
N

name space — Definition
The term name space refers to the ‘‘list’’ where the translator records an identifier. Each name
space holds a different set of identifiers. If two identifiers are spelled exactly the same and appear
within the same scope but are not in the same name space, they are not considered to be identical.

The four varieties of name space, as follows:

Label names
The translator treats every identifier followed by a colon ‘:’ or that follows a goto statement
as a label.

Tags A tag is the name that follows the keywords struct, union, or enum. It names the type of
object so declared.

Members
A member names a field within a structure or a union. A member can be accessed via the
operators ‘.’ or ‘->’. Each structure or union type has a separate name space for its
members.

Ordinary identifiers
These name ordinary functions and variables. For example, the expression

int example;

declares the ordinary identifier example to name an object of type int.

The Standard reserves external identifiers with leading underscores to the implementor. To reduce
‘‘name-space pollution,’’ the implementor should not reserve anything that is not explicitly defined
in the Standard (macros, typedefs, etc.) and that does not begin with a leading underscore.

Example
The following program illustrates the concept of name space. It shows how the identifier foo can be
used numerous times within the same scope yet still be distinguished. This is extremely poor
programming style. Please do not write programs like this.

#include <stdio.h>
#include <stdlib.h>

/* structure tag */
struct foo {

/* structure member */
struct foo *foo;
int bar;

};

main(void)
{

/* ordinary identifier */
struct foo *foo;
int i = 0;

foo = (struct foo *)malloc(sizeof(foo));
foo->bar = ++i;
foo->foo = NULL;

LEXICON

366 name space

/* label */
foo: printf("Chain, chain, chain -- chain of \"foo\"s.\n");

if (foo->foo == NULL) {
foo->foo = (struct foo *)malloc(sizeof(foo));
foo->foo->foo = NULL;
foo->foo->bar = ++i;
goto foo;

}

printf("The foo loop executed %d times\n", foo->foo->bar);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §3.1.2.3

See Also
identifiers, linkage, scope

Notes
Pre-ANSI implementations disagree on the name spaces of structure/union members. The
Standard adopted the ‘‘Berkeley’’ rules, which state that every unique structure/union type has its
own name space for its members. It rejected the rules of the first edition of The C Programming
Language, which state that the members of all structures/unions reside in a common name space.

nested comments — Definition
Both The C Programming Language, ed. 2 and the draft ANSI standard declare that comments
cannot be nested. Earlier versions of Let’s C included a switch, called -VCNEST, that allowed a
programmer to nest comments. This switch has been removed. Current and future versions of
Let’s C abort compilation when they detect nested comments.

See Also
Definitions, Language

nm — Command
Print a program’s symbol table
nm [-adgnopru] file ...

nm prints the symbol table of each file. Each file argument must be a Let’s C object module.

The first argument selects one of several options. It is optional; if present, it must begin with ‘-’.
The options are as follows:

-a Print all symbols. Normally, nm prints names that are in C-style format and ignores symbols
with names inaccessible from C programs.

-d Print only defined symbol.

-g Print only global symbols.

-n Sort numerically rather than alphabetically. nm uses unsigned compares when sorting
symbols with this option.

-o Append the file name to the beginning of each output line.

-p Print symbols in the order in which they appear within the symbol table.

LEXICON

nested comments — nm 367

-r Sort in reverse-alphabetical order.

-u Print only undefined symbols.

By default, nm sorts symbol names alphabetically. Each symbol is followed by its value and its
OMF segment.

See Also
cc, commands, ld, size, strip

nondigit — Definition
In the context of identifiers, a nondigit is any one of the following characters:

_ a b c d e f g h
i j k l m n o p q
r s t u v w x y z
A B C D E F G H I
J K L M N O P Q R
S T U V W X Y Z

Cross-reference
Standard, §3.1.2

See Also
digit, identifiers

non-local jumps — Overview
At times, exceptional conditions arise in a program that make it desirable to jump to a previous
point within the program. goto can jump from one point to another within the same function, but it
does not permit a jump from one function to another. The setjmp/longjmp mechanism was
created to allow a program to jump immediately from one function to another, i.e., to perform a non-
local jump.

