
S

sbrk() — Extended function (libc)
Increase a program’s data space
char *sbrk(unsigned short increment);

sbrk increases a program’s data space by increment bytes. It increments the variable __end; this
variable is set by the C runtime startup routine, and points to the end of the program’s data space.

The memory-allocation function malloc calls sbrk should you attempt to allocate more space than is
available in the program’s data space.

sbrk returns a pointer to the previous setting of __end if the requested memory is available, or
((char *)-1) if it is not.

See Also
__end, malloc, maxmem

Notes
sbrk will not increase the size of the program data area if the physical memory requested exceeds
the physical memory allocated by MS-DOS, or if the requested memory exceeds the limit set in the
user-defined variable maxmem. sbrk does not keep track of how space is used. Therefore, memory
seized with sbrk cannot be freed. Caveat utilitor.

This function is not described in the ANSI Standard. Programs that use it do not conform strictly to
the Standard, and may not be portable to other compilers or environments.

scanf() — STDIO (libc)
Read and interpret text from standard input stream
#include <stdio.h>
int scanf(const char *format, ...);

scanf reads characters from the standard input stream and uses the string format to interpret what
it has read into the appropriate types of data.

format is a string that consists of one or more conversion specifications, each of which describes
how a portion of text is to be interpreted. format is followed by zero or more arguments. There
should be one argument for each conversion specification within format, and each should point to
the data type that corresponds to the conversion specifier within its corresponding conversion
specification. For example, if format contains three conversion specifications that convert text into,
respectively, an int, a float, and a string, then format should be followed by three arguments that
point, respectively, to an int, a float, and an array of chars that is large enough to hold the string
being input. If there are fewer arguments than conversion specifications, then scanf’s behavior is
undefined. If there are more, then every argument without a corresponding conversion specification
is evaluated and then ignored. If an argument is not of the same type as its corresponding type
specification, then scanf returns.

scanf organizes the text read into a series of tokens. Each token is delimited by white space. White
space usually is thrown away, except in the case of the ‘c’ or ‘[’ conversion specifiers, which are
described below.

If an input error occurs during input or if EOF is read, scanf returns immediately. If it reads an
inappropriate character (e.g., an alphabetic character where it expects a digit), it returns
immediately. scanf returns the number of conversions it accomplished. If it could accomplish no
conversions, it returns EOF.

LEXICON

sbrk() — scanf() 413

Conversion Specifications
The percent sign character ‘%’ marks the beginning of a conversion specification. The ‘%’ will be
followed by one or more of the following:

• An asterisk ‘*’, which tells scanf to skip the next conversion; that is, read the next token but do
not write it into the corresponding argument.

• A decimal integer, which tells scanf the maximum width of the next field being read. How the
field width is used varies among conversion specifier. See the table of specifiers below for more
information.

• One of the three modifiers h, l, or L, whose use is described below.

• A conversion specifier, whose use is described below.

Modifiers
The following three modifiers may be used before a conversion specifier:

h When used before the conversion specifiers d, i, o, u, x, or X, it specifies that the
corresponding argument points to a short int or an unsigned short int. When used before
n, it indicates that the corresponding argument points to a short int. In implementations
where short int and int are synonymous, it is not needed. However, it is useful in writing
portable code.

l When used before the conversion specifiers d, i, o, u, x, or X, it specifies that the
corresponding argument points to a long int or an unsigned long int. When used before n,
it indicates that the corresponding argument points to a long int. In implementations
where long int and int are synonymous, it is not needed. However, it is useful in writing
portable code.

L When used before the conversion specifiers e, E, f, F, or G, it indicates that the
corresponding argument points to a long double.

If h, l, or L is used before a conversion specifier other than the ones mentioned above, it is ignored.
In previous releases of Let’s C, the modifier L meant that the corresponding argument pointed to a
long rather than to a long double, as it does now. This has been changed to conform to the ANSI
Standard, and may require that some code be rewritten.

Conversion Specifiers
The Standard describes the following conversion specifiers:

c Convert into chars the number of characters specified by the field width, and write them
into the array pointed to by the corresponding argument. The default field width is one.
scanf does not write a null character at the end of the array it creates. This specifier forces
scanf to read and store white-space characters and numerals, as well as letters.

d Convert the token to a decimal integer. The format should be equivalent to that expected by
the function strtol with a base argument of ten. The corresponding argument should point
to an int.

D Convert the token to a long. This conversion specifier is not described in the ANSI
Standard, and using it means that your program will not comply strictly with the Standard.

e Convert the token to a floating-point number. The format of the token should be that
expected by the function strtod for a floating-point number that uses exponential notation.
The corresponding argument should point to a double.

LEXICON

414 scanf()

E Same as e. Under earlier releases of Let’s C, this conversion specifier converted the token
to a double. This change has been made to conform to the ANSI Standard, and may require
that some code be rewritten.

f Convert the token to a floating-point number. The format of the token should be that
expected by the function strtod for a floating-point number that uses decimal notation. The
corresponding argument should point to a double.

F Same as f.

g Convert the token to a floating-point number. The format of the token should of that
expected by the function strtod for a floating-point number that uses either exponential
notation or decimal notation. The corresponding argument should point to a double.

G Same as g.

i Convert the token to a decimal integer. The format should be equivalent to that expected by
the function strtol with a base argument of zero. The corresponding argument should point
to an int.

n Do not read any text. Write into the corresponding argument the number of characters that
scanf has read up to this point. The corresponding argument should point to an int.

o Convert the token to an octal integer. The format should be equivalent to that expected by
the function strtol with a base argument of eight. The corresponding argument should
point to an int.

O Same as o, except that the corresponding argument points to a long. This conversion
specifier is not described in the ANSI Standard, and using it means that your program will
not comply strictly with the Standard.

p Pointer format: read a sequence of implementation-defined characters, convert them in an
implementation-defined way, and write them in an implementation-defined manner. The
vagueness of this description is unavoidable, because the pointer format will vary between
machines, and even on the same machine. The corresponding argument should point to a
void *. The sequence of characters recognized should be identical with that written by
printf’s p conversion specifier.

s Read a string of non-white space characters, copy them into the area pointed to by the
corresponding argument, and append a null character to the end. The argument should be
of type char *, and should point to enough allocated memory to hold the string being read
plus its terminating null character.

u Convert the token to an unsigned integer. The format should be equivalent to that expected
by the function strtoul with a base argument of ten. See strtoul for more information. The
corresponding argument should point to an unsigned int.

x Convert the token from hexadecimal notation to a signed integer. The format should be
equivalent to that expected by the function strtol with a base argument of 16. See strtol
for more information. The corresponding argument should point to an unsigned int.

X Same as x. In previous releases of Let’s C, the modifier X meant that the corresponding
argument pointed to a long instead of an int. This has been changed to conform to the
ANSI Standard, and may require that some code be rewritten.

% Match a single percent sign ‘%’. Make no conversion or assignment.

[/] Scan a scanset, which is a set of characters enclosed by brackets. A character that matches
any member of the scanset is copied into the area pointed to by the corresponding
argument, which should be a char * that points to enough allocated memory to hold the

LEXICON

scanf() 415

maximum number of characters that may be copied, plus the concluding null character.
Appending a circumflex ‘^’ to the scanset tells scanf to copy every character that does not
match a member of the scanset (i.e., complements the scanset). If the format string begins
with ‘]’ or ‘^]’, then ‘]’ is included in the scanset, and the set specifier is terminated by the
next ‘]’ in the format string. If a hyphen appears within the scanset, the behavior is
implementation-defined; often, it indicates a range of characters, as in [a-z].

For example, passing the string hello, world to

char array[50];
scanf("[^abcd]", array);

writes the string hello, worl into array.

Cross-references
Standard, §4.9.6.4
The C Programming Language, ed. 2, p. 246

See Also
fscanf, printf, sscanf, STDIO

Notes
scanf will read up to, but not through, a newline character. The newline remains in the standard
input device’s buffer until you dispose of it. Programmers have been known to forget to empty the
buffer before calling scanf a second time, which leads to unexpected results.

Experience has shown that scanf should not be used directly to obtain a string from the keyboard:
use gets to obtain the string, and sscanf to format it.

The character that scanf recognizes as representing the decimal point is affected by the program’s
locale, as set by the function setlocale. For more information, see localization.

scope — Definition
The term scope describes the portion of the program in which a given identifier is recognized, or
visible. Scope is similar to, but not identical to, linkage. Linkage refers to whether an identifier can
be joined, or linked, across files. Scope refers to the portion of a program that can recognize an
identifier.

There are four varieties of scope: block, file, function, and function prototype.

An identifier with block scope is visible only within the block of code where it is declared. When the
program reaches the ‘}’ that ends that block of code, then the identifier is no longer visible, and so
no longer ‘‘within scope’’.

An identifier with file scope is visible throughout the translation unit within which it is declared.
The only identifiers that have file scope are those that are declared globally, i.e., that are declared
outside the braces that enclose any function. If a function in one file uses an identifier that is
defined in another file, it must mark that identifier as being external, by using the storage-class
specifier extern.

An identifier with function scope is visible throughout a function, no matter where in the function it
is declared. A label is the only variety of identifier that has function scope.

An identifier with function-prototype scope is visible only within the function prototype where it is
declared. For example, consider the following function prototype:

void va_end(va_list listptr);

LEXICON

416 scope

The identifier listptr has function-prototype scope. It is recognized only within that prototype, and
is used only for purposes of documentation.

If an identifier is redeclared but is within an enclosing scope, it ‘‘hides’’ the outermost identifier and
renders it inaccessible. This condition is called ‘‘information hiding’’, and it holds true as long as
the inner declaration is within scope.

Example
The following program demonstrates scope, and shows how to hide information.

/* global i */
int i = 13;

void
function1(void)
{

/* local i; hides global i */
int i = 23;

for(;;) {
/* block-scope i; hides local and global i’s */
int i = 33;
/* print block-scope i */
printf ("block-scope i: %d\n", i);
break;

}
/* block-scope i has disappeared; print local i */
printf ("local i: %d\n", i);

}

void
function2(void)
{

/* local i has disappeared; print global i */
printf("global i: %d\n", i);

}

main(void)
{

function1();
function2();
return(EXIT_SUCCESS);

}

Cross-references
Standard, §3.1.2.1
The C Programming Language, ed. 2, p. 227

See Also
extern, identifiers, storage duration

Notes
If an identifier is declared both within a block and with the storage-class identifier extern, it has
block scope. An external declaration made within one block of code is not available outside that
block. If an identifier that is declared external within one block is referenced within another,
behavior is undefined.

A common extension to C automatically promotes to file scope all external identifiers that are
declared within a block. Under such implementations, the following will work correctly:

LEXICON

scope 417

/* non-ANSI code! */
function1()
{

extern float example();
. . .

}

function2()
{

float variable;
. . .

variable = example();
. . .

}

Under the Standard, however, this code will not work correctly: the declaration of the function
example has block scope; therefore, it cannot be seen in function2. In function2, therefore, the
translator properly assumes that example returns an int. The float that example actually returns
is altered, causing undefined behavior. ANSI C causes this code to behave differently than expected,
and an implementation may not issue a warning message. This is a quiet change that may break
existing code.

sequence point — Definition
A sequence point is any point in a program where all side effects are resolved. At every sequence
point, the environment of the actual machine must match that of the abstract machine. That is,
whatever optimizations or short-cuts an implementation may take, at every sequence point it must
be as if the machine executed every instruction as it appeared literally in the program. Sequence
points cause the program’s actual behavior to be synchronized with the abstract behavior that the
source code describes.

The sequence points are as follows:

• When all arguments to a function call have been evaluated.

• When the first operand of the following operators has been evaluated: logical AND ‘&&’, logical
OR ‘||’, conditional ‘?’, and comma ‘,’.

• When a variable is initialized.

• When the controlling expression or expressions are evaluated for the following statements: do,
for, if, return, switch, and while.

Cross-reference
Standard, §2.1.2.3

See Also
side effect, translation units

setbuf() — STDIO (libc)
Set alternative stream buffer
#include <stdio.h>
void setbuf(FILE *fp, char *buffer);

When the functions fopen and freopen open a stream, they automatically establish a buffer for it.
The buffer is BUFSIZ bytes long. BUFSIZ is a macro that is defined in the header stdio.h.

setbuf changes the buffer for the stream pointed to by fp from its default buffer to buffer. It sets
buffer to be BUFSIZ bytes long. To create a buffer of a size other than BUFSIZ, use setvbuf.

LEXICON

418 sequence point — setbuf()

You should use setbuf after fp has been opened, but before any data have been read from or written
to it.

If buffer is set to NULL, then fp will be unbuffered. For example, the call

setbuf(stdout, NULL);

ensures that all output to the standard output stream is unbuffered.

Cross-references
Standard, §4.9.5.5
The C Programming Language, ed. 2, p. 243

See Also
BUFSIZ, fclose, fflush, freopen, setbuf, setvbuf, STDIO

setjmp() — Non-local jump (setjmp.h)
Save environment for non-local jump
#include <setjmp.h>
int setjmp(jmp_buf environment);

setjmp copies the current environment into the array jump_buf. The environment can then be
restored by a call to the function longjmp.

environment is of type jmp_buf, which is defined in the header setjmp.h. Let’s C defines jmp_buf to
be an array of 11 longs.

setjmp returns zero if it is called directly. When it returns after a call to longjmp, however, it
returns longjmp’s argument rval. If rval is set to zero, then setjmp returns one. See longjmp and
non-local jumps for more information.

Cross-references
Standard, §4.6.1.1
The C Programming Language, ed. 2, p. 254

See Also
longjmp, jmp_buf, non-local jumps

Notes
Many user-level routines cannot be interrupted and reentered safely. For that reason, improper use
of setjmp and longjmp will result in the creation of mysterious and irreproducible bugs. The use of
longjmp to exit interrupt, exception, or signal handlers is particularly hazardous.

setjmp must be used as the controlling operand in a switch statement, as the controlling
expression in an if statement, or as an operand in an equality expression. Any other use generates
undefined behavior.

