.6

See Also
bit-field, bitwise operations, byte, Definitions

bit-fields — Definition
A bit-field is a member of a structure or union that is defined to be a cluster of bits. It provides a
way to represent data compactly. For example, in the following structure

struct example {
int member1;
long member2;
unsigned int member3 :5;

}

member3 is declared to be a bit-field that consists of five bits. A colon : precedes the integral
constant that indicates the width, or the number of bits in the bit-field. Also, the bit-field declarator
must include a type, which must be one of int, signed int, or unsigned int. If a bit-field is declared
to be in type int, the implementation defines whether the highest bit is used to hold the bit-field’s
sign.

The Standard states, An implementation may allocate any addressable storage unit large enough to
hold a bit-field. This suggests that if a bit-field is defined as holding more bits than are normally
held by an int, then the implementation may place the bit-field into a larger data object, such as a
long.

If two bit-fields are declared side-by-side and together are small enough to fit into an int, then they
must be packed together. However, if together they are too large to fit into an int, then the
implementation determines whether they are in separate objects or if the second bit-field is partly
within the object that holds the first and partly within a second object.

The implementation also defines where the bit-field resides within its object whether it is built from
the low-order bit up, or from the high-order bit down. For example, consider an implementation in
which an int has 16 bits. If a five-bit bit-field is declared to be part of an int, and that bit-field is
initialized to all ones, then the int may appear like this under one implementation:

0000 0000 0001 1111 /* low-order bits set */

LEXICON

bit — bit-fields 19

and like this under another:

1111 1000 0000 0000 /* high-order bits set */

A bit-field that is not given a name may not be accessed. Such an object is useful as padding within
an object so that it conforms to a template designed elsewhere.

A bit-field that is unnamed and has a length of zero can be used to force adjacent bit-fields into
separate objects. For example, in the following structure

struct example {
int member1;
int member2 :5;
int :0;
int member3 :5;

};

the zero-length bit-field forces member2 and member3 to be written into separate objects,
regardless of the default behavior of the implementation.

Finally, it is not allowed to take the address of a bit-field.

Cross-references
Standard, §3.5.2.1
The C Programming Language, ed. 2, pp

See Also
declarations, structure, union

Notes
Because bit-fields have many implementation-specific properties, they are not considered to be
highly portable. Bit-fields use minimal amounts of storage, but the amount of computation needed
to manipulate and access them may negate this benefit. Bit-fields must be kept in integral-sized
objects because many machines cannot access a quantity of storage smaller than a word (a word is
generally used to store an int).

bitwise operators —
The C language describes five operators that perform bitwise operations; these are operations that
manipulate the bits of operands. The operators are as follows:

& Bitwise AND operation
<< Bitwise left shift operation
>> Bitwise right shift operation
| Bitwise inclusive OR operation
^ Bitwise exclusive OR operation

The syntax for these operators is as follows:

AND-expression:
equality-expression
AND-expression & equality-expression

shift-expression:
additive-expression
shift-expression << additive expression
shift-expression >> additive expression

LEXICON

20 bitwise operators

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

exclusive-OR-expression:
AND-expression
exclusive-OR-expression ^ AND-expression

All operands must have integral type, and each undergoes the usual arithmetic conversion before
the operation is performed. In the case of the &, |, and ^ operators, the result has integral type; in
the case of the << and >> operators, the result has the type to which the left operand was promoted.

Example
The following example translates an integer into a string of zeroes and ones to display its bit pattern.
It demonstrates most of the bitwise operators.

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>

/* Turn an int into a string of zeroes and ones */
void
printbit(unsigned int number)
{

unsigned int i;

/* no. of bits in int for execution environment */
unsigned int bits = sizeof(int)*CHAR_BIT;

/* set rightmost bit in this variable */
unsigned int checker = 1;

/*
* move bit all the way to left; do it this
* way for portability
*/

checker <<= bits-1;

/* check if corresponding bit is set */
for (i = 1; i <= bits; i++) {

putchar((number & checker) ? ’1’ : ’0’);

/* insert spaces between "nybbles" */
if (i%4 == 0)

putchar(’ ’);
/* shift bit to right */
checker >>= 1;

}

/* flush output buffer */
putchar(’\n’);

}

main(int argc, char *argv[])
{

int n1, n2;

if (argc != 3) {
fprintf(stderr, "Usage: example int1 int2\n");
exit(EXIT_FAILURE);

}

LEXICON

bitwise operators 21

n1 = atoi(argv[1]);
n2 = atoi(argv[2]);

printf("bit patterns for %d and %d:\n", n1, n2);
printbit(n1);
printbit(n2);

printf("~%d:\n", n1);
printbit(~n1);

printf("~%d:\n", n2);
printbit(~n2);

printf("%d & %d:\n", n1, n2);
printbit(n1 & n2);

printf("%d | %d:\n", n1, n2);
printbit(n1 | n2);

printf("%d ^ %d:\n", n1, n2);
printbit(n1 ^ n2);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §3.3.7
The C Programming Language, ed. 2, pp. 48, 205

See Also
&, <<, >>, |, ^, expressions

block — Definition
A block is a set of statements that forms one syntactic unit. It can have its own declarations and
initializations.

In C terminology, a block is marked off by braces { }. Block-scoped variables are visible only in the
block in which they are declared.

Cross-references
Standard, §3.6.2
The C Programming Language, ed. 2, p. 55

See Also
auto, compound statement, Definitions, scope

Notes
Another term for block is compound statement.

break — C keyword
Exit unconditionally from loop or switch
break;

break is a statement that causes the program to exit immediately from the smallest enclosing
switch, while, for, or do statement.

Example
For an example of this statement, see printf.

LEXICON

22 block — break

Cross-references
Standard, §3.6.6.3
The C Programming Language, ed. 2, p. 64

See Also
C keywords, continue, goto, jump statements, return

broken-down time —
The term broken-down time refers to time broken down into individual elements, such as seconds,
minutes, hours, and day of the year. Broken-down time is stored in the structure tm.

The functions localtime and gmtime convert calendar time into broken-down time, and store what
they create in tm.

The functions strftime and ctime convert calendar time into a string that can be printed and read
by humans. ctime produces a standard UNIX-style string. strftime, however, generates a string
using the conventions for the program’s locale, as set by the function setlocale.

Finally, the function mktime converts broken-down time to calendar time.

Cross-references
Standard, §4.12
The C Programming Language, ed. 2, p. 255

See Also
calendar time, date and time, daylight savings time, local time, tm, universal coordinated
time

bsearch() — General utility (libc)
Search an array
#include <stdlib.h>
void *bsearch(const void *item, const void *array, size_t number,

size_t size, int (*comparison)(const void *arg1, const char *arg2));

bsearch searches a sorted array for a given item.

item points to the object sought. array points to the base of the array; it has number elements, each
of which is size bytes long. Its elements must be sorted into ascending order before it is searched by
bsearch.

comparison points to the function that compares item with an element of array. comparison must
return zero if its arguments match, a number greater than zero if the element pointed to by arg1 is
numerically greater than the element pointed to by arg2, and a number less than zero if the element
pointed to by arg1 is numerically less than the element pointed to by arg2.

bsearch returns a pointer to the array element that matches item. If no element matches item, then
bsearch returns NULL. If more than one element within array matches item, which element is
matched is unspecified.

Example
This example uses bsearch to translate English into bureaucrat-ese.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

LEXICON

broken-down time — bsearch() 23

struct syntab {
char *english, *bureaucratic;

} cdtab[] = {
/* The left column is in alphabetical order */

"affect", "impact",
"after", "subsequent to",
"building", "physical facility",
"call", "refer to as",
"do", "implement",

"false", "inoperative",
"finish", "finalize",
"first", "initial",
"full", "in-depth",
"help", "facilitate",

"lie", "inoperative statement",
"order", "prioritize",
"talk", "interpersonal communication",
"then", "at that point in time",
"use", "utilize"

};

int
comparator(key, item)
char *key;
struct syntab *item;
{

return(strcmp(key, item->english));
}

main(void)
{

struct syntab *ans;
char buf[80];

for(;;) {
printf("Enter an English word: ");
fflush(stdout);

if(gets(buf) || !strcmp(buf, "quit") == NULL)
break;

if((ans = bsearch(buf, (void *)cdtab,
sizeof(cdtab)/ sizeof(struct syntab),
sizeof(struct syntab),
comparator)) == NULL)

printf("%s not found\n");

else
printf("Don’t say \"%s\"; say \"%s\"!\n",

ans->english, ans->bureaucratic);
}

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.10.5.1
The C Programming Language, ed. 2, p. 253

LEXICON

24 bsearch()

See Also
qsort, searching-sorting

Notes
The name bsearch implies that this function performs a binary search. A binary search looks at the
midpoint of the array, and compares it with the element being sought. If that element matches,
then the work is done. If it does not, then bsearch checks the midpoint of either the upper half of
the array or of the lower half, depending upon whether the midpoint of the array is larger or smaller
than the item being sought. bsearch bisects smaller and smaller regions of the array until it either
finds a match or can bisect no further.

It is important that the data be sorted, or bsearch will return an indeterminate result.

buffer — Definition
A buffer is a region of memory that is associated with a stream. It holds data after they are read
from the stream, or before they are written into it.

The term buffering refers to the way that a stream’s buffer works. The Standard describes three
types of buffering:

Full buffering
Data are read from and written into the stream in buffer-sized chunks. Data are transferred
either when needed or when the stream is explicitly flushed.

Line buffering
Data are read from the stream when the buffer is empty. Data are written into the stream
when the buffer becomes full, when a newline character is written, or when the buffer is
explicitly flushed.

Unbuffered
Data are transferred to or from the stream in the units that the program uses to read from
or write into the stream.

The functions fopen and freopen establish a buffer for every stream they open. The default type of
buffering is full buffering. The default size of the buffer is BUFSIZ characters. BUFSIZ is a macro
that is defined in the header stdio.h, and is equal to at least 256.

The functions setbuf and setvbuf let you change the type of buffering used with a stream, change
the size of a buffer, or redirect buffering into a buffer of your own creation.

Example
For an example of altering a buffer, see setvbuf.

Cross-references
Standard, §4.9.3, §4.9.5, §4.9.6

See Also
BUFSIZ, file, setbuf, setvbuf, STDIO, stdio.h, stream

BUFSIZ — Manifest constant
Default size of buffer
#include <stdio.h>

BUFSIZ is a macro defined in the header stdio.h. It is used by the functions fopen, freopen, and
setbuf to establish the default size of a stream’s buffer. Whenever a stream is opened, a buffer of
BUFSIZ bytes is automatically associated with it.

LEXICON

buffer — BUFSIZ 25

BUFSIZ cannot be less than 256.

Cross-references
Standard, §4.9.2, §4.9.5.3, §4.9.5.4, §4.9.5.5
The C Programming Language, ed. 2, p. 243

See Also
buffer, STDIO, stdio.h, stream

byte — Definition
A byte is a contiguous set of at least eight bits. It is the unit of storage that is large enough to hold
each character within the basic C character set. It is also the smallest unit of storage that a C
program can address.

The least significant bit is called the low-order bit, and the most significant bit is the high-order bit.

In terms of C programming, a byte is synonymous with the data type char: a char is defined to be
equal to one byte’s worth of storage. The macro CHAR_BIT gives the number of bits in a byte for
the execution environment.

Cross-reference
Standard, §1.6

See Also
bit, char, Definitions

LEXICON

26 byte

calendar time —
The term calendar time refers to the time returned by function time. It represents the current time
and date, as organized by the Gregorian calendar.

Calendar time is encoded in the data type time_t, which is returned by the function time. The
Standard states only that time_t is an arithmetic type capable of representing time under the local
environment. How calendar time is represented depends upon the environment or the
implementation.

Calendar time can be converted by the functions gmtime or localtime into broken-down time. This
breaks out the individual elements of time, such as the year, month, day, hour, and minute.

The functions strftime and ctime convert calendar time into a string that can be printed and read
by humans. ctime produces a standard UNIX-style string. strftime, however, generates a string
using the conventions for the program’s locale, as set by the function setlocale.

Finally, the function mktime converts broken-down time into calendar time.

Cross-reference
Standard, §4.12

See Also
broken-down time, date and time, local time, daylight savings time, time_t, universal
coordinated time

calloc() — General utility (libc)
Allocate and clear dynamic memory
#include <stdlib.h>
void *calloc(size_t count, size_t size);

calloc allocates a portion of memory large enough to hold count items, each of which is size bytes
long. It then initializes every byte within the portion to zero.

calloc returns a pointer to the portion allocated. The pointer is aligned for any type of object. If it
cannot allocate the amount of memory requested, it returns NULL.

Example
For an example of this function, see stdarg.

Cross-references
Standard, §4.10.3.1
The C Programming Language, ed. 2, p. 167

LEXICON

calendar time — calloc() 27

See Also
alignment, free, malloc, memory management, realloc

Notes
If count or size is equal to zero, then the behavior of calloc is implementation defined: calloc returns
either NULL or a unique pointer. This is a quiet change that may silently break some existing code.

case — C keyword
Mark entry in switch table
case expression:

case is a label that introduces an entry within the body of a switch statement. The value of the
switch statement’s conditional expression is compared with the value of every case label’s
expression. When the two match, then the program jumps to the point marked by that case label
and execution continues from there. Execution continues until a break statement is encountered.

Each case label must mark an expression whose value differs from those of every other case label
for that switch statement. See switch for more information.

Example
For an example, see printf.

Cross-references
Standard, §3.6.1
The C Programming Language, ed. 2, p. 58

See Also
break, C keywords, default, labelled statements, switch

Notes
Every conforming implementation must be able to accept at least 257 case labels within a switch
statement.

cast operators —
Convert the type of an expression
(newtype) identifier ;

A cast operator temporarily gives an operand a new type. newtype may have scalar type or type
void; identifier must have scalar type.

The syntax of a cast operation is as follows:

cast-expression:
unary-expression
(type-name) cast-expression

To indicate a cast operation, the name of the new type must be enclosed by the cast operator ().

An integral type can be cast to another integral type. For the rules that govern the behavior of such
a cast, see conversions.

A pointer can also be cast to another type. The following rules govern the cast of a pointer:

• A pointer may be cast to an integral type. The size of the integer required to hold a pointer
depends upon the implementation (and implicitly, upon the environment). If the pointer is not
large enough to hold the value of the pointer, the behavior is undefined. Likewise, an integer
may be cast to a pointer; this behavior, however, is implementation-defined.

LEXICON

28 case — cast operators

• Assignment of a qualified pointer to an unqualified pointer results in undefined behavior.

• A pointer that points to an object or an incomplete type may be cast to a pointer to another
object or incomplete type. Whether the cast pointer works correctly depends upon the
alignment of the object to which it points: casting to an object with a stricter alignment may
not work. char has the least strict alignment of all types. If a pointer is cast to point to an
object with equal or less strict alignment, and then is re-cast to its original type, the re-cast
pointer will compare equal to the original pointer.

• A pointer to a function of one type may be cast to a pointer to a function of another type. If it
is re-cast to its original type, then the re-cast pointer will compare equal to the original pointer.
However, if the pointer is cast to type other than the actual type of the function, and then is
used to access the function, the behavior is undefined.

Cross-references
Standard, §3.3.4
The C Programming Language, ed. 2, pp. 45, 205

See Also
conversions, expressions, pointer

Notes
A cast expression is not an lvalue.

A cast expression may cause the translator to generate code to convert the given operand to the type
specified in the cast.

With the Standard’s introduction of void * as the generic pointer (which has strictest alignment of
any type), pointers may be cast without harm from type void * to any other pointer type and back
again.

ceil() — Mathematics (libm)
Integral ceiling
#include <math.h>
double ceil(double z);

The function ceil returns the ceiling of a function, or the smallest integer less than z. For example,
the ceiling of 23.2 is 23, and the ceiling of -23.2 is -23.

ceil returns the value expressed as a double.

Cross-references
Standard, §4.5.6.1
The C Programming Language, ed. 2, p. 251

See Also
fabs, floor, fmod, integer-value-remainder

char — C keyword
The data type char is the smallest addressable unit of data. It consists of one byte of storage, and it
can encode all of the characters that can be used to write a C program. sizeof(char) returns one by
definition, with all other data types defined as multiples thereof.

A char may be either signed or unsigned; this is up to the implementation. If a char holds any of
the characters that make up the C character set, then it is positive. ANSI C allows the
corresponding types signed char and unsigned char. Programmers can create signed and unsigned

LEXICON

ceil() — char 29

versions of char where needed.

The range of values that can be encoded within a char are set by the macros CHAR_MIN and
CHAR_MAX. These are defined in the header limits.h. The minimum values of these macros depend
upon whether the implementation sign-extends a char when it is used in an expression. If the
implementation does sign extend, then CHAR_MIN is equal to SCHAR_MIN (at least -127) and
CHAR_MAX is equal to SCHAR_MAX (at least +127). If it does not sign extend, however,
CHAR_MIN is equal to zero and CHAR_MAX is equal to UCHAR_MAX (at least +255).

Cross-references
Standard, §3.1.2.5
The C Programming Language, ed. 2, p. 211

See Also
signed char, types, unsigned char

CHAR_BIT — Manifest constant
CHAR_BIT is a macro that is defined in the header limits.h. It gives the number of bits in the
smallest possible data object (which is, by definition, a char). It must be at least eight.

Example
For an example of using this macro in a program, see rand.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
limits.h, numerical limits

CHAR_MAX — Manifest constant
CHAR_MAX is a macro that is defined in the header limits.h. It gives the largest value that can be
held in an object of type char. If the implementation defines char as being signed by default, then
CHAR_MAX is equal to SCHAR_MAX; otherwise, it is defined to be equal to UCHAR_MAX.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
limits.h, numerical limits

CHAR_MIN — Manifest constant
CHAR_MIN is a macro that is defined in the header limits.h. It gives the smallest value that can be
held by an object of type char. If the implementation defines char as being signed by default, then
CHAR_MIN is equal to SCHAR_MIN; otherwise, it defined to be zero.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
limits.h, numerical limits

LEXICON

30 CHAR_BIT — CHAR_MIN

character-case mapping —
#include <ctype.h>
The Standard’s list of character-handling functions includes two that change the case of alphabetic
characters, as follows:

tolower Convert character to lower case
toupper Convert character to upper case

The Standard defines upper-case characters as being those for which the function isupper returns
true. Likewise, lower-case characters are those for which the function islower returns true. The
action of these functions is affected by the program’s locale, for a locale may force a program to use
a non-ASCII character set, or even force it to use a character set that does not distinguish between
upper and lower case. For more information about setting a locale, see localization.

Example
This example demonstrates tolower and toupper by reading a file and reversing the case of all of its
characters.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void
fatal(const char *message)
{

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

FILE *fp;
int ch;

/* check number of arguments */
if (argc != 2)

fatal("usage: example filename");

/* open file */
if((fp = fopen(argv[1], "r")) == NULL)

fatal("cannot open text file");

/* read file, convert characters, print them */
while ((ch = fgetc(fp)) != EOF)

putchar(isupper(ch) ? tolower(ch) : toupper(ch));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.3.2
The C Programming Language, ed. 2, p. 249

See Also
character handling, character testing

LEXICON

character-case mapping 31

character constant — Definition
A character constant is a constant that encodes a character or escape sequence. Its syntax is as
follows:

character-constant:
’c-char-sequence’
’char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any character in the source character set except the

apostrophe, the backslash, or the newline
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A character constant consists of one or more characters or escape sequences that are enclosed
within apostrophes ´. To include a literal apostrophe within a character constant, use the escape
sequence \’.

A character is regarded as having type char as it is read, and it yields an object with type int. If a
character constant contains one character or escape sequence, then the numeric value of that
character is written into an int-length object. For example, under an implementation that uses
ASCII, the character constant ’a’ yields an int-length object with the value of 0x61. If a character
constant contains more than one character or escape sequence, the result is implementation-
defined.

Because the constant being read is regarded as having type char, the value of a character constant
can change from implementation to implementation, depending upon whether the implementation
uses a signed or unsigned char by default. For example, in an environment in which a char has
eight bits and uses two’s-complement arithmetic, the character constant ’\xFF’ will yield an int
with a value of either -1 or +255, depending upon whether a char is, respectively, signed or
unsigned by default.

A wide-character constant is a character constant that is formed of a wide character instead of an
ordinary, one-byte character. It is marked by the prefix L. For example, in the following

L’m’;

stores the numeric value of m in the form of a wide character.

LEXICON

32 character constant

Example
For an example of using character constants in a program, see putchar.

Cross-references
Standard, §3.1.3.4
The C Programming Language, ed. 2, p. 193

See Also
constants, escape sequences

Notes
Although octal escape sequences are limited to three octal digits, hexadecimal escape sequences can
be arbitrary length. However, when the value of a hexadecimal escape sequence exceeds that which
can be represented in an int, behavior is defined by the implementation.

character display semantics — Definition
The Standard describes the semantics by which characters are displayed on an output device. The
active position is where the output device will print the next character produced by the function
fputc. On a video terminal, it usually is marked by a cursor. The locale defines the direction of
printing, whether from left to right, from right to left, or from top to bottom.

The following escape sequences can be embedded within a string literal or character constant to
affect the behavior of an output device:

\a Generate an alert signal. The alert may take the form of ringing a bell or printing a visual
signal on a screen.

\b Backspace: move the active position back one position. If the active position is already at the
beginning of the line, the behavior is undefined.

\f Form feed: move the active position to the beginning of the next page. On a hard-copy printer,
it feeds a fresh sheet of paper. On a video terminal, it may take the form of clearing the screen
and moving the cursor to the home position.

\n Newline: move the active position to the beginning of the next line.

\r Return: move the active position to the beginning of the current line.

\t Horizontal tab: move the active position to the beginning of the next horizontal tabulation field.
If the active position is already at or past the last horizontal tabulation field on the current line,
the behavior is undefined.

\v Vertical tab: move the active position to the beginning of the next vertical tabulation field. If
the active position is already at or past the last vertical tabulation field, the behavior is
undefined.

Every implementation must define each of these escape sequences as being a unique value that can
be stored in one char object.

Cross-reference
Standard, §2.2.2

See Also
character sets, environmental considerations, escape sequence, trigraph sequences

LEXICON

character display semantics 33

character handling — Overview
#include <ctype.h>
The Standard’s repertoire of library functions includes 13 that test or alter individual characters, as
follows:

Character testing
isalnum Check if a character is a numeral or letter
isalpha Check if a character is a letter
iscntrl Check if a character is a control character
isdigit Check if a character is a numeral
isgraph Check if a character is printable
islower Check if a character is a lower-case letter
isprint Check if a character is printable
ispunct Check if a character is a punctuation mark
isspace Check if a character is white space
isupper Check if a character is a upper-case letter
isxdigit Check if a character is a hexadecimal numeral

Case mapping
tolower Convert character to lower case
toupper Convert character to upper case

All are declared in the header ctype.h.

The Standard’s descriptions of these functions are designed to remove any dependency upon ASCII.
This allows these functions to be used in non-ASCII environments, e.g., on machines that use
EBCDIC.

The operation of all character-handling functions (with the exception of isdigit and isxdigit) is
modified by the program’s locale, as set by the function setlocale. This allows these function to test
and modify characters using a locale-specific character set. The calls

setlocale(LC_CTYPE, locale);

or

setlocale(LC_ALL, locale);

force these functions to use the locale-specific character set. See localization for more information.

Cross-references
Standard, §4.3
The C Programming Language, ed. 2, p. 248

See Also
character, ctype.h, testing, character-case mapping, Library

Notes
Although these functions are described as character handling, they are defined as taking an
argument of type int to allow them to accept the special value of EOF and locale-specific character
sets.

LEXICON

34 character handling

character sets — Definition
A C program uses two character sets: one for its translation and the other for execution. The
Standard severs any dependency of C upon the ASCII character set. Therefore, a program should
not depend upon characters being arranged in any special order.

The translation character set is the set of characters from which a C program may be written. It
includes the following characters:

A B C D E F G H I
J K L M N O P Q R
S T U V W X Y Z

a b c d e f g h i
j k l m n o p q r
s t u v w x y z

! " # % & ’ () *
+ , - / : ; < = >
? [\] ^ _ { | }
~

In addition, the space character and characters for vertical tab, horizontal tab, newline, and form
feed must be included. Any one of these special characters can be embedded within a character
constant or a string literal by encoding it with an escape sequence. Each escape sequence begins
with a backslash \; see escape sequences for a list of the available sequences.

Some of the C characters may be encoded using a trigraph. This allows a C program to be written on
a host that uses the ISO 646 character set, which does not contain the full set of C characters.

Finally, characters that are outside the C character set may be embedded within string literals and
character constants by using multibyte characters. See multibyte characters for more information.

The execution character set includes all characters that may be used during the execution of a
program. This character set is defined by the implementation, and is set by the locale under which
the program is executed. See localization for more information.

Cross-references
Standard, §2.2.1
The C Programming Language, ed. 2, p. 229

See Also
environmental considerations, escape sequences, localization, multibyte characters, trigraph
sequences

character testing —
#include <ctype.h.h>
The Standard describes the following 11 functions that test characters:

isalnum Check if a character is a numeral or letter
isalpha Check if a character is a letter
iscntrl Check if a character is a control character
isdigit Check if a character is a numeral
isgraph Check if a character is printable, except space
islower Check if a character is a lower-case letter
isprint Check if a character is printable, including space
ispunct Check if a character is a punctuation mark
isspace Check if a character is white space
isupper Check if a character is a upper-case letter

LEXICON

character sets — character testing 35

isxdigit Check if a character is a hexadecimal numeral

The actions of all of the above functions, with the exception of isdigit and isxdigit, are affected by
the program’s locale, as set by the function setlocale, because a given locale may use a non-ASCII
character set. For more information on setting a locale, see localization.

Example
This example counts the types of characters in a text file.

#include <ctype.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

static long count[11];

main(int argc, char *argv[])
{

register FILE *ifp;
register c;

if(argc != 2) {
printf("usage: ctype filename");
exit(EXIT_FAILURE);

}

if((ifp = fopen(argv[1], "rb")) == NULL) {
printf("Can’t open %s\n", argv[1]);
exit(EXIT_FAILURE);

}

while(EOF != (c = fgetc(ifp))) {
count[0] += isalnum(c);
count[1] += isalpha(c);
count[2] += iscntrl(c);
count[3] += isdigit(c);
count[4] += isgraph(c);
count[5] += islower(c);
count[6] += isprint(c);
count[7] += ispunct(c);
count[8] += isspace(c);
count[9] += isupper(c);
count[10] += isxdigit(c);

}

printf("%ld are alpha or digit\n", count[0]);
printf("%ld are alpha\n", count[1]);
printf("%ld are control characters\n", count[2]);
printf("%ld are decimal digits\n", count[3]);
printf("%ld are printable, except space\n", count[4]);
printf("%ld are lower case letters\n", count[5]);
printf("%ld are printable, including space\n", count[6]);
printf("%ld are punctuation chars\n", count[7]);
printf("%ld are white space chars\n", count[8]);
printf("%ld are upper case letters\n", count[9]);
printf("%ld are hexadecimal digits\n", count[10]);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.3.1

LEXICON

36 character testing

The C Programming Language, ed. 2, p. 249

See Also
character handling, case mapping

clearerr() — STDIO (stdio.h)
Clear a stream’s error indicator
#include <stdio.h>
void clearerr(FILE *fp);

When a file is manipulated, a condition may occur that would cause trouble should the program
continue. This could be an error (e.g., a read error), or the program may have read to the end of the
file. Most environments use two indicators to signal that such a condition has occurred: the error
indicator and the end-of-file indicator.

When an error occurs, the error indicator is set to a value that indicates what error occurred. The
end-of-file indicator is set when the end of a file is read. By checking these indicators, a program
can see if all is going well. Under some implementations, a file may not be manipulated further
until both indicators have been reset to their normal values.

clearerr resets to normal the error indicator and the end-of-file indicator for the stream pointed to
by fp.

Cross-references
Standard, §4.9.10.1
The C Programming Language, ed. 2, p. 248

See Also
error handling, feof, ferror, perror

Notes
The indicators are cleared when a file is opened or when the file-position indicator is reset by the
function rewind. Successful calls to fseek, fsetpos, or ungetc clear the end-of-file indicator.

CLK_TCK — Manifest constant
#include <time.h>
CLK_TCK is a macro that is defined in the header time.h. It represents the number of ticks in a
second. A tick is the unit of time measured by the function clock.

clock returns the type clock_t. To determine how many seconds a program required to run to the
given point, divide the value returned by clock by the value of CLK_TCK.

Example
For an example of using this macro in a program, see clock.

Cross-references
Standard, §4.12.1
The C Programming Language, ed. 2, p. 255

See Also
clock, clock_t, date and time

LEXICON

clearerr() — CLK_TCK 37

clock() —
Get processor time used
#include <time.h>
clock_t clock(void);

clock calculates and returns the amount of processor time a program has taken to execute to the
current point. Execution time is calculated from the time the program was invoked. This, in turn,
is set as a point from the beginning of an era that is defined by the implementation. For example,
under the COHERENT operating system, time is recorded as the number of milliseconds since
January 1, 1970, 0h00m00s UTC.

The value clock returns is of type clock_t. This type is defined in the header time.h. The Standard
defines it merely as being an arithmetic type capable of representing time. If clock cannot
determine execution time, it returns -1 cast to clock_t.

To calculate the execution time in seconds, divide the value returned by clock by the value of the
macro CLK_TCK, which is defined in the header time.h.

Example
This example measures the number of times a for loop can run in one second on your system. This
is approximate because CLK_TCK can be a real number, and because the program probably will not
start at an exact tick boundary.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(void)
{

clock_t finish;
long i;

/* finish = about 1 second from now */
finish = clock() + CLK_TCK;
for(i = 0; finish > clock(); i++)

;

printf("The for() loop ran %ld times in one second.\n", i);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.12.2.1
The C Programming Language, ed. 2, p. 255

See Also
CLK_TCK, clock_t, difftime, mktime, time, time manipulation

clock_t — Type
System time
#include <time.h>

clock_t is a data type that is defined in the header time.h. It is an arithmetic type, and is the type
returned by the function clock.

The unit that clock_t holds is implementation-defined. The macro CLK_TCK expands to a number
that expresses how of many of these units constitute one second of real time.

LEXICON

38 clock() — clock_t

Example
For an example of using this type in a program, see clock.

Cross-references
Standard, §4.12.1
The C Programming Language, ed. 2, p. 255

See Also
CLK_TCK, clock, date and time, time_t

close —
To close a file means to dissociate it from the stream that controls it. Any buffers associated with
the stream are flushed, to ensure that the file receives all data intended for it. When a file is closed,
it can no longer be accessed by your C program. To regain access, you must open it again.

To close a file, use the function fclose.

Cross-references
Standard, §4.9.3
The C Programming Language, ed. 2, p. 241

See Also
buffer, fclose, file, freopen, open, STDIO, stdio.h, stream

command processor —
The command processor is the part of an environment that interprets and executes user commands.

The function system provides a means to detect if an environment has a command processor and
can send commands to the processor from within a C program.

Cross-reference
Standard, §4.10.4.5

See Also
environment communication, system

comment — Definition
A comment is text that is embedded with a program but is ignored by the translator. It is intended
to guide the reader of the code.

A comment is introduced by the characters /*. The only exceptions are when these characters
appear within a string literal or a character constant. In these instances, the characters /* have no
special significance. When /* is read, all text is ignored until the characters */ are read. Once a
comment is opened, the translator does nothing with the text except scan it for multi-byte
characters and for the characters */ that close the comment.

The translator replaces a comment with a single white-space character; this is done during phase 3
of translation.

Cross-references
Standard, §3.1.9
The C Programming Language, ed. 2, p. 192

See Also
/, /, lexical elements, translation phases

LEXICON

close — comment 39

Notes
The Standard’s definition of a comment does not allow comments to nest. That is, you cannot have
a comment within a comment. This may require that some code be revised. If you wish to exclude
some code from translation temporarily, a sounder practice is to use the preprocessing directives
#ifdef and #endif. For example,

#ifdef DEBUG
. . .

#endif

will include code only if DEBUG has been defined as being a macro.

It is possible to open a comment inadvertently. For example, the code

int *intptr, int1, int2;
. . .

int2 = int1/*intptr;

inadvertently creates a comment symbol out of the division operator / and the pointer-dereference
operator *. Caveat utilitor.

compatible types — Definition
To judge whether two types are compatible, several factors must be considered.

Scalar types
First, the base types must be identical. Second, all specifiers must match, except for
signedness (i.e., it does not matter whether either or both are signed or unsigned). Third,
all type qualifiers must match. There are special semantics to determine whether qualified
objects are compatible to ensure that qualified types are not hidden. See the entry type
qualifiers for more information.

Structures
For two structures to be compatible, they must have the same tagged type. For example,
the structures

FILE struct1;
FILE struct2;

are compatible, because the tagged type of each is FILE. On the other hand, in the following
code

struct s1 { int s1_i } s1;
struct s2 { int s2_i } s2;

the structures s1 and s2 are not compatible.

Pointers
For two pointers to be compatible, they must point to the same type of object. Other
pointers may be compatible if they are suitably cast.

Cross-reference
Standard, §3.1.2.6, §3.5.2-4

See Also
type definitions, types

LEXICON

40 compatible types

compile —
To compile a program means to translate it with a compiler. A compiler is a translator that takes a
set of high-level source instructions (i.e., C code) and produces a set of machine instructions that
implement the behavior that the source instructions describe.

See Also
Definitions, interpret, link

compliance — Definition
Compliance refers to the degree to which a program and an implementation conform to the
Standard’s descriptions of the C language.

A strictly conforming program is one that uses only the features of the language and the library
routines that are described within the Standard. It does not produce any behavior that is
implementation defined, unspecified, or undefined. It does not exceed any minimum maximum set
by the Standard. A strictly conforming program should be maximally portable to any environment
for which a conforming implementation exists.

A conforming program is any program that can be translated by a conforming implementation. It
may use library functions other than those described in the Standard, it may evoke non-Standard
behavior, and it may use extensions to the language that are recognized by the implementation.

There are two varieties of conforming implementation: conforming hosted implementation and
conforming freestanding implementation. A conforming hosted implementation is one that can
translate any strictly conforming program. A conforming freestanding implementation is one that
can translate any strictly conforming program whose use of macros and functions is restricted to
those defined in the headers float.h, limits.h, stdarg.h, and stddef.h.

Every implementation must be accompanied by a document that describes all implementation-
defined behavior, locale-specific behavior, and extensions to the language.

Cross-reference
Standard, §1.7

See Also
behavior, Definitions, limits

composite types —
A composite type is any type that is constructed from two or more declarations. Each subsequent
declaration of a composite type adds more information to it.

Composite types are constructed in only a few instances. One is when an incomplete array type is
declared, followed by a later declaration that allocates storage for the array:

int array[];
. . .

int array[] = { 3, 6, 9 };

Here, the composite type is an array type with three elements.

Another instance is when an old-style function declarator is followed by a prototype-style function
declaration:

long newfunction();
long newfunction(int, long, char *);

LEXICON

compile — composite types 41

The resulting composite type is the function declaration plus the list of prototype parameters.
Hence, all calls to newfunction that are within the scope of this prototype declaration will be
checked against this prototype.

Cross-reference
Standard, §3.1.2.5

See Also
types

compound statement —
A compound statement is a cluster of statements that are handled as one syntactic unit. It may
have its own declarations and initializations.

The syntax of a compound statement is as follows:

compound statement:
{ declaration-list

opt
statement-list

opt
}

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

Variables declared and initialized within a compound statement have automatic duration: that is,
they disappear when the final } of the statement is read. These variables are evaluated and their
values stored in the order in which they appear within the compound statement.

Cross-references
Standard, §3.6.2
The C Programming Language, ed. 2, p. 222

See Also
block, statements

Notes
Another name for a compound statement is block.

conditional inclusion —
The preprocessor can conditionally select lines of code from a source file. If you wish, you can
construct a chain of directives to include and exclude exactly the material you want.

Conditional inclusion is introduced by one of the following three preprocessing directives: #if,
#ifdef, or #ifndef. If the directive evaluates to true, then all lines of code that follow the directive are
included within the program, up to the first succeeding #elif, #else, or #endif directive.

The expression that follows an #if or #elif directive is a constant-expression. It must be an integral
expression, and it cannot include a sizeof operator, a cast, or an enumeration constant. All macro
substitutions are performed upon the expression before it is evaluated. All integer constants are
treated as long objects, and are then evaluated. If constant-expression includes character constants,
all escape sequences are converted into characters before evaluation. It is up to the implementation
whether the result of evaluating a character constant in constant expression matches the result of
evaluating the same character constant in a C expression. For example, it is up to the
implementation whether

LEXICON

42 compound statement — conditional inclusion

#if ’z’ - ’a’ == 25

yields the same result as:

if (’z’ - ’a’ == 25)

The directives #ifdef and #ifndef are each followed by an identifier. Each directive checks to see if
identifier has been defined as a macro. If it has been, then #ifdef includes the code that follows it,
and #ifndef excludes it; whereas if identifier has not been defined as a macro, then #ifdef excludes
the following code and #ifndef includes it.

The keyword defined can be used with the directive #if to mimic the function of #ifdef. For
example, the directive

#if defined EXAMPLE

is identical to:

#ifdef EXAMPLE

#if, #ifdef, or #ifndef may be followed by one or more #elif directives. #elif, like #if, is governed by
a constant-expression. The only difference is that an #elif directive is not evaluated unless the
preceding #if, #ifdef, or #ifndef directive and all preceding #elif directives have evaluated as false.

The directive #else follows the #if, #ifdef, or #ifndef directive that introduces the conditional
inclusion, as well as all succeeding #elif directives. It does not evaluate an expression. If all of the
preceding directives evaluate as false, then the code that follows the #else directive is included, up
to the #endif directive. If any of the preceding directives evaluate as true, however, then the #else
directive’s code is skipped. A chain of conditional directives can have only one #else directive.

Finally, the directive #endif marks the end of a chain of conditional-inclusion directives.

The preprocessor includes only the code from the first directive whose condition is true.

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

See Also
#elif, #else, #endif, #if, #ifdef, #ifndef, defined, preprocessing

const — C keyword
Qualify an identifier as not modifiable

The type qualifier const marks an object as being unmodifiable. An object declared as being const
cannot be used on the left side of an assignment, or have its value modified in any way. Because of
these restrictions, an implementation may place objects declared to be const into a read-only region
of storage.

Judicious use of const allows the translator to optimize more thoroughly, for it does not have to
include code to check whether the object has been modified.

Most of the prototypes for library functions use const to mark identifiers that are not modified by
the function.

Cross-references
Standard, §3.5.3
The C Programming Language, ed. 2, p. 40

LEXICON

const 43

See Also
type qualifier, volatile

constant expressions — Definition
A constant expression is one that represents a constant. Constant expressions are required in a
variety of situations: when the value of an enumeration constant is set; when the size of an array is
declared; as a constant to be used in a case statement; or as the size of a bit-field declaration. Its
syntax is as follows:

constant-expression:
conditional-expression

Every constant expression must return a value that is within the range representable by its type.
No constant expression can contain assignment operators, increment or decrement operators,
function calls, or the comma operator. The only exception is when it used as the operand to the
operator sizeof.

The Standard describes the following varieties of constant expressions:

Address constant expression
This type of constant is an expression that points to an object or a function. The operators
[], *, &, ., and -> may be used to create an address constant, as may a pointer cast.

Arithmetic constant expression
This type of constant has an arithmetic type, and is one the following:

• character constant

• enumeration constant

• floating constant

• integer constant

• sizeof expression

An arithmetic constant expression can be cast only to another arithmetic type, except
when it is an operand to sizeof.

Integral constant expression
This type of constant has integral type, and is one of the following:

• character constant

• enumeration constant

• a floating constant that is the immediate operand of a cast.

• integer constant

• sizeof constant

When a constant expression is used to initialize a static variable, it must resolve, when translated,
into one of the following:

• An address constant.

• An address constant for an object type, plus or minus an integral constant expression.

• An arithmetic constant expression.

Initializers on local variables that are not declared static are not so restrictive.

LEXICON

44 constant expressions

Cross-references
Standard, §3.4
The C Programming Language, ed. 2, p. 38

See Also
constants, expressions, initializers, Language, void expression

Notes
Constant expressions can be combined when translated. The precision and accuracy of such
translation-time evaluation must be at least those of the execution environment. This requirement
was designed with cross-compilers in mind, where the execution environment might differ from
translation environment.

A constant expression may be resolved into a constant by the translator. Therefore, it can be used
in any circumstance that calls for a constant. For this reason, the Standard forbids the use in an
#if statement in a constant expression that queries the run-time environment. A program that does
include a #if statement that queries the environment will not run the same when translated by an
ANSI-compatible translator.

constants — Overview
A constant is a lexical element that represents a set numerical value. The four categories of
constants are as follows:

character constants A character constant or wide-character constant
enumeration constants A constant used in an enum
floating constants A floating-point number
integer constants An integer

Each type is determined by the form of the token. For example,

5L

defines a constant of type long, and

5.03

is a floating-point constant.

Cross-references
Standard, §3.1.3
The C Programming Language, ed. 2, pp. 192ff

See Also
constant expressions, lexical elements

constraints — Definition
A constraint is a restriction that the syntax and semantics of the language set upon the
interpretation of the elements of the language. If a program violates a constraint, the translator
must issue a diagnostic message.

Cross-reference
Standard, §1.6

See Also
Definitions, diagnostic message

LEXICON

constants — constraints 45

continue — C keyword
Force next iteration of a loop
continue;

continue forces the next iteration of a for, while, or do loop. It works only upon the smallest
enclosing loop.

continue forces a loop to iterate by jumping to the end of the loop, which is where iteration
evaluation is made. For example, the code

while(statement) {
. . .

if (statement)
continue;

. . .
}

is equivalent to:

while(statement) {
. . .

if (statement)
goto end;

. . .
end: ;

}

Example
For an example of this statement, see mktime.

Cross-references
Standard, §3.6.6.2
The C Programming Language, ed. 2, p. 64

See Also
break, C keywords, goto, jump statements, return

control character —
A control character is any character in a locale-defined character set that is not a printing character.

Cross-references
Standard, §4.3
The C Programming Language, ed. 2, p. 249

See Also
character handling, printing character

conversions — Definition
The term conversion means to change the type of an object, function, or constant, either explicitly or
implicitly. Explicit conversion occurs when an object or function is cast to another type by a cast
operator. Implicit conversion occurs when the type of the object or function is changed by an
operator without a cast operator being used.

When an object or function is converted into a compatible type, its value does not change.

The following paragraphs summarize conversion for different types of objects.

LEXICON

46 continue — conversions

Enumeration constants
These constants are always converted implicitly to ints.

Floating types
When a floating type is converted to an integral type, the fractional portion is thrown away.
If the value of the integral part cannot be represented by the new type, behavior is
undefined.

When a float is promoted to double or long double, its value is unchanged. Likewise, when
a double is promoted to a long double, its value is unchanged.

A floating type may be converted to a smaller floating type. If its value cannot be
represented by the new type, behavior is undefined. If its value lies within the range of
values that can be represented by the smaller type but cannot be represented precisely,
then its value is rounded to the next highest or next lowest value, depending upon the
implementation.

Integral types
A char, a short int, an enumerated type, or a bit-field, whether signed or unsigned, may be
used in any situation that calls for an int. The type to be promoted is converted to an int if
an int can hold all of its possible values. If an int cannot hold all of its possible values,
then it is converted to an unsigned int. This rule is called integral promotion. This
conversion retains the value of the type to be promoted, including its sign. Thus, it is called
a value-preserving promotion.

Some current implementations of C use a scheme for promotion that is called unsigned
preserving. Under this scheme, an unsigned char or unsigned short is always promoted to
unsigned int. Under certain circumstances, a program that depends upon unsigned-
preserving promotion will behave differently when subjected to value-preserving promotion,
and probably without warning. This is a quiet change that may break some existing code.

An integral type may be converted to a floating type. If its value lies within the range of
values that can be represented by the floating type, but it cannot be represented precisely,
then its value is rounded to the next highest or next lowest value, depending upon the
implementation.

Signed and unsigned integers
The following rules apply when a signed or an unsigned integer is converted to another
integral type:

• When a positive, signed integer is promoted to an unsigned integer of the same or
larger type, its value is unchanged.

• When a negative integer is promoted to an unsigned integer of the same or larger type,
it is first promoted to the signed equivalent of the unsigned type. It is then converted
to unsigned by incrementing its value by one plus the maximum value that can be held
by the unsigned type. On two’s complement machines, the bit pattern of the promoted
object does not changed. The only exception is that the sign bit is copied to fill any
extra bits of new type, should it be larger than the old type.

• When a signed or unsigned integer is demoted to a smaller, unsigned type, its value is
the non-negative remainder that occurs when the value of the original type is divided
by one plus the maximum value that can be held by the smaller type.

• When a signed or unsigned integer is demoted to a smaller, signed type, if its value
cannot be represented by the new type, the result is implementation-defined.

LEXICON

conversions 47

• When an unsigned integer is converted to a signed type of the same size, if its value
cannot be represented by the new type, the result is implementation-defined.

Usual arithmetic conversions
Many binary operators convert their operands and yield a result of a type common to both.
The rules that govern such conversions are called the usual arithmetic conversions. The
following lists the usual arithmetic conversions. If two conflict, the rule higher in the list
applies:

• If either operand has type long double, the other operand is converted to long double.

• If either operand has type double, the other operand is converted to double.

• If either operand has type float, the other operand is converted to float.

• If either operand has type unsigned long int, then the other operand is converted to
unsigned long int.

• If one operand has the type long int and the other operand has type unsigned int, the
other operand is converted to long int if that type can hold all of the values of an
unsigned int. Otherwise, both operands are promoted to unsigned long int.

• If either operand has type long int, the other operand is converted to long int.

• If either operand has type unsigned int, the other operand is converted to unsigned
int.

• If none of the above rules apply, then both operands have type int.

Cross-references
Standard, §3.2
The C Programming Language, ed. 2, pp. 197ff

See Also
explicit conversion, function designator, implicit conversion, integral promotions, Language,
lvalue, null pointer constant, value preserving, void expression

Notes
The as if rule gives implementors some leeway in applying the rules for usual arithmetic
conversions. For example, the conversion rules specify that operands of type char must first be
widened to type int before the operation is performed; however, if the same result would be
produced by performing the operation on char operands, then the operands need not be widened.

Because the Standard now allows single-precision floating-point arithmetic on float operands, some
round-off error could occur. Casts will force the operands in question to be promoted, and the
operation to be carried out with the wider type.

cos() — Mathematics (libm)
Calculate cosine
#include <math.h>
double cos(double radian);

cos calculates and returns the cosine of its argument radian, which must be expressed in radians.

Example
For an example of this function, see sin.

LEXICON

48 cos()

Cross-references
Standard, §4.5.2.5
The C Programming Language, ed. 2, p. 251

See Also
acos, asin, atan, atan2, sin, tan, trigonometric functions

cosh() — Mathematics (libm)
Calculate hyperbolic cosine
#include <math.h>
double cosh(double value);

cosh calculates and returns the hyperbolic cosine of value. A range error will occur if the argument
is too large.

Cross-references
Standard, §4.5.3.1
The C Programming Language, ed. 2, p. 251

See Also
mathematics, sinh, tanh

create —
To create a file means that the environment creates the appropriate control structures so that data
can be written onto a storage device and retrieved from it. When a file is created, it is given a
unique name. In some environments, opening a file that does not exist will create that file; in
others, a file must be opened and data written before that file is created.

When a file is created and given the name of an existing file, the data that had been associated with
that file name are discarded.

To create a file, use the functions fopen or freopen.

Cross-reference
Standard, §4.9.3

See Also
close, file, open, STDIO, stdio.h, stream

ctime() — Time function (libc)
Convert calendar time to text
#include <time.h>
char *ctime(const time_t *timeptr);

The function ctime reads the calendar time pointed to by timeptr, and converts it into a string of the
form

Tue Dec 10 14:14:55 1987\n\0

ctime is equivalent to:

asctime(localtime(timeptr));

timeptr points to type time_t, which is defined in the header time.h.

LEXICON

cosh() — ctime() 49

Example
This example displays the current time.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(void)
{

time_t t;
time(&t);

printf(ctime(&t));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.12.3.2
The C Programming Language, ed. 2, p. 256

See Also
asctime, gmtime, localtime, strftime, time conversion, time_t

ctype.h — Header
Header for character-handling functions
#include <ctype.h>

ctype.h is the header file that declares the functions used to handle characters. These are as
follows:

isalnum Check if a character is a numeral or letter
isalpha Check if a character is a letter
iscntrl Check if a character is a control character
isdigit Check if a character is a numeral
isgraph Check if a character is printable
islower Check if a character is a lower-case letter
isprint Check if a character is printable
ispunct Check if a character is a punctuation mark
isspace Check if a character is white space
isupper Check if a character is a upper-case letter
isxdigit Check if a character is a hexadecimal numeral
tolower Convert character to lower case
toupper Convert character to upper case

Cross-references
Standard, §4.3
The C Programming Language, ed. 2, p. 248

See Also
character handling, character-case mapping, header

LEXICON

50 ctype.h

date and time — Overview

#include <time.h>
The Standard describes nine functions that can be used to represent date and time, as follows:

Time conversion
asctime Convert broken-down time to text
ctime Convert calendar time to text
gmtime Convert calendar time to Universal Coordinated Time
localtime Convert calendar time to local time
strftime Format locale-specific time

Time manipulation
clock Get processor time used by the program
difftime Calculate difference between two times
mktime Convert broken-down time into calendar time
time Get current calendar time

These functions use the following structures:

clock_t System time
time_t Calendar time
tm Broken-down time

LEXICON

date and time 51

fabs() — Mathematics (libm)
Compute absolute value
#include <math.h>
double fabs(double z);

fabs calculates and returns the absolute value for a double-precision floating-point number. It
returns z if z is zero or positive, and it returns -z if z is negative.

Example
For an example of this function, see sin.

Cross-references
Standard, §4.5.6.2
The C Programming Language, ed. 2, p. 251

See Also
abs, ceil, floor, fmod, integer-value-remainder

false — Definition
In the context of a C program, an expression is false if it is zero.

See Also
Definitions, true

fclose() — STDIO (libc)
Close a stream
#include <stdio.h>
int fclose(FILE *fp);

fclose closes the stream pointed to by fp.

fclose flushes all of fp’s output buffers. Unwritten buffered data are handed to the host
environment for writing into fp, and unread, buffered data are thrown away. It then dissociates the
stream pointed to by fp from the file (i.e., closes the file). If the buffer associated with fp was
allocated, it is then de-allocated.

The function exit calls fclose to close all open streams.

fclose returns zero if it closed fp correctly, and EOF if it did not.

Example
For an example of this function, see fopen.

LEXICON

14 fabs() — fclose()

Cross-references
Standard, §4.9.5.1
The C Programming Language, ed. 2, p. 162

See Also
fclose, fflush, file access, fopen, freopen, setbuf, setvbuf

Notes
The function exit closes all open streams, which flushes their buffers.

feof() — STDIO (stdio.h)
Examine a stream’s end-of-file indicator
#include <stdio.h>
int feof(FILE *fp);

feof examines the end-of-file indicator for the stream pointed to by fp. It returns zero if the indicator
shows that the end of file has not been reached, and returns a number other than zero if the
indicator shows that it has.

Examples
This example checks whether a file can be read directly to the end.

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>

main(int argc, char *argv[])
{

long size;
FILE *ifp;

if(argc != 2) {
printf("usage: example inputfile\n");
exit(EXIT_FAILURE);

}

if((ifp = fopen(argv[1], "rb")) == NULL) {
printf("Cannot open %s\n", argv[1]);
exit(EXIT_FAILURE);

}

for(size = 0; fgetc(ifp) != EOF; size++)
;

if(feof(ifp))
printf("EOF at character %ld\n", size);

if(ferror(ifp)) {
printf("Error at character %ld\n", size);
perror(NULL);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.10.2
The C Programming Language, ed. 2, p. 176

LEXICON

feof() 15

See Also
clearerr, ferror, perror, STDIO clearerr, error handling, ferror, perror

ferror() — STDIO (libc)
Examine a stream’s error indicator
#include <stdio.h>
int ferror(FILE *fp);

ferror examines the error indicator for the stream pointed to by fp. It returns zero if an error has
occurred on fp, and a number other than zero if one has not.

Cross-references
Standard, §4.9.10.3
The C Programming Language, ed. 2, p. 164

See Also
clearerr, error handling, feof, perror

Notes
Any error condition noted by ferror will persist either until the stream is closed, until clearerr is
used to clear it, or until the file-position indicator is reset with rewind.

ferror does not return the error status on all implementations. Some other mechanism must be
used to determine what error has occurred.

fflush() — STDIO (libc)
Flush output stream’s buffer
#include <stdio.h>
int fflush(FILE *fp);

fflush flushes the buffer associated with the file stream pointed to by fp. If fp points to an output
stream, then fflush hands all unwritten data to the host environment for writing into fp. If, however,
fp points to an input stream, behavior is undefined.

In many environments, stdout is buffered. There, fflush can be used to write a prompt that is not
terminated by a newline.

fflush returns zero if all goes well, and returns EOF if a write error occurs.

The function exit calls fclose to flush all output buffers before the program exits.

Example
This example asks for a string and returns it in reply.

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>

LEXICON

16 ferror() — fflush()

static char reply[80];
char *
askstr(char *msg)
{

printf("Enter %s ", msg);
/* required by the absence of a \n */
fflush(stdout);
if(gets(reply) == NULL)

exit(EXIT_SUCCESS);
return(reply);

}

main(void)
{

for(;;)
if(!strcmp(askstr("a string"), "quit"))

break;
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.5.2
The C Programming Language, ed. 2, p. 242

See Also
fclose, file access, fopen, freopen, setbuf, setvbuf

fgetc() — STDIO (libc)
Read a character from a stream
#include <stdio.h>
int fgetc(FILE *fp);

fgetc reads a character from the stream pointed to by fp. Each character is read initially as an
unsigned char, then converted to an int before it is passed to the calling function. fgetc then
advances the file-position indicator for fp.

fputc returns the character read from fp. If the file-position indicator is beyond the end of the file to
which fp points, fputc returns EOF and sets the end-of-file indicator. If a read error occurs, fgetc
returns EOF and the stream’s error indicator is set.

Example
For an example of this function, see tmpfile.

Cross-references
Standard, §4.9.7.1
The C Programming Language, ed. 2, p. 246

See Also
fgets, fputc, fputs, getc, getchar, gets, input-output, putc, putchar, puts, ungetc

fgetpos() — STDIO (libc)
Get value of file-position indicator
#include <stdio.h>
int fgetpos(FILE *fp, fpos_t *position);

LEXICON

fgetc() — fgetpos() 17

fgetpos copies the value of the file-position indicator for the file stream pointed to by fp into the area
pointed to by position. position is of type fpos_t, which is defined in the header stdio.h. The
information written into position can be used by the function fsetpos to return the file-position
indicator to where it was when fgetpos was called.

fgetpos returns zero if all went well. If an error occurred, fgetpos returns nonzero and sets the
integer expression errno to the appropriate value. See errno for more information on its use.

Example
This example seeks to a random line in a very large file.

