
P

parameter — Definition
The term parameter refers to an object that is declared with a function or a function-like macro.

With a function, a parameter is declared within a function declaration or definition. It acquires a
value when the function is entered. For example, in the following declaration

FILE *fopen (const char *file, const char *mode);

file and mode are both objects that are declared within the function declaration. Both parameters
will acquire their values when fopen is called.

With a function-like macro, a parameter is one of the identifiers that is bracketed by parantheses
and separated by commas. For example, in the following example:

#define getchar(parameter) getc(stdin, parameter)

parameter is the identifier used with the macro getchar.

The scope of a function parameter is the block within which it is enclosed. The scope of a parameter
to a function-like macro is the logical source line of the macro’s definition.

Cross-references
Standard, §1.6
The C Programming Language, ed. 2, p. 202

See Also
argument, Definitions, function definition, scope

Notes
The Standard uses the term ‘‘argument’’ when it refers to the actual arguments of a function call or
macro invocation. It uses the term ‘‘parameter’’ to refer to the formal parameters given in the
definition of the function or macro.

PATH — Environmental variable
Directories that hold executable files

PATH names a default set of directories that are searched by MS-DOS when it seeks an executable
file. You can set PATH with the MS-DOS command path. For example, typing

path c:\bin;a:\bin

tells MS-DOS to search for executable files first in c:\bin, and then in a:\bin.

For more information on the path command, see your MS-DOS user’s manual.

See Also
environmental variable, path.h

path() — Access checking (libc)
Build a path name for a file
#include <path.h>
#include <stdio.h>
char *path(char *path, char *filename, int mode);

The function path builds a path name for a file.

LEXICON

parameter — path() 377

path points to the list of directories to be searched for the file. You can use the function getenv to
obtain the current definition of the environmental variable PATH, or use the default setting of PATH
found in the header file path.h, or, you can define path by hand.

filename is the name of the file for which path is to search. mode is the mode in which you wish to
access the file, as follows:

1 Execute the file
2 Write to the file
4 Read the file

path uses the function access to check the access status of filename. If path finds the file you
requested and the file is available in the mode that you requested, it returns a pointer to a static
area in which it has built the appropriate path name. It returns NULL if either path or filename are
NULL, if the search failed, or if the requested file is not available in the correct mode.

Example
This example accepts a file name and a search mode. It then tries to find the file in one of the
directories named in the PATH environmental variable.

#include <path.h>
#include <stdio.h>
#include <stdlib.h>

void
fatal(char *message)
{

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

char *env, *pathname;
int mode;

if (argc != 3)
fatal("Usage: findpath filename mode");

if(((mode=atoi(argv[2]))>4) || (mode==3) || (mode<1))
fatal("modes: 1=execute, 2=write, 3=read");

env = getenv("PATH");
if ((pathname = path(env, argv[1], mode)) != NULL) {

printf("PATH = %s\n", env);
printf("pathname = %s\n", pathname);
return(EXIT_SUCCESS);

} else
fatal("search failed");

}

See Also
access, access checking, access.h, PATH, path.h

path.h — Header
Declare path()
#include <path.h>

path.h is a header that declares the function path. It also contains a number of default definitions
for variables, including PATH and LIBPATH.

LEXICON

378 path.h

See Also
access checking, header, LIBPATH, path, PATH

pattern — Definition
A pattern is any combination of ASCII characters and wildcard characters that can be interpreted
by a command.

The function pnmatch compares two patterns and signals if they match.

See Also
Definitions, egrep, pnmatch, wildcard

peek() — Extended function (libc)
Extract a word from memory
unsigned peek(unsigned offs, unsigned seg);

peek examines an arbitrary location in memory. It reads a word (two bytes) located at the offset offs
and segment seg.

If your program is compiled into SMALL model, you can supply the offset/segment pair by using the
macro PTR.

The header file bios.h declares a structure that defines the entire MS-DOS BIOS data area. You can
use it to access an area within the BIOS data area for peeking or pokeing.

Example
This example reads the address where the IBM PC stores the current memory size.

#include <stdio.h>
#include <stdlib.h>
#define MEMSIZELOC 0x13

main(void)
{

extern unsigned peek();
int size;

size = (int)peek(MEMSIZELOC, 0x0);
printf("Memory size = %d Kbytes\n",size);
return EXIT_SUCCESS;

}

See Also
BIOS data area, bios.h, extended miscellaneous, peekb, poke, pokeb

peekb() — Extended function (libc)
Extract a byte from memory
unsigned peekb(unsigned offs, unsigned seg);

peekb examines an arbitrary location in memory. It reads a byte located at the offset offs and
segment seg.

Note that if your program is compiled into SMALL model, you can supply the offset/segment pair by
using the macro PTR.

Example
This example reads the MS-DOS location that holds the amount of memory on your machine.

LEXICON

pattern — peekb() 379

#include <stdio.h>
#include <stdlib.h>

main(void)
{

extern unsigned peekb();
unsigned hbyte, lbyte, word;

hbyte = peekb(0x14,0x0);
lbyte = peekb(0x13,0x0);
word = ((hbyte << 8) | lbyte);
printf("Memory size = %d Kbytes\n",(int)word);
return EXIT_SUCCESS;

}

See Also
_copy, csreg, extended miscellaneous, peek, poke, pokeb, PTR, _zero

perror() — STDIO (libc)
Write error message into standard error stream
#include <stdio.h>
void perror(const char *string);

perror checks the integer expression errno, then writes the message associated with the value of
errno into the standard error stream.

string points to a string that will prefix the error message, followed by a colon. For example, the call

perror("example");

ensures that the string

example:

will appear before any message that perror writes. If string is set to NULL, then the message will
have no prefix.

