
R

raise() — Signal handling (libc)
Send a signal
#include <signal.h>
int raise(int signal);

raise sends signal to the program that is currently being executed. If called from within a signal
handler, the processing of this signal may be deferred until the signal handler exits.

Example
This example sets a signal, raises it itself, then allows the signal to be raised interactivly. Finally, it
clears the signal and exits.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

void gotcha(void);

void
setgotcha(void)
{

if(signal(SIGINT, gotcha) == SIG_ERR) {
printf("Couldn’t set signal\n");
abort();

}
}

void
gotcha(void)
{

char buf[10];

printf("Do you want to quit this program? <y/n> ");
fflush(stdout);
gets(buf);

if(tolower(buf[0]) == ’y’)
abort();

setgotcha();
}

main(void)
{

char buf[80];

setgotcha();
printf("Set signal; let’s pretend we get one.\n");
raise(SIGINT);

printf("Returned from signal\n");
/* <ctrl-c> may not work on all operating systems */
printf("Try typing <ctrl-c> to signal <enter> to exit");
fflush(stdout);
gets(buf);

LEXICON

raise() 403

if(signal(SIGINT, SIG_DFL) == SIG_ERR) {
printf("Couldn’t lower signal\n");
abort();

}

printf("Signal lowered\n");
exit(EXIT_SUCCESS);

}

Cross-references
Standard, §4.7.2.1
The C Programming Language, ed. 2, p. 255

See Also
signal, signal handling, signal.h

Notes
This function is derived from the UNIX function kill.

rand() — General utility (libc)
Generate pseudo-random numbers
#include <stdlib.h>
int rand(void)

rand generates and returns a pseudo-random number. The number generated is in the range of
zero to RAND_MAX, which equals 32,767.

rand will always return the same series of random numbers unless you change its seed, or
beginning-point, with srand. Without having first called srand, it is as if you had initially set seed
to one.

Example
This example produces a char that consists of random bits. The Standard’s description of rand
produces random ints, not random bits.

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>

unsigned char
bitrand(void)
{

register int i, r;

for(i = r = 0; i < CHAR_BIT; i++) {
r <<= 1;
if(((long)rand() << 1) < (long)RAND_MAX)

r++;
}
return(r);

}

main(void)
{

printf("Random stuff %02x %02x %02x\n",
bitrand(), bitrand(), bitrand());

return(EXIT_SUCCESS);
}

LEXICON

404 rand()

Cross-references
Standard, §4.10.2.2
The C Programming Language, ed. 2, p. 252

See Also
general utilities, RAND_MAX, srand

random access — Definition
In the context of computing, random access means that an entity can be accessed at any point, not
just at the beginning. This means that all points within memory can be accessed equally quickly.
This contrasts with sequential access, in which entities must be accessed in a particular order, so
that some entities take longer to access than do others.

A tape drive is an example of a sequential access device, i.e., the order in which data are read is
dictated by the order in which they stream past the tape head. Random-access memory (RAM) is an
example of random access. Hard disks and floppy disks combine elements of random access and
sequential access.

RAM, which usually consists of semiconductor integrated circuits, is also strictly random access. In
this regard, the term ‘‘RAM’’ is slightly misleading; a more accurate name would be ‘‘read/write
memory’’, to contrast RAM with read-only memory (ROM), which is also random access memory.

See Also
Definitions, read-only memory

read() — Extended function (libc)
Read from a file
short read(short fd, char *buffer, short n);

read reads up to n bytes of data from the file descriptor fd and writes them into buffer. The amount
of data actually read may be less than that requested if read detects EOF. The data are read
beginning at the current seek position in the file, which was set by the most recently executed read
or lseek routine. read advances the seek pointer by the number of characters read.

With a successful call, read returns the number of bytes read. Thus, zero bytes signals the end of
the file. It returns -1 if an error occurs, such as bad file descriptor, bad buffer address, or physical
read error.

Example
For an example of how to use this function, see the entry for open.

See Also
extended miscellaneous, fread

Notes
read is a low-level call that passes data directly to MS-DOS. It should not be intermixed with high-
level calls, such as fread, fwrite, or fopen.

read is not described in the ANSI Standard. A program that uses it does not conform strictly to the
Standard, and may not be portable to other compilers or environments.

LEXICON

random access — read() 405

read-only memory — Definition
As its name suggests, read-only memory, or ROM, is memory that can be read but not overwritten.
It most often is used to store material that is used frequently or in key situations, such as a
language interpreter or a boot routine.

See Also
Definitions, random access

realloc() — General utility (libc)
Reallocate dynamic memory
#include <stdlib.h>
void *realloc(void *ptr, size_t size);

realloc reallocates a block of memory that had been allocated with the functions calloc or malloc.
This function is often used to change the size of a block of allocated memory.

ptr points to the block of memory to reallocate. If ptr is set to NULL, then realloc behaves exactly
the same as malloc: it allocates the requested amount of memory and returns a pointer to it. size is
the new size of the block. If size is zero and ptr is not NULL, then the memory pointed to is freed.

realloc returns a pointer to the block of size bytes that it has reallocated. The pointer it returns is
aligned for any type of object. If it cannot reallocate the memory, it returns NULL. It calls abort if it
discoveres that the arena has been corrupted, which most often occurs by storing past the bounds
of an allocated block.

