
T

tag — Definition
A tag is a name that follows the keywords struct, union, or enum. It names the type of object so
declared. For example, in the following code

struct STR {
. . .

};

the identifier STR is a tag. It defines a new type of structure called STR. It does not, however,
allocate any storage for any instance of this type.

Cross-references
Standard, §3.1.2.6
The C Programming Language, ed. 2, pp. 212ff

See Also
member, name space

tail — Command
Print the end of a file
tail [+n[bcl]] [file]
tail [-n[bcl]] [file]

tail copies the last part of file, or of the standard input if none is named, to the standard output.

The given number tells tail where to begin to copy the data. Numbers of the form +number count
from the beginning of the file; those of the form -number count from the end of the file.

A specifier of blocks, characters, or lines (b, c, or l, respectively) may follow the number; the default
is lines. If no number is specified, a default of -10 is assumed.

See Also
commands, egrep

Notes
Because tail buffers data measured from the end of the file, large counts may not work.

tan() — Mathematics (libm)
Calculate tangent
#include <math.h>
double tan(double radian);

tan calculates and returns the tangent of its argument radian, which must be in radian measure.

Cross-references
Standard, §4.5.2.7
The C Programming Language, ed. 2, p. 251

See Also
acos, asin, atan, atan2, cos, mathematics, sin

LEXICON

478 tag — tan()

tanh() — Mathematics (libm)
Calculate hyperbolic tangent
#include <math.h>
double tanh(double value);

tanh calculates the hyperbolic tangent of radian.

Cross-references
Standard, §4.5.3.3
The C Programming Language, ed. 2, p. 251

See Also
cosh, mathematics, sinh

technical information — Overview
The Lexicon includes the following articles that give technical information on the IBM PC and MS-
DOS:

ansi.sys Device driver for console
BIOS data area List magic areas within memory
byte ordering Describe ordering of bytes
i8087 Floating-point co-processor
keyboard Give keyboard scan codes
LARGE model Describe Intel multi-segment memory model
model Describe Intel memory models
SMALL model Describe Intel single-segment memory model

See Also
DOS-specific information

tempnam() — Extended function (libc)
Generate a unique name for a temporary file
char *tempnam(char *directory, char *name);

tempnam constructs a unique temporary name that can be used to name a file.

directory points to the name of the directory in which you want the temporary file written. If this
variable is NULL, tempnam reads the environmental variable TMPDIR and uses it for directory. If
neither directory nor TMPDIR is given, tempnam uses \tmp.

name points to the string of letters that will prefix the temporary name. This string should not be
more than three or four characters, to prevent truncation or duplication of temporary file names. If
name is NULL, tempnam will set it to t.

tempnam uses malloc to allocate a buffer for the temporary file name it returns. If all goes well, it
returns a pointer to the temporary name it has written. Otherwise, it returns NULL if the allocation
fails or if it cannot build a temporary file name successfully.

See Also
extended miscellaneous, mktemp, TMPDIR, tmpfile, tmpnam

Notes
tempnam is not described in the ANSI Standard. Programs that use it will not conform strictly the
Standard, and may not be portable to other compilers or environments.

LEXICON

tanh() — tempnam() 479

time() — Time function (libc)
Get current calendar time
#include <time.h>
time_t time(time_t *tp);

The function time returns the current calendar time. If tp is set a value other than NULL, then
time writes the result to the object pointed to by tp. Let’s C defines the current system time as the
number of seconds since January 1, 1970, 0h00m00s UTC.

time returns an object of the type time_t, which is defined in the header time.h. If the current
calendar time is not available, time returns -1 cast to type time_t.

Example
This example displays the time.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(void)
{

time_t t;

/* get the time */
if(-1 == time(&t))

printf("The time is unavailable?");
else

/* display it */
printf(ctime(&t));

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.12.2.4
The C Programming Language, ed. 2, p. 256

See Also
clock, date and time, difftime, mktime, time_t

time — Command
Print current time/Time execution of a command
time
time command
time " command arguments "

The command time performs two different tasks, depending upon whether it is used with or without
arguments.

When time is typed without any arguments, it prints the date and time. The date and time are
presented in a string of the form:

Thu Apr 7 10:35:53 1988 CDT

The extension ‘‘CDT’’ stands for ‘‘Central Daylight Time’’. Daylight savings time will be returned only
if the macro TIMEZONE is set properly in your profile. See TIMEZONE for more information.