Example
For an example of this function, see feof.

Cross-references
Standard, §4.9.10.4
The C Programming Language, ed. 2, p. 248

See Also
clearerr, errno, error codes, feof, ferror, STDIO, strerror

Notes
perror differs from the related function strerror in that it writes the error message directly into the
standard error stream, instead of returning a pointer to the message.

The text of the message returned by strerror and the error-specific part of the message produced by
perror should be the same for any given error number.

The external array sys_errlist gives the list of messages used by perror. The external variable
sys_nerr gives the number of messages in the list.

LEXICON

380 perror()

picture() — Example
Format numbers under mask
double picture(double number, const char *mask, char *output);

picture uses a mask to format a double-precision number. It is designed to be used with programs
that require precise formatting of printed numbers.

picture formats a given number by using a mask string. It writes its output into the area pointed to
by output.

mask may contain any characters; however, only a few have special significance. Non-special
characters in mask are printed if, during execution, they are preceded by one or more numerals.
Trailing non-special characters print if the displayed number is negative.

picture returns all overflow as a double. For example, attempting to print -1234 with mask (ZZZ)
gives (234) and returns -1.

The following lists the special characters that control formatting within a mask:

9 Provides a slot for a number. For example, 5 with mask 999 CR gives 005<sp><sp><sp>,
whereas printing -5 with mask 999 CR gives 005 CR. ‘C’ and ‘R’ are not special characters,
but are taken literally.

Z Provide a slot for a number but supress leading zeroes. For example, printing 1034 with
mask ZZZ,ZZZ gives <sp><sp>1,034. The comma is not a special character, but is printed
literally.

J Provide a slot for a number but shrink out leading zeroes. For example, printing 1034 with
mask JJJ,JJJ gives 1,034.

K Provide a slot for a number but shrink out all zeroes. For example, printing 070884 with
mask K9/K9/K9 gives 7/8/84.

$ Print a dollar sign to the front of the displayed number. For example, printing 105 with
mask $Z,ZZZ gives <sp><sp>$105.

. Separate the number between decimal and integer portions. For example, printing 105.67
with mask ZZZ.999 gives 105.670.

T Provide a slot for a number, but supress trailing zeroes. For example, printing 105.670
with mask ZZ9.9TT gives 105.67<sp>.

S Provide a slot for a number, but shrink out trailing zeroes. For example, printing 105.600
with mask ZZ9.9SS gives 105.6.

- If you place a hyphen to the left of the mask, it is printed at the beginning of the number,
but only if it is negative. For example, printing 105 with mask -Z,ZZZ yields <sp><sp>105,
whereas printing -105 yields <sp><sp>-105.

(This character acts like the minus sign ‘-’, but prints a ‘(’. For example, printing 105 with
mask (ZZZ) gives <sp>105<sp>, whereas printing -5 gives <sp><sp>(5).

+ If placed to the left of the mask, this character floats to the front like the minus sign ‘-’, but
is replaced by a ‘-’ if the number is minus. For example, printing 5 with mask +ZZZ gives
<sp><sp>+5, whereas printing -5 gives <sp><sp>-5. Placed behind the mask, it is printed if
the number is positive, but is replaced by a minus sign ‘-’ if the number is negative. For
example, printing 5 with mask ZZZ+ gives <sp><sp>5+, whereas printing -5 gives
<sp><sp>5-.

LEXICON

picture() 381

* When placed to the left of the mask, this character fills all leading spaces to its right. For
example, printing 104.10 with mask *ZZZ,ZZZ.99 gives *****104.10, and printing 104.10
with mask *$ZZ,ZZZ.99 gives ****$104.10.

Example
For an example of picture, compile the source program picture.c with the option -DTEST.

See Also
example

Notes
For the source code of picture, see the file picture.c, which is included with Let’s C. picture is not
included in a library.

pnmatch() — Extended function (libc)
Match string pattern
short pnmatch(char *string, char *pattern, short flag);

pnmatch matches string with pattern, which is a regular expression.

pnmatch returns a positive number if pattern matches string, and zero if it does not.

Each character in pattern must exactly match a character in string. However, the wildcards ‘*’, ‘?’, ‘[’,
and ‘]’ can be used in pattern to expand the range of matching. See wildcards for more information
on what these symbols mean.

The flag argument must be either zero or one: zero means that pattern must match string exactly,
whereas one means that pattern can match any part of string. In the latter case, the wildcards ‘^’
and ‘$’ can also be used in pattern.

Example
This example looks for the pattern given by argv[1] in standard input or in file argv[2].

