
M

main — Definition
main is the name of the function that is called when a program begins execution under a hosted
environment. A program must have one function named main. This function is special not only
because it marks the beginning of program execution, but because it is the only function that may
be called with either zero arguments or two arguments:

int main(void) { }

or

int main(int argc, char *argv[]) { }

Let’s C allows main to take three arguments. Programs that use more than two arguments to
main, however, do not conform strictly to the Standard.

The two standard arguments to main are called argc and argv. These names are used by
convention; a programmer may use any names he wishes.

argv points to an array of pointers to strings. These strings can modify the operation of the
program; thus, they are called program parameters. argc gives the number of strings in the array to
which argv points.

The third variable to main, which is specific to Let’s C, is envp. This variable points to an array of
pointers to environmental variables.

If main calls return, it is equivalent to its calling exit with the same parameter. For example, the
statement

return(EXIT_SUCCESS);

in main is equivalent to the call

exit(EXIT_SUCCESS);

If main returns without returning a value to the host environment, the value that is returned to the
host environment is undefined.

Cross-references
Standard, §2.1.2.2
The C Programming Language, ed. 2, pp. 6, 164

See Also
argc, argv, Environment, envp

main — Technical information
Introduce program’s main function

A C program consists of a set of functions, one of which must be called main. This function is called
from the runtime startup routine after the runtime environment has been initialized.

Programs can terminate in one of two ways. The easiest is simply to have the main routine return.
Control returns to the runtime startup; it closes all open file streams and otherwise cleans up, and
then returns control to the operating system, passing it the value returned by main as exit status.

In some situations (errors, for example), it may be necessary to stop a program, and you may not
want to return to main. Here, you can use exit; it cleans up the debris left by the broken program
and returns control directly to the operating system.

LEXICON

main — main 341

A second exit routine, called _exit, quickly returns control to the operating system without
performing any cleanup. This routine should be used with care, because bypassing the cleanup will
leave files open and buffers of data in memory.

Programs compiled by Let’s C return to the program that called them; if they return from main with
a value or call exit with a value, that value is returned to their caller. Programs that invoke other
programs through the system or execall functions check the returned value to see if these
secondary programs terminated successfully.

See Also
argc, argv, envp, exit, _exit, runtime startup

make — Command
Program building discipline
make [option ...] [argument ...] [target ...]

make helps you build programs that consist of more than one file of source code.

Complex programs often consist of several object modules, each of which is the product of compiling
a source file. A source file may refer to one or more include files, which can also be changed. Some
programs may be generated from specifications given to program generators, such as yacc.
Recompiling and relinking complicated programs can be difficult and tedious.

make regenerates programs automatically. It follows a specification of the structure of the program
that you write into a file called makefile. make also checks the date and time that MS-DOS has
recorded for each source file and its corresponding object module. To avoid unnecessary
recompilation, make will recompile a source file only if it has been altered since its object module
was last compiled.

The makefile
A makefile consists of three types of instructions: macro definitions, dependency definitions, and
commands.

A macro definition simply defines a macro for use throughout the makefile. For example, the macro
definition

FILES=file1.obj file2.obj file3.obj

The use of the equal sign ‘=’.

A dependency definition names the object modules used to build the target program, and source
files used to build each object module . It consists of the target name, or name of the program to be
created, followed by a colon ‘:’ and the names of the object modules that build it. For example, the
statement

example: $(FILES)

uses the macro FILES to name the object modules used to build the program example. Likewise,
the dependency definition

file1.obj: file1.c macros.h

defines the object module file1.obj as consisting of the source file file1.c and the header file
macros.h.

Finally, a command line details an action that make must perform to build the target program.
Each command line must begin with a space or tab character. For example, the command line

cc -o example $(FILES)

LEXICON

342 make

gives the cc command needed to build the program example. The cc command lists the object
modules to be used, not the source files.

Finally, you can embed comments within a makefile. make recognizes any line that begins with a
pound sign ‘#’ as being a comment, and ignores it.

make searches for makefile first in directories named in the environmental variable PATH, and
then in the current directory.

Dependencies
The makefile specifies which files depend upon other files, and how to recreate the dependent files.
For example, if the target file test depends upon the object module test.obj, the dependency is as
follows:

test: test.obj
cc -o test test.obj

make knows about common dependencies, e.g., that .obj files depend upon .c files with the same
base name. The target .SUFFIXES contains the suffixes that make recognizes.

make also has a set of rules to regenerate dependent files. For example, for a source file with suffix
.c and a dependent file with the suffix .obj, the target .c.obj gives the regeneration rule:

.c.obj:
cc -c $<

The -c option to the cc commands tells cc not to link or erase the compiled object module. $< is a
macro that make defines. It stands for the name of the file that causes the current action. The
default suffixes and rules are kept in the files mmacros and mactions. The dependencies can be
changed by editing these files.

Both of these must be kept in a directory named by the environmental variable LIBPATH. You can
set this variable with the set command. For example, placing the command

set LIBPATH=\bin;\lib

into autoexec.bat sets LIBPATH to \bin and \lib. If LIBPATH is not set, the default directory is
\lib.