To conform with the Standard, setjmp is implemented as a macro.

setjmp.h — Header
Declarations for non-local jump
#include <setjmp.h>

setjmp.h is the header that contains declarations for the elements that perform a non-local jump.
It contains the prototype for the function longjmp, and it defines the macro setjmp and the type
jmp_buf.

LEXICON

setjmp() — setjmp.h 419

Cross-references
Standard, §4.6
The C Programming Language, ed. 2, p. 254

See Also
header, jmp_buf, longjmp, non-local jump, setjmp

setlocale() — Localization (libc)
Set or query a program’s locale
#include <locale.h>
char *setlocale(int portion, const char *locale);

setlocale is a function that lets you set all or a portion of the locale information used by your
program or query for information about the current locale.

portion is the portion of the locale that you wish to set or query. The Standard defines a number of
manifest constants for this purpose, as follows:

LC_ALL
Set or query all locale-specific information. Setting the locale affects all of the following
locale categories.

LC_COLLATE
Set or query information that affects collating functions. This affects the operation of the
functions strcoll and strxfrm.

LC_CTYPE
Set or query information about character handling. This affects he operation of all
character-handling functions, except for isdigit and isxdigit. It also affects the operation of
the functions that handle multibyte characters, i.e., mblen, mbtowc, mbstowcs, and
wcstombs, wctomb.

LC_MONETARY
Set or query all monetary-specific information as used in the structure lconv, which is
initialized by the function localeconv.

LC_NUMERIC
Set or query information for formatting numeric strings. This may change the decimal-point
character used by string conversion functions and functions that perform formatted input
and output. This may also affect the contents of the structure lconv.

LC_TIME
Set or query information for formatting time strings. This changes the operation of the
function strftime.

Setting locale to NULL tells setlocale that you wish to query information about the current locale
rather than set a new locale.

setlocale returns a pointer to a string that contains the information needed to set or examine the
locale. For example, the call

setlocale(LC_TIME, "");

returns a string that can be used to modify the time and date functions to conform to the
requirements of the native locale. setlocale returns NULL if it does not recognize either portion or
locale.

LEXICON

420 setlocale()

Cross-reference
Standard, §4.4.1.1

See Also
lconv, localeconv, localization

Notes
The Standard’s section on compliance states that any program that uses locale-specific information
does not strictly comply with the Standard. Therefore, any program that uses a locale other than
the C locale cannot be assumed to be portable to every environment for which a conforming
implementation of C has been written. Caveat utilitor.

setvbuf() — STDIO (libc)
Set alternative stream buffer
#include <stdio.h>
int setvbuf(FILE *fp, char *buffer, int mode, size_t size);

When the functions fopen and freopen open a stream, they automatically establish a buffer for it.
The buffer is BUFSIZ bytes long. BUFSIZ is a macro that is defined in the header stdio.h.

setvbuf alters the buffer used with the stream pointed to by fp from its default buffer to buffer.
Unlike the related function setbuf, it also allows you set the size of the new buffer as well as the
form of buffering.

buffer is the address of the new buffer. size is its size, in bytes. mode is the manner in which you
wish the stream to be buffered, as follows:

_IOFBF Fully buffered
_IOLBF Line-buffered
_IONBF No buffering

These macros are defined in the header stdio.h. For more information on what these terms mean,
see buffering.

You should call setvbuf after a stream has been opened but before any data have been written to or
read from the stream. For example, the following give fp a 50-byte buffer that is line-buffered:

char buffer[50];
FILE *fp;

fopen(fp, "r");
setvbuf(fp, buffer, _IOLBF, sizeof(buffer));

On the other hand, the following turns off buffering for the standard output stream:

setvbuf(stdout, NULL, _IONBF, 0);

setvbuf returns zero if the new buffer could be established correctly. It returns a number other
than zero if something went wrong or if an invalid parameter is given for mode or size.

Example
This example uses setvbuf to turn off buffering and echo.

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>

LEXICON

setvbuf() 421

main(void)
{

int c;

if(setvbuf(stdin, NULL, _IONBF, 0))
fprintf(stderr, "Couldn’t turn off stdin buffer\n");

if(setvbuf(stdout, NULL, _IONBF, 0))
fprintf(stderr, "Couldn’t turn off stdout buffer\n");

while((c = getchar()) != EOF)
putchar(c);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.9.5.6
The C Programming Language, ed. 2, p. 243

See Also
BUFSIZ, fclose, fflush, fopen, freopen, setbuf, STDIO

shellsort() — Extended function (libc)
Sort arrays in memory
void shellsort(char *data, short n, short size, short (*comp)());

shellsort is a generalized algorithm for sorting arrays of data in primary memory. It uses D. L.
Shell’s sorting algorithm. shellsort works with a sequential array of memory called data, which is
divided into n parts of size bytes each. In practice, data is usually an array of pointers or
structures, and size is the sizeof the pointer or structure.

Each routine compares pairs of items and exchanges them as required. The user-supplied routine
to which comp points performs the comparison. It is called repeatedly, as follows:

(*comp)(p1, p2)
char *p1, *p2;

Here, p1 and p2 each point to a block of size bytes in the data array. In practice, they are usually
pointers to pointers or pointers to structures. The comparison routine must return a negative, zero,
or positive result, depending on whether p1 is less than, equal to, or greater than p2, respectively.

See Also
general utilities, qsort
The Art of Computer Programming, vol. 3, pp. 84ff, 114ff

Notes
shellsort differs from the sort function qsort in that it uses an iterative algorithm that does not
require much stack.

short int — Type
A short int is a signed integral type. This type can be no smaller than a char, and no larger than
an int.

A short int can encode any number between SHRT_MIN and SHRT_MAX. These are macros that
are defined in the header limits.h. The former equals -32,767, and the latter +32,767.

The types short, signed short, and signed short int are all synonyms for short int.

LEXICON

422 shellsort() — short int

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.2.1.1, §3.5.2
The C Programming Language, ed. 2, p. 211

See Also
int, long int, types

side effect — Definition
A side effect is any change to the execution environment that is caused by the program that
accesses a volatile object, modifies an object, modifies a file, or calls a function that performs any of
these tasks. An expression may generate side effects; a void expression exists just for the side
effects it generates.

Cross-references
Standard, §2.1.2.3
The C Programming Language, ed. 2, p. 53

See Also
Environment, sequence point, translation phase

sig_atomic_t — Type
Type that can be updated despite signals

sig_atomic_t is an integral data type that is defined in the header signal.h. It defines the type of
‘‘atomic’’ object that can be accessed properly even if an asynchronous interrupt occurs.

Cross-reference
Standard, §4.7.1

See Also
signal handling, signal.h, volatile

Notes
When declaring objects of this type, you should use the type qualifier volatile; for example:

volatile sig_atomic_t save_state;

The volatile declaration tells the translator to re-read the object’s value from memory each time it is
used in an expression. When the program says to store the object, it should be stored immediately.

signal() — Signal handling (libc)
Set processing for a signal
#include <signal.h>
void (*signal(int signame, void (*function)(int)))(int);

signal is a function that tells the environment what to do when it detects a given interrupt, or
‘‘signal.’’ signame names the signal to be handled, and function points to the signal handler (the
function to be executed when signame is detected). signame may be generated by the environment
itself (when it detects an error condition, for example), by the hardware (to indicate a bus error,
timer event, or other hardware error condition), or by the program itself (by using the function
raise).

If signal is successful, it returns a pointer to the function that the environment previously used to
handle signame. If an error occurred, signal returns SIG_ERR and the global variable errno is set to
an appropriate value. For a list of the signals recognized, see signal handling.

LEXICON

side effect — signal() 423

signal can establish the following ways of handling a signame:

1. If it sets function to SIG_DFL, it tells the environment to execute the default signal-handling
function for signame.

2. Then, the equivalent of

(*function)(signame)

is executed, where function is the user-defined function installed with signal to handle
signame.

3. If it sets function to point to a user-defined function, then it tells the environment to execute
that function when it detects signame.

If signal is used to establish a user-defined function for a particular signal, then the following occurs
when that signal is detected:

1. The equivalent of

signal(signame, SIG_DFL);

is executed. If signame is equivalent to SIGILL (which indicates that an illegal instruction has
been found), then this step is optional, depending upon the implementation.

2. Then, the equivalent of

(*function)(signame)

is executed, where function points to a user-defined function. Some signals are reset to
STD_DFL, some are not. The exception handler should be reset by another call to signal if
subsequent signals are expected for that condition.

3. function can terminate either by returning to the calling function, or by calling abort, exit, or
longjmp. If function returns and signame indicates that a computational exception had
occurred (e.g., division by zero), then the behavior is undefined. Otherwise, the program which
responded to the signal will continue to execute.

Cross-references
Standard, §4.7.1.1
The C Programming Language, ed. 2, p. 255

See Also
raise, signal handling, signal.h

Notes
The signal handler pointed to by function should not be another library function. Also, the signal
handler should not attempt to modify external data other than those declared as type volatile
sig_atomic_t.

signal.h — Header
Signal-handling routines
#include <signal.h>

signal.h is the header that defines or declares all elements used to handle asynchronous interrupts,
or signals.

Signals vary from environment to environment. Therefore, the contents of signal.h will also vary
greatly from environment to environment, and from implementation to implementation. The
Standard mandates that it define the following elements to create a skeletal, portable suite of signal-

LEXICON

424 signal.h

handling routines:

Type
sig_atomic_t Type that can be accessed atomically

SIG_DFL Default signal-handling indicator
SIG_ERR Indicate error in setting a signal
SIG_IGN Indicate ignore a signal

SIGABRT Abort signal
SIGFPE Erroneous arithmetic signal
SIGILL Illegal instruction
SIGINT Interrupt signal
SIGSEGV Invalid access to storage signal
SIGTERM Program termination signal

Functions
raise Generate a signal
signal Set processing for a signal

Cross-references
Standard, §4.7
The C Programming Language, ed. 2, p. 255

See Also
signal handling

signal handling — Overview
#include <signal.h>
A signal is an asynchronous interrupt in a program. Its use allows a program to be notified of and
react to external conditions, such as errors that would otherwise force it either to abort or to
continue despite erroneous conditions.

To respond to a signal, a program uses a signal handler, which is a function that performs the
actions appropriate to a given signal. A signal handler usually is installed early in a program. It is
invoked either when the condition arises for which the signal handler was installed, or when the
program uses the function raise to raise a signal explicitly. A signal handler can be thought of as a
‘‘daemon,’’ or a process that lives in the background and waits for the right conditions to occur for it
to spring to life. Once the signal has been handled, the program may continue to execute.

Every conforming implementation of C must include at least a skeletal facility for handling signals.
The Standard describes two functions: raise, which generates (or ‘‘raises’’) a signal; and signal,
which tells the environment what function to execute in response to a given signal.

The suite of signals that can be handled varies from environment to environment. At a minimum,
the following signals must be recognized:

SIGABRT Abort
SIGFPE Erroneous arithmetic
SIGILL Illegal instruction
SIGINT Interrupt
SIGSEGV Invalid access to storage
SIGTERM Program termination request

All of these are positive integral expressions. An implementation is obliged to respond only if one of
these signals is raised explicitly via the function raise. This limitation is imposed because in some
environments it may be impossible for an implementation to ‘‘sense’’ the presence of such
conditions.

LEXICON

signal handling 425

signal tells the environment which function to execute in response to a signal by passing it a
pointer to that function. The Standard describes three macros that expand to constant expressions
that point to functions, as follows:

SIG_DFL Default signal-handling indicator
SIG_ERR Indicate error in setting a signal
SIG_IGN Indicate ignore a signal

The Standard describes a new data type, called sig_atomic_t. An object of this type can be updated
or read correctly, even if a signal occurs while it is being updated or read. Accesses to objects of this
type are atomic, i.e., uninterruptable.

All of the above are defined or declared in the header signal.h.

Cross-references
Standard, §4.7, §2.2.3
The C Programming Language, ed. 2, p. 255

See Also
Library, sequence points, signal.h, signals/interrupts

Notes
The name signal is derived from the electrical model of having a wire connected to the central
processing unit for an interrupt. When the level on the wire would rise, an interrupt would be
generated and the central processing unit would service the device that ‘‘raised’’ its ‘‘signal.’’

signals/interrupts — Definition
The Standard mandates the following restrictions upon the manner in which functions are
implemented. First, a signal must be able to interrupt a function at any time. Second, a signal
handler must be able to call a function without affecting the value of any object with automatic
duration created by any earlier invocation of the function. Third, the function image (that is, the set
of instructions that constitutes the executable image of the function) cannot be altered in any way
as it is executed. All variables must be kept outside of the function image.

MS-DOS Interrupts
MS-DOS makes available to the programmer a series of interrupts that can be used to perform all
manner of useful tasks. These interrupts and their functions can be accessed directly through the
C function intcall.

The header dos.h defines a set of manifest constants that use most MS-DOS interrupts. The
following table lists these constants, the interrupt and function number they define, and gives a
brief description of what each does. Some constants combine two interrupts to form one function.
For example, CLRIN combines interrupts 0x0C and 0x01.