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAXLINE 128
char buf[MAXLINE];

void
fatal(char *message)
{

fprintf(stderr, "pnmatch: %s\n", message);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

/* Check that number of arguments is OK */
if (argc != 2 && argc != 3)

fatal("Usage: pnmatch pattern [file]");
if (argc==3 && freopen(argv[2], "r", stdin)==NULL)

fatal("cannot open input file");

LEXICON

382 pnmatch()

/* Get string, check with pattern */
while (fgets(buf, MAXLINE, stdin) != NULL)
{

if (pnmatch(buf, argv[1], 1))
printf("%s", buf);

}

if (!feof(stdin))
fatal("read error");

exit(EXIT_SUCCESS);
}

See Also
extended miscellaneous, strcmp, strncmp, strstr, wildcards

Notes
flag must be zero or one for pnmatch to yield predictable results.

pnmatch is not described in the ANSI standard. Programs that use it do not conform strictly to the
Standard, and may not be portable to other compilers or other environments.

pointer — Definition
A pointer is an object whose value is the address of another object. The name ‘‘pointer’’ derives from
the fact that its contents ‘‘point to’’ another object. A pointer may point to any type, complete or
incomplete, including another pointer. It may also point to a function, or to nowhere.

The term pointer type refers to the object of a pointer. The object to which a pointer points is called
the referenced type. For example, an int * (‘‘pointer to int’’) is a pointer type; the referenced type is
int. Constructing a pointer type from a referenced type is called pointer type derivation.

The Null Pointer
A pointer that points to nowhere is a null pointer. The macro NULL, which is defined in the header
stddef.h, defines the null pointer for a given implementation. The null pointer is an integer
constant with the value zero, or such a constant cast to the type void *. It compares unequal to a
pointer to any object or function.

Declaring a Pointer
To declare a pointer, use the indirection operator ‘*’. For example, the declaration

int *pointer;

declares that the variable pointer holds the address of an int-length object.

Likewise, the declaration

int **pointer;

declares that pointer holds the address of a pointer whose contents, in turn, point to an int-length
object. See declarations for more information.

Wild Pointers
Pointers are omnipresent in C. C also allows you to use a pointer to read or write the object to
which the pointer points; this is called pointer dereferencing. Because a pointer can point to any
place within memory, it is possible to write C code that generates unpredictable results, corrupts
itself, or even obliterates the operating system if running in unprotected mode. A pointer that aims
where it ought not is called a wild pointer.

When a program declares a pointer, space is set aside in memory for it. However, this space has not
yet been filled with the address of an object. To fill a pointer with the address of the object you wish

LEXICON

pointer 383

to access is called initializing it. A wild pointer, as often as not, is one that is not properly initialized.

Normally, to initialize a pointer means to fill it with a meaningful address. For example, the
following initializes a pointer:

int number;
int *pointer;

. . .
pointer = &number;

The address operator ‘&’ specifies that you want the address of an object rather than its contents.
Thus, pointer is filled with the address of number, and it can now be used to access the contents of
number.

The initialization of a string is somewhat different than the initialization of a pointer to an integer
object. For example,

char *string = "This is a string."

declares that string is a pointer to a char. It then stores the string literal This is a string in memory
and fills string with the address of its first character. string can then be passed to functions to
access the string, or you can step through the string by incrementing string until its contents point
to the null character at the end of the string.

Another way to initialize a pointer is to fill it with a value returned by a function that returns a
pointer. For example, the code

extern void *malloc(size_t variable);
char *example;

. . .
example = (char *)malloc(50);

uses the function malloc to allocate 50 bytes of dynamic memory and then initializes example to
the address that malloc returns.

Reading What a Pointer Points To
The indirection operator ‘*’ can be used to read the object to which a pointer points. For example,

int number;
int *pointer;

. . .
pointer = &number;

. . .
printf("%d\n", *pointer);

uses pointer to access the contents of number.

When a pointer points to a structure, the elements within the structure can be read by using the
structure offset operator ‘->’. See the entry for -> for more information.

Pointers to Functions
A pointer can also contain the address of a function. For example,

char *(*example)();

declares example to be a pointer to a function that returns a pointer to a char.

This declaration is quite different from:

char **different();

LEXICON

384 pointer

The latter declares that different is a function that returns a pointer to a pointer to a char.

The following demonstrates how to call a function via a pointer:

(*example)(arg1, arg2);

Here, the ‘*’ takes the contents of the pointer, which in this case is the address of the function, and
uses that address to pass to a function its list of arguments.

A pointer to a function can be passed to another function as an argument. The library functions
bsearch and qsort both take function pointers as arguments. A program may also use of arrays of
pointers to functions.

void *
void * is the generic pointer; it replaces char * in that role. A pointer may be cast to void * and
then back to its original type without any change in its value. void * is also aligned for any type in
the execution environment.

For more information on the use of the generic pointer, see void.

Pointer Conversion
One type of pointer may be converted, or cast, to another. For example, a pointer to a char may be
cast to a pointer to an int, and vice versa.

Any pointer may be cast to type void * and back again without its value being affected in any way.
Likewise, any pointer of a scalar type may be cast to its corresponding const or volatile version.
The qualified pointers are equivalent to their unqualified originals.

Pointers to different data types are compatible in expressions, but only if they are cast appropriately.
Using them without casting produces a pointer-type mismatch. The translator should produce a
diagnostic message when it detects this condition.

Pointer Arithmetic
Arithmetic may be performed on all pointers to scalar types. Pointer arithmetic is quite limited and
consists of the following:

1. One pointer may be subtracted from another.

2. An int or a long, either variable or constant, may be added to a pointer or subtracted from it.

3. The operators ++ or -- may be used to increment or decrement a pointer.

No other pointer arithmetic is permitted.

