
V

va_arg() — Variable arguments (stdarg.h)
Return pointer to next argument in argument list
#include <stdarg.h>
typename *va_arg(va_list listptr, typename);

va_arg returns a pointer to the next argument in an argument list. It can be used with functions
that take a variable number of arguments, such as printf or scanf, to help write such functions
portably. It is always used with va_end and va_start within a function that takes a variable
number of arguments.

listptr is of type va_list, which is an object defined in the header stdarg.h. It must first be initialized
by the macro va_start.

typename is the name of the type for which va_arg is to return a pointer. For example, if you wish
va_arg to return a pointer to an integer, typename should be of type int.

va_arg can only handle ‘‘standard’’ data types, i.e., those data types that can be transformed to
pointers by appending an asterisk ‘*’.

Example
For an example of this macro, see the entry for variable arguments.

Cross-references
Standard, §4.8.1.2
The C Programming Language, ed. 2, p. 254

See Also
va_end, va_start, variable arguments

Notes
If there is no next argument for va_arg to handle, or if typename is incorrect, then the behavior of
va_arg is undefined.

va_arg must be implemented only as a macro. If its macro definition is suppressed within a
program, the behavior is undefined.

va_end() — Variable arguments (libc)
Tidy up after traversal of argument list
#include <stdarg.h>
void va_end(va_list listptr);

va_end helps to tidy up a function after it has traversed the argument list for a function that takes a
variable number of arguments. It can be used with functions that take a variable number of
arguments, such as printf or scanf, to help write such functions portably. It should be used with
the routines va_arg and va_start from within a function that takes a variable number of arguments.

listptr is of type va_list, which is declared in header stdarg.h. listptr must first have been initialized
by macro va_start.

The manner of ‘‘tidying up’’ that va_end performs will vary from one computing environment to
another. In many computing environments, va_end is not needed, and it may be implemented as
an empty function.

LEXICON

506 va_arg() — va_end()

Example
For an example of this function, see the entry for variable arguments.

Cross-references
Standard, §4.8.1.3
The C Programming Language, ed. 2, p. 254

See Also
va_arg, va_start, variable arguments

Notes
If va_list is not initialized by va_start, or if va_end is not called before a function with variable
arguments exits, then behavior is undefined.

va_list — Type
Type used to handle argument lists of variable length

va_list is a typedef declared in the header stdarg.h.

va_list is used to help implement functions like printf and scanf, which can take an indeterminate
number of arguments.

Example
For an example of this type, see the entry for variable arguments.

Cross-references
Standard, §4.8

See Also
va_arg, va_end, va_start, variable arguments

va_start() — Variable arguments (stdarg.h)
Point to beginning of argument list
#include <stdargs.h>
void va_start(va_list listptr, type rightparm);

va_start is a macro that points to the beginning of a list of arguments. It can be used with
functions that take a variable number of arguments, such as printf or scanf, to help implement
them portably. It is always used with va_arg and va_end from within a function that takes a
variable number of arguments.

listptr is of type va_list, which is a type defined in the header stdarg.h.

rightparm is the rightmost parameter defined in the function’s parameter list — that is, the last
parameter defined before the ... punctuator. Its type is set by the function that is using va_start.
Undefined behavior results if any of the following conditions apply to rightparm: if it has storage
class register; if it has a function type or an array type; or if its type is not compatible with the type
that results from the default argument promotions.

Example
For an example of this macro, see the entry for variable arguments.

Cross-references
Standard, §4.8.1.1
The C Programming Language, ed. 2, p. 254

LEXICON

va_list — va_start() 507

See Also
va_arg, va_end, va_list, variable arguments

Notes
va_start must be implemented only as a macro. If the macro definition of va_start is suppressed
within a program, the behavior is undefined.

value preserving — Definition
With respect to integral promotions, the Standard has adopted value-preserving rules. This may
quietly break some existing code that depended on unsigned-preserving rules, as many UNIX
implementations have done.

In most cases, there will be no difference in the results produced by unsigned-preserving rules and
those produced by value-preserving rules. There are, however, several instances in which different
results will be seen. For example:

long l;
unsigned int ui;

. . .
l = ui + l;

In this operation, before the addition is performed, ui will first be promoted to type long if a long
can hold the value contained in the unsigned int. The operation will then be performed as long
addition, assigning the result to the variable l.

If a long is not large enough to represent the value contained in ui, which may occur under an
implementation where ints and longs are the same size, then both ui and l are first converted to
unsigned long before the addition is performed. Because conversion is needed to preserve the value
(as opposed to the sign) of the operand as well as the result, the term ‘‘value preserving’’ is
appropriate.