Example
This example concatenates two strings that had been created with malloc.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char *
combine(char **a, char **b)
{

if(NULL == *a) {
*a = *b;
*b = NULL;
return(*a);

}
else if(NULL == *b)

return(*a);

if((*a = realloc(*a, strlen(*a) + strlen(*b))) == NULL)
return(NULL);

return(strcat(*a, *b));
}

/* Copy a string into a malloc’ed hole. */
char *
copy(char *s)
{

size_t len;
char *ret;

LEXICON

406 read-only memory — realloc()

if(!(len = strlen(s)))
return(NULL);

if((ret = malloc(len)) == NULL)
return(NULL);

return(strcpy(ret, s));
}

main(void)
{

char *a, *b;

a = copy("A fine string. ");
b = copy("Another fine string. ");

puts(combine(&a, &b));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.10.3.4
The C Programming Language, ed. 2, p. 252

See Also
alignment, arena, calloc, free, general utility, lrealloc, malloc

Notes
If size is larger than the size of the block of memory that is currently allocated, the value of the
pointer that realloc returns is indeterminate — it may point to the old block of memory, or it may
not. If it is not, the contents of the old block of memory is copied to the new block.

record — Definition
A record is a set of data of a fixed length that has been given a unique identifier, and whose
structure conforms to an exact description. An example of a record is an entry in a file of names
and addresses: each entry has a fixed length, is marked by a unique identifier, and has a fixed
number of bytes set aside in fixed order to record name, address, city, state, and ZIP code.

What is called a ‘‘record’’ in Pascal is called a ‘‘structure’’ in C.

See Also
Definitions, field, struct

register — C keyword
Quick access required
register type identifier

The storage-class specifier register declares that identifier is to be accessed as quickly as possible.
Let’s C will keep it in a machine register, if one is available.

It is not permissible to take the address of an object declared with the register designator,
regardless of whether the implementation stores such an object in a machine register or not.

Example
For an example of using this specifier in a program, see srand.

Cross-references
Standard, §3.5.1
The C Programming Language, ed. 2, p. 83

LEXICON

record — register 407

See Also
storage-class identifiers

Notes
An implementation must document how it handles variables declared to be register. Practice
currently ranges from ignoring register declarations completely, to allowing a few register
declarations for objects of an appropriate type (typically integer or pointer), to ignoring the
designator and implementing a full global register allocation scheme.

register — Definition
A register is special high-speed memory within a microprocessor that can be addressed concisely
and within which data can be stored and modified. The size and the configuration of a
microprocessor’s registers affect its computing potential. Registers can be manipulated much faster
than RAM.

The routines in the Let’s C libraries generally assume that they have been called from C programs.
Thus, they may freely overwrite any registers that the compiler overwrites in its generated code.
Thus, for the i8086, a library routine that returns int returns its value in AX, and preserves SI, DI,
BP; in SMALL model, it will also preserve DS and ES. It can freely overwrite BX, CX, DX; in LARGE
model it will also overwrite DS and ES.

See Also
Definitions

remove() — STDIO (libc)
Remove a file
#include <stdio.h>
int remove(const char *filename);

remove breaks the link between between filename and the actual file that it represents. In effect, it
removes a file. Thereafter, any attempt to use filename to open that file will fail. It is equivalent to
the function unlink.

If you attempt to remove a file that is currently open, remove will fail. remove returns zero if it
could remove filename, and nonzero if it could not.

Example
This example removes the file named on the command line.

#include <stdio.h>
#include <stdlib.h>
main(int argc, char *argv[])
{

if(argc != 1) {
fprintf(stderr, "usage: remove filename\n");
exit(EXIT_FAILURE);

}

if(remove(argv[1])) {
perror("remove failed");
exit(EXIT_FAILURE);

}
return(EXIT_SUCCESS);

}

LEXICON

408 register — remove()

Cross-references
Standard, §4.9.4.1
The C Programming Language, ed. 2, p. 242

See Also
file operations, rename, tmpfile, tmpnam

rename() — STDIO (libc)
Rename a file
#include <stdio.h>
rename(const char *old; const char *new);

rename changes the name of a file, from the string pointed to by old to the string pointed to by new.
Both old and new must point to a valid file name. If new points to the name of a file that already
exists, the old file is replaced by the file being renamed.

rename returns zero if it could rename the file, and nonzero if it could not. If rename could not
rename the file, its name remains unchanged.

Example
This example renames the file named in the first command-line argument to the name given in the
second argument.

#include <stdio.h>
#include <stdlib.h>

main(int argc, char *argv[])
{

if(argc != 3) {
fprintf(stderr, "usage: rename from to\n");
exit(EXIT_FAILURE);

}

if(rename(argv[1], argv[2])) {
perror("rename failed");
exit(EXIT_FAILURE);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.4.2
The C Programming Language, ed. 2, p. 242

See Also
remove, STDIO, tmpfile, tmpnam

Notes
rename will fail if the file it is asked to rename is open, or if its contents must be copied in order to
rename it.

return — C keyword
Return to calling function
return;
return expression;

LEXICON

rename() — return 409

return is a statement that forces a function to return immediately to the function that called it.

return may also evaluate expression and pass its value to the calling function; the calling function
regards this value as the value of the called function.

return can return a value to the calling function only if the called function was not declared to have
a return type of void. The calling function is, of course, free to ignore the value return hands it.