The macro setjmp reads the machine environment and stores the environment in the array
jmp_buf, which must be an array. The ‘‘machine environment’’ consists of the elements that
determine the behavior of the machine, e.g., the contents of machine registers. What constitutes the
machine environment will vary greatly from machine to machine. It may be impossible on some
machines to save such elements of the machine environment as register variables and the contents
of the stack or to restore the machine environment from within an extraordinarily complex
computation.

For example, consider the following:

{
int status[3][3][3], fn();
jmp_buf buf;
status[fn(1)][fn(2)][fn(3)] = setjmp(buf);

}

Here, the translator is trying to store the return value of setjmp into an array element with
extremely complex index computations. It cannot be guaranteed that on every machine, the proper
array element will be overwritten on reentry. For this reason, the Standard states that setjmp can
be expected to save the machine environment only if used in a simple expression, such as in an if or
switch statement.

The function longjmp jumps back to the point marked by the earlier invocation of setjmp. It
restores the machine environment that setjmp had saved. This allows longjmp to perform a non-
local jump.

LEXICON

368 nondigit — non-local jumps

A non-local jump can be dangerous. For example, many user-level routines cannot be interrupted
and reentered safely. Thus, improper use of longjmp and setjmp with them will create mysterious
and irreproducible bugs.

The Standard mandates that longjmp work correctly ‘‘in the contexts of interrupts, signals and any
of their associated functions.’’ Experience has shown, however, that longjmp should not be used
within an exception handler that interrupts STDIO routines.

longjmp must not restore the machine environment of a routine that has already returned.

Cross-references
Standard, §4.6
The C Programming Language, ed. 2, p. 254

See Also
jmp_buf, Library, setjmp.h

Notes
longjmp’s behavior is undefined if it is invoked from within a function that is called by a signal that
is received during the handling of another signal. See signal handling for more information on
signals.

notmem() — Extended function (libc)
Check if memory is allocated
int notmem(char *ptr);

notmem checks if a memory block has been allocated by calloc, malloc, or realloc. ptr points to the
block to be checked.

notmem searches the arena for ptr. It returns one if ptr is not a memory block obtained from
malloc, calloc, or realloc, and zero if it is.

See Also
arena, calloc, extended miscellaneous, free, malloc, realloc, setbuf

null directive — Definition
Directive that does nothing

A null directive is a preprocessing directive that consists only of a ‘#’ followed by <newline>. It does
nothing.

Cross-reference
Standard, §3.8.7

See Also
preprocessing

null pointer constant — Definition
A null pointer constant is an integral constant expression with the value of zero, or such a constant
that has been cast to type void *. When the null pointer constant is compared with a pointer for
equality, it is converted to the same type as the pointer before they are compared.

The null pointer constant always compares unequal to a pointer to an object or function. Two null
pointers will always compare equal, regardless of any casts.

LEXICON

notmem() — null pointer constant 369

Cross-references
Standard, §3.2.2.3
The C Programming Language, ed. 2, p. 102

See Also
conversions, NULL

null statement — Definition
A null statement is one that consists only of a semicolon ‘;’. Its syntax is as follows:

null statement:
;

A null statement performs no operations.

Cross-references
Standard, §3.6.3
The C Programming Language, ed. 2, p. 222

See Also
Definitions, statements

numerical limits — Overview
The Standard describes numerical limits for every arithmetic type. For integral types, it sets the
largest and smallest values that can be held in the given environment. For floating types, it also
gives values for the manner in which a floating-point number is encoded.

These limits are recorded in two groups of macros: one for integral types, and the other for floating
types. The groups of macros are kept, respectively, in the headers limits.h and float.h. The Lexicon
entries for these headers lists the Standard’s numerical limits.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
Environment

Notes
The ANSI Committee has tried to keep its numerical limits compatible with those given in IEEE
document 754, which describes a floating-point standard for binary number systems.

nybble — Definition
A nybble is four bits, or half of an eight-bit byte. The term is generally used to refer to the low four
bits or the high four bits of a byte. Thus, a byte may be said to have a ‘‘low nybble’’ and a ‘‘high
nybble’’. One nybble encodes one hexadecimal digit.

See Also
bit, byte, Definitions

LEXICON

370 null statement — nybble