As usual, code may have to be generated to perform the conversion, and a high-quality
implementation will usually issue a diagnostic message in such a case.

Cross-references
Standard, §3.2
The C Programming Language, ed. 2, pp

See Also
conversions, integral promotions

variable arguments — Overview
The Standard mandates the creation of a set of routines to help implement functions, such as printf
and scanf, that take a variable number of arguments. These routines are called from within another
function to help it handle its arguments. If the ellipsis punctuator ‘...’ appears at the end of the list
of arguments in a function’s prototype, then that a function can take a variable number of
arguments.

These routines are declared or defined in the header stdarg.h, and are as follows:

va_arg Return pointer to next argument in argument list
va_end Tidy up after an argument list has been traversed
va_start Initialize object that holds function arguments

va_arg and va_start must be implemented as macros; va_end must be implemented as a library
function. All three use the special type va_list, which is an object that holds the arguments to the
function being implemented.

LEXICON

508 value preserving — variable arguments

Example
The following example concatenates multiple strings into a common allocated string and returns the
string’s address.

#include <stdarg.h>
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>

char *
multcat(int numargs, ...)
{

va_list argptr;
char *result;
int i, siz;

/* get size required */
va_start(argptr, numargs);
for(siz = i = 0; i < numargs; i++)

siz += strlen(va_arg(argptr, char *));

if ((result = calloc(siz + 1, 1)) == NULL) {
fprintf(stderr, "Out of space\n");
exit(EXIT_FAILURE);

}
va_end(argptr);

va_start(argptr, numargs);
for(i = 0; i < numargs; i++)

strcat(result, va_arg(argptr, char *));
va_end(argptr);
return(result);

}

int
main(void)
{

printf(multcat(5, "One ", "two ", "three ",
"testing", ".\n"));

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.8
The C Programming Language, ed. 2, p. 254

See Also
Library, stdarg.h, va_list

vfprintf() — STDIO (libc)
Print formatted text into stream
#include <stdarg.h>
#include <stdio.h>
int vfprintf(FILE*fp, const char *format, va_list arguments);

vfprintf constructs a formatted string and writes it into the stream pointed to by fp. It translates
integers, floating-point numbers, and strings into a variety of text formats. vfprintf can handle a
variable list of arguments of various types. It is roughly equivalent to the ‘r’ conversion specifier to
fprintf.

LEXICON

vfprintf() 509

format points to a string that can contain text, character constants, and one or more conversion
specifications. A conversion specification describes how particular data type is converted into a
particular text format. Each conversion specification is introduced with the percent sign ‘%’. (To
print a literal percent sign, use the escape sequence ‘‘%%’’.) See printf for further discussion of the
conversion specification, and for a table of the type specifiers that can be used with vfprintf.

After format comes arguments. This is of type va_list, which is defined in the header stdarg.h. It has
been initialized by the macro va_start and points to the base of the list of arguments used by
vfprintf. For more information, see variable arguments. arguments should access one argument for
each conversion specification in format, of the type appropriate to its conversion specification.

For example, if format contains conversion specifications for an int, a long, and a string, then
arguments access three arguments, being, respectively, an int, a long, and a char *. arguments can
take only the data types acceptable to the macro va_arg; namely, basic types that can be converted
to pointers simply by adding a ‘*’ after the type name. See va_arg for more information on this
point.

If there are fewer arguments than conversion specifications, then vfprintf’s behavior is undefined.
If there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding conversion specifier,
then the behavior of vfprintf is undefined. Thus, presenting an int where vfprintf expects a char *
may generate unwelcome results.

If it writes the formatted string correctly, vfprintf returns the number of characters written.
Otherwise, it returns a negative number.

Example
This example sets up a standard multiargument error message. It is the source of the function
fatal, which is used throughout this manual.

#include <math.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

void
fatal(char *format, ...)
{

va_list argptr;

/* if there is a system message, display it */
if(errno)

perror(NULL);

/* if there is a user message, use it */
if(format != NULL) {

va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);

}
exit(EXIT_FAILURE);

}

LEXICON

510 vfprintf()

main(void)
{

/*
* This is guaranteed to be wrong. It should push
* an error code into errno.
*/

sqrt(-1.0);

/* Now, show the messages */
fatal("A %s error message%c", "complex", ’\n’);

/* If we get this far, something is wrong */
return(EXIT_FAILURE);

}

Cross-references
Standard, §4.9.6.7
The C Programming Language, ed. 2, p. 245

See Also
fprintf, printf, sprintf, STDIO, vprintf, vsprintf

Notes
vfprintf can construct a string up to at least 509 characters long.