If time is used with one or more arguments, it times the execution of a command. For example,
typing time ls prints the contents of the current directory, then prints a string of the form:

LEXICON

480 time() — time

00:00:02.340

which states how long the command took to execute.

If you wish to time a command that takes arguments, you must enclose the command and its
arguments within quotation marks. For example, to time how long it takes to compile the program
window.c with the -VGEM option to the compiler, use the command:

time "cc -VGEM window.c"

See Also
commands, date, msh, time (overview)

time.h — Header
Header for date and time
#include <time.h>

time.h is the header that declares the function and defines the types used to represent time. It
contains prototypes for the following nine functions:

asctime Convert broken-down time into text
clock Get processor time used by the program
ctime Convert calendar time to text
difftime Calculate difference between two times
gmtime Convert calendar time to Universal Coordinated Time
localtime Convert calendar time to local time
mktime Convert broken-down time into calendar time
strftime Format locale-specific time
time Get current calendar time

It also contains definitions for the following data types:

clock_t Encode system time
time_t Encode calendar time
tm Encode broken-down time

It contains a definition for the macro CLK_TCK, which is used to convert the value returned by the
function clock into seconds of real time.

Cross-references
Standard, §4.12
The C Programming Language, ed. 2, p. 255

See Also
CLK_TCK, date and time, header, xtime.h

time_t — Type
Calendar time
#include <time.h>

time_t is a data type that is defined in the header time.h. It is an arithmetic type that can represent
time.

time_t is used to hold the calendar time, as computed from the system time by the function time.
The functions localtime and gmtime use time_t to generate broken-down time, and the function
ctime uses it to create a string that states the current date and time. The function mktime reads
broken-down time and returns calendar time of type time_t.

LEXICON

time.h — time_t 481

Example
For an example of using this type in a program, see difftime.

Cross-references
Standard, §4.12.1
The C Programming Language, ed. 2, p. 255

See Also
broken-down time, calendar time, clock_t, date and time

time_to_jday() — Extended function (libc)
Convert system time to Julian date
#include <time.h>
#include <xtime.h>
jday_t time_to_jday(time_t time);

time_to_jday converts system time to Julian days. time is the current system time. It is declared to
be of type time_t, which is defined in the header file time.h as being equivalent to a long. Let’s C
defines the current system time as being the number of seconds from January 1, 1970, 0h00m00s
UTC. The function time returns the current system time in this format.

time_to_jday returns the structure jday_t, which is defined in the header xtime.h. jday_t consists
of two unsigned longs. The first gives the number of the Julian day, which is the number of days
since the beginning of the Julian calendar (January 1, 4713 B.C.). The second gives the number of
seconds since midnight of the given Julian day.

See Also
extended time, jday_to_time, jday_to_tm, tm_to_jday, xtime.h

Notes
To conform with the ANSI Standard, this function has been moved from the header time.h to the
header xtime.h. This may require that some code be altered.

TIMEZONE — Environmental variable
Time zone information
TIMEZONE=standard:offset[:daylight: date:date:hour:minutes]

TIMEZONE is an environmental parameter that holds information about the user’s time zone. This
information is used by Let’s C’s time routines to construct their description of the current time and
day.

To set TIMEZONE, use the set command, as follows:

set TIMEZONE=description

where description is the string that describes your time zone. What this string consists of will be
described below. Most users write this command into the file AUTOEXEC.BAT, so that TIMEZONE
is set automatically whenever they reboot their system.

The Description String
A TIMEZONE description string consists of seven fields that are separated by colons. Fields 1 and 2
must be filled; fields 3 through 7 are optional.

Field 1 gives the name of your standard time zone. Field 2 gives the time zone’s offset from
Universal Coordinated Time (UTC) in minutes. Offsets are positive for time zones west of Greenwich
and negative for time zones east of Greenwich. For example, users in Chicago set these fields as
follows:

LEXICON

482 time_to_jday() — TIMEZONE

TIMEZONE=CST:360

CST is an abbreviation for Central Standard Time, that area’s time zone; and 360 refers to the fact
that Chicago’s time zone is 360 minutes (six hours) behind that of Greenwich.