#include <math.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void
fatal(char *format, ...)
{

va_list argptr;

if(errno)
perror(NULL);

if(format != NULL) {
va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);

}
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

int c;
long count;
FILE *ifp, *tmp;
fpos_t loc;

if(argc != 2)
fatal("usage: fscanf inputfile\n");

if((ifp = fopen(argv[1], "r")) == NULL)
fatal("Cannot open %s\n", argv[1]);

if((tmp = tmpfile()) == NULL)
fatal("Cannot build index file");

/* seed random-number generator */
srand((unsigned int)time(NULL));

for(count = 1;!feof(ifp); count++) {
/* for monster files */
if(fgetpos(ifp, &loc))

fatal("fgetpos error");

if(fwrite(&loc, sizeof(loc), 1, tmp) != 1)
fatal("Write fail on index");

rand();
while(’\n’ != (c = fgetc(ifp)) && EOF != c)

;
}

LEXICON

18 fgetpos()

count = rand() % count;
fseek(tmp, count * sizeof(loc), SEEK_SET);

if(fread(&loc, sizeof(loc), 1, tmp) != 1)
fatal("Read fail on index");

fsetpos(ifp, &loc);
while((c = fgetc(ifp)) != EOF) {

if(’@’ == c)
putchar(’\n’);

else
putchar(c);

if(’\n’ == c)
break;

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.9.1
The C Programming Language, ed. 2, p. 248

See Also
file positioning, fseek, fsetpos, ftell, rewind

Notes
The Standard introduced fgetpos and fsetpos to manipulate a file whose file-position indicator
cannot be stored within a long.

fgets() — STDIO (libc)
Read a line from a stream
#include <stdio.h>
char *fgets(char *string, int n, FILE *fp);

fgets reads characters from the stream pointed to by fp into the area pointed to by string until either
n-1 characters have been read, a newline character is read, or the end of file is encountered. It
retains the newline, if any, and appends a null character to the end of of the string.

fgets returns the pointer string if its read was performed successfully. It returns NULL if it
encounters the end of file or if a read error occurred. When a read error occurs, the contents of
string are indeterminate.

Example
This example displays a text file. It breaks up lines that are longer than 78 characters.

#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void
fatal(char *format, ...)
{

va_list argptr;

LEXICON

fgets() 19

if(errno)
perror(NULL);

if(format!=NULL) {
va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);

}
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

char buf[79];
FILE *ifp;

if(argc != 2)
fatal("usage: fgets inputfile\n");

if((ifp = fopen(argv[1], "r")) == NULL)
fatal("Cannot open %s\n", argv[1]);

while(fgets(buf, sizeof(buf), ifp) != NULL) {
printf("%s", buf);
if(strchr(buf, ’\n’) == NULL)

printf("\\\n");
}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.7.2
The C Programming Language, ed. 2, p. 247

See Also
fgetc, fputc, fputs, getc, getchar, gets, input-output, putc, putchar, puts, ungetc

file — Definition
A file is a mass of bits that has been named and stored on a mass-storage device.

Opening a File
To read a file, alter its contents, or add data to it, a C program must use a stream. The term
opening a file means to establish a stream through which the program can access the file. The
stream governs the way data are accessed. The information the stream needs to access the file are
encoded within a FILE object. Because environments vary greatly in the information they need to
access a file, the Standard does not describe the internals of the FILE object. If a file does not exist
when a program attempts to open it, then it is created. Because some environments distinguish the
format for a text file from that for a binary file, the Standard distinguishes between opening a
stream into text mode and opening it into binary mode.

To open a file, use the functions fopen or freopen. The former simply opens a file and assigns a
stream to it. The latter reopens a file; that is, it takes the stream being used to access one file,
assigns it to another file, and closes the original file. freopen can also be used to change the mode
in which a file is accessed.

Buffering
When a file is opened, it is assigned a buffer. Access to the file are made through the buffer. Data
written or, in some instances, read from the file are kept in the buffer temporarily, then transmitted
as a block. This increases the efficiency with which programs communicate with the environment.
To change the type of buffering performed, the size of the buffer used, or to redirect buffering to a

LEXICON

20 file

buffer of your own creation, use the functions setbuf or setvbuf. See the entry for buffer for more
information on the types of buffers used with files.

File-position Indicator
A file has a file-position indicator associated with it; this indicates the point within the file where it is
being written to or read. Use of this indicator allows a program to walk smoothly through a file
without having to use internal counters or other means to ensure that data are received
sequentially. It also allows a program to access any point within a file randomly that is, to access
any given point in the file without having to walk through the entire file to reach it.

The manipulation of the file-position indicator can vary sharply between binary and text files. In
general, the file-position indicator for a binary file is simply incremented as a character is read or
written. For a text file, however, manipulation of the file-position indicator is defined by the
implementation. This is due to the fact that different implementations represent end-of-line
characters differently. To read the file-position indicator, use the functions fgetpos or ftell; to set it
directly, use the functions fseek or fsetpos.

Error Conditions
When a file is being manipulated, a condition may occur that could cause trouble should the
program continue to read or write that file. This could be an error, such as a read error, or the
program may have read to the end of the file.

To help prevent such a condition from creating trouble, most environments use two indicators to
signal when one has occurred: the error indicator and the end-of-file indicator. When an error
occurs, the error indicator is set to a value that encodes the type of error that occurred; and when
the end of the file is read, then the end-of-file indicator is set. By reading these indicators, a
program may discover if all is going well. Under some implementations, however, a file may not be
manipulated further unless both indicators are reset to their normal values.

To discover the setting of the end-of-file indicator, use the function feof. To discover the setting of
the error indicator, use ferror. To reset the indicators to their normal values, use the function
clearerr.

Closing a File
When you have finished manipulating a file, you should close it. To close a file means to dissociate
it from the stream with which you had been manipulating it. When a file is closed, the buffer
associated with its stream is flushed to ensure that all data intended for the file are written into it.
To close a file, use the function fclose.

Cross-reference
Standard, §4.9.3

See Also
buffer, close, create, open, STDIO, stdio.h, stream

Notes
When data are written into a binary file, the file is not truncated by the write. This allows writes to
binary files to be performed at random positions throughout the file without truncating the file at
the position written. Whether a text file may be truncated when data are written into it depends
upon the implementation. This is due to the fact that text files in some environments use record
structuring.

LEXICON

file 21

FILE — Type
Descriptor for a stream
#include <stdio.h>

The type FILE is defined in the header stdio.h. It describes a stream, which can access either a file
on a mass-storage device or a peripheral device.

When the function fopen opens a file, it creates a FILE and returns a pointer to it. That pointer is
used by other STDIO routines to access the stream that the FILE describes.

A pointer to FILE is returned by fopen, freopen, and related functions. For more information about
what it means to open a file, see file.

Cross-references
Standard, §4.9.3
The C Programming Language, ed. 2, p. 160

See Also
buffer, file, STDIO, stream

Notes
The Standard leaves the form of the FILE object up to the implementation. The intent is to have it
be an implementation-defined black box. It is not wise to manipulate it or dissect it directly. A
program that does is not portable.

file access —
#include <stdio.h>
The Standard describes six functions with which you can gain access to a stream, or control the
manner in which it is accessed. They are as follows:

fclose Close a stream
fflush Flush an output stream’s buffer
fopen Open a stream
freopen Close and reopen a stream
setbuf Set an alternate buffer for a stream
setvbuf Set an alternate buffer for a stream

Cross-references
Standard, §4.9.5
The C Programming Language, ed. 2, pp. 160ff

See Also
error handling, file operations, file positioning, input-output, STDIO

FILENAME_MAX — Manifest constant
Maximum length of file name
#include <stdio.h>

FILENAME_MAX is a macro that is defined in the header stdio.h. It gives the maximum length of a
file name that the implementation can open.

Cross-references
Standard, §4.9.1
The C Programming Language, ed. 2, p. 242

LEXICON

22 FILE — FILENAME_MAX

See Also
fopen, STDIO, stdio.h

file operations —
#include <stdio.h>
The Standard describes four library functions that let you manipulate files directly. They are as
follows:

remove Remove a file
rename Rename a file
tmpfile Create a temporary file
tmpnam Generate a name for a temporary file

Cross-reference
Standard, §4.9.4

See Also
error handling, file access, file positioning, input-output, STDIO

file-position indicator —
The file-position indicator marks the point at which a file is being written or read.

Under some environments, the file-position indicator for a text file has a format very different from
that of the indicator for a binary file. Therefore, the Standard distinguishes the way a STDIO
function manipulates a text file’s indicator from the way it manipulates a binary file’s indicator. For
a binary file, the file-position indicator is simply incremented as a character is read or written; for a
text file, however, the implementation defines the way the the file-position indicator is changed.

To read the file-position indicator, use the functions fgetpos or ftell; to set it directly, use the
functions fseek or fsetpos. These functions differ chiefly in that fseek and ftell return the file-
position indicator in the form of a long. fgetpos and fsetpos, on the other hand, return an object of
the type fpos_t, and are designed to be used with a file whose file-position indicator is too large to fit
into a long.

Cross-reference
Standard, §4.9.3

See Also
file, SEEK_CUR, SEEK_END, SEEK_SET, STDIO, stdio.h, stream

file positioning —
Manipulate file-position indicator
#include <stdio.h>

The Standard describes five functions that manipulate the file-position indicator, as follows:

fgetpos Get the value of the file-position indicator (fpos_t)
fseek Set the file-position indicator
fsetpos Set the file-position indicator (fpos_t)
ftell Get the value of the file-position indicator
rewind Reset the file-position indicator

fgetpos and fsetpos differ from fseek and ftell mainly in that they return a value of type fpos_t
instead of a long. fpos_t is defined in the header stdio.h. It was created so that fgetpos and fsetpos
can be used to manipulate a file whose file-position indicator is too large to fit into a long. This may
be an extremely large file, or a file in an environment whose file-position indicator is a non-scalar

LEXICON

file operations — file positioning 23

value, such as a track/sector/offset or node/extent/offset.

Cross-references
Standard, §4.9.9
The C Programming Language, ed. 2, p. 248

See Also
error handling, file access, file operations, file-position indicator, input-output, STDIO

float — C keyword
A float is a data type that represents a single-precision floating-point number. It is defined as being
no larger than a double.

Like all floating-point numbers, a float consists of one sign bit, which indicates whether the number
is positive or negative; bits that encode the number’s exponent; and bits that encode the number’s
mantissa, or the number upon which the exponent works. The exponent often uses a bias. This is a
value that is subtracted from the exponent to yield the power of two by which the mantissa will be
increased. The format of a float and the range of values that it can encode are set in the following
macros, all of which are defined in the header limits.h:

FLT_DIG
This holds the number of decimal digits of precision. This must be at least ten.

FLT_EPSILON
Where b indicates the base of the exponent (default, two) and p indicates the precision (or
number of base b digits in the mantissa), this macro holds the minimum positive floating-
point number x such that 1.0 + x does not equal 1.0, b^1-p. This must be at least 1E-5.

FLT_MAX
This holds the maximum representable floating-point number. It must be at least 1E+37.

FLT_MAX_EXP
This is the maximum integer such that the value of FLT_RADIX raised to its power minus
one is a representable finite floating-point number.

FLT_MAX_10_EXP
This holds the maximum integer such that ten raised to its power is within the range of
representable finite floating-point numbers. It must be at least +37.

FLT_MANT_DIG
This gives the number of digits in the mantissa.

FLT_MIN
This gives the minimum value encodable within a float. This must be at least 1E-37.

FLT_MIN_EXP
This gives the minimum negative integer such that when the value of FLT_RADIX is raised
to that power minus one is a normalized floating-point number.

FLT_MIN_10_EXP
This gives the minimum negative integer such that ten raised to that power is within the
range of normalized floating-point numbers.

Example
For an example of a program that uses float, see sin.

Cross-references
Standard, §2.2.4.2, §3.1.2.4, §3.1.3.1, §3.5.2

LEXICON

24 float

The C Programming Language, ed. 2, p. 211

See Also
double, float.h, long double, types

float.h — Header
The header float.h defines a set of macros that return the limits for computation of floating-point
numbers.

The following lists the macros defined in float.h. With the exception of FLT_ROUNDS, each macro is
an expression; each value given is the minimum maximum that each expression must yield. The
prefixes DBL, FLT, and LDBL refer, respective, to double, float, and long double.

DBL_DIG
Number of decimal digits of precision. Must yield at least ten.

DBL_EPSILON
Smallest possible floating-point number x, such that 1.0 plus x does not test equal to 1.0.
Must be at most 1E-9.

DBL_MANT_DIG
Number of digits in the floating-point mantissa for base FLT_RADIX.

DBL_MAX
Largest number that can be held by type double. Must yield at least 1E+37.

DBL_MAX_EXP
Largest integer such that the value of FLT_RADIX raised to its power minus one is less
than or equal to DBL_MAX.

DBL_MAX_10_EXP
Largest integer such that ten raised to its power is less than or equal to DBL_MAX.

DBL_MIN
Smallest number that can be held by type double.

DBL_MIN_EXP
Smallest integer such that the value of FLT_RADIX raised to its power minus one is greater
than or equal to DBL_MIN.

DBL_MIN_10_EXP
Smallest integer such that ten raised to its power is greater than or equal to DBL_MAX.

FLT_DIG
Number of decimal digits of precision. Must yield at least six.

FLT_EPSILON
Smallest floating-point number x, such that 1.0 plus x does not test equal to 1.0. Must be
at most 1E-5.

FLT_MANT_DIG
Number of digits in the floating-point mantissa for base FLT_RADIX.

FLT_MAX
Largest number that can be held by type float. Must yield at least 1E+37.

FLT_MAX_EXP
Largest integer such that the value of FLT_RADIX raised to its power minus one is less
than or equal to FLT_MAX.

LEXICON

float.h 25

FLT_MAX_10_EXP
Largest integer such that ten raised to its power is less than or equal to FLT_MAX.

FLT_MIN
Smallest number that can be held by type float.

FLT_MIN_EXP
Smallest integer such that the value of FLT_RADIX raised to its power minus one is greater
than or equal to FLT_MIN.

FLT_MIN_10_EXP
Smallest integer such that ten raised to its power is greater than or equal to FLT_MIN.

FLT_RADIX
Base in which the exponents of all floating-point numbers are represented.

FLT_ROUNDS
Manner of rounding used by the implementation, as follows:

-1 Indeterminable, i.e., no strict rules apply
0 Toward zero, i.e., truncation
1 To nearest, i.e., rounds to nearest representable value
2 Toward positive infinity, i.e., always rounds up
3 Toward negative infinity, i.e., always rounds down

Any other value indicates that the manner of rounding is defined by the implementation.

LDBL_DIG
Number of decimal digits of precision. Must yield at least ten.

LDBL_EPSILON
Smallest floating-point number x, such that 1.0 plus x does not test equal to 1.0. Must be
at most 1E-9.

LDBL_MANT_DIG
Number of digits in the floating-point mantissa for base FLT_RADIX.

LDBL_MAX
Largest number that can be held by type long double. Must yield at least 1E+37.

LDBL_MAX_EXP
Largest integer such that the value of FLT_RADIX raised to its power minus one is less
than or equal to LDBL_MAX.

LDBL_MAX_10_EXP
Largest integer such that ten raised to its power is less than or equal to LDBL_MAX.

LDBL_MIN
Smallest number that can be held by type long double. Must be no greater than 1E-37.

LDBL_MIN_EXP
Smallest integer such that the value of FLT_RADIX raised to its power minus one is greater
than or equal to LDBL_MIN.

LDBL_MIN_10_EXP
Smallest integer such that ten raised to its power is greater than or equal to LDBL_MIN.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

LEXICON

26 float.h

See Also
environmental considerations, header, numerical limits

floating constant — Definition
A floating constant is a constant that represents a floating-point number. Its syntax is as follows;
opt indicates optional:

floating-constant:
fractional-constant exponent-part

opt
floating-suffix

opt
digit-sequence exponent-part floating-suffix

opt
fractional-constant:

digit-sequence
opt

. digit-sequence
opt

digit-sequence .

exponent-part:
e sign

opt
digit-sequence

E sign
opt

digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f l F L

A floating constant has three parts: the value, an exponent, and a suffix. Both the exponent and the
suffix are optional.

The value section gives the value of the floating-point number. It also has three parts: a sequence of
decimal digits, a period, and another set of digits. The first set of digits gives the whole-number part
of the number, the period indicates the end of the whole-number part and the beginning of the
fractional part, and the second sequence of digits encodes the fractional part. The period (which is
sometimes called the radix point) is always the character that marks the end of the whole-number
sequence, regardless of the character recognized by the program’s locale. In other words, the format
of the C language floating constant is not locale-sensitive.

The exponent is used when the floating constant uses exponential notation. Here, the exponent
gives the power of ten by which the base value is multiplied. For example,

1.05e10

represents the number

1.05*10^10

or

10,500,000,000

stored as a double. The exponent is introduced by the characters e or E followed by either + or -,
which indicates the sign of the exponent. There follows the exponent itself, which consists of a
sequence of decimal digits.

Finally, a floating constant may be followed by the suffixes f, F, l, or L. The first two indicate that
the constant is of type float; the latter two, that the constant is of type long double. If a floating
constant has no suffix, the translator assumes that it is of type double.

LEXICON

floating constant 27

Cross-references
Standard, §3.1.3.1
The C Programming Language, ed. 2, p. 194

See Also
constants, float

floating types —
The term floating types refers to any of the types float, double, or long double. The representation
of floating types is unspecified.

Cross-references
Standard, §3.1.2.5
The C Programming Language, ed. 2, p. 196

See Also
arithmetic types, types

Notes
The name floating types refers to floating-point representation. However, these may be represented
in any way the implementation dictates. They are used to represent real numeric values.

floor() — Mathematics (libm)
Numeric floor
#include <math.h>
double floor(double z);

floor returns the floor of a number, or the largest integer not greater than z. For example, the floor
of 23.2 is 23, and the floor of -23.2 is -24.

floor returns the value expressed as a double.

Cross-references
Standard, §4.5.6.3
The C Programming Language, ed. 2, p. 251

See Also
ceil, fabs, fmod, integer-value-remainder

FLT_DIG — Manifest constant
#include <float.h>
FLT_DIG is a macro that is defined in the header float.h. It is an expression that defines the
number of decimal digits of precision for type float. It must evaluate to at least six.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
float.h, numerical limits

LEXICON

28 floating types — FLT_DIG

FLT_EPSILON — Manifest constant
#include <float.h>
FLT_EPSILON is a macro that is defined in the header float.h. It is an expression that yields the
smallest positive floating-point number representable as type float, such that 1.0 plus it does not
test equal to 1.0. It must yield a value of at most 1E-5.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
float.h, numerical limits

FLT_MANT_DIG — Manifest constant
#include <float.h>
FLT_MANT_DIG is a macro that is defined in the header float.h. It is an expression that represents
the number of digits in the mantissa of type float, in the numeric base set by the macro
FLT_RADIX.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
float.h, numerical limits

FLT_MAX — Manifest constant
#include <float.h>
FLT_MAX is a macro that is defined in the header float.h. It is an expression that yields the largest
number that can be represented by type float. It must yield a value of at least 1E+37.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
float.h, numerical limits

FLT_MAX_10_EXP — Manifest constant
#include <float.h>
FLT_MAX_10_EXP is a macro that is defined in the header float.h. It is an expression that yields
the largest power, such that ten raised to it remains a floating-point number that can be encoded by
type float. The value this expression yields must be at least 37.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
float.h, numerical limits

LEXICON

FLT_EPSILON — FLT_MAX_10_EXP 29

FLT_MAX_EXP — Manifest constant
#include <float.h>
FLT_MAX_EXP is a macro that is defined in the header float.h. It is an expression that yields the
largest power such that FLT_RADIX raised to it minus one remains a floating-point number that
can be held by type float.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
float.h, numerical limits

FLT_MIN — Manifest constant
#include <float.h>
FLT_MIN is a macro that is defined in the header float.h. It is an expression that yields the smallest
number that can be represented by type float. It must yield a value of at most 1E-37.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
float.h, numerical limits

FLT_MIN_10_EXP — Manifest constant
#include <float.h>
FLT_MIN_10_EXP is a macro that is defined in the header float.h. It is an expression that yields the
smallest power, such that ten raised to it remains a floating-point number that can be encoded by
type float. It must be at most -37.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
float.h, numerical limits

FLT_MIN_EXP — Manifest constant
#include <float.h>
FLT_MIN_EXP is a macro that is defined in the header float.h. It is an expression that yields the
smallest power such that FLT_RADIX raised to it minus one remains a floating-point number that
can be held by type float.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
float.h, numerical limits

LEXICON

30 FLT_MAX_EXP — FLT_MIN_EXP

FLT_RADIX — Manifest constant
#include <float.h>
FLT_RADIX is a macro that is defined in the header float.h. It is an expression that represents the
radix of exponent representation for a floating-point number. That is, it gives the numeric base for
the exponent for a floating-point number. It must be at least two.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
float.h, numerical limits

FLT_ROUNDS — Manifest constant
#include <float.h>
FLT_ROUNDS is a macro that is declared in the header float.h. It indicates the rounding mode for
floating-point addition, as follows:

-1 Indeterminable, i.e., no strict rules apply
0 Toward zero, i.e., truncation
1 To nearest, i.e., rounds to nearest representable value
2 Toward positive infinity, i.e., always rounds up
3 Toward negative infinity, i.e., always rounds down

Any other value indicates an implementation-specific form of rounding.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
float.h, numerical limits

fmod — Mathematics (libm)
Calculate modulus for floating-point number
#include <math.h>
double fmod(double number, double divisor);

fmod divides number by divisor and returns the remainder. If divisor is nonzero, the return value
will have the same sign as divisor. If divisor is zero, however, it will either return zero or set a
domain error.

Cross-references
Standard, §4.5.6.4
The C Programming Language, ed. 2, p. 251

See Also
ceil, fabs, floor, integer-value-remainder

LEXICON

FLT_RADIX — fmod 31

fopen() — STDIO (libc)
Open a stream for standard I/O
#include <stdio.h>
FILE *fopen (const char *file, const char *mode);

fopen opens the stream file, and allocates and initializes the data stream associated with it. This
makes the file available for STDIO operations. Under some execution environments, file may name
either a file on a mass-storage device or a peripheral device. file can be no more than
FILENAME_MAX characters long.

mode points to a string that consists of one or more of the characters rwab+; this indicates the mode
into which the file is to be opened. The following set of mode strings are recognized:

a Append, text mode
ab Append, binary mode
a+ Append, text mode
ab+ Append, binary mode
a+b Append, binary mode

r Read, text mode
rb Read, binary mode
r+ Update, text mode
rb+ Update, binary mode
r+b Update, binary mode

w Write, text mode
wb Write, binary mode
w+ Update, text mode
wb+ Update, binary mode
w+b Update, binary mode

Note the following:

• Opening file into any of the a (append) modes means that data can be written only onto the end
of the file. These modes set the file-position indicator to point to the end of the file. All other
modes set it to point to the beginning of the file.

• To open file into any of the r (read) modes, it must already exist and contain data. If file does
not exist or cannot be opened, then fopen returns NULL.

• When a file is opened into any of the w (write) modes, it is truncated to zero bytes if it already
exists, or created if it does not.

• Opening file into any of the + (update) modes allows you to write data into it or read data from
it. When used with r or w, data may be read from file or written into it at any point. When
used with a, data may be written into it only at its end. To switch from reading a file to writing
into it, either the stream’s input buffer must be flushed with fflush or the file-position indicator
repositioned with fseek, fsetpos, or rewind.

fopen returns a pointer to the FILE object that controls the stream. It returns NULL if the file
cannot be opened, for whatever reason.

fopen can open up to FOPEN_MAX files at once. This value must be at least eight, including stdin,
stdout, and stderr.

Example
This example opens a test file and reports what happens.

LEXICON

32 fopen()

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>

main(int argc, char *argv[])
{

FILE *fp;

if(argc != 3) {
fprintf(stderr, "usage: fopen filename mode\n");
exit(EXIT_FAILURE);

}

if((fp = fopen(argv[1], argv[2])) == NULL) {
perror("Fopen failure");
exit(EXIT_FAILURE);

}

fclose(fp);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.5.3
The C Programming Language, ed. 2, p. 160

See Also
fclose, fflush, file access, freopen, setbuf, setvbuf

Notes
To update an existing file, use the mode r+

fopen associates a fully buffered stream with file only if file does not access an interactive device.

A conforming implementation must support all of the modes described above. It may also offer
other modes in which to open a file.

FOPEN_MAX — Manifest constant
Maximum number of open files
#include <stdio.h>

FOPEN_MAX is a macro that is defined in the header stdio.h. It gives the maximum number of
streams that a program can have open at any one time. This cannot be set to less than eight,
including stdin, stdout, and stderr. Hence, there are at least five additional streams for use by a
program. For maximum portability, a program that requires more than five streams should check
its value.

Cross-references
Standard, §4.9.1
The C Programming Language, ed. 2, p. 242

See Also
fopen, STDIO, stdio.h, stream

LEXICON

FOPEN_MAX 33

for — C keyword
Loop construct
for(initialization; condition; modification) statement

for introduces a conditional loop. It takes three expressions as arguments; these are separated by
semicolons ;. initialization is executed before the loop begins. condition describes the condition that
must be true for the loop to execute. modification is the statement that modifies variable to control
the number of iterations of the loop. For example,

for (i=0; i<10; i++)

first sets the variable i to zero; then declares that the loop will continue as long as i remains less
than ten; and finally, increments i by one after every iteration of the loop. This ensures that the
loop will iterate exactly ten times (from i==0 through i==9). The statement

for(;;)

will loop until its execution is interrupted by a break, goto, or return statement.

The for statement is equivalent to:

initialization;
while(condition) {

statement
modification;

}

Example
For an example of this statement, see putc.

Cross-references
Standard, §3.6.5.3
The C Programming Language, ed. 2, pp. 60ff

See Also
break, C keywords, continue, do, iteration statements, while

fpos_t — Type
Encode current position in a file

The type fpos_t is defined in the header stdio.h. It is used by the functions fgetpos and fsetpos to
encode the current position within a file (the file-position indicator). Its type may vary from
implementation to implementation.

fpos_t and its functions are designed to manipulate files whose file-position indicator cannot be
encoded within a long. For small files (i.e., less than four gigabytes) you can use the related
functions fseek and ftell.

Cross-references
Standard, §4.9.1, §4.9.9.1, §4.9.9.3
The C Programming Language, ed. 2, p. 248

See Also
fgetpos, file, FILE, file-position indicator, fsetpos, STDIO, stdio.h

Notes
The Standard leaves the actual type of fpos_t to the implementation. The intent is to define a data
type that can be obtained by a call to fgetpos and used on later calls to fsetpos. It is not wise to try

LEXICON

34 for — fpos_t

to manipulate this type directly or to dissect it. Code that depends on specific properties of fpos_t
may not be portable.

fprintf() — STDIO (libc)
Print formatted text into a stream
#include <stdio.h>
int fprintf(FILE *fp, const char *format, ...);

fprintf constructs a formatted string and writes it into the stream pointed to by fp. It can translate
integers, floating-point numbers, and strings in a variety of text formats.

format points to a string that can contain text, character constants, and one or more conversion
specifications. A conversion specification describes how a particular data type is to be converted
into text. Each conversion specification is introduced with the percent sign %. (To print a literal
percent sign, use the escape sequence %%.) See printf for further discussion of the conversion
specification, and for a table of the type specifiers that can be used with fprintf.

After format can come one or more arguments. There should be one argument for each conversion
specification in format, and the argument should be of the type appropriate to the conversion
specification. For example, if format contains conversion specifications for an int, a long, and a
string, then format should be followed by three arguments, being, respectively, an int, a long, and a
char *.

If there are fewer arguments than conversion specifications, then fprintf’s behavior is undefined. If
there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding conversion specifier,
then the behavior of fprintf is undefined. Thus, presenting an int where fprintf expects a char *
may generate unwelcome results.

If it could write the formatted string, fprintf returns the number of characters written; otherwise, it
returns a negative number.

Example
This example prints two messages: one into stderr and the other into stdout.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

fprintf(stderr, "A message to stderr.\n");
printf("A message to stdout.\n");
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.6.1
The C Programming Language, ed. 2, p. 243

See Also
fscanf, input-output, printf, scanf, sprintf, sscanf, vfprintf, vprintf, vsprintf

Notes
The Standard mandates that fprintf be able to construct and output a string of up to at least 509
characters.

The Standard does not include the conversion specifier r, which is used by many implementations
to pass an array of arguments to fprintf. The function vfprintf provides much of the functionality

LEXICON

fprintf() 35

provided by the r specifier.

The character that fprintf uses to represent the decimal point is affected by the program’s locale, as
set by the function setlocale. For more information, see localization.

fputc() — STDIO (libc)
Write a character into a stream
#include <stdio.h>
int fputc(int character, FILE *fp);

fputc converts character to an unsigned char, writes it into the stream pointed to by fp, and
advances the file-position indicator for fp.

fputc returns character if it was written successfully; otherwise, it sets the error indicator for fp and
returns EOF.

Example
The following example uses fputc to copy the contents of one file into another.

#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>

void
fatal(char *format, ...)
{

va_list argptr;

if(errno)
perror(NULL);

if(format != NULL) {
va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);

}
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

FILE *ifp, *ofp;
int ch;

if(argc != 3)
fatal("usage: fputc oldfile newfile\n");

if((ifp = fopen(argv[1], "r")) == NULL)
fatal("Cannot open %s\n", argv[1]);

if((ofp = fopen(argv[2], "w")) == NULL)
fatal("Cannot open %s\n", argv[2]);

while ((ch = fgetc(ifp)) != EOF)
if (fputc(ch, ofp) == EOF)

fatal("Write error for %s\n", argv[2]);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.7.3
The C Programming Language, ed. 2, p. 247

LEXICON

36 fputc()

See Also
fgetc, fgets, fputs, input-output, putc, putchar, puts, ungetc

fputs() — STDIO (libc)
Write a string into a stream
#include <stdio.h>
int fputs(char *string; FILE *fp);

fputs writes the string pointed to by string into the stream pointed to by fp. The terminating null
character is not written. Unlike the related function puts, it does not append a newline character to
the end of string.

fputs returns a non-negative number if it could write string correctly. If it could not, it returns
EOF.

Cross-references
Standard, §4.9.7.4
The C Programming Language, ed. 2, p. 247

See Also
fgetc, fgets, fputc, getc, getchar, gets, input-output, putc, putchar, puts, ungetc

fread() — STDIO (libc)
Read data from a stream
#include <stdio.h>
size_t fread(void *buffer, size_t size, size_t n, FILE *fp);

fread reads up to n items, each being size bytes long, from the stream pointed to by fp and copies
them into the area pointed to by buffer. It advances the file-position indicator by the amount
appropriate to the number of bytes read.

fread returns the number of items read. If the value returned by fread is not equal to n, use the
functions ferror and feof to find, respectively, if an error has occurred or if the end of file has been
encountered.

Example
This example reads data structures into an array of structures. It is more to be read than used.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#define COUNT 10

struct aStruct {
double d;
float f;
int i;

} arrayStruct[COUNT];

main(void)
{

int i;
FILE *ifp;

if((ifp = fopen("a.s", "rb")) == NULL) {
perror("Cannot open a.s");
exit(EXIT_FAILURE);

}

LEXICON

fputs() — fread() 37

/* buffer blocksize count FILE */
i=fread(arrayStruct,sizeof(struct aStruct),COUNT,ifp);
if(i != COUNT) {

fprintf(stderr, "Only read %d blocks\n", i);
return(EXIT_FAILURE);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.8.1
The C Programming Language, ed. 2, p. 247

See Also
fwrite, input-output

Notes
If an error occurs while data are being read, then the value of the file-position indicator is
indeterminate. If either size or n is zero, then fread returns zero and reads nothing.

free() — General utility (libc)
Deallocate dynamic memory
#include <stdlib.h>
void free(void *ptr);

free deallocates a block of dynamic memory that had been allocated by malloc, calloc, or realloc.
Deallocating memory may make it available for reuse.

ptr points to the block of memory to be freed. It must have been returned by malloc, calloc, or
realloc.

free returns nothing.

Cross-references
Standard, §4.10.3.2
The C Programming Language, ed. 2, p. 167

See Also
calloc, malloc, memory management, realloc

Notes
If ptr does not point to a block of memory that had been allocated by calloc, malloc, or realloc, the
behavior of free is undefined.

If ptr is equivalent to NULL, then no action occurs.

Finally, if a program attempts to access memory that has been freed, its behavior is undefined.

freestanding environment —
A freestanding environment is one in which a C program runs without an operating system. For
example, a microprocessor used as a washing-machine controller is considered to be a free-standing
environment.

The Standard sets minimal restrictions on a freestanding environment, as most are custom-
designed for a particular task. It may call any function it wishes when the program starts up;
otherwise, there are no reserved external identifiers. The implementation defines what libraries, if
any, are available to the program, and what occurs when the program terminates.

LEXICON

38 free() — freestanding environment

Cross-reference
Standard, §2.1.2.1

See Also
execution environment, hosted environment

Notes
A strictly conforming program for a freestanding environment can use the macros and library
functions that the Standard defines in the headers float.h, limits.h, and stddef.h. Otherwise,
section 4 of the Standard, which describes the C library, does not apply to a freestanding
environment. The application is expected to provide its own service functions.

freopen() — STDIO (libc)
Re-open a stream
#include <stdio.h>
FILE *freopen(const char *file, const char *mode, FILE *fp);

freopen opens file and associates it with the stream pointed to by fp, which is already in use. It
first tries to close the file currently associated with fp. Then it opens file, and returns a pointer to
the FILE object, through which other STDIO routines can access file. Under some execution
environments, freopen can be used to access a peripheral device as well as a file. Thus, freopen is
often used to change the device associated with the streams stdin, stdout, or stderr, as well as to
the change the access modes for an open file.

mode indicates the manner in which file is to be accessed. For a table of the modes described by the
Standard, see fopen.

freopen returns NULL if file could not be opened properly; otherwise, it returns fp.

Example
This example uses freopen to copy a list of files into one file.

#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>

void
fatal(char *format, ...)
{

va_list argptr;

/* if there is a system message, display it */
if(errno)

perror(NULL);

/* if there is a user message, use it */
if(format != NULL) {

va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);

}
exit(EXIT_FAILURE);

}

LEXICON

freopen() 39

main(int argc, char *argv[])
{

FILE *ifp, *ofp;
int i, c;

if(argc < 3)
fatal("usage: freopen input1 input2 ... output\n");

if((ofp = fopen(argv[argc - 1], "wb")) == NULL)
fatal("Cannot open %s\n", argv[argc - 1]);

ifp = stdin;
for(i = 1; i < argc; i++) {

if((ifp = freopen(argv[i], "rb", ifp)) == NULL)
fatal("Cannot open %s\n", argv[i]);

while((c = fgetc(ifp)) != EOF)
fputc(c, ofp);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.5.4
The C Programming Language, ed. 2, p. 162

See Also
fclose, fflush, file access, fopen, setbuf, setvbuf

Notes
freopen will attempt to close the file currently associated with fp. However, if it cannot be closed,
freopen will still open file and associate fp with it.

frexp() — Mathematics (libm)
Fracture floating-point number
#include <math.h>
double frexp(double real, int *exp);

frexp breaks a double-precision floating-point number into its mantissa and exponent. It returns
the mantissa m of the argument real, such that 0.5 <= m < 1 or m=0, and stores the binary
exponent in the area pointed to by exp. The exponent is an integral power of two.

See float.h for more information about the structure of a floating-point number.

Cross-references
Standard, §4.5.4.3
The C Programming Language, ed. 2, p. 251

See Also
atof, ceil, exponent-log functions, fabs, floor, ldexp, modf

fscanf() — STDIO (libc)
Read and interpret text from a stream
#include <stdio.h>
int fscanf(FILE *fp, const char *format, ...);

fscanf reads characters from the stream pointed to by fp, and uses the string pointed to by format to
interpret what it has read into the appropriate type of data. format points to a string that contains
one or more conversion specifications, each of which is introduced with the percent sign %. For a

LEXICON

40 frexp() — fscanf()

table of the conversion specifiers that may be used with fscanf, see scanf.

After format can come one or more arguments. There should be one argument for each conversion
specification in format, and the argument should point to a data element of the type appropriate to
the conversion specification. For example, if format contains conversion specifications for an int, a
long, and a string, then format should be followed by three arguments: respectively, a pointer to an
int, a pointer to a long, and an array of chars.

If there are fewer arguments than conversion specifications, then fscanf’s behavior is undefined. If
there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding type specification,
then fscanf returns.

fscanf returns the number of input elements it scanned and formatted. If an error occurs while
fscanf is reading its input, it returns EOF.

Example
This example reads and displays data from a file of strings with the following format:

ABORT C 312 1-24-88 11:03a
ABS C 239 1-24-88 11:03a

This is the output of the MS-DOS command dir.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

main(int argc, char *argv[])
{

int count;
long size;
char fname[8], ext[3];
FILE *ifp;

if(argc != 2) {
printf("usage: fscanf inputfile\n");
exit(EXIT_FAILURE);

}

if((ifp = fopen(argv[1], "r")) == NULL) {
printf("Cannot open %s\n", argv[1]);
exit(EXIT_FAILURE);

}

while((count = fscanf(ifp, "%8s %3s %ld %*[^\n]",
fname, ext, &size)) != EOF)
if(count == 3)

printf("%s.%s %ld\n", fname, ext, size);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.6.2
The C Programming Language, ed. 2, p. 245

See Also
fprintf, input-output, printf, scanf, sprintf, sscanf, vfprintf, vprintf, vsprintf

LEXICON

fscanf() 41

Notes
fscanf is best used to read data you are certain are in the correct format, such as strings previously
written out with fprintf.

The character that fscanf recognizes as representing the decimal point is affected by the program’s
locale, as set by the function setlocale. For more information, see localization.

fseek() — STDIO (libc)
Set file-position indicator
#include <stdio.h>
int fseek(FILE *fp, long int offset, int whence);

fseek sets the file-position indicator for stream fp. This changes the point where the next read or
write operation will occur.

offset and whence specify how the value of the file-position indicator should be re-set. offset is the
amount to move it, in bytes; this is a signed quantity. whence is the point from which to move it, as
follows:

SEEK_CUR From the current position
SEEK_END From the end of the file
SEEK_SET From the beginning of the file

The values of these macros are set in the header stdio.h.

For a stream opened into binary mode, the Standard does not require an implementation to support
the option SEEK_END. For a stream opened into text mode, whence should be set to SEEK_SET,
and offset should be set either to zero or to a value returned by an earlier call to ftell. This ensures
that newline characters will be correctly skipped.

fseek clears the end-of-file indicator and undoes the effects of a previous call to ungetc; the next
operation on fp may be input or output.

fseek returns a number other than zero for what the Standard calls an improper request.
Presumably, this means attempting to seek past the end or the beginning of a file, attempting to
seek on an interactive device (such as a terminal), or attempting to seek on a file that does not exist.

Example
This example implements the UNIX game fortune. It randomly selects a line from a text file, and
prints it. Multi-line fortunes, such as poems, should have @s embedded within them to mark line
breaks.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(int argc, char *argv[])
{

FILE *ifp;
double randomAdj;
int c;

if(argc != 2) {
printf("usage: fseek inputfile\n");
exit(EXIT_FAILURE);

}

LEXICON

42 fseek()

if ((ifp = fopen(argv[1], "r")) == NULL) {
printf("Cannot open %s\n", argv[1]);
exit(EXIT_FAILURE);

}

fseek(ifp, 0L, SEEK_END);
randomAdj = (double)ftell(ifp)/((double)RAND_MAX);

/* Exercise rand() to make number more random */
srand((unsigned int)time(NULL));
for(c = 0; c < 100; c++)

rand();

fseek(ifp, (long)(randomAdj * (double)rand()), SEEK_SET);
while(’\n’ != (c = fgetc(ifp)) && EOF != c)

;

if(c == EOF) {
printf("File does not end with newline\n");
exit(EXIT_FAILURE);

}

while(’\n’ != (c = fgetc(ifp))) {
if(EOF == c) {

fseek(ifp, 0L, SEEK_SET);
continue;

}

/* display multi-line fortunes */
if(’@’ == c)

c = ’\n’;
putchar(c);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.9.2
The C Programming Language, ed. 2, p. 248

See Also
fsetpos, file positioning, ftell

Notes
Although the Standard does not describe the behavior of fseek if you attempt to seek beyond the
end of a file, in some current implementations it does not result in an error condition until the
corresponding read or write is attempted.

Note, too, that fseek allows a user to seek past the beginning of a binary file as well as past its end.
Caveat utilitor.

fsetpos() — STDIO (libc)
Set file-position indicator
#include <stdio.h>
int fsetpos(FILE *fp, const fpos_t *position);

fsetpos resets the file-position indicator. fp points to the file stream whose indicator is being reset.
position is a value that had been returned by an earlier call to fgetpos; it is of type fpos_t, which is
defined in the header stdio.h.

LEXICON

fsetpos() 43

Like the related function fseek, fsetpos clears the end-of-file indicator and undoes the effects of a
previous call to ungetc. The next operation on fp may read or write data.

fsetpos returns zero if all goes well. If an error occurs, it returns nonzero and sets the integer
expression errno to the appropriate error number.

Example
For an example of this function, see fgetpos.

Cross-references
Standard, §4.9.9.3
The C Programming Language, ed. 2, p. 248

See Also
fgetpos, file positioning, fseek, ftell, rewind

Notes
The Standard designed fsetpos to be used with files whose file position cannot be represented

LEXICON

44 fsetpos()
withina long.

troff: unexpected end of file

general utilities — Overview
#include <stdlib.h>
The ANSI standard describes a set of general utilities. As its name implies, this set is a grab-bag of
utilities that do not fit neatly anywhere else. In accordance with the Standard’s principle that every
function must be declared in a header, the Committee created the header stdlib.h to hold the
general utilities and their attendant macros and types.

The general utilities are as follows:

Environment communication
abort End program immediately
atexit Register a function to be performed at exit
exit Terminate a program gracefully
getenv Get environment variable
system Suspend program and execute another

Integer arithmetic functions
abs Compute absolute value of an integer
div Perform integer division
labs Compute absolute value of a long integer
ldiv Perform long integer division

Memory management
calloc Allocate and clear dynamic memory
free De-allocate dynamic memory
malloc Allocate dynamic memory
realloc Reallocate dynamic memory

Multibyte character functions
mblen Compute length of a multibyte character
mbstowcs Convert sequence of multibyte characters to wide characters
mbtowc Convert multibyte character to wide character
wcstombs Convert sequence of wide characters to multibyte characters
wctomb Convert wide character to multibyte character

Pseudo-random number functions
rand Generate pseudo-random numbers
srand Seed pseudo-random number generator

Searching-sorting
bsearch Search an array
qsort Sort an array

String conversion functions
atof Convert string to floating-point number

LEXICON

general utilities 1

atoi Convert string to integer
atol Convert string to long integer
strtod Convert string to double-precision floating-point number
strtol Convert string to long integer
strtoul Convert string to unsigned long integer

Cross-references
Standard, §4.10.1
The C Programming Language, ed. 2, pp. 251ff

See Also
div_t, EXIT_FAILURE, EXIT_SUCCESS, ldiv_t, Library, MB_CUR_MAX, MB_LEN_MAX, stdlib.h,
RAND_MAX, wchar_t

getc() — STDIO (stdio.h)
Read a character from a stream
#include <stdio.h>
int getc(FILE *fp);

getc reads a character from the stream pointed to by fp. The character is read as an unsigned char
converted to an int.

If all goes well, getc returns the character read. If it reads the end of file, it returns EOF and sets
the end-of-file indicator. If an error occurs, it returns EOF and sets the error indicator.

Cross-references
Standard, §4.9.7.5
The C Programming Language, ed. 2, p. 247

See Also
fgetc, getchar, gets, input-output, putc, putchar, puts, ungetc

Notes
The Standard permits getc to be implemented as a macro. If it is implemented as a macro, fp could
be evaluated more than once. Therefore, one should beware of the side-effects of evaluating the
argument more than once, especially if the argument itself has side-effects.

getchar() — STDIO (stdio.h)
Read a character from the standard input stream
#include <stdio.h>
int getchar(void);

getchar reads and returns a character from the file or device associated with stdin. It is equivalent
to:

getc(stdin);

If getchar reads the end of file, it returns EOF and sets the file’s end-of-file indicator. Likewise, if an
error occurs, it returns EOF and sets the file’s error indicator.

Example
This example copies onto the standard-output device whatever is typed upon the standard-input
device. To exit, type EOF; what this character is depends upon the operating system that your
computer is running.

LEXICON

2 getc() — getchar()

#include <stdio.h>
#include <stdlib.h>

main(void)
{

int c;

while((c = getchar()) != EOF)
putchar(c);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.9.7.6
The C Programming Language, ed. 2, p. 247

See Also
getc, gets, input-output, putc, putchar, puts, ungetc

getenv() — General utility (libc)
Read environmental variable
#include <stdlib.h>
char *getenv(const char *variable);

The environment itself can make information available to a program. This information often is
available in the form of an environment variable, which is a string that forms a definition. For
example, under the UNIX operating system the environment variable TERM indicates the type of
terminal the user has. The variable TERM=myterm indicates that the user is typing on a myterm
variety of terminal. When a program reads that declaration, it knows to use the coding proper for
that terminal.

The environment variables together form the environment list. Given the heterogeneous
environments under which C is implemented, the Standard does not define the mechanism by
which the environment list is passed to a program.

The function getenv scans the environment list and looks for the variable that is named in the
string pointed to by variable.

getenv returns a pointer to the string that defines the variable. It returns NULL if the variable
requested cannot be found.

Example
This program looks up words in the environment and displays them.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

for(;;) {
char buf[80], *is;

printf("Enter an environmental variable: ");
fflush(stdout);

if(gets(buf) == NULL)
exit(EXIT_SUCCESS);

LEXICON

getenv() 3

if((is = getenv(buf)) == NULL)
printf("Can’t find %s\n", buf);

else
printf("%s = %s\n", buf, is);

}

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.10.4.4
The C Programming Language, ed. 2, p. 253

See Also
environment communication, environment list

Notes
getenv may use a static area to hold the environment variable requested. This buffer will be
overwritten by subsequent calls to getenv.

An environment may not support environment variables, but it may provide another mechanism
that mimics the functionality of getenv.

gets() — STDIO (libc)
Read a string from the standard input stream
#include <stdio.h>
char *gets(char *buffer);

gets reads characters from the standard input stream and stores them in the area pointed to by
buffer. It stops reading as soon as it detects a newline character or the end of file. gets discards the
newline or EOF and appends a null character onto the end of the string it has built.

If all goes well, gets returns buffer. When it has encountered the end of file without having placed
any characters into buffer, it returns NULL and leaves the contents of buffer unchanged. If a read
error occurs, gets returns NULL and the contents of buffer may or may not be altered.

Example
This example echoes whatever is typed upon the standard-input device.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

char buf[100];

while(gets(buf) != NULL)
puts(buf);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.9.7.7
The C Programming Language, ed. 2, p. 247

See Also
fgets, getc, getchar, input-output, putc, putchar, puts, ungetc

LEXICON

4 gets()

Notes
gets stops reading the input string as soon as it detects a newline character. If a previous read from
the standard input stream left a newline character in the standard input buffer, gets will read it and
immediately stop accepting characters. To the user, it will appear as if gets is not working at all.

For example, if getchar is followed by gets, the first character gets will receive is the newline
character left behind by getchar. A simple statement will remedy this:

while (getchar() != ’\n’)
;

This discards the newline character left behind by getchar. gets will now work correctly. You
should use this only when you know that a newline will be left in the buffer. Otherwise, the desired
line will be lost

Note, too, that in the eyes of the Committee, the role of gets has largely been subsumed by fgets.

gmtime() — Time function (libc)
Convert calendar time to universal coordinated time
#include <time.h>
struct tm *gmtime(const time_t *caltime);

The function gmtime takes the calendar time pointed to by caltime and breaks it down into a
structure of the type tm, converting it into universal coordinated time.

gmtime returns a pointer to the structure tm that it creates. This structure is defined in the
header time.h. If universal coordinated time cannot be computed, then gmtime returns NULL.

Example
This example shows Universal Coordinated Time in a message of the form 12/22/88 15:27:33.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(void)
{

time_t now;
char buffer[80];

time(&now);
strftime(buffer, sizeof(buffer),

"%m/%d/%y %H:%M:%S\n", gmtime(&now));
printf(buffer);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.12.3.3
The C Programming Language, ed. 2, p. 256

See Also
asctime, ctime, localtime, strftime, time conversion, tm, universal coordinated time

Notes
The name gmtime reflects the term Greenwich Mean Time. the Standard prefers the term universal
coordinated time, although for all practical purposes the two are identical.

LEXICON

gmtime() 5

goto — C keyword
Unconditionally jump within a function
goto label;

The goto statement forces a program’s execution to jump to the point marked by label. A goto can
jump only to a point within the current function. To jump beyond a function boundary, use the
functions longjmp and setjmp.

The most common use for goto is to exit from nested control structures or go to the top of a control
block. It is used most often to write ripcord routines, i.e., routines that are executed when a error
occurs too deeply within a program for the program to disentangle itself correctly.

Example
For an example of this statement, see name space.

Cross-references
Standard, §4.6.6.1
The C Programming Language, ed. 2, p. 65

See Also
break, C keywords, continue, jump statements, label name, non-local jumps, return

Notes
The C Programming Language describes goto as infinitely-abusable. Caveat utilitor.

LEXICON

6 goto

header — Overview

The Standard mandates that every function be declared in a header, whose contents are available to
the program through the #include preprocessor directive. A header usually is a file, but it may also
be built into the translator.

The Standard describes 15 headers, as follows:

assert.h Run-time assertion checking
ctype.h Character-handling functions
errno.h errno and related macros
float.h Limits to floating-point numbers
limits.h General implementation limits
locale.h Establish or modify a locale
math.h Mathematics function
setjmp.h Non-local jumps
signal.h Signal-handling functions
stdarg.h Handle variable numbers of arguments
stddef.h Common definitions
stdio.h Standard input and output
stdlib.h General utilities
string.h String-handling functions
time.h Date and time functions

Each header contains only those functions described within the Standard, plus attending data types
and macros. Every external identifier in every header is reserved for the implementation. Also
reserved is every external identifier that begins with an underscore character _, whether it is
described in the Standard or not. If a reserved external name is redefined, behavior is undefined,
even if the function that replaces it has the same specification as the original. This is done to
assure the user that moving code from one implementation to another will not generate unforeseen
collisions with implementation-defined identifiers. It is also done to assure the implementor that
functions called by other library functions will not be derailed by user-defined external names.

Every header can be included any number of times, and any number of headers can be included in
any order without triggering problems.

Cross-references
Standard, §4.1.3
The C Programming Language, ed. 2, p. 241

See Also
header names, Library

Notes
In a typical operating system with tree-structured directories, standard headers generally are
grouped together in a directory of their own. The implementation ascribes semantics to the two

LEXICON

header 7

forms of the #include statement to locate standard headers.

An interpreter may know about the contents of standard headers without requiring that they be
included explicitly. Other environments, such as mainframe environments, may represent headers
as members of partitioned data sets. In these cases, the implementation usually maps the name
used in a #include directive to an implementation-specific name. In either case, you need not worry
about how the environment supplies the headers; you can port programs without being concerned
about them.

header names — Definition

A header name is a token that gives the name of a header. It has the following syntax:

header-name:
< h-char-sequence >
" q-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
Any character except newline and >

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
Any character except newline and "

The two varieties of header names are both searched in an implementation-defined manner.

If any of the characters ’, \, , or /* appear between the < and > of a bracketed header name,
behavior is undefined. Likewise, if any of the characters ’, \, or /* appear between the " and the " of
a quoted header name, behavior is undefined.

Cross-references
Standard, §3.1.7

See Also
#include, header, lexical elements

hosted environment —

A hosted environment is one in which a C program executes under the control of an operating
system. The Standard describes the behavior of a hosted environment in some detail. It does so to
give programmers a fighting chance to write programs that can be ported from one hosted
environment to another.

A hosted environment, unlike a freestanding environment, makes available to a program the full set
of library functions, macros, objects, headers, and typedefs.

When a hosted environment invokes a program, control always transfers to the function main. A
program must have one function named main. This function marks the beginning of program
execution. See main for more information about this function.

Cross-reference
Standard, §2.1.2.2

LEXICON

8 header names — hosted environment

See Also
argc, argv, execution environment, freestanding environment, main

HUGE_VAL — Manifest constant

Represent unrepresentable object
#include <math.h>

HUGE_VAL is a macro that is defined in the header math.h. It represents the largest possible value
of a double.

A mathematics function may return HUGE_VAL to indicate infinity, either positive or negative. For
example, a system that uses IEEE representation for floating-point numbers may return HUGE_VAL
to indicate a return of infinity for the result of tan(PI/2).

Example
For an example of this macro in a program, see sqrt.

Cross-references
Standard, §4.5.1
The C Programming Language, ed. 2, p. 250

See Also
math.h, mathematics, range error

hyperbolic functions — Overview

The Standard describes three hyperbolic functions, as follows:

cosh Hyperbolic cosine
sinh Hyperbolic sine
tanh Hyperbolic tangent

Cross-reference
Standard, §4.5.3

See Also
exponent-log functions, integer-value-remainder, mathematics, power functions,
trigonometric functions

LEXICON

HUGE_VAL — hyperbolic functions 9

identifiers — Overview
An identifier names one of the following lexical elements:

• Functions

• Labels

• Macros

• Members of a structure, a union, or an enumeration

• Objects

• Tags

• typedefs

Its syntax is as follows:

identifiers:
nondigit
identifier nondigit
identifier digit

nondigit: one of
a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z
_

digit: one of
0 1 2 3 4 5 6 7 8 9

An identifier with internal linkage may have up to at least 31 characters, which may be in either
upper or lower case. An identifier with external linkage, however, may have up to at least six
characters, and it is not required to recognize both upper and lower case. These limits are defined
by the implementation, and may be increased by it.

An identifier is a string of digits and non-digits, beginning with a non-digit. For a translator to know
that two identifiers refer to the same entity, the identifiers must be identical. If two identifiers are
meant to refer to the same entity yet differ in any character, the behavior is undefined.

Keywords in C are reserved. Therefore, no identifier may match a keyword.

The Standard allows the programmer to use leading underscores _ to name internal identifiers, but
reserves for the implementation all external identifiers with leading underscores. To reduce name
space pollution, the implementor should not reserve anything that is not explicitly defined in the
Standard and that does not begin with a leading underscore.

LEXICON

10 identifiers

Identifiers have both scope and linkage. The scope of an identifier refers to the portion of a program
to which it is visible. An identifier can have program scope, file scope, function scope, or block
scope; for more information, see the entry for scope. The linkage of an identifier describes whether it
is joined only with its name-sakes within the same file, or can be joined to other files. Linkage can
be external, internal, or none. For more information, see the entry for linkage.

Cross-references
Standard, §3.1.2
The C Programming Language, ed. 2, p. 192

See Also
digit, external name, function prototype, internal name, lexical elements, linkage, name
space, nondigit, scope, storage duration, string literal, types

if — C keyword
Conditionally execute an expression
if(conditional) statement;

if is a C keyword that conditionally executes an expression. If conditional is nonzero, then statement
is executed. However, if conditional is zero, then statement is not executed.

conditional must use a scalar type. It may be a function call (in which case if evaluates what
function returns), an integer, the result of an arithmetic operation, or the value returned by a
relational expression.

An if statement can be followed by an else statement, which also introduces a statement. If
conditional is nonzero, then the statement introduced by if is executed and the one introduced by
else is ignored; whereas if conditional is equal to zero, then the statement introduced by if is ignored
and the one introduced by else is executed.

Example
For an example of this statement, see exit.