The character that vfprintf uses to represent the decimal point is affected by the program’s locale,
as set by the function setlocale. For more information, see localization.

void — C keyword
Empty type

The term void indicates the empty type. The following sections describe the ways it is used.

Function Type
void can be used in a function prototype or definition to indicate that a function returns no value.
For example, the declaration

void example();

indicates that the function example returns nothing. It would be an error for example to attempt
to return a value to a function that calls it, or for the calling function to use its value in an
expression.

Function Arguments
void can also be used in a function prototype or function declaration to indicate that a function has
no arguments. For example, the declaration

void example(void);

indicates that the function example not only returns nothing, but it takes no arguments as well.
The older practice of writing example() remains legal. But as before, it indicates merely that nothing
is said about arguments.

Void Expression
void can be used to indicate that the value of an expression is to be ignored. This is done by
casting the expression to type void. Prefacing an expression with the cast (void) throws away its
value (i.e., casts it into the void), although the expression is evaluated for possible side-effects.

LEXICON

void 511

void *
A void * (‘‘pointer to void’’) is a generic pointer. It is used in much the same way that char *
(‘‘pointer to char’’) was used in earlier descriptions of C. The new generic pointer type eliminates the
earlier confusion between a pointer to char (e.g., a string pointer) and a generic pointer.

Because by definition the void type includes no objects, a pointer to void may not be dereferenced.
That is, you should not directly access the object to which it points by using the indirection operator
‘*’. In the code

void *voidp;
. . .

if (*voidp > 0)
. . .

the behavior of dereferencing the pointer to void is undefined. It may or may not generate an error;
if it does not, the results may be unpredictable.

It is correct, however, to cast a pointer to void to a standard object pointer type and then
dereference it. For example, the code

void *voidp;
. . .

if (*(char *)voidp > 0)
. . .

is permitted.

The Standard guarantees that a pointer to void may be converted to a pointer to any incomplete
type or object type. It also guarantees that a pointer to any incomplete type or object type may be
converted into a pointer to void. Moreover, converting the result back to the original type results in
a pointer equal to the original pointer. That is, conversion of any object pointer type to void * and
back again does not change the representation of the pointer. However, if an object pointer is
converted to void * and then converted to a pointer to a type whose alignment is stricter than that of
the original type, behavior is undefined.

The Standard also guarantees that the pointer types char * and void * have the same
representation. This prevents the Standard from breaking existing code for functions with generic-
pointer arguments (previously defined using type char * but now defined with type void *).

The introduction of the generic pointer void * by the Standard serves several purposes in addition to
those noted above. The Standard no longer allows comparison between pointers of different types,
except that any object pointer may be compared to a void *. Casting object pointers with the
expression

(void *)

allows comparisons that would otherwise be illegal. Library functions that have commonly been
written with pointers of various types as arguments (such as fread) can be defined with a prototype
void * argument, which allows the arguments to be quietly converted to the correct type.

The generic pointer void * is also used as the type of the value returned by some functions (e.g.,
malloc), to indicate that the returned value is a pointer to something of indeterminate type.

Cross-references
Standard, §3.1.2.5, §3.2.2.2-3, §3.3.4, §3.5.2, §3.5.3.1, §3.5.4.3
The C Programming Language, ed. 2, pp. 199, 218

See Also
NULL, pointer, precedence, types

LEXICON

512 void

void expression — Definition
A void expression is any expression that has type void. By definition, it has no value; therefore, its
value cannot be assigned to any other expression. Normally, a void expression is used for its side-
effects.

If an expression of any other type is used in a situation that requires a void expression, the value of
that expression is discarded.

Cross-reference
Standard, §3.2.2.2

See Also
conversions

volatile — C keyword
Qualify an identifier as frequently changing

The type qualifier volatile marks an identifier as being frequently changed, either by other portions
of the program, by the hardware, by other programs in the execution environment, or by any
combination of these. This alerts the translator to re-fetch the given identifier whenever it
encounters an expression that includes the identifier. In addition, an object marked as volatile
must be stored at the point where an assignment to this object takes place.

Cross-references
Standard, §3.5.3
The C Programming Language, ed. 2, p. 211

See Also
const, type qualifier

Notes
volatile was created by the Committee for systems’ programs that deal with memory-mapped I/O or
ports where the program is not the only task that may modify the given port in memory. volatile
tells the translator that it does not know everything that is happening to the object.