Macros
To simplify the writing of complex dependencies, make provides a macro facility. To define a macro,
write

NAME = string

The string is terminated by the end-of-line character, so it can contain blanks. To refer to the value
of the macro, use a dollar sign ‘$’ followed by the macro name enclosed in parentheses:

$(NAME)

If the macro name is one character, parentheses are not necessary. make uses macros in the
definition of default rules:

.c.obj:
$(CC) $(CFLAGS) -c $<

where the macros are defined as

CC=cc
CFLAGS=-V

LEXICON

make 343

The other built-in macros are:

$* Target name, minus suffix
$@ Full target name
$< List of referred files
$? Referred files newer than target

Each command line argument should be a macro definition of the form

OBJECT=a.obj b.obj

You can override any built-in macro by resetting its value in the environment. For example, setting
the following environmental variable

set CFLAGS=-VLARGE, -VCSD

ensures that make will always interpret the macro CFLAGS as meaning -VLARGE, regardless of
how it is otherwise set in any file.

Options
The following lists the options that can be passed to make on its command line.

-d (Debug) Give verbose printout of all decisions and information going into decisions.

-f file file contains the make specification. If this option does not appear, make uses the file
makefile, which is sought first in the directories named in the PATH environmental
variable, and then in the current directory.

-i Ignore all errors from commands, and continue processing. Normally, make exits if a
command returns an error.

-n Test only; suppresses actual execution of commands.

-p Print all macro definitions and target descriptions.

-q Return a zero exit status if the targets are up to date. Do not execute any commands.

-r Do not use the built-in rules that describe dependencies.

-s Do not print command lines when executing them. Commands preceded by ‘@’ are not
printed, except under the -n option.

-t (Touch option) Force the dates of targets to be the current time, and bypass actual
regeneration.

See Also
as, cc, commands, ld

Diagnostics
make reports its exit status if it is interrupted or if an executed command returns error status. It
replies ‘‘Target name not defined’’ or ‘‘Don’t know how to make target name’’ if it cannot find
appropriate rules.

Notes
The order of items in mmacros\.SUFFIXES is significant. The consequent of a default rule (e.g.,
.obj) must precede the antecedent (e.g., .c) in the entry .SUFFIXES. Otherwise, make will not work
properly.

LEXICON

344 make

malloc() — General utility (libc)
Allocate dynamic memory
#include <stdlib.h>
void *malloc(size_t size);

malloc allocates a block of memory size bytes long.

malloc uses a circular, first-fit algorithm to select an unused block of at least size bytes, marks the
portion it uses, and returns a pointer to it. The function free returns allocated memory to the free
memory pool.

Each area allocated by malloc is rounded up to the nearest even number and preceded by an
unsigned int that contains the true length. Thus, if you ask for one byte, you will get four, and the
unsigned that precedes the newly allocated area will be set to four.

When an area is freed, its low order bit is turned on. Consolidation occurs when malloc passes over
an area as it searches for space. The end of each arena contains a block with a length of zero,
followed by a pointer to the next arena. Arenas point in a circle.

The most common problem with malloc occurs when a program modifies more space than it
allocates with malloc. This can cause later mallocs to go into a loop.

malloc returns a pointer to the block of memory it has allocated. The pointer is aligned for any type
of object. If it could not allocate the amount of memory requested, it returns NULL.

Example
For an example of this function, see realloc.

Cross-references
Standard, §4.10.3.3
The C Programming Language, ed. 2, p. 167

See Also
__end, alignment, arena, calloc, free, general utilities, lmalloc, realloc

Notes
If size is set to zero, the behavior of malloc is implementation defined: malloc returns either NULL
or a unique pointer. This is a quiet change that may silently break some existing code.

manifest constant — Definition
A manifest constant is a value that has been given a name.

The following demonstrates the definition of a manifest constant:

#define MAXFILES 9

Here, the constant MAXFILES is defined as having the value of nine. During the preprocessing
phase of translation, the translator will substitute the character ‘9’ for MAXFILES wherever it
appears — or behave as if it had made such a substitution.

These constants serve two purposes within a C program: First, a constant can be changed
throughout the program simply by changing its definition. Second, a programmer who reads the
program will find it easier to understand the meaning of a well-named manifest constant than to
understand its numeric analogue; for example, it is easy to grasp that MAXFILES represents the
maximum number of files, but it is not nearly as easy to understand what 9 means.

Manifest constants have file scope, unless undefined with an #undef directive.

LEXICON

malloc() — manifest constant 345

Cross-reference
The C Programming Language, ed. 2, p. 230

See Also
Definitions, macro, scope

Notes
The C Programming Language calls these constants symbolic constants.

math.h — Header
Header for mathematics functions
#include <math.h>

math.h is the header file that declares and defines mathematical functions and macros.

The Standard describes three manifest constants to be included in math.h, as follows:

EDOM Domain error
ERANGE Range error
HUGE_VAL Unrepresentable object

The first two are used to set the global variable errno to an appropriate value when, respectively, a
domain error or a range error occurs. HUGE_VAL is returned when any mathematics function
attempts to calculate a number that is too large to be encoded into a double.