Field 3 gives the name of the local daylight saving time zone. In Chicago, for example, this field
would be set as follows:

TIMEZONE=CST:360:CDT

CDT is an abbreviation for Central Daylight Time. The absence of this field indicates that your area
does not use daylight saving time.

Fields 4 and 5 specify the dates on which daylight saving time begins and ends. If field 3 is set but
fields 4 and 5 are not, changes between standard time and daylight saving time will be assumed to
occur at the times legislated in the United States in 1986: at 2 A.M. standard time on the first
Sunday in April, and at 2 A.M. daylight saving time on the last Sunday in October.

Fields 4 and 5 each consist of three numbers separated by periods. The first number specifies
which occurrence of the day in the month marks the change, counting positive occurrences from the
beginning of the month and negative occurrences from the the end of the month. The second
number specifies a day of the week, numbering Sunday as one. The third number specifies a month
of the year, numbering January as one. For example, in Chicago fields 4 and 5 are set to the
following:

TIMEZONE=CST:360:CDT:1.1.4:-1.1.10

If the first number in either field is set to zero, then the last two numbers are assumed to indicate
an absolute date. This is done because some countries switch to daylight saving time on the same
day each year, instead of a given day of the week.

Finally, fields 6 and 7 specify the hour of the day at which daylight saving time begins and ends,
and the number of minutes of adjustment. In Chicago, these are set as follows:

TIMEZONE=CST:360:CDT:1.1.4:-1.1.10:2:60

The ‘2’ of field 6 indicates that the switch to daylight savings time occurs at 2 A.M. The ‘‘60’’ of field
7 indicates that daylight savings time changes the local time by 60 minutes. Although 60 minutes
is the standard change, some regions of the world shift by 30, 45, 90, or 120 minutes; the last shift
is also called ‘‘double daylight saving time’’.

For an example of this variable’s use in a program, see the entry for asctime.

See Also
environmental variable, time

Notes
This environmental variable should be set only if you have set your computer system’s time to
conform with UTC. Otherwise, it will cause such functions as localtime to incorrectly offset the
time they return.

For those requiring more information on this subject, see Time Changes in the World, compiled by
Doris Chase Doane (three volumes, Hollywood, CA, Professional Astrologers, Inc., 1970).

LEXICON

TIMEZONE 483

tm — Type
Encode broken-down time
#include <time.h>

tm is the structure that holds the elements of broken-down time. It contains the following fields.
(The values representable are shown within parentheses):

int tm_sec Second (0-59)
int tm_min Minute (0-59)
int tm_hour Hour (0-23): 0 == midnight
int tm_mday Day of the month (1-31)
int tm_mon Month (0-11): 0 == January
int tm_year Year since 1900 A.D.
int tm_wday Day of week (0-6): 0 == Sunday
int tm_yday Day of the year (0-366)
int tm_isdst Daylight savings time flag

The field tm_isdst indicates whether daylight saving time is currently in effect. It is set to a positive
number if daylight saving time is in effect, to zero if it is not, and to a negative number if
information concerning daylight saving time is not available.

The functions localtime and gmtime read the calendar time, as returned by the function time, and
use it initialize tm; they then return a pointer to the structure.

The function strftime reads tm and uses it to build strings that present the date and time in a
locale-specific manner. Finally, the function mktime reads tm and uses its contents to compute
the corresponding calendar time.

Example
For an example of using this structure in a program, see localtime.

Cross-references
Standard, §4.12.1
The C Programming Language, ed. 2, p. 255

See Also
broken-down time, calendar time, clock_t, date and time, time_t

tm_to_jday() — Extended function (libc)
Convert calendar format to Julian time
#include <time.h>
#include <xtime.h>
jday_t tm_to_jday(tm *time);

tm_to_jday converts the system time, as described in the system calendar format, to Julian time.

time points to a copy of the structure tm, which is defined in the header time.h. The functions
gmtime and localtime return the current time in this format. For more information on tm, see the
entry for time.

tm_to_jday returns the structure jday_t, which is defined in the header xtime.h. jday_t to consist
of two unsigned longs. The first gives the number of the Julian day, which is the number of days
since the beginning of the Julian calendar (January 1, 4713 B.C.). The second gives the number of
seconds since midnight of the given Julian day.