Another use for volatile is for translators that perform optimizations, such as deferring storage of
registers or peephole optimization. volatile requires that the object be read and stored at exactly
those points where the program has specified these actions.

vprintf() — STDIO (libc)
Print formatted text into standard output stream
#include <stdarg.h>
#include <stdio.h>
int vprintf(const char *format, va_list arguments);

vprintf constructs a formatted string and writes it into the standard output stream. It translates
integers, floating-point numbers, and strings into a variety of text formats. vprintf can handle a
variable list of arguments of various types. It is roughly equivalent to the ‘r’ conversion specifier to
printf.

format points to a string that can contain text, character constants, and one or more conversion
specifications. A conversion specification defines how a particular data type is converted into a
particular text format. Each conversion specification is introduced with the percent sign ‘%’. (To
print a literal percent sign, use the escape sequence ‘‘%%’’.) See printf for further discussion of the
conversion specification and for a table of the type specifiers that can be used with vprintf.

LEXICON

void expression — vprintf() 513

After format comes arguments. This is of type va_list, which is defined in the header stdarg.h. It has
been initialized by the macro va_start and points to the base of the list of arguments used by
vprintf. For more information, see variable arguments. arguments should access one argument for
each conversion specification in format of the type appropriate to conversion specification.

For example, if format contains conversion specifications for an int, a long, and a string, then
arguments access three arguments, being, respectively, an int, a long, and a char *.

If there are fewer arguments than conversion specifications, then vprintf’s behavior is undefined. If
there are more, every argument without a corresponding conversion specification is evaluated and
then ignored. If an argument is not of the same type as its corresponding type specification, then
the behavior of vprintf is undefined; thus, accessing an int where vprintf expects a char * may
generate unwelcome results.

If it writes the formatted string correctly, vprintf returns the number of characters written;
otherwise, it returns a negative number.

Cross-references
Standard, §4.9.6.8
The C Programming Language, ed. 2, p. 245

See Also
fprintf, printf, sprintf, STDIO, vfprintf, vsprintf

Notes
vprintf can construct a string up to at least 509 characters long.

The character that vprintf uses to represent the decimal point is affected by the program’s locale, as
set by the function setlocale. For more information, see localization.

Each argument must have basic type, which can be converted to a pointer simply by adding an ‘*’
after the type name. This is the same restriction that applies to the arguments to the macro va_arg.

vsprintf() — STDIO (libc)
Print formatted text into string
#include <stdarg.h>
#include <stdio.h>
int vsprintf(char *string, const char *format, va_list arguments);

vsprintf constructs a formatted string in the area pointed to by string. It translates integers,
floating-point numbers, and strings into a variety of text formats. vsprintf can handle a variable list
of arguments of various types. It is roughly equivalent to the ‘r’ conversion specifier to sprintf.

format points to a string that can contain text, character constants, and one or more conversion
specifications. A conversion specification describes how to convert a particular data type into a
particular text format. Each conversion specification is introduced with the percent sign ‘%’. (To
print a literal percent sign, use the escape sequence ‘‘%%’’.) See printf for further discussion of the
conversion specification and for a table of the type specifiers that can be used with vsprintf.

After format comes arguments. This is of type va_list, which is defined in the header stdarg.h. It has
been initialized by the macro va_start and points to the base of the list of arguments used by
vsprintf. For more information, see variable arguments. arguments should access one argument for
each conversion specification in format of the type appropriate to the conversion specification.

For example, if format contains conversion specifications for an int, a long, and a string, then
arguments access three arguments, being, respectively, an int, a long, and a char *.

LEXICON

514 vsprintf()

If there are fewer arguments than conversion specifications, then vsprintf’s behavior is undefined.
If there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding type specification,
then the behavior of vsprintf is undefined; thus, accessing an int where vsprintf expects a char *
may generate unwelcome results.

If it writes the formatted string correctly, vsprintf returns the number of characters written;
otherwise, it returns a negative number.

Cross-references
Standard, §4.9.6.7
The C Programming Language, ed. 2, p. 245

See Also
fprintf, printf, sprintf, STDIO, vprintf, vsprintf

Notes
vsprintf can construct a string up to at least 509 characters long.

The character that vsprintf uses to represent the decimal point is affected by the program’s locale,
as set by the function setlocale. For more information, see localization.

LEXICON

vsprintf() 515