Let’s C also includes 27 mathematics functions. For a listing of them, see mathematics.

Cross-references
Standard, §4.5
The C Programming Language, ed. 2, p. 250

See Also
header, mathematics

mathematics — Overview
The Standard describes 22 mathematics functions that are to be included with every conforming
implementation of C, as follows:

60u
Exponent-log functions

exp Compute exponential
frexp Fracture floating-point number
ldexp Load floating-point number
log Compute natural logarithm
log10 Compute common logarithm
modf Separate floating-point number

Hyperbolic functions
cosh Calculate hyperbolic cosine
sinh Calculate hyperbolic sine
tanh Calculate hyperbolic tangent

Integer, value, remainder
ceil Set integral ceiling of a number
fabs Compute absolute value
floor Set integral floor of a number
fmod Calculate modulus for floating-point number

LEXICON

346 math.h — mathematics

Power functions
pow Raise one number to the power of another
sqrt Calculate the square root of a number

Trigonometric functions
acos Calculate inverse cosine
asin Calculate inverse sine
atan Calculate inverse tangent
atan2 Calculate inverse tangent
cos Calculate cosine
sin Calculate sine
tan Calculate tangent

The Standard reserves all names that match those in this section and have a suffix of f or l, e.g.,
ftan or ltan. A future version of the Standard may provide additional library support for functions
that manipulate floats or long doubles.

Some existing implemetations may, on detection of domain or range errors, or other exceptional
conditions, allow the function in question to call a user-specified exception handler, matherr. UNIX
implementations have traditionally behaved this way. The Standard, in trying to accommodate a
wide range of floating-point implementations, does not allow this behavior.

Cross-references
Standard, §4.5
The C Programming Language, ed. 2, p. 250

See Also
domain error, range error, Library, math.h

Notes
The Standard excludes the functions ecvt, fcvt, and gcvt, on the grounds that everything they do
can be done more easily by the function sprintf.

maxmem — External data
extern unsigned int maxmem;
maxmem is an external variable that sets the maximum size of the program’s data area. You can
set maxmem in your program to protect a portion of memory from the memory allocation routine
sbrk. Otherwise, maxmem is set to the end of physical memory by the C runtime startup routine.

See Also
__end, Environment, malloc, sbrk

mblen() — General utility (libc)
Return length of a string of multibyte characters
#include <stdlib.h>
int mblen(const char *address, size_t number);

The function mblen checks to see if the number or fewer bytes of storage pointed to by address form
a legitimate multibyte character. If they do, it returns the number of bytes that comprise that
character. This function is equivalent to the call

mbtowc((wchar_t *)0, address, number);

If address is equivalent to NULL, then mblen returns zero if the current multibyte character set
does not have state-dependent encodings and nonzero if it does. If address is not NULL, then
mblen returns the following: (1) If address points to a null character, then mblen returns zero. (2)

LEXICON

maxmem — mblen() 347

If the number or fewer bytes pointed to by address forms a legitimate multibyte character, then
mblen returns the number of bytes that comprise the character. (3) Finally, if the number bytes
pointed to by address do not form a legitimate multibyte character, mblen returns -1. In no
instance is the value returned by mblen greater than number or the value of the macro
MB_CUR_MAX, whichever is less.

Cross-reference
Standard, §4.10.7.1

See Also
general utility, MB_CUR_MAX, mbtowc, wchar_t, wctomb

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

mbstowcs() — General utility (libc)
Convert sequence of multibyte characters to wide characters
#include <stdlib.h>
size_t mbstowcs(wchar_t *widechar, const char *multibyte, size_t number);

The function mbstowcs converts a sequence of multibyte characters to their corresponding wide
characters. It is the same as a series of calls of the type:

mbtowc(widechar, multibyte, MB_LEN_MAX);

except that the call to mbstowcs does not affect the internal state of mbtowc.

multibyte points to the base of the sequence of multibyte characters to be converted to wide
characters. widechars points to the area where the converted characters are written, and number is
the number of characters to convert. mbstowcs converts characters until either it reads a null
character, or until it has converted number characters. In the latter case, then, no null character is
written onto the end of the sequence of wide characters.

mbstowcs returns -1 cast to size_t if it encounters an invalid multibyte character before it has
converted number multibyte characters. Otherwise, it returns the number of multibyte characters it
converted to wide characters, excluding the null character that ends the sequence.

Cross-reference
Standard, §4.10.7.2

See Also
general utilities, wcstombs

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

mbtowc() — General utility (libc)
Convert a multibyte character to a wide character
#include <stdlib.h>
int mbtowc(wchar_t *charptr, const char *address, size_t number);

The function mbtowc converts number or fewer bytes at address from a multibyte character to a
wide character and stores the result in the area pointed to by charptr.

The behavior of mbtowc varies depending upon the values of address and charptr, as follows:

LEXICON

348 mbstowcs() — mbtowc()

1. If address and charptr each point to a value other than NULL, then mbtowc reads the area
pointed to by address and checks to see if number or fewer bytes comprise a legitimate
multibyte character.