If the called function is declared to return a type other than what return is actually returning, the
value passed by return will be altered to conform to what the function was declared to return. For
example,

main(void)
{

printf("%s\n", example());
}

char *example(void)
{

return "This is a string";
}

the pointer returned by example will be changed to an int before being returned to main. This is
because example is declared implicitly within main, and a function that is declared implicitly is
assumed to return an int. In environments where an int and a pointer are the same length, this
code will work correctly. However, it will fail in environments where an int and a pointer have
different lengths.

A function may have any number of return statements within it; however, a function can return
only one value to the function that called it.

Reaching the last ‘}’ in a function is equivalent to calling return without an expression.

Cross-references
Standard, §3.6.6.4
The C Programming Language, ed. 2, p. 70

See Also
break, C keywords, continue, goto, statements

Notes
If a program uses what is returned by a function as a value, and that function uses return without
an expression, the behavior of the program is undefined.

rewind() — STDIO (libc)
Reset file-position indicator
#include <stdio.h>
void rewind(FILE *fp);

rewind resets the file-position indicator to the beginning of the file associated with stream fp. It is
equivalent to:

(void)fseek(fp, 0L, SEEK_SET);

rewind, unlike fseek, clears the error indicator for fp.

In previous releases of Let’s C, rewind returned an int. It now returns nothing. This change was
made to conform with the ANSI Standard, and may force some code to be rewritten.

LEXICON

410 rewind()

Cross-references
Standard, §4.9.9.5
The C Programming Language, ed. 2, p. 248

See Also
fgetpos, file positioning, fseek, fsetpos, ftell

rindex() — Extended function (libc)
Find a character in a string
char *rindex(char *string, char character);

rindex scans string for the last occurrence of character. If it finds character, it returns a pointer to it.
If rindex does not find character, it returns NULL.

rindex is equivalent to the ANSI function strchr.

Example
This example uses rindex to help strip a sample file name of the path information. The path-name
separator is ‘\’. The separator must be doubled so that Let’s C will not interpret it as introducing
an escape character.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define PATHSEP ’\\’ /* path name separator */

char *
basename(char *path)
{

char *cp;
return (((cp = rindex(path, PATHSEP)) == NULL)

? path : ++cp);
}

main(void)
{

char *testpath = "A:\\foo\\bar\\baz";

printf("Before massaging: %s\n", testpath);
printf("After massaging: %s\n", basename(testpath));
return(EXIT_SUCCESS);

}

See Also
extended miscellaneous, index, memchr, strrchr

Notes
This function is identical to the ANSI function strrchr. It is recommended that you use strrchr
instead of rindex so that your programs will more closely approach strict conformity with the
Standard.

runtime startup — Overview
The C runtime startup is a routine that is linked with a C program as the first part of an executable
program. It performs the tasks needed to start and terminate the C environment. To begin the
program, it initializes the stack and calls main; to conclude the program, it calls exit with the
return value from main.

LEXICON

rindex() — runtime startup 411

Let’s C includes the following runtime startup routines:

crts0xs.obj SMALL model
crts0xl.obj LARGE model

The runtime startups used with the option -VCSD generate executable files that can be debugged
with the Mark Williams C source debugger csd.

All of the above routines call _main. Depending upon which options you use to the cc command,
these routines in turn can call one or more of the following object modules:

csdxl.obj LARGE model, debug information for csd
csdxs.obj SMALL model, debug information for csd

fxl.obj LARGE model, floating point/8087 sensing
fxs.obj SMALL model, floating point/8087 sensing

fxl87.obj LARGE model, floating point/8087 only
fxs87.obj SMALL model, floating point/8087 only

naxl.obj LARGE model, no arguments to command line
naxs.obj SMALL model, no arguments to command line

nsxl.obj LARGE model, no STDIO in executable
nsxs.obj SMALL model, no STDIO in executable

wxl.obj LARGE model, wildcards on command line
wxs.obj SMALL model, wildcards on command line

See the Lexicon entry for cc for more information on the no STDIO (-ns) and wildcards (-w) options.

See Also
Environment, exargs, execall, function call, _main

Notes
Source code is included for some of the runtime startup routines. Note, however, that this code
should be edited only by experienced systems programmers.

rvalue — Definition
An rvalue is the value of an expression. The name comes from the assignment expression E1=E2;
in which the right operand is an rvalue.

Unlike an lvalue, an rvalue can be either a variable or a constant.

Although the term ‘‘rvalue’’ is commonly used among programmers, the Standard prefers the term
‘‘value of an expression’’.

Cross-references
The C Programming Language, ed. 2, pp

See Also
Definitions, lvalue

Notes
All non-void expressions have an rvalue.

LEXICON

412 rvalue