Cross-references
Standard, §3.1.2.5, §3.2.2.1, §3.2.2.3, §3.3.2.2-3, §3.5.4.1
The C Programming Language, ed. 2, pp. 93ff

See Also
NULL, types, void

Notes
The Rationale cautions against using NULL as an explicit argument to any function that expects a
pointer on the grounds that, under some environments, pointers to different data types may be of
different lengths. All such problems will be avoided if a function prototype is within the scope of the
function call. Then, NULL will be transformed automatically to the proper type of pointer. See
function prototype for more information.

LEXICON

pointer 385

pointer declarators — Definition
A pointer declarator declares a pointer.

An asterisk ‘*’ marks an identifier as being a pointer. For example:

int *example;

states that example is a pointer to int. Likewise, the use of two asterisks marks an identifier as
being a pointer to a pointer. For instance,

int **example;

declares a pointer to a pointer to an int. It is sometimes helpful to read a C declarator backwards,
i.e., from right to left, to decipher it.

A pointer declarator may be modified by the type qualifiers const or volatile. For example, the
declarator

int *const example;

declares that example is a constant pointer to a variable value of type int, whereas the declaration

const int *example;

declares that example is a variable pointer to a constant integer value. The same syntax applies to
volatile. The declaration

const int *const example;

declares a constant pointer to a constant int.

Cross-references
Standard, §3.5.4.1
The C Programming Language, ed. 2, p. 94

See Also
*, declarators, pointer

poke() — Extended function (libc)
Insert a word into memory
unsigned poke(unsigned offs, unsigned seg, unsigned data);

poke writes a word (two bytes) into an arbitrary location in memory. It writes the word data into
the memory location given by the segment seg and offset offs, and returns data.

If your program is compiled into SMALL model, you can supply the full offset/segment pair by using
the macro PTR. See its entry in the Lexicon for more information.

Example
This program will print a reverse video ‘A’ on an IBM-PC monochrome screen.

#include <stdlib.h>
main(void)
{

/* ’70’ = reverse video, ’41’= ’A’ */
poke(0x000, 0xB000, 0x7041);
return EXIT_SUCCESS;

}

LEXICON

386 pointer declarators — poke()

See Also
extended miscellaneous, pokeb, PTR, _zero

Notes
Because memory is not protected on the i8086, be careful that you have the correct memory
location when using poke.

pokeb() — Extended function (libc)
Insert a byte into memory
unsigned pokeb(unsigned offs, unsigned seg, unsigned data);

pokeb writes a byte of data into an arbitrary location of memory. It writes data into the memory
location given by the segment seg and offset offs, and returns data.

If your program is compiled into SMALL model, you can supply the full offset/segment pair by using
the macro PTR. See its entry in the Lexicon for more information.

Example
This program will print a ‘W’ in the upper left-hand corner of an IBM-PC monochrome screen.

#include <stdlib.h>
main(void)
{

pokeb(0x0000, 0xB000, 0x57);
return EXIT_SUCCESS;

}

See Also
extended miscellaneous, poke, PTR

Notes
Because memory is not protected on the i8086, be careful that you have the correct memory
location when using pokeb.

pokeb is not described in the ANSI Standard. All programs that use it do not conform strictly to the
Standard, and may not be portable to other compilers or environments.

port — Definition
A port passes data to and receives data from a remote device.

See Also
aux, com1, fclose, FILE, fopen, lpt1, prn, stream

portability — Definition
The term portability refers to a program’s ability to be translated and executed under more than one
environment. The Standard is designed so that if you adhere to it strictly, you will, in the words of
the Rationale, ‘‘have a ‘fighting chance’ to make powerful C programs that are also highly portable
....’’

Although true portability is an ideal that is difficult to realize, you can take a number of practical
steps to ensure that your code is portable:

• Do not assume that an integer and a pointer have the same size. Remember that undeclared
functions are assumed to return an int.

LEXICON

pokeb() — portability 387

• Do not write routines that depend on a particular order of code evaluation, particular byte
ordering, or particular length of data types, except for those specified within the Standard.

• Do not write routines that play tricks with a machine’s ‘‘magic characters’’. For example,
writing a routine that depends on a file’s ending with <ctrl-Z> instead of EOF ensures that that
code can run only under operating systems that recognize this magic character.

• Always use constant such as EOF and make full use of #define statements.

• Use headers to hold all machine-dependent declarations and definitions.

• Declare everything explicitly. In particular, be sure to declare functions as void if they do not
return a value. This avoids unforeseen problems with undefined return values.

• Do not assume that all varieties of pointer are the same or can point anywhere. On some
machines, for example, a char * is longer than an int *. On others, a function pointer aims at a
different space than does a data pointer.

• NULL should not be used as an explicit argument to any function that expects a pointer
because, under some environments, pointers to different data types may be of different lengths.
All such problems are avoided if a function prototype is within the scope of the function call.
Then, NULL is transformed automatically to the proper type of pointer.

• Always exit or return explicitly from main, even when the program has run successfully to its
end.

• int is the register size of the machine. Use short or long wherever size is a consideration.