If they do, then mbtowc stores the wide character that corresponds to that multibyte character
in the area pointed to by charptr and returns the number of bytes that form the multibyte
character.

If address does not point to the beginning of a legitimate multibyte character, then mbtowc
returns -1.

Finally, if address points to a null character, mbtowc returns zero.

In no instance does the value returned by mbtowc exceed number or value of the macro
MB_CUR_MAX, whichever is less.

2. If charptr is set to NULL and address is set to a value other than NULL, then mbtowc behaves
exactly like the function mblen: it examines the area pointed to by address but does not
convert the multibyte character to a wide character.

3. If address is set to NULL, or both address and charptr are set to NULL, then mbtowc checks to
see if the current multibyte character set have state-dependent encodings. mbtowc returns
zero if the set does not have state-dependent encodings, and a number greater than zero if it
does. It does not store anything in the area pointed to by charptr.

Cross-reference
Standard, §4.10.7.3

See Also
general utilities, MB_CUR_MAX, mblen, wchar_t, wctomb

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

me — Command
MicroEMACS screen editor
me [-e] [file ...]

me is the command for MicroEMACS, the screen editor used by Let’s C. With MicroEMACS, you
can insert text, delete text, move text, search for a string and replace it, and perform many other
editing tasks. MicroEMACS reads text from files and writes edited text to files. It can edit several
files simultaneously, while displaying the contents of each file in its own screen window.

Screen Layout
If the command me is used without arguments, MicroEMACS opens an empty buffer. If used with
one or more file name arguments, MicroEMACS will open each of the files named, and display its
contents in a window. If a file cannot be found, MicroEMACS will assume that you are creating it
for the first time, and create an appropriately named buffer and file descriptor for it.

The last line of the screen is used to print messages and inquiries. The rest of the screen is
portioned into one or more windows in which MicroEMACS displays text. The last line of each
window shows whether the text has been changed, the name of the buffer, and the name of the file
associated with the window.

MicroEMACS notes its current position. It is important to remember that the current position is
always to the left of the cursor, and lies between two letters, rather than at one letter or another.

LEXICON

me 349

For example, if the cursor is positioned at the letter ‘k’ of the phrase ‘‘Mark Williams’’, then the
current position lies between the letters ‘r’ and ‘k’.

Commands and Text
The printable ASCII characters, from <space> to ‘~’, can be inserted at the current position. Control
characters and escape sequences are recognized as commands, described below. A control character
can be inserted into the text by prefixing it with <ctrl-Q> (that is, hold down the <control> key and
type the letter ‘Q’).

There are two types of commands to remove text. Delete commands remove text and throw it away,
whereas kill commands remove text but save it in the kill buffer. Successive kill commands append
text to the previous kill buffer. Moving the cursor before you kill a line will empty the kill buffer,
and write the line just killed into it.

Search commands prompt for a search string terminated by <return> and then search for it. Case
sensitivity for searching can be toggled with the command <esc>@. Typing <return> instead of a
search string tells MicroEMACS to use the previous search string.

Some commands manipulate words rather than characters. MicroEMACS defines a word as
consisting of all alphabetic characters, plus ‘_’ and ‘$’. Usually, a character command is a control
character and the corresponding word command is an escape sequence. For example, <ctrl-F>
moves forward one character and <esc>F moves forward one word. The MicroEMACS commands
are not case sensitive. For example, <ctrl-F> and <ctrl-f> are identical.

Text can also be handled in blocks. MicroEMACS defines a block of text as all the text that lies
between the mark and the current position of the cursor. For example, typing <ctrl-W> kills all text
from the mark to the current position of the cursor. This is useful when moving text from one file to
another. When you invoke MicroEMACS, the mark is set at the beginning of the file. You can reset
the mark to the cursor’s current position by typing <ctrl-@>.

Using MicroEMACS With the Compiler
MicroEMACS can be invoked automatically by the compiler command cc to help you repair all
errors that occur during compilation. The -A option to cc causes MicroEMACS to be invoked
automatically when an error occurs. The compiler error messages are displayed in one window, the
source code in the other, and the cursor is at the line on which the first error occurred. When the
text is altered, exiting from MicroEMACS automatically recompiles the file.

This cycle will continue either until the file compiles without error, or until you break the cycle by
typing <ctrl-U> <ctrl-X> <ctrl-C>.

The option -e to the me command allows you to invoke the error buffer by hand.

The MicroEMACS Help Facility
MicroEMACS has a built-in help facility. With it, you can ask for information either for a word that
you type in, or for a word over which the cursor is positioned. The MicroEMACS help file contains
the bindings for all library functions and macros included with Let’s C.

For example, consider that you are preparing a C program and want more information about the
function fopen. Type <ctrl-X>?. At the bottom of the screen will appear the prompt

Topic:

Type fopen. MicroEMACS will search its help file, find its entry for fopen, then open a window and
print the following:

Open a stream for standard I/O
#include <stdio.h>
FILE *fopen (name, type) char *name, *type;

LEXICON

350 me

If you wish, you can kill the information in the help window and copy it into your program, to
ensure that you prepare the function call correctly.