Cross-references
Standard, §4.6.4.1
The C Programming Language, ed. 2, pp. 55ff

See Also
else, selection statements, switch

Notes
If the statement controlled by an if statement is accessed via a label, the statement controlled by an
else statement associated with the if statement is not executed.

implementation — Definition
An implementation is a program or set of programs that translates a C program under a given
translation environment, and supports the execution of functions under a given execution
environment.

Every implementation must be accompanied by a document that describes all implementation-
defined behavior, all locale-defined behavior, and all extensions to the language.

Cross-reference
Standard, §1.6

LEXICON

if — implementation 11

See Also
compile, Definitions, interpret

implicit conversions — Definition
The term implicit conversion means that the type of an object is changed by the translator without
the direct intervention of the programmer. For a list of the rules for implicit conversion, see
conversion.

Cross-reference
Standard, §3.2

See Also
conversions, explicit conversion

incomplete types —
An incomplete type is one whose size is not known.

The set of incomplete types includes arrays of unknown size, and structures or unions whose
content is unknown.

The type void is incomplete by definition and can never be completed.

With the exception of type void, an incomplete type must be completed before the translator reaches
the end of the translation unit.

Example
An incomplete type may be a structure or union that is declared before its full type is specified. For
example:

struct example1;
struct example2 {

int member1;
struct example1 *member2;

};

struct example1 {
int member1;
struct example2 *member2;

};

Here, the structure type example1 is completed when its structure is fully declared.

The set of incomplete types also includes arrays of unknown size, and structures or unions whose
content is unknown.

The type void * is incomplete by definition, and can never be completed.

With the exception of type void *, an incomplete type must be completed before the translator
reaches the end of the translation unit.

Cross-references
Standard, §3.1.2.5
The C Programming Language, ed. 2, p. 212

See Also
types

LEXICON

12 implicit conversions — incomplete types

initialization — Definition
The term initialization refers to setting a variable to its first, or initial, value. The syntax that
governs initialization is as follows:

initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }

initializer-list:
initializer
initializer-list , initializer

Rules of Initialization
Initializers follow the same rules for type and conversion as do assignment statements.

If a static object with a scalar type is not explicitly initialized, it is initialized to zero by default.
Likewise, if a static pointer is not explicitly initialized, it is initialized to NULL by default. If an
object with automatic storage duration is not explicitly initialized, its contents are indeterminate.

Initializers on static objects must be constant expressions; greater flexibility is allowed for
initializers of automatic variables. These latter initializers can be arbitrary expressions, not just
constant expressions. For example,

double dsin = sin(30);

is a valid initializer, where dsin is declared inside a function.

To initialize an object, use the assignment operator =. The following sections describe how to
initialize different classes of objects.

Scalars
To initialize a scalar object, assign it the value of a expression. The expression may be enclosed
within braces; doing so does not affect the value of the assignment. For example, the expressions

int example = 7+12;

and

int example = { 7+12 };

are equivalent.

Unions and Structures
The initialization of a union by definition fills only its first member.

To initialize a union, use an expression that is enclosed within braces:

union example_u {
int member1;
long member2;
float member3;

} = { 5 };

This initializes member1 to five. That is to say, the union is filled with an int-sized object whose
value is five.

To initialize a structure, use a list of constants or expressions that are enclosed within braces. For
example:

LEXICON

initialization 13

struct example_s {
int member1;
long member2;
union example_u member3;

};

struct example_s test1 = { 5, 3, 15 };

This initializes member1 to five, initializes member2 to three, and initializes the first member of
member3 to 15.

Strings and Wide Characters
To initialize a string pointer or an array of wide characters, use a string literal.

The following initializes a string:

char string[] = "This is a string";

The length of the character array is 17 characters: one for every character in the given string literal
plus one for the null character that marks the end of the string.

If you wish, you can fix the length of a character array. In this case, the null character is appended
to the end of the string only if there is room in the array. For example, the following

char string[16] = "This is a string";

writes the text into the array string, but does not include the concluding null character because
there is not enough room for it.

The same rules apply to initializing an array of wide characters. For example, the following:

wchar_t widestring[] = L"This is a string";

fills widestring with the wide characters corresponding to the characters in the given string literal.
The appropriate form of the null character is then appended to the end of the array, and the size of
the array is (17*sizeof(wchar_t)). The prefix L indicates that the string literal consists of wide
characters.

A pointer to char can also be initialized when the pointer is declared. For example:

char *strptr = "This is a string";

initializes strptr to point to the first character in This is a string. This declaration automatically
allocates exactly enough storage to hold the given string literal, plus the terminating null character.

Arrays
To initialize an array, use a list of expressions that is enclosed within braces. For example, the
expression

int array[] = { 1, 2, 3 };

initializes array. Because array does not have a declared number of elements, the initialization fixes
its number of elements at three. The elements of the array are initialized in the order in which the
elements of the initialization list appear. For example, array[0] is initialized to one, array[1] to two,
and array[2] to three.

If an array has a fixed length and the initialization list does not contain enough initializers to
initialize every element, then the remaining elements are initialized in the default manner: static
variables are initialized to zero, and other variables to whatever happens to be in memory. For
example, the following:

LEXICON

14 initialization

int array[3] = { 1, 2 };

initializes array[0] to one, array[1] to two, and array[2] to zero.

The initialization of a multi-dimensional array is something of a science in itself. The Standard
defines that the ranks in an array are filled from right to left. For example, consider the array:

int example[2][3][4];

This array contains two groups of three elements, each of which consists of four elements.
Initialization of this array will proceed from example[0][0][0] through example[0][0][3]; then from
example[0][1][0] through example[0][1][3]; and so on, until the array is filled.

It is easy to check initialization when there is one initializer for each slot in the array; e.g.,

int example[2][3] = {
1, 2, 3, 4, 5, 6

};

or:

int example[2][3] = {
{ 1, 2, 3 }, { 4, 5, 6 }

};

The situation becomes more difficult when an array is only partially initialized; e.g.,

int example[2][3] = {
{ 1 }, { 2, 3 }

};

which is equivalent to:

int example[2][3] = {
{ 1, 0, 0 }, { 2, 3, 0 }

};

As can be seen, braces mark the end of initialization for a cluster of elements within an array. For
example, the following:

int example[2][3][4] = {
5, { 1, 2 }, { 5, 2, 4, 3 }, { 9, 9, 5 },
{ 2, 3, 7 } };

is equivalent to entering:

int example[2][3][4] = {
{ 5, 0, 0, 0 },
{ 1, 2, 0, 0 },
{ 5, 2, 4, 3 },

{ 9, 9, 5, 0 },
{ 2, 3, 7, 0 },
{ 0, 0, 0, 0 }

};

The braces end the initialization of one cluster of elements; the next cluster is then initialized. Any
elements within a cluster that have not yet been initialized when the brace is read are initialized in
the default manner.

The final entry in a list of initializers may end with a comma. For example:

int array[3] = { 1, 2, 3, };

LEXICON

initialization 15

will initialize array correctly. This is a departure from many current implementations of C.

ANSI C requires that the initializers of a multi-dimensional array be parsed in a top-down manner.
Some implementations had parsed such initializers in a bottom-up manner. Code that expects
bottom-up parsing may behave differently under ANSI C, and probably without warning. This is a
quiet change that may require that some code be rewritten.

Cross-references
Standard, §3.5.7
The C Programming Language, ed. 2, pp. 218ff

See Also
array, declarations

initialized — Definition
When a variable is initialized, it is set to its first, or initial, value. All objects with static duration
must be initialized before the program begins execution. This rule applies both in freestanding and
in hosted environments.

The translator will use its initialization rules to initialize all program variables that the program does
not initialize itself. This may result in the generation of code to perform the initialization.

Cross-reference
Standard, §2.1.2

See Also
execution environment, initialization

input-output — Overview
#include <stdio.h>
The Standard describes 22 functions that perform input and output. All are declared in the header
stdio.h. The Standard organizes them into three groups: character, direct, and formatted, as follows:

Character
fgetc Read a character from a stream
fgets Read a line from a stream
fputc Write a character into a stream
fputs Write a string into a stream
getc Read a character from a stream
getchar Read a character from the standard input stream
gets Read a string from the standard input stream
putc Write character into a stream
putchar Write a character onto the standard output
puts Write a string onto the standard output
ungetc Push a character back into the input stream

Direct
fread Read data from a stream
fwrite Write data into a stream

LEXICON

16 initialized — input-output

Formatted
fprintf Print formatted text into a stream
fscanf Read formatted text from a stream
printf Format and print text into standard output stream
scanf Read formatted text from standard input stream
sprintf Print formatted text into a string
sscanf Read formatted text from string
vfprintf Format and print text into a stream
vprintf Format and print text into standard output stream
vsprintf Format and print text into a string

Cross-references
Standard, §4.9.6, §4.9.7, §4.9.8
The C Programming Language, ed. 2, pp. 243ff

See Also
error handling, file access, file operations, file positioning, STDIO, stdio.h

int — C keyword
The type int holds an integer. It is usually the same size as a word (or register) on the target
machine.

int is a signed integral type. This type can be no smaller than an short and no greater than a long.

A int can encode any number between INT_MIN and INT_MAX. These are macros that are defined
in the header limits.h; the former can be no greater than -32,767 and the latter no less than
+32,767.

The types signed and signed int are synonyms for int.

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.2.1.1, §3.5.2
The C Programming Language, ed. 2, p. 211

See Also
types

Notes
Because ints may be the size of shorts on some machines and the size of longs on others, programs
that are meant to be portable can avoid bugs by explicitly declaring all ints to be either short or
long.

INT_MAX — Manifest constant
INT_MAX is a macro that is defined in the header limits.h. It gives the largest value that can be
held by an object of type int. It must be defined to be at least 32,767.

Example
For an example of using this macro in a program, see abs.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

LEXICON

int — INT_MAX 17

See Also
limits.h, numerical limits

INT_MIN — Manifest constant
INT_MIN is a macro that is defined in the header limits.h. It gives the smallest value that can be
held by an object of type int. It must be defined to be at most -32,767.

Example
For an example of using this macro in a program, see rand.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
limits.h, numerical limits

integer-value-remainder — Overview
The Standard describes four mathematics functions that calculate nearest integer, absolute value,
and remainders, as follows:

ceil Set integral ceiling of a number
fabs Compute absolute value
floor Set integral floor of a number
fmod Calculate modulus for floating-point number

Cross-reference
Standard, §4.5.5

See Also
exponent-log functions, hyperbolic functions, mathematics, power functions, trigonometric
functions

integer arithmetic — Overview
#include <stdlib.h>
The Standard describes four functions that perform integer arithmetic, as follows:

abs Return the absolute value of an integer
div Perform integer division
labs Return the absolute value of a long integer
ldiv Perform long integer division

Some implementations of C declare abs or labs in the header math.h. The Standard removes them
from that header, because these are the only mathematics functions that do not return a double.

The functions div and ldiv perform a task that has been found to be useful in FORTRAN. They
return, respectively, the types div_t and ldiv_t. Each contains both the quotient and the remainder
produced by integer arithmetic; the former presents them in ints and the latter presents them in
longs.

Cross-reference
Standard, §4.10.6

See Also
general utilities

LEXICON

18 INT_MIN — integer arithmetic

integer constant — Definition
An integer constant is a constant that holds an integer. Its syntax is as follows; opt indicates
optional:

integer-constant:
decimal-constant integer-suffix
octal-constant integer-suffix

opt
hexadecimal-constant integer-suffix

opt
decimal-constant:

nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffix

opt
long-suffix unsigned-suffix

opt
unsigned-suffix: one of

u U

long-suffix: one of
l L

An integer constant has the following structure:

• It begins with a digit.

• It has no period or exponent.

• It may have a prefix that indicates its base, as follows: 0X and 0x both indicate hexadecimal. 0
(zero) indicates octal.

• It may have a suffix that indicates its type. u and U indicate an unsigned integer; l and L
indicate a long integer.

A hexadecimal number may consist of the digits 0 through 9 and the letters a through f or A
through F. An octal number may consist of the digits 0 through 7.

When an integer constant initializes a variable, the form of the constant should match that of the
variable as closely as possible. For example, when an integer constant initializes a long int, the
constant should have the suffix l or L. If the constant does not have this suffix, the variable may not
be initialized correctly.

LEXICON

integer constant 19

The type of an integer constant is fixed by the following rules:

• A decimal integer constant that has no suffix is given the first of the following types that can
represent its value: int, long int, or unsigned long int.

• A hexadecimal or octal integer constant that has no suffix is given the first of the following
types that can represent its value: int, unsigned int, long int, or unsigned long int.

• An integer constant with the prefixes u or U is given the first of the following types that can
represent its value: unsigned int or unsigned long int.

• An integer constant with the prefixes l or L is given the first of the following types that can
represent its value: long int or unsigned long int.

• An integer constant with both the unsigned and the long suffixes is an unsigned long int.

These rules, as they preserve the value of a given constant, are part of what is known as the value-
preserving rules.

Cross-references
Standard, §3.1.3.2
The C Programming Language, ed. 2, p. 193

See Also
constants, conversions

integral promotion — Definition
The term integral promotion refers to the conversion of a char, short int, an enumeration object, or
a bit-field to an int when it is used as an operand in an expression.

This form of promotion occurs automatically when one of these smaller types is used in place of an
int. The smaller type is promoted to an int if an int can hold all of the smaller type’s possible
values. If an int cannot hold all of possible values of the smaller type, then that type is promoted to
an unsigned int. The conversion retains the value of the type to be promoted, including its sign.

Cross-references
Standard, §3.2.1.1
The C Programming Language, ed. 2, pp

See Also
conversions, integral types, value preserving

Notes
This scheme of conversion is called value preserving because it preserves the value of the promoted
type. Many current implementations of C use another scheme for promotion, called unsigned
preserving. Under this scheme, the smaller unsigned types are always promoted to unsigned int.
Under certain circumstances, a program that depends upon unsigned-preserving promotion will
behave differently when subjected to value-preserving promotion. This is a quiet change that may
break some existing code.

integral types — Definition
The integral types are the set of type char, the signed and unsigned integer types, and the
enumerated types. The integral types include the following:

LEXICON

20 integral promotion — integral types

char types:
char
signed char
unsigned char

Signed integer types:
int, signed, signed int
short, short int, signed short, signed short int
long, long int, signed long, signed long int

Unsigned integer types:
unsigned, unsigned int
unsigned short, unsigned short int
unsigned long, unsigned long int

The types on the same line are synonyms; for example, int and signed int have the same meaning.

Whether a char is signed by default depends upon the implementation. The types signed char and
unsigned char are supplied to give a programmer access to the appropriate, non-default type
should she need it, as well as providing hooks for writing portable code.

The types int, long, and short are signed by default. The signed versions of their names are
supplied for the sake of symmetry.

char types are included in the category of integral types because they have historically been
promoted to ints when used in expressions. Such promotion is no longer necessary with ANSI C,
according to the as if rule, although many translators still follow this practice.

Conversion of Integral Types
The following rules govern the conversion of one integral type to another:

• When an unsigned type is converted to another integral type, either signed or unsigned, if its
value can be represented by that type, then the value is unchanged. If the value cannot be
represented, the result is defined by the implementation. Thus, conversion of an integral type
is value-preserving.

• When a non-negative, signed integer is converted to an unsigned integer that is the same size
or larger (such as converting a signed int to an unsigned int or an unsigned long), the value
of the converted integer is unchanged.

• When a negative, signed integer is converted to a larger, unsigned integer, the signed type is
first promoted to the signed type that corresponds to the unsigned type. Then its value is
converted to unsigned by adding to it a value that is one greater than the maximum value that
can be held by the unsigned type. For example, if a negative signed int is being converted to
an unsigned long, it is first promoted to a signed long; then it is converted to a unsigned long
by adding to it ULONG_MAX plus one. The addition preserves the bit pattern of the original
number, and sign-extends it to fill the extra bits of the larger integer.

• When an integer, signed or unsigned, is demoted to an unsigned type that is smaller than
itself, the value of the demoted type is the remainder yielded when the value of the original type
is divided by one plus the maximum value of the smaller type. For example, if a long is
demoted to an unsigned int, the value of the demoted object is the remainder left when the
value of the original object is divided by one plus UINT_MAX.

• When an integer, signed or unsigned, is demoted to a signed integer with a smaller size, or
when an unsigned integer is converted to a signed integer of the same size, and its value does
not fit into the new type, then the result is defined by the implementation.

LEXICON

integral types 21

Cross-references
Standard, §3.1.2.5
The C Programming Language, ed. 2, p. 196

See Also
char, conversions, floating types, int, long int, short int, types

internal name — Definition
An internal name is an identifier that has internal linkage. The minimum maximum for the length
of an internal name is 31 characters, and an implementation must distinguish upper-case and
lower-case characters.

Cross-references
Standard, §3.1.2
The C Programming Language, ed. 2, p. 35

See Also
external name, identifiers, linkage

interpret — Definition
To interpret a program means to translate it with an interpreter. An interpreter, in turn, is a
translator that, instead of producing machine instructions, reads the C program line by line and
executes each as it is encountered.

An interpreter does not perform the traditional compile-and-link cycle that the Standard uses as its
model of translation. However, an interpreter complies with the Standard as long as the program
executes as if it had been compiled and linked by a conforming implementation of C.

See Also
compile, Definitions

isalnum() — Character handling (ctype.h)
Check if a character is a numeral or letter
#include <ctype.h>
int isalnum(int c);

isalnum tests whether c is a letter or a numeral. A letter is any character for which isalpha returns
true; likewise, a numeral is any character for which isdigit returns true. c must be a value that is
representable as an unsigned char or EOF.

isalnum returns nonzero if c is a letter or a numeral, and zero if it is not.

Example
For an example of this function, see character testing.

Cross-references
Standard, §4.3.1.1
The C Programming Language, ed. 2, pp

See Also
character handling, character testing

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

LEXICON

22 internal name — isalnum()

isalpha() — Character handling (ctype.h)
Check if a character is a letter
#include <ctype.h>
int isalpha(int c);

isalpha tests whether c is a letter. In the C locale, a letter is any of the characters a through z or A
through Z. In any other locale, a letter is any character for which the functions iscntrl, isdigit,
ispunct, and isspace all return false. c must be a value that is representable as an unsigned char
or EOF.

isalpha returns nonzero if c is an alphabetic character, and zero if it is not.

Example
For an example of this function, see character testing.

Cross-references
Standard, §4.3.1.2
The C Programming Language, ed. 2, p. 249

See Also
character handling, character testing

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

iscntrl() — Character handling (ctype.h)
Check if a character is a control character
#include <ctype.h>
int iscntrl(int c);

iscntrl tests whether c is a control character under the implementation’s character set. The
Standard defines a control character as being a character in the implementation’s character that
cannot be printed. c must be a value that is representable as an unsigned char or EOF.

iscntrl returns nonzero if c is a control character, and zero if it is not.

Example
For an example of this function, see character testing.

Cross-references
Standard, §4.3.1.3
The C Programming Language, ed. 2, p. 249

See Also
character handling, character testing

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

LEXICON

isalpha() — iscntrl() 23

isdigit() — Character handling (ctype.h)
Check if a character is a numeral
#include <ctype.h>
int isdigit(int c);

isdigit tests whether c is a numeral (any of the characters 0 through 9). c must be a value that is
representable as an unsigned char or EOF.

isdigit returns nonzero if c is a numeral, and zero if it is not.

Example
For an example of this function, see character testing.

Cross-references
Standard, §4.3.1.4
The C Programming Language, ed. 2, p. 249

See Also
character handling, character testing

isgraph() — Character handling (ctype.h)
Check if a character is printable
#include <ctype.h>
int isgraph(int c);

isgraph tests whether c is a printable letter within the implementation’s character set, but excluding
the space character. The Standard defines a printable character as any character that occupies one
printing position on an output device. c must be a value that is representable as an unsigned char
or EOF.

isgraph returns nonzero if c is a printable character (except for space), and zero if it is not.

Example
For an example of this function, see character testing.

Cross-references
Standard, §4.3.1.5
The C Programming Language, ed. 2, p. 249

See Also
character handling, character testing

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

islower() — Character handling (ctype.h)
Check if a character is a lower-case letter
#include <ctype.h>
int islower(int c);

islower tests whether c is a lower-case letter. In the C locale, a lower-case letter is any of the
characters a through z. In any other locale, this is a character for which the functions iscntrl,
isdigit, ispunct, isspace, and isupper all return false. c must be a value that is representable as
an unsigned char or EOF.

LEXICON

24 isdigit() — islower()

islower returns nonzero if c is is a lower-case letter, and zero if it is not.

Example
For an example of this function, see character testing.

Cross-references
Standard, §4..1.6
The C Programming Language, ed. 2, p. 249

See Also
character handling, character set, character testing

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

isprint() — Character handling (ctype.h)
Check if a character is printable
#include <ctype.h>
int isprint(int c);

isprint tests whether c is a printable letter within the implementation’s character set, including the
space character. The Standard defines a printable character as any character that occupies one
printing position on an output device. c must be a value that is representable as an unsigned char
or EOF.

isprint returns nonzero if c is a printable character, and zero if it is not.

Example
For an example of this function, see character testing.

Cross-references
Standard, §4.3.1.7
The C Programming Language, ed. 2, p. 249

See Also
character handling, character testing

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

ispunct() — Character handling (ctype.h)
Check if a character is a punctuation mark
#include <ctype.h>
int ispunct(int c);

ispunct tests whether c is a punctuation mark in the implementation’s character set. The Standard
defines a punctuation mark as being any printable character, except the space character, for which
the function isalnum returns false. c must be a value that is representable as an unsigned char or
EOF.

ispunct returns nonzero if c is a punctuation mark, and zero if it is not.

LEXICON

isprint() — ispunct() 25

Example
For an example of this function, see character testing.

Cross-references
Standard, §4.3.1.8
The C Programming Language, ed. 2, p. 249

See Also
character handling, character testing

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

isspace() — Character handling (ctype.h)
Check if character is white space
#include <ctype.h>
int isspace(int c);

isspace tests whether c represents a white-space character. In the C locale, a white-space character
is any of the following: space (), form feed (\f), newline (\n), carriage return (\r), horizontal tab (\t),
or vertical tab (\v). In any other locale, a white-space character is one for which the functions
isalnum, iscntrl, isgraph, and ispunct all return false. c must be a value that is representable as
an unsigned char or EOF.

isspace returns nonzero if c is a space character, and zero if it is not.

Example
For an example of this function, see character testing.

Cross-references
Standard, §4.3.1.1
The C Programming Language, ed. 2, p. 249

See Also
character handling, character testing

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
For example, Middle-Eastern languages use alternate characters to denote white space. See
localization for more information.

isupper() — Character handling (ctype.h)
Check if a character is an upper-case letter
#include <ctype.h>
int isupper(int c);

isupper tests whether c is a upper-case letter. In the C locale, a upper-case letter is any of the
characters A through Z. In any other locale, this is a character for which the functions iscntrl,
isdigit, islower, ispunct, and isspace all return false. c must be a value that is representable as an
unsigned char or EOF.

isupper returns nonzero if c is an upper-case letter, and zero if it is not.

LEXICON

26 isspace() — isupper()

Example
For an example of this function, see character testing.

Cross-references
Standard, §4.3.1.6
The C Programming Language, ed. 2, p. 249

See Also
character handling, character sets, character testing

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

isxdigit() — Character handling (libc)
Check if a character is a hexadecimal numeral
#include <ctype.h>
int isxdigit(int c);

isxdigit tests whether c is a hexadecimal numeral (any of the characters 0 through 9, any of the
letters a through d, or any of the letters A through D). c must be a value that is representable as an
unsigned char or EOF.

isxdigit returns nonzero if c is a hexadecimal numeral, and zero if it is not.

Example
For an example of this function, see character testing.

Cross-references
Standard, §4.3.1.11
The C Programming Language, ed. 2, p. 249

See Also
character handling, character testing

iteration statements — Overview
An iteration statement executes a body of code iteratively that is, over and over until a certain
condition is met. The syntax is as follows; opt indicates optional:

iteration-statement:
do statement while(expression);

for(expression
opt

; expression
opt

; expression
opt

) statement

while(expression) statement

An iteration statement is also called a loop. A loop tests its controlling expression upon each
iteration. The loop continues to execute until the controlling expression is no longer true. Whether
the controlling expression is tested before or after the loop executes depends upon the variety of loop
being used.

An infinite loop is one that iterates forever. The following statements set up infinite loops:

for(;;)

while(1)

do ... while(1);

LEXICON

isxdigit() — iteration statements 27

It is also possible to break out of a loop before a iteration/test cycle is completed. For more
information, see break, return, and goto.

Cross-references
Standard, §3.6.5
The C Programming Language, ed. 2, p. 224

See Also
break, continue, do, for, statements, while

LEXICON

28 iteration statements

jmp_buf — Type
Type used with non-local jumps
#include <setjmp.h>

jmp_buf is a type defined in the header setjmp.h. It is the type used to hold the current
environment to enable a non-local jump. The usual contents of the jmp_buf array will be the
contents of registers; however, its contents are defined by the implementation.

Cross-references
Standard, §4.6
The C Programming Language, ed. 2, p. 254

See Also
non-local jumps, setjmp.h

Notes
Because jmp_buf usually does not contain anything except the current contents of the registers, one
should not expect values of local variables or register variables to restored properly.

Historically, code has been written that calls setjmp and longjmp with an argument of type
jmp_buf, but without taking its address. This code works because an array passed as a parameter
is automatically converted to a pointer. Because structures can now be passed by value, such
arguments are no longer converted to pointers. However, because both setjmp and longjmp expect
a pointer argument, the type of jmp_buf is restricted to an array type in order to preserve existing
code.

If jmp_buf must be a structure of heterogeneous elements, then it could be defined as a one-element
array of such structures.

jump statements — Overview
A jump statement is one that causes the program to jump unconditionally from one point in the code
to another. Jump statements have the following syntax; opt stands for optional.

jump-statement:
goto identifier ;
continue ;
break ;
return expression

opt
;

Cross-references
Standard, §3.6.6
The C Programming Language, ed. 2, p. 224

LEXICON

jmp_buf — jump statements 29

See Also
break, continue, goto, non-local jumps, return, statements

LEXICON

30 jump statements

keywords — Definition

A keyword is a word that has special significance to the C language. All keywords are reserved;
none may be used as an identifier.

The Standard defines the following as being C keywords:

auto break case char
const continue default defined
do double else enum
extern float for goto
if int long register
return short signed sizeof
static struct switch typedef
union unsigned void volatile
while

Cross-references
Standard, §3.1.1
The C Programming Language, ed. 2, p. 192

See Also
lexical elements

Notes
The keywords const, enum, signed, void, and volatile are new to the C language, although some or
all of these have been used as common extensions to C. A program that uses any of these words as
an identifier may not translate properly under an implementation that conforms to the Standard.
Likewise, the Standard eliminates the keyword entry, which the first edition of The C Programming
Language defined as being unused.

The Standard recognizes that the keywords asm and fortran are common extensions to the C
language, and are recognized as such by many implementations of C.

LEXICON

keywords 31

L_tmpnam — Manifest constant
Define maximum size of temporary file’s name
#include <stdio.h>

L_tmpnam is a macro that is defined in the header stdio.h. It indicates the size of the array needed
to hold a name created by the function tmpnam.

Example
For an example of a program that uses this macro, see tmpnam.

Cross-reference
Standard, §4.9.1, §4.9.4.4

See Also
STDIO, stdio.h, tmpnam

label — Definition
A label is an identifier followed by a colon : or that follows a goto statement. It marks a point within
a function to which a goto statement can jump.

Cross-references
Standard, §3.1.2.6
The C Programming Language, ed. 2, pp. 65

See Also
goto, name space

labelled statements — Overview
Any C statement may be introduced by a label. This allows it to be accessed by a goto statement.

The C language includes two special labels: case and default. Both may be used only within the
body of a switch statement. See switch for more information.

The syntax of a labelled statement is as follows:

labelled-statement:
identifier : statement
case constant-expression : statement
default : statement

A label does not alter the flow of control in any way. Execution continues directly over it.

Cross-references
Standard, §3.6.1
The C Programming Language, ed. 2, pp. 66, 222

LEXICON

32 L_tmpnam — labelled statements

See Also
case, default, goto, statements

labs() — General utility (libc)
Compute the absolute value of a long integer
#include <stdlib.h>
int labs(long n);

labs computes the absolute value of the long integer n. The absolute value of a number is its
distance from zero. This is n if n>=0, and -n otherwise.

Cross-references
Standard, §4.10.6.3
The C Programming Language, ed. 2, p. 253

See Also
abs, integer arithmetic

Notes
On two’s complement machines, the absolute value of the most negative number may not be
representable.

In some implementations, labs is declared in the header math.h. The Standard moved this function
to stdlib.h on the grounds that it does not return double. This change may require that some
existing code be altered.

Language — Overview
Section 3 of the Standard describes the C programming language. Its description of C is derived
from The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie. Additional
features of the language are drawn from UNIX system V, Berkeley UNIX, and implementations on a
great variety of machines.

The description of the language, both in the Standard and in this Lexicon, has the following topics,
which describe completely the syntax and semantics of the language:

• constant expressions

• conversions

• declarations

• expressions

• external definitions

• lexical elements

• preprocessing

• statements

Each of these topics is introduced by its own Lexicon article.

Implementation of the C Language
The following summarizes how implements the C language.

LEXICON

labs() — Language 33

Reserved identifiers (keywords):
alien extern signed
auto float sizeof
break for static
case goto struct
char if switch
continue int typedef
const long union
default readonly unsigned
do register void
double return volatile
else short while
enum

In conformity with the proposed ANSI standard, the keyword entry is no longer recognized. The
keywords const and volatile are now recognized, but not implemented. The compiler will produce a
warning message if the keyword volatile is used with the peephole optimizer.

Structure name-spaces:
Supports both Berkeley, and Kernighan and Ritchie conventions
for structure in union.

Special features and optimizations:

• Branch optimization is performed: this uses the smallest branch instruction for the required
range.

• Unreached code is eliminated.

• Duplicate instruction sequences are removed.

• Jumps to jumps are eliminated.

• Multiplication and division by constant powers of two are changed to shifts when the results
are the same.

• Sequences that can be resolved at compile time are identified and resolved.

Cross-references
Standard, §3.0
The C Programming Language, ed. 2, pp. 191ff

See Also
Library, Standard

LC_ALL — Manifest constant
All locale information
#include <locale.h>

LC_ALL is a macro that is defined in the header locale.h. When passed to the function setlocale, it
queries or sets all information for a given locale. Information obtained with this macro alters the
operation of all functions that are affected by the program’s locale, as well as the contents of the
structure lconv. The following lists the functions affected by LC_ALL:

Collation
strcoll
strxfrm

LEXICON

34 LC_ALL

ctype
isdigit
isxdigit

Date and time
strftime

Formatted I/O
fprintf
fscanf
printf
sprintf
scanf
sscanf
vfprintf
vprintf
vsprintf

Multibyte characters
mblen
mbstowcs
mbtowc
wcstombs
wctomb

String conversion
atof
atoi
atol
strtod
strtol
strtoul

Cross-reference
Standard, §4.4

See Also
LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_NUMERIC, LC_TIME, lconv, localization,
locale.h, setlocale

LC_COLLATE — Manifest constant
Locale collation information
#include <locale.h>

LC_COLLATE is a macro that is defined in the header locale.h. When used with the function
setlocale, it queries or sets collation information for a given locale.

This information can affect the operation of the functions strcoll and strxfrm.

Cross-reference
Standard, §4.4

See Also
LC_ALL, LC_CTYPE, LC_MONETARY, LC_NUMERIC, LC_TIME, localization, locale.h, setlocale

LEXICON

LC_COLLATE 35

LC_CTYPE — Manifest constant
Locale character-handling information
#include <locale.h>

LC_CTYPE is a macro that is defined in the header locale.h. When used with the function
setlocale, it sets or queries the character-handling information for a given locale. This information
helps determine the action of the functions declared in ctype.h, except isdigit and isxdigit, as well
as the multiple-byte character functions mblen, mbstowcs, mbtowc, wcstombs, and wctomb.

Cross-reference
Standard, §4.4

See Also
LC_ALL, LC_COLLATE, LC_MONETARY, LC_NUMERIC, LC_TIME, lconv, localization, locale.h,
setlocale

LC_MONETARY — Manifest constant
Locale monetary information
#include <locale.h>

LC_MONETARY is a macro that is defined in the header locale.h. When used with the function
setlocale, it queries or sets the monetary information for a given locale.

It affects all of the fields within the structure lconv, except decimal_point.

Cross-reference
Standard, §4.4

See Also
LC_ALL, LC_COLLATE, LC_CTYPE, LC_NUMERIC, LC_TIME, localization, locale.h, setlocale

LC_NUMERIC — Manifest constant
Locale numeric information
#include <locale.h>

LC_NUMERIC is a macro that is defined in the header locale.h. When used with the function
setlocale, it queries or sets the information for formatting numeric strings.

This information will alter the operation of the following functions:

Formatted I/O
fprintf
fscanf
printf
sprintf
scanf
sscanf
vfprintf
vprintf
vsprintf

LEXICON

36 LC_CTYPE — LC_NUMERIC

String conversion
atof
atoi
atol
strtod
strtol
strtoul

This information also affects the following fields within the structure lconv:

decimal_point
thousands_sep
grouping

Cross-reference
Standard, §4.4

See Also
LC_ALL, LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_TIME, lconv, localization, locale.h,
setlocale

LC_TIME — Manifest constant
Locale time information
#include <locale.h>

LC_TIME is a macro that is defined in the header locale.h. When used with the function setlocale,
it queries or sets the information for formatting time strings.

This information affects the operation of the function strftime.

Cross-reference
Standard, §4.4

See Also
LC_ALL, LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_NUMERIC, lconv, localization, locale.h,
setlocale

lconv — Type
Hold monetary conversion information
#include <locale.h>

lconv is a structure that is defined in the header locale.h. Its members hold many details needed to
format monetary and non-monetary numeric information for a given locale.

To initialize lconv for any given locale, use the function localeconv. To change any aspect of the
locale information being used, use the function setlocale.

Any implementation of lconv must contain the following 17 fields:

char *currency_symbol
This points to a string that contains the symbol used locally to represent currency, e.g., the
$. The C locale sets this to point to a null string.

char *decimal_point
This points to a string that contains the character used to indicate the decimal point. The C
locale sets this to point to ..

LEXICON

LC_TIME — lconv 37

char frac_digits
This is the number of fractional digits that can be displayed in a monetary string. The C
locale sets this to CHAR_MAX.

char grouping
This points to the string that indicates the grouping characteristics for non-monetary
amounts. Characters in the string can take the following values:

0 Use previous element for rest of digits
MAX_CHAR Perform no further grouping
2 through 9 No. of digits in current group

The C locale sets this to CHAR_MAX.

char *int_curr_symbol
This points to a string that contains the international currency symbol for the locale, as
defined in the publication ISO 4217 Codes for Representation of Currency and Funds. The C
locale sets this to point to a null string.

char *mon_decimal_point
This points to a string that contains the character used to indicate a decimal point in
monetary strings. The C locale sets this to point to a null string.

char mon_grouping
This points to the string of characters that indicate the grouping characteristics for
monetary amounts. Elements can take the following values:

0 Use previous element for rest of digits
MAX_CHAR Perform no further grouping
2 through 9 No. of digits in current group

The C locale sets this to CHAR_MAX.

char *mon_thousands_sep
This points to a string that contains the character used to separate groups of thousands in
monetary strings. The C locale sets this to point to a null string.

char n_cs_precedes
This indicates whether the symbol that indicates a negative monetary value precedes or
follows the numerals in the monetary string. Zero indicates that it follows the numerals
and one indicates that it precedes them. The C locale sets this to CHAR_MAX.

char n_sep_by_space
This indicates whether a space should appear between the symbol that indicates a negative
monetary value and the numerals of the monetary string. Zero indicates that it should not
appear, and one indicates that it should. The C locale sets this to CHAR_MAX.

char n_sign_posn
This indicates the position and formatting of the symbol that indicates a negative monetary
value, as follows:

0 Set parentheses around numerals and monetary symbol
1 Set negative sign before currency symbol and numerals
2 Set negative sign after currency symbol and numerals
3 Set negative sign immediately before monetary symbol
4 Set negative sign immediately after monetary symbol

The C locale sets this to CHAR_MAX.

LEXICON

38 lconv

char *negative_sign
This points to a string that contains the character that indicates a negative value in a
monetary string. The C locale sets this to point to a null string.

char p_cs_precedes
This indicates whether the currency symbol should precede or follow the numerals in the
string. Zero indicates that it precedes the digits and one indicates that it follows. The C
locale sets this to CHAR_MAX.

char p_sep_by_space
This indicates whether a space should appear between the monetary symbol and the
numerals of the monetary string. Zero indicates that a space should not appear, and one
indicates that it should. The C locale sets this to CHAR_MAX.

char p_sign_posn
This indicates the position and formatting of the symbol that indicates a positive monetary
value, as follows:

0 Set parentheses around numerals and monetary symbol
1 Set positive sign before currency symbol and numerals
2 Set positive sign after currency symbol and numerals
3 Set positive sign immediately before monetary symbol
4 Set positive sign immediately after monetary symbol

The C locale sets this to CHAR_MAX.

char *positive_sign
This points to a string that contains the character that indicates a non-negative value in a
monetary string. The C locale sets this to point to a null string.

char *thousands_sep
This points to a string that contains the character used to separate groups of thousands.
The C locale sets this to point to a null string.

Cross-reference
Standard, §4.4, §4.4.2.1

See Also
CHAR_MAX, locale.h, localeconv, localization, setlocale

LDBL_DIG — Manifest constant
#include <float.h>
LDBL_DIG is a macro that is defined in the header float.h. It is an expression that defines the
number of decimal digits of precision for type long double. It must yield a value of at least ten.

Cross-reference
Standard, §2.2.4.2

See Also
float.h, numerical limits

LDBL_EPSILON — Manifest constant
#include <float.h>
LDBL_EPSILON is a macro that is defined in the header float.h. It is an expression that yields the
smallest positive floating-point number representable as a long double, such that 1.0 plus it does
not test equal to 1.0. It must yield a value of at most 1E-9.

LEXICON

LDBL_DIG — LDBL_EPSILON 39

Cross-reference
Standard, §2.2.4.2

See Also
float.h, numerical limits

LDBL_MANT_DIG — Manifest constant
#include <float.h>
LDBL_MANT_DIG is a macro that is defined in the header float.h. It is an expression that
represents the number of digits in the mantissa of type long double, in the numeric base set by the
macro FLT_RADIX.

Cross-reference
Standard, §2.2.4.2

See Also
float.h, numerical limits

LDBL_MAX — Manifest constant
#include <float.h>
LDBL_MAX is a macro that is defined in the header float.h. It is an expression that yields the
largest number that can be represented by type long double. It must yield a value of at least 1E+37.

Cross-reference
Standard, §2.2.4.2

See Also
float.h, numerical limits

LDBL_MAX_10_EXP — Manifest constant
#include <float.h>
LDBL_MAX_10_EXP is a macro that is defined in the header float.h. It is an expression that yields
the largest power, such that ten raised to it remains a floating-point number that can be encoded by
type long double. The value this expression yields must be at least 37.

Cross-reference
Standard, §2.2.4.2

See Also
float.h, numerical limits

LDBL_MAX_EXP — Manifest constant
#include <float.h>
LDBL_MAX_EXP is a macro that is defined in the header float.h. It is an expression that yields the
largest power such that FLT_RADIX raised to it minus one remains a floating-point number that
can be held by type long double.

Cross-reference
Standard, §2.2.4.2

See Also
float.h, numerical limits

LEXICON

40 LDBL_MANT_DIG — LDBL_MAX_EXP

LDBL_MIN — Manifest constant
#include <float.h>
LDBL_MIN is a macro that is defined in the header float.h. It is an expression that yields the
smallest number that can be represented by type long double. It must yield a value of at most 1E-
37.

Cross-reference
Standard, §2.2.4.2

See Also
float.h, numerical limits

LDBL_MIN_10_EXP — Manifest constant
#include <float.h>
LDBL_MIN_10_EXP is a macro that is defined in the header float.h. It is an expression that yields
the smallest power, such that ten raised to it remains a floating-point number that can be encoded
by type long double. It must be at most -37.

Cross-reference
Standard, §2.2.4.2

See Also
float.h, numerical limits

LDBL_MIN_EXP — Manifest constant
#include <float.h>
LDBL_MIN_EXP is a macro that is defined in the header float.h. It is an expression that yields the
smallest power such that FLT_RADIX raised to it minus one remains a floating-point number that
can be held by type long double.

Cross-reference
Standard, §2.2.4.2

See Also
float.h, numerical limits

ldexp() — Mathematics (libm)
Load floating-point number
#include <math.h>
double ldexp(double number, int n);

ldexp returns number times two to the n power.

See float.h for more information on the structure of a floating-point number.

Cross-references
Standard, §4.5.4.3
The C Programming Language, ed. 2, p. 251

See Also
exp, exponent-log functions, frexp, log, log10, modf

LEXICON

LDBL_MIN — ldexp() 41

ldiv() — General utility (libc)
Perform long integer division
#include <stdlib.h>
ldiv_t ldiv(long int numerator, long int denominator);

ldiv divides numerator by denominator. It returns a structure of the type ldiv_t, which consists of
two long members, one named quot and the other rem. ldiv writes the quotient into one long, and
it writes the remainder into the other.

The sign of the quotient is positive if the signs of the arguments are the same; it is negative if the
signs of the arguments differ. The sign of the remainder is the same as the sign of the numerator.

If the remainder is non-zero, the magnitude of the quotient is the largest integer less than the
magnitude of the algebraic quotient. This is not guaranteed by the operators / and %, which merely
do what the machine implements for divide.

Example
This example selects one random card out of a pack of 52.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(void)
{

ldiv_t card;

card = ldiv((unsigned long)time(NULL) % 52, 13L);
printf("%c%c\n",

/* note useful addressing for strings */
"A23456789TJQK"[card.rem],
"HCDS"[card.quot]);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.10.6.2
The C Programming Language, ed. 2, p. 253

See Also
/, div, integer arithmetic, ldiv_t

Notes
The Standard includes this function to provide a useful feature of FORTRAN. Also, on most
machines, division produces a remainder. This allows a quotient and remainder to be returned from
one machine-divide operation.

If the result of division cannot be represented (e.g., because denominator is set to zero), the behavior
of ldiv is undefined.

ldiv_t — Type
Type returned by ldiv()
#include <stdlib.h>

ldiv_t is a typedef that is declared in the header stdlib.h and is the type returned by the function
ldiv.

LEXICON

42 ldiv() — ldiv_t

ldiv_t is a structure that consists of two long members, one named quot and the other rem. The
Standard does not specify their order within ldiv_t. ldiv writes its quotient into quot and its
remainder into rem.

Example
For an example of this type in a program, see ldiv.

Cross-references
Standard, §4.10.6.2
The C Programming Language, ed. 2, p. 253

See Also
general utilities, integer arithmetic, ldiv, stdlib.h

letter — Definition
The Standard defines a letter as being any of the 52 printing characters that can be used to write a
C program, as follows:

a b c d e f g h i
j k l m n o p q r
r s t u v w x y z
A B C D E F G H I
J K L M N O P Q R
R S T U V W X Y Z
0 1 2 3 4 5 6 7 8
9 ! " # % & ’ ()
* + , - . / : ; <
= > ? [\] ^ _ {
| } ~

Cross-reference
Standard, §4.1.1

See Also
Library, printing character

lexical elements — Overview
A lexical element is one of the elements from which a C program is built. It is the smallest unit with
which a translator can work. Lexical refers to the fact that a program is partitioned into tokens
during a translation phase that is usually called lexical analysis.

A C program is built from the following lexical elements:

constants
header names
identifiers
keywords
operators
preprocessing numbers
punctuators
string literals

Cross-reference
Standard, §3.1

LEXICON

letter — lexical elements 43

See Also
comment, constant, header name, identifier, keyword, Language, operators, preprocessing
number, punctuators, string literal, token

Library — Overview
Library is the last of the four sections of the Standard. It defines all library functions required by
the Standard, as well as attending macros and types.

A conforming hosted environment must implement all library functions the Standard describes. A
conforming freestanding environment must implement only the macros, types, and functions
declared in the headers float.h, limits.h, stdarg.h, and stddef.h.

Headers
Every library function is declared in a header, which is included by the #include preprocessor
directive. Every external identifier, including function names, within every header is reserved to the
implementation. Also reserved is every external identifier that begins with an underscore _.

These external names are reserved even if their associated header is not included. This is because
the library may interact in ways unknown to the user, and to replace a function that is used by
other library functions may create devastating side effects. Therefore, if a reserved external name is
redefined, behavior is undefined, even if the function that replaces it is identical to the original.

Function Usage
All functions must be implemented as functions, even if they are implemented as macros. The only
exceptions are assert, setjmp, va_arg, and va_start, which may be implemented only as macros. A
function may also be implemented as a macro in the appropriate header.

If a library function expands to a macro invocation, such as for in-line code expansion, such an
expansion must be safe, in the sense that each argument is evaluated only once.

If a function is implemented as a macro, the macro version is used, assuming that the program
includes the header within which the macro is defined. To force the implementation to use the
function implementation of a routine instead of the macro implementation, do either of the
following:

1. Enclose the function name within parentheses. For example, if the function isupper has been
implemented as a macro as well as a library function, you can force a program to use the
library version by the following:

#include <ctype.h>
. . .

result = (isupper)(c);

This also means that you can access any function by address, even if that function is also
defined as a macro.

2. Turn off its macro definition by use of the #undef preprocessor directive. For example, the
following:

#include <ctype.h>
#undef isupper

. . .
result = isupper(c);

forces an implementation to use the library version of isupper, in place of an existing macro
definition.

LEXICON

44 Library

Library Functions
The Standard describes the following library functions:

assert.h
assert Check assertion at run time

ctype.h
isalnum Check if a character is a numeral or letter
isalpha Check if a character is a letter
iscntrl Check if a character is a control character
isdigit Check if a character is a numeral
isgraph Check if a character is printable
islower Check if a character is a lower-case letter
isprint Check if a character is printable
ispunct Check if a character is a punctuation mark
isspace Check if a character is white space
isupper Check if a character is a upper-case letter
isxdigit Check if a character is a hexadecimal numeral
tolower Convert characters to lower case
toupper Convert characters to upper case

errno.h
errno External integer that holds error status

locale.h
localeconv Initialize lconv structure
setlocale Change or query a program’s locale

math.h
acos Calculate inverse cosine
asin Calculate inverse sine
atan Calculate inverse tangent
atan2 Calculate inverse tangent
ceil Set numeric ceiling
cos Calculate cosine
cosh Calculate hyperbolic cosine
exp Compute exponent
fabs Compute absolute value
floor Set a numeric floor
fmod Calculate modulus for floating-point number
frexp Fracture floating-point number
ldexp Multiply floating-point number
log Compute natural logarithm
log10 Compute common logarithm
modf Separate exponent and fraction
pow Raise one number to the power of another
sin Calculate sine
sinh Calculate hyperbolic sine
sqrt Calculate the square root of a number
tan Calculate tangent
tanh Calculate hyperbolic tangent

setjmp.h
longjmp Perform a non-local jump
setjmp Save environment for non-local goto

signal.h

LEXICON

Library 45

raise Send a signal
signal Set processing for a signal

stdarg.h
va_arg Return pointer to next argument in argument list
va_end Tidy up after traversal of argument list
va_start Point to beginning of argument list

stddef.h
offsetof Calculate offset of a field within a structure

stdio.h
clearerr Clear error condition from a stream
close Close a file
create Create a file
fclose Close a stream
feof Examine a stream’s end-of-file indicator
ferror Examine a stream’s error indicator
fflush Flush output stream’s buffer
fgetc Read a character from a stream
fgetpos Get value of file-position indicator
fgets Read a line from a stream
fopen Open a stream for standard I/O
fpos_t Encode current position in a file
fprintf Print formatted text into a stream
fputc Write a character into a stream
fputs Write a string into a stream
fread Read data from a stream
freopen Re-open a stream
fscanf Read and format text from a stream
fseek Set file-position indicator
fsetpos Set file-position indicator
ftell Get value of file-position indicator
fwrite Write data into a stream
getc Read a character from a stream
getchar Read a character from standard input stream
gets Read a string from standard input stream
perror Print an error message into standard error stream
printf Format and print text into standard output stream
putc Write a character into a stream
putchar Write a character into standard output stream
puts Write a string into standard output stream
remove Remove a file
rename Rename a file
rewind Reset file-position indicator
scanf Read and format text from standard input stream
setbuf Set alternative stream buffer
setvbuf Set alternative stream buffer
sprintf Print formatted text into a string
sscanf Read and format text from a string
tmpfile Create a temporary file
tmpnam Generate a unique name for a temporary file
ungetc Push a character back into the input stream
vfprintf Print formatted text into stream
vprintf Print formatted text into standard output stream
vsprintf Print formatted text into string

LEXICON

46 Library

stdlib.h
abort End program immediately
abs Compute the absolute value of an integer
atexit Register a function to be performed at exit
atof Convert string to floating-point number
atoi Convert string to integer
atol Convert string to long integer
bsearch Search an array
calloc Allocate dynamic memory
div Perform integer division
exit Terminate a program gracefully
free De-allocate dynamic memory to free memory pool
getenv Read environmental variable
labs Compute the absolute value of a long integer
ldiv Perform long integer division
malloc Allocate dynamic memory
mblen Compute length of a multibyte character
mbstowcs Convert sequence of multibyte characters to wide characters
mbtowc Convert multibyte character to wide character
qsort Sort an array
rand Generate pseudo-random numbers
realloc Reallocate dynamic memory
strtod Convert string to floating-point number
strtol Convert string to long integer
strtoul Convert string to unsigned long integer
system Suspend a program and execute another
wcstombs Convert sequence of wide characters to multibyte characters
wctomb Convert wide character to multibyte character

string.h
memchr Search a region of memory for a character
memcmp Compare two regions
memcpy Copy a region of memory
memmove Copy a region of memory into one with which it may overlap
memset Fill a buffer with a character
perror System call error messages
strcat Append one string onto another
strchr Find a character in a string
strcmp Compare two strings
strcoll Compare two strings, using locale-specific information
strcpy Copy one string into another
strcspn Length one string excludes characters in another
strerror Translate an error number into a string
strlen Measure the length of a string
strncat Append n characters of one string onto another
strncmp Compare one string with a portion of another
strncpy Copy one string into another
strpbrk Find first occurrence of any character from another string
strrchr Search for rightmost occurrence of character in string
strspn Length for which a string includes characters in another
strstr Find one string within another
strtok Break a string into tokens
strxfrm Transform a string

time.h

LEXICON

Library 47

asctime Convert broken-down time to text
clock Get processor time used
ctime Convert calendar time to text
difftime Calculate difference between two times
gmtime Convert calendar time to Universal Coordinated Time
localtime Convert calendar time to local time
mktime Convert broken-down time into calendar time
strftime Format locale-specific time
time Get current calendar time

Cross-references
Standard, §4
The C Programming Language, ed. 2, pp. 241ff

See Also
Environment, function, header, Language, Standard

Notes
The base document for the library section of the Standard is the 1984 /usr/group Standard. Some
functions were modelled on the UNIX System V libraries, and others from various commercial
implementations.

limits — Overview
The Standard describes two groups of limits: environmental limits and numerical limits.

Environmental limits are the limits that the environment sets upon the complexity of a C program.
For example, the environment may restrict the number of case labels that can be contained within a
switch statement.

Numerical limits are the limits upon the values that can be encoded within a type, e.g., the largest
and smallest values that can be contained within type int. The implementation sets numerical
limits, and every numerical limit must be recorded in a macro. Limits for integral types are
recorded in the header limits.h, and those for floating types are recorded in the header float.h.

Cross-reference
Standard, §2.2.4

See Also
environmental considerations, environmental limits, float.h, limits.h, minimum maxima,
numerical limits

limits.h — Header
The header limits.h defines a group of macros that set the numerical limits for the translation
environment.

The following table gives the macros defined in limits.h. Each value given is the macro’s minimum
maximum: a conforming implementation of C must meet these limits, and may exceed them.

CHAR_BIT
Number of bits in a char; must be at least eight.

CHAR_MAX
Largest value representable in an object of type char. If the implementation defines a char
to be signed, then it is equal to the value of the macro SCHAR_MAX; otherwise, it is equal
to the value of the macro UCHAR_MAX.

LEXICON

48 limits — limits.h

CHAR_MIN
Smallest value representable in an object of type char. If the implementation defines a char
to be signed, then it is equal to the value of the macro SCHAR_MIN; otherwise, it is zero.

INT_MAX
Largest value representable in an object of type int; it must be at least 32,767.

INT_MIN
Smallest value representable in an object of type int; it must be at most -32,767.

LONG_MAX
Largest value representable in an object of type long int; it must be at least 2,147,483,647.

LONG_MIN
Smallest value representable in an object of type long int; it must be at most
-2,147,483,647.

MB_LEN_MAX
Largest number of bytes in any multibyte character, for any locale; it must be at least one.

SCHAR_MAX
Largest value representable in an object of type signed char; it must be at least 127.

SCHAR_MIN
Smallest value representable in an object of type signed char; it must be at most -127.

SHRT_MAX
Largest value representable in an object of type short int; it must be at least 32,767.

SHRT_MIN
Smallest value representable in an object of type short int; it must be at most -32,767.

UCHAR_MAX
Largest value representable in an object of type unsigned char; it must be at least 255.

UINT_MAX
Largest value representable in an object of type unsigned int; it must be at least 65,535.

ULONG_MAX
Largest value representable in an object of type unsigned long int; it must be at least
4,294,967,295.

USHRT_MAX
Largest value representable in an object of type unsigned short int; it must be at least
65,535.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
environmental considerations, header, numerical limits

link — Definition
To link a program means to resolve external references among individual source files. External
references may refer to data or code that reside in another translation unit.

Some function calls may be resolved by the inclusion of the code for that function from a library,
which consists of implementation-defined or user-defined functions.

LEXICON

link 49

See Also
compile, Definitions, linkage

linkage — Definition
The term linkage refers to the matching of an identifier with its namesakes across blocks of code,
and among files of source code, pretranslated object modules, and libraries.

Identifiers can have internal linkage, external linkage, or no linkage. An identifier with external
linkage is known across multiple translation units. An identifier with internal linkage is known only
within one translation unit. An identifier with no linkage has no permanent storage allocated for it
and is local to a function or block.

The following describes each type of linkage in more detail:

External linkage
The following identifiers have external linkage:

• Any identifier for a function that either has no storage-class identifier or is marked
with the storage-class identifier extern, but excluding ones marked with the storage-
class identifier static.

• Any global identifier that either has no storage-class identifier or is marked extern.

Internal linkage
The following identifiers have internal linkage:

• Any identifier marked static.

• Any identifier for a function that has file scope and is marked static.

No linkage
The following identifiers have no linkage:

• An identifier for anything that is not an object or function; e.g., a structure member, a
union member, an enumeration constant, a tag, or a label.

• Any identifier declared to be a function parameter.

• An identifier local to a block (i.e., an auto object), that does not have file scope and is
not marked extern.

An identifier with internal linkage may be up to at least 31 characters long, and may use both
upper- and lower-case characters. An identifier with external linkage, however, may have up to at
least six characters, and is not required to use both upper- and lower-case characters. These limits
are implementation defined.

An object marked extern will have the same linkage as any previous declaration of the same object
within that translation unit. If there is no previous declaration, the object has external linkage.

If an object appears in the same source file with external and internal linkage declarations, behavior
is undefined. This is called a linkage conflict. It may occur if an object is first declared extern, then
later re-declared to be static.