• Inevitably, you will have code that is not 100% portable. Try to separate code that is machine-
specific or operating-system specific into its own file.

Cross-reference
The C Programming Language, ed. 2, p. 3

See Also
behavior, Definitions

pow() — Mathematics (libm)
Raise one number to the power of another
#include <math.h>
double pow(double z, double x);

pow calculates and returns z raised to the power of x.

Cross-references
Standard, §4.5.5.1
The C Programming Language, ed. 2, p. 251

See Also
mathematics, sqrt

Notes
A domain error occurs if z equals zero, if x is less than or equal to zero, or if z is less than zero and x
is not an integer.

LEXICON

388 pow()

pr — Command
Paginate and print files
pr [options] [file ...]

The command pr paginates each file and writes it into the standard output. The file name ‘-’ means
standard input. If no file is specified, pr reads the standard input.

On each page, pr writes a header that gives the date, file name, and page and line numbers. pr may
be used with the following options.

+n Skip the first n pages of each input file.

-n Print the text in n columns. This is used to print out material that was typed in one or
more columns.

-h header
Use header in place of the text name in the title. If header is more than one word long, it
must be enclosed within quotation marks.

-ln Set the page length to n lines (default, 66).

-m Print the texts simultaneously in separate columns. Each text will be assigned an equal
amount of width on the page. Any lines longer than that will be truncated. This is used to
print several similar texts or listings simultaneously.

-n Number each line as it is printed.

-sc Separate each column by the character c. You can separate columns with a letter of the
alphabet, a period, or an asterisk. Normally, each column is left justified in a fixed-width
field.

-t Suppress the printing of the header on each page, as well as the header and footer space.

-wn Set the page width to n columns (default, 80). Text lines are truncated to fit the column
width. The maximum width is 256 columns.

See Also
commands

preprocessing numbers — Definition
A preprocessing number is one of the intermediate lexical elements handled during translation
phases 1 through 6. As semantic analysis occurs in translation phase 7, the set of valid
preprocessing numbers forms a superset of valid C numeric tokens.

A preprocessing number is any floating constant or integer constant. A preprocessing number
begins with either a digit or a period ‘.’, and may consist of digits, letters, periods, and the character
sequences e+, e-, E+, or E-.

Cross-reference
Standard, §3.1.8

See Also
lexical elements, preprocessing, token, translation phases

LEXICON

pr — preprocessing numbers 389

printf() — STDIO (libc)
Format and print text into the standard output stream
#include <stdio.h>
int printf(const char *format ...);

printf constructs a formatted string and writes it into the standard output stream.

format points to a string that can contain text, character constants, and one or more conversion
specifications. A conversion specification describes how a particular type is to be converted into text.

Each conversion specification is introduced by the percent sign ‘%’, and is followed, in order, by one
or more of the following:

• A flag, which modifies the meaning of the conversion specification.

• An integer, which sets the minimum width of the field upon which the text is printed.

• A period and an integer, which sets the precision with which a number is printed.

• One of the following modifiers: h, l, or L. Their use is discussed below.

• Finally, a character that specifies the type of conversion to be performed. These are given
below. This is the only element required after a ‘%’.

After format can come one or more arguments. There should be one argument for each conversion
specification within format of the type appropriate to its conversion specifier. For example, if format
contains conversion specifications for an int, a long, and a string, then format should be followed by
three arguments, being, respectively, an int, a long, and a pointer to char.

If there are fewer arguments than conversion specifications, then printf’s behavior is undefined. If
there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding conversion specifier,
then the behavior of printf is undefined.

If it writes the formatted string correctly, printf returns the number of characters written;
otherwise, it returns a negative number. printf can generate a string that is up to at least 509
characters long.

The following sections describe in detail the elements of the conversion specification.

Conversion Specifiers
If format includes any conversion specifiers other than the ones shown below, the behavior is
undefined. If a union, an aggregate, or a pointer to a union or an aggregate is used as an
argument, behavior is undefined.

c Convert the int or unsigned int argument to a character.

d Convert the int argument to signed decimal notation.

D Convert the long argument to signed decimal. This specifier is not described in the Standard.
Programs that use it do not comply strictly with the Standard, and may not be portable to
other compilers or environments.

e Convert the double argument to exponential form. The format is

[-]d.dddddde+/-dd

At least one digit always appears to the left of the decimal point and as many as precision digits
to the right of it (default, six). If the precision is zero, then no decimal point is printed.

LEXICON

390 printf()

E Same as e, except that ‘E’ is used instead of ‘e’.

f Convert the double argument to a string of the form

[-]d.dddddd

At least one digit always appears to the left of the decimal point, and as many as precision
digits to the right of it (default, six). If the precision is zero, then no decimal point is printed.

g Convert the double argument to either of the formats e or f. The number of significant digits is
equal to the precision set earlier in the conversion specification. Normally, this conversion
selects conversion type f. It selects type e only if the exponent that results from such a
conversion is either less than -4 or greater than the precision.

G Same as g, except that it selects between conversion types E and f.

i Same as d.

n This conversion specification takes a pointer to an integer, into which it writes the number of
characters printf has generated to the current point within format. It does not affect the string
printf generates.

o Convert the int argument to unsigned octal digits.