Consider, however, that you are checking a program written earlier, and you wish to check the call
for a call to fopen. Simply move the cursor until it is positioned over one of the letters in fopen,
then type <esc>?. MicroEMACS will open its help window, and show the same information it did
above.

To erase the help window, type <esc>2.

Options
The following list gives the MicroEMACS commands. They are grouped by function, e.g., Moving the
cursor. Some commands can take an argument, which specifies how often the command is to be
executed. The default argument is 1. The command <ctrl-U> introduces an argument. By default,
it sets the argument to four. Typing <ctrl-U> followed by a number sets the argument to that
number. Typing <ctrl-U> followed by one or more <ctrl-U>s multiplies the argument by four.

Moving the Cursor

<ctrl-A> Move to start of line.

<ctrl-B> (Back) Move backward by characters.

<esc>B Move backward by words.

<ctrl-E> (End) Move to end of line.

<ctrl-F> (Forward) Move forward by characters.

<esc>F (Forward) Move forward by words.

<esc>G Go to an absolute line number in a file. Same as <ctrl-X>G.

<ctrl-N> (Next) Move to next line.

<ctrl-P> (Previous) Move to previous line.

<ctrl-V> Move forward by pages.

<esc>V Move backward by pages.

<ctrl-X>= Print the current position.

<ctrl-X>G Go to an absolute line number in a file. Can be used with an argument. Otherwise, it
will prompt for a line number. Same as <esc>G.

<esc>! Move the current line to the line within the window given by argument. The position is
in lines from the top if positive, in lines from the bottom if negative, and the center of
the window if zero.

<esc>< Move to the beginning of the current buffer.

<esc>> Move to the end of the current buffer.

Killing and Deleting

<ctrl-D> (Delete) Delete next character.

<esc>D Kill the next word.

LEXICON

me 351

<ctrl-H> If no argument, delete previous character. Otherwise, kill argument previous
characters.

<ctrl-K> (Kill) With no argument, kill from current position to end of line; if at the end, kill the
newline. With argument set to one, kill from beginning of line to current position.
Otherwise, kill argument lines forward (if positive) or backward (if negative).

<ctrl-W> Kill text from current position to mark.

<ctrl-X><ctrl-O>
Kill blank lines at current position.

<ctrl-Y> (Yank back) Copy the kill buffer into text at the current position. Set current position
to the end of the new text.

<esc><ctrl-H>
Kill the previous word.

<esc>
Kill the previous word.

 If no argument, delete the previous character. Otherwise, kill argument previous
characters.

Windows

<ctrl-X>1 Display only the current window.

<ctrl-X>2 Split the current window into two windows. This command is usually followed by
<ctrl-X>B or <ctrl-X><ctrl-V>.

<ctrl-X>N (Next) Move to next window.

<ctrl-X>P (Previous) Move to previous window.

<ctrl-X>Z Enlarge the current window by argument lines.

<ctrl-X><ctrl-N>
Move text in current window down by argument lines.

<ctrl-X><ctrl-P>
Move text in current window up by argument lines.

<ctrl-X><ctrl-Z>
Shrink current window by argument lines.

Buffers

<ctrl-X>B (Buffer) Prompt for a buffer name, and display the buffer in the current window.

<ctrl-X>K (Kill) Prompt for a buffer name and delete it.

<ctrl-X><ctrl-B>
Display a window showing the change flag, size, buffer name, and file name of each
buffer.

<ctrl-X><ctrl-F>
(File name) Prompt for a file name for current buffer.

<ctrl-X><ctrl-R>
(Read) Prompt for a file name, delete current buffer, and read the file.

LEXICON

352 me

<ctrl-X><ctrl-V>
(Visit) Prompt for a file name and display the file in the current window.

Saving Text and Exiting

<ctrl-X><ctrl-C>
Exit without saving text.

<ctrl-X><ctrl-S>
(Save) Save current buffer to the associated file.

<ctrl-X><ctrl-W>
(Write) Prompt for a file name and write the current buffer to it.

<ctrl-Z> Save current buffer to associated file and exit.

Compilation Error Handling

<ctrl-X>> Move to next error.

<ctrl-X>< Move to previous error.

Search and Replace

<ctrl-R> (Reverse) Incremental search backward. A pattern is sought as each character is
typed.

<esc>R (Reverse) Search toward the beginning of the file. Waits for entire pattern before search
begins.

<ctrl-S> (Search) Incremental search forward. A pattern is sought as each character is typed.

<esc>S (Search) Search toward the end of the file. Waits for entire pattern before search
begins.

<esc>% Search and replace. Prompt for two strings, then search for the first string and replace
it with the second.

<esc>/ Search for next occurrence of a string entered with the <esc>S or <esc>R commands.
This remembers whether the previous search had been forward or backward.

<esc>@ Toggle case sensitivity for searches. By default, searches are case insensitive.

Keyboard Macros

<ctrl-X>(Begin a macro definition. MicroEMACS collects everything typed until the next <ctrl-
X>) for subsequent repeated execution. <ctrl-G> breaks the definition.

<ctrl-X>) End a macro definition.

<ctrl-X>E (Execute) Execute the keyboard macro.