Interrupt 10 (text mode)

GCDM 0x0F00 Get current display mode
IWDOWN 0x0700 Initialize window or scroll window down
IWUP 0x0600 Initialize window or scroll window up
RACCUR 0x0800 Read attribute & character at cursor
RDCP 0x0300 Read cursor positon
RGRPIX 0x0D00 Read graphics pixel
RLPP 0x0400 Read light pen position
SDP 0x0500 Select display page
SETCLR 0x0B00 Set color palette
SETCP 0x0200 Set cursor position

LEXICON

426 signals/interrupts

SETCT 0x0100 Set cursor type
SPALREG 0x1000 Set palette registers
WACCUR 0x0900 Write attribute and character at cursor
WCONLY 0x0A00 Write character only at cursor
WGRPIX 0x0C00 Write graphics pixel
WSTRING 0x1300 Write string (AT only)
WTELE 0x0E00 Write text in teletype mode

Interrupt 10 (graphics mode)

VM1620JR 0x0008 160x200 16-color graphics (PCjr)
VM3220C 0x0004 320x200 four-color graphics
VM3220CB 0x0005 320x200 four-color graphics color burst off
VM3220EG 0x000D 320x200 16-color graphics (EGA)
VM3220JR 0x0009 320x200 16-color graphics (PCjr)
VM4025BW 0x0000 40x25 black & white text, color ad.
VM4025C 0x0001 40x25 color text
VM64202 0x0006 640x200 two-color graphics
VM6420EG 0x000E 640x200 16-color graphics (EGA)
VM6420JR 0x000A 640x200 16-color graphics (PCjr)
VM64354E 0x0010 640x350 four- or 16-color graphics (EGA)RAM
VM6435EG 0x000F 640x350 monochrome graphics (EGA)
VM8025BW 0x0002 80x25 black & white text
VM8025C 0x0003 80x25 color text
VMMONOAD 0x0007 Monochome adapter text display

Interrupt 13

FORMDT 0x0500 Format disk track
GFDSS 0x0100 Get disk system status
RDFD 0x0200 Read disk
RSTFDS 0x0000 Reset disk system
VERDS 0x0400 Verify disk sectors
WRTDSK 0x0300 Write to disk

Interrupt 14

ITCOMP 0x0000 Initialize communications port
RCCOMP 0x0200 Read character from communications port
WCCOMP 0x0100 Write character to communications port

Interrupt 16

RCKEYB 0x0000 Read character from keyboard
RKEYST 0x0100 Read keyboard status
RTKEYF 0x0200 Return keyboard flags

Interrupt 17

INITPP 0x0100 Initialize printer port
PRNSRQ 0x0200 Request printer status
WCPRN 0x0000 Write character to printer port

Interrupt 21

ALLOC 0x4800 Allocate memory
BUFCON 0x0A00 Read console, buffered
CHDIR 0x3B00 Change current directory
CHMOD 0x4300 Change file mode

LEXICON

signals/interrupts 427

CLOSEF* 0x1000 Close a file
CLOSEH 0x3E00 Close a file
CLR_E 0x0C08 Clear console, accept input without echo
CLRBUF 0x0C0A Clear console, accept buffered input
CLRIN 0x0C01 Clear console, echo console input
CLRDIO 0x0C06 Clear console, perform direct console I/O
CLRRAW 0x0C07 Clear console, accept raw input
CONSTAT 0x0B00 Return console/s status
CREATH 0x3C00 Create a file
CTLBCHK 0x3300 Get/set Ctrl-Break flag
DELETE 0x4100 Delete a file
DELETEF* 0x1300 Delete a file
DUPH 0x4500 Duplicate a file handle
EXEC 0x4B00 Load or execute a program
FDUPH 0x4600 Force a duplicate of handle
FFIRST* 0x1100 Search for first match
FNEXT* 0x1200 Search for next match
FREE 0x4900 Free allocated memory
GETALTI 0x1B00 Get allocation table information
GETCDI 0x3800 Get country-dependent information
GETCDIR 0x4700 Get current directory
GETDATE 0x2A00 Get date
GETDISK 0x1900 Get default disk drive
GETDTA 0x2F00 Get address of disk transfer area
GETFREE 0x3600 Get free disk space
GETTIME 0x2C00 Get time
GETVEC 0x3500 Get interrupt vector
GETVER 0x3000 Get MS-DOS version number
GETVST 0x5400 Get verify state
GSDT 0x5700 Get/set a file’s date and time
IOCTLH 0x4400 I/O control for devices
LSEEKH 0x4200 Move file read/write pointer
MAKEF* 0x1600 Create or truncate a file
MKDIR 0x3900 Create a sub-directory
NEXIT 0x4C00 Terminate a process
NFFIRST 0x4E00 Search for first match
NFNEXT 0x4F00 Search for next match
OPENF* 0x0F00 Open a file
OPENH 0x3D00 Open a file
PROGSEG 0x2600 Create program segment
PUTSTR 0x0900 Output string, terminated with ‘$’
READB* 0x2700 Block read, random
READH 0x3F00 Read from a file or device
READR* 0x2100 Read, random
READS* 0x1400 Read sequential
RENAME 0x5600 Rename a file
RENAMEF* 0x1700 Rename a file
RESDSK 0x0D00 Reset disk system
RMDIR 0x3A00 Remove a sub-directory
SELDSK 0x0E00 Set default disk drive
SETBLK 0x4A00 Modify allocated memory blocks
SETDATE 0x2B00 Set date
SETDMAO 0x1A00 Set disk transfer address
SETINT 0x2500 Set interrupt vector

LEXICON

428 signals/interrupts

SETRREC* 0x2400 Set random record number
SETTIME 0x2D00 Set time
SIZEF* 0x2300 Compute size of file
TERMRES 0x3100 Terminate and remain resident
VERIFY 0x2E00 Disk write verification
WAIT 0x4D00 Get return code of subprocess
WRITEB* 0x2800 Block write, random
WRITEH 0x4000 Write to a file or device
WRITER* 0x2200 Write, random
WRITES* 0x1500 Write sequential

The interrupts marked with an asterisk ‘*’ use the file control block. These functions, in general,
have been replaced by other, similarly named functions that are easier to use. The file control block
is a structure, defined as follows:

typedef struct fcb_t {
unsigned char f_drive; /* drive code (A=1, etc.) */
char f_name[8], /* file name */

f_ext[3]; /* file suffix */
unsigned short f_block; /* current block

(=128 records) */
unsigned short f_recsz; /* record size in bytes

(=1) */
unsigned long f_size; /* file size, bytes

(system) */
unsigned int f_date; /* modif. date (system) */
char f_sys[10]; /* for system use */
unsigned char f_rec; /* current record in block */
unsigned long f_seek; /* random record position */

} fcb_t;

Calling DOS Interrupts
Let’s C offers two ways to use MS-DOS interrupts in your C programs.

The first is through the function intcall. intcall gives a convenient way to call an MS-DOS
interrupt directly from a C program. For more information and examples on how to use this
function, see the entry for intcall.

The other method is by using the programs int.c and intdis.m, whose source code is included with
Let’s C. Unlike intcall, which is a tool for calling MS-DOS interrupts, these programs allow i8086
interrupts to call you. Thus, they are a tool for building interrupt handlers. They also demonstrate
how to combine a C program with one written in assembly language.

The suffix ‘.m’ is unique to Mark Williams Company. It is used with a file of assembly language that
is first treated by cpp, a command that invokes the C preprocessor. Thus, a ‘.m’ file can contain
conditionalized code, manifest constants, and all other commands that are recognized by the
preprocessor. To compile such a file, assemble it through the cc command. For example, to
assemble foo.m, use the command:

cc foo.m

cc will automatically call cpp, and pass its output to the assembler as. The entry for as presents an
example of a .m program. See the entry on larges.h for more information on the .m format in
general.

Example
The following example, called example.c, uses routines in int.c and intdis.m to call several MS-
DOS interrupts. You should enter it into the directory where you have stored int.c and intdis.m,
and compile it with the following command line:

LEXICON

signals/interrupts 429

cc example.c int.c intdis.m

This program works in both LARGE and SMALL model. Compile it with the command line

cc -VLARGE example.c int.c intdis.m

to create a LARGE-model executable.

#include <stdio.h>
#include <stdlib.h>

#define INT_BREAK 0x1B /* keybd ctrl-break int */
#define INT_TICK 0x1C /* system timer tick int */
#define STACKSIZE 0x100 /* small stack for locals */

int breakid;
int timerid;

#define TRUE 1
#define FALSE 0

int breakflag = FALSE;
int timerflag = FALSE;

/*
* Service routine for the Ctrl-Break Interrupt (0x1B).
* Simply sets the breakflag to TRUE.
*/

breaktrp(void)
{

breakflag = TRUE;
return(0);

}

/*
* Service routine for Timer-Tick Interrupt (0x1C).
* This comes from the 8253-5 Programmable Interval Timer
* at a rate of 18.2 Hz. Thus every 91
* (= 18.2 * 5) interrupts
* or 5 seconds, set the timerflag to TRUE.
*/

timertrp(void)
{

static counter = 0;

if(++counter == 91) {
timerflag = TRUE;
counter = 0;

}

/* Link in case interrupt 0x1C did something already */
return(1);

}

void
fatal(char *message)
{

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

LEXICON

430 signals/interrupts

main(void)
{

int breaktrp();
int timertrp();

if ((breakid=setint(INT_BREAK, breaktrp,
STACKSIZE, 1)) == -1)
fatal("Error setting ctrl-break interrupt.");

printf("Ctrl-Break Interrupt Set.\n");

if((timerid=setint(INT_TICK, timertrp,
STACKSIZE, 1)) == -1)
fatal("Error setting timer-tick interrupt.");

printf("Timer-Tick Interrupt Set.0);

for (;;) {
if(breakflag == TRUE)

break;
if(timerflag == FALSE)

continue;
printf("Another 5 sec gone.\n");
timerflag = FALSE;

}
printf("Got the Ctrl-Break Key.\n");

if(clearint(breakid) != 0)
fatal("Unable to reset interrupt.");

printf("Ctrl-Break interrupt reset.\n");

if (clearint(timerid) != 0) {
fatal("Unable to reset Timer-Tick Interrupt.");

printf("Timer-Tick interrupt reset.\n");

return EXIT_SUCCESS;
}

Cross-references
Standard, §2.2.3 Advanced MS-DOS, pp 208ff, 272ff

See Also
Environment, signal handling

signed — Definition
The modifier signed indicates that a data type can contain both positive and negative values. In
some representations, the sign of a signed object is indicated by a bit set aside for the purpose. For
this reason, a signed object can encode an absolute value only half that of its unsigned counterpart.

The four integral data types can be marked as signed: char, short int, int, and long int.

The implementation defines whether a char is signed or unsigned by default. The Standard
describes the types signed char and unsigned char. These let the programmer use the type of char
other than that supplied by the implementation. short int, int, and long int are signed by default.
The declarations signed short int, signed int, and signed long int were created for the sake of
symmetry.

For information about converting one type of integer to another, see integral types.

If signed is used by itself, it is a synonym for int.

LEXICON

signed 431

Cross-references
Standard, §3.1.2.5, §3.2.1.2
The C Programming Language, ed. 2, p. 211

See Also
types, unsigned

signed char — Type
A signed char is a type that has the same size and the same alignment requirements as a plain
char. The Standard created this type for implementations whose char type is unsigned by default.

A signed char can encode values from SCHAR_MIN to SCHAR_MAX. These are macros that are
defined in the header limits.h. The former is set to -127, and the latter to +127.

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.5.2
The C Programming Language, ed. 2, p. 44

See Also
char, types, unsigned char

sin() — Mathematics (libm)
Calculate sine
#include <math.h>
double sin(double radian);

sin calculates and returns the sine of its argument radian, which must be in radian measure.

Example
This example verifies the identity sin(2*x) == 2*sin(x)*cos(x) over a range of values. Then, it scans
the range of the worst error in smaller and smaller increments, until the precision of the floating
point will not allow any more.

#include <float.h>
#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#define PI 0.31415926535897932e+01

main(void)
{

int ct;
double a, e, i, worstp;
double worste=0.0;
double f=-PI;

LEXICON

432 signed char — sin()

printf("Verify sin(2*x) == 2*sin(x)*cos(x)\n");
for(i = (PI / 100.0); (f + i) > f; i *= 0.01) {

for(ct = 200, a = f; --ct; a += i) {
e = fabs(sin(a+a)-(2.0*sin(a)*cos(a)));
if(e > worste) {

worste = e;
worstp = a;

}
}
f = worstp - i;

}

printf("Worst error %.17e at %.17e\n", worste, worstp);
printf("sin(2x)=%.17e 2*sin(x)*cos(x)=%.17e\n",

f=sin(worstp+worstp), 2.0*sin(worstp)*cos(worstp));
printf("Epsilon is %.17e\n", fabs(f) * DBL_EPSILON);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.5.2.6
The C Programming Language, ed. 2, p. 251

See Also
acos, asin, atan, atan2, cos, mathematics, tan

sinh() — Mathematics (libm)
Calculate hyperbolic sine
#include <math.h>
double sinh(double value);

sinh calculates and returns the hyperbolic sine of value. A range error will occur if the argument is
too large.

Cross-references
Standard, §4.5.3.2
The C Programming Language, ed. 2, p. 251

See Also
cosh, mathematics, tanh

size — Command
Print the size of an object module
size file...

size prints the size of each segment of each given file, which must be a relocatable object module or
an executable file. The total size is given in decimal, and the size of each segment is given in both
decimal and hexadecimal. All sizes are in bytes.

When it is used to size an executable file, size prints the size of the code segment and the data
segment separately (in LARGE model), or the code segment plus the data segment (in SMALL
model). Thus, size can help you to tell a SMALL-model program from one in LARGE model.

See Also
cc, commands, cpp, nm, strip

LEXICON

sinh() — size 433

sizeof — C keyword
The operator sizeof yields the size of its argument, in bytes. Its argument can be the name of a
type, an array, a function, a structure, or an expression that yields an object.

When the name of a type is used as the operand to sizeof, it must be enclosed within parentheses.
If any of the types char, signed char, or unsigned char are used as the argument to sizeof, the
result by definition is always one. When any complete type is used (i.e., a type whose size is known
by the translator), the result is the size of that type, in bytes. For example,

sizeof (long double);

returns the size of a long double in bytes.

If sizeof is given the name of an array, it returns the size of the array. For example, the code

int example[5];
. . . /* example[] is filled with some things */

sizeof example[] / sizeof int;

yields the number of members in example[].