LEXICON

484 tm — tm_to_jday()

See Also
extended time, jday_to_time, jday_to_tm, time, time_to_jday, xtime.h

Notes
To conform with the ANSI Standard, this function has been moved from the header time.h to the
header xtime.h. This may require that some code be altered.

TMPDIR — Environmental variable
Directory that holds temporary files

TMPDIR names the directory into which Let’s C writes its temporary files. If this variable is not set,
the default is the directory in which the source files are kept. Note that this variable need be set
only if space is a problem on the storage device that holds your current directory. For example, the
command

set TMPDIR=a:\tmp

typed at the system prompt tells cc to write temporary files in the directory tmp on drive A:.

It is a good idea to set TMPDIR in autoexec.bat, to ensure that it is always set correctly.

See Also
cc, environmental variable

tmpfile() — STDIO (libc)
Create a temporary file
#include <stdio.h>
FILE *tmpfile(void);

tmpfile creates a file to hold data temporarily. The file is opened into binary update mode (wb+)
and is removed automatically when it is closed or when the program ends. There is no way to
access the temporary file by name. If your program needs to do so, it should open a file explicitly.

tmpfile returns NULL if it could not create the temporary file. If it could, it returns a pointer to the
FILE associated with the temporary file. The function exit removes all files created by tmpfile.

Example
This example implements a primitive file editor that can edit large files. It uses two temporary files
to keep all changes. The editor accepts the following commands:

dn delete; d52 deletes line 52
in insert; i7 inserts line before line 7
pn print; p17 prints line 17
p print the entire file
w write the edited file and quit
q quit without writing the file

The entire temporary file is copied with each command.

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdarg.h>

FILE *fp, *tmp[2];
int linecount;

LEXICON

TMPDIR — tmpfile() 485

void
fatal(char *format, ...)
{

va_list argptr;

/* if there is a system message, display it */
if(errno)

perror(NULL);

/* if there is a user message, use it */
if(format != NULL) {

va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);

}
exit(EXIT_FAILURE);

}

/*
* Copy up to line number or EOF.
* Return number of lines copied.
*/

static int
copy(int line, FILE *ifp, FILE *ofp)
{

int i, c, count;

count = 0;
for(c=i=1; (i<line || line==-1) && c!=EOF; i++) {

while((c = fgetc(ifp)) != EOF && c != ’\n’)
fputc(c, ofp);

if(c == ’\n’) {
count++;
fputc(’\n’, ofp);

}
}
return(count);

}

/*
* Read a file until line number is read.
* Return 1 if line is found before EOF.
*/

static int
find(int line, FILE *ifp)
{

int i, c;

for(c=i=1; i<line && c!=EOF; i++)
while((c = fgetc(ifp)) != EOF && c != ’\n’)

;
return(c != EOF);

}

main(int argc, char *argv[])
{

int i, line, args;
char c, cmdbuf[80];

if(argc != 2)
fatal("usage: tmpfile filename\n");

LEXICON

486 tmpfile()

if((tmp[0]=tmpfile())==NULL||(tmp[1]=tmpfile())==NULL)
fatal("Error opening tmpfile\n");

if((fp = fopen(argv[1], "r")) == NULL)
fatal("Error opening %s\n", argv[1]);

linecount = copy(-1, fp, tmp[i = 0]);
fclose(fp);

/* one file pass per command */
for(;;) {

if(gets(cmdbuf) == NULL)
fatal("EOF on stdin\n");

if(!(args = sscanf(cmdbuf, "%c%d", &c, &line)))
continue;

fseek(tmp[i], 0L, SEEK_SET);

switch(c) {
/* Write edited file */
case ’w’:

if((fp = fopen(argv[1], "w")) == NULL)
fatal("Error opening %s\n", argv[1]);

copy(linecount + 1, tmp[i], fp);
fclose(fp);

/* Quit */
case ’q’:

exit(EXIT_SUCCESS);

/* Print entire file */
case ’p’:

if(args == 1) {
copy(linecount + 1, tmp[i], stdout);
continue;

}
if(find(line, tmp[i]))

copy(2, tmp[i], stdout);
continue;

/* Delete a line */
case ’d’:

if(args == 1)
printf("dn where n is a number\n");

else if(line > linecount)
printf("only %d lines\n", linecount);

else {
copy(line, tmp[i], tmp[i^1]);
if(find(2, tmp[i]))

copy(-1, tmp[i], tmp[i^1]);

linecount--;
fseek(tmp[i], 0L, SEEK_SET);
i ^= 1;