Change Case of Text

<esc>C (Capitalize) Capitalize the next word.

<ctrl-X><ctrl-L>
(Lower) Convert all text from current position to mark into lower case.

<esc>L (Lower) Convert the next word to lower case.

LEXICON

me 353

<ctrl-X><ctrl-U>
(Upper) Convert all text from current position to mark into upper case.

<esc>U (Upper) Convert the next word to upper case.

White Space

<ctrl-I> Insert a tab.

<ctrl-J> Insert a new line and indent to current level. This is often used in C programs to
preserve the current level of indentation.

<ctrl-M> (Return) If the following line is not empty, insert a new line. If empty, move to next
line.

<ctrl-O> Open a blank line; that is, insert newline after the current position.

<tab> With argument, set tab fields at every argument characters. An argument of zero
restores the default of eight characters. Setting the tab to any character other than
eight causes space characters to be set in your file instead of tab characters.

Send Commands to Operating System

<ctrl-C> Suspend MicroEMACS and pass commands to MS-DOS. Typing exit returns you to
MicroEMACS and allows you to resume editing.

<ctrl-X>! Prompt for an MS-DOS command and execute it.

Setting the Mark

<ctrl-@> Set mark at current position.

<esc>. Set mark at current position.

<ctrl><space>
Set mark at current position.

Help Window

<ctrl-X>? Prompt for word for which information is needed.

<esc>? Search for word over which cursor is positioned.

<esc>2 Erase help window.

Miscellaneous

<ctrl-G> Abort a command.

<ctrl-L> Redraw the screen.

<ctrl-Q> (Quote) Insert the next character into text; used to insert control characters.

<esc>Q (Quote) Insert the next control character into the text. Same as <ctrl-Q>.

<ctrl-T> Transpose the characters before and after the current position.

<ctrl-U> Specify a numeric argument, as described above.

<ctrl-U><ctrl-X><ctrl-C>
Abort editing and re-compilation. Use this command to abort editing and return to
MS-DOS when you are using the -A option to the cc command.

LEXICON

354 me

<ctrl-X>F Set word wrap to argument column. If argument is one, set word wrap to cursor’s
current position.

<ctrl-X><ctrl-X>
Mark the current position, then jump to the previous setting of the mark. This is
useful when moving text from one place in a file to another.

MicroEMACS prints error messages on the bottom line of the screen. It prints informational
messages (enclosed in square brackets ‘[’ and ‘]’ to distinguish them from error messages) in the
same place.

MicroEMACS manipulates text in memory rather than in a file. The file on disk is not changed until
you save the edited text. MicroEMACS prints a warning and prompts you whenever a command
would cause it to lose changed text.

See Also
commands

Notes
Because MicroEMACS keeps text in memory, it does not work for extremely large files. It prints an
error message if a file is too large to edit. If this happens when you first invoke a file, you should
exit from the editor immediately. Otherwise, your file on disk will be truncated. If this happens in
the middle of an editing session, however, delete text until the message disappears, then save your
file and exit. Due to the way MicroEMACS works, saving a file after this error message has appeared
will take more time than usual.

This version of MicroEMACS does not include many facilities available in the original EMACS
display editor, which was written by Richard Stallman at M.I.T. In particular, it does not include
user-defined commands or pattern search commands.

The current version of MicroEMACS, including source code, is proprietary to Mark Williams
Company. The code may be altered or otherwise changed for your personal use, but it may not be
used for commercial purposes, and it may not be distributed without prior written consent by Mark
Williams Company.

MicroEMACS is based upon the public domain editor by David G. Conroy.

member — Definition
A member names an element within a structure or a union. It can be accessed via the member-
selection operators ‘.’ or ’->’. For example, consider the following:

struct example {
int member1;
long member2;
example *member3;

};

struct example object;
struct example *pointer = &object;

To read the contents of member1 within object, use the ‘.’, as follows:

object.member1

On the other hand, to read the contents of member1 via pointer, use the ‘->’ operator:

pointer->member1

The same is true for a union, but with the following restriction: if a value is stored in one member of
a union, then attempting to read another member of the union generates implementation-defined

LEXICON

member 355

behavior. This restriction has one exception. If the union consists of several structures that have a
common initial sequence, then that common sequence can be read when a value is written into any
of the structures.

Cross-references
Standard, §3.1.2.6, §3.3.2.3
The C Programming Language, ed. 2, p. 128

See Also
->, ., name space, struct, union

memchr() — String handling (libc)
Search a region of memory for a character
#include <string.h>
void *memchr(const void *region, int character, size_t n);

memchr searches the first n characters in region for character. It returns a pointer to character if it
is found, or NULL if it is not.

Unlike the string-search function strchr, memchr searches a region of memory. Therefore, it does
not stop when it encounters a null character.