When sizeof is given the name of a structure or a union, it returns the size of that object, including
padding used to align the objects within the structure, if any. This is especially useful when
allocating memory for a linked list; for example:

struct example {
int member1;
example *member2;

};
struct example *variable;
variable=(struct example *)malloc(sizeof(struct example));

If sizeof is used to measure either a function or an array that has been passed as an argument to a
function, it returns the size of a pointer to the appropriate object. This is because when an array
name or function name is passed as an argument to a function, it is converted to a pointer. See
function definition for more information.

sizeof always returns an object of type size_t; this type is defined in the header stddef.h. It is
intended to be an unsigned integral type.

sizeof must not be used with a function, with an object whose type is incomplete, or a bit-field.

Example
For an example of using this operator in a program, see bsearch.

Cross-references
Standard, §3.3.3.4
The C Programming Language, ed. 2, p. 204

See Also
expressions, operators, size_t

SMALL model — Technical information
Intel single-segment memory model

The i8086/88 microprocessor uses a segmented architecture. This means that the memory is divided
into segments of 64 kilobytes each; no program or data element can exceed that limit.

Intel Corporation has devised a number of memory models for handling segmented memory.

LEXICON

434 sizeof — SMALL model

Let’s C implements the two most useful of these: SMALL model and LARGE model.

SMALL model C programs use 16-bit pointers and NEAR calls. Because a 16-bit pointer can
address 65,536 bytes (64 kilobytes) of memory, SMALL model programs are limited to 64 kilobytes
(one segment) of code and 64 kilobytes of data.

The SMALL-model pointer consists only of the offset within a given segment, and does not include
the segment itself. If you use a function that requires the full offset/segment pair, e.g., _copy, peek,
or poke, you can supply the missing segment either by reading the contents of the DS segment
register with the function dsreg, or by using the macro PTR. See the entries for dsreg and PTR for
more information.

Note, too, that the SMALL-pointer is the same length as an int. This allows a programmer to use
these data types interchangably. Most often, this happens when a programmer fails to declare
properly a function that returns a pointer, so that the function is implicitly declared by the compiler
as returning an int. Programs with this error will run correctly when compiled into SMALL model,
but will fail to work when compiled into LARGE model. See the entry on pun for more information.

When Let’s C compiles a program with the -VSMALL option, the resulting object module follows the
rules of the SMALL model. This is the default setting for the compiler.

See Also
i8086 support, LARGE model, model, pun, technical information

source file — Definition
A source file is any file of C source text.

Cross-reference
Standard, §2.1.1.1

See Also
Environment, translation unit

sprintf() — STDIO (libc)
Print formatted text into a string
#include <stdio.h>
int sprintf(char *string, const char *format, ...);

sprintf constructs a formatted string in the area pointed to by string, and appends a null character
onto the end of what it constructs. It translates integers, floating-point numbers, and strings into a
variety of text formats.

format points to a string that can contain text, character constants, and one or more conversion
specifications. A conversion specification describes how to convert a particular data type into text.
Each conversion specification is introduced with the percent sign ‘%’. (To print a literal percent
sign, use the escape sequence ‘‘%%’’.) See printf for further discussion of the conversion
specification, and for a table of the type specifiers that can be used with sprintf.

After format can come one or more arguments. There should be one argument for each conversion
specification in format. The argument should be of the type appropriate to the conversion
specification. For example, if format contains conversion specifications for an int, a long, and a
string, then format should be followed by three arguments, respectively, an int, a long, and a char
*.

If there are fewer arguments than conversion specifications, then sprintf’s behavior is undefined. If
there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding conversion specifier,

LEXICON

source file — sprintf() 435

then the behavior of sprintf is undefined. Thus, presenting an int where sprintf expects a char *
may generate unwelcome results.

sprintf returns the number of characters written into string, not counting the terminating null
character.

Cross-references
Standard, §4.9.6.5
The C Programming Language, ed. 2, p. 245

See Also
fprintf, printf, STDIO, vfprintf, vprintf, vsprintf

Notes
string must point to enough allocated memory to hold the string sprintf constructs, or you may
overwrite unallocated memory.

The character that sprintf uses to represent the decimal point is affected by the program’s locale, as
set by the function setlocale. For more information, see localization.

Because the printf routines that print floating-point numbers are quite large, they are included only
optionally. If you wish to have printf print floats or doubles, you must compile your program with
the -f option to the cc command. See cc for more details.

sqrt() — Mathematics (libm)
Calculate the square root of a number
#include <math.h>
double sqrt(double z);

sqrt calculates and returns the square root of z.

Example
This example calculates the time an object takes to fall to the ground at sea level. It ignores air
friction and the inverse square law.

#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

double
fallingTime(double meters)
{

double time;

errno = 0;
time = sqrt(meters * 2 / 9.8);
/*
* it would be simpler to test for (meters < 0) first,
* but this way shows how sqrt() sets errno
*/

if(errno) {
printf("Sorry, but you can’t fall up\n");
return(HUGE_VAL);

}
return(time);

}

LEXICON

436 sqrt()

main(void)
{

for(;;) {
char buf[80];
double height;

printf("Enter height in meters ");
fflush(stdout);
if(gets(buf) == NULL || !strcmp(buf, "quit"))

break;

errno = 0;
height = strtod(buf, (char **)NULL);

if(errno) {
printf("%s: invalid floating-point number\n");
continue;

}

printf("It takes %3.2f sec. to fall %3.2f meters\n",
fallingTime(height), height);

}

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.5.5.2
The C Programming Language, ed. 2, p. 251

See Also
domain error, mathematics, pow

Notes
If z is negative, a domain error occurs.

srand() — General utility (libc)
Seed pseudo-random number generator
#include <stdlib>
void srand(unsigned int seed);

srand uses seed to initialize the sequence of pseudo-random numbers returned by rand. Different
values of seed produce different sequences.

Example
This example uses the random-number generator to encrypt or decrypt a file. This example is for
illustration only. Do not use it if any serious attack is expected. This example also demonstrates a
simple form of hashing.

#include <stdio.h>
#include <stdlib.h>

/* Ask for a string and echo it. */
char *
ask(char *msg)
{

static char reply[80];

LEXICON

srand() 437

printf("Enter %s ", msg);
fflush(stdout);

if(gets(reply) == NULL)
exit(EXIT_SUCCESS);

return(reply);
}

main(void)
{

register char *kp;
register int c, seed;
FILE *ifp, *ofp;

if((ifp = fopen(ask("input filename"), "rb")) == NULL)
exit(EXIT_FAILURE);

if((ofp = fopen(ask("output filename"), "wb")) == NULL)
exit(EXIT_FAILURE);

/* hash encryption key into an int */
seed = 0;
for(kp = ask("encryption key"); c = *kp++;) {

/* don’t lose any bits */
if((seed <<= 1) < 0)

/* a number picked at random */
seed ^= 0xE51B;

seed ^= c;
}

/* initialize random-number stream */
srand(seed);

while((c = fgetc(ifp)) != EOF)
/*
* Use only the high byte of rand;
* its low-order bits are very non-random
*/

fputc(c ^ (rand() >> 8), ofp);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.10.2.2
The C Programming Language, ed. 2, p. 252

See Also
general utilities, rand

sscanf() — STDIO (libc)
Read and interpret text from a string
#include <stdio.h>
int sscanf(const char *string, const char *format, ...);

sscanf reads characters from string and uses the string pointed to by format to interpret what it has
read into the appropriate type of data. format points to a string that contains one or more
conversion specifications, each of which is introduced with the percent sign ‘%’. For a table of the
conversion specifiers that can be used with sscanf, see scanf.

After format can come one or more arguments. There should be one argument for each conversion
specification in format, and the argument should point to a data element of the type appropriate to

LEXICON

438 sscanf()

the conversion specification. For example, if format contains conversion specifications for an int, a
long, and a string, then format should be followed by three arguments, pointing, respectively, to an
int, a long, and an array of chars.

If there are fewer arguments than conversion specifications, then sscanf’s behavior is undefined. If
there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding type specification,
then sscanf returns.

sscanf returns the number of input elements it scanned and formatted. If an error occurs while
sscanf is reading its input, it returns EOF.

Example
This example reads a list of hexadecimal numbers from the standard input and adds them.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

main(void)
{

long h[5], total;
char buf[80];
int count, i;

printf("Enter a list of up to five hex numbers or quit\n");
while(gets(buf) != NULL) {

if(!strcmp("quit", buf))
break;

count = sscanf(buf, "%lx %lx %lx %lx %lx",
h, h+1, h+2, h+3, h+4);

for(i = total = 0; i < count; i++)
total += h[i];

printf("Total 0x%lx %ld\n", total, total);
}

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.9.6.6
The C Programming Language, ed. 2, p. 246

See Also
fscanf, printf, STDIO, scanf

Notes
sscanf is best used to read data you are certain are in the correct format, such as data previously
written with sprintf.

The character that sscanf recognizes as representing the decimal point is affected by the program’s
locale, as set by the function setlocale. For more information, see localization.

LEXICON

sscanf() 439

stack — Definition
The stack is the segment of memory that holds function arguments, local variables, function return
addresses, and stack frame linkage information.

If your program uses recursive algorithms, or declares large amounts of automatic data, or simply
contains many levels of functions calls, the stack may ‘‘overflow’’, and overwrite the program data.

By default, Let’s C sets the default stack size to 2,048 bytes (two kilobytes). To increase the amount
of stack available to your program, use the -ys option to the cc command. For example, to give the
program foo.c 10,000 bytes of stack, use the following cc command:

cc -ys10000 foo.c

See Also
cc, Definitions

Standard — Overview
The Standard is the document written by the American National Standards Institute committee
X3J11 to describe the programming language C. It is based on the following documents:

• Kernighan, B. W., Ritchie, D. M.: The C Programming Language. Englewood Cliffs, NJ:
Prentice-Hall Inc., 1978. The Standard bases its description of C syntax upon Appendix A of
this book.

• /usr/group Standard Committee: 1984 /usr/group Standard. Santa Clara, Calif.: /usr/group,
1984. This document was the basis for the Standard’s description of the C library.

• American National Dictionary for Information Processing Systems. Information Processing
Systems Technical Report ANSI X3/TR-1-82. 1982.

• ISO 646-1983 Invariant Code Set. This was used to help describe the C character set, and to
select the characters that need to be represented by trigraphs.

• IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard 754-1985. This is
the basis for the Standard’s description of floating-point numbers.

• ISO 4217 Codes for Representation of Currency and Funds. This is the target for the
Standard’s description of locale-specific ways to represent money.

The first two, due to their fundamental effect upon the Standard, are referred to as the ‘‘base
documents’’.

Cross-reference
Standard, §1.3, §1.5

See Also
Definitions, Environment, Language, Library, DOS-specific features

standard error — Definition
When a C program begins, it opens three text streams by default: the standard error, the standard
input, and the standard output. The standard error is the stream into which error messages are
written. In most implementations, the standard error stream is associated with the user’s terminal.

The macro stderr points to the FILE object through which the standard error device is accessed. It
is defined in the header stdio.h.

LEXICON

440 stack — standard error

Cross-references
Standard, §4.9.3
The C Programming Language, ed. 2, pp. 151ff

See Also
standard input, standard output, stderr, STDIO

standard input — Definition
When a C program begins execution, it opens three text streams by default: the standard error, the
standard input, and the standard output. The standard input is the stream from which the program
receives input by default. In most implementations, the standard input stream is associated with
the user’s terminal.

The macro stdin points to the FILE object that accesses the standard input stream. It is defined in
the header stdio.h.

Cross-references
Standard, §4.9.3
The C Programming Language, ed. 2, pp. 151ff

See Also
standard error, standard output, stdin, STDIO

standard output — Definition
When a C program begins execution, it opens three text streams by default: the standard output,
the standard input, and the standard error. The standard output is the stream into which a
program’s non-diagnostic output is written. In most implementations, the standard output stream
is associated with the user’s terminal.

The macro stdout points to the FILE object that accesses the standard output device. It is defined
in the header stdio.h.

Cross-references
Standard, §4.9.3
The C Programming Language, ed. 2, pp. 151ff

See Also
standard error, standard input, STDIO, stdout

stat() — Access checking (libc)
Find file attributes
#include <stat.h>
short stat(char *file, struct stat *statptr);

stat returns a structure that contains the attributes of a file. This function is included to maintain
compatibility with the UNIX and COHERENT operating systems.

file points to the path name of file, and statptr points to a structure of the type stat, as defined in
the header file stat.h.

The following summarizes the structure stat:

LEXICON

standard input — stat() 441

struct stat {
unsigned short st_mode; /* mode */
long st_size; /* size, in bytes */
struct dostime st_dostime; /* MS-DOS time and date */
time_t st_mtime; /* modification time */

};

The structure dostime is defined in the header file dosfind.h. The following lists the legal values for
st_mode, which sets the file’s attributes:

S_IFMT 0x0300 type
S_IFDIR 0x0100 directory
S_IFREG 0x0200 regular file
S_IREAD 0x0400 read permission; always 1
S_IWRITE 0x0800write permission

The entry st_size gives the size of the file, in bytes.

stat returns -1 if an error occurs, e.g., the file cannot be found. Otherwise, it returns zero.

Example
The following example, called test.c, demonstrates stat. When compiled, it will take a file name as
an argument; it will then search for the file and, if it is found, print a summary of its status.

#include <stat.h>
#include <stdio.h>
#include <stdlib.h>
char *_cmdname = "TEST";

void
fatal(char *error)
{

fprintf(stderr, "Fatal Error: %s\n", error);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

char *name;
struct stat status;

if (argc != 2)
fatal("Usage: command filename");

name = argv[1];
if (stat(name, &status) != 0)

fatal("Can’t find file");

printf("File: {%s}\n", name);
printf("st_mode: 0x%x\n", status.st_mode);
printf("st_size: %D\n", status.st_size);
printf("st_dostime: %02d-%02d-%02d %02d:%02d:%02d\n",

status.st_dostime.dos_month,
status.st_dostime.dos_day,
status.st_dostime.dos_year+80,
status.st_dostime.dos_hour,
status.st_dostime.dos_minute,
status.st_dostime.dos_twosec*2);

printf("st_mtime: %s", ctime(&status.st_mtime));
return EXIT_SUCCESS;

}

LEXICON

442 stat()

See Also
access checking, open, stat.h

stat.h — Header
Definitions and declarations to obtain file status
#include <stat.h>

stat.h is a header file that contains the declarations of several structures used by the routine stat,
which returns information about a file’s status.

