
Q

qsort() — General utility (libc)
Sort an array
void qsort(void *array, size_t number, size_t size, int (*comparison)

(const void *arg1, const void *arg2));

qsort sorts the elements within an array. array points to the base of the array being sorted; it has
number members, each of which is size bytes long. In practice, array is usually an array of pointers
and size is the sizeof the object to which each points.

comparison points to the function that compares two members of array. arg1 and arg2 each point to
a member within array. The comparison routine must return a negative number, zero, or a positive
number, depending upon whether arg1 is, respectively, less than, equal to, or greater than arg2. If
two or more members of array are identical, their ordering within the sorted array is unspecified.

Example
This example prints the command-line arguments in alphabetical order.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
compar(char *cp1[], char *cp2[])
{

return(strcmp(*cp1, *cp2));
}

main(int argc, char *argv[])
{

qsort((void *)++argv, (size_t)--argc, sizeof(*argv), compar);

while(argc--)
printf("%s ", *argv++);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.10.5.2
The C Programming Language, ed. 2, p. 87
The Art of Computer Programming, vol. 3

See Also
bsearch, general utilities

Notes
The name ‘‘qsort’’ reflects the fact that most implementations of this function (including Let’s C) use
C. A. R. Hoare’s ‘‘quicksort’’ algorithm. This algorithm is recursive and makes heavy use of the
stack. It is also specified by the Association for Computing Machinery’s algorithm 271.

Quicksort works on the basis of partitioning its input, and is highly dependent on the first element
that starts the partitioning process. Given appropriate data, it can have a worst-case performance of
O(n^2).

LEXICON

402 qsort()