Example
The following example deals a random hand of cards from a standard deck of 52. The command line
takes one argument, which indicates the size of the hand you want dealt. It uses an algorithm
published by Bob Floyd in the September 1987 Communications of the ACM.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define DECK 52

main(int argc, char *argv[])
{

char deck[DECK], *fp;
int deckp, n, j, t;

if(argc != 2 ||
52 < (n = atoi(argv[1])) ||
1 > n) {

printf("usage: memchr n # where 0 < n < 53\n");
exit(EXIT_FAILURE);

}

/* exercise rand() to make it more random */
srand((unsigned int)time(NULL));
for(j = 0; j < 100; j++)

rand();

deckp = 0;
/* Bob Floyd’s algorithm */
for(j = DECK - n; j < DECK; j++) {

t = rand() % (j + 1);
if((fp = memchr(deck, t, deckp)) != NULL)

*fp = (char)j;
deck[deckp++] = (char)t;

}

LEXICON

356 memchr()

for(t = j = 0; j < deckp; j++) {
div_t card;

card = div(deck[j], 13);
t += printf("%c%c ",

/* note useful string addressing */
"A23456789TJQK"[card.rem],
"HCDS"[card.quot]);

if(t > 50) {
t = 0;
putchar(’\n’);

}
}

putchar(’\n’);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.1
The C Programming Language, ed. 2, p. 250

See Also
strchr, strcspn, string handling, strpbrk, strrchr, strspn, strstr, strtok

memcmp() — String handling (libc)
Compare two regions
#include <string.h>
int memcmp(const void *region1, const void *region2, size_t count);

memcmp compares region1 with region2 character by character for count characters.

If every character in region1 is identical to its corresponding character in region2, then memcmp
returns zero. If it finds that a character in region1 has a numeric value greater than that of the
corresponding character in region2, then it returns a number greater than zero. If it finds that a
character in region1 has a numeric value less than less that of the corresponding character in
region2, then it returns a number less than zero.

For example, consider the following code:

char region1[13], region2[13];
strcpy(region1, "Hello, world");
strcpy(region2, "Hello, World");
memcmp(region1, region2, 12);

memcmp scans through the two regions of memory, comparing region1[0] with region2[0], and so
on, until it finds two corresponding ‘‘slots’’ in the arrays whose contents differ. In the above
example, this will occur when it compares region1[7] (which contains ‘w’) with region2[7] (which
contains ‘W’). It then compares the two letters to see which stands first in the character table used
in this implementation, and returns the appropriate value.

Cross-references
Standard, §4.11.4.1
The C Programming Language, ed. 2, p. 250

See Also
strcmp, strcoll, string handling, strncmp, strxfrm

LEXICON

memcmp() 357

Notes
memcmp differs from the string comparison routine strcmp in the following ways:

First, memcmp compares regions of memory rather than strings; therefore, it does not stop when it
encounters a null character.

Second, memcmp takes two pointers to void, whereas strcmp takes two pointers to char. The
following code illustrates how this difference affects these functions:

char carray[10];
int iarray[10];
char *s = "hi";

. . .
strcmp(carray, s) /* RIGHT */
memcmp(carray, s, 3) /* RIGHT */
strcmp(iarray, s) /* WRONG, 1st arg not char * */
memcmp(iarray, s, 3) /* RIGHT, args converted to void * */

It is wrong to use strcmp to compare an int array with a char array because this function compares
strings. Using memcmp to compare an int array with a char array is permissible because
memcmp simply compares areas of data.

memcpy() — String handling (libc)
Copy one region of memory into another
#include <string.h>
void *memcpy(void *region1, const void *region2, size_t n);

memcpy copies n characters from region2 into region1. Unlike the routines strcpy and strncpy,
memcpy copies from one region to another. Therefore, it will not halt automatically when it
encounters a null character.

memcpy returns region1.

Example
The following example copies a structure and displays it.

#include <string.h>
#include <stdio.h>

struct stuff {
int a, b, c;

} x, y;

main(void)
{

x.a = 1;
/* this would stop strcpy or strncpy. */
x.b = 0;
x.c = 3;

/* y = x; would do the same */
memcpy(&y, &x, sizeof(y));
printf("a =%d, b =%d, c =%d\n", y.a, y.b, y.c);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.2.1
The C Programming Language, ed. 2, p. 250

LEXICON

358 memcpy()

See Also
memmove, strcpy, string handling, strncpy

Notes
If region1 and region2 overlap, the behavior of memcpy is undefined. region1 should point to
enough reserved memory to hold n bytes of data; otherwise, code or data will be overwritten.

memmove() — String handling (libc)
Copy region of memory into area it overlaps
#include <string.h>
void *memmove(void *region1, const void *region2, size_t count);

memmove copies count characters from region2 into region1. Unlike memcpy, memmove correctly
copies the region pointed to by region2 into that pointed by region1 even if they overlap. To
‘‘correctly copy’’ means that the overlap does not propagate, not that the moved data stay intact.
Unlike the string-copying routines strcpy and strncpy, memmove continues to copy even if it
encounters a null character.

memmove returns region1.

Example
The following example rotates a block of memory by one byte.

#include <string.h>
#include <stddef.h>
#include <stdio.h>

char *
rotate_left(char *region, size_t len)
{

char sav;

sav = *region;
/* with memcpy this might propagate the last char */
memmove(region, region + 1, --len);
region[len] = sav;
return(region);

}

char nums[] = "0123456789";
main(void)
{

printf(rotate_left(nums, strlen(nums)));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.2.2 The C Programming Language, ed. 2, p. 250

See Also
memcpy, strcpy, string handling, strncpy

Notes
region1 should point to enough reserved memory to hold the contents of region2. Otherwise, code or
data will be overwritten.