Cross-references
Standard, §3.1.2.2
The C Programming Language, ed. 2, p. 228

See Also
identifiers, name space, scope

LEXICON

50 linkage

local time —
The term local time refers to calendar time for the current locale.

The function localtime returns local time in the form of broken-down time.

Cross-reference
Standard, §4.12

See Also
broken-down time, calendar time, date and time, daylight savings time, localtime

locale.h — Header
Localization functions and macros
#include <locale.h>

locale.h is a header that declares or defines all functions and macros used to manipulate a
program’s locale. The Standard describes the following items within this header:

Type
lconv Structure for numeric formatting

Macros
LC_ALL All locale information
LC_COLLATE Locale collation information
LC_CTYPE Locale character-handling information
LC_MONETARY Locale monetary information
LC_NUMERIC Locale numeric information
LC_TIME Locale time information

Functions
localeconv initialize lconv structure
setlocale set/query locale

Cross-references
Standard, §4.4
The C Programming Language, ed. 2, pp

See Also
localization

Notes
An implementation may also define additional macros that examine the locale. All must begin with
LC_ followed by at least one capital letter. Such names are reserved, i.e., a maximally portable
program should not define such names, as they may conflict with those already established within
the implementation.

localeconv() — Localization (libc)
Initialize lconv structure
#include <locale.h>
struct lconv *localeconv(void);

localeconv initializes the structure lconv and returns a pointer to it. lconv describes the
formatting of numeric strings. For more information about this structure, see lconv.

LEXICON

local time — localeconv() 51

The function setlocale establishes all or part of pre-defined locale as the current locale. A call to
setlocale with the macros LC_ALL, LC_MONETARY, or LC_NUMERIC may alter a portion of lconv.

Cross-reference
Standard, §4.4.2.1

See Also
lconv, localization, locale.h, setlocale

localization — Overview
The Standard introduced the concept of localization to C programming.

The Problem
C was originally designed to implement the UNIX operating system. As such, its formatting
functions assumed that the Latin alphabet would be used (that is, the only characters a through z
and A through Z), assumed that no accented characters would be required, and also assumed that
numeric strings would be formatted as they are in the United States. Since its invention, however,
C has grown out of its original setting and its original country: it is now used internationally to write
a wide range of application software.

The Standard recognizes that C internally is based on the English language. That is, C’s keywords
and library names reflect its origin in English, and will continue to do so. Localization, however,
allows an application program to use the character set and formatting information that is specific to
a given country in certain aspects of the language.

A locale can be selected when the program is run, so applications can be user-selectable. It may
include things like monetary formatting, but preserve the underlying data: only the presentation
differs. Locales provide a standard way for software developers to use locale-specific information
without having to reinvent the wheel for each locale.

If an implementation of C supports various locales, then that locale information need not be
gathered by programmers who write applications software. Rather than each software house writing
support for European collating conventions or Japanese monetary formatting conventions, the
support is provided once, by the implementor, and in a standard fashion.

Locale Functions
The Standard describes two functions that can be used to access information specific to a given
locale.

setlocale can be used in either of two ways: to set the current locale, or to query the current locale
settings. Either part or all of a locale’s strings can be set or queried.

localeconv initializes an instance of the structure lconv and returns a pointer to it. This structure
holds information that can be used to print numeric and monetary strings. For more information
on this structure, see the entry for lconv.

The macros that begin with LC_ are defined in the header locale.h, and represent the categories of
locales (also known as locale strings). The following describes the areas of C that are affected by
locales.

Characters
A national character set may include characters that lie outside of the Latin alphabet.
Typically, these characters are not recognized as alphanumeric characters by functions like
isalpha. To tell the translator to use the alternative character table for a given locale, use
the call

LEXICON

52 localization

setlocale(LC_CTYPE, locale);

The character-handling routines that are defined in the header ctype.h will use this locale
information. This will also affect the functions that handle multibyte characters, as
described below.

Collation
The sorting of strings that include national characters may present a problem. Normal
collation functions depend upon the ASCII character order, and therefore do not know
where additional, locale-specific characters go within the national character set. The
Standard describes two functions, strcoll and strxfrm, that may collate strings which
contain locale-specific characters. To set the locale information needed by these functions
(so they know which national character order is used), use the call

setlocale(LC_COLL, locale);

strcoll and strxfrm will work in accordance with the current locale setting.

Date and Time
Most countries have an idiomatic way to express the current date and time. To set the
locale information needed by the function strftime, use the call:

setlocale(LC_TIME, locale);

strftime can read the locale and format date and time strings accordingly.

Decimal Point
Different countries may use different characters to mark the decimal point. Occasionally,
one character is used to mark the point in a numeric string and another to mark it in a
string that describes money. The structure lconv contains the field decimal_point, which
points to the character used to mark the decimal point in a numeric string.

To set the locale for functions that read or print the decimal point, use the call:

setlocale(LC_NUMERIC, locale);

All functions that perform string conversion, formatted output, or formatted input must
interpret this information so these characters will be handled properly.

Money Each country has its own way to format monetary values. The character that represents
the national currency varies from country to country, as does such aspects as whether the
symbol goes before or after the numerals, how a negative value is rendered, what character
is used to express a monetary decimal point (it may not be the same as the numeric decimal
point), and how many digits are normally printed after the decimal point.

To set the locale information for money, use the call:

setlocale(LC_MONETARY, locale);

The structure lconv, which is initialized by the function localeconv, holds information
needed to render monetary strings correctly.

Multibyte characters
Many countries, e.g., Japan and China, use systems of writing that use more characters
than can be represented within one byte. Many operating systems and terminal devices,
however, can receive only seven or eight bits at a time. To skirt this problem, the Standard
describes two ways to encode such extensive sets of characters: with wide characters and
multibyte characters.

A wide character is of type wchar_t. This type, in turn, is defined as being equivalent to the
integral type that can describe all of the unique characters in the character set. This type is

LEXICON

localization 53

used mainly to store such characters in a device-independent manner.

A multibyte character, on the other hand, consists of two or more chars that together are
understood by the terminal device as forming a non-alphabetic character or symbol. One
wide character may map out to any number of multibyte characters, depending upon the
number of systems of multibyte characters that are commonly in use.

The Standard describes five functions that manipulate wide characters and multibyte
characters: mblen, mbstowcs, mbtowc, wcstombs, and wctomb. The actions of these
functions are determined by the locale, as set by setlocale. To set a locale for the
manipulation of multibyte characters, use the following call:

setlocale(LC_CTYPE, locale);

The Standard does not describe the mechanism by which tables of multibyte characters are
made available to these functions.

Thousands
Large numbers can be broken up into groups of thousands to make them easier to read.
The manner of grouping, including the number of items in each group and the character
used to indicate the start of a new group, is locale specific.

The structure lconv, which is initialized by the function localeconv, contains the fields
thousands_sep, mon_grouping, and grouping, which hold this information.

Default Locale
The only locale required of all conforming implementations is the C locale. This is the minimum set
of locale strings needed to translate C source code. For a listing of what constitutes the C locale, see
lconv.

When a C program begins, it behaves as if the call

setlocale(LC_ALL, "C");

had been issued.

Mechanism for Setting Locales
The Standard does not describe the mechanism by which setlocale makes locale information
available to other functions, and by which the other functions use locale information. It is left to the
implementation.

Cross-reference
Standard, §4.4

See Also
compliance, lconv, Library, locale.h

Notes
The Standard’s section on compliance states that any program that uses locale-specific information
does not conform strictly to the Standard. Therefore, a program that uses any locale other than the
C locale is not strictly conforming. A programmer should not count on being able to port such a
program to any other implementation or execution environment.

LEXICON

54 localization

localtime() — Time function (libc)
Convert calendar time to local time
#include <time.h>
struct tm *localtime(const time_t *timeptr);

localtime takes the calendar time pointed to by timeptr and breaks it down into a structure of type
tm. Unlike the related function gmtime, localtime preserves the local time of the system.

localtime returns a pointer to the structure tm that it creates. This structure is defined in the
header time.h.

Example
The following example recreates the function asctime.

#include <stdio.h>
#include <time.h>

char *month[12] = {
"January", "February" "March", "April",
"May", "June", "July", "August",
"September", "October", "November", "December"

};

char *weekday[7] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

};

main()
{

char buf[20];
time_t tnum;
struct tm *ts;
int hour = 0;

/* get time from system */
time(&tnum);

/* convert time to tm struct */
ts=localtime(&tnum);

if(ts->tm_hour==0)
sprintf(buf,"12:%02d:%02d A.M.",

ts->tm_min, ts->tm_sec);

else
if(ts->tm_hour>=12) {

hour=ts->tm_hour-12;
if (hour==0)

hour=12;
sprintf(buf,"%02d:%02d:%02d P.M.",

hour, ts->tm_min,ts->tm_sec);

} else
sprintf(buf,"%02d:%02d:%02d A.M.",

ts->tm_hour, ts->tm_min, ts->tm_sec);

printf("\n%s %d %s 19%d %s\n",
weekday[ts->tm_wday], ts->tm_mday,
month[ts->tm_mon], ts->tm_year, buf);

LEXICON

localtime() 55

printf("Today is the %d day of 19%d\n",
ts->tm_yday, ts->tm_year);

if(ts->tm_isdst)
printf("Daylight Saving Time is in effect.\n");

else
printf("Daylight Saving Time is not in effect.\n");

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.12.3.4
The C Programming Language, ed. 2, p. 256

See Also
asctime, ctime, gmtime, local time, strftime, time manipulation, tm

log() — Mathematics (libm)
Compute natural logarithm
#include <math.h>
double log(double z);

log computes and returns the natural (base e) logarithm of its argument z. It is the inverse of the
function exp.

Handing log an argument less than zero triggers a domain error. Handing it an argument equal to
zero triggers a range error.

Cross-references
Standard, §4.5.4.4
The C Programming Language, ed. 2, p. 251

See Also
exp, exponent-log functions, frexp, ldexp, log10, modf

log10() — Mathematics (libm)
Compute common logarithm
#include <math.h>
double log10(double z);

log10 computes and returns the common (base 10) logarithm of its argument z.

Handing log10 an argument less than zero triggers a domain error. Handing it an argument equal
to zero triggers a range error.

Cross-references
Standard, §4.5.4.5
The C Programming Language, ed. 2, p. 251

See Also
exp, exponent-log functions, frexp, ldexp, log, modf

LEXICON

56 log() — log10()

logical operators — Overview
The C language has two operators that perform logical operations: && and ||. Their syntax is as
follows:

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

logical-OR-expression:
logical-AND-expression
logical-OR-expression || logical-AND-expression

The operator && performs a logical AND operation: if both operands are true (i.e., other than zero),
the result has a value of one. However, if either operand is false (equal to zero), the result has a
value of zero.

The operator || performs a logical OR operation: the result has a value of one if either operand is
true, or if both operands are true.

Both operands must have a scalar type. The resulting expression has type int.

Both operators evaluate their operands from left to right. In the case of the || operator, if the first
operand is true, then the second operand is not evaluated. In the case of the && operator, however,
if the first operand is false, then the second operand is not evaluated. In either case, if the second
operand yields a side-effect, then the result of the expression may not be what you expect. This type
of evaluation is sometimes called short-circuit evaluation, and is not found in some other languages
(e.g., Pascal).

Cross-references
Standard, §3.3.13, §3.3.14
The C Programming Language, ed. 2, p. 207

See Also
&&, ||, expressions

Notes
Programmers who require logical operators that always generate their side effects may be tempted to
use the bitwise AND and bitwise inclusive OR operators instead. You should remember, however,
that the order of evaluation of the operands of the bitwise operators is not guaranteed. Hence, you
will get all of the side effects, but possibly not in the order you expected.

LONG_MAX — Manifest constant
LONG_MAX is a macro that is defined in the header limits.h. It gives the largest value that can be
held by an object of type long int. It cannot be less than 2,147,483,647.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
limits

LEXICON

logical operators — LONG_MAX 57

LONG_MIN — Manifest constant
LONG_MIN is a macro that is defined in the header limits.h. It gives the smallest value that can be
held by an object of type long int. It must be at most -2,147,483,647.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
limits

long double — Type
A long double is a data type that represents at least a double-precision floating-point number. It is
defined as being at least as large as a double. In some environments, extra precision can be gained
by representing values with it.

Like all floating-point numbers, a long double consists of one sign bit, which indicates whether the
number is positive or negative; bits that encode the number’s exponent; and bits that encode the
number’s mantissa, or the number upon which the exponent works. The exponent often uses a
bias. This is a value that is subtracted from the exponent to yield the power of two by which the
fraction will be increased. The structure of a long double and the range of values that it can encode
are set in the following macros, all of which are defined in the header limits.h:

LDBL_DIG
This holds the number of decimal digits of precision. This must be at least ten.

LDBL_EPSILON
Where b indicates the base of the exponent (default, two) and p indicates the precision (or
number of base b digits in the mantissa), this macro holds the minimum positive floating-
point number x such that 1.0 + x does not equal 1.0, b^1-p. This must be at least 1E-9.

LDBL_MAX
This holds the maximum representable floating-point number. It must be at least 1E+37.

LDBL_MAX_EXP
This is the maximum integer such that the base raised to its power minus one is a
representable finite floating-point number. No value is given for this macro.

LDBL_MAX_10_EXP
This holds the maximum integer such that ten raised to its power is within the range of
representable finite floating-point numbers. It must be at least +37.

LDBL_MANT_DIG
This gives the number of digits in the mantissa. No value is given for this macro.

LDBL_MIN
This gives the minimum value encodable within a long double. This must be at least 1E-37.

LDBL_MIN_EXP
This gives the minimum negative integer such that when the base is raised to that power
minus one is a normalized floating-point number. No value is given for this macro.

LDBL_MIN_10_EXP
This gives the minimum negative integer such that ten raised to that power is within the
range of normalized floating-point numbers.

A long double constant is represented by the suffix l or L on a floating-point constant.

LEXICON

58 LONG_MIN — long double

Cross-references
Standard, §2.2.4.2, §3.1.2.4, §3.1.3.1, §3.5.2
The C Programming Language, ed. 2, p. 196

See Also
double, float, types

long int — Type
A long int is a signed integral type. This type can be no closer to zero than an int.

A long int can encode any number between LONG_MIN and LONG_MAX. These are macros that are
defined in the header limits.h. They must, respectively, be at least -2,147,483,647 and
2,147,483,647.

The types long, signed long, and signed long int are synonyms for long int.

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.2.1.1, §3.5.2
The C Programming Language, ed. 2, p. 211

See Also
int, short int, types

longjmp() — Non-local jumps (libc)
Execute a non-local jump
#include <setjmp.h>
void longjmp(jmp_buf environment, int rval);

A call to longjmp restores the environment that the function setjmp had stored within the array
jmp_buf. Execution then continues not at the point at which longjmp is called, but at the point at
which setjmp was called.

environment is the environment that had been saved by an earlier call to setjmp. It is of type
jmp_buf, which is defined in the header setjmp.h. The Standard mandates that jmp_buf be an
array type.

longjmp returns the value rval to the original call to setjmp, as if setjmp had just returned. rval
must be a number other than zero; if it is zero, then setjmp will return one.

Cross-references
Standard, §4.6.2.1
The C Programming Language, ed. 2, p. 254

See Also
non-local jumps, setjmp

Notes
Many user-level routines cannot be interrupted and reentered safely. For that reason, improper use
of longjmp and setjmp will result in the creation of mysterious and irreproducible bugs.

longjmp will work correctly in the contexts of interrupts, signals and any of their associated
functions. Also, longjmp’s behavior is undefined if it is used from within a function called by signal
received during the handling of a different signal.

Experience has shown that longjmp should not be used within an exception handler. The Standard
does not guarantee that programs will work correctly when longjmp is used to exit interrupts and
signals. Experience has shown that even if the longjmp terminates the signal handler and returns

LEXICON

long int — longjmp() 59

successfully to the context of the setjmp, the program can easily fail to complete the very next
function call it attempts, usually because the signal interrupted an update of a non-atomic data
structure. The Standard guarantees that the implementations of setjmp, longjmp, and signal will
work together; it cannot make any promises about the interactions of these services with other
library functions or with user code. Caveat utilitor.

lvalue — Definition
An lvalue designates an object in storage. An lvalue can be of any type, complete or incomplete,
other than type void.

A modifiable lvalue is any lvalue that is not of the following types:

• An array type.

• An incomplete type.

• Any type qualified by const.

• A structure or union with a member whose type is qualified by const, or with a member that is
a structure or union with a member that is so qualified.

Only a modifiable lvalue is permitted on the left side of an assignment statement.

An lvalue normally is converted to the value that is stored in the designated object. When this
occurs, it ceases to be an lvalue. For some lvalues, however, this does not occur, as follows:

• Any array type.

• When the lvalue is the operand of the operators sizeof, unary &, --, or ++.

• When the lvalue is the left operand of the . operator.

• When the lvalue is the left operand of any assignment operator.

An lvalue with an array type is normally converted to a pointer to the same type. The value of the
pointer is the address of the first member of the array. The exceptions to this operation are as
follows:

• When it is the operand of the operators sizeof or unary &.

• When it is a string literal that initializes an array of char.

• When it is a string literal of wide characters that initializes an array of wchar_t.

In addition to the restrictions listed above, the following are also not lvalues, and hence cannot
appear on the left side of an assignment statement:

• String literals.

• Character constants.

• Numeric constants.

Cross-references
Standard, §3.2.2.1
The C Programming Language, ed. 2, p. 197

See Also
conversions, function designator, rvalue

LEXICON

60 lvalue

Notes
The term itself originally came from the phrase left value; in an expression like

object = value;

the element to the left of the = is the object whose value is modified. Because the Standard
distinguishes between lvalues and modifiable lvalues, it prefers to define lvalue as being a
contraction of the phrase locator value.

LEXICON

lvalue 61

macro replacement — Overview
A macro is a sequence of tokens that is given a name. When a program defines a macro, the
preprocessor scans the source file for the macro’s name and replaces it with its tokens. This
process is called macro replacement or macro expansion.

To define a macro, use the preprocessing directive #define. The preprocessor recognizes two
varieties of macros: object-like and function-like. For more information on macro definition, see
#define.

When the translator performs macro substitution, the translation unit has already been turned into
preprocessing tokens, with all escape sequences and trigraphs resolved. After a macro has been
expanded, the expanded text is scanned again to see if the expansion itself contains any macros (not
including the original macro that has already been expanded). This re-scanning continues until no
further replacement is possible.

Cross-references
Standard, §3.8.3
The C Programming Language, ed. 2, pp. 229ff

See Also
preprocessing

main — Definition
main is the name of the function that is called when a program begins execution under a hosted
environment. A program must have one function named main. This function is special not only
because it marks the beginning of program execution, but because it is the only function that may
be called with either zero arguments or two arguments:

int main(void) { }

or

int main(int argc, char *argv[]) { }

Some implementations of C allow main to take three or more arguments. Programs that use more
than two arguments to main, however, do not conform strictly to the Standard.

The two standard arguments to main are called argc and argv. These names are used by
convention; a programmer may use any names he wishes.

argv points to an array of pointers to strings. These strings can modify the operation of the
program; thus, they are called program parameters. argc gives the number of strings in the array to
which argv points.

If main calls return, it is equivalent to its calling exit with the same parameter. For example, the
statement

LEXICON

62 macro replacement — main

return(EXIT_SUCCESS);

in main is equivalent to the call

exit(EXIT_SUCCESS);

If main returns without returning a value to the host environment, the value that is returned to the
host environment is undefined.

Cross-references
Standard, §2.1.2.2
The C Programming Language, ed. 2, pp. 6, 164

See Also
argc, argv, hosted environment

malloc() — General utility (libc)
Allocate dynamic memory
#include <stdlib.h>
void *malloc(size_t size);

malloc allocates a block of memory size bytes long.

malloc returns a pointer to the block of memory it has allocated. The pointer is aligned for any type
of object. If it could not allocate the amount of memory requested, it returns NULL.

Example
For an example of this function, see realloc.

Cross-references
Standard, §4.10.3.3
The C Programming Language, ed. 2, p. 167

See Also
alignment, calloc, free, memory management, realloc

Notes
If size is set to zero, the behavior of malloc is implementation defined: malloc returns either NULL
or a unique pointer. This is a quiet change that may silently break some existing code.

manifest constant — Definition
A manifest constant is a value that has been given a name. Although this term is commonly used by
programmers, the Standard prefers to call it a macro.

The following demonstrates the definition of a manifest constant:

#define MAXFILES 9

Here, the constant MAXFILES is defined as having the value of nine. During the preprocessing
phase of translation, the translator will substitute the character 9 for MAXFILES wherever it
appears or behave as if it had made such a substitution.

These constants serve two purposes within a C program: First, a constant can be changed
throughout the program simply by changing its definition. Second, a programmer who reads the
program will find it easier to understand the meaning of a well-named manifest constant than to
understand its numeric analogue; for example, it is easy to grasp that MAXFILES represents the
maximum number of files, but it is not nearly as easy to understand what 9 means.

LEXICON

malloc() — manifest constant 63

Manifest constants have file scope, unless undefined with an #undef directive.

Cross-reference
The C Programming Language, ed. 2, p. 230

See Also
Definitions, macro, scope

Notes
The C Programming Language calls these constants symbolic constants.

math.h — Header
Header for mathematics functions
#include <math.h>

math.h is the header file that declares and defines mathematical functions and macros.

The Standard describes three macros to be included in math.h, as follows:

EDOM Domain error
ERANGE Range error
HUGE_VAL Unrepresentable object

The first two are used to set the global variable errno to an appropriate value when, respectively, a
domain error or a range error occurs. HUGE_VAL is returned when any mathematics function
attempts to calculate a number that is too large to be encoded into a double.

The Standard also describes 22 mathematics functions that are to be included with every
implementation of C. For a listing of them, see mathematics.

Cross-references
Standard, §4.5
The C Programming Language, ed. 2, p. 250

See Also
header, mathematics

mathematics — Overview
The Standard describes 22 mathematics functions that are to be included with every conforming
implementation of C, as follows:

60u
Exponent-log functions

exp Compute exponential
frexp Fracture floating-point number
ldexp Load floating-point number
log Compute natural logarithm
log10 Compute common logarithm
modf Separate floating-point number

Hyperbolic functions
cosh Calculate hyperbolic cosine
sinh Calculate hyperbolic sine
tanh Calculate hyperbolic tangent

Integer, value, remainder

LEXICON

64 math.h — mathematics

ceil Set integral ceiling of a number
fabs Compute absolute value
floor Set integral floor of a number
fmod Calculate modulus for floating-point number

Power functions
pow Raise one number to the power of another
sqrt Calculate the square root of a number

Trigonometric functions
acos Calculate inverse cosine
asin Calculate inverse sine
atan Calculate inverse tangent
atan2 Calculate inverse tangent
cos Calculate cosine
sin Calculate sine
tan Calculate tangent

The Standard reserves all names that match those in this section and have a suffix of f or l, e.g.,
ftan or ltan. A future version of the Standard may provide additional library support for functions
that manipulate floats or long doubles.

Some existing implemetations may, on detection of domain or range errors, or other exceptional
conditions, allow the function in question to call a user-specified exception handler, matherr. UNIX
implementations have traditionally behaved this way. The Standard, in trying to accommodate a
wide range of floating-point implementations, does not allow this behavior.

Cross-references
Standard, §4.5
The C Programming Language, ed. 2, p. 250

See Also
domain error, range error, HUGE_VAL, Library, math.h

Notes
The Standard excludes the functions ecvt, fcvt, and gcvt, on the grounds that everything they do
can be done more easily by the function sprintf.

MB_CUR_MAX — Manifest constant
Largest size of a multibyte character in current locale
#include <stdlib.h>

MB_CUR_MAX is a macro that is defined in the header stdlib.h. It expands into an expression that
indicates the maximum number of bytes contained in a multibyte character in the current locale.

The value that MB_CUR_MAX yields is affected by the current locale, as set by the function
setlocale. For more information on locales, see localization. Note, however, that its value is never
greater than that of the macro MB_MAX_LEN, which is also defined in the header stdlib.h.

Cross-references
Standard, §4.10.7
The C Programming Language, ed. 2, pp

See Also
MB_MAX_LEN, mblen, mbtowc, multibyte characters, wctomb

LEXICON

MB_CUR_MAX 65

MB_LEN_MAX — Manifest constant
Maximum size of MB_CUR_MAX

MB_LEN_MAX is a macro that is defined in the header limits.h. It gives the maximum number of
bytes in any multibyte character, for any locale. It must be defined to be at least one. The macro
MB_CUR_MAX will never be set to a value larger than that of MB_LEN_MAX.

Cross-reference
Standard, §2.2.4.2

See Also
limits, MB_CUR_MAX, multibyte characters

mblen() — General utility (libc)
Return length of a string of multibyte characters
#include <stdlib.h>
int mblen(const char *address, size_t number);

The function mblen checks to see if the number or fewer bytes of storage pointed to by address form
a legitimate multibyte character. If they do, it returns the number of bytes that comprise that
character. This function is equivalent to the call

mbtowc((wchar_t *)0, address, number);

If address is equivalent to NULL, then mblen returns zero if the current multibyte character set
does not have state-dependent encodings and nonzero if it does. If address is not NULL, then
mblen returns the following: (1) If address points to a null character, then mblen returns zero. (2)
If the number or fewer bytes pointed to by address forms a legitimate multibyte character, then
mblen returns the number of bytes that comprise the character. (3) Finally, if the number bytes
pointed to by address do not form a legitimate multibyte character, mblen returns -1. In no
instance is the value returned by mblen greater than number or the value of the macro
MB_CUR_MAX, whichever is less.

Cross-reference
Standard, §4.10.7.1

See Also
MB_CUR_MAX, mbtowc, multibyte characters, wchar_t, wctomb

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

mbstowcs() — General utility (libc)
Convert sequence of multibyte characters to wide characters
#include <stdlib.h>
size_t mbstowcs(wchar_t *widechar, const char *multibyte, size_t number);

The function mbstowcs converts a sequence of multibyte characters to their corresponding wide
characters. It is the same as a series of calls of the type:

mbtowc(widechar, multibyte, MB_LEN_MAX);

except that the call to mbstowcs does not affect the internal state of mbtowc.

multibyte points to the base of the sequence of multibyte characters to be converted to wide

LEXICON

66 MB_LEN_MAX — mbstowcs()

characters. widechars points to the area where the converted characters are written, and number is
the number of characters to convert. mbstowcs converts characters until either it reads a null
character, or until it has converted number characters. In the latter case, then, no null character is
written onto the end of the sequence of wide characters.

mbstowcs returns -1 cast to size_t if it encounters an invalid multibyte character before it has
converted number multibyte characters. Otherwise, it returns the number of multibyte characters it
converted to wide characters, excluding the null character that ends the sequence.

Cross-reference
Standard, §4.10.7.2

See Also
multibyte characters, wcstombs

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

mbtowc() — General utility (libc)
Convert a multibyte character to a wide character
#include <stdlib.h>
int mbtowc(wchar_t *charptr, const char *address, size_t number);

The function mbtowc converts number or fewer bytes at address from a multibyte character to a
wide character and stores the result in the area pointed to by charptr.

The behavior of mbtowc varies depending upon the values of address and charptr, as follows:

1. If address and charptr each point to a value other than NULL, then mbtowc reads the area
pointed to by address and checks to see if number or fewer bytes comprise a legitimate
multibyte character.

If they do, then mbtowc stores the wide character that corresponds to that multibyte character
in the area pointed to by charptr and returns the number of bytes that form the multibyte
character.

If address does not point to the beginning of a legitimate multibyte character, then mbtowc
returns -1.

Finally, if address points to a null character, mbtowc returns zero.

In no instance does the value returned by mbtowc exceed number or value of the macro
MB_CUR_MAX, whichever is less.

2. If charptr is set to NULL and address is set to a value other than NULL, then mbtowc behaves
exactly like the function mblen: it examines the area pointed to by address but does not
convert the multibyte character to a wide character.

3. If address is set to NULL, or both address and charptr are set to NULL, then mbtowc checks to
see if the current multibyte character set have state-dependent encodings. mbtowc returns
zero if the set does not have state-dependent encodings, and a number greater than zero if it
does. It does not store anything in the area pointed to by charptr.

Cross-reference
Standard, §4.10.7.3

LEXICON

mbtowc() 67

See Also
MB_CUR_MAX, mblen, multibyte characters, wchar_t, wctomb

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

member — Definition
A member names an element within a structure or a union. It can be accessed via the member-
selection operators . or ->. For example, consider the following:

struct example {
int member1;
long member2;
example *member3;

};

struct example object;
struct example *pointer = &object;

To read the contents of member1 within object, use the ., as follows:

object.member1

On the other hand, to read the contents of member1 via pointer, use the -> operator:

pointer->member1

The same is true for a union, but with the following restriction: if a value is stored in one member of
a union, then attempting to read another member of the union generates implementation-defined
behavior. This restriction has one exception. If the union consists of several structures that have a
common initial sequence, then that common sequence can be read when a value is written into any
of the structures.

Cross-references
Standard, §3.1.2.6, §3.3.2.3
The C Programming Language, ed. 2, p. 128

See Also
->, ., name space, struct, union

memchr() — String handling (libc)
Search a region of memory for a character
#include <string.h>
void *memchr(const void *region, int character, size_t n);

memchr searches the first n characters in region for character. It returns a pointer to character if it
is found, or NULL if it is not.

Unlike the string-search function strchr, memchr searches a region of memory. Therefore, it does
not stop when it encounters a null character.

Example
The following example deals a random hand of cards from a standard deck of 52. The command line
takes one argument, which indicates the size of the hand you want dealt. It uses an algorithm
published by Bob Floyd in the September 1987 Communications of the ACM.

LEXICON

68 member — memchr()

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define DECK 52

main(int argc, char *argv[])
{

char deck[DECK], *fp;
int deckp, n, j, t;

if(argc != 2 ||
52 < (n = atoi(argv[1])) ||
1 > n) {

printf("usage: memchr n # where 0 < n < 53\n");
exit(EXIT_FAILURE);

}

/* exercise rand() to make it more random */
srand((unsigned int)time(NULL));
for(j = 0; j < 100; j++)

rand();

deckp = 0;
/* Bob Floyd’s algorithm */
for(j = DECK - n; j < DECK; j++) {

t = rand() % (j + 1);
if((fp = memchr(deck, t, deckp)) != NULL)

*fp = (char)j;
deck[deckp++] = (char)t;

}

for(t = j = 0; j < deckp; j++) {
div_t card;

card = div(deck[j], 13);
t += printf("%c%c ",

/* note useful string addressing */
"A23456789TJQK"[card.rem],
"HCDS"[card.quot]);

if(t > 50) {
t = 0;
putchar(’\n’);

}
}

putchar(’\n’);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.1
The C Programming Language, ed. 2, p. 250

See Also
strchr, strcspn, string searching, strpbrk, strrchr, strspn, strstr, strtok

LEXICON

memchr() 69

memcmp() — String handling (libc)
Compare two regions
#include <string.h>
int memcmp(const void *region1, const void *region2, size_t count);

memcmp compares region1 with region2 character by character for count characters.

If every character in region1 is identical to its corresponding character in region2, then memcmp
returns zero. If it finds that a character in region1 has a numeric value greater than that of the
corresponding character in region2, then it returns a number greater than zero. If it finds that a
character in region1 has a numeric value less than less that of the corresponding character in
region2, then it returns a number less than zero.

For example, consider the following code:

char region1[13], region2[13];
strcpy(region1, "Hello, world");
strcpy(region2, "Hello, World");
memcmp(region1, region2, 12);

memcmp scans through the two regions of memory, comparing region1[0] with region2[0], and so
on, until it finds two corresponding slots in the arrays whose contents differ. In the above example,
this will occur when it compares region1[7] (which contains w) with region2[7] (which contains W).
It then compares the two letters to see which stands first in the character table used in this
implementation, and returns the appropriate value.

Cross-references
Standard, §4.11.4.1
The C Programming Language, ed. 2, p. 250

See Also
strcmp, strcoll, string comparison, strncmp, strxfrm

Notes
memcmp differs from the string comparison routine strcmp in the following ways:

First, memcmp compares regions of memory rather than strings; therefore, it does not stop when it
encounters a null character.

Second, memcmp takes two pointers to void, whereas strcmp takes two pointers to char. The
following code illustrates how this difference affects these functions:

char carray[10];
int iarray[10];
char *s = "hi";

. . .
strcmp(carray, s) /* RIGHT */
memcmp(carray, s, 3) /* RIGHT */
strcmp(iarray, s) /* WRONG, 1st arg not char * */
memcmp(iarray, s, 3) /* RIGHT, args converted to void * */

It is wrong to use strcmp to compare an int array with a char array because this function compares
strings. Using memcmp to compare an int array with a char array is permissible because
memcmp simply compares areas of data.

LEXICON

70 memcmp()

memcpy() — String handling (libc)
Copy one region of memory into another
#include <string.h>
void *memcpy(void *region1, const void *region2, size_t n);

memcpy copies n characters from region2 into region1. Unlike the routines strcpy and strncpy,
memcpy copies from one region to another. Therefore, it will not halt automatically when it
encounters a null character.

memcpy returns region1.

Example
The following example copies a structure and displays it.

#include <string.h>
#include <stdio.h>

struct stuff {
int a, b, c;

} x, y;

main(void)
{

x.a = 1;
/* this would stop strcpy or strncpy. */
x.b = 0;
x.c = 3;

/* y = x; would do the same */
memcpy(&y, &x, sizeof(y));
printf("a =%d, b =%d, c =%d\n", y.a, y.b, y.c);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.2.1
The C Programming Language, ed. 2, p. 250

See Also
memmove, strcpy, string copying, strncpy

Notes
If region1 and region2 overlap, the behavior of memcpy is undefined. region1 should point to
enough reserved memory to hold n bytes of data; otherwise, code or data will be overwritten.

memmove() — String handling (libc)
Copy region of memory into area it overlaps
#include <string.h>
void *memmove(void *region1, const void *region2, size_t count);

memmove copies count characters from region2 into region1. Unlike memcpy, memmove correctly
copies the region pointed to by region2 into that pointed by region1 even if they overlap. To correctly
copy means that the overlap does not propagate, not that the moved data stay intact. Unlike the
string-copying routines strcpy and strncpy, memmove continues to copy even if it encounters a
null character.

memmove returns region1.

LEXICON

memcpy() — memmove() 71

Example
The following example rotates a block of memory by one byte.

#include <string.h>
#include <stddef.h>
#include <stdio.h>

char *
rotate_left(char *region, size_t len)
{

char sav;

sav = *region;
/* with memcpy this might propagate the last char */
memmove(region, region + 1, --len);
region[len] = sav;
return(region);

}

char nums[] = "0123456789";
main(void)
{

printf(rotate_left(nums, strlen(nums)));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.2.2 The C Programming Language, ed. 2, p. 250

See Also
memcpy, strcpy, string copying, strncpy

Notes
region1 should point to enough reserved memory to hold the contents of region2. Otherwise, code or
data will be overwritten.

memory management — Overview
#include <stdlib.h>
Memory management refers to the dynamic allocation and deallocation of memory within a program.

Dynamic memory allocation can be contrasted with static allocation. Static allocation of memory
occurs when the program is translated and the translator reserves space for objects declared within
the program. When the program is run, these objects may live in memory, on the stack, or in
registers.

Dynamic allocation occurs as the program is run. Objects that are allocated dynamically may be
located in a separate area of memory, which may be called the heap or the arena. One common
application that uses dynamic memory is a linked-list structure.

The Standard describes four routines that allocate and deallocate memory, as follows:

calloc Allocate and clear dynamic memory
free De-allocate dynamic memory
malloc Allocate dynamic memory
realloc Reallocate dynamic memory

calloc, malloc, and realloc each returns a pointer to the block of memory allocated; the pointer is
aligned for any type of object. They return NULL if the requested amount of memory cannot be
allocated. calloc also fills with zeroes the space it allocates. realloc is used to change the size of a

LEXICON

72 memory management

block already allocated.

free deallocates memory to make it available for reuse. Using free to deallocate a block of memory
that had not been allocated with one of the above functions produces undefined behavior.

Cross-references
Standard, §4.10.3
The C Programming Language, ed. 2, p. 167

See Also
alignment, general utilities

Notes
If you attempt to allocate a block of memory that is zero bytes long, the behavior of calloc, malloc,
and realloc is implementation-defined: they return either NULL or a unique pointer. This is a quiet
change that may silently break some existing code.

memset() — String handling (libc)
Fill an area with a character
#include <string.h>
void *memset(void *buffer, int character, size_t n);

memset fills the first n bytes of the area pointed to by buffer with copies of character. It casts
character to an unsigned char before filling buffer with copies of it.

memset returns the pointer buffer.

Example
The following example fills an area with X, and prints the result.

#include <stdio.h>
#include <string.h>
#define BUFSIZ 20

main(void)
{

char buffer[BUFSIZ];

/* fill buffer with ’X’ */
memset(buffer, ’X’, BUFSIZ);

/* append null to end of buffer */
buffer[BUFSIZ-1] = ’\0’;

/* print the result */
printf("%s\n", buffer);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.6.1
The C Programming Language, ed. 2, p. 250

See Also
memchr, memcmp, memcpy, memmove, string miscellaneous

LEXICON

memset() 73

minimum maxima —
The Standard, unlike The C Programming Language, sets numerical limits for some aspects of C.
The range of each numeric type, the number of #include files that can be opened, the depth of
function nesting each is given a minimum value that every implementation must meet. The term
minimum maxima (singular, minimum maximum) refers to the fact that most of the Standard’s
limits are minimal; that is, an implementation may exceed these limits.

For example, a byte is defined as having at least eight bits. Here, eight is the Standard’s minimum
maximum for byte: a byte may have any number of bits, as long as it does not have fewer than eight.

Cross-reference
Rationale, §1.1

See Also
limits.h, Rationale

mktime() — Time function (libc)
Turn broken-down time into calendar time
#include <time.h>
time_t mktime(struct tm *timeptr);

mktime reads broken-down time from the structure pointed to by timeptr and converts it into
calendar time of the type time_t. It does the opposite of the functions localtime and gmtime, which
turn calendar time into broken-down time.

mktime manipulates the structure tm as follows:

1. It reads the contents of the structure, but ignores the fields tm_wday and tm_yday.

2. The original values of the other fields within the tm structure need not be restricted to the
values described in the article for tm. This allows you, for example, to increment the member
tm_hour to discover the calendar time one hour hence, even if that forces the value of tm_hour
to be greater than 23, its normal limit.

3. When calculation is completed, the values of the fields within the tm structure are reset to
within their normal limits to conform to the newly calculated calendar time. The value of
tm_mday is not set until after the values of tm_mon and tm_year.

4. The calendar time is returned.

If the calendar time cannot be calculated, mktime returns -1 cast to time_t.

Example
This example gets the date from the user and writes it into a tm structure.

#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define BAD_TIME ((time_t)-1)

/* ask for a number and return it. */
int
askint(char * msg)
{

char buf[20];

LEXICON

74 minimum maxima — mktime()

printf("Enter %s ", msg);
fflush(stdout);

if(gets(buf) == NULL)
exit(EXIT_SUCCESS);

return(atoi(buf));
}

main(void)
{

struct tm t;

for(;;) {
t.tm_mon = askint("month");
t.tm_mday = askint("day");
t.tm_year = askint("year");
t.tm_hour = t.tm_min = t.tm_sec = 1;

if(BAD_TIME == mktime(&t)) {
printf("Invalid date\n");
continue;

}

printf("Day of week is %d\n", t.tm_wday);
break;

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.12.2.3
The C Programming Language, ed. 2, p. 256

See Also
clock, difftime, time, time manipulation

Notes
The above description may appear to be needlessly complex. However, the Committee intended that
mktime be used to implement a portable mechanism for determining time and for controlling time-
dependent loops. This function is needed because not every environment describes time internally
as a multiple of a known time unit.

modf() — Mathematics (libm)
Separate floating-point number
#include <math.h>
double modf(double real, double *ip);

modf breaks the floating-point number real into its integer and fraction.

modf stores the integer in the location pointed to by ip, and returns the fraction real. Both the
integer and the fraction have the same sign. f in the range 0 <= f < 1.

Cross-references
Standard, §4.5.4.6
The C Programming Language, ed. 2, p. 251

See Also
exp, exponent-log functions, frexp, ldexp, log, log10, modf

LEXICON

modf() 75

multibyte characters — Overview
C was invented at Bell Laboratories as a portable language for implementing the UNIX operating
system. Since then, C has grown into a language used throughout the world, for both operating
systems and applications.

The character sets of many nations are too large to be encoded within one eight-bit byte. The
Japanese Kanji characters form one such set; the ideograms of Mandarin Chinese form another.
For the sake of brevity, the following discussion will call such sets large-character sets. A character
from a large character set will be called a large character.

Wide Characters
The Standard describes two ways to encode a large character: by using a multibyte character or a
wide character.

wchar_t is a typedef that is declared in the header stdlib.h. It is defined as the integral type that
can represent all characters of given national character set.

The following restrictions apply to objects of this type: (1) The null character still has the value of
zero. (2) The characters of the standard C character set must have the same value as they would
when used in ordinary chars. (3) EOF must have a value that is distinct from every other character
in the set.

wchar_t is a typedef of an integral type, whereas a multibyte character is a bundle of one or more
one-byte characters. The format of a multibyte character is defined by the implementation, whereas
a wchar_t can be used across implementations.

Wide characters are used to store large character sets in a device-independent manner. Multibyte
characters are used most often to pass large characters to a terminal device. Most terminal devices
can receive only one byte at a time. Thus, passing the pieces of a wide character to a terminal
would undoubtedly create problems; the individual characters of a multibyte character, however,
can be passed safely. This is also important because the Standard does not describe any function
that reads more than one byte from a stream at any time there is no Standard version of fgetw or
fputw.

Multibyte Characters
The Standard describes multibyte characters as follows:

• A multibyte character may not contain a null character or 0xFF (-1, or EOF) as one of its bytes.

• All of the characters in the C character set must be present in any set of multibyte characters.

• An implementation of multibyte characters may use a shift state or a special sequence of
characters that marks when a sequence of multibyte characters begins and when it ends.
Depending upon the shift state, the bytes of a multibyte character may either be read as
individual characters or as forming one multibyte character. Note, too, that a shift state may
allow state-dependent coding, by which one of a number of possible sets of multibyte characters
is indicated by the shift state.

• A comment, string literal, or character constant must begin and end in the same shift state.
For example, a comment cannot consist of multibyte characters mixed with single-byte
characters; it must be all one or all the other. If a comment, string literal, or character
constant is built of multibyte characters, each such character must be valid.

Multibyte Character Functions
The support added to the C language for multibyte characters thus far is limited to character
constants, string literals, and comments. The Standard describes five functions that handle
multibyte characters:

LEXICON

76 multibyte characters

mblenCompute length of a multibyte character
mbstowcs Convert sequence of multibyte characters to wide characters
mbtowc Convert multibyte character to wide character
wcstombs Convert sequence of wide characters to multibyte characters
wctomb Convert a wide character to a multibyte character

As mentioned above, a wide character is encoded using type wchar_t. The macro MB_CUR_MAX
holds the largest number of characters of any multibyte character for the current locale. It is never
greater than the value of the macro MB_LEN_MAX. wcstombs and mbstowcs convert sequences of
characters from one type to the other.

All of the above are defined in the header stdlib.h.

Localization
The sets of multibyte characters and wide characters recognized by the above functions are
determined by the program’s locale, as set by the function setlocale.

To load the appropriate sets of multibyte characters and wide characters, use the call

setlocale(LC_CTYPE, locale);

or

setlocale(LC_ALL, locale);

See the entry for localization for more information.

Cross-reference
Standard, §2.2.1.2, §4.10.7

See Also
general utilities

Notes
Because compiler vendors are active in Asia, and because there is an active Japanese standards
organization, a future version of the Standard may include more extensive support for multibyte
characters, such as additional library functions. The support added to the C language for multibyte
characters thus far is limited to character constants, string literals, and comments.

At present, all function names that begin with wcs are reserved. They should not be used if you
wish your code to be maximally portable.

multiplicative operators — Overview
C includes the following multiplicative operators:

* Multiply two operands
/ Divide two operands and return the quotient
% Divide two operands and return the remainder

Their syntax is as follows:

multiplicative expressions:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

LEXICON

multiplicative operators 77

The operands for the * and / operations must have arithmetic type; those for the % operation must
have integral type. Each operand undergoes normal arithmetic conversion. The result of each
operation has the type to which the operands are promoted.

In the operations / or %, the behavior is undefined if the right operand is zero. In the / operation, if
either operand is negative the implementation defines the method of rounding, i.e., whether the
result is the largest integer that is less than the algebraic quotient, or the smallest integer that is
greater than the algebraic quotient. In the % operation, the implementation defines the sign of the
result if either operand is negative.

Finally, if the result of X/Y can be represented, (X/Y)*Y+(X%Y) must equal X.

Cross-references
Standard, §3.3.5
The C Programming Language, ed. 2, p. 205

See Also
expressions

Notes
The order of evaluation of these operators is undefined. For example,

function1() * function2();

may call either function1 or function2 first.

(0 * function1());

may legally never call function1 as the result may be determined without it. You should avoid
expressions in which the order of evaluation is important.

LEXICON

78 multiplicative operators

name space — Definition

The term name space refers to the list where the translator records an identifier. Each name space
holds a different set of identifiers. If two identifiers are spelled exactly the same and appear within
the same scope but are not in the same name space, they are not considered to be identical.

The four varieties of name space, as follows:

Label names
The translator treats every identifier followed by a colon : or that follows a goto statement
as a label.

Tags A tag is the name that follows the keywords struct, union, or enum. It names the type of
object so declared.

Members
A member names a field within a structure or a union. A member can be accessed via the
operators . or ->. Each structure or union type has a separate name space for its members.

Ordinary identifiers
These name ordinary functions and variables. For example, the expression

int example;

declares the ordinary identifier example to name an object of type int.

The Standard reserves external identifiers with leading underscores to the implementor. To reduce
name-space pollution, the implementor should not reserve anything that is not explicitly defined in
the Standard (macros, typedefs, etc.) and that does not begin with a leading underscore.

Example
The following program illustrates the concept of name space. It shows how the identifier foo can be
used numerous times within the same scope yet still be distinguished. This is extremely poor
programming style. Please do not write programs like this.

#include <stdio.h>
#include <stdlib.h>

/* structure tag */
struct foo {

/* structure member */
struct foo *foo;
int bar;

};

LEXICON

name space 79

main(void)
{

/* ordinary identifier */
struct foo *foo;
int i = 0;

foo = (struct foo *)malloc(sizeof(foo));
foo->bar = ++i;
foo->foo = NULL;

/* label */
foo: printf("Chain, chain, chain -- chain of \"foo\"s.\n");

if (foo->foo == NULL) {
foo->foo = (struct foo *)malloc(sizeof(foo));
foo->foo->foo = NULL;
foo->foo->bar = ++i;
goto foo;

}

printf("The foo loop executed %d times\n", foo->foo->bar);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §3.1.2.3

See Also
identifiers, linkage, scope

Notes
Pre-ANSI implementations disagree on the name spaces of structure/union members. The
Standard adopted the Berkeley rules, which state that every unique structure/union type has its
own name space for its members. It rejected the rules of the first edition of The C Programming
Language, which state that the members of all structures/unions reside in a common name space.

NDEBUG — Manifest constant

Turn off assert()

NDEBUG is a macro that is referenced in the header assert.h.

NDEBUG can be defined from the command line, or from another header that is included prior to
including assert.h. Defining it will turn off assertion checking in your program.

When it is defined before the header assert.h is included, the macro assert is redefined as

#define assert(ignore)

This, in effect, turns off assert.

If an expression tested by assert has side effects, then using the NDEBUG macro as described here
will change the behavior of the program.

Cross-references
Standard, §4.2
The C Programming Language, ed. 2, p. 254

See Also
assert, assert.h, diagnostics

LEXICON

80 NDEBUG

nondigit — Definition

In the context of identifiers, a nondigit is any one of the following characters:

_ a b c d e f g h
i j k l m n o p q
r s t u v w x y z
A B C D E F G H I
J K L M N O P Q R
S T U V W X Y Z

Cross-reference
Standard, §3.1.2

See Also
digit, identifiers

non-local jumps — Overview

At times, exceptional conditions arise in a program that make it desirable to jump to a previous
point within the program. goto can jump from one point to another within the same function, but it
does not permit a jump from one function to another. The setjmp/longjmp mechanism was
created to allow a program to jump immediately from one function to another, i.e., to perform a non-
local jump.

The macro setjmp reads the machine environment and stores the environment in the array
jmp_buf, which must be an array. The machine environment consists of the elements that
determine the behavior of the machine, e.g., the contents of machine registers. What constitutes the
machine environment will vary greatly from machine to machine. It may be impossible on some
machines to save such elements of the machine environment as register variables and the contents
of the stack or to restore the machine environment from within an extraordinarily complex
computation.

For example, consider the following:

{
int status[3][3][3], fn();
jmp_buf buf;
status[fn(1)][fn(2)][fn(3)] = setjmp(buf);

}

Here, the translator is trying to store the return value of setjmp into an array element with
extremely complex index computations. It cannot be guaranteed that on every machine, the proper
array element will be overwritten on reentry. For this reason, the Standard states that setjmp can
be expected to save the machine environment only if used in a simple expression, such as in an if or
switch statement.

The function longjmp jumps back to the point marked by the earlier invocation of setjmp. It
restores the machine environment that setjmp had saved. This allows longjmp to perform a non-
local jump.

A non-local jump can be dangerous. For example, many user-level routines cannot be interrupted
and reentered safely. Thus, improper use of longjmp and setjmp with them will create mysterious
and irreproducible bugs.

The Standard mandates that longjmp work correctly in the contexts of interrupts, signals and any
of their associated functions. Experience has shown, however, that longjmp should not be used
within an exception handler that interrupts STDIO routines.

LEXICON

nondigit — non-local jumps 81

longjmp must not restore the machine environment of a routine that has already returned.

Cross-references
Standard, §4.6
The C Programming Language, ed. 2, p. 254

See Also
jmp_buf, jump statements, Library, setjmp.h

Notes
longjmp’s behavior is undefined if it is invoked from within a function that is called by a signal that
is received during the handling of another signal. See signal handling for more information on
signals.

NULL — Macro

Null pointer
#include <stddef.h>

NULL is a macro that is defined in the header stddef.h. It defines the null pointer constant.

The Rationale notes that NULL can be defined as being equivalent to zero, 0L, or (void *)0. The last
is necessary under environments where a pointer is not the same size as any existing integer type.

The Rationale also cautions against using NULL as an explicit argument to any function that
expects a pointer on the grounds that, under some environments, pointers to different data types
may be of different lengths. All such problems will be avoided if a function prototype is within the
scope of the function call. Then, NULL will be transformed automatically to the proper type of
pointer. See function prototype for more information.

Cross-references
Standard, §4.1.5
The C Programming Language, ed. 2, p. 102

See Also
Library, null pointer constant, pointer, stddef.h

Notes
Because much existing code assumes that NULL is of type char *, the Standard requires objects of
type void * to have the same representation as objects of type char *.

null character —

The null character is a character with a value of zero. C uses it to mark the end of a string.

See Also
Definitions, string

null directive — Definition

Directive that does nothing

A null directive is a preprocessing directive that consists only of a # followed by <newline>. It does
nothing.

Cross-reference
Standard, §3.8.7

LEXICON

82 NULL — null directive

See Also
preprocessing

null pointer constant — Definition

A null pointer constant is an integral constant expression with the value of zero, or such a constant
that has been cast to type void *. When the null pointer constant is compared with a pointer for
equality, it is converted to the same type as the pointer before they are compared.

The null pointer constant always compares unequal to a pointer to an object or function. Two null
pointers will always compare equal, regardless of any casts.

Cross-references
Standard, §3.2.2.3
The C Programming Language, ed. 2, p. 102

See Also
conversions, NULL

null statement — Definition

A null statement is one that consists only of a semicolon ;. Its syntax is as follows:

null statement:
;

A null statement performs no operations.

Cross-references
Standard, §3.6.3
The C Programming Language, ed. 2, p. 222

See Also
expression statement, statements

numerical limits — Overview

The Standard describes numerical limits for every arithmetic type. For integral types, it sets the
largest and smallest values that can be held in the given environment. For floating types, it also
gives values for the manner in which a floating-point number is encoded.

These limits are recorded in two groups of macros: one for integral types, and the other for floating
types. The groups of macros are kept, respectively, in the headers limits.h and float.h. The Lexicon
entries for these headers lists the Standard’s numerical limits.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
environmental considerations

Notes
The ANSI Committee has tried to keep its numerical limits compatible with those given in IEEE
document 754, which describes a floating-point standard for binary number systems.

LEXICON

null pointer constant — numerical limits 83

object — Definition
An object is an area of memory that can contain one or more values. With the exception of a bit-
field, an object consists of a byte or a contiguous group of bytes. The significance of each byte’s
value is defined by the program or the implementation. Objects that are variables are interpreted
according to their type.

Cross-references
Standard, §1.6
The C Programming Language, ed. 2, p. 197

See Also
Definitions

object definition — Definition
A definition is a declaration that reserves storage for the thing declared. An object definition defines
an object and makes it available throughout either the translation unit (if it has internal linkage) or
throughout the program (if it has external linkage).

The term tentative definition refers to a definition to which more information is added by a later re-
definition of the same object. The extra information may be a storage-class specifier, or it may
initialize the object. The term, although somewhat misleading, is meant to show that every object
has only one definition, but that definition can be refined during the course of translation.

Only one definition can contain an initializer. If an object is not initialized by the end of a file, it is
initialized to zero.

A tentative definition of a static, incomplete object is disallowed semantically:

static int array[];
. . .

int array[] = {3, 4, 5, 6}; /* Non-portable */

Because the Standard does not forbid an implementation to support such code, it may not generate
an error message; however, this code is not portable.

The following is allowed semantically:

int array[];
. . .

static int array[] = {3, 4, 5, 6}; /* RIGHT */

However, it may create a linker conflict in some implementations, such as in one-pass compilers.

To be assured that your code is maximally portable, declare the storage class and size of each object
before you use it.

LEXICON

84 object — object definition

Cross-references
Standard, §3.7.2
The C Programming Language, ed. 2, p. 197

See Also
definition, external definitions, function definition, linkage, object

object types — Definition
The object types are the set of types that describe objects. This set includes the integral types, the
floating types, the pointer types, and the aggregate types.

Cross-reference
Standard, §3.1.2.5

See Also
function type, incomplete type, pointer, types

obsolescent — Definition
The term obsolescent refers to any feature of the C language that is widely used, but that may be
withdrawn from future editions of the Standard. For example, consider the practice of first defining
a function and then following the definition with a list of parameter declarations:

int example(parm1, parm2, parm3)
long parm1;
char *parm2;
int parm3;
{

. . .
}

The Standard regards this as obsolete, and may eventually withdraw recognition of it in favor of the
following syntax:

int example(long parm1, char *parm2, int parm3)
{

. . .
}

The Standard regards three features of the language as being obsolete. The first is the use of
separate lists of parameters identifiers and declaration lists, as described above. The second is the
use of function declarators with empty parentheses; if a function takes no arguments, the word void
should appear between the parentheses. The third is the placing of storage-class specifier at any
point other than at the beginning of the declaration specifiers.