}
continue;

LEXICON

tmpfile() 487

/* Insert a line */
case ’i’:

if(1 == args)
printf("in where n is a number\n");

else if(line > linecount)
printf("only %d lines\n", linecount);

else {
copy(line, tmp[i], tmp[i^1]);
printf("Enter inserted line\n");
copy(2, stdin, tmp[i^1]);
copy(-1, tmp[i], tmp[i^1]);
linecount++;

fseek(tmp[i], 0L, SEEK_SET);
i ^= 1;

}
continue;

default:
printf("Invalid request\n");
continue;

}
}

}

Cross-references
Standard, §4.9.4.3
The C Programming Language, ed. 2, p. 243

See Also
mktemp, STDIO, tempnam, tmpnam

Notes
If a program exits abnormally or aborts, the files created by tmpfile may not be removed.

tmpnam() — STDIO (libc)
Generate a unique name for a temporary file
#include <stdio.h>
char *tmpnam(char *name);

tmpnam constructs a unique name for a file. The names returned by tmpnam generally are
mechanical concatenations of letters, and therefore are mostly used to name temporary files, which
are never seen by the user. Unlike a file created by tmpfile, a file named by tmpnam does not
automatically disappear when the program exits. It must be explicitly removed before the program
ends if you want it to disappear.

name points to the buffer into which tmpnam writes the name it generates. If name is set to NULL,
tmpnam writes the name into an internal buffer that may be overwritten each time you call this
function.

tmpnam returns a pointer to the temporary name. Unlike the related function tempnam, tmpnam
assumes that the temporary file will be written into directory \tmp and builds the name
accordingly.

Example
The following example uses tmpnam to generate some file names, opens one, and writes the rest of
the names into it.

LEXICON

488 tmpnam()

#include <stdio.h>
#include <stdlib.h>

void fatal(const char *string)
{

fprintf(stderr, "%s\n", string);
exit(EXIT_FAILURE);

}

main()
{

int i, files;
FILE *fp;
char buffer[L_tmpnam];

if ((fp = fopen(tmpnam(buffer), "w")) == NULL)
fatal("Cannot open temporary file");

printf("Temporary file name is %s\n", buffer);

/* put realistic limit on number of names */
100 > TMP_MAX ? files = TMP_MAX : files = 100;
for(i = 0; i < files; i++)

fprintf(fp, "%s\n", tmpnam(NULL));

fclose(fp);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.4.4
The C Programming Language, ed. 2, p. 243

See Also
L_tmpnam, mktemp, STDIO, tempnam, tmpfile, TMP_MAX

Notes
If you want the file name to be written into buffer, you should allocate at least L_tmpnam bytes of
memory for it; L_tmpnam is defined in the header stdio.h.

tmpnam can be called at least TMP_MAX times to return unique file names. TMP_MAX is also set
in stdio.h.

toascii() — Extended macro (xctype.h)
Convert characters to ASCII
#include <xctype.h>
int toascii(int c);

toascii takes any integer value c, keeps the low seven bits unchanged, and changes the others to
zero. This, in effect, transforms the integer value to an ASCII character. toascii then returns the
transformed integer. If c is a valid ASCII character, it is returned unchanged.

Example
This example prompts for a file name. It then opens the file and prints its contents, while
converting all non-alphanumeric characters to alphanumeric.

#include <stdio.h>
#include <stdlib.h>
#include <xctype.h>

LEXICON

toascii() 489

main(void)
{

FILE *fp;
int ch;
int filename[20];

printf("Enter file name: ");
fflush(stdout);
gets(filename);

if ((fp = fopen(filename, "r")) != NULL) {
while ((ch = fgetc(fp) != EOF)

putchar(isascii(ch) ? ch : toascii(ch));
} else {

printf("Cannot open %s\n", filename);
exit(EXIT_FAILURE);

}
return(EXIT_SUCCESS);

}

See Also
extended character handling

Notes
To conform to the ANSI Standard, this macro has been moved from the header ctype.h to the
header ctype.h. This may require that some code be altered.

This macro is not described in the ANSI Standard. Any program that uses it does not conform
strictly to the Standard, and may not be portable to other compilers or environments.

token — Definition
A token is the basic, indivisible unit of text that is processed by the translator.