See Also
access checking, header, stat

statements — Overview
A statement specifies an action to be performed. Unless otherwise specified, statements are
executed in the order in which they appear in the program.

The actions of some statements may be controlled by a full expression; this is an expression that is
not part of another expression. For example, do, if, for, switch, and while introduce statements
that are controlled by one or more full expressions. The return statement may also use a full
expression.

The Standard describes the following varieties of statements:

Compound statement

Expression statement

Iteration statements
do
for
while

Jump statements
break
continue
goto
return

Labelled statements
case
default

Null statement

Selection statements
if
else
switch

The set of compound, iteration, and selection statements is the foundation upon which many
programming languages are based. From these alone, a programmer can construct many useful
and interesting programs.

Let’s C also includes the keyword alien, which marks a function that uses non-C calling
conventions.

Cross-references
Standard, §3.6
The C Programming Language, ed. 2, pp. 222ff

LEXICON

stat.h — statements 443

See Also
alien, Language

static — C keyword
Internal linkage
static type identifier

The storage-class specifier static declares that identifier has internal linkage. This specifier may not
be used to declare a function that has block scope.

Cross-references
Standard, §3.5.1
The C Programming Language, ed. 2, p. 83

See Also
linkage, storage-class identifiers

stdarg.h — Header
Header for variable numbers of arguments
#include <stdarg.h>

The header stdarg.h declares and defines routines that are used to traverse a variable-length
argument list. It declares the type va_list and the function va_end, and it defines the macros
va_start and va_arg.

Cross-references
Standard, §4.8
The C Programming Language, ed. 2, p. 254

See Also
header, variable arguments

stderr — Macro
Pointer to standard error stream
#include <stdio.h>

When a C program begins, it opens three text streams by default: the standard error, the standard
input, and the standard output. stderr points to the FILE object through which the standard error
stream is accessed; this is the stream into which error messages are written. In most
implementations, the standard error stream is associated with the user’s terminal.

stderr is defined in the header stdio.h.

stderr is not fully buffered when it is opened.

Example
For an example of stderr in a program, see fprintf.

Cross-references
Standard, §4.9.1, §4.9.3
The C Programming Language, ed. 2, p. 243

See Also
stdin, stdout, standard error, STDIO, stdio.h

LEXICON

444 static — stderr

stdin — Macro
Pointer to standard input stream
#include <stdio.h>

When a C program begins, it opens three text streams by default: the standard error, the standard
input, and the standard output. stdin points to the FILE object that accesses the standard input
stream; this is the stream from which the program receives input by default. In most
implementations, the standard input stream is associated with the user’s terminal.

stdin is defined in the header stdio.h.

Example
For an example of stdin in a program, see setvbuf.

Cross-references
Standard, §4.9.1, §4.9.3
The C Programming Language, ed. 2, p. 243

See Also
stderr, stdout, standard input, STDIO, stdio.h

STDIO — Overview
Standard input and output
#include <stdio.h>

STDIO is an acronym for standard input and output. Input-output can be performed on text files,
binary files, or interactive devices. It can be either buffered or unbuffered.

The Standard describes 41 functions that perform input and output, as follows:

Error handling
clearerr Clear a stream’s error indicator
feof Examine a stream’s end-of-file indicator
ferror Examine a stream’s error indicator
perror Write error message into standard error stream

File access
fclose Close a stream
fflush Flush an output stream’s buffer
fopen Open a stream
freopen Close and reopen a stream
setbuf Set an alternate buffer for a stream
setvbuf Set an alternate buffer for a stream

File operations
remove Remove a file
rename Rename a file
tmpfile Create a temporary file
tmpnam Generate a unique name for a temporary file

File positioning
fgetpos Get value of stream’s file-position indicator (fpos_t)
fseek Set stream’s file-position indicator
fsetpos Set stream’s file-position indicator (fpos_t)
ftell Get the value of the file-position indicator
rewind Reset stream’s file-position indicator

LEXICON

stdin — STDIO 445

Input-output
By character
fgetc Read a character from a stream
fgets Read a line from a stream
fputc Write a character into a stream
fputs Write a string into a stream
getc Read a character from a stream
getchar Read a character from the standard input stream
gets Read a string from the standard input stream
putc Write character into a stream
putchar Write a character into the standard output
puts Write a string into the standard output
ungetc Push a character back into the input stream

Direct
fread Read data from a stream
fwrite Write data into a stream

Formatted
fprintf Print formatted text into a stream
fscanf Read formatted text from a stream
printf Format and print text into standard output stream
scanf Read formatted text from standard input stream
sprintf Print formatted text into a string
sscanf Read formatted text from string
vfprintf Format and print text into a stream
vprintf Format and print text into standard output stream
vsprintf Format and print text into a string

The prototypes for these functions appear in the header stdio.h, along with definitions for the types
and macros they use.

All STDIO functions access a file or device through a stream. A stream is accessed via an object of
type FILE; this object contains all of the information needed to access the file or device under the
given environment. Because of the heterogeneous environments under which C has been
implemented, the Standard does not describe the interior workings of the FILE object. It states only
that this object contain all information needed to access a stream under the given environment.

Cross-references
Standard, §4.9
The C Programming Language, ed. 2, pp. 151ff, 241ff

See Also
close, create, extended STDIO, file, file-position indicator, Library, line, open, stdio.h, stream

Notes
Let’s C also includes the following extended functions and macros that perform STDIO tasks:

_exit Exit from a program without clean-up
close Close a file
creat Create a file
dup Duplicate a file descriptor
dup2 Duplicate a file descriptor
execall Pass arguments to a program
fdopen Use a file descriptor to open a stream
fgetw Read a word from a stream

LEXICON

446 STDIO

fileno Get a file descriptor
fputw Write a word into a stream
getanb Read unbuffered from auxiliary port
getcnb Read unbuffered from the console
getw Read a word from a stream
in Read a word from a port
inb Read a byte from a port
lseek Set stream’s file-position indicator
open Open a file
out Write a word to a port
outb Write a byte to a port
putanb Write unbuffered to auxiliary port
putcnb Write unbuffered to the console
putw Write a word into a stream
read Read data from a stream
regtop Convert register pair to pointer
tempnam Generate a unique name for a temporary file
unlink Remove a file
write Write data into a stream

The ANSI Standard forbids any ANSI header to declare or define any function or macro that is not
described within the Standard. Therefore, the routines fdopen, fgetw, fileno, fputw, getanb,
getcnb, getw, putanb, putcnb, putw, and regtop have been moved from header stdio.h into a new
header, xstdio.h.

Any programs that uses any of these extended functions will not comply strictly with the Standard,
and may not be portable to other compilers or environments.

stdio.h — Header
Declarations and definitions for STDIO

stdio.h is the header that holds the definitions, declarations, and function prototypes used by the
STDIO routines.

The following lists the types, macros, and manifest constants defined in stdio.h:

Types
FILE Hold descriptor for a stream
fpos_t Hold current position within a file

Cross-references
Standard, §4.9.1
The C Programming Language, ed. 2, pp. 151ff, 241ff

See Also
header, STDIO

stdlib.h — Header
General utilities
#include <stdlib.h>

stdlib.h is a header that declares the Standard’s set of general utilities and defines attending
macros and data types, as follows:

LEXICON

stdio.h — stdlib.h 447

Types
div_t Type of object returned by div
ldiv_t Type of object returned by ldiv

EXIT_FAILURE Value to indicate that program failed to execute properly
EXIT_SUCCESS Value to indicate that program executed properly
MB_CUR_MAX Largest size of multibyte character in current locale
MB_LEN_MAX Largest overall size of multibyte character in any locale
RAND_MAX Largest size of pseudo-random number

Functions
abort End program immediately
abs Compute the absolute value of an integer
atexit Register a function to be executed at exit
atof Convert string to floating-point number
atoi Convert string to integer
atol Convert string to long integer

bsearch Search an array

calloc Allocate dynamic memory

div Perform integer division

exit Terminate a program gracefully

free De-allocate dynamic memory to free memory pool

getenv Read environmental variable

labs Compute the absolute value of a long integer
ldiv Perform long integer division

malloc Allocate dynamic memory
mblen Compute length of a multibyte character
mbstowcs Convert multibyte-character sequence to wide characters
mbtowc Convert multibyte character to wide character

qsort Sort an array

rand Generate pseudo-random numbers
realloc Reallocate dynamic memory

strtod Convert string to floating-point number
strtol Convert string to long integer
strtoul Convert string to unsigned long integer
system Suspend a program and execute another

wcstombs Convert wide-character sequence to multibyte characters
wctomb Convert wide character to multibyte character

Cross-references
Standard, §4.10.1
The C Programming Language, ed. 2, p. 251

See Also
general utilities

LEXICON

448 stdlib.h

stdout — Macro
Pointer to standard output stream
#include <stdio.h>

When a C program begins, it opens three text streams by default: the standard error, the standard
input, and the standard output. stdout points to the FILE object that accesses the standard output
stream. This is the stream into which non-diagnostic output is written. Under Let’s C, the
standard output stream is associated with the user’s terminal.

stdout is defined in the header stdio.h.

Example
For an example of stdout in a program, see setvbuf.

Cross-references
Standard, §4.9.1, §4.9.3
The C Programming Language, ed. 2, p. 243

See Also
stdin, stderr, standard output, STDIO, stdio.h

stime() — Extended function (libc)
Set the operating system time
#include <time.h>
#include <xtime.h>
int stime(time_t *timep);

stime sets the operating system time, which Let’s C defines as being the number of seconds since
midnight of January 1, 1970, 0h00m00s UTC. The argument timep points to the new system time,
which is of the type time_t. This is defined in the header file time.h as being equivalent to a long.

stime returns -1 on error, zero otherwise.

Example
The following example prints the time, then uses stime to reset the time by one hour.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(void)
{

time_t tp;

/* print current time */
time(&tp);
printf("%s\n", ctime(&tp));

/* subtract one hour (3600 seconds) from current time */
tp -= 3600;
if (stime(&tp) == -1) {

printf("Cannot reset time.\n");
exit(EXIT_FAILURE);

}

/* print altered time */
time(&tp);
printf("%s\n", ctime(&tp));

LEXICON

stdout — stime() 449

/* add one hour to current time, to correct above */
tp += 3600;
if (stime(&tp) == -1) {

printf("Cannot re-reset time.\n");
exit(EXIT_FAILURE);

}

/* print fixed time, to confirm correction */
time(&tp);
printf("%s\n", ctime(&tp));
return EXIT_SUCCESS;

}

See Also
extended time

Notes
To conform with the ANSI Standard, this function has been moved from the header time.h to the
header xtime.h. This may require that some code be altered.

storage-class specifiers — Overview
A storage-class specifier specifies the manner in which an object is to be stored in memory. There
are five such specifiers:

auto Automatic storage duration
extern External linkage
register Quick access required
static Internal linkage
typedef Synonym for another type

Only one storage-class specifier is allowed per declaration. The Standard declares as ‘‘obsolescent’’
any declaration that does not have its storage class as the first specifier in a declaration.

Strictly speaking, typedef is not a storage-class specifier. The Standard bundles it into this group
for the sake of convenience.

Cross-references
Standard, §3.5.1
The C Programming Language, ed. 2, p. 210

See Also
declarations, storage class, storage duration

storage duration — Definition
The term storage duration refers to how long a given object is retained within memory. There are
two varieties of storage duration: static and automatic.

An object with static storage duration is retained throughout program execution. Its storage is
reserved, and the object is initialized only when the program begins execution. All string literals
have static duration, as do all objects that are declared globally — that is, declared outside of any
function.

An object with automatic duration is declared within a block of code. It endures within memory
only for the life of that block of code. Memory is allocated for the variable whenever that block is
entered and deallocated when the block is terminated, either by encountering the ‘}’ that closes the
block, or by exiting the block with goto, longjmp, or return.

LEXICON

450 storage-class specifiers — storage duration

A common practice is to declare all automatic variables at the beginning of a function. These
variables endure as long as the function is operating. If the function calls another function, then
these functions are stored away (usually in an special area of memory called the ‘‘stack’’), but they
cannot be accessed until the called function returns.

Cross-references
Standard, §3.1.2.4
The C Programming Language, ed. 2, p. 195

See Also
auto, identifiers, scope, static

strcat() — String handling (libc)
Append one string onto another
char *strcat(char *string1, const char *string2);

strcat copies all characters in string2, including the terminating null character, onto the end of the
string pointed to by string1. The null character at the end of string1 is overwritten by the first
character of string2.

strcat returns the pointer string1.

Example
The following example concatenates two strings.

#include <stdio.h>
#include <string.h>

char string1[80] = "The first string. ";
char string2[] = "The second string.";

main(void)
{

printf("result = %s\n", strcat(string1, string2));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.3.1
The C Programming Language, ed. 2, p. 250

See Also
string handling, strncat

Notes
string1 should point to enough reserved memory to hold itself and string2. Otherwise, data or code
will be overwritten.

strchr() — String handling (libc)
Find a character in a string
#include <string.h>
char *strchr(const char *string, int character);

strchr searches for character within string. The null character at the end of string is included within
the search. It is equivalent to the non-ANSI function index.

Internally, strchr converts character from an int to a char before searching for it within string.

LEXICON

strcat() — strchr() 451

strchr returns a pointer to the first occurrence of character within string. If character is not found, it
returns NULL.