Cross-reference
Standard, §1.8, §3.9

See Also
Definitions, function declarators, storage-class specifiers

offsetof() — Macro (stddef.h)
Offset of a field within a structure
#include <stddef.h>
size_t offsetof(structname, fieldname);

LEXICON

object types — offsetof() 85

offsetof is a macro that is defined in the header stddef.h. It returns the number of bytes that the
field fieldname is offset from the beginning of the the structure structname.

offsetof may return an offset for fieldname that is larger than the sum of the sizes of all the
members that precede it. This will be due to the fact that some implementations insert padding into
a structure to ensure that they are properly aligned.

Cross-reference
Standard, §4.1.5

See Also
Library, stddef.h

open — Definition
Open a file or device

To open a file means to establish a stream for the file or device. The stream governs the way data
are accessed for that file or device. The information the stream needs to access the file is encoded
within a FILE object. Because environments vary greatly in the information needed to access a file,
the Standard does not describe the internals of the FILE object.

To open a file, use the functions fopen or freopen. The former function simply opens a file and
assigns a stream to it. The latter reopens a file; that is, it takes the stream being used to access one
file, assigns it to another, and attempts to close the original file. freopen can also be used to
change the manner in which a file is accessed.

Cross-references
Standard, §4.9.3
The C Programming Language, ed. 2, p. 241

See Also
buffer, close, file, FILE, STDIO, stream

operators — Overview
An operator specifies an operation performed upon one or two operands. The operation yields a
value, performs designation, produces a side effect, or performs any combination of these.

The C language uses the following operators:

! Not
!= Compare two arithmetic operands for inequality
Substitute preprocessor token (stringize)
Token-paste preprocessor tokens
% Modulus operation on two arithmetic operands
%= Modulus operation and assign result
& Bitwise AND operation
&& Logical AND for two expressions
&= Bitwise AND operation and assign result
() Cast operators
* Multiply two arithmetic operands
*= Multiply two arithmetic operands and assign result
+ Add two arithmetic operands
++ Increment a scalar operand
+= Add two operands and assign result
, Evaluate an rvalue
- Subtract two scalar operands, unary minus

LEXICON

86 open — operators

-- Decrement a scalar operand
-= Subtract two operands and assign result
-> Offset from structure/union pointer
. Select member from structure/union
/ Divide two arithmetic operands
/= Divide two arithmetic operands and assign result
< Less than
<< Bitwise left shift
<<= Bitwise left shift and assign result
<= Less than or equality
= Assignment operator
== Equality
> Greater than
>= Greater than or equal
>> Bitwise right shift
>>= Bitwise right shift and assign result
? : Perform if/else operation
[] Array subscript
^ Perform bitwise exclusive OR operation
^= Perform bitwise exclusive OR and assign result
defined Check if a macro is defined
sizeof Size of operand in bytes
| Perform bitwise OR operation
|= Perform bitwise OR and assign result
|| Logical OR for two expressions
~ One’s complement

The term precedence refers to the default order in which the operators in an expression are
evaluated. The following list gives the default precedence of operators. Precedence is always
overridden by the operators (), which, by default, enclose a primary expression:

Operator Associativityı () [] -> . Left to rightı ! ~ ++ -- - (operand) * & sizeof Right to leftı * / % Left to rightı + - Left to rightı << >> Left to rightı < <= > >= Left to rightı == != Left to rightı & Left to rightı ^ Left to rightı | Left to rightı && Left to rightı || Left to rightı ?: Right to leftı = += -= *= /= %= Right to leftı , Left to rightı
Cross-references
Standard, §3.1.5
The C Programming Language, ed. 2, pp. 41ff

See Also
additive operators, assignment operators, bitwise operators, cast operators, equality
operators, lexical elements, logical operators, multiplicative operators, postfix operators,
punctuators, unary operators

ordinary identifier — Definition
An ordinary identifier names all identifiers except labels, tags, and members. For example, the
expression

int example;

declares the ordinary identifier example to name an object of type int.

LEXICON

ordinary identifier 87

Cross-references
Standard, §3.1.2.6
The C Programming Language, ed. 2, p. 192

See Also
name space

LEXICON

88 ordinary identifier

parameter — Definition
The term parameter refers to an object that is declared with a function or a function-like macro.

With a function, a parameter is declared within a function declaration or definition. It acquires a
value when the function is entered. For example, in the following declaration

FILE *fopen (const char *file, const char *mode);

file and mode are both objects that are declared within the function declaration. Both parameters
will acquire their values when fopen is called.

With a function-like macro, a parameter is one of the identifiers that is bracketed by parantheses
and separated by commas. For example, in the following example:

#define getchar(parameter) getc(stdin, parameter)

parameter is the identifier used with the macro getchar.

The scope of a function parameter is the block within which it is enclosed. The scope of a parameter
to a function-like macro is the logical source line of the macro’s definition.

Cross-references
Standard, §1.6
The C Programming Language, ed. 2, p. 202

See Also
argument, Definitions, function definition, scope

Notes
The Standard uses the term argument when it refers to the actual arguments of a function call or
macro invocation. It uses the term parameter to refer to the formal parameters given in the
definition of the function or macro.

perror() — STDIO (libc)
Write error message into standard error stream
#include <stdio.h>
void perror(const char *string);

perror checks the integer expression errno, then writes the message associated with the value of
errno into the standard error stream.

string points to a string that will prefix the error message, followed by a colon. For example, the call

perror("example");

ensures that the string

LEXICON

parameter — perror() 89

example:

will appear before any message that perror writes. If string is set to NULL, then the message will
have no prefix.

Example
For an example of this function, see feof.

Cross-references
Standard, §4.9.10.4
The C Programming Language, ed. 2, p. 248

See Also
clearerr, error handling, feof, ferror, strerror

Notes
perror differs from the related function strerror in that it writes the error message directly into the
standard error stream, instead of returning a pointer to the message.

The text of the message returned by strerror and the error-specific part of the message produced by
perror should be the same for any given error number.

pointer — Definition
A pointer is an object whose value is the address of another object. The name pointer derives from
the fact that its contents point to another object. A pointer may point to any type, complete or
incomplete, including another pointer. It may also point to a function, or to nowhere.

The term pointer type refers to the object of a pointer. The object to which a pointer points is called
the referenced type. For example, an int * (pointer to int) is a pointer type; the referenced type is
int. Constructing a pointer type from a referenced type is called pointer type derivation.

The Null Pointer
A pointer that points to nowhere is a null pointer. The macro NULL, which is defined in the header
stddef.h, defines the null pointer for a given implementation. The null pointer is an integer
constant with the value zero, or such a constant cast to the type void *. It compares unequal to a
pointer to any object or function.

Declaring a Pointer
To declare a pointer, use the indirection operator *. For example, the declaration

int *pointer;

declares that the variable pointer holds the address of an int-length object.

Likewise, the declaration

int **pointer;

declares that pointer holds the address of a pointer whose contents, in turn, point to an int-length
object. See declarations for more information.

Wild Pointers
Pointers are omnipresent in C. C also allows you to use a pointer to read or write the object to
which the pointer points; this is called pointer dereferencing. Because a pointer can point to any
place within memory, it is possible to write C code that generates unpredictable results, corrupts
itself, or even obliterates the operating system if running in unprotected mode. A pointer that aims
where it ought not is called a wild pointer.

LEXICON

90 pointer

When a program declares a pointer, space is set aside in memory for it. However, this space has not
yet been filled with the address of an object. To fill a pointer with the address of the object you wish
to access is called initializing it. A wild pointer, as often as not, is one that is not properly initialized.

Normally, to initialize a pointer means to fill it with a meaningful address. For example, the
following initializes a pointer:

int number;
int *pointer;

. . .
pointer = &number;

The address operator & specifies that you want the address of an object rather than its contents.
Thus, pointer is filled with the address of number, and it can now be used to access the contents of
number.

The initialization of a string is somewhat different than the initialization of a pointer to an integer
object. For example,

char *string = "This is a string."

declares that string is a pointer to a char. It then stores the string literal This is a string in memory
and fills string with the address of its first character. string can then be passed to functions to
access the string, or you can step through the string by incrementing string until its contents point
to the null character at the end of the string.

Another way to initialize a pointer is to fill it with a value returned by a function that returns a
pointer. For example, the code

extern void *malloc(size_t variable);
char *example;

. . .
example = (char *)malloc(50);

uses the function malloc to allocate 50 bytes of dynamic memory and then initializes example to
the address that malloc returns.

Reading What a Pointer Points To
The indirection operator * can be used to read the object to which a pointer points. For example,

int number;
int *pointer;

. . .
pointer = &number;

. . .
printf("%d\n", *pointer);

uses pointer to access the contents of number.

When a pointer points to a structure, the elements within the structure can be read by using the
structure offset operator ->. See the entry for -> for more information.

Pointers to Functions
A pointer can also contain the address of a function. For example,

char *(*example)();

declares example to be a pointer to a function that returns a pointer to a char.

This declaration is quite different from:

LEXICON

pointer 91

char **different();

The latter declares that different is a function that returns a pointer to a pointer to a char.

The following demonstrates how to call a function via a pointer:

(*example)(arg1, arg2);

Here, the * takes the contents of the pointer, which in this case is the address of the function, and
uses that address to pass to a function its list of arguments.

A pointer to a function can be passed to another function as an argument. The library functions
bsearch and qsort both take function pointers as arguments. A program may also use of arrays of
pointers to functions.

void *
void * is the generic pointer; it replaces char * in that role. A pointer may be cast to void * and
then back to its original type without any change in its value. void * is also aligned for any type in
the execution environment.

For more information on the use of the generic pointer, see void.

Pointer Conversion
One type of pointer may be converted, or cast, to another. For example, a pointer to a char may be
cast to a pointer to an int, and vice versa.

Any pointer may be cast to type void * and back again without its value being affected in any way.
Likewise, any pointer of a scalar type may be cast to its corresponding const or volatile version.
The qualified pointers are equivalent to their unqualified originals.

Pointers to different data types are compatible in expressions, but only if they are cast appropriately.
Using them without casting produces a pointer-type mismatch. The translator should produce a
diagnostic message when it detects this condition.

Pointer Arithmetic
Arithmetic may be performed on all pointers to scalar types. Pointer arithmetic is quite limited and
consists of the following:

1. One pointer may be subtracted from another.

2. An int or a long, either variable or constant, may be added to a pointer or subtracted from it.

3. The operators ++ or -- may be used to increment or decrement a pointer.

No other pointer arithmetic is permitted.

i8086 Pointers
Intel designed the i8086 to use a segmented architecture. This means that the i8086 divides
memory into 64-kilobyte segments. To program the i8086 requires that you use a specific memory
model, which describes how the segments of memory are to be organized.
supports the two most commonly used memory models: SMALL model and LARGE model. Each

has its own type of pointer.

In SMALL model, a pointer is two bytes (16 bits) long, which limits their addressing to 64 kilobytes.
In LARGE model, a pointer consists of an offset and a segment, each of which is two bytes long. The
actual address is calculated by shifting the segment left four and adding the offset to it. This can
address up to one megabyte, although on the IBM PC the practical limit of memory is 640 kilobytes.

Because a SMALL-model pointer is the same length as an int, it is possible to use ints and pointers
interchangeably, to form an integer-pointer pun, and have the program run correctly. A program

LEXICON

92 pointer

that does this, however, will fail when it is recompiled into LARGE model. See model and pun for
more information.

Cross-references
Standard, §3.1.2.5, §3.2.2.1, §3.2.2.3, §3.3.2.2-3, §3.5.4.1
The C Programming Language, ed. 2, pp. 93ff

See Also
NULL, types, void

Notes
The Rationale cautions against using NULL as an explicit argument to any function that expects a
pointer on the grounds that, under some environments, pointers to different data types may be of
different lengths. All such problems will be avoided if a function prototype is within the scope of the
function call. Then, NULL will be transformed automatically to the proper type of pointer. See
function prototype for more information.

pointer declarators — Definition
A pointer declarator declares a pointer. It has the following syntax; opt indicates optional:

* type-qualifier-list
opt

declarator

As shown, the asterisk * marks an identifier as being a pointer. For example:

int *example;

states that example is a pointer to int. Likewise, the use of two asterisks marks an identifier as
being a pointer to a pointer. For instance,

int **example;

declares a pointer to a pointer to an int. It is sometimes helpful to read a C declarator backwards,
i.e., from right to left, to decipher it.

A pointer declarator may be modified by the type qualifiers const or volatile. For example, the
declarator

int *const example;

declares that example is a constant pointer to a variable value of type int, whereas the declaration

const int *example;

declares that example is a variable pointer to a constant integer value. The same syntax applies to
volatile. The declaration

const int *const example;

declares a constant pointer to a constant int.

Cross-references
Standard, §3.5.4.1
The C Programming Language, ed. 2, p. 94

See Also
*, declarators, pointer

LEXICON

pointer declarators 93

portability — Definition
The term portability refers to a program’s ability to be translated and executed under more than one
environment. The Standard is designed so that if you adhere to it strictly, you will, in the words of
the Rationale, have a fighting chance to make powerful C programs that are also highly portable

Although true portability is an ideal that is difficult to realize, you can take a number of practical
steps to ensure that your code is portable:

• Do not assume that an integer and a pointer have the same size. Remember that undeclared
functions are assumed to return an int.

• Do not write routines that depend on a particular order of code evaluation, particular byte
ordering, or particular length of data types, except for those specified within the Standard.

• Do not write routines that play tricks with a machine’s magic characters. For example, writing
a routine that depends on a file’s ending with <ctrl-Z> instead of EOF ensures that that code
can run only under operating systems that recognize this magic character.

• Always use constant such as EOF and make full use of #define statements.

• Use headers to hold all machine-dependent declarations and definitions.

• Declare everything explicitly. In particular, be sure to declare functions as void if they do not
return a value. This avoids unforeseen problems with undefined return values.

• Do not assume that all varieties of pointer are the same or can point anywhere. On some
machines, for example, a char * is longer than an int *. On others, a function pointer aims at a
different space than does a data pointer.

• NULL should not be used as an explicit argument to any function that expects a pointer
because, under some environments, pointers to different data types may be of different lengths.
All such problems are avoided if a function prototype is within the scope of the function call.
Then, NULL is transformed automatically to the proper type of pointer.

• Always exit or return explicitly from main, even when the program has run successfully to its
end.

• int is the register size of the machine. Use short or long wherever size is a consideration.

• Inevitably, you will have code that is not 100% portable. Try to separate code that is machine-
specific or operating-system specific into its own file.

Cross-reference
The C Programming Language, ed. 2, p. 3

See Also
behavior, Definitions

postfix operators — Overview
A postfix operator is an operator that appears immediately after its operand.

The postfix operators have the following syntax; opt indicates optional:

LEXICON

94 portability — postfix operators

postfix-expression:
primary expression
postfix-expression [expression]
postfix-expression (argument-expression-list

opt
)

postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

The following can be used as postfix operators:

[] Define an array/read an element in an array/dereference a pointer
() Call a function
. Read a member of a structure or union
-> Read a member via a pointer
++ Increment the operand
-- Decrement the operand

Some of these operators may have other meanings when used in other contexts.

Cross-reference
Standard, §3.3.2

See Also
(), ++, --, ->, [], ., expressions, function calls

pow() — Mathematics (libm)
Raise one number to the power of another
#include <math.h>
double pow(double z, double x);

pow calculates and returns z raised to the power of x.

Cross-references
Standard, §4.5.5.1
The C Programming Language, ed. 2, p. 251

See Also
power functions, sqrt

Notes
A domain error occurs if z equals zero, if x is less than or equal to zero, or if z is less than zero and x
is not an integer.

power functions — Overview
The Standard describes two functions that deal with powers of numbers. They are as follows:

pow Raise one number to the power of another
sqrt Calculate the square root of a number

LEXICON

pow() — power functions 95

Cross-reference
Standard, §4.5.5

See Also
exponent-log functions, hyperbolic functions, integer-value-remainder, mathematics,
trigonometric functions

preprocessing numbers — Definition
A preprocessing number is one of the intermediate lexical elements handled during translation
phases 1 through 6. As semantic analysis occurs in translation phase 7, the set of valid
preprocessing numbers forms a superset of valid C numeric tokens.

A preprocessing number is any floating constant or integer constant. It has the following syntax:

preprocessing-number:
digit
. digit
preprocessing-number digit
preprocessing-number letter
preprocessing-number e sign
preprocessing-number E sign
preprocessing-number .

A preprocessing number begins with either a digit or a period ., and may consist of digits, letters,
periods, and the character sequences e+, e-, E+, or E-.

Cross-reference
Standard, §3.1.8

See Also
lexical elements, preprocessing, token, translation phases

primary expressions — Definition
A primary expression is an expression that needs no further evaluation. Primary expressions are
the bricks from which more complex expressions are built. The syntax of primary expressions is as
follows:

primary-expression:
identifier
constant
string-literal
(expression)

An identifier is a primary expression if it names an object or a function. Constants and string
literals are primary expressions by definition. An expression within parentheses is considered a
primary expression because the translator must resolve it before it considers any expression outside
of the parentheses.

Cross-references
Standard, §3.3.1
The C Programming Language, ed. 2, p. 200

See Also
expressions

LEXICON

96 preprocessing numbers — primary expressions

printf() — STDIO (libc)
Format and print text into the standard output stream
#include <stdio.h>
int printf(const char *format ...);

printf constructs a formatted string and writes it into the standard output stream.

format points to a string that can contain text, character constants, and one or more conversion
specifications. A conversion specification describes how a particular type is to be converted into text.

Each conversion specification is introduced by the percent sign %, and is followed, in order, by one
or more of the following:

• A flag, which modifies the meaning of the conversion specification.

• An integer, which sets the minimum width of the field upon which the text is printed.

• A period and an integer, which sets the precision with which a number is printed.

• One of the following modifiers: h, l, or L. Their use is discussed below.

• Finally, a character that specifies the type of conversion to be performed. These are given
below. This is the only element required after a %.

After format can come one or more arguments. There should be one argument for each conversion
specification within format of the type appropriate to its conversion specifier. For example, if format
contains conversion specifications for an int, a long, and a string, then format should be followed by
three arguments, being, respectively, an int, a long, and a pointer to char.

If there are fewer arguments than conversion specifications, then printf’s behavior is undefined. If
there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding conversion specifier,
then the behavior of printf is undefined.

If it writes the formatted string correctly, printf returns the number of characters written;
otherwise, it returns a negative number. printf must be able to generate a string that is up to at
least 509 characters long.

The following sections describe in detail the elements of the conversion specification.

Conversion Specifiers
The following lists the conversion specifiers described by the Standard. If format includes any
conversion specifiers other than the ones shown below, the behavior is undefined. If a union, an
aggregate, or a pointer to a union or an aggregate is used as an argument, behavior is undefined.

c Convert the int or unsigned int argument to a character.

d Convert the int argument to signed decimal notation.

e Convert the double argument to exponential form. The format is

[-]d.dddddde+/-dd

At least one digit always appears to the left of the decimal point and as many as precision digits
to the right of it (default, six). If the precision is zero, then no decimal point is printed.

E Same as e, except that E is used instead of e.

f Convert the double argument to a string of the form

[-]d.dddddd

LEXICON

printf() 97

At least one digit always appears to the left of the decimal point, and as many as precision
digits to the right of it (default, six). If the precision is zero, then no decimal point is printed.

g Convert the double argument to either of the formats e or f. The number of significant digits is
equal to the precision set earlier in the conversion specification. Normally, this conversion
selects conversion type f. It selects type e only if the exponent that results from such a
conversion is either less than -4 or greater than the precision.

G Same as g, except that it selects between conversion types E and f.

i Same as d.

n This conversion specification takes a pointer to an integer, into which it writes the number of
characters printf has generated to the current point within format. It does not affect the string
printf generates.

o Convert the int argument to unsigned octal digits.

p This conversion sequence takes a pointer to void. It translates the pointer into a set of
characters and prints them. What it generates is defined by the implementation.

s Print the string to which the corresponding argument points; the argument must point to a C
string. It prints either the number of characters set by the precision, or to the end of the
string, whichever is less. If no precision is specified, then the entire string is printed.

u Convert the int argument to unsigned decimal digits.

x Convert the int argument to unsigned hexadecimal characters. The values 10, 11, 12, 13, 14,
and 15 are represented, respectively, by a, b, c, d, and e.

X Same as x, except that the values 10, 11, 12, 13, 14, and 15 are represented, respectively, by
A, B, C, D, and E.

The description of each conversion specifier assumes that it will be used with an argument whose
type matches the type that the specifier expects. If the argument is of another type, it is cast to the
type expected by the specifier. For example,

float f;
printf("%d\n", f);

will truncate f to an int before printing its value.

Flags
The % that introduces a conversion specification may be followed immediately by one or more of the
following flags:

- Left-justify text within its field. The default is to right-justify all output text within its field.

+ Precede a signed number with a plus or minus sign. For example,

printf("%+d %+d\n", -123, 123);

yields the following when executed:

-123 +123

<space>
If the first character of a signed number is its sign, then that sign is appended to the
beginning of the text string generated; if it is not a sign, then a space is appended to the
beginning of the text string. For example,

LEXICON

98 printf()

printf("% d\n", -123);
printf("% d\n", 123);

generates the following:

-123
123

This flag can be used with every conversion specifier for a numeric data type. It forces
printf to use a special format that indicates what numeric type is being printed. The
following gives the effect of this flag on each appropriate specifier:

e always retain decimal point
E always retain decimal point
f always retain decimal point
F always retain decimal point
g always retain decimal point; keep trailing zeroes
G always retain decimal point; keep trailing zeroes
x print 0x before the number
X print 0X before the number

Any specified precision is expanded by the appropriate amount to allow for the printing of
the extra character or characters. Using # with any other conversion specifier yields
undefined results.

0 When used with the conversion specifiers d, e, E, f, g, G, i, o, u, x, or X, a leading zero
indicates that the field width is to be padded with leading zeroes instead of spaces. If
precision is indicated with the specifiers d, i, o, u, x, X, then the 0 flag is ignored; it is also
ignored if it is used with the - flag. If this flag is used with any conversion specifier other
than the ones listed above, behavior is undefined.

Field Width
The field width is an integer that sets the minimum field upon which a formatted string is printed.

If a field width is specified, then that many characters-worth of space is reserved within the output
string for that conversion. When the text produced by the conversion is smaller than the field
width, spaces are appended to the beginning of the text to fill out the difference; this is called
padding. Beginning the field width with a zero makes the padding character a 0 instead of a space.
When the text is larger than the allotted field width, then the text is given extra space to allow it to
be printed. Setting the field width never causes text to be truncated.

By default, text is set flush right within its field; using the - flag sets the text flush left within its
field.

Using an asterisk * instead of an integer forces printf to use the corresponding argument as the
field width. For example,

char *string = "Here’s a number:";
int width = 12;
int integer = 123;
printf("%s%*d\n", string, width, integer);

produces the following text:

Here’s a number: 123

Here, width was used to set the field width, so 12 spaces were used to pad the formatted integer.

LEXICON

printf() 99

Precision
The precision is indicated by a decimal point followed by a number. If a decimal point is used
without a following number, then it is regarded as equivalent to .0.

The precision sets the number of characters to be printed for each conversion specifier. Setting the
precision to n affects each conversion specifier as follows:

d print at least n digits
e print n digits after decimal point
E print n digits after decimal point
f print n digits after decimal point
g print no more than n significant digits
G print no more than n significant digits
i print at least n digits
o print at least n digits
s print no more than n characters
u print at least n digits
x print at least n digits
X print at least n digits

The precision differs from the field width in that the field width controls the amount of space set
aside for the text, whereas the precision controls the number of characters to be printed. If the
amount of padding called for by the precision conflicts with that called for by the field width, the
amount called for by the precision is used.

Using an asterisk * instead of an integer forces printf to use the corresponding argument as the
precision.

For example, this code

int foo = 12345;
float bar = 12.345;
char *baz = "Hello, world";

printf("Example 1: %7.6d\n", foo);
printf("Example 2: %7.6f\n", bar);
printf("Example 3: %7.6s\n", baz);

produces the following text when executed:

Example 1: 012345
Example 2: 12.345000
Example 3: Hello,

Modifiers
The following three modifiers may be used before a conversion specifier:

h When used before the specifiers d, i, o, u, x, or X, it specifies that the corresponding
argument is a short int or an unsigned short int. When used before n, it indicates that
the corresponding argument is a short int. In implementations where short int and int
are synonymous, it is not needed; however, it is useful in writing portable code.

l When used before d, i, o, u, x, or X, it specifies that the corresponding argument is a long
int or an unsigned long int. When used before n, it indicates that the corresponding
argument is a long int. In implementations where long int and int are synonymous, it is
not needed; however, it is useful in writing portable code.

L When used before e, E, f, F, or G, it indicates that the corresponding argument is a long
double.

LEXICON

100 printf()

Using h, l, or L before a conversion specifier other than the ones mentioned above results in
undefined behavior.

Default argument promotions are performed on the arguments. There is no way to suppress this.

Example
This example implements a mini-interpreter for printf statements. It is a convenient tool for seeing
exactly how some of the printf options work. To use it, type a printf conversion specification at the
prompt. The formatted string will then appear. To reuse a format identifier, simply type <return>.

#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* the replies go here */
static char reply[80];

/* ask for a string and echo it in reply. */
char *
askstr(char *msg)
{

printf("Enter %s ", msg);
fflush(stdout);

if(gets(reply) == NULL)
exit(EXIT_SUCCESS);

return(reply);
}

main(void)
{

char fid[80], c;

/* initialize to an invalid format identifier */
strcpy(fid, "%Z");

for(;;) {
askstr("format identifier");
/* null reply uses previous FID */
if(reply[0])

/* leave the ’%’ */
strcpy(fid + 1, reply);

switch(c = fid[strlen(fid) - 1]) {
case ’d’:
case ’i’:

askstr("signed number");
if(strchr(fid, ’l’) != NULL)

printf(fid, atol(reply));
else

printf(fid, atoi(reply));
break;

LEXICON

printf() 101

case ’o’:
case ’u’:
case ’x’:
case ’X’:

askstr("unsigned number");
if(strchr(fid, ’l’) != NULL)

printf(fid, atol(reply));
else

printf(fid, (unsigned)atol(reply));
break;

case ’f’:
case ’e’:
case ’E’:
case ’g’:
case ’G’:

printf(fid, atof(askstr("real number")));
break;

case ’s’:
printf(fid, askstr("string"));
break;

case ’c’:
printf(fid, *askstr("single character"));
break;

case ’%’:
printf(fid);
break;

case ’p’:
/* print pointer to format id */
printf(fid, fid);
break;

case ’n’:
printf("n not implemented");
break;

default:
printf("%c not valid", c);

}

printf("\n");
}

}

Cross-references
Standard, §4.9.6.3
The C Programming Language, ed. 2, p. 244

See Also
fprintf, input-output, scanf, sprintf, vfprintf, vprintf, vsprintf

Notes
printf must be able to construct and output a string at least 509 characters long.

The conversion specifier r, which is used by many implementations to pass an array of arguments to
printf, is specifically excluded by the Standard. To achieve the functionality of the r specifier, use
vprintf.

LEXICON

102 printf()

The character that printf prints to represent the decimal point is affected by the program’s locale, as
set by the function setlocale. For more information, see localization.

printing character — Definition
A printing character is any character in a locale-defined character set that, when printed, occupies
one printing position on a display device.

Cross-references
Standard, §4.3
The C Programming Language, ed. 2, p. 249

See Also
character handling, control character

program execution — Overview
The Standard describes program execution in terms of an abstract implementation that executes
every instruction literally as it is described by the program. A real implementation is allowed to take
short-cuts to speed execution, as long as the result is the same as if it had executed in the same
manner as the abstract implementation.

The Standard divides program execution into a series of sequence points. A sequence point is any
point where all side effects are resolved. A side effect, in turn, is any change to the execution
environment that is caused by the program accessing a volatile object, modifying an object,
modifying a file, or calling a function that performs any of these tasks. An expression may generate
side effects; a void expression exists just for the side effects it generates.

At every sequence point, the environment of the actual machine must match that of the abstract
machine. That is, whatever optimizations or short-cuts an implementation may take, at every
sequence point it must be as if the machine executed every instruction as it appeared literally in the
program. Sequence points cause the program’s actual behavior to be synchronized with the
abstract behavior that the code describes.

The sequence points are as follows:

• When all arguments to a function call have been evaluated.

• When the first operand of the following operators has been evaluated: logical AND &&, logical
OR ||, conditional ?, and comma ,.

• When a variable is initialized.

• When the controlling expression or expressions are evaluated for the following statements: do,
for, if, return, switch, and while.

If the execution of a program is interrupted by a signal, the program cannot assume that the value
of any object has been updated since the last sequence point.

An automatic variable is recreated every time the program re-enters the block within which the
variable is declared. The variable holds its last-stored value while the block is executed, and retains
it whenever the block is suspended by a signal or a function call.

Interactive devices must be accessed through a buffer. For a fuller description of buffering, see
STDIO.

Finally, when the program terminates, the contents of any file that it writes must be the same as if
the abstract implementation had been executed.

LEXICON

printing character — program execution 103

Cross-reference
Standard, §2.1.2.3

See Also
execution environment, sequence point, side effect

Notes
The difference between the abstract and real implementations required that the keyword volatile be
created. It exists to warn the implementation that taking short-cuts with a particular variable may
be dangerous. If an implementation followed each instruction literally, of course, no such warning
would be needed.

program startup — Definition
Program startup occurs when the execution environment invokes the program. Execution begins,
and continues until program termination occurs. A program’s execution may be suspended by the
environment and resumed at a later time. The program, however, only starts once.

Cross-reference
Standard, §2.1.2

See Also
execution environment, program termination

program termination — Definition
Program termination occurs when a program stops executing and returns control to the execution
environment. Program termination may be triggered when the program calls either of the functions
abort or exit, when main returns, when the environment or hardware raises a signal, or when
program termination has been requested by some other program or event.

There are two types of termination: unsuccessful and successful.

Unsuccessful termination occurs either when a program aborts due to a significant problem in its
operation (such as memory violation or division by zero), or when the program did not function as
expected (such as when a requested file cannot be found).

A program indicates unsuccessful termination either by calling the function exit with the argument
EXIT_FAILURE, by calling the function abort, or by using the function raise to generate the signal
SIGABRT. exit is used to stop a program that cannot perform correctly, but does not threaten the
integrity of the environment. abort and raise are used to stop a program that has gone seriously
wrong.

Successful termination is declared to occur when the program runs to its conclusion correctly. A
program indicates successful termination by calling the function exit with the argument
EXIT_SUCCESS, or when main returns EXIT_SUCCESS.

Cross-reference
Standard, §2.1.2, §4.10.4.1, §4.10.4.3

See Also
abort, environment communication, execution environment, exit, EXIT_FAILURE,
EXIT_SUCCESS, main, program startup, signal

Notes
On some operating systems, a program may be stopped, blocked, or suspended without causing it to
terminate. In these cases, the program may be later unstopped, unblocked, or resumed. This does

LEXICON

104 program startup — program termination

not qualify as program termination, even though execution has stopped and control has been
returned to the environment.

pseudo-random numbers —
The following functions generate a list of pseudo-random numbers. These numbers are called
pseudo-random because the same set of random numbers is generated every time.

The function rand generates and returns a pseudo-random number. This number is an integer
between zero and RAND_MAX, which must set to at least 32,767.

The function srand seeds the random-number generator used by rand. This forces rand to begin at
a point in its set of random numbers other than where it normally begins.

Cross-reference
Standard, §4.10.2

See Also
general utilities

Notes
The Standard recognizes that there is no best algorithm to generate pseudo-random numbers on all
machines. However, it offers the following example that generates an acceptable series of pseudo-
random numbers on all machines:

static unsigned long int number = 1;
int rand(void)
{

number = number * 1103515245 + 12345;
return(unsigned int)(number/65536) % 32768;

}

void srand(unsigned int seed)
{

number = seed;
}

This is a version of the algorithm offered by Knuth in volume 2 of The Art of Computer Programming.
This sort of generator is called the linear congruential method, which is a fancy term for a simple
algorithm. One begins by choosing four parameters that determine all the random numbers to
generated:

start the initial value, nonnegative
multiplier the multiplier, nonnegative
inc increment, nonnegative
mod modulus, nonnegative

The sequence of random numbers is defined by:

next = (multiplier * previous + inc) % mod;

rand stores previous, the last random number it returned, in a static variable and simply calculates
next from previous, without reference to start.

ptrdiff_t — Type
Numeric difference between two pointers
#include <stddef.h>

ptrdiff_t is a type that is defined in the header stddef.h. It is the signed integral type that can hold
the result of subtracting one pointer from another.

LEXICON

pseudo-random numbers — ptrdiff_t 105

Cross-references
Standard, §4.1.5
The C Programming Language, ed. 2, p. 206

See Also
Library, stddef.h

punctuators — Overview
A punctuator is a symbol that has syntactic meaning but does not represent an operation that yields
a value. All lexical elements that do not fall into another meaningful category are lumped together
as punctuators.

Most often, a punctuator is used to mark or delimit an identifier or a portion of code, rather than
modify it.

The set of punctuators consists of the following:

[] Mark an array/delimit its size
() Mark a parameter/argument list
{} Delimit a block of code or a function
* Identify a pointer type in a declaration
, Delimit a function argument
: Delimit a label
; Mark end of a statement
... (ellipsis) Indicate function takes flexible number of arguments
Indicate a preprocessor directive

The punctuators

{ } [] ()

must be used in pairs.

A symbol that acts as a punctuator may also act as an operator, depending upon its context.

Cross-reference
Standard, §3.1.6

See Also
lexical elements, operators, statements

putc() — STDIO (stdio.h)
Write a character into a stream
#include <stdio.h>
int putc(int character, FILE *fp);

putc writes character into the stream pointed to by fp.

putc returns character if it was written correctly. Otherwise, it sets the error indicator for fp and
returns EOF.

Example
This example writes newline characters into a file until the disk is full. Because this example uses
the function tmpfile, the file it writes disappears when the program terminates. It is not
recommended that you run this program on a multi-user system.

LEXICON

106 punctuators — putc()

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

main(void)
{

long count;
FILE *tmp;

if((tmp = tmpfile()) == NULL) {
fprintf(stderr, "Can’t open tmp file\n");
exit(EXIT_FAILURE);

}

for(count = 0; putc(’\n’, tmp) != EOF; count++)
;

fprintf(stderr, "We wrote %ld characters\n", count);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.7.8
The C Programming Language, ed. 2, p. 247

See Also
getc, getchar, gets, input-output, putchar, puts, ungetc

Notes
If putc is implemented as a macro, fp may be read more than once. In this case, one should beware
of the side-effects of evaluating the argument more than once, especially if the argument itself has
side-effects. See the entry for macro for more information. Use fputc if this behavior is not
acceptable.

putchar() — STDIO (stdio.h)
Write a character into the standard output stream
#include <stdio.h>
int putchar(int character);

putchar writes a character into the standard output stream. It is equivalent to:

putc(character, stdout);

putchar returns character if it was written correctly. If character could not be written, putchar sets
the error indicator for the stream associated with stdout and returns EOF.

Example
This example prints all of the printable ASCII characters. It will work only under implementations
that use ASCII characters.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

char c;

for(c = ’ ’; putchar(c) <= ’}’; c++)
;

LEXICON

putchar() 107

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.9.7.9
The C Programming Language, ed. 2, p. 247

See Also
getc, getchar, gets, input-output, puts, ungetc

puts() — STDIO (libc)
Write a string into the standard output stream
#include <stdio.h>
int puts(char *string);

puts replaces the null character at the end of string with a newline character, and writes the result
into the standard output stream.

puts returns a non-negative number if it could write string correctly; otherwise, it returns EOF.

Example
This example uses puts to print a string into the standard output stream.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

puts("Hello world.");
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.7.10
The C Programming Language, ed. 2, p. 247

See Also
getc, getchar, gets, input-output, putc, putchar, ungetc

Notes
For historical reasons, fputs writes string unchanged, whereas puts appends a newline character.

Note, too, that in some implementations, puts does not return anything useful. Under the
Standard, this has been made obsolete.

LEXICON

108 puts()

qsort() — General utility (libc)
Sort an array
void qsort(void *array, size_t number, size_t size, int (*comparison)

(const void *arg1, const void *arg2));

qsort sorts the elements within an array. array points to the base of the array being sorted; it has
number members, each of which is size bytes long. In practice, array is usually an array of pointers
and size is the sizeof the object to which each points.

comparison points to the function that compares two members of array. arg1 and arg2 each point to
a member within array. The comparison routine must return a negative number, zero, or a positive
number, depending upon whether arg1 is, respectively, less than, equal to, or greater than arg2. If
two or more members of array are identical, their ordering within the sorted array is unspecified.

Example
This example prints the command-line arguments in alphabetical order.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
compar(char *cp1[], char *cp2[])
{

return(strcmp(*cp1, *cp2));
}

main(int argc, char *argv[])
{

qsort((void *)++argv, (size_t)--argc, sizeof(*argv), compar);

while(argc--)
printf("%s ", *argv++);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.10.5.2
The C Programming Language, ed. 2, p. 87
The Art of Computer Programming, vol. 3

See Also
bsearch, searching-sorting

LEXICON

qsort() 109

Notes
The name qsort reflects the fact that most implementations of this function use C. A. R. Hoare’s
quicksort algorithm. This algorithm is recursive and makes heavy use of the stack. It is also
specified by the Association for Computing Machinery’s algorithm 271.

Quicksort works on the basis of partitioning its input, and is highly dependent on the first element
that starts the partitioning process. Given appropriate data, it can have a worst-case performance of
O(n^2).

qualified types — Definition
A qualified type is one whose top type is modified with the qualifiers const, noalias, or volatile.
Types so qualified are called, respectively, const-qualified types, noalias-qualified types, and volatile-
qualified types.

An unqualified type is one that is not so qualified.

Cross-references
Standard, §3.1.2.6
The C Programming Language, ed. 2, pp. 208, 211

See Also
const, noalias, types, volatile

Notes
As of this writing, noalias is the center of controversy. It may not be included in the Standard when
it is finally published.

quiet change — Definition
A quiet change occurs when an valid element of a C program behaves one way under a pre-ANSI
implementation of C, and another way under ANSI C. The Committee attempted to avoid quiet
changes, but some were unavoidable and are labelled as such in the Rationale.

The following lists the quiet changes noted within the Rationale:

Array initialization (§3.5.6)
Initialization of multi-dimensional arrays, such as

example[2][3][3];

can vary from implementation to implementation. The situation is clear when the
initialization contains an entry for every slot in the array; e.g.,

example[2][3] = {
1, 2, 3, 4, 5, 6

};

or:

example[2][3] = {
{ 1, 2, 3 }, { 4, 5, 6 }

};

The situation becomes more difficult when an array is only partially initialized; e.g.,

example[2][3] = {
{ 1 }, { 2, 3 }

};

Here, the programmer depends upon the set of initializers being parsed in a particular

LEXICON

110 qualified types — quiet change

manner so that an initializers is written into the correct slot within the array.

The Standard mandates that that initialization of aggregates is always done in top-down
fashion. A program will not be initialized correctly if it depends upon initialization being
performed from the bottom up. For more information, see initialization.

Bit shifting (§3.3.7)
Under many implementations of C, bit-shifting an int by a value set in a long requires that
the int be widened to long. For example,

int example = 5000;
long bar = 3;
example << bar;

would, under many current implementations of C, result in example’s being widened to a
long before the shift operation was performed. This does not have to happen under ANSI C.

Character constants (§3.1.3.4)
Some implementations of C would allow programmers to use octal character constants that
included non-octal characters, e.g., ’\078’. The Standard forbids this practice. Under the
standard, ’\078’ is now interpreted as signifying octal value 7 and the ASCII character 8
(octal value 070). For more information, see escape sequences.

Escape sequences (§3.1.3.4)
The Standard now assigns values to the escape sequences \a and \x. The former
represents an alert (such as ringing the bell), and the latter introduces a hexadecimal
character constant. Some implementations of C defined these sequences differently;
programs written for them will behave differently under ANSI C. For more information, see
escape sequences.

Floating-point arithmetic (§3.2.1.1)
An expression that involves two variables of type float may now be calculated in single
precision; an implementation is no longer required to promote both variables to type double
before performing calculations. This rule holds as long as the implementation produces the
same result as it would have if both variables had been promoted to doubles and the result
truncated to float. This is an example of the as if rule. See float for more information.

Function definitions (§3.7.1)
Existing practice, in accordance with The C Programming Language, has always dictated
that certain default argument promotions occur. For instance, objects of type char were
always promoted to type int when passed as parameters.

With function prototypes, you can now pass the narrow type, if a prototype is within the
function’s scope when the function is called. For example, you can pass a float as a float.
To pass a float as a double, your prototype should give a double parameter type in this
argument’s position. If a float is passed internally as a double, it must be truncated back
to a float within the function. Hence, you may find that a function no longer promotes
arguments as it once did.

#if statements (§3.4)
The Standard thoroughly defines the C preprocessor. In general, the Standard forbids the
use of environmental inquiries with #if statements, such as

#if (1<<16)==0

to check if the program is running on a machine whose word size is 16 bits. All
preprocessor statements must be entirely resolved when the program is translated.
Therefore, a program that uses an #if statement to determine aspects of the execution
environment may not work the same under ANSI C as it does under some current

LEXICON

quiet change 111

implementations. Environmental limits are set in the header limits.h.

Internal identifiers (§3.1.2)
The Standard mandates that internal identifiers must be case-sensitive and must be
significant for at least 31 characters. Thus, a conforming implementation of ANSI C will
recognize that the identifiers

this_is_very_long_identifier_A
this_is_very_long_identifier_a

are, in fact, different. Hence, a program that relies on these two identifiers being equivalent
may no longer translate correctly. See identifiers for more information.

Macro parameter substitution (§3.8.3.2)
The Standard introduces a new preprocessor operator, #, to perform string substitutions
within a preprocessor macro. Macros that depend upon parameter substitution within
strings will not work the same under ANSI C.

Memory-management functions (§4.10.3)
The Standard requires that all memory-allocation functions return NULL when asked to
allocate zero bytes. All programs that depend on such a request returning a non-NULL
address may no longer work. For more information, see memory management.

Scope (§3.1.2.1)
The Standard states that the scope of an external declaration is confined to the block of
code within which it is declared. Granting file scope to an external identifier is a common
extension to the C language, as noted in §6.5.4. Under ANSI C, programs that depend upon
all external declarations being available throughout a file, regardless of whether they were
made within a block or globally, either may not work or may work differently. See scope
and linkage for more information.

String constants (§2.2.1.1)
The Standard reserves the sequence ?? to introduce a trigraph sequence. This will be
interpreted even within a string constant. For example, the expression

printf("Are you kidding??!\n");

under ANSI C will generate the string:

Are you kidding|

See trigraph and translation phase for more information.

Structure definition (§3.5.2.2)
One difficulty with C is writing a pair of structures that refer to each other. A typical
solution is to write a pair of structures of the form:

struct example { struct bar *x; };
struct bar { struct example *y; };

Given ANSI C’s block-scope rules, however, if bar was previously defined within example’s
current block (or an outer one), then example will use that previous definition of bar rather
than the subsequent one. This can, of course, create problems. To get around this, the
Standard allows you to write a declaration of the form

struct bar;

to mask the previous declaration of bar. The quiet change in this situation arises if the
program already uses empty declarations of this form. Such a declaration may have
unexpected effects under ANSI C.

LEXICON

112 quiet change

switch statement labels (§3.7.1)
In most present implementations of C, the labels in a switch statement are truncated to int.
Under ANSI C, a label may now be of any integral type. If a program depends upon a case
label being truncated to int, it may work differently under ANSI C. For more information,
see case and switch.

Type promotion §3.2.1.1)
The Standard mandates that a variable of type unsigned char or unsigned short be
promoted within an expression to an int if that type can hold the value of the variable that
is being promoted. If an int cannot hold the value of the unsigned char or unsigned short
being promoted, then it must be promoted to an unsigned int. Expressions that depend
upon an unsigned char or unsigned short being promoted to an unsigned int in all
circumstances will behave differently under ANSI C, and probably without warning.

Cross-reference
Rationale, §1.1

See Also
Rationale

LEXICON

quiet change 113

raise() — Signal handling (libc)
Send a signal
#include <signal.h>
int raise(int signal);

raise sends signal to the program that is currently being executed. If called from within a signal
handler, the processing of this signal may be deferred until the signal handler exits.

Example
This example sets a signal, raises it itself, then allows the signal to be raised interactivly. Finally, it
clears the signal and exits.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

void gotcha(void);

void
setgotcha(void)
{

if(signal(SIGINT, gotcha) == SIG_ERR) {
printf("Couldn’t set signal\n");
abort();

}
}

void
gotcha(void)
{

char buf[10];

printf("Do you want to quit this program? <y/n> ");
fflush(stdout);
gets(buf);

if(tolower(buf[0]) == ’y’)
abort();

setgotcha();
}

main(void)
{

char buf[80];

LEXICON

114 raise()

setgotcha();
printf("Set signal; let’s pretend we get one.\n");
raise(SIGINT);

printf("Returned from signal\n");
/* <ctrl-c> may not work on all operating systems */
printf("Try typing <ctrl-c> to signal <enter> to exit");
fflush(stdout);
gets(buf);

if(signal(SIGINT, SIG_DFL) == SIG_ERR) {
printf("Couldn’t lower signal\n");
abort();

}

printf("Signal lowered\n");
exit(EXIT_SUCCESS);

}

Cross-references
Standard, §4.7.2.1
The C Programming Language, ed. 2, p. 255

See Also
signal, signal handling, signal.h

Notes
This function is derived from the UNIX function kill.

rand() — General utility (libc)
Generate pseudo-random numbers
#include <stdlib.h>
int rand(void)

rand generates and returns a pseudo-random number. The number generated is in the range of
zero to RAND_MAX, which must equal at least 32,767.

rand will always return the same series of random numbers unless you change its seed, or
beginning-point, with srand. Without having first called srand, it is as if you had initially set seed
to one.

Example
This example produces a char that consists of random bits. The Standard’s description of rand
produces random ints, not random bits.

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>

unsigned char
bitrand(void)
{

register int i, r;

LEXICON

rand() 115

for(i = r = 0; i < CHAR_BIT; i++) {
r <<= 1;
if(((long)rand() << 1) < (long)RAND_MAX)

r++;
}
return(r);

}

main(void)
{

printf("Random stuff %02x %02x %02x\n",
bitrand(), bitrand(), bitrand());

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.10.2.2
The C Programming Language, ed. 2, p. 252

See Also
pseudo-random numbers, RAND_MAX, srand

RAND_MAX — Manifest constant
Largest size of a pseudo-random number
#include <stdlib.h>

RAND_MAX is a macro that is defined in the header stdlib.h. It indicates the largest pseudo-
random number that can be returned by the function rand.

Example
For an example of using this macro in a program, see rand.

Cross-references
Standard, §4.10.2.1
The C Programming Language, ed. 2, p. 252

See Also
general utilities, rand, stdlib.h

Notes
The value of RAND_MAX is at least 32,767, which is also the minimum maximum of a short int.

range error — Definition
The range of a function is that set of values over which the function can take a value. It is thought
of as the set of possible output values for the function. If a function evaluates to a value that is
outside its defined range, or calculates a value not representable by a double, it may set errno to
the value of the macro ERANGE, which indicates that a range error occurred.

When a number is too small to be encoded within a double, a function always returns zero.
Whether errno is set to ERANGE, however, is up to the implementation.

Cross-reference
Standard, §4.5.1

LEXICON

116 RAND_MAX — range error

See Also
ERANGE, errno, HUGE_VAL, math.h, mathematics

Rationale —
The Standard is accompanied by a Rationale, which describes the reasoning behind the decisions by
the ANSI committee. The Rationale also points out many of the changes, quiet or vocal, that have
been incorporated into the Standard, and how they might affect current programs or
implementations.

The Rationale is not part of the Standard per se, but is useful in helping readers to understand the
Standard.

See Also
as if rule, minimum maxima, quiet change, spirit of C

realloc() — General utility (libc)
Reallocate dynamic memory
#include <stdlib.h>
void *realloc(void *ptr, size_t size);

realloc reallocates a block of memory that had been allocated with the functions calloc or malloc.
This function is often used to change the size of a block of allocated memory.

ptr points to the block of memory to reallocate. If ptr is set to NULL, then realloc behaves exactly
the same as malloc: it allocates the requested amount of memory and returns a pointer to it. size is
the new size of the block. If size is zero and ptr is not NULL, then the memory pointed to is freed.

realloc returns a pointer to the block of size bytes that it has reallocated. The pointer it returns is
aligned for any type of object. If it cannot reallocate the memory, it returns NULL.

Example
This example concatenates two strings that had been created with malloc.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char *
combine(char **a, char **b)
{

if(NULL == *a) {
*a = *b;
*b = NULL;
return(*a);

}
else if(NULL == *b)

return(*a);

if((*a = realloc(*a, strlen(*a) + strlen(*b))) == NULL)
return(NULL);

return(strcat(*a, *b));
}

LEXICON

Rationale — realloc() 117

/* Copy a string into a malloc’ed hole. */
char *
copy(char *s)
{

size_t len;
char *ret;

if(!(len = strlen(s)))
return(NULL);

if((ret = malloc(len)) == NULL)
return(NULL);

return(strcpy(ret, s));
}

main(void)
{

char *a, *b;

a = copy("A fine string. ");
b = copy("Another fine string. ");

puts(combine(&a, &b));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.10.3.4
The C Programming Language, ed. 2, p. 252

See Also
alignment, calloc, free, malloc, memory management

Notes
If size is larger than the size of the block of memory that is currently allocated, the value of the
pointer that realloc returns is indeterminate it may point to the old block of memory, or it may not.
If it is not, the contents of the old block of memory is copied to the new block.

register — C keyword
Quick access required
register type identifier

The storage-class specifier register declares that identifier is to be accessed as quickly as possible.
In many computing environments, this indicates that identifier should be kept in a machine register.
The translator, however, is not required to do this. It is a hint by the programmer to the translator,
in the hope of obtaining more efficient code.

It is not permissible to take the address of an object declared with the register designator,
regardless of whether the implementation stores such an object in a machine register or not.

Example
For an example of using this specifier in a program, see srand.

Cross-references
Standard, §3.5.1
The C Programming Language, ed. 2, p. 83

LEXICON

118 register

See Also
storage-class identifiers

Notes
An implementation must document how it handles variables declared to be register. Practice
currently ranges from ignoring register declarations completely, to allowing a few register
declarations for objects of an appropriate type (typically integer or pointer), to ignoring the
designator and implementing a full global register allocation scheme.

relational operators — Overview
A relational operator is one that compares two operands, to discover which has the greater value.
The syntax is as follows:

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression <= shift-expression
relational-expression > shift-expression
relational-expression >= shift-expression

The operands must be one of the following:

• Two objects with arithmetic type.

• Two pointers to compatible types of objects, regardless of whether they are qualified.

• Two pointers to compatible, incomplete types.

If both operands are arithmetic types, then both undergo the usual arithmetic conversions before
they are compared.

If both operands are pointers, the following rules apply:

• If the pointers point to members of the same structure, the pointer to the member that is
declared later will compare higher.

• If the pointers point to the same array, then the pointer whose member has the higher
subscript will compare higher.

• All pointers to the members of a union will compare equal.

• If the two pointers do not point to the same aggregate object, the behavior is undefined, with
the following exception: If the pointer X points to the last member of an array, the pointer
expression X+1 will compare higher than X even though it lies just beyond the end of the
array.

The result of a relational operator always has type int. It has a value of zero if the condition is not
satisfied, non-zero if it is.

Cross-references
Standard, §3.3.8
The C Programming Language, ed. 2, pp. 41, 206

See Also
!=, <, <=, ==, >, >=, equality operators, expressions

LEXICON

relational operators 119

remove() — STDIO (libc)
Remove a file
#include <stdio.h>
int remove(const char *filename);

remove breaks the link between between filename and the actual file that it represents. In effect, it
removes a file. Thereafter, any attempt to use filename to open that file will fail.

If you attempt to remove a file that is currently open, the behavior is implementation-defined.
remove returns zero if it could remove filename, and nonzero if it could not.

Example
This example removes the file named on the command line.

#include <stdio.h>
#include <stdlib.h>
main(int argc, char *argv[])
{

if(argc != 1) {
fprintf(stderr, "usage: remove filename\n");
exit(EXIT_FAILURE);

}

if(remove(argv[1])) {
perror("remove failed");
exit(EXIT_FAILURE);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.4.1
The C Programming Language, ed. 2, p. 242

See Also
file operations, rename, tmpfile, tmpnam

rename() — STDIO (libc)
Rename a file
#include <stdio.h>
rename(const char *old; const char *new);

rename changes the name of a file, from the string pointed to by old to the string pointed to by new.
Both old and new must point to a valid file name. If new points to the name of a file that already
exists, the behavior is implementation-defined.

rename returns zero if it could rename the file, and nonzero if it could not. If rename could not
rename the file, its name remains unchanged.

Example
This example renames the file named in the first command-line argument to the name given in the
second argument.

#include <stdio.h>
#include <stdlib.h>

LEXICON

120 remove() — rename()

main(int argc, char *argv[])
{

if(argc != 3) {
fprintf(stderr, "usage: rename from to\n");
exit(EXIT_FAILURE);

}

if(rename(argv[1], argv[2])) {
perror("rename failed");
exit(EXIT_FAILURE);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.4.2
The C Programming Language, ed. 2, p. 242

See Also
file operations, remove, tmpfile, tmpnam

Notes
rename will fail if the file it is asked to rename is open, or if its contents must be copied in order to
rename it.

return — C keyword
Return to calling function
return;
return expression;

return is a statement that forces a function to return immediately to the function that called it.

return may also evaluate expression and pass its value to the calling function; the calling function
regards this value as the value of the called function.

return can return a value to the calling function only if the called function was not declared to have
a return type of void. The calling function is, of course, free to ignore the value return hands it.

If the called function is declared to return a type other than what return is actually returning, the
value passed by return will be altered to conform to what the function was declared to return. For
example,

main(void)
{

printf("%s\n", example());
}

char *example(void)
{

return "This is a string";
}

the pointer returned by example will be changed to an int before being returned to main. This is
because example is declared implicitly within main, and a function that is declared implicitly is
assumed to return an int. In environments where an int and a pointer are the same length, this
code will work correctly. However, it will fail in environments where an int and a pointer have
different lengths.

A function may have any number of return statements within it; however, a function can return

LEXICON

return 121

only one value to the function that called it.

Reaching the last } in a function is equivalent to calling return without an expression.

Cross-references
Standard, §3.6.6.4
The C Programming Language, ed. 2, p. 70

See Also
break, C keywords, continue, goto, jump statements

Notes
If a program uses what is returned by a function as a value, and that function uses return without
an expression, the behavior of the program is undefined.

rewind() — STDIO (libc)
Reset file-position indicator
#include <stdio.h>
void rewind(FILE *fp);

rewind resets the file-position indicator to the beginning of the file associated with stream fp. It is
equivalent to:

(void)fseek(fp, 0L, SEEK_SET);

rewind, unlike fseek, clears the error indicator for fp.

Cross-references
Standard, §4.9.9.5
The C Programming Language, ed. 2, p. 248

See Also
fgetpos, file positioning, fseek, fsetpos, ftell

Notes
In many current implementations, rewind returns an int. In the Standard’s description, rewind
returns nothing.

rvalue — Definition
An rvalue is the value of an expression. The name comes from the assignment expression E1=E2;
in which the right operand is an rvalue.

Unlike an lvalue, an rvalue can be either a variable or a constant.

Although the term rvalue is commonly used among programmers, the Standard prefers the term
value of an expression.