There are two varieties of token: lexical token and preprocessing token. When the Standard uses the
term ‘‘token,’’ it refers to what is here called a ‘‘lexical token.’’ Note, too, that the term ‘‘preprocessing
token’’ does not mean a token that is manipulated only by the preprocessor.

Preprocessing tokens form the following varieties of lexical elements:

• Character constant.

• Header name.

• Identifier.

• Operator.

• Preprocessing number.

• Punctuator.

• String literal.

• Each non-white space character that does not fall into one of the above categories.

White-space characters can appear only within a header name, a character constant, or a string
literal; in all other instances, white space separates tokens.

Preprocessing tokens are processed during phases 3 through 6 of translation. For details on
translation, see the entry for translation phases. In brief, all preprocessing directives are executed:
#include states are expanded, code is conditionally included, and macros are expanded. Each

LEXICON

490 token

comment is replaced with one white-space character.

Adjacent string literals are concatenated and clusters of text that are not separated by white space
are parsed. A cluster of text is always parsed into the longest possible sequence of characters that
forms a valid token. For example, the text

a+++++b

must be parsed into:

a ++ ++ + b

The preprocessor passes unchanged what it does not recognize as being a preprocessor token.

Lexical tokens (which the Standard calls simply ‘‘tokens’’) form the following types of lexical
elements:

• Constant.

• Identifier.

• Keyword.

• Operator.

• Punctuator.

• String literal.

Lexical tokens are parsed, analyzed, and linked.

Cross-references
Standard, §3.1
The C Programming Language, ed. 2, pp. 191, 229

See Also
lexical elements, translation phase

tolower() — Character handling (ctype.h)
Convert character to lower case
int tolower(int c);

The macro tolower converts the upper-case character c to its corresponding lower-case character, as
defined by the locale’s character set. The Standard defines an upper-case character as one for
which the function isupper returns true. c must be a value that is representable as an unsigned
char or EOF.

If c is an upper-case letter, then tolower returns the corresponding lower-case letter. If c is not a
letter or is already lower case, then tolower returns it unchanged.

Example
The following example demonstrates tolower and toupper. It reverses the case of every character in
a text file.

void fatal(const char *message)
{

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

LEXICON

tolower() 491

#include <ctype.h>
#include <stdio.h>
void fatal(const char *string);

main(int argc, char *argv[])
{

FILE *fp;
int ch;

if (argc != 2)
fatal("usage: example filename");

if ((fp = fopen(argv[1], "r")) == NULL)
fatal("cannot open text file");

while ((ch = fgetc(fp)) != EOF)
putchar(isupper(ch) ? tolower(ch) : toupper(ch));

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.3.2.1
The C Programming Language, ed. 2, p. 249

See Also
character handling, toupper

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

toupper() — Character handling (libc)
Convert character to upper case
int toupper(int c);

toupper converts the lower-case character c to its corresponding upper-case character. The
Standard defines an lower-case character as one for which the function islower returns true. c
must be either a value that is representable as an unsigned char or EOF.

If c is an lower-case letter, then toupper returns the corresponding upper-case letter for the locale’s
character set. If c is not a letter or is already upper case, then toupper returns it unchanged.

Example
For an example of this function, see tolower.

Cross-references
Standard, §4.3.2.2
The C Programming Language, ed. 2, p. 249

See Also
_toupper, character handling, tolower

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

LEXICON

492 toupper()

translation unit — Definition
A translation unit is the basic unit of code that is translated into executable form. It consists of a
source file, plus all headers that are requested with the preprocessing directive #include, and
excluding all code that is skipped by preprocessing conditional inclusion.

Cross-references
Standard, §2.1.1.1
The C Programming Language, ed. 2, p. 191

See Also
#include, conditional inclusion, Environment, source file

trigraph sequences — Definition
A trigraph sequence is a set of three characters that represents one character in the C character set.
The set of trigraph sequences was created to allow users to use the full range of C characters, even if
their keyboards do not implement the full C character set. Trigraph sequences are also useful with
input devices that reserve one or more members of the C character set for internal use.