Having strchr search for a null character will always produce a pointer to the end of a string. For
example,

char *string;
assert(strchr(string, ’\0’) == string + strlen(string));

will never fail.

Example
The following example creates functions called replace and trim. replace finds and replaces every
occurrence of an item within a string and returns the altered string. trim removes all trailing
spaces from a string, and returns a pointer to the altered string.

#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <stdio.h>

char *
replace(char *string, char item, char newitem)
{

char *start;

/* replacing 0 is too dangerous */
if ((start = string) == NULL || item == ’\0’)

return(start);
while ((string = strchr(string, item)) != NULL)

*string = newitem;
return(start);

}

char *
trim(char * str)
{

register char *endp;

if(str == NULL)
return(str);

/* start at end of string while in string and spaces */
for(endp = strchr(str, ’\0’);

endp != str && *--endp == ’ ’;)
*endp = ’\0’;

return(str);
}

char string1[] = "Remove trailing spaces ";
char string2[] = "Spaces become dashes.";
main(void)
{

printf("\"%s\"\n", trim(string1));
printf("%s\n", replace(string2, ’ ’, ’-’));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.2
The C Programming Language, ed. 2, p. 249

LEXICON

452 strchr()

See Also
index, memchr, strcspn, string handling, strpbrk, strrchr, strspn, strstr, strtok

strcmp() — String handling (libc)
Compare two strings
#include <string.h>
int strcmp(const char *string1, const char *string2);

strcmp lexicographically compares the string pointed to by string1 with the one pointed to by
string2. Comparison ends when a null character is encountered.

strcmp compares the two strings character by character until it finds a pair of characters that are
not identical. It returns a number less than zero if the character in string1 is less (i.e,. occurs
earlier in the character table) than its counterpart in string2. It returns a number greater than zero
if the character in string1 is greater (i.e,. occurs later in the character table) than its counterpart in
string2. If no characters are found to differ, then the strings are identical and strcmp returns zero.

Example
For an example of this function, see fflush.

Cross-references
Standard, §4.11.4.2
The C Programming Language, ed. 2, p. 250

See Also
memcmp, strcmp, strcoll, string handling, strncmp, strxfrm

Notes
strcmp differs from the memory-comparison routine memcmp in the following ways:

First, strcmp compares strings rather than areas of memory; therefore, it stops when it encounters
a null character.

Second, memcmp takes two pointers to void, whereas strcmp takes two pointers to char. The
following code illustrates how this difference affects these functions:

char carray[10];
int iarray[10];
char *s = "hi";

. . .
strcmp(carray, s) /* RIGHT */
memcmp(carray, s, 3) /* RIGHT */
strcmp(iarray, s) /* WRONG, 1st arg not char * */
memcmp(iarray, s, 3) /* RIGHT, args cast to void * */

It is wrong to use strcmp to compare an int array with a char array, because this function
compares strings. Using memcmp to compare an int array with a char array is permissible
because memcmp simply compares areas of data.

strcoll() — String handling (libc)
Compare two strings, using locale-specific information
#include <string.h>
int strcoll(const char *string1, const char *string2);

strcoll lexicographically compares the string pointed to by string1 with one pointed to by string2.
Comparison ends when a null character is read. strcoll differs from strcmp in that it uses
information concerning the program’s locale, as set by the function setlocale, to help compare

LEXICON

strcmp() — strcoll() 453

strings. It can be used to provide locale-specific collating. See localization for more information
about setting a program’s locale.

strcoll compares the two strings character by character until it finds a pair of characters that are
not identical. It returns a number less than zero if the character in string1 is less (i.e,. occurs
earlier in the character table) than its counterpart in string2. It returns a number greater than zero
if the character in string1 is greater (i.e,. occurs later in the character table) than its counterpart in
string2. If no characters are found to differ, then the strings are identical and strcoll returns zero.

Cross-references
Standard, §4.11.4.3
The C Programming Language, ed. 2, p. 250

See Also
localization, memcmp, strcmp, string handling, strncmp, strxfrm

Notes
The string-comparison routines strcoll, strcmp, and strncmp differ from the memory-comparison
routine memcmp in that they compare strings rather than regions of memory. They stop when they
encounter a null character, but memcmp does not.

strcpy() — String handling (libc)
Copy one string into another
#include <string.h>
char *strcpy(char *string1, const char *string2);

strcpy copies the string pointed to by string2, including the null character, into the area pointed to
by string1.

strcpy returns string1.

Example
For an example of this function, see realloc.

Cross-references
Standard, §4.11.2.3
The C Programming Language, ed. 2, p. 249

See Also
memcpy, memset, string handling, strncpy

Notes
If the region of memory pointed to by string1 overlaps with the string pointed to by string2, the
behavior of strcpy is undefined.

string1 should point to enough reserved memory to hold string2, or code or data will be overwritten.

strcspn() — String handling (libc)
Return length a string excludes characters in another
#include <string.h>
size_t strcspn(const char *string1, const char *string2);

strcspn compares string1 with string2. It then returns the length, in characters, for which string1
consists of characters not found in string2.

LEXICON

454 strcpy() — strcspn()

Example
The following example returns a pointer to the first white-space character in a string. White space
is defined as space, tab, or newline.

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

char *
nextwhite(char *string)
{

size_t skipcount;

if(string == NULL)
return NULL;

skipcount = strcspn(string, "\t \n");
return(string + skipcount);

}

char string1[] = "My love is like a red, red, rose";

main(void)
{

printf(nextwhite(string1));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.3
The C Programming Language, ed. 2, p. 250

See Also
memchr, strchr, string handling, strpbrk, strrchr, strspn, strstr, strtok

stream — Definition
The term stream is a metaphor for the flow of data between a C program and either an external I/O
device (e.g., a terminal) or a file stored on a semi-permanent medium (e.g., disk or tape). A program
can read data from a stream, write data into it, or (in the case of a file) directly access any named
portion of it.

The Standard describes two types of stream: the binary stream and the text stream.

A binary stream is simply a sequence of bytes. The Standard requires that once a program has
written a sequence of bytes into a stream, it should be able to read back the same sequence of bytes
unchanged from that stream — with the sole exception that, in some environments, one or more
null characters may be appended to the end of the sequence.

A text stream, on the other hand, consists of characters that have been organized into lines. A line
in turn, consists of zero or more characters terminated by a newline character. Under MS-DOS, a
text stream is practically identical to a binary stream, with the exception that it cannot read or write
characters other than alphanumeric characters, the null character, and the newline character.

The Standard mandates that when data are written into a binary file, the file is not truncated.
Under Let’s C, the same is true for text files.

The Standard also mandates that an implementation should be able to handle a line that is BUFSIZ
characters long, which includes the terminating newline character. BUFSIZ is a macro that is
defined in the header stdio.h, and must be defined to be equal to at least 256.

The maximum number of streams that can be opened at any one time is given by the macro

LEXICON

stream 455

FOPEN_MAX. Under Let’s C, this is 20, including stdin, stdout, and stderr.

Cross-references
Standard, §4.9.2
The C Programming Language, ed. 2, p. 241

See Also
buffer, file, line, STDIO, stdio.h

strerror() — String handling (libc)
Translate an error number into a string
#include <string.h>
char *strerror(int error);

strerror helps to generate an error message. It takes the argument error, which presumably is an
error code generated by an error condition in a program, and may return a pointer to the
corresponding error message.

The error numbers recognized and the texts of the corresponding error messages all depend upon
the implementation.

Example
This example prints the user’s error message and the standard error message before exiting.

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stddef.h>

fatal(char * msg)
{

int save;

save = errno;
/* this may clobber errno */
fprintf(stderr, "%s", msg);
if (save)

fprintf(stderr, ": %s", strerror(save));
fprintf(stderr, "\n");
exit(save);

}

main(void)
{

/* guaranteed wrong */
sqrt(-1.0);
fatal("What does sqrt say to -1?");
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.6.2
The C Programming Language, ed. 2, p. 250

See Also
error codes, errors, perror, string handling

LEXICON

456 strerror()

Notes
strerror returns a pointer to a static array that may be overwritten by a subsequent call to strerror.

strerror differs from the related function perror in the following ways: strerror receives the error
number through its argument error, whereas perror reads the global constant errno. Also, strerror
returns a pointer to the error message, whereas perror writes the message directly into the standard
error stream.

The error numbers recognized and the texts of the messages associated with each error number
depend upon the implementation. However, strerror and perror return the same error message
when handed the same error number.

strftime() — Time function (libc)
Format locale-specific time
#include <time.h>
size_t strftime(char *string, size_t maximum, const char *format,

const struct tm *brokentime);

The function strftime provides a locale-specific way to print the current time and date. It also gives
you an easy way to shuffle the elements of date and time into a string that suits your preferences.

strftime references the portion of the locale that is affected by the calls

setlocale(LC_TIME, locale);

or

setlocale(LC_ALL, locale);

For more information on setting locales, see the entry for localization.

string points to the region of memory into which strftime writes the date and time string it
generates. maximum is the maximum number of characters that can be written into string. string
should point to an area of allocated memory at least maximum+1 bytes long; if it does not, reserved
portions of memory may be overwritten.

brokentime points to a structure of type tm, which contains the broken-down time. This structure
must first be initialized by either of the functions localtime or gmtime.

Finally, format points to a string that contains one or more conversion specifications, which guide
strftime in building its output string. Each conversion specification is introduced by the percent
sign ‘%’. When the output string is built, each conversion specification is replaced by the
appropriate time element. Characters within format that are not part of a conversion specification
are copied into string; to write a literal percent sign, use ‘‘%%’’.

strftime recognizes the following conversion specifiers:

a The locale’s abbreviated name for the day of the week.

A The locale’s full name for the day of the week.

b The locale’s abbreviated name for the month.

B The locale’s full name for the month.

c The locale’s default representation for the date and time.

d The day of the month as an integer (01 through 31).

H The hour as an integer (00 through 23).

LEXICON

strftime() 457

I The hour as an integer (01 through 12).

j The day of the year as an integer (001 through 366).

m The month as an integer (01 through 12).

M The minute as an integer (00 through 59).

p The locale’s way of indicating morning or afternoon (e.g, in the United States, ‘‘AM’’ or ‘‘PM’’).

S The second as an integer (00 through 59).

U The week of the year as an integer (00 through 53); regard Sunday as the first day of the week.

w The day of the week as an integer (0 through 6); regard Sunday as the first day of the week.

W The day of the week as an integer (0 through 6); regard Monday as the first day of the week.

x The locale’s default representation of the date.

X The locale’s default representation of the time.

y The year within the century (00 through 99).

Y The full year, including century.

Z The name of the locale’s time zone. If no time zone can be determined, print a null string.

Use of any conversion specifier other than the ones listed above will result in undefined behavior.

If the number of characters written into string is less than or equal to maximum, then strftime
returns the number of characters written. If, however, the number of characters to be written
exceeds maximum, then strftime returns zero and the contents of the area pointed to by string are
indeterminate.

Cross-references
Standard, §4.12.3.5
The C Programming Language, ed. 2, p. 256

See Also
asctime, ctime, date and time, gmtime, localtime, time_t, tm

Notes
strftime is modelled after the UNIX command date.

string.h — Header
#include <string.h>
string.h is the header that holds the declarations and definitions of all routines that handle strings
and buffers. For a list of these routines, see string handling.

Cross-references
Standard, §4.11
The C Programming Language, ed. 2, p. 249

See Also
header, string handling

LEXICON

458 string.h

string handling — Overview
#include <string.h>
The Standard describes 22 routines for handling strings and regions of memory. All are declared in
the header string.h.

String comparison
memcmp Compare two regions
strcmp Compare two strings
strcoll Compare two strings, using locale information
strncmp Compare one string with first n bytes of another
strxfrm Transform a string using locale information

String concatenation
strcat Concatenate two strings
strncat Concatenate one string with n bytes of another

String copying
memcpy Copy one region into another
memmove Copy one region into another with which it may overlap
strcpy Copy one string into another
strncpy Copy n bytes from one string into another

String miscellaneous
memset Fill a region with a character
strerror Return the text of a pre-defined error message
strlen Return the length of a string

String searching
memchr Find first occurrence of a character in a region
strchr Find first occurrence of a character in a string
strcspn Find how much of the initial portion of a string

consists of characters not found in another string
strpbrk Find first occurrence in one string of any character

from another string
strrchr Find last occurrence of a character within a string
strspn Find how much of the initial portion of string

consists only of characters from another string
strstr Find one string within another string
strtok Break a string into tokens

Cross-references
Standard, §4.11
The C Programming Language, ed. 2, p. 249

See Also
Library, string, string.h

Notes
Let’s C includes three additional functions for string searching: index, pnmatch, and rindex.

index and rindex are synonymous with, respectively, strchr and strrchr. They are included only to
support existing code, and it is recommended that they not be used in new code. pnmatch
resembles strstr, except that it allows you to include wildcards in the search pattern. See their
respective Lexicon entries for more information.

LEXICON

string handling 459

string literal — Definition
A string literal consists of zero or more characters that are enclosed by quotation marks ‘"’. For
example, the following is a string literal:

"This is a string literal."

Each character within a string literal is handled exactly as if it were within a character constant,
with the following exceptions: The apostrophe ´ may be represented either by itself or by the escape
sequence \´, and the quotation mark ‘"’ must be represented by the escape sequence \".

A string literal has static duration. Its type is array of char which is initialized to the string of
characters enclosed within the quotation marks.

If string literals are adjacent, the translator will concatenate them. For example, the string literals

"Here’s a string literal" "Here’s another string literal"

are automatically concatenated into one string literal.

If a string literal is not followed by another string literal, then the translator appends a null
character to the end of the string as a terminator.

If two or more string literals within the same scope are identical, then the translator may store only
one of them in memory and redirect to that one copy all references to any of the duplicate literals.
For this reason, a program’s behavior is undefined whenever it modifies a string literal.