Cross-references
The C Programming Language, ed. 2, pp

See Also
Definitions, lvalue

Notes
All non-void expressions have an rvalue.

LEXICON

122 rewind() — rvalue

scalar types — Definition
The scalar types are the set of all arithmetic types and pointer types. They do not include the
aggregate types, structures, or arrays.

Cross-reference
Standard, §3.1.2.5

See Also
types

scanf() — STDIO (libc)
Read and interpret text from standard input stream
#include <stdio.h>
int scanf(const char *format, ...);

scanf reads characters from the standard input stream and uses the string format to interpret what
it has read into the appropriate types of data.

format is a string that consists of one or more conversion specifications, each of which describes
how a portion of text is to be interpreted. format is followed by zero or more arguments. There
should be one argument for each conversion specification within format, and each should point to
the data type that corresponds to the conversion specifier within its corresponding conversion
specification. For example, if format contains three conversion specifications that convert text into,
respectively, an int, a float, and a string, then format should be followed by three arguments that
point, respectively, to an int, a float, and an array of chars that is large enough to hold the string
being input. If there are fewer arguments than conversion specifications, then scanf’s behavior is
undefined. If there are more, then every argument without a corresponding conversion specification
is evaluated and then ignored. If an argument is not of the same type as its corresponding type
specification, then scanf returns.

scanf organizes the text read into a series of tokens. Each token is delimited by white space. White
space usually is thrown away, except in the case of the c or [conversion specifiers, which are
described below.

If an input error occurs during input or if EOF is read, scanf returns immediately. If it reads an
inappropriate character (e.g., an alphabetic character where it expects a digit), it returns
immediately. scanf returns the number of conversions it accomplished. If it could accomplish no
conversions, it returns EOF.

Conversion Specifications
The percent sign character % marks the beginning of a conversion specification. The % will be
followed by one or more of the following:

LEXICON

scalar types — scanf() 123

• An asterisk *, which tells scanf to skip the next conversion; that is, read the next token but do
not write it into the corresponding argument.

• A decimal integer, which tells scanf the maximum width of the next field being read. How the
field width is used varies among conversion specifier. See the table of specifiers below for more
information.

• One of the three modifiers h, l, or L, whose use is described below.

• A conversion specifier, whose use is described below.

Modifiers
The following three modifiers may be used before a conversion specifier:

h When used before the conversion specifiers d, i, o, u, x, or X, it specifies that the
corresponding argument points to a short int or an unsigned short int. When used before
n, it indicates that the corresponding argument points to a short int. In implementations
where short int and int are synonymous, it is not needed. However, it is useful in writing
portable code.

l When used before the conversion specifiers d, i, o, u, x, or X, it specifies that the
corresponding argument points to a long int or an unsigned long int. When used before n,
it indicates that the corresponding argument points to a long int. In implementations
where long int and int are synonymous, it is not needed. However, it is useful in writing
portable code.

L When used before the conversion specifiers e, E, f, F, or G, it indicates that the
corresponding argument points to a long double.

If h, l, or L is used before a conversion specifier other than the ones mentioned above, it is ignored.

Conversion Specifiers
The Standard describes the following conversion specifiers:

c Convert into chars the number of characters specified by the field width, and write them
into the array pointed to by the corresponding argument. The default field width is one.
scanf does not write a null character at the end of the array it creates. This specifier forces
scanf to read and store white-space characters and numerals, as well as letters.

d Convert the token to a decimal integer. The format should be equivalent to that expected by
the function strtol with a base argument of ten. The corresponding argument should point
to an int.

e Convert the token to a floating-point number. The format of the token should be that
expected by the function strtod for a floating-point number that uses exponential notation.
The corresponding argument should point to a double.

E Same as e.

f Convert the token to a floating-point number. The format of the token should be that
expected by the function strtod for a floating-point number that uses decimal notation. The
corresponding argument should point to a double.

g Convert the token to a floating-point number. The format of the token should of that
expected by the function strtod for a floating-point number that uses either exponential
notation or decimal notation. The corresponding argument should point to a double.

G Same as g.

LEXICON

124 scanf()

i Convert the token to a decimal integer. The format should be equivalent to that expected by
the function strtol with a base argument of zero. The corresponding argument should point
to an int.

n Do not read any text. Write into the corresponding argument the number of characters that
scanf has read up to this point. The corresponding argument should point to an int.

o Convert the token to an octal integer. The format should be equivalent to that expected by
the function strtol with a base argument of eight. The corresponding argument should
point to an int.

p Pointer format: read a sequence of implementation-defined characters, convert them in an
implementation-defined way, and write them in an implementation-defined manner. The
vagueness of this description is unavoidable, because the pointer format will vary between
machines, and even on the same machine. The corresponding argument should point to a
void *. The sequence of characters recognized should be identical with that written by
printf’s p conversion specifier.

s Read a string of non-white space characters, copy them into the area pointed to by the
corresponding argument, and append a null character to the end. The argument should be
of type char *, and should point to enough allocated memory to hold the string being read
plus its terminating null character.

u Convert the token to an unsigned integer. The format should be equivalent to that expected
by the function strtoul with a base argument of ten. See strtoul for more information. The
corresponding argument should point to an unsigned int.

x Convert the token from hexadecimal notation to a signed integer. The format should be
equivalent to that expected by the function strtol with a base argument of 16. See strtol
for more information. The corresponding argument should point to an unsigned int.

X Same as x.

% Match a single percent sign %. Make no conversion or assignment.

[/] Scan a scanset, which is a set of characters enclosed by brackets. A character that matches
any member of the scanset is copied into the area pointed to by the corresponding
argument, which should be a char * that points to enough allocated memory to hold the
maximum number of characters that may be copied, plus the concluding null character.
Appending a circumflex ^ to the scanset tells scanf to copy every character that does not
match a member of the scanset (i.e., complements the scanset). If the format string begins
with] or ^], then] is included in the scanset, and the set specifier is terminated by the next
] in the format string. If a hyphen appears within the scanset, the behavior is
implementation-defined; often, it indicates a range of characters, as in [a-z].

For example, passing the string hello, world to

char array[50];
scanf("[^abcd]", array);

writes the string hello, worl into array.

Cross-references
Standard, §4.9.6.4
The C Programming Language, ed. 2, p. 246

See Also
fscanf, input-output, printf, sscanf

LEXICON

scanf() 125

Notes
scanf will read up to, but not through, a newline character. The newline remains in the standard
input device’s buffer until you dispose of it. Programmers have been known to forget to empty the
buffer before calling scanf a second time, which leads to unexpected results.

Experience has shown that scanf should not be used directly to obtain a string from the keyboard:
use gets to obtain the string, and sscanf to format it.

The character that scanf recognizes as representing the decimal point is affected by the program’s
locale, as set by the function setlocale. For more information, see localization.

SCHAR_MAX — Manifest constant
SCHAR_MAX is a macro that is defined in the header limits.h. It gives the largest value that can be
held in an object of type signed char. It must be defined to be at least 127.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
limits.h, numerical limits

SCHAR_MIN — Manifest constant
SCHAR_MIN is a macro that is defined in the header limits.h. It gives the smallest value that can
be held in an object of type signed char. It must be defined to be at most -127.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
limits.h, numerical limits

scope — Definition
The term scope describes the portion of the program in which a given identifier is recognized, or
visible. Scope is similar to, but not identical to, linkage. Linkage refers to whether an identifier can
be joined, or linked, across files. Scope refers to the portion of a program that can recognize an
identifier.

There are four varieties of scope: block, file, function, and function prototype.

An identifier with block scope is visible only within the block of code where it is declared. When the
program reaches the } that ends that block of code, then the identifier is no longer visible, and so no
longer within scope.

An identifier with file scope is visible throughout the translation unit within which it is declared.
The only identifiers that have file scope are those that are declared globally, i.e., that are declared
outside the braces that enclose any function. If a function in one file uses an identifier that is
defined in another file, it must mark that identifier as being external, by using the storage-class
specifier extern.

An identifier with function scope is visible throughout a function, no matter where in the function it
is declared. A label is the only variety of identifier that has function scope.

An identifier with function-prototype scope is visible only within the function prototype where it is
declared. For example, consider the following function prototype:

LEXICON

126 SCHAR_MAX — scope

void va_end(va_list listptr);

The identifier listptr has function-prototype scope. It is recognized only within that prototype, and
is used only for purposes of documentation.

If an identifier is redeclared but is within an enclosing scope, it hides the outermost identifier and
renders it inaccessible. This condition is called information hiding, and it holds true as long as the
inner declaration is within scope.

Example
The following program demonstrates scope, and shows how to hide information.

/* global i */
int i = 13;

void
function1(void)
{

/* local i; hides global i */
int i = 23;

for(;;) {
/* block-scope i; hides local and global i’s */
int i = 33;
/* print block-scope i */
printf ("block-scope i: %d\n", i);
break;

}
/* block-scope i has disappeared; print local i */
printf ("local i: %d\n", i);

}

void
function2(void)
{

/* local i has disappeared; print global i */
printf("global i: %d\n", i);

}

main(void)
{

function1();
function2();
return(EXIT_SUCCESS);

}

Cross-references
Standard, §3.1.2.1
The C Programming Language, ed. 2, p. 227

See Also
extern, identifiers, storage duration

Notes
If an identifier is declared both within a block and with the storage-class identifier extern, it has
block scope. An external declaration made within one block of code is not available outside that
block. If an identifier that is declared external within one block is referenced within another,
behavior is undefined.

A common extension to C automatically promotes to file scope all external identifiers that are

LEXICON

scope 127

declared within a block. Under such implementations, the following will work correctly:

/* non-ANSI code! */
function1()
{

extern float example();
. . .

}

function2()
{

float variable;
. . .

variable = example();
. . .

}

Under the Standard, however, this code will not work correctly: the declaration of the function
example has block scope; therefore, it cannot be seen in function2. In function2, therefore, the
translator properly assumes that example returns an int. The float that example actually returns
is altered, causing undefined behavior. ANSI C causes this code to behave differently than expected,
and an implementation may not issue a warning message. This is a quiet change that may break
existing code.

searching-sorting — Overview
#include <stdlib.h>
The Standard describes two functions that perform searching and sorting. They are as follows:

bsearch Perform binary search
qsort Sort an array

Cross-references
Standard, §4.10.5
The C Programming Language, ed. 2, p. 118

See Also
general utilities

SEEK_CUR — Manifest constant
Seek from current position of file-position indicator
#include <stdio.h>

SEEK_CUR is a macro that is defined in the header stdio.h. When used as an argument to the
function fseek, it indicates that seeking should be performed relative to the current position of the
file-position indicator.

Cross-references
Standard, §4.9.1, §4.9.9.2
The C Programming Language, ed. 2, p. 248

See Also
fseek, SEEK_END, SEEK_SET, STDIO, stdio.h

LEXICON

128 searching-sorting — SEEK_CUR

SEEK_END — Manifest constant
Seek from the end of a file
#include <stdio.h>

SEEK_END is a macro that is defined in the header stdio.h. When used as an argument to the
function fseek, it indicates that seeking should be performed relative to the end of the file.

Cross-references
Standard, §4.9.1, §4.9.9.2
The C Programming Language, ed. 2, p. 248

See Also
fseek, SEEK_CUR, SEEK_SET, STDIO, stdio.h

SEEK_SET — Manifest constant
Seek from beginning of a file
#include <stdio.h>

SEEK_SET is a macro that is defined in the header stdio.h. When used as an argument to the
function fseek, it indicates that seeking should be performed relative to the beginning of the file.

Cross-references
Standard, §4.9.1, §4.9.9.2
The C Programming Language, ed. 2, p. 248

See Also
fseek, SEEK_CUR, SEEK_END, STDIO, stdio.h

selection statements — Overview
C includes two mechanisms by which a program can execute code conditionally: the if statement
and the switch statement. The if statement evaluates a condition, and then selects either of two
possible actions. A switch statement evaluates a condition, and then selects from among many
possible actions.

The syntax of the if statement is as follows:

selection-statement:
if (expression) statement
if (expression) statement else statement

The if statement executes its statement if expression is true (i.e., a value other than zero). If
expression is false (i.e., equal to zero), then statement is not executed.

An if statement may be followed by an else statement. If expression is false, the statements that
follow the else statement are executed. If expression is true, however, the statements that follow
the else statement are skipped.

The syntax of the switch statement is as follows:

switch (expression) {
case expression :

statement
. . .

default :
statement

}

LEXICON

SEEK_END — selection statements 129

The switch statement evaluates expression, then jumps to the case label whose expression is
equivalent to the value of expression. Execution then proceeds from that point.

A switch statement may be thought of as a multi-way branch statement. if/else allows the
program to select between two alternatives. switch allows the program to select from among as
many as 257 alternatives or more, if the implementation allows.

Cross-references
Standard, §3.6.4
The C Programming Language, ed. 2, p. 223

See Also
else, if, statements, switch

sequence point — Definition
A sequence point is any point in a program where all side effects are resolved. At every sequence
point, the environment of the actual machine must match that of the abstract machine. That is,
whatever optimizations or short-cuts an implementation may take, at every sequence point it must
be as if the machine executed every instruction as it appeared literally in the program. Sequence
points cause the program’s actual behavior to be synchronized with the abstract behavior that the
source code describes.

The sequence points are as follows:

• When all arguments to a function call have been evaluated.

• When the first operand of the following operators has been evaluated: logical AND &&, logical
OR ||, conditional ?, and comma ,.

• When a variable is initialized.

• When the controlling expression or expressions are evaluated for the following statements: do,
for, if, return, switch, and while.

Cross-reference
Standard, §2.1.2.3

See Also
program execution, side effect

setbuf() — STDIO (libc)
Set alternative stream buffer
#include <stdio.h>
void setbuf(FILE *fp, char *buffer);

When the functions fopen and freopen open a stream, they automatically establish a buffer for it.
The buffer is BUFSIZ bytes long. BUFSIZ is a macro that is defined in the header stdio.h; it cannot
be less than 256.

setbuf changes the buffer for the stream pointed to by fp from its default buffer to buffer. It sets
buffer to be BUFSIZ bytes long. To create a buffer of a size other than BUFSIZ, use setvbuf.

You should use setbuf after fp has been opened, but before any data have been read from or written
to it.

If buffer is set to NULL, then fp will be unbuffered. For example, the call

LEXICON

130 sequence point — setbuf()

setbuf(stdout, NULL);

ensures that all output to the standard output stream is unbuffered.

Cross-references
Standard, §4.9.5.5
The C Programming Language, ed. 2, p. 243

See Also
BUFSIZ, fclose, fflush, file access, freopen, setbuf, setvbuf

setjmp() — Non-local jump (setjmp.h)
Save environment for non-local jump
#include <setjmp.h>
int setjmp(jmp_buf environment);

setjmp copies the current environment into the array jump_buf. The environment can then be
restored by a call to the function longjmp.

environment is of type jmp_buf, which is defined in the header setjmp.h. jmp_buf must be an array
type so that it will conform to current usage.

setjmp returns zero if it is called directly. When it returns after a call to longjmp, however, it
returns longjmp’s argument rval. If rval is set to zero, then setjmp returns one. See longjmp and
non-local jumps for more information.

Cross-references
Standard, §4.6.1.1
The C Programming Language, ed. 2, p. 254

See Also
longjmp, jmp_buf, non-local jumps

Notes
Many user-level routines cannot be interrupted and reentered safely. For that reason, improper use
of setjmp and longjmp will result in the creation of mysterious and irreproducible bugs. The use of
longjmp to exit interrupt, exception, or signal handlers is particularly hazardous.

setjmp must be used as the controlling operand in a switch statement, as the controlling
expression in an if statement, or as an operand in an equality expression. Any other use generates
undefined behavior.

The Standard mandates that setjmp be implemented only as a macro, not as a library function.
The intent is to have it be a simple expression that expands in line, without requiring local or
temporary variables.

setjmp.h — Header
Declarations for non-local jump
#include <setjmp.h>

setjmp.h is the header that contains declarations for the elements that perform a non-local jump.
It contains the prototype for the function longjmp, and it defines the macro setjmp and the type
jmp_buf.

Cross-references
Standard, §4.6
The C Programming Language, ed. 2, p. 254

LEXICON

setjmp() — setjmp.h 131

See Also
header, jmp_buf, longjmp, non-local jump, setjmp

setlocale() — Localization (libc)
Set or query a program’s locale
#include <locale.h>
char *setlocale(int portion, const char *locale);

setlocale is a function that lets you set all or a portion of the locale information used by your
program or query for information about the current locale.

portion is the portion of the locale that you wish to set or query. The Standard defines a number of
macros for this purpose, as follows:

LC_ALL
Set or query all locale-specific information. Setting the locale affects all of the following
locale categories.

LC_COLLATE
Set or query information that affects collating functions. This affects the operation of the
functions strcoll and strxfrm.

LC_CTYPE
Set or query information about character handling. This affects he operation of all
character-handling functions, except for isdigit and isxdigit. It also affects the operation of
the functions that handle multibyte characters, i.e., mblen, mbtowc, mbstowcs, and
wcstombs, wctomb.

LC_MONETARY
Set or query all monetary-specific information as used in the structure lconv, which is
initialized by the function localeconv.

LC_NUMERIC
Set or query information for formatting numeric strings. This may change the decimal-point
character used by string conversion functions and functions that perform formatted input
and output. This may also affect the contents of the structure lconv.

LC_TIME
Set or query information for formatting time strings. This changes the operation of the
function strftime.

Setting locale to NULL tells setlocale that you wish to query information about the current locale
rather than set a new locale.

setlocale returns a pointer to a string that contains the information needed to set or examine the
locale. For example, the call

setlocale(LC_TIME, "");

returns a string that can be used to modify the time and date functions to conform to the
requirements of the native locale. setlocale returns NULL if it does not recognize either portion or
locale.

Cross-reference
Standard, §4.4.1.1

See Also
lconv, localeconv, localization

LEXICON

132 setlocale()

Notes
The Standard does not describe the mechanism by which setlocale modifies the action of other
library functions. It mandates only that the modification be done in such a way as to alter the
action of the functions at run time rather than at translation time. An implementation need only
supply the information required by the C locale.

There are many possible approaches to supporting locales. The Rationale suggests that the string
returned by setlocale could be the name of a file that would contain locale information used by the
appropriate functions. Another approach would be to set environment variables.

The locales supported by any implementation are all implementation-defined. Hence, to find out
what specific locales are supported by an implementation, consult the documentation for your
implementation.

Because support of any particular locale is intimately entwined with the translator and its library,
only those locales actually supported by the implementation can be used.

The Standard’s section on compliance states that any program that uses locale-specific information
does not strictly comply with the Standard. Therefore, any program that uses a locale other than
the C locale cannot be assumed to be portable to every environment for which a conforming
implementation of C has been written. Caveat utilitor.

setvbuf() — STDIO (libc)
Set alternative stream buffer
#include <stdio.h>
int setvbuf(FILE *fp, char *buffer, int mode, size_t size);

When the functions fopen and freopen open a stream, they automatically establish a buffer for it.
The buffer is BUFSIZ bytes long. BUFSIZ is a macro that is defined in the header stdio.h; it cannot
be less than 256.

setvbuf alters the buffer used with the stream pointed to by fp from its default buffer to buffer.
Unlike the related function setbuf, it also allows you set the size of the new buffer as well as the
form of buffering.

buffer is the address of the new buffer. size is its size, in bytes. mode is the manner in which you
wish the stream to be buffered, as follows:

_IOFBF Fully buffered
_IOLBF Line-buffered
_IONBF No buffering

These macros are defined in the header stdio.h. For more information on what these terms mean,
see buffering.

You should call setvbuf after a stream has been opened but before any data have been written to or
read from the stream. For example, the following give fp a 50-byte buffer that is line-buffered:

char buffer[50];
FILE *fp;

fopen(fp, "r");
setvbuf(fp, buffer, _IOLBF, sizeof(buffer));

On the other hand, the following turns off buffering for the standard output stream:

setvbuf(stdout, NULL, _IONBF, 0);

LEXICON

setvbuf() 133

setvbuf returns zero if the new buffer could be established correctly. It returns a number other
than zero if something went wrong or if an invalid parameter is given for mode or size.

Example
This example uses setvbuf to turn off buffering and echo.

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>

main(void)
{

int c;

if(setvbuf(stdin, NULL, _IONBF, 0))
fprintf(stderr, "Couldn’t turn off stdin buffer\n");

if(setvbuf(stdout, NULL, _IONBF, 0))
fprintf(stderr, "Couldn’t turn off stdout buffer\n");

while((c = getchar()) != EOF)
putchar(c);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.9.5.6
The C Programming Language, ed. 2, p. 243

See Also
BUFSIZ, fclose, fflush, file access, fopen, freopen, setbuf

short int — Type
A short int is a signed integral type. This type can be no smaller than a char, and no larger than
an int.

A short int can encode any number between SHRT_MIN and SHRT_MAX. These are macros that
are defined in the header limits.h. The former can be no greater than -32,767, and the latter no less
than +32,767.

The types short, signed short, and signed short int are all synonyms for short int.

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.2.1.1, §3.5.2
The C Programming Language, ed. 2, p. 211

See Also
int, long int, types

SHRT_MAX — Manifest constant
SHRT_MAX is a macro that is defined in the header limits.h. It gives the largest value that can be
held in an object of type short int. It must be defined to be at least 32,767.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

LEXICON

134 short int — SHRT_MAX

See Also
limits.h, numerical limits

SHRT_MIN — Manifest constant
SHRT_MIN is a macro that is defined in the header limits.h. It gives the smallest value that can be
held in an object of type short int. It must be defined to be at most -32,767.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
limits.h, numerical limits

side effect — Definition
A side effect is any change to the execution environment that is caused by the program that
accesses a volatile object, modifies an object, modifies a file, or calls a function that performs any of
these tasks. An expression may generate side effects; a void expression exists just for the side
effects it generates.

Cross-references
Standard, §2.1.2.3
The C Programming Language, ed. 2, p. 53

See Also
program execution, sequence point

sig_atomic_t — Type
Type that can be updated despite signals

sig_atomic_t is an integral data type that is defined in the header signal.h. It defines the type of
atomic object that can be accessed properly even if an asynchronous interrupt occurs.

The details of what constitutes this type are implementation-specific.

Cross-reference
Standard, §4.7.1

See Also
signal handling, signal.h, volatile

Notes
When declaring objects of this type, you should use the type qualifier volatile; for example:

volatile sig_atomic_t save_state;

The volatile declaration tells the translator to re-read the object’s value from memory each time it is
used in an expression. When the program says to store the object, it should be stored immediately.

SIG_DFL — Manifest constant
Pointer to default signal-handling function

SIG_DFL is a macro that is defined in the header signal.h. It is a special constant that will never be
equal to a real function pointer. Although it is cast to be a function pointer, calling it will result in
the most unpleasant sort of undefined behavior.

LEXICON

SHRT_MIN — SIG_DFL 135

SIG_DFL is passed to the function signal to request that default signal handling be performed, and
is returned by signal to indicate that default signal handling is being performed.

Example
For an example of its use in a program, see raise.

Cross-references
Standard, §4.7
The C Programming Language, ed. 2, p. 255

See Also
SIG_ERR, SIG_IGN, signal handling

SIG_ERR — Manifest constant
Pointer to error-handling function

SIG_ERR is a macro that is defined in the header signal.h. It is a special constant that will never be
equal to a real function pointer. Though it is cast to be a function pointer, calling it will result in
the most unpleasant sort of undefined behavior. It is returned by the function signal to indicate
that an error prevented the signal request from being honored.

Example
For an example of its use in a program, see raise.

Cross-references
Standard, §4.7
The C Programming Language, ed. 2, p. 255

See Also
SIG_DFL, SIG_IGN, signal handling,

SIG_IGN — Manifest constant
Pointer to function that ignores signals

SIG_IGN is a macro that is defined in the header signal.h. It is a special constant that will never be
equal to a real function pointer. Although it is cast to be a function pointer, calling it will result in
the most unpleasant sort of undefined behavior. It is passed to the function signal to request that a
signal be ignored, and is returned by signal to indicated that a signal is being ignored.

Cross-references
Standard, §4.7
The C Programming Language, ed. 2, p. 255

See Also
SIG_DFL, SIG_IGN, signal handling,

SIGABRT — Manifest constant
Abort signal

SIGABRT is a macro that is defined in the header signal.h. It is an integer that signals that the
program is aborting itself.

Cross-references
Standard, §4.7.1
The C Programming Language, ed. 2, p. 255

LEXICON

136 SIG_ERR — SIGABRT

See Also
raise, SIGFPE, SIGILL, SIGINT, signal, signal handling, SIGSEGV, SIGTERM

SIGFPE — Manifest constant
Signal error in floating-point arithmetic

SIGFPE is a macro that is defined in the header signal.h. Its name stands for signal floating-point
exception. It is an integer that, when detected as a signal, indicates that an error in floating-point
arithmetic has occurred.

Depending upon the type and severity of the error, the signal handler might restart the computation
with adjusted operands, terminate the computation to seek advice from the user, or abort the
process.

Cross-references
Standard, §4.7.1
The C Programming Language, ed. 2, p. 255

See Also
SIGABRT, SIGILL, SIGINT, signal handling, signal.h, SIGSEGV, SIGTERM

SIGILL — Manifest constant
Illegal instruction signal

SIGILL is a macro that is defined in the header signal.h. It is an integer that, when detected as a
signal, indicates that an invalid instruction has been encountered. This may be an instruction that
is reserved, privileged, or bad.

Cross-references
Standard, §4.7.1
The C Programming Language, ed. 2, p. 255

See Also
SIGABRT, SIGFPE, SIGINT, signal handling, signal.h, SIGSEGV, SIGTERM

SIGINT — Manifest constant
Process asynchronous interrupt signal

SIGINT is a macro that is defined in the header signal.h. It is an integer that, when received as a
signal, indicates that the program has received an interrupt. For example, under the MS-DOS
operating system, typing <ctrl-C> normally causes a program to terminate immediately.

By setting up a handler for the SIGINT signal, a program may be able to catch this signal and
terminate itself gracefully.

Example
For an example of its use in a program, see raise.

Cross-references
Standard, §4.7.1
The C Programming Language, ed. 2, p. 255

See Also
SIGABRT, SIGFPE, SIGILL, signal handling, signal.h, SIGSEGV, SIGTERM

LEXICON

SIGFPE — SIGINT 137

signal() — Signal handling (libc)
Set processing for a signal
#include <signal.h>
void (*signal(int signame, void (*function)(int)))(int);

signal is a function that tells the environment what to do when it detects a given interrupt, or
signal. signame names the signal to be handled, and function points to the signal handler (the
function to be executed when signame is detected). signame may be generated by the environment
itself (when it detects an error condition, for example), by the hardware (to indicate a bus error,
timer event, or other hardware error condition), or by the program itself (by using the function
raise).

If signal is successful, it returns a pointer to the function that the environment previously used to
handle signame. If an error occurred, signal returns SIG_ERR and the global variable errno is set to
an appropriate value.

signal is commonly used in multi-user environments, such as the UNIX operating system. Each
environment has unique requirements, and therefore a unique set of signals to be handled. The
Standard describes a skeletal form of signal that should be portable to most environments under
which C has been implemented. For a list of the signals recognized, see signal handling.

signal can establish the following ways of handling a signame:

1. If it sets function to SIG_DFL, it tells the environment to execute the default signal-handling
function for signame.

2. Then, the equivalent of

(*function)(signame)

is executed, where function is the user-defined function installed with signal to handle
signame.

3. If it sets function to point to a user-defined function, then it tells the environment to execute
that function when it detects signame.

If signal is used to establish a user-defined function for a particular signal, then the following occurs
when that signal is detected:

1. The equivalent of

signal(signame, SIG_DFL);

is executed. If signame is equivalent to SIGILL (which indicates that an illegal instruction has
been found), then this step is optional, depending upon the implementation.

2. Then, the equivalent of

(*function)(signame)

is executed, where function points to a user-defined function. Some signals are reset to
STD_DFL, some are not. The exception handler should be reset by another call to signal if
subsequent signals are expected for that condition.

3. function can terminate either by returning to the calling function, or by calling abort, exit, or
longjmp. If function returns and signame indicates that a computational exception had
occurred (e.g., division by zero), then the behavior is undefined. Otherwise, the program which
responded to the signal will continue to execute.

LEXICON

138 signal()

Cross-references
Standard, §4.7.1.1
The C Programming Language, ed. 2, p. 255

See Also
raise, signal handling, signal.h

Notes
The signal handler pointed to by function should not be another library function. Also, the signal
handler should not attempt to modify external data other than those declared as type volatile
sig_atomic_t.

signal.h — Header
Signal-handling routines
#include <signal.h>

signal.h is the header that defines or declares all elements used to handle asynchronous interrupts,
or signals.

Signals vary from environment to environment. Therefore, the contents of signal.h will also vary
greatly from environment to environment, and from implementation to implementation. The
Standard mandates that it define the following elements to create a skeletal, portable suite of signal-
handling routines:

Type
sig_atomic_t Type that can be accessed atomically

Macros
SIG_DFL Default signal-handling indicator
SIG_ERR Indicate error in setting a signal
SIG_IGN Indicate ignore a signal

SIGABRT Abort signal
SIGFPE Erroneous arithmetic signal
SIGILL Illegal instruction
SIGINT Interrupt signal
SIGSEGV Invalid access to storage signal
SIGTERM Program termination signal

Functions
raise Generate a signal
signal Set processing for a signal

Cross-references
Standard, §4.7
The C Programming Language, ed. 2, p. 255

See Also
signal handling

signal handling — Overview
#include <signal.h>
A signal is an asynchronous interrupt in a program. Its use allows a program to be notified of and
react to external conditions, such as errors that would otherwise force it either to abort or to
continue despite erroneous conditions.

To respond to a signal, a program uses a signal handler, which is a function that performs the
actions appropriate to a given signal. A signal handler usually is installed early in a program. It is

LEXICON

signal.h — signal handling 139

invoked either when the condition arises for which the signal handler was installed, or when the
program uses the function raise to raise a signal explicitly. A signal handler can be thought of as a
daemon, or a process that lives in the background and waits for the right conditions to occur for it
to spring to life. Once the signal has been handled, the program may continue to execute.

Every conforming implementation of C must include at least a skeletal facility for handling signals.
The Standard describes two functions: raise, which generates (or raises) a signal; and signal, which
tells the environment what function to execute in response to a given signal.

The suite of signals that can be handled varies from environment to environment. At a minimum,
the following signals must be recognized:

SIGABRT Abort
SIGFPE Erroneous arithmetic
SIGILL Illegal instruction
SIGINT Interrupt
SIGSEGV Invalid access to storage
SIGTERM Program termination request

All of these are positive integral expressions. An implementation is obliged to respond only if one of
these signals is raised explicitly via the function raise. This limitation is imposed because in some
environments it may be impossible for an implementation to sense the presence of such conditions.

signal tells the environment which function to execute in response to a signal by passing it a
pointer to that function. The Standard describes three macros that expand to constant expressions
that point to functions, as follows:

SIG_DFL Default signal-handling indicator
SIG_ERR Indicate error in setting a signal
SIG_IGN Indicate ignore a signal

The Standard describes a new data type, called sig_atomic_t. An object of this type can be updated
or read correctly, even if a signal occurs while it is being updated or read. Accesses to objects of this
type are atomic, i.e., uninterruptable.

All of the above are defined or declared in the header signal.h.

Cross-references
Standard, §4.7, §2.2.3
The C Programming Language, ed. 2, p. 255

See Also
Library, sequence points, signal.h

Notes
The name signal is derived from the electrical model of having a wire connected to the central
processing unit for an interrupt. When the level on the wire would rise, an interrupt would be
generated and the central processing unit would service the device that raised its signal.

signals/interrupts — Definition
The Standard mandates the following restrictions upon the manner in which functions are
implemented. First, a signal must be able to interrupt a function at any time. Second, a signal
handler must be able to call a function without affecting the value of any object with automatic
duration created by any earlier invocation of the function. Third, the function image (that is, the set
of instructions that constitutes the executable image of the function) cannot be altered in any way
as it is executed. All variables must be kept outside of the function image.

LEXICON

140 signals/interrupts

Cross-references
Standard, §2.2.3

See Also
environmental considerations, signal handling

signed — Definition
The modifier signed indicates that a data type can contain both positive and negative values. In
some representations, the sign of a signed object is indicated by a bit set aside for the purpose. For
this reason, a signed object can encode an absolute value only half that of its unsigned counterpart.

The four integral data types can be marked as signed: char, short int, int, and long int.

The implementation defines whether a char is signed or unsigned by default. The Standard
describes the types signed char and unsigned char. These let the programmer use the type of char
other than that supplied by the implementation. short int, int, and long int are signed by default.
The declarations signed short int, signed int, and signed long int were created for the sake of
symmetry.

For information about converting one type of integer to another, see integral types.

If signed is used by itself, it is a synonym for int.

Cross-references
Standard, §3.1.2.5, §3.2.1.2
The C Programming Language, ed. 2, p. 211

See Also
integral type, types, unsigned

signed char — Type
A signed char is a type that has the same size and the same alignment requirements as a plain
char. The Standard created this type for implementations whose char type is unsigned by default.

A signed char can encode values from SCHAR_MIN to SCHAR_MAX. These are macros that are
defined in the header limits.h. The former must be set to at most -127, and the latter to at least
+127.

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.5.2
The C Programming Language, ed. 2, p. 44

See Also
char, types, unsigned char

SIGSEGV —
Signal invalid reference to memory

SIGSEGV is a macro that is defined in the header signal.h. It is an integral constant expression
that, when received as a signal, indicates that storage has been accessed illegally. This can be an
illegal address, an odd address, non-existent memory, or an access violation.

Cross-references
Standard, §4.7.1
The C Programming Language, ed. 2, p. 255

LEXICON

signed — SIGSEGV 141

See Also
SIGABRT, SIGFPE, SIGILL, signal handling, signal.h, SIGTERM

Notes
The name SIGSEGV comes from the phrase signal segmentation violation. It is historical, and
derives from machines with segmented architecture.

SIGTERM — Manifest constant
Program-termination signal

SIGTERM is a macro defined in the header signal.h. It is an integral constant expression that, when
received as a signal, indicates that the program has been ordered to terminate itself immediately.

Cross-references
Standard, §4.7.1
The C Programming Language, ed. 2, p. 255

See Also
SIGABRT, SIGFPE, SIGILL, SIGINT, signal handling, signal.h, SIGSEGV

sin() — Mathematics (libm)
Calculate sine
#include <math.h>
double sin(double radian);

sin calculates and returns the sine of its argument radian, which must be in radian measure.

Example
This example checks the accuracy of sin and cos on your implementation. It verifies the identity
sin(2*x) == 2*sin(x)*cos(x) over a range of values. Then, it scans the range of the worst error in
smaller and smaller increments, until the precision of your implementation’s floating point will not
allow any more.

#include <float.h>
#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#define PI 0.31415926535897932e+01

main(void)
{

int ct;
double a, e, i, worstp;
double worste=0.0;
double f=-PI;

LEXICON

142 SIGTERM — sin()

printf("Verify sin(2*x) == 2*sin(x)*cos(x)\n");
for(i = (PI / 100.0); (f + i) > f; i *= 0.01) {

for(ct = 200, a = f; --ct; a += i) {
e = fabs(sin(a+a)-(2.0*sin(a)*cos(a)));
if(e > worste) {

worste = e;
worstp = a;

}
}
f = worstp - i;

}

printf("Worst error %.17e at %.17e\n", worste, worstp);
printf("sin(2x)=%.17e 2*sin(x)*cos(x)=%.17e\n",

f=sin(worstp+worstp), 2.0*sin(worstp)*cos(worstp));
printf("Epsilon is %.17e\n", fabs(f) * DBL_EPSILON);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.5.2.6
The C Programming Language, ed. 2, p. 251

See Also
acos, asin, atan, atan2, cos, tan, trigonometric functions

sinh() — Mathematics (libm)
Calculate hyperbolic sine
#include <math.h>
double sinh(double value);

sinh calculates and returns the hyperbolic sine of value. A range error will occur if the argument is
too large.

Cross-references
Standard, §4.5.3.2
The C Programming Language, ed. 2, p. 251

See Also
cosh, hyperbolic functions, tanh

size_t — Type
Type returned by sizeof operator
#include <stddef.h>

size_t is a type that is defined in the header stddef.h. It is the unsigned integral type returned by
the operator sizeof. This must be an existing integral type; thus, it cannot be larger than an
unsigned long.

size_t sets a limit on the number of elements that can be placed in an array. For any array X with n
elements, the following must be true:

n == sizeof(X)/sizeof(X[0]);

Cross-references
Standard, §3.3.3.4, §4.1.5
The C Programming Language, ed. 2, p. 135

LEXICON

sinh() — size_t 143

See Also
Library, sizeof, stddef.h

Notes
If an implementation defines sizeof as returning anything other than an int, then code that
assumes that sizeof returns an int will not work.

The Standard lists size_t as being declared in both stddef.h and stdlib.h.

sizeof — C keyword
The operator sizeof yields the size of its argument, in bytes. Its argument can be the name of a
type, an array, a function, a structure, or an expression that yields an object.

When the name of a type is used as the operand to sizeof, it must be enclosed within parentheses.
If any of the types char, signed char, or unsigned char are used as the argument to sizeof, the
result by definition is always one. When any complete type is used (i.e., a type whose size is known
by the translator), the result is the size of that type, in bytes. For example,

sizeof (long double);

returns the size of a long double in bytes.

If sizeof is given the name of an array, it returns the size of the array. For example, the code

int example[5];
. . . /* example[] is filled with some things */

sizeof example[] / sizeof int;

yields the number of members in example[].

When sizeof is given the name of a structure or a union, it returns the size of that object, including
padding used to align the objects within the structure, if any. This is especially useful when
allocating memory for a linked list; for example:

struct example {
int member1;
example *member2;

};
struct example *variable;
variable=(struct example *)malloc(sizeof(struct example));

If sizeof is used to measure either a function or an array that has been passed as an argument to a
function, it returns the size of a pointer to the appropriate object. This is because when an array
name or function name is passed as an argument to a function, it is converted to a pointer. See
function definition for more information.

sizeof always returns an object of type size_t; this type is defined in the header stddef.h. It is
intended to be an unsigned integral type.

sizeof must not be used with a function, with an object whose type is incomplete, or a bit-field.

Example
For an example of using this operator in a program, see bsearch.

Cross-references
Standard, §3.3.3.4
The C Programming Language, ed. 2, p. 204

LEXICON

144 sizeof

See Also
expressions, operators, size_t, unary operators

source file — Definition
A source file is any file of C source text.

Cross-reference
Standard, §2.1.1.1

See Also
translation environment, translation unit

spirit of C — Definition
The term spirit of C refers to the programming principles that underlie C. These principles are not
formally defined, but the ANSI committee gave much thought to preserving the spirit of C as it drew
up the Standard.

The Rationale offers the following mottoes as expressing part of the spirit of C:

• Trust the programmer.

• Don’t prevent the programmer from doing what needs to be done.

• Keep the language small and simple.

• Provide only one way to do an operation.

• Make it fast, even if it is not guaranteed to be portable.

The last motto means that the Standard will not prevent the programmer from writing code that is
tailored to a particular machine’s architecture.

The Standard invokes the spirit of C on numerous occasions. Like all matters spiritual, the spirit of
C is not easily defined. C has traditionally been considered a structured assembly language. The
Committee sought to keep the language flexible enough for low-level machine-specific code, yet give
users a fighting chance to write truly portable code.

Cross-reference
Rationale, §1.1

See Also
as if rule, Rationale

sprintf() — STDIO (libc)
Print formatted text into a string
#include <stdio.h>
int sprintf(char *string, const char *format, ...);

sprintf constructs a formatted string in the area pointed to by string, and appends a null character
onto the end of what it constructs. It translates integers, floating-point numbers, and strings into a
variety of text formats.

format points to a string that can contain text, character constants, and one or more conversion
specifications. A conversion specification describes how to convert a particular data type into text.
Each conversion specification is introduced with the percent sign %. (To print a literal percent sign,
use the escape sequence %%.) See printf for further discussion of the conversion specification, and
for a table of the type specifiers that can be used with sprintf.

LEXICON

source file — sprintf() 145

After format can come one or more arguments. There should be one argument for each conversion
specification in format. The argument should be of the type appropriate to the conversion
specification. For example, if format contains conversion specifications for an int, a long, and a
string, then format should be followed by three arguments, respectively, an int, a long, and a char
*.

If there are fewer arguments than conversion specifications, then sprintf’s behavior is undefined. If
there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding conversion specifier,
then the behavior of sprintf is undefined. Thus, presenting an int where sprintf expects a char *
may generate unwelcome results.

sprintf returns the number of characters written into string, not counting the terminating null
character.

Cross-references
Standard, §4.9.6.5
The C Programming Language, ed. 2, p. 245

See Also
fprintf, fscanf, input-output, printf, scanf, sscanf, vfprintf, vprintf, vsprintf

Notes
string must point to enough allocated memory to hold the string sprintf constructs, or you may
overwrite unallocated memory.

The Standard does not include the conversion specifier r, which is used by many implementations
to pass an array of arguments to sprintf. To achieve the functionality of the r specifier, use
vsprintf.

The character that sprintf uses to represent the decimal point is affected by the program’s locale, as
set by the function setlocale. For more information, see localization.

sqrt() — Mathematics (libm)
Calculate the square root of a number
#include <math.h>
double sqrt(double z);

sqrt calculates and returns the square root of z.

Example
This example calculates the time an object takes to fall to the ground at sea level. It ignores air
friction and the inverse square law.

#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

double
fallingTime(double meters)
{

double time;

LEXICON

146 sqrt()

errno = 0;
time = sqrt(meters * 2 / 9.8);
/*
* it would be simpler to test for (meters < 0) first,
* but this way shows how sqrt() sets errno
*/

if(errno) {
printf("Sorry, but you can’t fall up\n");
return(HUGE_VAL);

}
return(time);

}

main(void)
{

for(;;) {
char buf[80];
double height;

printf("Enter height in meters ");
fflush(stdout);
if(gets(buf) == NULL || !strcmp(buf, "quit"))

break;

errno = 0;
height = strtod(buf, (char **)NULL);

if(errno) {
printf("%s: invalid floating-point number\n");
continue;

}

printf("It takes %3.2f sec. to fall %3.2f meters\n",
fallingTime(height), height);

}

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.5.5.2
The C Programming Language, ed. 2, p. 251

See Also
domain error, pow, power functions

Notes
If z is negative, a domain error occurs.

srand() — General utility (libc)
Seed pseudo-random number generator
#include <stdlib>
void srand(unsigned int seed);

srand uses seed to initialize the sequence of pseudo-random numbers returned by rand. Different
values of seed produce different sequences.

LEXICON

srand() 147

Example
This example uses the random-number generator to encrypt or decrypt a file. This example is for
illustration only. Do not use it if any serious attack is expected. This example also demonstrates a
simple form of hashing.

#include <stdio.h>
#include <stdlib.h>

/* Ask for a string and echo it. */
char *
ask(char *msg)
{

static char reply[80];

printf("Enter %s ", msg);
fflush(stdout);

if(gets(reply) == NULL)
exit(EXIT_SUCCESS);

return(reply);
}

main(void)
{

register char *kp;
register int c, seed;
FILE *ifp, *ofp;

if((ifp = fopen(ask("input filename"), "rb")) == NULL)
exit(EXIT_FAILURE);

if((ofp = fopen(ask("output filename"), "wb")) == NULL)
exit(EXIT_FAILURE);

/* hash encryption key into an int */
seed = 0;
for(kp = ask("encryption key"); c = *kp++;) {

/* don’t lose any bits */
if((seed <<= 1) < 0)

/* a number picked at random */
seed ^= 0xE51B;

seed ^= c;
}

/* initialize random-number stream */
srand(seed);

while((c = fgetc(ifp)) != EOF)
/*
* Use only the high byte of rand;
* its low-order bits are very non-random
*/

fputc(c ^ (rand() >> 8), ofp);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.10.2.2
The C Programming Language, ed. 2, p. 252

LEXICON

148 srand()

See Also
pseudo-random numbers, rand

sscanf() — STDIO (libc)
Read and interpret text from a string
#include <stdio.h>
int sscanf(const char *string, const char *format, ...);

sscanf reads characters from string and uses the string pointed to by format to interpret what it has
read into the appropriate type of data. format points to a string that contains one or more
conversion specifications, each of which is introduced with the percent sign %. For a table of the
conversion specifiers that can be used with sscanf, see scanf.

After format can come one or more arguments. There should be one argument for each conversion
specification in format, and the argument should point to a data element of the type appropriate to
the conversion specification. For example, if format contains conversion specifications for an int, a
long, and a string, then format should be followed by three arguments, pointing, respectively, to an
int, a long, and an array of chars.

If there are fewer arguments than conversion specifications, then sscanf’s behavior is undefined. If
there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding type specification,
then sscanf returns.

sscanf returns the number of input elements it scanned and formatted. If an error occurs while
sscanf is reading its input, it returns EOF.

Example
This example reads a list of hexadecimal numbers from the standard input and adds them.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

main(void)
{

long h[5], total;
char buf[80];
int count, i;

printf("Enter a list of up to five hex numbers or quit\n");
while(gets(buf) != NULL) {

if(!strcmp("quit", buf))
break;

count = sscanf(buf, "%lx %lx %lx %lx %lx",
h, h+1, h+2, h+3, h+4);

for(i = total = 0; i < count; i++)
total += h[i];

printf("Total 0x%lx %ld\n", total, total);
}

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.9.6.6
The C Programming Language, ed. 2, p. 246

LEXICON

sscanf() 149

See Also
fscanf, input-output, printf, scanf

Notes
sscanf is best used to read data you are certain are in the correct format, such as data previously
written with sprintf.

The character that sscanf recognizes as representing the decimal point is affected by the program’s
locale, as set by the function setlocale. For more information, see localization.

Standard — Overview
The Standard is the document written by the American National Standards Institute committee
X3J11 to describe the programming language C. It is based on the following documents:

• Kernighan, B. W., Ritchie, D. M.: The C Programming Language. Englewood Cliffs, NJ:
Prentice-Hall Inc., 1978. The Standard bases its description of C syntax upon Appendix A of
this book.

• /usr/group Standard Committee: 1984 /usr/group Standard. Santa Clara, Calif.: /usr/group,
1984. This document was the basis for the Standard’s description of the C library.

• American National Dictionary for Information Processing Systems. Information Processing
Systems Technical Report ANSI X3/TR-1-82. 1982.

• ISO 646-1983 Invariant Code Set. This was used to help describe the C character set, and to
select the characters that need to be represented by trigraphs.

• IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard 754-1985. This is
the basis for the Standard’s description of floating-point numbers.

• ISO 4217 Codes for Representation of Currency and Funds. This is the target for the
Standard’s description of locale-specific ways to represent money.

The first two, due to their fundamental effect upon the Standard, are referred to as the base
documents.

Using this Lexicon
The Standard itself is organized into chapters, sections, and sub-sections.

This Lexicon re-describes the Standard to clarify what the Standard says and make the Standard
more accessible to programmers. The Lexicon’s logical structure follows closely that of the
Standard. For an overview of the Lexicon’s logical structure, see Appendix A. Unlike the Standard,
however, this Lexicon discusses each topic in a separate article and presents all of the articles in
alphabetical order. This makes it much easier for you to find the discussion of any given topic.

Each article shows its place in the Lexicon in two ways. First, the header for each article (except
this one) gives a path name, which indicates the article’s place in the Lexicon’s logical structure.
Second, each article cross-references articles on related topics. By following either the path name or
the cross-references, you can move from any article within the Lexicon to any other.

Cross-reference
Standard, §1.3, §1.5

See Also
Definitions, Environment, Language, Library, Rationale

LEXICON

150 Standard

standard error — Definition
When a C program begins, it opens three text streams by default: the standard error, the standard
input, and the standard output. The standard error is the stream into which error messages are
written. In most implementations, the standard error stream is associated with the user’s terminal.

The macro stderr points to the FILE object through which the standard error device is accessed. It
is defined in the header stdio.h.

Cross-references
Standard, §4.9.3
The C Programming Language, ed. 2, pp. 151ff

See Also
standard input, standard output, stderr, STDIO

standard input — Definition
When a C program begins execution, it opens three text streams by default: the standard error, the
standard input, and the standard output. The standard input is the stream from which the program
receives input by default. In most implementations, the standard input stream is associated with
the user’s terminal.

The macro stdin points to the FILE object that accesses the standard input stream. It is defined in
the header stdio.h.

Cross-references
Standard, §4.9.3
The C Programming Language, ed. 2, pp. 151ff

See Also
standard error, standard output, stdin, STDIO

standard output — Definition
When a C program begins execution, it opens three text streams by default: the standard output,
the standard input, and the standard error. The standard output is the stream into which a
program’s non-diagnostic output is written. In most implementations, the standard output stream
is associated with the user’s terminal.

The macro stdout points to the FILE object that accesses the standard output device. It is defined
in the header stdio.h.

Cross-references
Standard, §4.9.3
The C Programming Language, ed. 2, pp. 151ff

See Also
standard error, standard input, STDIO, stdout

statements — Overview
A statement specifies an action to be performed. Unless otherwise specified, statements are
executed in the order in which they appear in the program.

The actions of some statements may be controlled by a full expression; this is an expression that is
not part of another expression. For example, do, if, for, switch, and while introduce statements
that are controlled by one or more full expressions. The return statement may also use a full
expression.

LEXICON

standard error — statements 151

The Standard describes the following varieties of statements:

Compound statement

Expression statement

Iteration statements
do
for
while

Jump statements
break
continue
goto
return

Labelled statements
case
default

Null statement

Selection statements
if
else
switch

The set of compound, iteration, and selection statements is the foundation upon which many
programming languages are based. From these alone, a programmer can construct many useful
and interesting programs.

Cross-references
Standard, §3.6
The C Programming Language, ed. 2, pp. 222ff

See Also
Language

static — C keyword
Internal linkage
static type identifier

The storage-class specifier static declares that identifier has internal linkage. This specifier may not
be used to declare a function that has block scope.

Cross-references
Standard, §3.5.1
The C Programming Language, ed. 2, p. 83

See Also
linkage, storage-class identifiers

stdarg.h — Header
Header for variable numbers of arguments
#include <stdarg.h>

The header stdarg.h declares and defines routines that are used to traverse a variable-length
argument list. It declares the type va_list and the function va_end, and it defines the macros

LEXICON

152 static — stdarg.h

va_start and va_arg.

Cross-references
Standard, §4.8
The C Programming Language, ed. 2, p. 254

See Also
header, variable arguments

stddef.h — Header
Header for standard definitions
#include <stddef.h>

The header stddef.h defines three types and two macros that are used through the library. They are
as follows:

NULL Null pointer
offsetof() Offset of a field within a structure
ptrdiff_t Numeric difference between two pointers
size_t Type returned by sizeof operator
wchar_t Typedef for wide chars

Cross-reference
Standard, §4.1.5

See Also
header, Library

stderr — Macro
Pointer to standard error stream
#include <stdio.h>

When a C program begins, it opens three text streams by default: the standard error, the standard
input, and the standard output. stderr points to the FILE object through which the standard error
stream is accessed; this is the stream into which error messages are written. In most
implementations, the standard error stream is associated with the user’s terminal.

stderr is defined in the header stdio.h.

stderr is not fully buffered when it is opened.

Example
For an example of stderr in a program, see fprintf.

Cross-references
Standard, §4.9.1, §4.9.3
The C Programming Language, ed. 2, p. 243

See Also
stdin, stdout, standard error, STDIO, stdio.h

LEXICON

stddef.h — stderr 153

stdin — Macro
Pointer to standard input stream
#include <stdio.h>

When a C program begins, it opens three text streams by default: the standard error, the standard
input, and the standard output. stdin points to the FILE object that accesses the standard input
stream; this is the stream from which the program receives input by default. In most
implementations, the standard input stream is associated with the user’s terminal.

stdin is defined in the header stdio.h.

Example
For an example of stdin in a program, see setvbuf.

Cross-references
Standard, §4.9.1, §4.9.3
The C Programming Language, ed. 2, p. 243

See Also
stderr, stdout, standard input, STDIO, stdio.h

STDIO — Overview
Standard input and output
#include <stdio.h>

STDIO is an acronym for standard input and output. Input-output can be performed on text files,
binary files, or interactive devices. It can be either buffered or unbuffered.

The Standard describes 41 functions that perform input and output, as follows:

Error handling
clearerr Clear a stream’s error indicator
feof Examine a stream’s end-of-file indicator
ferror Examine a stream’s error indicator
perror Write error message into standard error stream

File access
fclose Close a stream
fflush Flush an output stream’s buffer
fopen Open a stream
freopen Close and reopen a stream
setbuf Set an alternate buffer for a stream
setvbuf Set an alternate buffer for a stream

File operations
remove Remove a file
rename Rename a file
tmpfile Create a temporary file
tmpnam Generate a unique name for a temporary file

File positioning
fgetpos Get value of stream’s file-position indicator (fpos_t)
fseek Set stream’s file-position indicator
fsetpos Set stream’s file-position indicator (fpos_t)
ftell Get the value of the file-position indicator
rewind Reset stream’s file-position indicator

LEXICON

154 stdin — STDIO

Input-output
By character
fgetc Read a character from a stream
fgets Read a line from a stream
fputc Write a character into a stream
fputs Write a string into a stream
getc Read a character from a stream
getchar Read a character from the standard input stream
gets Read a string from the standard input stream
putc Write character into a stream
putchar Write a character into the standard output
puts Write a string into the standard output
ungetc Push a character back into the input stream

Direct
fread Read data from a stream
fwrite Write data into a stream

Formatted
fprintf Print formatted text into a stream
fscanf Read formatted text from a stream
printf Format and print text into standard output stream
scanf Read formatted text from standard input stream
sprintf Print formatted text into a string
sscanf Read formatted text from string
vfprintf Format and print text into a stream
vprintf Format and print text into standard output stream
vsprintf Format and print text into a string

The prototypes for these functions appear in the header stdio.h, along with definitions for the types
and macros they use.

The Standard does not mention the low-level functions read, write, open, close, and lseek. The
Committee concluded that these functions were too implementation-specific to be included within
the Standard. Implementations may still support these functions as extensions to the Standard.
However, programs that use them are not guaranteed to be portable to every implementation of
ANSI C.

All STDIO functions access a file or device through a stream. A stream is accessed via an object of
type FILE; this object contains all of the information needed to access the file or device under the
given environment. Because of the heterogeneous environments under which C has been
implemented, the Standard does not describe the interior workings of the FILE object. It states only
that this object contain all information needed to access a stream under the given environment.

Cross-references
Standard, §4.9
The C Programming Language, ed. 2, pp. 151ff, 241ff

See Also
close, create, file, file-position indicator, Library, line, open, stdio.h, stream

LEXICON

STDIO 155

stdio.h — Header
Declarations and definitions for STDIO

stdio.h is the header that holds the definitions, declarations, and function prototypes used by the
STDIO routines.