O Convert the long argument to unsigned octal. This specifier is not described in the ANSI
Standard. Programs that use it do not conform strictly to the Standard, and may not be
portable to other compilers or environments.

p This conversion sequence takes a pointer to void. It translates the pointer into a set of
characters and prints them. What it generates is defined by the implementation.

r The next argument points to an array of new arguments that may be used recursively. The
first argument of the list is a char * that contains a new format string. When the list is
exhausted, the routine continues from where it left off in the original format string. This is
roughly equivalent to the library function vprintf.

This specifier is not described in the ANSI Standard. Programs that use it do not conform
strictly to the Standard, and may not be portable to other compilers or environments.

s Print the string to which the corresponding argument points; the argument must point to a C
string. It prints either the number of characters set by the precision, or to the end of the
string, whichever is less. If no precision is specified, then the entire string is printed.

u Convert the int argument to unsigned decimal digits.

U Convert the long argument to unsigned decimal. This specifier is not described in the ANSI
Standard. Programs that use it do not conform strictly to the Standard, and may not be
portable to other compilers or environments.

x Convert the int argument to unsigned hexadecimal characters. The values 10, 11, 12, 13, 14,
and 15 are represented, respectively, by ‘a’, ‘b’, ‘c’, ‘d’, and ‘e’.

X Same as x, except that the values 10, 11, 12, 13, 14, and 15 are represented, respectively, by
‘A’, ‘B’, ‘C’, ‘D’, and ‘E’. In previous releases of Let’s C, this specifier converted a long to
unsigned hexadecimal characters. This change was made to conform to the ANSI Standard,
and may require that some code be rewritten.

The description of each conversion specifier assumes that it will be used with an argument whose
type matches the type that the specifier expects. If the argument is of another type, it is cast to the
type expected by the specifier. For example,

LEXICON

printf() 391

float f;
printf("%d\n", f);

will truncate f to an int before printing its value.

Flags
The ‘%’ that introduces a conversion specification may be followed immediately by one or more of
the following flags:

- Left-justify text within its field. The default is to right-justify all output text within its field.

+ Precede a signed number with a plus or minus sign. For example,

printf("%+d %+d\n", -123, 123);

yields the following when executed:

-123 +123

<space>
If the first character of a signed number is its sign, then that sign is appended to the
beginning of the text string generated; if it is not a sign, then a space is appended to the
beginning of the text string. For example,

printf("% d\n", -123);
printf("% d\n", 123);

generates the following:

-123
123

This flag can be used with every conversion specifier for a numeric data type. It forces
printf to use a special format that indicates what numeric type is being printed. The
following gives the effect of this flag on each appropriate specifier:

e always retain decimal point
E always retain decimal point
f always retain decimal point
F always retain decimal point
g always retain decimal point; keep trailing zeroes
G always retain decimal point; keep trailing zeroes
x print ‘0x’ before the number
X print ‘0X’ before the number

Any specified precision is expanded by the appropriate amount to allow for the printing of
the extra character or characters. Using ‘#’ with any other conversion specifier yields
undefined results.

0 When used with the conversion specifiers d, e, E, f, g, G, i, o, u, x, or X, a leading zero
indicates that the field width is to be padded with leading zeroes instead of spaces. If
precision is indicated with the specifiers d, i, o, u, x, X, then the 0 flag is ignored; it is also
ignored if it is used with the - flag. If this flag is used with any conversion specifier other
than the ones listed above, behavior is undefined.

Field Width
The field width is an integer that sets the minimum field upon which a formatted string is printed.

LEXICON

392 printf()

If a field width is specified, then that many characters-worth of space is reserved within the output
string for that conversion. When the text produced by the conversion is smaller than the field
width, spaces are appended to the beginning of the text to fill out the difference; this is called
padding. Beginning the field width with a zero makes the padding character a ‘0’ instead of a space.
When the text is larger than the allotted field width, then the text is given extra space to allow it to
be printed. Setting the field width never causes text to be truncated.

By default, text is set flush right within its field; using the ‘-’ flag sets the text flush left within its
field.

Using an asterisk ‘*’ instead of an integer forces printf to use the corresponding argument as the
field width. For example,

char *string = "Here’s a number:";
int width = 12;
int integer = 123;
printf("%s%*d\n", string, width, integer);

produces the following text:

Here’s a number: 123

Here, width was used to set the field width, so 12 spaces were used to pad the formatted integer.

Precision
The precision is indicated by a decimal point followed by a number. If a decimal point is used
without a following number, then it is regarded as equivalent to ‘.0’.

The precision sets the number of characters to be printed for each conversion specifier. Setting the
precision to n affects each conversion specifier as follows:

d print at least n digits
e print n digits after decimal point
E print n digits after decimal point
f print n digits after decimal point
g print no more than n significant digits
G print no more than n significant digits
i print at least n digits
o print at least n digits
s print no more than n characters
u print at least n digits
x print at least n digits
X print at least n digits

The precision differs from the field width in that the field width controls the amount of space set
aside for the text, whereas the precision controls the number of characters to be printed. If the
amount of padding called for by the precision conflicts with that called for by the field width, the
amount called for by the precision is used.

Using an asterisk ‘*’ instead of an integer forces printf to use the corresponding argument as the
precision.