A wide-character literal is a string literal that is formed of wide characters rather than ordinary, one-
byte characters. It is marked by the prefix ‘L’. For example, the following

L"This is a wide-character literal"

is stored in the form of a string of wide characters. See multibyte characters for more information
about wide characters.

Cross-references
Standard, §3.1.4
The C Programming Language, ed. 2, p. 194

See Also
", escape sequences, lexical elements, string, trigraphs

Notes
Because trigraph sequences are interpreted in translation phase 1, before string literals are parsed,
a string literal that contains trigraph sequences will be translated to a different string. This is a
quiet change that may break existing code.

strip — Command
Strip debug table from executable file
strip -drs file ...

strip removes the debug tables from a executable file that had been compiled with the -VCSD
option. It makes the executable file noticeably smaller.

See Also
cc, commands, nm, size

Notes
strip can be used only on fully linked files.

LEXICON

460 string literal — strip

strlen() — String handling (libc)
Measure the length of a string
size_t strlen(const char *string)

strlen counts the number of characters in string up to the null character that ends it. It returns the
number of characters in string, excluding the null character that ends it.

Example
The following example prints the length of an entered string.

#include <stddef.h>
#include <string.h>
#include <stdio.h>

main(void)
{

char buf[132];

printf("Enter something\n");
if(gets(buf) != NULL)

printf("You entered %lu characters\n",
(unsigned long)strlen(buf));

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.11.6.3
The C Programming Language, ed. 2, p. 250

See Also
string handling

strncat() — String handling (libc)
Append n characters of one string onto another
#include <string.h>
char *strncat(char *string1, const char *string2, size_t n);

strncat copies up to n characters from the string pointed to by string2 onto the end of the one
pointed to by string1. It stops when n characters have been copied or it encounters a null character
in string2, whichever occurs first. The null character at the end of string1 is overwritten by the first
character of string2.

strncat returns the pointer string1.

Example
The following example concatenates two strings to make a file name. It works for an operating
system in which a file name can have no more than eight characters, and a suffix of no more than
three characters.

#include <string.h>
#include <stdio.h>

LEXICON

strlen() — strncat() 461

char *
dosfilen(char *dosname, char *filename, char *filetype)
{

*dosname = ’\0’;
/* strncpy() doesn’t guarantee a NULL */
strncat(dosname, filename, 8);
strcat(dosname, ".");
return(strncat(dosname, filetype, 3));

}

main(void)
{

char dosname[13];

puts(dosfilen(dosname, "A_LONG_FILENAME",
"A_LONG_FILETYPE"));

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.11.3.2
The C Programming Language, ed. 2, p. 250

See Also
strcat, string handling

Notes
strncat always appends a null character onto the end of the concatenated string. Therefore, the
number of characters appended to the end of string1 could be as many as n+1. string1 should point
to enough allocated memory to hold itself plus n+1 characters; if it does not, data or code will be
overwritten.

strncmp() — String handling (libc)
Compare one string with a portion of another
#include <string.h>
int strncmp(const char *string1, const char *string2, size_t n);

strncmp compares string1 with n bytes of string2. Comparison ends when a null character is read.

strncmp compares the two strings character by character until it finds a pair of characters that are
not identical. It returns a number less than zero if the character in string1 is less (i.e,. occurs
earlier in the character table) than its counterpart in string2. It returns a number greater than zero
if the character in string1 is greater (i.e,. occurs later in the character table) than its counterpart in
string2. If no characters are found to differ, then the strings are identical and strncmp returns zero.
Comparison ends either when n bytes have been compared or a null character has been
encountered in either string. The null character is compared before strncmp terminates.

Example
The following example searches for a word within a string. It is a simple implementation of the
function strstr.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

LEXICON

462 strncmp()

void fatal(const char *string)
{

fprintf(stderr, "%s\n", string);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

int word, string, i;

if (--argc != 2)
fatal("Usage: example word string");

word = strlen(argv[1]);
string = strlen(argv[2]);
if (word >= string)

fatal("Word is longer than string being searched.");

/* walk down "string" and search for "word" */
for (i = 0; i < string - word; i++)

if (strncmp(argv[2]+i, argv[1], word) == 0) {
printf("%s is in %s.\n", argv[1], argv[2]);
exit(EXIT_SUCCESS);

}

/* if we get this far, "word" isn’t in "string" */
printf("%s is not in %s.\n", argv[1], argv[2]);
exit(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.4.4
The C Programming Language, ed. 2, p. 250

See Also
memcmp, strcmp, strcoll, string handling, strxfrm

Notes
The string-comparison routines strcoll, strcmp, and strncmp differ from the memory-comparison
routine memcmp in that they compare strings rather than regions of memory. They stop when they
encounter a null character, but memcmp does not.

strncpy() — String handling (libc)
Copy one string into another
#include <string.h>
char *strncpy(char *string1, const char *string2, size_t n);

strncpy copies n characters from the string pointed to by string2 into the area pointed to by string1.
Copying ends when n bytes have been copied or a null character is encountered in string2.

If string2 is less than n characters long, strncpy pads string1 with null characters until n characters
have been deposited.

strncpy returns string1.

Example
This example reads a file of names and changes them from the format

first_name [middle_initial] last_name

LEXICON

strncpy() 463

to the format:

last_name, first_name [middle_initial]

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define NNAMES 512
#define MAXLEN 60
#define PERIOD ’.’
#define SPACE ’ ’
#define COMMA ’,’
#define NEWLINE ’\n’

char *array[NNAMES];
char gname[MAXLEN], lname[MAXLEN];

main(int argc, char *argv[])
{

FILE *fp;
int count, num;
char *name, string[MAXLEN], *cptr, *eptr;
unsigned glength, length;

/* check number of arguments */
if (--argc != 1) {

fprintf (stderr, "Usage: example filename\n");
exit(EXIT_FAILURE);

}

/* open file */
if ((fp = fopen(argv[1], "r")) == NULL) {

fprintf(stderr, "Cannot open %s\n", argv[1]);
exit(EXIT_FAILURE);

}
count = 0;

/* get line and examine it */
while (fgets(string, MAXLEN, fp) != NULL) {

if ((cptr = strchr(string, PERIOD)) != NULL) {
cptr++;
cptr++;

} else if ((cptr=strchr(string, SPACE))!=NULL)
cptr++;

else continue;

strcpy(lname, cptr);
eptr = strchr(lname, NEWLINE);
*eptr = COMMA;

strcat(lname, " ");
glength = (unsigned)(strlen(string)-strlen(cptr));
strncpy(gname, string, glength);

name = strncat(lname, gname, glength);
length = (unsigned)strlen(name);
array[count] = (char *)malloc(length + 1);

strcpy(array[count],name);
count++;

}

LEXICON

464 strncpy()

for (num = 0; num < count; num++)
printf("%s\n", array[num]);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.11.2.4
The C Programming Language, ed. 2, p. 249

See Also
memcpy, memset, strcpy, string handling

Notes
string1 should point to enough reserved memory to hold n characters. Otherwise, code or data will
be overwritten.

If the region of memory pointed to by string1 overlaps with the string pointed to by string2, then the
behavior of strncpy is undefined.

strpbrk() — String handling (libc)
Find first occurrence of a character from another string
#include <string.h>
char *strpbrk(const char *string1, const char *string2);

strpbrk returns a pointer to the first character in string1 that matches any character in string2. It
returns NULL if no character in string1 matches a character in string2. The set of characters that
string2 points to is sometimes called the ‘‘break string’’. For example,

char *string = "To be, or not to be: that is the question.";
char *brkset = ",;";
strpbrk(string, brkset);

returns the value of the pointer string plus six. This points to the comma, which is the first
character in the area pointed to by string that matches any character in the string pointed to by
brkset.

Example
This example finds the first white-space character or punctuation character in a string and returns
a pointer to it. White space is defined as tab, space, and newline. Punctuation is defined as the
following characters:

! @ # $ % ^ & * () - + = ‘ ~
{ } [] : ; ’ " | / , . ?

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

char *
findseparator(char *string)
{

static char separators[] =
" \n\t!@#$%^&*()-+=‘’~{}[]:;\"|\\/,.?";

if(string == NULL)
return(NULL);

LEXICON

strpbrk() 465

return strpbrk(string, separators);
}

char string1[]="I shall arise and go now/And go to Innisfree."

main(void)
{

printf(findseparator(string1));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.4
The C Programming Language, ed. 2, p. 250

See Also
memchr, strchr, strcspn, string handling, strpbrk, strrchr, strspn, strstr, strtok

Notes
strpbrk resembles the function strtok in functionality, but unlike strtok, it preserves the contents
of the strings being compared. It also resembles the function strchr, but lets you search for any one
of a group of characters, rather than for one character alone.

strrchr() — String handling (libc)
Search for rightmost occurrence of a character in a string
#include <string.h>
char *strrchr(const char *string, int character);

strrchr looks for the last, or rightmost, occurrence of character within string. character is declared
to be an int, but is handled within the function as a char. Another way to describe this function is
to say that it performs a reverse search for a character in a string. It is equivalent to the non-ANSI
function rindex.

strrchr returns a pointer to the rightmost occurrence of character, or NULL if character could not be
found within string.

Example
This example truncates a string by replacing the character after the last terminating character with
a zero. It returns the truncated string.

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

char *
truncate(char *string, char endat)
{

char *endchr;

if(string!=NULL && (endchr=strrchr(string, endat))!=NULL)
*++endchr = ’\0’;

return(string);
}

char string1[] = "Here we go gathering nuts in May.";

LEXICON

466 strrchr()

main(void)
{

puts(truncate(string1, ’,’));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.5
The C Programming Language, ed. 2, p. 249

See Also
memchr, rindex, strchr, strcspn, string handling, strpbrk, strspn, strstr, strtok

strspn() — String handling (libc)
Return length a string includes characters in another
#include <string.h>
size_t strspn(const char *string1, const char *string2);

strspn returns the length for which string1 initially consists only of characters that are found in
string2. For example,

char *s1 = "hello, world";
char *s2 = "kernighan & ritchie";
strcspn(s1, s2);

returns two, which is the length for which the first string initially consists of characters found in the
second.

Example
This example returns a pointer to the first non-white-space character in a string. White space is
defined as a space, tab, or newline character.

#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>

char *
skipwhite(char *string)
{

size_t skipcount;

if (string == NULL)
return NULL;

skipcount = strspn(string, "\t \n");
return(string+skipcount);

}

char string1[] = "\t Inventor: One who makes an intricate\n";
char string2[] = "arrangement of wheels, levers, and springs,\n;
char string3[] = " and calls it civilization.\n";

main(void)
{

printf("%s", skipwhite(string1));
printf("%s", skipwhite(string2));
printf("%s", skipwhite(string3));
return(EXIT_SUCCESS);

}

LEXICON

strspn() 467

Cross-references
Standard, §4.11.5.6
The C Programming Language, ed. 2, p. 250

See Also
memchr, strchr, strcspn, string handling, strpbrk, strrchr, strstr, strtok

strstr() — String handling (libc)
Find one string within another
#include <string.h>
char *strstr(const char *string1, const char *string2);

strstr looks for string2 within string1. The terminating null character is not considered part of
string2.

strstr returns a pointer to where string2 begins within string1, or NULL if string2 does not occur
within string1.

For example,

char *string1 = "Hello, world";
char *string2 = "world";
strstr(string1, string2);

returns string1 plus seven, which points to the beginning of world within Hello, world. On the
other hand,

char *string1 = "Hello, world";
char *string2 = "worlds";
strstr(string1, string2);

returns NULL because worlds does not occur within Hello, world.

Example
This function counts the number of times a pattern appears in a string. The occurrences of the
pattern can overlap.

#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>

size_t
countpat(char *string, char *pattern)
{

size_t found_count = 0;
char *found;

if((found = string)==NULL || pattern==NULL)
return 0;

while((found = strstr(found, pattern)) != NULL) {
/* move past beginning of this one */
found++;
/* count it */
found_count++;

}
return(found_count);

}

LEXICON

468 strstr()

char string1[] = "Badges, Badges -- we need no stinking Badges.";
char string2[] = "Badges";

main(void)
{

printf("%s occurs %d times in %s\n",
string2, countpat(string1, string2), string1);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.11.5.7
The C Programming Language, ed. 2, p. 250

See Also
memchr, strchr, strcspn, string handling, strpbrk, strrchr, strspn, strtok

strtod() — General utility (libc)
Convert string to floating-point number
#include <stdlib.h>
double strtod(const char *string, char **tailptr);

strtod converts the string pointed to by string to a double-precision floating-point number.

strtod reads the string pointed to by string, and parses it into three portions: beginning, subject
sequence, and tail.

The beginning consists of zero or more white-space characters that begin the string.

The subject sequence is the portion of the string that will be converted into a floating-point number.
It begins when strtod reads a sign character, a numeral, or a decimal-point character. It can
include at least one numeral, at most one decimal point, and may end with an exponent marker
(either ‘e’ or ‘E’) followed by an optional sign and at least one numeral. Reading continues until
strtod reads either a second decimal-point character or exponent marker, or any other non-
numeral.

The tail continues from the end of the subject sequence to the null character that ends the string.

strtod ignores the beginning portion of the string. It then converts the subject sequence to a
double-precision number and returns it. Finally, it sets the pointer pointed to by tailptr to the
address of the first character of the string’s tail.

strtod returns the double generated from the subject sequence. If no subject sequence could be
recognized, it returns zero. If the number represented by the subject sequence is too large to fit into
a double, then strtod returns HUGE_VAL and sets the global constant errno to ERANGE. If the
number represented by the subject sequence is too small to fit into a double, then strtod returns
zero and again sets errno to ERANGE.

Example
For an example of using this function in a program, see sqrt.

Cross-references
Standard, §4.10.4
The C Programming Language, ed. 2, p. 251

See Also
atof, atoi, atol, errno, general utilities, strtol, strtoul

LEXICON

strtod() 469

Notes
The character that strtod recognizes as representing the decimal point depends upon the program’s
locale, as set by the function setlocale. See localization for more information.