Each trigraph sequence is introduced by two question marks. The third character in the sequence
indicates which character is being represented. The following table gives the set of trigraph
sequences:

Trigraph Character
Sequence Represented

??= #
??([
??/ \
??)]
??’ ^
??< {
??! |
??> }
??- ~

The characters represented are the ones used in the C character set but not included in the ISO 646
character set. ISO 646 describes an invariant sub-set of the ASCII character set.

Trigraph sequences are interpreted even if they occur within a string literal or a character constant.
This is because they are interpreted before the source code is tokenized; see translation phases for
more information. Thus, strings that uses a literal ‘‘??’’ will not work the same as under a non-ANSI
implementation of C. For example, the function call

printf("Feel lucky, punk??!\n");

would print:

Feel lucky, punk|

This is a silent change that may break existing code.

To print a pair of questions marks, use the escape sequence ‘\?\?’. For example:

printf("Feel lucky, punk\?\?!\n");

Cross-references
Standard, §2.2.1.1
The C Programming Language, ed. 2, p. 229

LEXICON

translation unit — trigraph sequences 493

See Also
Environment

true — Definition
In the context of a C program, an expression is true if it yields nonzero.

See Also
Definitions, false

typedef — C keyword
Synonym for another type

The storage-class specifier typedef names a synonym for a type.

The new synonym must include all qualifiers and storage-class specifiers. For example, the
declaration

typedef volatile unsigned long int giant;

states that the type giant is a synonym for volatile unsigned long int. Thus, the declaration

giant example();

declares, in effect, that the function example returns an volatile unsigned long int. An object
declared to be type giant and one declared to be type volatile unsigned long int behave exactly the
same.

typedef is often used to declare a structure type. For example, the structure declaration

typedef struct {
int member1, member2;
long member3;

} EXAMPLE;

declares that EXAMPLE is a type name, and that it is a synonym for the structure that precedes it.

Cross-references
Standard, §3.5.6
The C Programming Language, ed. 2, p. 146

See Also
storage-class specifiers, types

Notes
The term typedef also describes a type that is defined in a typedef statement.

The Standard does not allow benign redeclarations of typedefs. For example, if the declaration

typedef int SINT;

were included in a header and the same declaration appeared in a source file that included this
header, a diagnostic message should appear during translation.

type qualifier — Overview
A type qualifier is, as its name implies, a keyword that alters the nature of a type in a significant
way.

There are two type qualifiers:

LEXICON

494 true — type qualifier

const Qualify an identifier as not modifiable
volatile Qualify an identifier as changing frequently

The changes affected by a type qualifier take effect only in expressions that yield an lvalue.

No type qualifier may modify an identifier more than once, either directly or via a typedef. Also, two
types are considered to be compatible only if their qualifiers match.

Many quirks surround the use of qualifiers. For example:

const int *cip;
int *ip;

cip = ip; /* RIGHT */
ip = cip; /* WRONG */

In effect, assignments that serve to ‘‘hide’’ the qualified object must be diagnosed. Although the
above examples uses the qualifier const, the same restrictions apply to any combination of
qualifiers on an object.

Cross-references
Standard, §3.5.3
The C Programming Language, ed. 2, p. 211

See Also
declarations

Notes
Because type qualifiers can alter the manner in which an object is accessed, they can be considered
to be ‘‘access modifiers’’.

types — Overview
Type determines the meaning of a value stored in an object or returned by a function. For example,
if an object four bytes long were declared to be type long, the meaning of its contents is quite
different than if it were declared to be of type long *, or a pointer to a long. In the former instance,
the contents are regarded as an absolute value. In the latter, the contents are regarded as an
address of another object.

The Standard organizes types into a number of varieties and categories, as follows:

Aggregate types
All array and structure types.

Arithmetic types
The set of integral and floating types.

Array types
A set of objects that have the same type and are in contiguous memory.

Basic types
The set of char, the signed and unsigned integer types, and the floating types; i.e.,
arithmetic types but not enumerated types.

Composite type
A type constructed from two compatible types, one of which has additional type information.
For example, the declarations

int example;
. . .

LEXICON

types 495

const int example;

together form a composite type.

Derived declarator types
The set of array, function, and pointer types.

Derived types
The set of array, function, pointer, structure, and union types that are derived from the
basic types.

Enumerated type
A set of named integer constant values that comprise an enumeration.

Floating types
The types float, double, or long double.