For example, this code

LEXICON

printf() 393

int foo = 12345;
float bar = 12.345;
char *baz = "Hello, world";

printf("Example 1: %7.6d\n", foo);
printf("Example 2: %7.6f\n", bar);
printf("Example 3: %7.6s\n", baz);

produces the following text when executed:

Example 1: 012345
Example 2: 12.345000
Example 3: Hello,

Modifiers
The following three modifiers may be used before a conversion specifier:

h When used before the specifiers d, i, o, u, x, or X, it specifies that the corresponding
argument is a short int or an unsigned short int. When used before n, it indicates that
the corresponding argument is a short int. In implementations where short int and int
are synonymous, it is not needed; however, it is useful in writing portable code.

l When used before d, i, o, u, x, or X, it specifies that the corresponding argument is a long
int or an unsigned long int. When used before ‘n’, it indicates that the corresponding
argument is a long int. In implementations where long int and int are synonymous, it is
not needed; however, it is useful in writing portable code.

L When used before e, E, f, F, or G, it indicates that the corresponding argument is a long
double.

Using h, l, or L before a conversion specifier other than the ones mentioned above results in
undefined behavior.

Default argument promotions are performed on the arguments. There is no way to suppress this.

Example
This example implements a mini-interpreter for printf statements. It is a convenient tool for seeing
exactly how some of the printf options work. To use it, type a printf conversion specification at the
prompt. The formatted string will then appear. To reuse a format identifier, simply type <return>.

#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* the replies go here */
static char reply[80];

/* ask for a string and echo it in reply. */
char *
askstr(char *msg)
{

printf("Enter %s ", msg);
fflush(stdout);

if(gets(reply) == NULL)
exit(EXIT_SUCCESS);

return(reply);
}

LEXICON

394 printf()

main(void)
{

char fid[80], c;

/* initialize to an invalid format identifier */
strcpy(fid, "%Z");

for(;;) {
askstr("format identifier");
/* null reply uses previous FID */
if(reply[0])

/* leave the ’%’ */
strcpy(fid + 1, reply);

switch(c = fid[strlen(fid) - 1]) {
case ’d’:
case ’i’:

askstr("signed number");
if(strchr(fid, ’l’) != NULL)

printf(fid, atol(reply));
else

printf(fid, atoi(reply));
break;

case ’o’:
case ’u’:
case ’x’:
case ’X’:

askstr("unsigned number");
if(strchr(fid, ’l’) != NULL)

printf(fid, atol(reply));
else

printf(fid, (unsigned)atol(reply));
break;

case ’f’:
case ’e’:
case ’E’:
case ’g’:
case ’G’:

printf(fid, atof(askstr("real number")));
break;

case ’s’:
printf(fid, askstr("string"));
break;

case ’c’:
printf(fid, *askstr("single character"));
break;

case ’%’:
printf(fid);
break;

case ’p’:
/* print pointer to format id */
printf(fid, fid);
break;

LEXICON

printf() 395

case ’n’:
printf("n not implemented");
break;

default:
printf("%c not valid", c);

}

printf("\n");
}

}

Cross-references
Standard, §4.9.6.3
The C Programming Language, ed. 2, p. 244

See Also
fprintf, sprintf, STDIO, vfprintf, vprintf, vsprintf

Notes
printf can construct and output a string at least 509 characters long.

The character that printf prints to represent the decimal point is affected by the program’s locale, as
set by the function setlocale. For more information, see localization.

Because the printf routines that print floating-point numbers are quite large, they are included only
optionally. If you wish to have printf print floats or doubles, you must compile your program with
the -f option to the cc command. See cc for more details.

prn — Operating system device
MS-DOS logical device for parallel port

MS-DOS gives names to its logical devices. Let’s C uses these names, to allow the STDIO library
routines to access these devices via MS-DOS.

prn is the logical device for the the parallel port.

Example
The following example checks to see if the parallel port can be opened.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

FILE *fp, *fopen();
if ((fp = fopen("prn","w")) != NULL)

fprintf(fp,"prn enabled.\n");
else printf("prn cannot open.\n");
return EXIT_SUCCESS;

}

See Also
aux, com1, con, lpt1, nul, operating system device

LEXICON

396 prn

process — Definition
A process is a program in the state of execution.

See Also
daemon, Definitions, file

program startup — Definition
Program startup occurs when the execution environment invokes the program. Execution begins,
and continues until program termination occurs. A program’s execution may be suspended by the
environment and resumed at a later time. The program, however, only starts once.

Cross-reference
Standard, §2.1.2

See Also
Environment, program termination

program termination — Definition
Program termination occurs when a program stops executing and returns control to the execution
environment. Program termination may be triggered when the program calls either of the functions
abort or exit, when main returns, when the environment or hardware raises a signal, or when
program termination has been requested by some other program or event.

There are two types of termination: unsuccessful and successful.

Unsuccessful termination occurs either when a program aborts due to a significant problem in its
operation (such as memory violation or division by zero), or when the program did not function as
expected (such as when a requested file cannot be found).

A program indicates unsuccessful termination either by calling the function exit with the argument
EXIT_FAILURE, by calling the function abort, or by using the function raise to generate the signal
SIGABRT. exit is used to stop a program that cannot perform correctly, but does not threaten the
integrity of the environment. abort and raise are used to stop a program that has gone seriously
wrong.