The following lists the types and macros defined in stdio.h:

Types
FILE Hold descriptor for a stream
fpos_t Hold current position within a file

Macros
stderrPointer to standard error stream
stdin Pointer to standard input stream
stdout Pointer to standard output stream

Manifest Constants
_IOFBF Indicates stream is fully buffered
_IOLBF Indicates stream is line-buffered
_IONBF Indicates stream is unbuffered
BUFSIZ Default size of buffer for STDIO stream
EOF Indicates end of file when returned by STDIO routine
FILENAME_MAX

Maximum length of a file name, in bytes
FOPEN_MAX Maximum number of files that can be opened at once
L_tmpnam Maximum length of temporary file name, in bytes
SEEK_CUR Seek from current position (fseek)
SEEK_END Seek from the end of a file (fseek)
SEEK_SET Seek from beginning of a file (fseek)
TMP_MAX Maximum number of calls to tmpnam

Macros
_IOFBF Indicates stream is fully buffered
_IOLBF Indicates stream is line-buffered
_IONBF Indicates stream is unbuffered
BUFSIZ Default size of buffer for STDIO stream
EOF Indicates end of file when returned by STDIO routine
FILENAME_MAX

Maximum length of a file name, in bytes
FOPEN_MAX Maximum number of files that can be opened at once
L_tmpnam Maximum length of temporary file name, in bytes
SEEK_CUR Seek from current position (fseek)
SEEK_END Seek from the end of a file (fseek)
SEEK_SET Seek from beginning of a file (fseek)
stderrPointer to standard error stream
stdin Pointer to standard input stream
stdout Pointer to standard output stream
TMP_MAX Maximum number of calls to tmpnam

Cross-references
Standard, §4.9.1
The C Programming Language, ed. 2, pp. 151ff, 241ff

LEXICON

156 stdio.h

See Also
header, STDIO

stdlib.h — Header
General utilities
#include <stdlib.h>

stdlib.h is a header that declares the Standard’s set of general utilities and defines attending
macros and data types, as follows:

Types
div_t Type of object returned by div
ldiv_t Type of object returned by ldiv

Macros
EXIT_FAILURE Value to indicate that program failed to execute properly
EXIT_SUCCESS Value to indicate that program executed properly
MB_CUR_MAX Largest size of multibyte character in current locale
MB_LEN_MAX Largest overall size of multibyte character in any locale
RAND_MAX Largest size of pseudo-random number

Functions
abort End program immediately
abs Compute the absolute value of an integer
atexit Register a function to be executed at exit
atof Convert string to floating-point number
atoi Convert string to integer
atol Convert string to long integer

bsearch Search an array

calloc Allocate dynamic memory

div Perform integer division

exit Terminate a program gracefully

free De-allocate dynamic memory to free memory pool

getenv Read environmental variable

labs Compute the absolute value of a long integer
ldiv Perform long integer division

malloc Allocate dynamic memory
mblen Compute length of a multibyte character
mbstowcs Convert multibyte-character sequence to wide characters
mbtowc Convert multibyte character to wide character

qsort Sort an array

rand Generate pseudo-random numbers
realloc Reallocate dynamic memory

strtod Convert string to floating-point number
strtol Convert string to long integer
strtoul Convert string to unsigned long integer
system Suspend a program and execute another

LEXICON

stdlib.h 157

wcstombs Convert wide-character sequence to multibyte characters
wctomb Convert wide character to multibyte character

Cross-references
Standard, §4.10.1
The C Programming Language, ed. 2, p. 251

See Also
general utilities

stdout — Macro
Pointer to standard output stream
#include <stdio.h>

When a C program begins, it opens three text streams by default: the standard error, the standard
input, and the standard output. stdout points to the FILE object that accesses the standard output
stream. This is the stream into which non-diagnostic output is written. In most implementations,
the standard output stream is associated with the user’s terminal.

stdout is defined in the header stdio.h.

Example
For an example of stdout in a program, see setvbuf.

Cross-references
Standard, §4.9.1, §4.9.3
The C Programming Language, ed. 2, p. 243

See Also
stdin, stderr, standard output, STDIO, stdio.h

storage-class specifiers — Overview
A storage-class specifier specifies the manner in which an object is to be stored in memory. There
are five such specifiers:

auto Automatic storage duration
extern External linkage
register Quick access required
static Internal linkage
typedef Synonym for another type

Only one storage-class specifier is allowed per declaration. The Standard declares as obsolescent
any declaration that does not have its storage class as the first specifier in a declaration.

Strictly speaking, typedef is not a storage-class specifier. The Standard bundles it into this group
for the sake of convenience.

Cross-references
Standard, §3.5.1
The C Programming Language, ed. 2, p. 210

See Also
declarations, storage class, storage duration

LEXICON

158 stdout — storage-class specifiers

storage duration — Definition
The term storage duration refers to how long a given object is retained within memory. There are
two varieties of storage duration: static and automatic.

An object with static storage duration is retained throughout program execution. Its storage is
reserved, and the object is initialized only when the program begins execution. All string literals
have static duration, as do all objects that are declared globally that is, declared outside of any
function.

An object with automatic duration is declared within a block of code. It endures within memory
only for the life of that block of code. Memory is allocated for the variable whenever that block is
entered and deallocated when the block is terminated, either by encountering the } that closes the
block, or by exiting the block with goto, longjmp, or return.

A common practice is to declare all automatic variables at the beginning of a function. These
variables endure as long as the function is operating. If the function calls another function, then
these functions are stored away (usually in an special area of memory called the stack), but they
cannot be accessed until the called function returns.

Automatic variables can be allocated on a stack, a heap, or in machine registers. Function
parameters, as well as objects declared within a function, are automatic. Some mainframe systems
do not have a stack; on these machines, variables with automatic storage reside in a separate area
of memory.

Cross-references
Standard, §3.1.2.4
The C Programming Language, ed. 2, p. 195

See Also
auto, identifiers, scope, static

strcat() — String handling (libc)
Append one string onto another
char *strcat(char *string1, const char *string2);

strcat copies all characters in string2, including the terminating null character, onto the end of the
string pointed to by string1. The null character at the end of string1 is overwritten by the first
character of string2.

strcat returns the pointer string1.

Example
The following example concatenates two strings.

#include <stdio.h>
#include <string.h>

char string1[80] = "The first string. ";
char string2[] = "The second string.";

main(void)
{

printf("result = %s\n", strcat(string1, string2));
return(EXIT_SUCCESS);

}

LEXICON

storage duration — strcat() 159

Cross-references
Standard, §4.11.3.1
The C Programming Language, ed. 2, p. 250

See Also
string concatenation, strncat

Notes
string1 should point to enough reserved memory to hold itself and string2. Otherwise, data or code
will be overwritten.

strchr() — String handling (libc)
Find a character in a string
#include <string.h>
char *strchr(const char *string, int character);

strchr searches for character within string. The null character at the end of string is included within
the search.

Internally, strchr converts character from an int to a char before searching for it within string.

strchr returns a pointer to the first occurrence of character within string. If character is not found, it
returns NULL.

Having strchr search for a null character will always produce a pointer to the end of a string. For
example,

char *string;
assert(strchr(string, ’\0’) == string + strlen(string));

will never fail.

Example
The following example creates functions called replace and trim. replace finds and replaces every
occurrence of an item within a string and returns the altered string. trim removes all trailing
spaces from a string, and returns a pointer to the altered string.

#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <stdio.h>

char *
replace(char *string, char item, char newitem)
{

char *start;

/* replacing 0 is too dangerous */
if ((start = string) == NULL || item == ’\0’)

return(start);
while ((string = strchr(string, item)) != NULL)

*string = newitem;
return(start);

}

char *
trim(char * str)
{

register char *endp;

LEXICON

160 strchr()

if(str == NULL)
return(str);

/* start at end of string while in string and spaces */
for(endp = strchr(str, ’\0’);

endp != str && *--endp == ’ ’;)
*endp = ’\0’;

return(str);
}

char string1[] = "Remove trailing spaces ";
char string2[] = "Spaces become dashes.";
main(void)
{

printf("\"%s\"\n", trim(string1));
printf("%s\n", replace(string2, ’ ’, ’-’));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.2
The C Programming Language, ed. 2, p. 249

See Also
memchr, strcspn, string searching, strpbrk, strrchr, strspn, strstr, strtok

Notes
This is equivalent to the function index, which is described in the first edition of The C Programming
Language, page 67.

strcmp() — String handling (libc)
Compare two strings
#include <string.h>
int strcmp(const char *string1, const char *string2);

strcmp lexicographically compares the string pointed to by string1 with the one pointed to by
string2. Comparison ends when a null character is encountered.

strcmp compares the two strings character by character until it finds a pair of characters that are
not identical. It returns a number less than zero if the character in string1 is less (i.e,. occurs
earlier in the character table) than its counterpart in string2. It returns a number greater than zero
if the character in string1 is greater (i.e,. occurs later in the character table) than its counterpart in
string2. If no characters are found to differ, then the strings are identical and strcmp returns zero.

Example
For an example of this function, see fflush.

Cross-references
Standard, §4.11.4.2
The C Programming Language, ed. 2, p. 250

See Also
memcmp, strcmp, strcoll, string comparison, strncmp, strxfrm

Notes
strcmp differs from the memory-comparison routine memcmp in the following ways:

LEXICON

strcmp() 161

First, strcmp compares strings rather than areas of memory; therefore, it stops when it encounters
a null character.

Second, memcmp takes two pointers to void, whereas strcmp takes two pointers to char. The
following code illustrates how this difference affects these functions:

char carray[10];
int iarray[10];
char *s = "hi";

. . .
strcmp(carray, s) /* RIGHT */
memcmp(carray, s, 3) /* RIGHT */
strcmp(iarray, s) /* WRONG, 1st arg not char * */
memcmp(iarray, s, 3) /* RIGHT, args cast to void * */

It is wrong to use strcmp to compare an int array with a char array, because this function
compares strings. Using memcmp to compare an int array with a char array is permissible
because memcmp simply compares areas of data.

strcoll() — String handling (libc)
Compare two strings, using locale-specific information
#include <string.h>
int strcoll(const char *string1, const char *string2);

strcoll lexicographically compares the string pointed to by string1 with one pointed to by string2.
Comparison ends when a null character is read. strcoll differs from strcmp in that it uses
information concerning the program’s locale, as set by the function setlocale, to help compare
strings. It can be used to provide locale-specific collating. See localization for more information
about setting a program’s locale.

strcoll compares the two strings character by character until it finds a pair of characters that are
not identical. It returns a number less than zero if the character in string1 is less (i.e,. occurs
earlier in the character table) than its counterpart in string2. It returns a number greater than zero
if the character in string1 is greater (i.e,. occurs later in the character table) than its counterpart in
string2. If no characters are found to differ, then the strings are identical and strcoll returns zero.

Cross-references
Standard, §4.11.4.3
The C Programming Language, ed. 2, p. 250

See Also
localization, memcmp, strcmp, string comparison, strncmp, strxfrm

Notes
The string-comparison routines strcoll, strcmp, and strncmp differ from the memory-comparison
routine memcmp in that they compare strings rather than regions of memory. They stop when they
encounter a null character, but memcmp does not. memcmp performs the same when run on
ASCII or EBCDIC machines, whereas the string-comparison routines do not.

strcpy() — String handling (libc)
Copy one string into another
#include <string.h>
char *strcpy(char *string1, const char *string2);

strcpy copies the string pointed to by string2, including the null character, into the area pointed to
by string1.

LEXICON

162 strcoll() — strcpy()

strcpy returns string1.

Example
For an example of this function, see realloc.

Cross-references
Standard, §4.11.2.3
The C Programming Language, ed. 2, p. 249

See Also
memcpy, memset, string copying, strncpy

Notes
If the region of memory pointed to by string1 overlaps with the string pointed to by string2, the
behavior of strcpy is undefined.

string1 should point to enough reserved memory to hold string2, or code or data will be overwritten.

strcspn() — String handling (libc)
Return length a string excludes characters in another
#include <string.h>
size_t strcspn(const char *string1, const char *string2);

strcspn compares string1 with string2. It then returns the length, in characters, for which string1
consists of characters not found in string2.

Example
The following example returns a pointer to the first white-space character in a string. White space
is defined as space, tab, or newline.

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

char *
nextwhite(char *string)
{

size_t skipcount;

if(string == NULL)
return NULL;

skipcount = strcspn(string, "\t \n");
return(string + skipcount);

}

char string1[] = "My love is like a red, red, rose";

main(void)
{

printf(nextwhite(string1));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.3
The C Programming Language, ed. 2, p. 250

LEXICON

strcspn() 163

See Also
memchr, strchr, string searching, strpbrk, strrchr, strspn, strstr, strtok

stream — Definition
The term stream is a metaphor for the flow of data between a C program and either an external I/O
device (e.g., a terminal) or a file stored on a semi-permanent medium (e.g., disk or tape). A program
can read data from a stream, write data into it, or (in the case of a file) directly access any named
portion of it.

The Standard describes two types of stream: the binary stream and the text stream.

A binary stream is simply a sequence of bytes. The Standard requires that once a program has
written a sequence of bytes into a stream, it should be able to read back the same sequence of bytes
unchanged from that stream with the sole exception that, in some environments, one or more null
characters may be appended to the end of the sequence.

A text stream, on the other hand, consists of characters that have been organized into lines. A line
in turn, consists of zero or more characters terminated by a newline character. The Standard
declines to describe in detail how a text stream is manipulated; it simply mandates that reading,
writing, and seeking be done in a consistent manner.

The Standard mandates that when data are written into a binary file, the file is not truncated.
Whether a text file is truncated when data are written into it depends upon the implementation.

The Standard also mandates that an implementation should be able to handle a line that is BUFSIZ
characters long, which includes the terminating newline character. BUFSIZ is a macro that is
defined in the header stdio.h, and must be defined to be equal to at least 256.

The maximum number of streams that can be opened at any one time is given by the macro
FOPEN_MAX. This must be at least eight, including stdin, stdout, and stderr.

Cross-references
Standard, §4.9.2
The C Programming Language, ed. 2, p. 241

See Also
buffer, file, line, STDIO, stdio.h

strerror() — String handling (libc)
Translate an error number into a string
#include <string.h>
char *strerror(int error);

strerror helps to generate an error message. It takes the argument error, which presumably is an
error code generated by an error condition in a program, and may return a pointer to the
corresponding error message.

The error numbers recognized and the texts of the corresponding error messages all depend upon
the implementation.

Example
This example prints the user’s error message and the standard error message before exiting.

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stddef.h>

LEXICON

164 stream — strerror()

fatal(char * msg)
{

int save;

save = errno;
/* this may clobber errno */
fprintf(stderr, "%s", msg);
if (save)

fprintf(stderr, ": %s", strerror(save));
fprintf(stderr, "\n");
exit(save);

}

main(void)
{

/* guaranteed wrong */
sqrt(-1.0);
fatal("What does sqrt say to -1?");
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.6.2
The C Programming Language, ed. 2, p. 250

See Also
errors, perror, string miscellaneous

Notes
strerror returns a pointer to a static array that may be overwritten by a subsequent call to strerror.

strerror differs from the related function perror in the following ways: strerror receives the error
number through its argument error, whereas perror reads the global constant errno. Also, strerror
returns a pointer to the error message, whereas perror writes the message directly into the standard
error stream.

The error numbers recognized and the texts of the messages associated with each error number
depend upon the implementation. However, strerror and perror must return the same error
message when handed the same error number.

strftime() — Time function (libc)
Format locale-specific time
#include <time.h>
size_t strftime(char *string, size_t maximum, const char *format,

const struct tm *brokentime);

The function strftime provides a locale-specific way to print the current time and date. It also gives
you an easy way to shuffle the elements of date and time into a string that suits your preferences.

strftime references the portion of the locale that is affected by the calls

setlocale(LC_TIME, locale);

or

setlocale(LC_ALL, locale);

For more information on setting locales, see the entry for localization.

string points to the region of memory into which strftime writes the date and time string it

LEXICON

strftime() 165

generates. maximum is the maximum number of characters that can be written into string. string
should point to an area of allocated memory at least maximum+1 bytes long; if it does not, reserved
portions of memory may be overwritten.

brokentime points to a structure of type tm, which contains the broken-down time. This structure
must first be initialized by either of the functions localtime or gmtime.

Finally, format points to a string that contains one or more conversion specifications, which guide
strftime in building its output string. Each conversion specification is introduced by the percent
sign %. When the output string is built, each conversion specification is replaced by the appropriate
time element. Characters within format that are not part of a conversion specification are copied
into string; to write a literal percent sign, use %%.

strftime recognizes the following conversion specifiers:

a The locale’s abbreviated name for the day of the week.

A The locale’s full name for the day of the week.

b The locale’s abbreviated name for the month.

B The locale’s full name for the month.

c The locale’s default representation for the date and time.

d The day of the month as an integer (01 through 31).

H The hour as an integer (00 through 23).

I The hour as an integer (01 through 12).

j The day of the year as an integer (001 through 366).

m The month as an integer (01 through 12).

M The minute as an integer (00 through 59).

p The locale’s way of indicating morning or afternoon (e.g, in the United States, AM or PM).

S The second as an integer (00 through 59).

U The week of the year as an integer (00 through 53); regard Sunday as the first day of the week.

w The day of the week as an integer (0 through 6); regard Sunday as the first day of the week.

W The day of the week as an integer (0 through 6); regard Monday as the first day of the week.

x The locale’s default representation of the date.

X The locale’s default representation of the time.

y The year within the century (00 through 99).

Y The full year, including century.

Z The name of the locale’s time zone. If no time zone can be determined, print a null string.

Use of any conversion specifier other than the ones listed above will result in undefined behavior.

If the number of characters written into string is less than or equal to maximum, then strftime
returns the number of characters written. If, however, the number of characters to be written
exceeds maximum, then strftime returns zero and the contents of the area pointed to by string are
indeterminate.

LEXICON

166 strftime()

Cross-references
Standard, §4.12.3.5
The C Programming Language, ed. 2, p. 256

See Also
asctime, ctime, gmtime, localtime, time conversion, time_t, tm

Notes
strftime is modelled after the UNIX command date.

string — Definition
A string is an array of characters that is terminated by a null character. For example:

This is a string.\0

When you declare a pointer to a string, you can initialize it by enclosing the desired text with
quotation marks and using the assignment operation =. This initializes the pointer to the address of
the first byte in the string. For example,

char *stringptr = "This is a string.";

initializes the pointer stringptr to point to the first character in the string. It is not necessary to
append a null character onto the end of the string; the translator does this automatically.

Finally, the length of a string is defined as being the number of bytes in it, from its beginning
through the one that immediately precedes the null character. For example, the string

This is a string.\0

has a length of 17. Each space character is each counted as a byte, but the null character at the
end of the string is not.

Cross-references
Standard, §4.1.1
The C Programming Language, ed. 2, p. 30

See Also
Library

string.h — Header
#include <string.h>
string.h is the header that holds the declarations and definitions of all routines that handle strings
and buffers. For a list of these routines, see string handling.

Cross-references
Standard, §4.11
The C Programming Language, ed. 2, p. 249

See Also
header, string handling

LEXICON

string — string.h 167

string comparison — Overview
The Standard describes five routines that compare two strings or two regions of memory. All are
declared in the header string.h. They are as follows:

memcmp Compare two regions
strcmp Compare two strings
strcoll Compare two strings, using locale collating information
strncmp Compare one string with first n bytes of another
strxfrm Transform a string using locale information

Every comparison routine works on a character-by-character basis: each compares two strings or
regions character by character either until it finds two that differ, or it reaches a specified limit.

memcmp differs from the other functions in that it examines areas of memory rather than a strings.
Because C defines a string as being an sequence of characters terminated by a null character, the
string-comparison routines will not look past the first null character encountered; memcmp,
however, will.

Cross-references
Standard, §4.11.4
The C Programming Language, ed. 2, p. 250

See Also
string, string handling, string.h

Notes
strxfrm appears to belong properly with the group of string conversion routines, but the Standard
includes it here apparently because it is coupled with strcoll, which compares strings that use
locale-specific information.

string concatenation — Overview
The Standard describes two routines that concatenate strings: strcat and strncat. The former
copies one string onto the end of another; the latter copies up to the first n characters from one
string onto another. Both routines are declared in the header string.h.

Cross-reference
Standard, §4.11.3

See Also
string, string handling, string.h

string conversion —
#include <stdlib.h>
The Standard describes six functions that convert string to numbers. These are as follow:

atof Convert string to floating-point number
atoi Convert string to integer
atol Convert string to long integer
strtod Convert string to double-precision floating-point number
strtol Convert string to long integer
strtoul Convert string to unsigned long integer

LEXICON

168 string comparison — string conversion

Cross-reference
Standard, §4.10.1

See Also
general utilities

Notes
The functions atof and strtod, which convert a string to a floating-point number, are affected by the
locale under which the program is run, as set by the function setlocale. Specifically, the character
they recognize as marking the decimal point will change from locale to locale. See localization for
more information.

The functions atof, atoi, and atol have been rendered obsolete, and are retained in the Standard
only because they are used widely. Their functionality has been subsumed by strtod, strtol, and
strtoul. Their names are derived from their use in ASCII-based environments.

string copying — Overview
The Standard describes four routines that copy strings or regions of memory, as follows:

memcpy Copy one region into another
memmove Copy one region into another with which it may overlap
strcpy Copy one string into another
strncpy Copy count characters from one string into another

These routines, like all of the string-handling routines, are defined in the header string.h.

The Standard describes four such routines. strcpy and strncpy copy strings. They differ in that
strcpy copies an entire string, regardless of its length, whereas strncpy copies only up to n bytes of
a string. The behavior of each is undefined if the string being copied overlaps with the area to which
it is being copied.

By contrast, memcpy and memmove copy regions of memory rather than strings. Thus, they will
always copy a specified number of bytes, instead of quitting if they encounter a null character.
These functions differ in that memmove works correctly if the region being copied from overlaps
with the region being copied to, whereas memcpy does not.

Cross-reference
Standard, §4.11.2

See Also
string, string handling, string.h

string handling — Overview
#include <string.h>
The Standard describes 22 routines for handling strings and regions of memory. All are declared in
the header string.h.

String comparison
memcmp Compare two regions
strcmp Compare two strings
strcoll Compare two strings, using locale information
strncmp Compare one string with first n bytes of another
strxfrm Transform a string using locale information

LEXICON

string copying — string handling 169

String concatenation
strcat Concatenate two strings
strncat Concatenate one string with n bytes of another

String copying
memcpy Copy one region into another
memmove Copy one region into another with which it may overlap
strcpy Copy one string into another
strncpy Copy n bytes from one string into another

String miscellaneous
memset Fill a region with a character
strerror Return the text of a pre-defined error message
strlen Return the length of a string

String searching
memchr Find first occurrence of a character in a region
strchr Find first occurrence of a character in a string
strcspn Find how much of the initial portion of a string

consists of characters not found in another string
strpbrk Find first occurrence in one string of any character

from another string
strrchr Find last occurrence of a character within a string
strspn Find how much of the initial portion of string

consists only of characters from another string
strstr Find one string within another string
strtok Break a string into tokens

Cross-references
Standard, §4.11
The C Programming Language, ed. 2, p. 249

See Also
Library, string, string.h

string literal — Definition
A string literal consists of zero or more characters that are enclosed by quotation marks ". For
example, the following is a string literal:

"This is a string literal."

The syntax of a string literal is as follows; opt indicates optional.

string-literal:
"s-char-sequence

opt
"

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any character in the source character set except

the quotation mark ", the backslash \, or
the newline character

escape-sequence

Each character within a string literal is handled exactly as if it were within a character constant,
with the following exceptions: The apostrophe ´ may be represented either by itself or by the escape

LEXICON

170 string literal

sequence \´, and the quotation mark ‘"’ must be represented by the escape sequence \".

A string literal has static duration. Its type is array of char which is initialized to the string of
characters enclosed within the quotation marks.

If string literals are adjacent, the translator will concatenate them. For example, the string literals

"Here’s a string literal" "Here’s another string literal"

are automatically concatenated into one string literal.

If a string literal is not followed by another string literal, then the translator appends a null
character to the end of the string as a terminator.

If two or more string literals within the same scope are identical, then the translator may store only
one of them in memory and redirect to that one copy all references to any of the duplicate literals.
For this reason, a program’s behavior is undefined whenever it modifies a string literal.

A wide-character literal is a string literal that is formed of wide characters rather than ordinary, one-
byte characters. It is marked by the prefix L. For example, the following

L"This is a wide-character literal"

is stored in the form of a string of wide characters. See multibyte characters for more information
about wide characters.

Cross-references
Standard, §3.1.4
The C Programming Language, ed. 2, p. 194

See Also
", escape sequences, lexical elements, string, trigraphs

Notes
Because trigraph sequences are interpreted in translation phase 1, before string literals are parsed,
a string literal that contains trigraph sequences will be translated to a different string. This is a
quiet change that may break existing code.

string miscellaneous — Overview
The Standard describes three string-handling functions that are termed miscellaneous. They are as
follows:

memset Fill a region of memory with a character
strerror Return a pre-defined error message
strlen Return the length of a string

Cross-reference
Standard, §4.11.6

See Also
string, string handling, string.h

string searching — Overview
The Standard describes eight functions that search for a character or string within a string or a
region of memory. They are as follows:

memchr Find first occurrence of a given character within a region.

LEXICON

string miscellaneous — string searching 171

strchr Find first occurrence of a given character within a string.

strcspn Find how much of the initial portion of a string consists of characters not found in
another string.

strpbrk Find first occurrence in a string of any character from another string.

strrchr Find last occurrence of a given character within a string.

strspn Find how much of the initial portion of a string consists only of characters from another
string.

strstr Find whether one string occurs within another.

strtok Break a string into tokens.

Cross-reference
Standard, §4.11.5

See Also
string, string handling, string.h

strlen() — String handling (libc)
Measure the length of a string
size_t strlen(const char *string)

strlen counts the number of characters in string up to the null character that ends it. It returns the
number of characters in string, excluding the null character that ends it.

Example
The following example prints the length of an entered string. Because size_t may be unsigned long
or smaller, it is cast to unsigned long for printf.

#include <stddef.h>
#include <string.h>
#include <stdio.h>

main(void)
{

char buf[132];

printf("Enter something\n");
if(gets(buf) != NULL)

printf("You entered %lu characters\n",
(unsigned long)strlen(buf));

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.11.6.3
The C Programming Language, ed. 2, p. 250

See Also
string miscellaneous

LEXICON

172 strlen()

strncat() — String handling (libc)
Append n characters of one string onto another
#include <string.h>
char *strncat(char *string1, const char *string2, size_t n);

strncat copies up to n characters from the string pointed to by string2 onto the end of the one
pointed to by string1. It stops when n characters have been copied or it encounters a null character
in string2, whichever occurs first. The null character at the end of string1 is overwritten by the first
character of string2.

strncat returns the pointer string1.

Example
The following example concatenates two strings to make a file name. It works for an operating
system in which a file name can have no more than eight characters, and a suffix of no more than
three characters.

#include <string.h>
#include <stdio.h>

char *
dosfilen(char *dosname, char *filename, char *filetype)
{

*dosname = ’\0’;
/* strncpy() doesn’t guarantee a NULL */
strncat(dosname, filename, 8);
strcat(dosname, ".");
return(strncat(dosname, filetype, 3));

}

main(void)
{

char dosname[13];

puts(dosfilen(dosname, "A_LONG_FILENAME",
"A_LONG_FILETYPE"));

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.11.3.2
The C Programming Language, ed. 2, p. 250

See Also
strcat, string concatenation

Notes
strncat always appends a null character onto the end of the concatenated string. Therefore, the
number of characters appended to the end of string1 could be as many as n+1. string1 should point
to enough allocated memory to hold itself plus n+1 characters; if it does not, data or code will be
overwritten.

LEXICON

strncat() 173

strncmp() — String handling (libc)
Compare one string with a portion of another
#include <string.h>
int strncmp(const char *string1, const char *string2, size_t n);

strncmp compares string1 with n bytes of string2. Comparison ends when a null character is read.

strncmp compares the two strings character by character until it finds a pair of characters that are
not identical. It returns a number less than zero if the character in string1 is less (i.e,. occurs
earlier in the character table) than its counterpart in string2. It returns a number greater than zero
if the character in string1 is greater (i.e,. occurs later in the character table) than its counterpart in
string2. If no characters are found to differ, then the strings are identical and strncmp returns zero.
Comparison ends either when n bytes have been compared or a null character has been
encountered in either string. The null character is compared before strncmp terminates.

Example
The following example searches for a word within a string. It is a simple implementation of the
function strstr.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void fatal(const char *string)
{

fprintf(stderr, "%s\n", string);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

int word, string, i;

if (--argc != 2)
fatal("Usage: example word string");

word = strlen(argv[1]);
string = strlen(argv[2]);
if (word >= string)

fatal("Word is longer than string being searched.");

/* walk down "string" and search for "word" */
for (i = 0; i < string - word; i++)

if (strncmp(argv[2]+i, argv[1], word) == 0) {
printf("%s is in %s.\n", argv[1], argv[2]);
exit(EXIT_SUCCESS);

}

/* if we get this far, "word" isn’t in "string" */
printf("%s is not in %s.\n", argv[1], argv[2]);
exit(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.4.4
The C Programming Language, ed. 2, p. 250

See Also
memcmp, strcmp, strcoll, string comparison, strxfrm

LEXICON

174 strncmp()

Notes
The string-comparison routines strcoll, strcmp, and strncmp differ from the memory-comparison
routine memcmp in that they compare strings rather than regions of memory. They stop when they
encounter a null character, but memcmp does not. memcmp performs the same when run on
ASCII or EBCDIC machines, whereas the string-comparison routines do not.

strncpy() — String handling (libc)
Copy one string into another
#include <string.h>
char *strncpy(char *string1, const char *string2, size_t n);

strncpy copies n characters from the string pointed to by string2 into the area pointed to by string1.
Copying ends when n bytes have been copied or a null character is encountered in string2.

If string2 is less than n characters long, strncpy pads string1 with null characters until n characters
have been deposited.

strncpy returns string1.

Example
This example reads a file of names and changes them from the format

first_name [middle_initial] last_name

to the format:

last_name, first_name [middle_initial]

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define NNAMES 512
#define MAXLEN 60
#define PERIOD ’.’
#define SPACE ’ ’
#define COMMA ’,’
#define NEWLINE ’\n’

char *array[NNAMES];
char gname[MAXLEN], lname[MAXLEN];

main(int argc, char *argv[])
{

FILE *fp;
int count, num;
char *name, string[MAXLEN], *cptr, *eptr;
unsigned glength, length;

/* check number of arguments */
if (--argc != 1) {

fprintf (stderr, "Usage: example filename\n");
exit(EXIT_FAILURE);

}

/* open file */
if ((fp = fopen(argv[1], "r")) == NULL) {

fprintf(stderr, "Cannot open %s\n", argv[1]);
exit(EXIT_FAILURE);

}
count = 0;

LEXICON

strncpy() 175

/* get line and examine it */
while (fgets(string, MAXLEN, fp) != NULL) {

if ((cptr = strchr(string, PERIOD)) != NULL) {
cptr++;
cptr++;

} else if ((cptr=strchr(string, SPACE))!=NULL)
cptr++;

else continue;

strcpy(lname, cptr);
eptr = strchr(lname, NEWLINE);
*eptr = COMMA;

strcat(lname, " ");
glength = (unsigned)(strlen(string)-strlen(cptr));
strncpy(gname, string, glength);

name = strncat(lname, gname, glength);
length = (unsigned)strlen(name);
array[count] = (char *)malloc(length + 1);

strcpy(array[count],name);
count++;

}

for (num = 0; num < count; num++)
printf("%s\n", array[num]);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.11.2.4
The C Programming Language, ed. 2, p. 249

See Also
memcpy, memset, strcpy, string copying

Notes
string1 should point to enough reserved memory to hold n characters. Otherwise, code or data will
be overwritten.

If the region of memory pointed to by string1 overlaps with the string pointed to by string2, then the
behavior of strncpy is undefined.

strpbrk() — String handling (libc)
Find first occurrence of a character from another string
#include <string.h>
char *strpbrk(const char *string1, const char *string2);

strpbrk returns a pointer to the first character in string1 that matches any character in string2. It
returns NULL if no character in string1 matches a character in string2. The set of characters that
string2 points to is sometimes called the break string. For example,

char *string = "To be, or not to be: that is the question.";
char *brkset = ",;";
strpbrk(string, brkset);

returns the value of the pointer string plus six. This points to the comma, which is the first
character in the area pointed to by string that matches any character in the string pointed to by
brkset.

LEXICON

176 strpbrk()

Example
This example finds the first white-space character or punctuation character in a string and returns
a pointer to it. White space is defined as tab, space, and newline. Punctuation is defined as the
following characters:

! @ # $ % ^ & * () - + = ‘ ~
{ } [] : ; ’ " | / , . ?

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

char *
findseparator(char *string)
{

static char separators[] =
" \n\t!@#$%^&*()-+=‘’~{}[]:;\"|\\/,.?";

if(string == NULL)
return(NULL);

return strpbrk(string, separators);
}

char string1[]="I shall arise and go now/And go to Innisfree."

main(void)
{

printf(findseparator(string1));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.4
The C Programming Language, ed. 2, p. 250

See Also
memchr, strchr, strcspn, string searching, strpbrk, strrchr, strspn, strstr, strtok

Notes
strpbrk resembles the function strtok in functionality, but unlike strtok, it preserves the contents
of the strings being compared. It also resembles the function strchr, but lets you search for any one
of a group of characters, rather than for one character alone.

strrchr() — String handling (libc)
Search for rightmost occurrence of a character in a string
#include <string.h>
char *strrchr(const char *string, int character);

strrchr looks for the last, or rightmost, occurrence of character within string. character is declared
to be an int, but is handled within the function as a char. Another way to describe this function is
to say that it performs a reverse search for a character in a string.

strrchr returns a pointer to the rightmost occurrence of character, or NULL if character could not be
found within string.

Example
This example truncates a string by replacing the character after the last terminating character with
a zero. It returns the truncated string.

LEXICON

strrchr() 177

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

char *
truncate(char *string, char endat)
{

char *endchr;

if(string!=NULL && (endchr=strrchr(string, endat))!=NULL)
*++endchr = ’\0’;

return(string);
}

char string1[] = "Here we go gathering nuts in May.";

main(void)
{

puts(truncate(string1, ’,’));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.5
The C Programming Language, ed. 2, p. 249

See Also
memchr, strchr, strcspn, string searching, strpbrk, strspn, strstr, strtok

Notes
strrchr is identical to the function rindex, which is included with many implementations of C.

strspn() — String handling (libc)
Return length a string includes characters in another
#include <string.h>
size_t strspn(const char *string1, const char *string2);

strspn returns the length for which string1 initially consists only of characters that are found in
string2. For example,

char *s1 = "hello, world";
char *s2 = "kernighan & ritchie";
strcspn(s1, s2);

returns two, which is the length for which the first string initially consists of characters found in the
second.

Example
This example returns a pointer to the first non-white-space character in a string. White space is
defined as a space, tab, or newline character.

#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>

LEXICON

178 strspn()

char *
skipwhite(char *string)
{

size_t skipcount;

if (string == NULL)
return NULL;

skipcount = strspn(string, "\t \n");
return(string+skipcount);

}

char string1[] = "\t Inventor: One who makes an intricate\n";
char string2[] = "arrangement of wheels, levers, and springs,\n;
char string3[] = " and calls it civilization.\n";

main(void)
{

printf("%s", skipwhite(string1));
printf("%s", skipwhite(string2));
printf("%s", skipwhite(string3));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.6
The C Programming Language, ed. 2, p. 250

See Also
memchr, strchr, strcspn, string searching, strpbrk, strrchr, strstr, strtok

strstr() — String handling (libc)
Find one string within another
#include <string.h>
char *strstr(const char *string1, const char *string2);

strstr looks for string2 within string1. The terminating null character is not considered part of
string2.

strstr returns a pointer to where string2 begins within string1, or NULL if string2 does not occur
within string1.

For example,

char *string1 = "Hello, world";
char *string2 = "world";
strstr(string1, string2);

returns string1 plus seven, which points to the beginning of world within Hello, world. On the
other hand,

char *string1 = "Hello, world";
char *string2 = "worlds";
strstr(string1, string2);

returns NULL because worlds does not occur within Hello, world.

Example
This function counts the number of times a pattern appears in a string. The occurrences of the
pattern can overlap.

LEXICON

strstr() 179

#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>

size_t
countpat(char *string, char *pattern)
{

size_t found_count = 0;
char *found;

if((found = string)==NULL || pattern==NULL)
return 0;

while((found = strstr(found, pattern)) != NULL) {
/* move past beginning of this one */
found++;
/* count it */
found_count++;

}
return(found_count);

}

char string1[] = "Badges, Badges -- we need no stinking Badges.";
char string2[] = "Badges";

main(void)
{

printf("%s occurs %d times in %s\n",
string2, countpat(string1, string2), string1);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.11.5.7
The C Programming Language, ed. 2, p. 250

See Also
memchr, strchr, strcspn, string searching, strpbrk, strrchr, strspn, strtok

strtod() — General utility (libc)
Convert string to floating-point number
#include <stdlib.h>
double strtod(const char *string, char **tailptr);

strtod converts the string pointed to by string to a double-precision floating-point number.

strtod reads the string pointed to by string, and parses it into three portions: beginning, subject
sequence, and tail.

The beginning consists of zero or more white-space characters that begin the string.

The subject sequence is the portion of the string that will be converted into a floating-point number.
It begins when strtod reads a sign character, a numeral, or a decimal-point character. It can
include at least one numeral, at most one decimal point, and may end with an exponent marker
(either e or E) followed by an optional sign and at least one numeral. Reading continues until
strtod reads either a second decimal-point character or exponent marker, or any other non-
numeral.

The tail continues from the end of the subject sequence to the null character that ends the string.

LEXICON

180 strtod()

strtod ignores the beginning portion of the string. It then converts the subject sequence to a
double-precision number and returns it. Finally, it sets the pointer pointed to by tailptr to the
address of the first character of the string’s tail.

strtod returns the double generated from the subject sequence. If no subject sequence could be
recognized, it returns zero. If the number represented by the subject sequence is too large to fit into
a double, then strtod returns HUGE_VAL and sets the global constant errno to ERANGE. If the
number represented by the subject sequence is too small to fit into a double, then strtod returns
zero and again sets errno to ERANGE.

Example
For an example of using this function in a program, see sqrt.

Cross-references
Standard, §4.10.4
The C Programming Language, ed. 2, p. 251

See Also
atof, atoi, atol, errno, string conversion, strtol, strtoul

Notes
The character that strtod recognizes as representing the decimal point depends upon the program’s
locale, as set by the function setlocale. See localization for more information.

Initial white space in the string pointed to by string is ignored. White space is defined as being all
characters so recognized by the function isspace; the current locale setting may affect the operation
of isspace.

strtok() — String handling (libc)
Break a string into tokens
#include <string.h>
char *strtok(char *string1, const char *string2);

strtok helps to divide a string into a set of tokens. string1 points to the string to be divided, and
string2 points to the character or characters that delimit the tokens.

strtok divides a string into tokens by being called repeatedly.

On the first call to strtok, string1 should point to the string being divided. strtok searches for a
character that is not included within string2. If it finds one, then strtok regards it as the beginning
of the first token within the string. If one cannot be found, then strtok returns NULL to signal that
the string could not be divided into tokens. When the beginning of the first token is found, strtok
then looks for a character that is included within string2. When one is found, strtok replaces it with
a null character to mark the end of the first token, stores a pointer to the remainder of string1
within a static buffer, and returns the address of the beginning of the first token.

On subsequent calls to strtok, set string1 to NULL. strtok then looks for subsequent tokens, using
the address that it saved from the first call. With each call to strtok, string2 may point to a different
delimiter or set of delimiters.

Example
The following example breaks command_string into individual tokens and puts pointers to the
tokens into the array tokenlist[]. It then returns the number of tokens created. No more than
maxtoken tokens will be created. command_string is modified to place ’\0’ over token separators.
The token list points into command_string. Tokens are separated by spaces, tabs, commas,

LEXICON

strtok() 181

semicolons, and newlines.

#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>

tokenize(char *command_string, char *tokenlist[],
size_t maxtoken)

{
static char tokensep[]="\t\n ,;";
int tokencount;
char *thistoken;

if(command_string == NULL || !maxtoken)
return 0;

thistoken = strtok(command_string, tokensep);

for(tokencount = 0; tokencount < maxtoken &&
thistoken != NULL;) {

tokenlist[tokencount++] = thistoken;
thistoken = strtok(NULL, tokensep);

}

tokenlist[tokencount] = NULL;
return tokencount;

}

#define MAXTOKEN 100
char *tokens[MAXTOKEN];
char buf[80];

main(void)
{

for(;;) {
int i, j;

printf("Enter string ");
fflush(stdout);
if(gets(buf) == NULL)

exit(EXIT_SUCCESS);

i = tokenize(buf, tokens, MAXTOKEN);
for(j = 0; j < i; j++)

printf("%s\n", tokens[j]);
}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.8
The C Programming Language, ed. 2, p. 250

See Also
memchr, strchr, strcspn, string searching, strpbrk, strrchr, strspn, strstr

LEXICON

182 strtok()

strtol() — General utility (libc)
Convert string to long integer
#include <stdlib.h>
long strtol(const char *sptr, char **tailptr, int base);

strtol converts the string pointed to by sptr into a long.

base gives the base of the number being read, from 0 to 36. This governs the form of the number
that strtol expects. If base is zero, then strtol expects a number in the form of an integer constant.
See integer constant for more information. If base is set to 16, then the string to be converted may
be preceded by 0x or 0X.

strtol reads the string pointed to by sptr and parses it into three portions: beginning, subject
sequence, and tail.

The beginning consists of zero or more white-space characters that begin the string.

The subject sequence is the portion of the string that will be converted into a long. It is introduced
by a sign character, a numeral, or an alphabetic character appropriate to the base of the number
being read. For example, if base is set to 16, then strtol will recognize the alphabetic characters A
through F and a to f as indicating numbers. It continues to scan until it encounters any alphabetic
character outside the set recognized for the setting of base, or the null character.

The tail continues from the end of the subject sequence to the null character that ends the string.

strtol ignores the beginning portion of the string. It then converts the subject sequence to a long.
Finally, it sets the pointer pointed to by tailptr to the address of the first character of the string’s tail.

strtol returns the long that it has built from the subject sequence. If it could not build a number,
for whatever reason, it returns zero. If the number it builds is too large or too small to fit into a
long, it returns, respectively, LONG_MAX or LONG_MIN and sets the global variable errno to the
value of the macro ERANGE.

Cross-references
Standard, §4.10.1.5
The C Programming Language, ed. 2, p. 252

See Also
atof, atoi, atol, errno, string conversion, strtod, strtoul

Notes
Initial white space in the string pointed to by string is ignored. White space is defined as being all
characters so recognized by the function isspace; the current locale setting may affect the operation
of isspace.

strtoul() — General utility (libc)
Convert string to unsigned long integer
#include <stdlib.h>
unsigned long strtoul(const char *sptr, char **tailptr, int base);

strtoul converts the string pointed to by sptr into an unsigned long.

base gives the base of the number being read, from 0 to 36. This governs the form of the number
that strtoul expects. If base is zero, then strtoul expects a number in the form of an integer
constant. See integer constant for more information. If base is set to 16, then the string to be
converted may be preceded by 0x or 0X.

LEXICON

strtol() — strtoul() 183

strtoul reads the string pointed to by sptr and parses it into three portions: beginning, subject
sequence, and tail.

The beginning consists of zero or more white-space characters that begin the string.

The subject sequence is the portion of the string that will be converted into an unsigned long. It is
introduced by a sign character, a numeral, or an alphabetic character appropriate to the base of the
number being read. For example, if base is set to 16, then strtoul will recognize the alphabetic
characters A through F and a to f as indicating numbers. It continues to scan until it encounters
any alphabetic character outside the set recognized or the setting of base, or the null character.

The tail continues from the end of the subject sequence to the null character that ends the string.

strtoul ignores the beginning portion of the string. It then converts the subject sequence to an
unsigned long. Finally, it sets the pointer pointed to by tailptr to the address of the first character of
the string’s tail.

strtoul returns the unsigned long that it has built from the subject sequence. If it could not build
a number, for whatever reason, it returns zero. If the number it builds is too large to fit into an
unsigned long, it returns ULONG_MAX and sets the global variable errno to the value of the macro
ERANGE.

Example
This example uses strtoul as a hash function for table lookup. It demonstrates both hashing and
linked lists. Hash-table lookup is the most efficient when used to look up entries in large tables;
this is an example only.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*
* For fastest results, use a prime about 15% bigger
* than the table. If short of space, use a smaller prime.
*/

#define HASHP 11
struct symbol {

struct symbol *next;
char *name;
char *descr;

} *hasht[HASHP], codes[] = {

NULL, "a286", "frogs togs",
NULL, "xy7800", "doughnut holes",
NULL, "z678abc", "used bits",
NULL, "xj781", "black-hole varnish",
NULL, "h778a", "table hash",
NULL, "q167", "log(-5.2)",
NULL, "18888", "quid pro quo",
NULL, NULL, NULL /* end marker */

};

void
buildTable(void)
{

long h;
register struct symbol *sym, **symp;

LEXICON

184 strtoul()

for(symp = hasht; symp != (hasht + HASHP); symp++)
*symp = NULL;

for(sym = codes; sym->descr != NULL; sym++) {
/*
* hash by converting to base 36. There are
* many ways to hash, but use all the data.
*/

h = strtoul(sym->name, NULL, 36) % HASHP;
sym->next = hasht[h];
hasht[h] = sym;

}
}

struct symbol *
lookup(char *s)
{

long h;
register struct symbol *sym;

h = strtoul(s, NULL, 36) % HASHP;
for(sym = hasht[h]; sym != NULL; sym = sym->next)

if(!strcmp(sym->name, s))
return(sym);

return(NULL);
}

main(void)
{

char buf[80];
struct symbol *sym;

buildTable();
for(;;) {

printf("Enter name ");
fflush(stdout);

if(gets(buf) == NULL)
exit(EXIT_SUCCESS);

if((sym = lookup(buf)) == NULL)
printf("%s not found\n", buf);

else
printf("%s is %s\n", buf, sym->descr);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.10.1.5
The C Programming Language, ed. 2, p. 252

See Also
atof, atoi, atol, string conversion, strtod, strtol

Notes
This function has no historical usage, but provides greater functionality than does strtol.

Initial white space in the string pointed to by string is ignored. White space is defined as being all
characters so recognized by the function isspace. The current locale setting may affect the operation

LEXICON

strtoul() 185

of isspace.

struct — C keyword
The keyword struct introduces a structure. This is an aggregate data type that consists of a number
of fields, or members, each of which can have its own name and type.

The members of a structure are stored sequentially. Unlike the related type union, the elements of
a struct do not overlap. Thus, the size of a struct is the total of the sizes of all of its members, plus
any bytes used for alignment (if the implementation requires them). Aligning bytes may not be
inserted at the beginning of a struct, but may appear in its middle, or at the end. For this reason, it
is incorrect to assume that any two members of a structure abut each other in memory.

Any type may be used within a struct, including bit-fields. No incomplete type may be used; thus, a
struct may not contain a copy of itself, but it may contain a pointer to itself. A struct is regarded
as incomplete until its closing } is read.

The members of a struct are stored in the order in which they are declared. Thus, a pointer to a
struct also points to the beginning of the struct’s first member.

The following is an example of a structure:

struct person {
char name[30];
char st_address[25];
char city[20];
char state[2];
char zip[9];
char id_number[9];

} MYSELF;

This example defines a structure type person, as well as an instance of this type, called MYSELF.

Cross-references
Standard, §3.1.2.5, §3.5.2.1
The C Programming Language, ed. 2, pp. 127ff

See Also
alignment, member name, tag, types, union

Notes
permits structure assignment, the passing of structures to functions, and returning structures

from functions (as opposed to the passing or returning of pointers to structures).

Some C compilers transform structure arguments and structure returns into structure pointers.
The use of structure assignment, structure arguments, or structure returns may create problems
when porting the code to another C compiler.

strxfrm() — String handling (libc)
Transform a string
#include <string.h>
size_t strxfrm(char *string1, const char *string2, size_t n);

strxfrm transforms string2 using information concerning the program’s locale, as set by the
function setlocale. See localization for more information about setting a program’s locale.

strxfrm writes up to n bytes of the transformed result into the area pointed to by string1. It returns
the length of the transformed string, not including the terminating null character. The
transformation incorporates locale-specific material into string2.

LEXICON

186 struct — strxfrm()

If n is set to zero, strxfrm returns the length of the transformed string.

strxfrm transforms strings in such a manner that if two strings return a given result when
compared by strcoll before transformation, they will return the same result when compared by
strcmp after transformation.

Cross-references
Standard, §4.11.4.5
The C Programming Language, ed. 2, p. 250

See Also
localization, memcmp, strcmp, strcoll, string comparison, strncmp

Notes
If strxfrm returns a value equal to or greater than n, the contents of the area pointed to by string1
are indeterminate.

switch — C keyword
Select an entry in a table
switch (expression) statement

switch evaluates expression, jumps to the case label whose expression is equal to expression, and
continues execution from there. expression may evaluate to any integral type, not just an int. Every
case label’s expression is cast to the type of conditional before it is compared with expression.

If no case expression matches expression, switch jumps to the point marked by the default label. If
there is no default label, then switch does not jump and no statement is executed; execution then
continues from the } that marks the end of the switch statement.

The program continues its execution from the point to which switch jumps, either until a break,
continue, goto, or return statement is read, or until the } that encloses all of the case statements is
encountered.

All case labels are subordinate to the closest enclosing switch statement. No two case labels can
have expressions with the same value. However, if a case label introduces a secondary switch
statement, then that switch statement’s suite of case labels may duplicate the values used by the
case labels of the outer switch statement.

Example
For an example of this statement, see printf.

Cross-references
Standard, §3.6.4.2
The C Programming Language, ed. 2, pp. 58ff

See Also
break, case, default, if, selection statements

Notes
It is good programming practice always to use a default label with a switch statement. There may
be only one default label with any switch statement.

The number of case labels that can be included with a switch statement may vary from
implementation to implementation. The Standard requires that every conforming implementation
allow a switch statement to have up to at least 257 case labels.

LEXICON

switch 187

The first edition of The C Programming Language requires that conditional may evaluate to an int.
The Standard lifts this requirement: conditional may now be any integral type, from short to
unsigned long. Every expression associated with a case label will be altered to conform to the type
of conditional. Therefore, if a program depends upon conditional or any expression being an int, it
may work differently under a conforming translator. This is a quiet change that may break existing
code.

system() — General utility (libc)
Suspend a program and execute another
#include <stdlib.h>
int system(const char *program);

system provides a way to execute another program from within a C program. It suspends the
program currently being run, and passes the name pointed to by program to the environment’s
command processor, should there be one. When program has finished executing, the environment
returns to the current program, which then continues its operation.

If program is set to NULL, system checks to see if a command processor exists. In this case,
system returns zero if a command processor does not exist and nonzero if it does. If program is set
to any value other than NULL, then what system returns is defined by the implementation.

Example
This example execute system commands on request.

#include <stdio.h>
#include <stdlib.h>

syscmds(char * prompt)
{

for(;;) {
char buf[80];

printf(prompt);
fflush(stdout);
if(gets(buf) == NULL || !strcmp(buf, "exit"))

return;
system(buf);

}
}

main(void)
{

printf("Enter system commands: ");
syscmds(">");
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.10.4.5
The C Programming Language, ed. 2, p. 253

See Also
command processor, environment communication, exit

Notes
system is not guaranteed to work if it is nested. That is, if you suspend a program and call another
with system, suspending that second program with system and calling a third may not work.

LEXICON

188 system()

The Rationale describes three ways that a program can communicate with the program it invokes
with system: (1) through a string that is passed to the program as its command-line arguments; (2)
by setting environmental variables; or (3) by writing data into a file that the secondary program
reads. The last is considered to be the most portable. Likewise, the secondary program can return
information to the program that called it through the following means: (1) through a return value (as
defined by the implementation); (2) through the status code that is returned to the environment by
the function exit; or (3) through a file. Again, the last mechanism is said to be the most portable.

The Rationale suggests that all open files be closed before system calls the subordinate program.

LEXICON

system() 189

tag — Definition
A tag is a name that follows the keywords struct, union, or enum. It names the type of object so
declared. For example, in the following code

struct STR {
. . .

};

the identifier STR is a tag. It defines a new type of structure called STR. It does not, however,
allocate any storage for any instance of this type.

Cross-references
Standard, §3.1.2.6
The C Programming Language, ed. 2, pp. 212ff

See Also
member, name space

tan() — Mathematics (libm)
Calculate tangent
#include <math.h>
double tan(double radian);

tan calculates and returns the tangent of its argument radian, which must be in radian measure.

Cross-references
Standard, §4.5.2.7
The C Programming Language, ed. 2, p. 251

See Also
acos, asin, atan, atan2, cos, sin, trigonometric functions

tanh() — Mathematics (libm)
Calculate hyperbolic tangent
#include <math.h>
double tanh(double value);

tanh calculates the hyperbolic tangent of radian.

Cross-references
Standard, §4.5.3.3
The C Programming Language, ed. 2, p. 251

LEXICON

190 tag — tanh()

See Also
cosh, hyperbolic functions, sinh

time() — Time function (libc)
Get current calendar time
#include <time.h>
time_t time(time_t *tp);

The function time returns the current calendar time. If tp is set a value other than NULL, then

LEXICON

time() 191
timewrites the result to the object pointed to by tp.

troff: unexpected end of file

UCHAR_MAX — Manifest constant
UCHAR_MAX is a macro that is defined in the header limits.h. It gives the largest value that can be
held in an object of type unsigned char. It must be defined to be at least 255. The smallest value is,
of course, zero.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
limits.h, numerical limits

UINT_MAX — Manifest constant
UINT_MAX is a macro that is defined in the header limits.h. It gives the largest value that can be
held by an object of type unsigned int. It must be defined to be at least 65,535. The smallest value
that can be held by this type is, of course, zero.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
limits.h, numerical limits

ULONG_MAX — Manifest constant
ULONG_MAX is a macro that is defined in the header limits.h. It gives the largest value that can be
held by an object of type unsigned long int. It must be defined to be at least 4,294,967,295. The
smallest value that can be held by this type is, of course, zero.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
limits.h, numerical limits

LEXICON

UCHAR_MAX — ULONG_MAX 1

unary operators — Overview
A unary operator is one that takes only one operand. It takes the following syntax:

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (unary-expression)

unary-operator: one of
& * + - ~ !

The Standard describes the following suite of unary operators:

& Yield address of operand
* Yield value of object to which pointer operand points
+ Yield value of operand
++ Increment operand by one
- Yield negated value of operand
-- Decrement operand by one
~ Yield bitwise complement of operand
! Negate logical value of operand
sizeof Yield size of operand, in bytes

Some of these operators have a different meaning when used with two operands. See the entry for
each for a fuller description.

Cross-references
Standard, §3.3.3
The C Programming Language, ed. 2, p. 203

See Also
expressions, postfix operators

ungetc() — STDIO (libc)
Push a character back into the input stream
#include <stdio.h>
int ungetc(int character, FILE *fp);

ungetc converts character to an unsigned char and pushes it back into the stream pointed to by fp,
where the next call to an input function will read it as the next character available from the stream.
ungetc clears the end-of-file indicator for the stream.

The Standard only guarantees that one character can safely be pushed back into fp at any given
time. A subsequent call to fflush, fseek, fsetpos, or rewind will discard the ungotten character.

ungetc returns character if it could be pushed back onto fp. Otherwise, it returns EOF. If character
is equivalent to EOF, ungetc will fail.

Example
The following example opens a file and returns how many lines and sentences it contains. A
sentence is defined as being any passage of text that ends in a period, a question mark, or an
exclamation point.