Function types
The type that describes a given function with a specified return type and specified number
and types of parameters.

Incomplete types
A type for which the translator does not possess all necessary information. Examples are
an array of unknown size, or a structure or union of unknown content. An incomplete type
must be completed by the end of translation.

Integral types
The set of type char, the signed and unsigned integer types, and the enumerated types.

Object types
The set of types that describe objects, rather than functions.

Pointer type
A type that describes the type of object to which a pointer points. The two classes of
pointers are object pointers and function pointers. Object pointers are referred to by the
type of object to which they point.

Qualified type
A type whose top type is qualified with some combination of the type qualifiers const,
noalias, or volatile.

Scalar types
The set of arithmetic types and pointer types.

Signed integer types
Any of the types signed char, int, long int, or short int. Any of the last three types may
also use the prefix signed, but the addition of this prefix does not change them in any way.

Structure type
A type that describes a group of data objects that are contiguous; each object may have its
own specified type and its own name.

Top type
The top type of a basic type is the type itself. The top type of a derived type is the first type
used to describe the type; for example, the type int * is described as ‘‘pointer to int’’;
therefore, its top type is pointer.

union type
A type that describes a set of objects that overlap in memory. Each object may have its own
type and its own name.

LEXICON

496 types

Unqualified type
Any type whose top type is not qualified with the type qualifiers const, noalias, or volatile.

Unsigned integer types
Any of the types unsigned char, unsigned int, unsigned long int, and unsigned short int.

Basic Types
The following is the set of basic types. Those on the same line are synonyms:

char
double
float
int, signed int
long double
long int, long, signed long, signed long int
signed char
short int, short, signed short int, signed short
unsigned char
unsigned int
unsigned long int, unsigned long
unsigned short int, unsigned short

Data Formats
Mark Williams Company has written C compilers for a number of different computers. Each has a
unique architecture and defines data formats in its own way.

The following table gives the sizes, in chars, of the data types as they are defined by various
microprocessors.

i8086 i8086
Type SMALL LARGE Z8001 Z8002 68000 PDP11 VAX

char 1 1 1 1 1 1 1
double 8 8 8 8 8 8 8
float 4 4 4 4 4 4 4
int 2 2 2 2 2 2 4
long 4 4 4 4 4 4 4
long double8 8 8 8 8 8 8
pointer 2 4 4 2 4 2 4
short 2 2 2 2 2 2 2

Let’s C places some alignment restrictions on data, which conform to all restrictions set by the
microprocessor. Byte ordering is set by the microprocessor. See the Lexicon entry on byte ordering
for more information.

Type Checking
C is not strongly typed, which means that it allows different types to be mixed relatively freely, and
be changed (or cast) from one type to another.

Let’s C checks types more strictly than the C standard implies. Let’s C’s type checking can be
enabled or disabled in degrees, using -VSTRICT and other ‘‘variant’’ options with the cc command.

Type Promotion
In arithmetic expressions, Let’s C promotes one signed type to another signed type by sign
extension, and promotes one unsigned type to another unsigned type by zero padding. For example,
char promotes to int by sign extension, while unsigned char promotes to unsigned int by zero
padding.

LEXICON

types 497

Cross-references
Standard, §3.1.2.5
The C Programming Language, ed. 2, p. 195

See Also
identifiers, signed, struct, type specifiers, union, unsigned

Notes
On some machines, char is a synonym for signed char. On others, it is a synonym for unsigned
char. You should declare a char variable to be signed or unsigned if its behavior when promoted to
int is significant.

type specifier — Overview
A type specifier specifies the type of an object or function when it is declared.

The following lists the legal C type specifiers:

char
double
enum tag-name
float
int
long
signed
short
struct tag-name
unsigned
union tag-name
void

The type specifiers can be combined into any one of the following combinations. Those on the same
line are synonyms:

char
double
enum type-name
float
int, signed, signed int
long double
long int, long, signed long, signed long int
signed char
short int, short, signed short int, signed short
struct type-name
typedef name
union specifier
unsigned char
unsigned int, unsigned
unsigned long int, unsigned long
unsigned short int, unsigned short
void

Cross-references
Standard, §3.5.2
The C Programming Language, ed. 2, p. 211

LEXICON

498 type specifier

See Also
types, enum, struct, typedef, union, void

LEXICON

type specifier 499