Successful termination is declared to occur when the program runs to its conclusion correctly. A
program indicates successful termination by calling the function exit with the argument
EXIT_SUCCESS, or when main returns EXIT_SUCCESS.

Cross-reference
Standard, §2.1.2, §4.10.4.1, §4.10.4.3

See Also
abort, environment, execution environment, exit, EXIT_FAILURE, EXIT_SUCCESS, main,
program startup, signal

pun — Definition
In the context of C, a pun occurs when a programmer uses one data form interchangeably with
another. Puns are supported by C’s willingness to apply implicit conversion rules.

A pun most often occurs unintentionally when the programmer fails to prototype or declare a
function that returns a pointer. By default, the function is then assumed to return an int, and is
handled as such. No trouble will arise if the program is run on a machine that defines an int and a
pointer to have the same length (e.g., i8086 SMALL model); however, such code cannot be
transported to an environment in which this is not the case (e.g., i8086 LARGE model).

LEXICON

process — pun 397

See Also
Definitions, pointer, portability

punctuators — Overview
A punctuator is a symbol that has syntactic meaning but does not represent an operation that yields
a value. All lexical elements that do not fall into another meaningful category are lumped together
as punctuators.

Most often, a punctuator is used to mark or delimit an identifier or a portion of code, rather than
modify it.

The set of punctuators consists of the following:

[] Mark an array/delimit its size
() Mark a parameter/argument list
{} Delimit a block of code or a function
* Identify a pointer type in a declaration
, Delimit a function argument
: Delimit a label
; Mark end of a statement
... (ellipsis) Indicate function takes flexible number of arguments
Indicate a preprocessor directive

The punctuators

{ } [] ()

must be used in pairs.

A symbol that acts as a punctuator may also act as an operator, depending upon its context.

Cross-reference
Standard, §3.1.6

See Also
lexical elements, operators, statements

putc() — STDIO (stdio.h)
Write a character into a stream
#include <stdio.h>
int putc(int character, FILE *fp);

putc writes character into the stream pointed to by fp.

putc returns character if it was written correctly. Otherwise, it sets the error indicator for fp and
returns EOF.

Example
This example writes newline characters into a file until the disk is full. Because this example uses
the function tmpfile, the file it writes disappears when the program terminates. It is not
recommended that you run this program on a multi-user system.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

LEXICON

398 punctuators — putc()

main(void)
{

long count;
FILE *tmp;

if((tmp = tmpfile()) == NULL) {
fprintf(stderr, "Can’t open tmp file\n");
exit(EXIT_FAILURE);

}

for(count = 0; putc(’\n’, tmp) != EOF; count++)
;

fprintf(stderr, "We wrote %ld characters\n", count);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.7.8
The C Programming Language, ed. 2, p. 247

See Also
getc, getchar, gets, putchar, puts, STDIO, ungetc

Notes
Because putc is implemented as a macro, fp may be read more than once. Therefore, one should
beware of the side-effects of evaluating the argument more than once, especially if the argument
itself has side-effects. See the entry for macro for more information. Use fputc if this behavior is
not acceptable.

putchar() — STDIO (stdio.h)
Write a character into the standard output stream
#include <stdio.h>
int putchar(int character);

putchar writes a character into the standard output stream. It is equivalent to:

putc(character, stdout);

putchar returns character if it was written correctly. If character could not be written, putchar sets
the error indicator for the stream associated with stdout and returns EOF.

Example
This example prints all of the printable ASCII characters.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

char c;

for(c = ’ ’; putchar(c) <= ’}’; c++)
;

return(EXIT_SUCCESS);
}

LEXICON

putchar() 399

Cross-references
Standard, §4.9.7.9
The C Programming Language, ed. 2, p. 247

See Also
getc, getchar, gets, puts, STDIO, ungetc

puts() — STDIO (libc)
Write a string into the standard output stream
#include <stdio.h>
int puts(char *string);

puts replaces the null character at the end of string with a newline character, and writes the result
into the standard output stream.

puts returns a non-negative number if it could write string correctly; otherwise, it returns EOF. In
previous versions of Let’s C, puts returned nothing. This was changed to conform to the ANSI
Standard.

Example
This example uses puts to print a string into the standard output stream.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

puts("Hello world.");
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.7.10
The C Programming Language, ed. 2, p. 247

See Also
putc, putchar, STDIO, ungetc

Notes
For historical reasons, fputs writes string unchanged, whereas puts appends a newline character.

putw() — Extended macro (xstdio.h)
Write word to stream
#include <xstdio.h>
short putw(short word, FILE *fp);

The macro putw writes word onto the file stream fp. It returns the value written.

putw differs from putc in that putw writes an int, whereas putc writes a char that is promoted to
an int.

putw returns EOF when an error occurs. You may need to call ferror to distinguish this value from
a genuine end-of-file flag.

See Also
extended STDIO, ferror, xstdio.h

LEXICON

400 puts() — putw()

Notes
Because putw is implemented as a macro, arguments with side effects may not work as expected.
The bytes of word are written in the natural byte order of the machine.

putw is not described in the ANSI Standard. A program that uses it does not conform strictly to the
Standard, and may not be portable to other compilers or environments.

The Standard requires that ANSI headers contain only functions that are described within the
Standard. Therefore, putw has been moved from stdio.h to xstdio.h.

LEXICON

putw() 401