LEXICON

2 unary operators — ungetc()

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

void
fatal(char *message)
{

fprintf(stderr, "%s0, message);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

FILE *fp;
int ch, nlines, nsents;
nlines = nsents = 0;

/* Check number of arguments */
if (argc != 2)

fatal("Usage: example filename");

/* Open file to be read */
if ((fp = fopen(argv[1], "r")) == NULL)

fatal("Cannot open file for reading");

else {
/* read lines of text */
while ((ch = fgetc(fp)) != EOF) {

/* increment line count */
if (ch == ’\n’) ++nlines;

else if (ch == ’.’ || ch == ’!’ || ch == ’?’) {
/* check if period is an ellipsis */
if ((ch = fgetc(fp)) != ’.’) {

/* if not, bump sentence count */
++nsents;
/* return extra char to stream */
ungetc(ch, fp);

}

/* skip ellipsis */
else for(ch=’.’; (ch=fgetc(fp))==’.’;)

;
}

}

printf("%d line(s), %d sentence(s).\n", nlines, nsents);
}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.7.11
The C Programming Language, ed. 2, p. 247

See Also
fgetc, fgets, fputc, fputs, getc, getchar, gets, input-output, putc, putchar, puts

Notes
ungetc may be called before a character is read from fp. How this feature is handled is up to the
implementor.

LEXICON

ungetc() 3

How ungetc affects the file-position indicator will vary, depending upon whether fp was opened into
text mode or binary mode. If fp was opened into binary mode, then its file-position indicator is
decremented with every successful call to ungetc. If, however, it was opened into text mode, then
the value of the file-position indicator after a successful call to ungetc is unspecified; the Standard
specifies only that when a character is pushed back and then re-read, the file position indicator has
same value as it did when the character was first read.

union — Type
A union is a data type whose members occupy the same region of storage. It is used when one
value may be used in a number of different circumstances. This is in contrast with a struct, which
is a set of data elements that are laid adjacent to each other. Each object within a union may have
its own name and distinct type.

Any object type may be contained within a union, including a bit-field. No incomplete object may be
used. Thus, a union may not contain a copy of itself, but it may contain a pointer to itself. A union
is regarded is incomplete until its closing } is read.

The size of a union is that of its largest member. Thus, a pointer to a union can, if correctly cast,
be used as a pointer to each of the union’s members.

In effect, a union is a multiple declaration of a variable. For example, a union may be declared to
consist of an int, a double, and a char *. Any one of these three elements can be held by the union
at a time, and will be handled appropriately by it. For example, the declaration

union {
int number;
double bignumber;
char *stringptr;

} EXAMPLE;

allows EXAMPLE to hold either an int, a double, or a pointer to a char, whichever is needed at the
time. The elements of a union are accessed like those of a struct: for example, to access number
from the above example, type EXAMPLE.number.

unions are helpful in dealing with heterogeneous data, especially within structures. However, you
must keep track of what data type the union is holding at any given time. Assigning to a double
within a union and then reading the union as though it held an int will yield results that are
defined by the implementation.

A union initializer may only initialize the first member of the union.

Example
The following example uses a union to demonstrate the byte ordering of the machine upon which
the program is run. It assumes that an int is two bytes long, and a long is four bytes long.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

union {
char bytes[4];
int words[2];
long longs;

} u;
u.l = 0x12345678L;

LEXICON

4 union

printf("%x %x %x %x\n",
u.bytes[0], u.bytes[1], u.bytes[2], u.bytes[3]);

printf("%x %x\n", u.words[0], u.words[1]);
printf("%lx\n", u.longs);
return EXIT_SUCCESS;

}

Cross-references
Standard, §3.1.2.5, §3.5.2.1
The C Programming Language, ed. 2, pp. 212ff

See Also
bit-field, member name, struct, tag, types

Notes
Oftentimes, union will be a member of a structure, and the preceding structure member will be a
tag field, whose value indicates the type of object the union currently has stored. Though such a
tag is required in some languages (such as Pascal), it is not required in C.

universal coordinated time — Definition
Universal coordinated time (universel temps coordonne, or UTC) is a universal standard of time that
is based on study of an atomic clock, as corrected by comparison with pulsars. It is, for all practical
purposes, identical to Greenwich Mean Time, which is the mean solar time recorded at the
Greenwich Observatory in England, where by international convention the Earth’s zero meridian is
fixed.

Standard local time is usually calculated as an offset of UTC. For example, the time zone for
Chicago is six hours (360 minutes) behind UTC, so the standard time for Chicago is calculated by
subtracting 360 minutes from UTC. Calculating local time may not always be so easy, however. For
example, some Islamic countries calculate local time by dividing the time between sunrise and
sunset into 12 hours.

The function gmtime returns a pointer to the structure tm that has been initialized to hold the
current UTC. The name of this function reflects the older practice of referring to Greenwich Mean
Time instead of UTC.

Cross-reference
Standard, §4.12.1

See Also
broken-down time, calendar time, date and time, gmtime, local time, localtime

unsigned — C keyword
When a declaration includes the modifier unsigned, it indicates that the type can hold only a non-
negative value.

There are four unsigned data types: unsigned char, unsigned int, unsigned long int, and
unsigned short int. If the modifier unsigned is not used, the translator assumes that int, long int,
and short int are signed. The implementation defines whether char is signed or unsigned by
default.

An unsigned data type takes the same amount of storage as the corresponding signed type, and has
the same alignment requirements.

Any value that can be represented by both a signed and an unsigned type will be represented the
same way in both. An unsigned type, however, cannot represent a negative value. If the

LEXICON

universal coordinated time — unsigned 5

implementation uses a sign bit to indicate the sign of a number, that bit is freed to hold a value. In
this instance, an unsigned type can store a value of twice what can be stored in its signed
counterpart.

Arithmetic that involves unsigned types will never overflow. If an arithmetic operation produces a
value that is too large to fit into a particular unsigned type, that value is divided by one plus the
largest value that can be held in that unsigned type, and the remainder is then stored in the
unsigned type.

For information about converting one type of integer to another, see integral types.

When unsigned is used by itself, it is regarded as a synonym for unsigned int.

Cross-references
Standard, §3.1.2.5
The C Programming Language, ed. 2, p. 211

See Also
char, signed, types, unsigned

unsigned char — Type
An unsigned char is an unsigned integral type. It takes the same amount of storage as a char, and
has the same alignment requirements.

An unsigned char has the minimum value of zero, and a maximum value of UCHAR_MAX. The last
is a macro that is defined in the header limits.h. It must be at least 255.

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.2.1.1, §3.5.2
The C Programming Language, ed. 2, p. 44

See Also
char, signed char, types, unsigned

unsigned int — Type
An unsigned int is an unsigned integral type. It requires the same amount of storage as a int and
has the same alignment requirements.

An unsigned int has the minimum value of zero, and a maximum value of UINT_MAX. The last is a
macro that is defined in the header limits.h. It must be at least 65,535.

The type unsigned is a synonym for unsigned int.

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.2.1.1, §3.5.2
The C Programming Language, ed. 2, p. 211

See Also
int, types, unsigned

unsigned long int — Type
An unsigned long int is an unsigned integral type. It requires the same amount of storage as a
long int, and has the same alignment requirements.

An unsigned long int has the minimum value of zero, and a maximum value ULONG_MAX. The
last is a macro that is defined in the header limits.h. It must be at least 4,294,967,295.

LEXICON

6 unsigned char — unsigned long int

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.2.1.1, §3.5.2
The C Programming Language, ed. 2, p. 211

See Also
long int, types, unsigned

unsigned short int — Type
An unsigned short int is an unsigned integral type. It requires the same amount of storage as a
short int, and has the same alignment requirements.

An unsigned short int has the minimum value of zero, and a maximum value of USHRT_MAX. The
last is a macro that is defined in the header limits.h. It must be at least 65,535.

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.2.1.1, §3.5.2
The C Programming Language, ed. 2, p. 211

See Also
short int, types, unsigned

USHRT_MAX — Manifest constant
USHRT_MAX is a macro that is defined in the header limits.h. It gives the maximum value that can
be held by an object of type unsigned short int. It must be defined to be at least 65,535.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
limits.h, numerical limits

LEXICON

unsigned short int — USHRT_MAX 7

va_arg() — Variable arguments (stdarg.h)
Return pointer to next argument in argument list
#include <stdarg.h>
typename *va_arg(va_list listptr, typename);

va_arg returns a pointer to the next argument in an argument list. It can be used with functions
that take a variable number of arguments, such as printf or scanf, to help write such functions
portably. It is always used with va_end and va_start within a function that takes a variable
number of arguments.

listptr is of type va_list, which is an object defined in the header stdarg.h. It must first be initialized
by the macro va_start.

typename is the name of the type for which va_arg is to return a pointer. For example, if you wish
va_arg to return a pointer to an integer, typename should be of type int.

va_arg can only handle standard data types, i.e., those data types that can be transformed to
pointers by appending an asterisk *.

Example
For an example of this macro, see the entry for variable arguments.

Cross-references
Standard, §4.8.1.2
The C Programming Language, ed. 2, p. 254

See Also
va_end, va_start, variable arguments

Notes
If there is no next argument for va_arg to handle, or if typename is incorrect, then the behavior of
va_arg is undefined.

va_arg must be implemented only as a macro. If its macro definition is suppressed within a
program, the behavior is undefined.

va_end() — Variable arguments (libc)
Tidy up after traversal of argument list
#include <stdarg.h>
void va_end(va_list listptr);

va_end helps to tidy up a function after it has traversed the argument list for a function that takes a
variable number of arguments. It can be used with functions that take a variable number of
arguments, such as printf or scanf, to help write such functions portably. It should be used with
the routines va_arg and va_start from within a function that takes a variable number of arguments.

LEXICON

8 va_arg() — va_end()

listptr is of type va_list, which is declared in header stdarg.h. listptr must first have been initialized
by macro va_start.

The manner of tidying up that va_end performs will vary from one computing environment to
another. In many computing environments, va_end is not needed, and it may be implemented as
an empty function.

Example
For an example of this function, see the entry for variable arguments.

Cross-references
Standard, §4.8.1.3
The C Programming Language, ed. 2, p. 254

See Also
va_arg, va_start, variable arguments

Notes
If va_list is not initialized by va_start, or if va_end is not called before a function with variable
arguments exits, then behavior is undefined.

va_list — Type
Type used to handle argument lists of variable length

va_list is a typedef declared in the header stdarg.h. Although its type is selected by the
implementor, commonly it will be either an array or a pointer. Its elements can be of various types.
No programmer should assume anything about this type, and no program should use it for anything
else.

va_list is used to help implement functions like printf and scanf, which can take an indeterminate
number of arguments.

Example
For an example of this type, see the entry for variable arguments.

Cross-references
Standard, §4.8

See Also
va_arg, va_end, va_start, variable arguments

va_start() — Variable arguments (stdarg.h)
Point to beginning of argument list
#include <stdargs.h>
void va_start(va_list listptr, type rightparm);

va_start is a macro that points to the beginning of a list of arguments. It can be used with
functions that take a variable number of arguments, such as printf or scanf, to help implement
them portably. It is always used with va_arg and va_end from within a function that takes a
variable number of arguments.

listptr is of type va_list, which is a type defined in the header stdarg.h.

rightparm is the rightmost parameter defined in the function’s parameter list that is, the last
parameter defined before the ... punctuator. Its type is set by the function that is using va_start.

LEXICON

va_list — va_start() 9

Undefined behavior results if any of the following conditions apply to rightparm: if it has storage
class register; if it has a function type or an array type; or if its type is not compatible with the type
that results from the default argument promotions.

Example
For an example of this macro, see the entry for variable arguments.

Cross-references
Standard, §4.8.1.1
The C Programming Language, ed. 2, p. 254

See Also
va_arg, va_end, va_list, variable arguments

Notes
The implementation is not obliged to use rightparm when implementing va_start.

va_start must be implemented only as a macro. If the macro definition of va_start is suppressed
within a program, the behavior is undefined.

value preserving — Definition
With respect to integral promotions, the Standard has adopted value-preserving rules. This may
quietly break some existing code that depended on unsigned-preserving rules, as many UNIX
implementations have done.

In most cases, there will be no difference in the results produced by unsigned-preserving rules and
those produced by value-preserving rules. There are, however, several instances in which different
results will be seen. For example:

long l;
unsigned int ui;

. . .
l = ui + l;

In this operation, before the addition is performed, ui will first be promoted to type long if a long
can hold the value contained in the unsigned int. The operation will then be performed as long
addition, assigning the result to the variable l.

If a long is not large enough to represent the value contained in ui, which may occur under an
implementation where ints and longs are the same size, then both ui and l are first converted to
unsigned long before the addition is performed. Because conversion is needed to preserve the value
(as opposed to the sign) of the operand as well as the result, the term value preserving is
appropriate.

As usual, code may have to be generated to perform the conversion, and a high-quality
implementation will usually issue a diagnostic message in such a case.

Cross-references
Standard, §3.2
The C Programming Language, ed. 2, pp

See Also
conversions, integral promotions

LEXICON

10 value preserving

variable arguments — Overview
The Standard mandates the creation of a set of routines to help implement functions, such as printf
and scanf, that take a variable number of arguments. These routines are called from within another
function to help it handle its arguments. If the ellipsis punctuator ... appears at the end of the list
of arguments in a function’s prototype, then that a function can take a variable number of
arguments.

These routines are declared or defined in the header stdarg.h, and are as follows:

va_arg Return pointer to next argument in argument list
va_end Tidy up after an argument list has been traversed
va_start Initialize object that holds function arguments

va_arg and va_start must be implemented as macros; va_end must be implemented as a library
function. All three use the special type va_list, which is an object that holds the arguments to the
function being implemented.

Example
The following example concatenates multiple strings into a common allocated string and returns the
string’s address.

#include <stdarg.h>
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>

char *
multcat(int numargs, ...)
{

va_list argptr;
char *result;
int i, siz;

/* get size required */
va_start(argptr, numargs);
for(siz = i = 0; i < numargs; i++)

siz += strlen(va_arg(argptr, char *));

if ((result = calloc(siz + 1, 1)) == NULL) {
fprintf(stderr, "Out of space\n");
exit(EXIT_FAILURE);

}
va_end(argptr);

va_start(argptr, numargs);
for(i = 0; i < numargs; i++)

strcat(result, va_arg(argptr, char *));
va_end(argptr);
return(result);

}

int
main(void)
{

printf(multcat(5, "One ", "two ", "three ",
"testing", ".\n"));

return(EXIT_SUCCESS);
}

LEXICON

variable arguments 11

Cross-references
Standard, §4.8
The C Programming Language, ed. 2, p. 254

See Also
Library, stdarg.h, va_list

Notes
These macros, functions, and types allow a program to pass, in a portable way, variable numbers
and variable types of arguments. The programmer need have no knowledge of the mechanism by
which a particular implementation performs the passing.

The mechanism by which an implementation passes variable numbers of arguments may differ from
the mechanism by which it passes a fixed number of arguments. Therefore, a programmer should
take care not to mix a forward declaration for a variable number of arguments with an
implementation that uses fixed numbers of arguments.

vfprintf() — STDIO (libc)
Print formatted text into stream
#include <stdarg.h>
#include <stdio.h>
int vfprintf(FILE*fp, const char *format, va_list arguments);

vfprintf constructs a formatted string and writes it into the stream pointed to by fp. It translates
integers, floating-point numbers, and strings into a variety of text formats. Unlike the related
function fprintf, vfprintf can handle a variable list of arguments of various types. It is roughly
equivalent to the r conversion specifier under some implementations of fprintf.

format points to a string that can contain text, character constants, and one or more conversion
specifications. A conversion specification describes how particular data type is converted into a
particular text format. Each conversion specification is introduced with the percent sign %. (To
print a literal percent sign, use the escape sequence %%.) See printf for further discussion of the
conversion specification, and for a table of the type specifiers that can be used with vfprintf.

After format comes arguments. This is of type va_list, which is defined in the header stdarg.h. It has
been initialized by the macro va_start and points to the base of the list of arguments used by
vfprintf. For more information, see variable arguments. arguments should access one argument for
each conversion specification in format, of the type appropriate to its conversion specification.

For example, if format contains conversion specifications for an int, a long, and a string, then
arguments access three arguments, being, respectively, an int, a long, and a char *. arguments can
take only the data types acceptable to the macro va_arg; namely, basic types that can be converted
to pointers simply by adding a * after the type name. See va_arg for more information on this point.

If there are fewer arguments than conversion specifications, then vfprintf’s behavior is undefined.
If there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding conversion specifier,
then the behavior of vfprintf is undefined. Thus, presenting an int where vfprintf expects a char *
may generate unwelcome results.

If it writes the formatted string correctly, vfprintf returns the number of characters written.
Otherwise, it returns a negative number.

Example
This example sets up a standard multiargument error message. It is the source of the function
fatal, which is used throughout this manual.

LEXICON

12 vfprintf()

#include <math.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

void
fatal(char *format, ...)
{

va_list argptr;

/* if there is a system message, display it */
if(errno)

perror(NULL);

/* if there is a user message, use it */
if(format != NULL) {

va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);

}
exit(EXIT_FAILURE);

}

main(void)
{

/*
* This is guaranteed to be wrong. It should push
* an error code into errno.
*/

sqrt(-1.0);

/* Now, show the messages */
fatal("A %s error message%c", "complex", ’\n’);

/* If we get this far, something is wrong */
return(EXIT_FAILURE);

}

Cross-references
Standard, §4.9.6.7
The C Programming Language, ed. 2, p. 245

See Also
fprintf, fscanf, input-output, printf, scanf, sprintf, sscanf, vprintf, vsprintf

Notes
vfprintf must be able to construct a string up to at least 509 characters long.

The character that vfprintf uses to represent the decimal point is affected by the program’s locale,
as set by the function setlocale. For more information, see localization.

void — C keyword
Empty type

The term void indicates the empty type. The following sections describe the ways it is used.

Function Type
void can be used in a function prototype or definition to indicate that a function returns no value.
For example, the declaration

LEXICON

void 13

void example();

indicates that the function example returns nothing. It would be an error for example to attempt
to return a value to a function that calls it, or for the calling function to use its value in an
expression.

Function Arguments
void can also be used in a function prototype or function declaration to indicate that a function has
no arguments. For example, the declaration

void example(void);

indicates that the function example not only returns nothing, but it takes no arguments as well.
The older practice of writing example() remains legal. But as before, it indicates merely that nothing
is said about arguments.

Void Expression
void can be used to indicate that the value of an expression is to be ignored. This is done by
casting the expression to type void. Prefacing an expression with the cast (void) throws away its
value (i.e., casts it into the void), although the expression is evaluated for possible side-effects.

void *
A void * (pointer to void) is a generic pointer. It is used in much the same way that char * (pointer
to char) was used in earlier descriptions of C. The new generic pointer type eliminates the earlier
confusion between a pointer to char (e.g., a string pointer) and a generic pointer.

Because by definition the void type includes no objects, a pointer to void may not be dereferenced.
That is, you should not directly access the object to which it points by using the indirection operator
*. In the code

void *voidp;
. . .

if (*voidp > 0)
. . .

the behavior of dereferencing the pointer to void is undefined. It may or may not generate an error;
if it does not, the results may be unpredictable.

It is correct, however, to cast a pointer to void to a standard object pointer type and then
dereference it. For example, the code

void *voidp;
. . .

if (*(char *)voidp > 0)
. . .

is permitted.

The Standard guarantees that a pointer to void may be converted to a pointer to any incomplete
type or object type. It also guarantees that a pointer to any incomplete type or object type may be
converted into a pointer to void. Moreover, converting the result back to the original type results in
a pointer equal to the original pointer. That is, conversion of any object pointer type to void * and
back again does not change the representation of the pointer. However, if an object pointer is
converted to void * and then converted to a pointer to a type whose alignment is stricter than that of
the original type, behavior is undefined.

The Standard also guarantees that the pointer types char * and void * have the same
representation. This prevents the Standard from breaking existing code for functions with generic-
pointer arguments (previously defined using type char * but now defined with type void *).

LEXICON

14 void

The introduction of the generic pointer void * by the Standard serves several purposes in addition to
those noted above. The Standard no longer allows comparison between pointers of different types,
except that any object pointer may be compared to a void *. Casting object pointers with the
expression

(void *)

allows comparisons that would otherwise be illegal. Library functions that have commonly been
written with pointers of various types as arguments (such as fread) can be defined with a prototype
void * argument, which allows the arguments to be quietly converted to the correct type.

The generic pointer void * is also used as the type of the value returned by some functions (e.g.,
malloc), to indicate that the returned value is a pointer to something of indeterminate type.

Cross-references
Standard, §3.1.2.5, §3.2.2.2-3, §3.3.4, §3.5.2, §3.5.3.1, §3.5.4.3
The C Programming Language, ed. 2, pp. 199, 218

See Also
incomplete type, NULL, pointer, precedence, types

void expression — Definition
A void expression is any expression that has type void. By definition, it has no value; therefore, its
value cannot be assigned to any other expression. Normally, a void expression is used for its side-
effects.

If an expression of any other type is used in a situation that requires a void expression, the value of
that expression is discarded.

Cross-reference
Standard, §3.2.2.2

See Also
conversions

volatile — C keyword
Qualify an identifier as frequently changing

The type qualifier volatile marks an identifier as being frequently changed, either by other portions
of the program, by the hardware, by other programs in the execution environment, or by any
combination of these. This alerts the translator to re-fetch the given identifier whenever it
encounters an expression that includes the identifier. In addition, an object marked as volatile
must be stored at the point where an assignment to this object takes place.

Cross-references
Standard, §3.5.3
The C Programming Language, ed. 2, p. 211

See Also
const, type qualifier

Notes
volatile was created by the Committee for systems’ programs that deal with memory-mapped I/O or
ports where the program is not the only task that may modify the given port in memory. volatile
tells the translator that it does not know everything that is happening to the object.

LEXICON

void expression — volatile 15

Another use for volatile is for translators that perform optimizations, such as deferring storage of
registers or peephole optimization. volatile requires that the object be read and stored at exactly
those points where the program has specified these actions.

vprintf() — STDIO (libc)
Print formatted text into standard output stream
#include <stdarg.h>
#include <stdio.h>
int vprintf(const char *format, va_list arguments);

vprintf constructs a formatted string and writes it into the standard output stream. It translates
integers, floating-point numbers, and strings into a variety of text formats. Unlike the related
function printf, vprintf can handle a variable list of arguments of various types. It is roughly
equivalent to the r conversion specifier under some implementations of printf.

format points to a string that can contain text, character constants, and one or more conversion
specifications. A conversion specification defines how a particular data type is converted into a
particular text format. Each conversion specification is introduced with the percent sign %. (To
print a literal percent sign, use the escape sequence %%.) See printf for further discussion of the
conversion specification and for a table of the type specifiers that can be used with vprintf.

After format comes arguments. This is of type va_list, which is defined in the header stdarg.h. It has
been initialized by the macro va_start and points to the base of the list of arguments used by
vprintf. For more information, see variable arguments. arguments should access one argument for
each conversion specification in format of the type appropriate to conversion specification.

For example, if format contains conversion specifications for an int, a long, and a string, then
arguments access three arguments, being, respectively, an int, a long, and a char *.

If there are fewer arguments than conversion specifications, then vprintf’s behavior is undefined. If
there are more, every argument without a corresponding conversion specification is evaluated and
then ignored. If an argument is not of the same type as its corresponding type specification, then
the behavior of vprintf is undefined; thus, accessing an int where vprintf expects a char * may
generate unwelcome results.

If it writes the formatted string correctly, vprintf returns the number of characters written;
otherwise, it returns a negative number.

Cross-references
Standard, §4.9.6.8
The C Programming Language, ed. 2, p. 245

See Also
fprintf, fscanf, input-output, printf, scanf, sprintf, sscanf, vfprintf, vsprintf

Notes
vprintf must be able to construct a string up to at least 509 characters long.

The character that vprintf uses to represent the decimal point is affected by the program’s locale, as
set by the function setlocale. For more information, see localization.

Each argument must have basic type, which can be converted to a pointer simply by adding an *
after the type name. This is the same restriction that applies to the arguments to the macro va_arg.

LEXICON

16 vprintf()

vsprintf() — STDIO (libc)
Print formatted text into string
#include <stdarg.h>
#include <stdio.h>
int vsprintf(char *string, const char *format, va_list arguments);

vsprintf constructs a formatted string in the area pointed to by string. It translates integers,
floating-point numbers, and strings into a variety of text formats. Unlike the related function
printf, vsprintf can handle a variable list of arguments of various types. It is roughly equivalent to
the r conversion specifier under some implementations of sprintf.

format points to a string that can contain text, character constants, and one or more conversion
specifications. A conversion specification describes how to convert a particular data type into a
particular text format. Each conversion specification is introduced with the percent sign %. (To
print a literal percent sign, use the escape sequence %%.) See printf for further discussion of the
conversion specification and for a table of the type specifiers that can be used with vsprintf.

After format comes arguments. This is of type va_list, which is defined in the header stdarg.h. It has
been initialized by the macro va_start and points to the base of the list of arguments used by
vsprintf. For more information, see variable arguments. arguments should access one argument for
each conversion specification in format of the type appropriate to the conversion specification.

For example, if format contains conversion specifications for an int, a long, and a string, then
arguments access three arguments, being, respectively, an int, a long, and a char *.

If there are fewer arguments than conversion specifications, then vsprintf’s behavior is undefined.
If there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding type specification,
then the behavior of vsprintf is undefined; thus, accessing an int where vsprintf expects a char *
may generate unwelcome results.

If it writes the formatted string correctly, vsprintf returns the number of characters written;
otherwise, it returns a negative number.

Cross-references
Standard, §4.9.6.7
The C Programming Language, ed. 2, p. 245

See Also
fprintf, fscanf, input-output, printf, scanf, sprintf, sscanf, vprintf, vsprintf

Notes
vsprintf must be able to construct a string up to at least 509 characters long.

The character that vsprintf uses to represent the decimal point is affected by the program’s locale,
as set by the function setlocale. For more information, see localization.

LEXICON

vsprintf() 17

wchar_t — Type
Typedef for a wide character
#include <stddef.h>

wchar_t is a typedef that is declared in the header stdlib.h. It is defined as the integral type that
can represent all characters of given national character set.

The following restrictions apply to objects of this type: (1) The null character has a value of zero. (2)
The characters of the standard C character set must have the same value as they would when used
in ordinary chars. (3) EOF must have a value that is distinct from every other character in the set.

wchar_t is a typedef of an integral type, whereas a multibyte character is a bundle of one or more
one-byte characters. The format of a multibyte character is defined by the implementation, whereas
a wchar_t can be used across implementations.

The functions mblen, mbstowcs, mbtowc, wcstombs, and wctomb manipulate objects of type
wchar_t.

Cross-references
Standard, §4.10
The C Programming Language, ed. 2, p. 193

See Also
ASCII, character sets, general utilities, multibyte characters, stdlib.h

Notes
The name wchar_t comes from the term wide character.

The Standard lists wchar_t as being declared in both stddef.h and stdlib.h.

wcstombs() — General utility (libc)
Convert sequence of wide characters to multibyte characters
#include <stdlib.h>
size_t wcstombs(wchar_t *multibyte, const char *widechar, size_t number);

The function wcstombs converts a sequence of wide characters to their corresponding multibyte
characters. It is the same as a series of calls of the type:

wctomb(multibyte, *widechar);

except that the call to wcstombs does not affect the internal state of wctomb.

widechars points to the base of the sequence of wide characters to be converted to multibyte
characters. multibyte points to the area into which the characters will be written. The sequence
begins and ends in an initial shift state. number is the number of characters to be converted.
wcstombs converts characters either until it reads and converts the null character that ends the
sequence, or until it has converted number characters. In the latter case, no null character is

LEXICON

18 wchar_t — wcstombs()

written at the end of the sequence of multibyte characters.

wcstombs returns -1 cast to size_t if it encounters an invalid wide character before it has converted
number characters. Otherwise, it returns the number of characters converted, excluding the null
character that ends the sequence.

Cross-reference
Standard, §4.10.7.4

See Also
mbstowcs, multibyte characters

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

wctomb() — General utility (libc)
Convert a wide character to a multibyte character
#include <stdlib.h>
int wctomb(char *string, wchar_t widecharacter);

wctomb converts widecharacter to its corresponding multibyte character and stores the result in
the area pointed to by string.

If string is set to NULL, then wctomb merely checks to see if the current set of multibyte characters
include state-dependent encodings. It returns zero if the set does not include state-dependent
codings, and a number other than zero if it does.

If string is set to a value other than NULL, then wctomb does the following:

1. It returns zero if widecharacter is zero.

2. It returns -1 if the value of widecharacter does not correspond to a legitimate multibyte
character for the present locale.

3. If the value of widecharacter does correspond to a legitimate multibyte character, then it
returns the number of bytes that comprise that character.

wctomb never returns a value greater than that of the macro MB_CUR_MAX.

Cross-reference
Standard, §4.10.7.5

See Also
MB_CUR_MAX, mblen, mbtowc, multibyte characters, wchar_t

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

The address pointed to by string should have MB_CUR_MAX bytes of storage allocated to it. If not,
you may overwrite memory currently in use.

LEXICON

wctomb() 19

while — C keyword
Loop construct
while(condition) statement

while introduces a conditional loop. Unlike a do loop, a while loop tests condition before execution
of statement. The loop ends when condition is no longer satisfied. Hence, the loop may not execute
at all, if condition is initially false.

For example,

while (variable < 10)

introduces a loop whose statements will continue to execute until variable is equivalent to ten or
greater. The statement

while (1)

will loop until interrupted by break, goto, or return.

Example
For an example of this statement, see sscanf.

Cross-references
Standard, §3.6.5.1
The C Programming Language, ed. 2, pp. 60ff

See Also
C keywords, do, for, iteration statements, while

LEXICON

20 while

Index 21

Index

to _

! . 8
!= . 8

. 9
<newline> 82
. 10
#define . 11
#elif . 13
#else . 13
#endif . 14
#error . 14
#if . 14
#ifdef . 15
#ifndef . 16
#include . 16

’’ . 8

() . 28

\ . 7
\’ . 7
\? . 7
\\ . 7
\a . 7
\b . 7
\f . 7
\n . 7
\NNN . 7
\r . 7
\t . 7
\v . 7
\x . 7

A

abort signal 136
abort(). 1
abs(). 2
absolute value

compute. 14
compute for integer 2
compute for long integer 33
definition . 2

abstract machine 103
abstract semantics 103
access, quick

required 118
acos() . 2
active position 33
additive operators. 3
address . 3
address constant expression 44

aggregate types 3
alias. 3
alignment . 4
allocate and clear dynamic memory 27
allocate dynamic memory 63
allocating memory

definition 72
append one string onto another . . . 159, 173
arena . 72
argc . 5
argument. 5
arguments

variable number of 11
argv . 5
arithmetic

signal erroneous 137
arithmetic constant expression 44
arithmetic conversions 46
arithmetic types 6
array

search . 23
sort. 109

array declarators 6
array type derivation 7
array types . 7
as if rule . 11
ASCII . 7
asctime() . 10
asin() . 11
assert() . 12

turn off . 80
assert.h. 13
assertion

check at run time 12
assertions

define elements that test 13
assignment operators 13
atan() . 14
atan2() . 14
atexit() . 15
atof() . 16
atoi(). 16
atol(). 17
auto . 17
automatic storage duration 17, 159

B

base documents. 150
basic types . 18
beginning of file

move file-position indicator 122
behavior . 18
binary files . 22
binary search 23
binary stream 164
bit . 19
bit-fields . 19
bitwise operators 20
block . 22, 42

A LEXICAL GUIDE TO ANSI C

22 Index

block scope 126
braces. 22
break . 22
break a string into tokens 181
broken-down time 23

convert to text 10
turn into calendar time 74

bsearch() . 23
buffer . 25

default size 25
flush stream 16
set alternative for stream. 130, 133

BUFSIZ . 25
byte . 26

C

C locale . 132
calculate cosine 48
calculate floating-point modulus 31
calculate hyperbolic cosine 49
calculate inverse cosine 2
calculate inverse sine. 11
calculate inverse tangent 14
calculate sine 142
calculate tangent 190
calendar time 27

convert to local time. 55
convert to text 49
convert to universal coordinated time . . . 5
create from broken-down time. 74
get current 191

calloc() . 27
case . 28
cast operators 28
ceil() . 29
ceiling. 29
changes

list . 110
char . 29
CHAR_BIT . 30
CHAR_MAX 30
CHAR_MIN . 30
character

check . 25
check if numeral or letter. 22
check if printable 24-25
check if white space 26
copy . 71
fill an area with 73
push back to stream 2
read from standard input stream 2
read from stream 2, 17
reverse search for 177
search for in region of memory 68
search for in string 160, 177
search string for 176
string literal 8
write into standard output stream . . . 107
write into stream. 36, 106

A LEXICAL GUIDE TO ANSI C

character constant 32
character display semantics. 33
character handling 34
character input-output. 16
character sets 35
character testing 35
character, multibyte

return length of 66
character-case mapping 31
character-handling functions

header . 50
check assertion at run time 12
check if a character is a control character . 23
check if a character is a letter. 23
check if a character is a numeral or letter . 22
check if character is hexadecimal numeral . 27
check if character is lower-case letter 24
check if character is numeral 24
check if character is printable 24-25
check if character is punctuation mark . . . 25
check if character is upper-case letter 26
check if character is white space 26
clear dynamic memory 27
clear error indicator from stream. 37
clearerr() . 37
CLK_TCK . 37
clock(). 38
clock_t . 38
close. 39
close a file . 39
close a stream 14
code

include code conditionally 15-16
include conditionally 14

code, conditional inclusion
end. 14

command processor 39, 188
comment . 39
common logarithm

compute. 56
compare strings 163, 178
compare two regions 70
compare two strings 161-162, 174
comparison of pointers. 4
comparison of regions of memory 168
comparison of strings 168
comparison of structures 4
compatible types 40
compile . 41
compiler . 41
complete types. 12
compliance. 41
composite types 41
compound assignment operator 13
compound statement. 22, 42
compute a power of a number 95
compute absolute value 14
compute common logarithm 56
compute exponential function 11
compute square root 146

Index 23

compute the absolute value of a long integer 33
compute the absolute value of an integer . . . 2
concatenate strings. 159, 173
conditional inclusion 42
conditional inclusion of code

end. 14
conditionally execute expression 11
conditionally execute statement 1
conforming freestanding implementation . . 41
conforming hosted implementation 41
conforming implementation 41
conforming program 41
const . 43
const-qualified type. 110
constant . 45

hexadecimal 19
octal . 19

constant expressions. 44
constants. 45
constraints. 45
continue . 46
control character 46

check if a character is. 23
conversion integers 20
conversions 46
convert a wide character to a multibyte character19
convert broken-down time to text 10
convert calendar time to local time. 55
convert calendar time to text 49
convert calendar time to universal coordinated time5
convert multibyte character to wide character67
convert sequence of multibyte characters to wide characters66
convert sequence of wide characters to multibyte characters18
convert string to floating-point number 16, 180
convert string to integer 16
convert string to long integer 17, 183
convert string to unsigned long integer . . 183
convert type of expression 28
copy a region of memory 71
copy header into program 16
copy one string into another 162, 175
copying

region . 169
string . 169

cos() . 48
cosh() . 49
cosine

calculate 48
hyperbolic. 49

create . 49
create a file. 49
ctime() . 49
ctype.h . 50
curly brackets 22
current position in file

encode. 34

D

daemon. 139

data
read from stream 37

data type
enumerated. 2

date
print . 49

date and time 51
deallocate dynamic memory. 38
deallocating memory

definition 72
declarations and definitions for STDIO . . 156
declare signal-handling routines 139
default locale 132
default signal-handling function 135
default size of buffer 25
define common error codes 6
define elements that test assertions 13
define maximum size of temporary file’s name32
definition

object . 84
dereferencing

pointer. 90
device

open . 86
difference between two pointers 105
direct input-output 16
domain error. 1
dynamic memory

allocate . 63
allocate and clear 27
deallocate 38
reallocate 117

E

EDOM. 1
element type . 7
else . 1
empty type . 13
encode current position in file 34
end conditional inclusion of code. 14
end of file

seek from 129
end program immediately 1
end-of-file indicator. 4, 20

examine for stream 15
enum . 2
enumerated data type 2
enumerated types. 3
enumeration . 3
enumeration constant 3
environment list. 3-4
environment variable. 4

get . 3
EOF . 4
equality operators. 4
ERANGE . 5
errno . 6

define . 6
errno.h . 6

A LEXICAL GUIDE TO ANSI C

24 Index

erroneous arithmetic signal 137
error

domain . 1
pointer to handling function 136
range. 5

error codes
define . 6

error directive 14
error handling 7
error indicator 20

clear from a stream 37
examine for a stream 16

error message
return text of 164
write into standard output 89

error status
external integer that holds 6

errors . 7
escape sequences 7
examine stream status. 16
examine stream’s end-of-file indicator 15
Example . 7
exception . 9
execute non-local jump 59
execution environment. 9
exit

register a function to be performed 15
exit unconditionally from loop or switch . . 22
exit(). 9
EXIT_FAILURE 10
EXIT_SUCCESS. 10
exp(). 11
explicit conversion 11
exponent-log functions. 11
exponential function

compute. 11
expression

conditionally execute 11
convert type. 28

expression statement. 12
extern. 12
external definitions 12
external integer that holds error status 6
external linkage 12, 50
external name 13

F

fabs() . 14
false . 14
fclose() . 14
feof(). 15
ferror() . 16
fflush() . 16
fgetc() . 17
fgetpos() . 17
fgets() . 19
fgetw . 76
field

offset within structure 85

A LEXICAL GUIDE TO ANSI C

FILE. 22
file . 20, 22

close . 39
create . 49
definition 20
fully buffered 25
gain access to one 22
indicate end of 4
line buffered 25
maximum size of temporary file’s name . 32
open . 86
remove. 120
rename 120
seek from beginning. 129
unbuffered 25

file access . 22
file name

maximum length. 22
file operations 23
file positioning. 23
file scope . 126
file stream

read line from 19
file, source

include . 16
file-position indicator. 20, 23

encode. 34
get value. 17
manipulate 23
seek from 128
set . 42-43
set to top of file. 122

FILENAME_MAX 22
files

maximum number open 33
fill an area with a character 73
find one string within another 179
float . 24
float.h. 25
floating constant 27
floating types 28
floating-point

modulus. 31
floating-point number

convert from string 16
create from string 180
fracture . 40
load . 41
separate . 75

floating-point numbers
formula . 25

floor() . 28
FLT_DIG . 28
FLT_EPSILON 29
FLT_MANT_DIG 29
FLT_MAX. 29
FLT_MAX_10_EXP 29
FLT_MAX_EXP. 30
FLT_MIN . 30
FLT_MIN_10_EXP. 30

Index 25

FLT_MIN_EXP 30
FLT_RADIX. 31
FLT_ROUNDS 31
flush stream buffer 16
fmod . 31
fopen() . 32
FOPEN_MAX. 33
for . 34
force next iteration of loop. 46
format and print text into standard output stream97
format locale-specific time 165
formatted input-output 16
fpos_t . 34
fprintf() . 35
fputc(). 36
fputs(). 37
fputw . 76
fracture floating-point number 40
fread() . 37
free(). 38
freestanding environment 38
freopen() . 39
frexp() . 40
fscanf() . 40
fseek(). 42
fsetpos(). 43
full expression. 151
fully buffered file 25
function

jump within. 6
library . 44
pointer to 90
register to perform at exit. 15
return to 121

function image 140
function scope. 126
function-like macro. 62
function-prototype scope 126

G

gain access to a stream 22
general utilities 1
generate pseudo-random numbers. 115
get current calendar time 191
get value of file-position indicator 17
getc() . 2
getchar() . 2
getenv() . 3
gets() . 4
GMT. 5
gmtime() . 5
goto . 6

non-local 81
goto, nonlocal

execute . 59
type . 29

Greenwich Mean Time 5

H

handle regions. 169
handle strings 169
hashing. 147

example 183
header . 7

copy into program 16
localization functions and macros 51
mathematics functions 64
non-local jump 131
signal-handling routines 139
STDIO declarations and definitions. . . 156

header for assertions 13
header for character handling. 50
header names 8
heap. 72
hexadecimal constant 19
hexadecimal numeral

check if character is 27
high-order bit 26
hosted environment 8
HUGE_VAL. 9
hyperbolic cosine 49
hyperbolic functions 9
hyperbolic sine 143
hyperbolic tangent 190

I

identifier
define as macro 11

identifier requires quick access 118
identifiers . 10
IEEE document 754 83
if . 11
ignore signal function 136
illegal instruction

signal . 137
implementation 11
implementation-defined behavior. 18
implicit conversions 12
implicit declaration

problems 121
include code conditionally 13-16
include source file 16
inclusion of code, conditional

end. 14
incomplete types 12
index() . 160
inequality operator 8
information hiding 126
initialization 13
initialization of pointers 90
initialize lconv structure 51
initialized. 16
input-output. 16
int . 17
INT_MAX . 17
INT_MIN . 18
integer

A LEXICAL GUIDE TO ANSI C

26 Index

compute absolute value. 2
convert from string 16

integer arithmetic 18
integer constant. 19
integer-value-remainder 18
integers

conversion 20
integral ceiling. 29
integral constant expression 44
integral promotion 20
integral types 20
internal linkage 50, 152
internal name 22
interpret . 22
interpreter . 22
interrupt

signal . 137
invalid reference to memory

signal . 141
inverse cosine

calculate . 2
inverse sine

calculate 11
inverse tangent

calculate 14
isalnum() . 22
isalpha() . 23
iscntrl() . 23
isdigit() . 24
isgraph() . 24
islower(). 24
isprint() . 25
ispunct() . 25
isspace() . 26
isupper() . 26
isxdigit() . 27
iteration statements 27

J

jmp_buf. 29
jump

within a function 6
jump statements 29
jump, nonlocal

execute . 59
save environment for 131
type . 29

K

keywords . 31

L

L_tmpnam . 32
label. 32
label names 79
labelled statements 32
labs() . 33

A LEXICAL GUIDE TO ANSI C

Language. 33
largest size of a multibyte character in locale 65
LC_ALL . 34
LC_COLLATE 35
LC_CTYPE . 36
LC_MONETARY 36
LC_NUMERIC 36
LC_TIME . 37
lconv . 37

initialize . 51
LDBL_DIG . 39
LDBL_EPSILON 39
LDBL_MANT_DIG 40
LDBL_MAX. 40
LDBL_MAX_10_EXP 40
LDBL_MAX_EXP 40
LDBL_MIN . 41
LDBL_MIN_10_EXP. 41
LDBL_MIN_EXP 41
ldexp(). 41
ldiv(). 42
ldiv_t . 42
ldivision

long integer 42
length

return of multibyte character 66
letter . 43

check if character is 22-23
letter, lower case

check if character is 24
letter, upper case

check if character is 26
lexical elements 43
Library . 44
library function 44
limits . 48
limits.h . 48
line . 164

read from stream 19
line-buffered file. 25
link . 49
linkage . 50

external . 12
internal 152

linkage conflict 50, 84
linked list

example 183
literal

wide character 32
wide string 170

load floating-point number 41
local time. 51

make from calendar time 55
locale

all information 34
change or query 132
character-handling information 36
collation information 35
format locale-specific time 165
monetary information. 36-37

Index 27

numeric information 36
time information 37

locale-specific behavior. 18
locale-specific string transformation. . . . 186
locale.h . 51
localeconv(). 51
localization. 52
localization functions and macros 51
localtime() . 55
log() . 56
log10() . 56
logarithm, common

compute. 56
logarithm, natural

compute. 56
logical negation operator. 8
logical operators. 57
long . 59
long double 58
long int . 59
long integer

compute absolute value. 33
convert from string 17
create from string 183

long integer division 42
LONG_MAX 57
LONG_MIN . 58
longjmp() . 59
loop . 27

exit unconditionally 22
force next iteration 46

loop construct 20, 34
low-order bit 26
lower-case letter

check if character is 24
lparen. 62
lvalue . 60

M

macro . 62
macro expansion 62
macro replacement 62
main . 62
malloc() . 63
manifest constant. 11, 63
manipulate file-position indicator 23
mark entry in switch table. 28
math.h . 64
mathematics. 64
mathematics functions

declare. 64
maximum length of file name 22
maximum number of open files. 33
maximum size of MB_CUR_MAX 66
MB_CUR_MAX. 65

maximum size 66
MB_LEN_MAX 66
mblen() . 66
mbstowcs() . 66

mbtowc() . 67
measure length of string 172
member. 68
members

structure 79
memchr() . 68
memcmp() . 70
memcpy() . 71
memmove(). 71
memory

copy . 71
search region 171

memory allocation
definition 72

memory management 72
memory, dynamic

allocate . 63
allocate and clear 27
deallocate 38
reallocate 117

memory, invalid reference
signal . 141

memset() . 73
minimum maxima 74
miscellaneous string-handling functions . 171
mktime() . 74
modf() . 75
modifiable lvalue 60
monetary conversion information 37
multibyte character

convert to wide character. 67
create from wide character 19
largest size in locale 65
return length of 66

multibyte characters 76
convert sequence to wide characters . . . 66
convert sequence wide characters to . . . 18

multiplicative operators 77

N

name space 79
natural logarithm

compute. 56
NDEBUG . 80
no linkage . 50
noalias-qualified type. 110
non-local goto 81
non-local jumps. 81

type . 29
nondigit. 81
not modifiable

type qualifier 43
NULL . 82
null character 82
null directive. 82
null pointer 82, 90
null pointer constant. 83
null statement. 83
number of arguments

A LEXICAL GUIDE TO ANSI C

28 Index

variable . 11
numeral

check if character is 22, 24
numeric floor 28
numerical limits. 83

O

object . 84
object definition 84
object types 85
object-like macro 62
obsolescent 85
octal constant 19
offset of field within structure. 85
offsetof() . 85
onexit . 15
open. 86
open a device 86
open a file . 86
open a stream 32
open files

maximum number. 33
operand. 86
operator

inequality . 8
logical negation 8
precedence 86
stringize . 9
token-pasting. 10

operators . 86
ordinary identifier. 87
ordinary identifiers 79
output . 16

P

parameter . 89
perror() . 89
pointer . 90

difference between two 105
null . 82

pointer comparison. 4
pointer declarators 93
pointer dereferencing. 90
pointer to error-handling function 136
pointer to function that ignores signals . . 136
pointer to standard error stream 153
pointer to standard input stream. 154
pointer to standard output stream. 158
pointer to void 13
pointer type 90
pointer type derivation 90
pointer-type mismatch 90
portability . 94
position file-position indicator 23
postfix operators 94
pow() . 95
power

compute for a number 95

A LEXICAL GUIDE TO ANSI C

power functions 95
precedence of operators 86
preprocessing directive

do nothing 82
include source file 16

preprocessing numbers 96
primary expressions 96
print current date and time 49
print formatted text into standard output stream16, 97
print formatted text into stream 12, 35
print formatted text into string 17, 145
printf() . 97
printing character. 103
program

indicate executed successfully. 10
indicate failed to execute successfully . . 10
return time needed to execute 38
suspend and execute another 188
terminate gracefully 9

program execution 103
program parameters 8
program startup. 104
program termination 104
pseudo-random numbers 105, 115

seed . 147
ptrdiff_t . 105
punctuation mark

check if character is 25
punctuators 106
push back character to input stream 2
putc() . 106
putchar() . 107
puts() . 108

Q

qsort() . 109
qualified types 110
query locale 132
quick access required 118
quiet change 110
quiet changes

list . 110
quotation mark 8

R

radix point . 27
raise() . 114
rand() . 115
RAND_MAX 116
random numbers 105, 115

seed . 147
range error 5, 116
Rationale . 117
read a character from standard input stream 2
read a string from the standard input stream 4
read and interpret text from standard input stream123
read and interpret text from stream 40
read and interpret text from string. 149

Index 29

read character from stream 2, 17
read data from stream 37
read line from stream 19
realloc() . 117
reallocate dynamic memory 117
reentrancy 140
referenced type 90
region copying 169
region handling 169
region of memory

copy . 71
search . 171
search for character 68

regions
compare . 70
comparison 168

register . 118
register a function to be performed at exit . 15
relational operators. 119
remove a file 120
remove() . 120
rename a file 120
rename() . 120
reopen a stream. 39
return. 121
return character to input stream. 2
return to calling function 121
reverse search for character in string . . . 177
rewind(). 122
rindex() . 177
run time

check assertion 12
rvalue . 122

S

save environment for non-local jump . . . 131
scalar types 123
scanf(). 123
SCHAR_MAX. 126
SCHAR_MIN 126
scope . 126
search an array 23
search for character in a string 160, 177
search for character in region of memory . . 68
search string for character 176
search strings and regions of memory . . . 171
searching. 128
searching-sorting 128
seed pseudo-random number generator. . 147
seek

from file-position indicator 128
seek from beginning of file. 129
seek from end of file 129
SEEK_CUR. 128
SEEK_END. 129
SEEK_SET 129
select entry in table. 187
selection statements 129
send a signal. 114

separate floating-point number. 75
sequence point 130
set file-position indicator 42-43
set file-position indicator to top of file . . . 122
set locale . 132
set processing for a signal 138
setbuf() . 130
setjmp() . 131
setjmp.h . 131
setlocale(). 132
setvbuf() . 133
shift state . 76
short . 134
short int . 134
short-circuit evaluation 57
SHRT_MAX. 134
SHRT_MIN 135
side effect. 135
sig_atomic_t 135
SIG_DFL . 135
SIG_ERR . 136
SIG_IGN . 136
SIGABRT . 136
SIGFPE . 137
SIGILL . 137
SIGINT . 137
sign bit . 5
signal

abort . 136
erroneous arithmetic 137
function to ignore 136
send . 114
set processing 138
type that can be updated despite 135

signal handler
definition 139

signal handling 139
signal illegal instruction 137
signal interrupt 137
signal program termination 142
signal() . 138
signal-handling function

default . 135
signal.h. 139
signals/interrupts 140
signed. 17, 141
signed char 141
signed int. 17
signed long. 59
signed long int. 59
signed short 134
signed short int 134
SIGSEGV. 141
SIGTERM. 142
sin() . 142
sine

calculate 142
sinh() . 143
size_t . 143
sizeof . 144

A LEXICAL GUIDE TO ANSI C

30 Index

type returned by 143
sort an array. 109
sorting . 128
source file 145
source file inclusion 16
spirit of C. 145
sprintf() . 145
sqrt() . 146
square root

compute. 146
srand() . 147
sscanf() . 149
stack . 159
Standard . 150
standard error 151
standard error stream

pointer. 153
standard input 151
standard input and output 154
standard input stream

pointer. 154
read a string from 4
read and interpret text from 123
read character from 2

standard output. 151
standard output stream

format and print text 97
pointer. 158
print formatted text 16
write a character into 107
write string into 108

state-dependent coding 76
statement

conditionally execute 1
statements 151
static . 152
static storage duration 159
stdarg.h. 152
stddef.h. 153
stderr . 153
stdin . 154
STDIO. 154
STDIO declarations and definitions 156
stdio.h . 156
stdlib.h . 157
stdout. 158
storage duration. 159

automatic 17
storage-class specifiers. 158
strcat() . 159
strchr() . 160
strcmp(). 161
strcoll() . 162
strcpy() . 162
strcspn() . 163
stream . 164

clear error indicator 37
close . 14
examine end-of-file indicator. 15
examine error indicator. 16

A LEXICAL GUIDE TO ANSI C

flush buffer 16
gain access to stream 22
open . 32
print formatted text 12, 35
push back character to 2
read and interpret text from 40
read character from 2, 17
read data from 37
read line from 19
reopen . 39
set alternative buffer 130, 133
write character onto 36
write character to 106
write string into 37

strerror() . 164
strftime() . 165
strictly conforming program. 41
string . 167

break into tokens 181
compare two 161-162, 174
comparison 163, 178
concatenate two 159, 173
convert to floating-point number . . 16, 180
convert to integer 16
convert to long integer 17, 183
convert to unsigned long integer 183
copy one into another 162, 175
find one within another. 179
measure length of 172
print formatted text 17, 145
read and interpret text from 149
read from the standard input stream. . . . 4
reverse search for character 177
search . 171
search for character 176
search for character in 160, 177
write into standard output stream . . . 108
write into stream. 37

string comparison. 168
string concatenation 168
string conversion 168
string copying 169
string handling 169
string literal 170
string miscellaneous 171
string searching. 171
string transformation

locale specific. 186
string, length

definition 167
string, multibyte characters

return length of 66
string-handling functions

miscellaneous 171
string-ize operator 9
string.h . 167
strings

comparison 168
strlen() . 172
strncat() . 173

Index 31

strncmp() . 174
strncpy() . 175
strpbrk() . 176
strrchr(). 177
strspn() . 178
strstr() . 179
strtod() . 180
strtok() . 181
strtol(). 183
strtoul() . 183
struct . 186
structure . 186

offset of field within 85
structure comparison 4
structure members 79
strxfrm() . 186
subject sequence 180, 183
successful termination. 104
suspend a program and execute another . 188
switch. 187

exit unconditionally 22
mark entry in table 28

system time 38
system(). 188

T

table
select entry in 187

tag. 190
tags . 79
tan() . 190
tangent

calculate 190
tanh() . 190
temporary file

maximum size 32
tentative definition 84
terminate a program gracefully 9
terminate program signal 142
text

format and print into standard output stream97
print formatted into standard output stream16
print formatted into stream 12, 35
print formatted into string 17, 145
read and interpret 40
read and interpret from standard input stream123
read and interpret from string 149

text file . 22
text of error message

return . 164
text stream. 164
time

format locale specific 165
measure amount needed to execute program38
print . 49
return amount needed to execute program38

time() . 191
time, broken-down

convert to text 10

time, calendar
convert to local time. 55
convert to text 49
convert to universal coordinated time . . . 5
get current 191

token
break a string into sequence of 181

token pasting 10
top of file

reset file-position indicator to 122
transform a string. 186
turn broken-down time into calendar time . 74
turn off assert() 80
type

convert . 28
pointer. 90
referenced. 90
updateable despite signals 135

type qualifier
not modifiable 43

type returned by sizeof operator 143

U

UCHAR_MAX 1
UINT_MAX . 1
ULONG_MAX 1
unary operators 2
unbuffered file 25
unconditionally jump within function 6
undefined behavior 18
ungetc(). 2
union . 4
universal coordinated time 5

make from calendar time 5
unlink() . 120
unqualified type 110
unsigned . 5
unsigned char 6
unsigned int . 6
unsigned long int 6
unsigned long integer

create from string 183
unsigned short int 7
unsigned-preserving promotion. 20
unspecified behavior 18
unsuccessful termination 104
upper-case letter

check if character is 26
USHRT_MAX. 7
usual arithmetic conversions 46
UTC . 5

V

va_arg() . 8
va_end(). 8
va_list. 9
va_start() . 9
value

A LEXICAL GUIDE TO ANSI C

32 Index

return . 121
value preserving. 10
value-preserving promotion 20
value-preserving rules 19
variable arguments 11
variable, environmental

get . 3
vfprintf() . 12
visible . 126
void . 13
void * . 13
void expression 15
volatile . 15
volatile-qualified type. 110
vprintf() . 16
vsprintf() . 17

W

wchar_t . 18
wcstombs() . 18
wctomb() . 19
while . 20
white space

check if character is 26
wide character

convert to multibyte character. 19
create from multibyte character 67

wide characters 18, 76
convert sequence of multibyte characters to66
convert to sequence of multibyte characters18

wide-character literal. 32
wide-string literal 170
wild pointer 90
word. 19
write a character into standard output stream107
write character into stream 36, 106
write error message into standard output. . 89
write string into standard output stream . 108
write string into stream 37

A LEXICAL GUIDE TO ANSI C