Initial white space in the string pointed to by string is ignored. White space is defined as being all
characters so recognized by the function isspace; the current locale setting may affect the operation
of isspace.

strtok() — String handling (libc)
Break a string into tokens
#include <string.h>
char *strtok(char *string1, const char *string2);

strtok helps to divide a string into a set of tokens. string1 points to the string to be divided, and
string2 points to the character or characters that delimit the tokens.

strtok divides a string into tokens by being called repeatedly.

On the first call to strtok, string1 should point to the string being divided. strtok searches for a
character that is not included within string2. If it finds one, then strtok regards it as the beginning
of the first token within the string. If one cannot be found, then strtok returns NULL to signal that
the string could not be divided into tokens. When the beginning of the first token is found, strtok
then looks for a character that is included within string2. When one is found, strtok replaces it with
a null character to mark the end of the first token, stores a pointer to the remainder of string1
within a static buffer, and returns the address of the beginning of the first token.

On subsequent calls to strtok, set string1 to NULL. strtok then looks for subsequent tokens, using
the address that it saved from the first call. With each call to strtok, string2 may point to a different
delimiter or set of delimiters.

Example
The following example breaks command_string into individual tokens and puts pointers to the
tokens into the array tokenlist[]. It then returns the number of tokens created. No more than
maxtoken tokens will be created. command_string is modified to place ’\0’ over token separators.
The token list points into command_string. Tokens are separated by spaces, tabs, commas,
semicolons, and newlines.

#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>

tokenize(char *command_string, char *tokenlist[],
size_t maxtoken)

{
static char tokensep[]="\t\n ,;";
int tokencount;
char *thistoken;

if(command_string == NULL || !maxtoken)
return 0;

thistoken = strtok(command_string, tokensep);

for(tokencount = 0; tokencount < maxtoken &&
thistoken != NULL;) {

tokenlist[tokencount++] = thistoken;
thistoken = strtok(NULL, tokensep);

}

LEXICON

470 strtok()

tokenlist[tokencount] = NULL;
return tokencount;

}

#define MAXTOKEN 100
char *tokens[MAXTOKEN];
char buf[80];

main(void)
{

for(;;) {
int i, j;

printf("Enter string ");
fflush(stdout);
if(gets(buf) == NULL)

exit(EXIT_SUCCESS);

i = tokenize(buf, tokens, MAXTOKEN);
for(j = 0; j < i; j++)

printf("%s\n", tokens[j]);
}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.8
The C Programming Language, ed. 2, p. 250

See Also
memchr, strchr, strcspn, string handling, strpbrk, strrchr, strspn, strstr

strtol() — General utility (libc)
Convert string to long integer
#include <stdlib.h>
long strtol(const char *sptr, char **tailptr, int base);

strtol converts the string pointed to by sptr into a long.

base gives the base of the number being read, from 0 to 36. This governs the form of the number
that strtol expects. If base is zero, then strtol expects a number in the form of an integer constant.
See integer constant for more information. If base is set to 16, then the string to be converted may
be preceded by 0x or 0X.

strtol reads the string pointed to by sptr and parses it into three portions: beginning, subject
sequence, and tail.

The beginning consists of zero or more white-space characters that begin the string.

The subject sequence is the portion of the string that will be converted into a long. It is introduced
by a sign character, a numeral, or an alphabetic character appropriate to the base of the number
being read. For example, if base is set to 16, then strtol will recognize the alphabetic characters ‘A’
through ‘F’ and ‘a’ to ‘f’ as indicating numbers. It continues to scan until it encounters any
alphabetic character outside the set recognized for the setting of base, or the null character.

The tail continues from the end of the subject sequence to the null character that ends the string.

strtol ignores the beginning portion of the string. It then converts the subject sequence to a long.
Finally, it sets the pointer pointed to by tailptr to the address of the first character of the string’s tail.

LEXICON

strtol() 471

strtol returns the long that it has built from the subject sequence. If it could not build a number,
for whatever reason, it returns zero. If the number it builds is too large or too small to fit into a
long, it returns, respectively, LONG_MAX or LONG_MIN and sets the global variable errno to the
value of the macro ERANGE.

Cross-references
Standard, §4.10.1.5
The C Programming Language, ed. 2, p. 252

See Also
atof, atoi, atol, errno, general utility, strtod, strtoul

Notes
Initial white space in the string pointed to by string is ignored. White space is defined as being all
characters so recognized by the function isspace; the current locale setting may affect the operation
of isspace.

strtoul() — General utility (libc)
Convert string to unsigned long integer
#include <stdlib.h>
unsigned long strtoul(const char *sptr, char **tailptr, int base);

strtoul converts the string pointed to by sptr into an unsigned long.

base gives the base of the number being read, from 0 to 36. This governs the form of the number
that strtoul expects. If base is zero, then strtoul expects a number in the form of an integer
constant. See integer constant for more information. If base is set to 16, then the string to be
converted may be preceded by 0x or 0X.

strtoul reads the string pointed to by sptr and parses it into three portions: beginning, subject
sequence, and tail.

The beginning consists of zero or more white-space characters that begin the string.

The subject sequence is the portion of the string that will be converted into an unsigned long. It is
introduced by a sign character, a numeral, or an alphabetic character appropriate to the base of the
number being read. For example, if base is set to 16, then strtoul will recognize the alphabetic
characters ‘A’ through ‘F’ and ‘a’ to ‘f’ as indicating numbers. It continues to scan until it
encounters any alphabetic character outside the set recognized or the setting of base, or the null
character.

The tail continues from the end of the subject sequence to the null character that ends the string.

strtoul ignores the beginning portion of the string. It then converts the subject sequence to an
unsigned long. Finally, it sets the pointer pointed to by tailptr to the address of the first character of
the string’s tail.

strtoul returns the unsigned long that it has built from the subject sequence. If it could not build
a number, for whatever reason, it returns zero. If the number it builds is too large to fit into an
unsigned long, it returns ULONG_MAX and sets the global variable errno to the value of the macro
ERANGE.

Example
This example uses strtoul as a hash function for table lookup. It demonstrates both hashing and
linked lists. Hash-table lookup is the most efficient when used to look up entries in large tables;
this is an example only.

LEXICON

472 strtoul()

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*
* For fastest results, use a prime about 15% bigger
* than the table. If short of space, use a smaller prime.
*/

#define HASHP 11
struct symbol {

struct symbol *next;
char *name;
char *descr;

} *hasht[HASHP], codes[] = {

NULL, "a286", "frogs togs",
NULL, "xy7800", "doughnut holes",
NULL, "z678abc", "used bits",
NULL, "xj781", "black-hole varnish",
NULL, "h778a", "table hash",
NULL, "q167", "log(-5.2)",
NULL, "18888", "quid pro quo",
NULL, NULL, NULL /* end marker */

};

void
buildTable(void)
{

long h;
register struct symbol *sym, **symp;

for(symp = hasht; symp != (hasht + HASHP); symp++)
*symp = NULL;

for(sym = codes; sym->descr != NULL; sym++) {
/*
* hash by converting to base 36. There are
* many ways to hash, but use all the data.
*/

h = strtoul(sym->name, NULL, 36) % HASHP;
sym->next = hasht[h];
hasht[h] = sym;

}
}

struct symbol *
lookup(char *s)
{

long h;
register struct symbol *sym;

h = strtoul(s, NULL, 36) % HASHP;
for(sym = hasht[h]; sym != NULL; sym = sym->next)

if(!strcmp(sym->name, s))
return(sym);

return(NULL);
}

LEXICON

strtoul() 473

main(void)
{

char buf[80];
struct symbol *sym;

buildTable();
for(;;) {

printf("Enter name ");
fflush(stdout);

if(gets(buf) == NULL)
exit(EXIT_SUCCESS);

if((sym = lookup(buf)) == NULL)
printf("%s not found\n", buf);

else
printf("%s is %s\n", buf, sym->descr);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.10.1.5
The C Programming Language, ed. 2, p. 252

See Also
atof, atoi, atol, general utilities, strtod, strtol

Notes
This function has no historical usage, but provides greater functionality than does strtol.

Initial white space in the string pointed to by string is ignored. White space is defined as being all
characters so recognized by the function isspace. The current locale setting may affect the operation
of isspace.

struct — C keyword
The keyword struct introduces a structure. This is an aggregate data type that consists of a number
of fields, or members, each of which can have its own name and type.

The members of a structure are stored sequentially. Unlike the related type union, the elements of
a struct do not overlap. Thus, the size of a struct is the total of the sizes of all of its members, plus
any bytes used for alignment (if the implementation requires them). Aligning bytes may not be
inserted at the beginning of a struct, but may appear in its middle, or at the end. For this reason, it
is incorrect to assume that any two members of a structure abut each other in memory.

Any type may be used within a struct, including bit-fields. No incomplete type may be used; thus, a
struct may not contain a copy of itself, but it may contain a pointer to itself. A struct is regarded
as incomplete until its closing ‘}’ is read.

The members of a struct are stored in the order in which they are declared. Thus, a pointer to a
struct also points to the beginning of the struct’s first member.

The following is an example of a structure:

LEXICON

474 struct

struct person {
char name[30];
char st_address[25];
char city[20];
char state[2];
char zip[9];
char id_number[9];

} MYSELF;

This example defines a structure type person, as well as an instance of this type, called MYSELF.

Cross-references
Standard, §3.1.2.5, §3.5.2.1
The C Programming Language, ed. 2, pp. 127ff

See Also
alignment, member name, tag, types, union

strxfrm() — String handling (libc)
Transform a string
#include <string.h>
size_t strxfrm(char *string1, const char *string2, size_t n);

strxfrm transforms string2 using information concerning the program’s locale, as set by the
function setlocale. See localization for more information about setting a program’s locale.

strxfrm writes up to n bytes of the transformed result into the area pointed to by string1. It returns
the length of the transformed string, not including the terminating null character. The
transformation incorporates locale-specific material into string2.

If n is set to zero, strxfrm returns the length of the transformed string.

If two strings return a given result when compared by strcoll before transformation, they will return
the same result when compared by strcmp after transformation.

Cross-references
Standard, §4.11.4.5
The C Programming Language, ed. 2, p. 250

See Also
localization, memcmp, strcmp, strcoll, string handling, strncmp

Notes
If strxfrm returns a value equal to or greater than n, the contents of the area pointed to by string1
are indeterminate.

swab() — Extended function (libc)
Swap a pair of bytes
void swab(char *src, char *dest, unsigned short nb);

The ordering of bytes within a word differs from machine to machine. This may cause problems
when moving binary data between machines. swab interchanges each pair of bytes in the array src
that is n bytes long, and writes the result into the array dest. The length nb should be an even
number, or the last byte will not be touched. src and dest may be the same place.

LEXICON

strxfrm() — swab() 475

Example
This example prompts for an integer; it then prints the integer both as you entered it, and as it
appears with its bytes swapped.

#include <stdio.h>
#include <stdlib.h>
extern void swab(char *src, char *dest, unsigned short nb);

main(void)
{

short word;

printf("Enter an integer: \n");
scanf("%d", &word);
printf("The word is 0x%x\n", word);
swab(&word, &word, 2);
printf("The word with bytes swapped is 0x%x\n", word);
return(EXIT_SUCCESS);

}

See Also
byte ordering, extended miscellaneous

switch — C keyword
Select an entry in a table
switch (expression) statement

switch evaluates expression, jumps to the case label whose expression is equal to expression, and
continues execution from there. expression may evaluate to any integral type, not just an int. Every
case label’s expression is cast to the type of conditional before it is compared with expression.

If no case expression matches expression, switch jumps to the point marked by the default label. If
there is no default label, then switch does not jump and no statement is executed; execution then
continues from the ‘}’ that marks the end of the switch statement.

The program continues its execution from the point to which switch jumps, either until a break,
continue, goto, or return statement is read, or until the ‘}’ that encloses all of the case statements
is encountered.

All case labels are subordinate to the closest enclosing switch statement. No two case labels can
have expressions with the same value. However, if a case label introduces a secondary switch
statement, then that switch statement’s suite of case labels may duplicate the values used by the
case labels of the outer switch statement.

Example
For an example of this statement, see printf.

Cross-references
Standard, §3.6.4.2
The C Programming Language, ed. 2, pp. 58ff

See Also
break, case, default, if, statements

Notes
It is good programming practice always to use a default label with a switch statement. There may
be only one default label with any switch statement.

LEXICON

476 switch

The number of case labels that can be included with a switch statement may vary from
implementation to implementation. The Standard requires that every conforming implementation
allow a switch statement to have up to at least 257 case labels.

The first edition of The C Programming Language requires that conditional may evaluate to an int.
The Standard lifts this requirement: conditional may now be any integral type, from short to
unsigned long. Every expression associated with a case label will be altered to conform to the type
of conditional. Therefore, if a program depends upon conditional or any expression being an int, it
may work differently under a conforming translator. This is a quiet change that may break existing
code.

system() — General utility (libc)
Suspend a program and execute another
#include <stdlib.h>
int system(const char *program);

system provides a way to execute another program from within a C program. It suspends the
program currently being run, and passes the name pointed to by program to MS-DOS. When
program has finished executing, MS-DOS returns to the current program, which then continues its
operation.

If program is set to NULL, system checks to see if a command processor exists. In this case,
system returns zero if a command processor does not exist and nonzero if it does. If program is set
to any value other than NULL, then what system returns is defined by the implementation.

Example
This example execute system commands on request.

#include <stdio.h>
#include <stdlib.h>

syscmds(char * prompt)
{

for(;;) {
char buf[80];

printf(prompt);
fflush(stdout);
if(gets(buf) == NULL || !strcmp(buf, "exit"))

return;
system(buf);

}
}

main(void)
{

printf("Enter system commands: ");
syscmds(">");
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.10.4.5
The C Programming Language, ed. 2, p. 253

See Also
command processor, exit, general utilities

LEXICON

system() 477