LEXICON

memmove() 359

memset() — String handling (libc)
Fill an area with a character
#include <string.h>
void *memset(void *buffer, int character, size_t n);

memset fills the first n bytes of the area pointed to by buffer with copies of character. It casts
character to an unsigned char before filling buffer with copies of it.

memset returns the pointer buffer.

Example
The following example fills an area with ‘X’, and prints the result.

#include <stdio.h>
#include <string.h>
#define BUFSIZ 20

main(void)
{

char buffer[BUFSIZ];

/* fill buffer with ’X’ */
memset(buffer, ’X’, BUFSIZ);

/* append null to end of buffer */
buffer[BUFSIZ-1] = ’\0’;

/* print the result */
printf("%s\n", buffer);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.6.1
The C Programming Language, ed. 2, p. 250

See Also
memchr, memcmp, memcpy, memmove, string handling

mktemp() — Extended function (libc)
Generate a temporary file name
char *mktemp(char *pattern);

mktemp generates a unique file name. It can be used, for example, to name intermediate data files.

The pattern argument consists of a string that includes a capital ‘X’. mktemp replaces this X with
‘A’ through ‘Z’ to create up to 26 unique file names. It is normal practice to place temporary files in
the directory \tmp. The start of the file name identifies the program that uses the file; for example,
\tmp\sortX creates a temporary file to be used by sort. mktemp returns pattern.

The functions tmpnam and tempnam each assemble a temporary file name and then call mktemp.
These routines ease the difficulty in creating a proper name for a temporary file.

See Also
extended miscellaneous, tempnam, tmpnam

LEXICON

360 memset() — mktemp()

mktime() — Time function (libc)
Turn broken-down time into calendar time
#include <time.h>
time_t mktime(struct tm *timeptr);

mktime reads broken-down time from the structure pointed to by timeptr and converts it into
calendar time of the type time_t. It does the opposite of the functions localtime and gmtime, which
turn calendar time into broken-down time.

mktime manipulates the structure tm as follows:

1. It reads the contents of the structure, but ignores the fields tm_wday and tm_yday.

2. The original values of the other fields within the tm structure need not be restricted to the
values described in the article for tm. This allows you, for example, to increment the member
tm_hour to discover the calendar time one hour hence, even if that forces the value of tm_hour
to be greater than 23, its normal limit.

3. When calculation is completed, the values of the fields within the tm structure are reset to
within their normal limits to conform to the newly calculated calendar time. The value of
tm_mday is not set until after the values of tm_mon and tm_year.

4. The calendar time is returned.

If the calendar time cannot be calculated, mktime returns -1 cast to time_t.

Example
This example gets the date from the user and writes it into a tm structure.

#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define BAD_TIME ((time_t)-1)

/* ask for a number and return it. */
int
askint(char * msg)
{

char buf[20];

printf("Enter %s ", msg);
fflush(stdout);

if(gets(buf) == NULL)
exit(EXIT_SUCCESS);

return(atoi(buf));
}

main(void)
{

struct tm t;

for(;;) {
t.tm_mon = askint("month");
t.tm_mday = askint("day");
t.tm_year = askint("year");
t.tm_hour = t.tm_min = t.tm_sec = 1;

LEXICON

mktime() 361

if(BAD_TIME == mktime(&t)) {
printf("Invalid date\n");
continue;

}

printf("Day of week is %d\n", t.tm_wday);
break;

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.12.2.3
The C Programming Language, ed. 2, p. 256

See Also
clock, date and time, difftime

Notes
The above description may appear to be needlessly complex. However, the Committee intended that
mktime be used to implement a portable mechanism for determining time and for controlling time-
dependent loops. This function is needed because not every environment describes time internally
as a multiple of a known time unit.

model — Technical information
In the context of C programming, a model is a memory format that can be used on the i8086
microprocessor. Intel Corporation has defined six models for use on the i8086: TINY, SMALL,
COMPACT, MEDIUM, LARGE, and HUGE. Mark Williams C compilers currently implement the
SMALL and LARGE models, which experience shows can handle practically any programming task
that can be executed with reasonable efficiency on the i8086.

In SMALL model, a program has two segments, each no larger than 64 kilobytes. One segment, the
code segment, contains the code generated by the compiler. The other, the data segment, contains
all pure and impure data, the stack, and the arena. ‘‘Pure’’ data are user data that have not yet
been altered by the program, whereas ‘‘impure’’ data are user data that have been altered. In
SMALL model, pointers are two chars (16 bits) long, which limits their addressing to 64 kilobytes.

In LARGE model, pointers consist of an offset and a segment. The actual address is calculated by
shifting the segment left four and adding the offset. This can address up to one megabyte, although
on the IBM PC the practical limit of memory is 640 kilobytes.

Code that is properly written can, in most instances, be ported from SMALL to LARGE model
without modification. Routines that have integer-pointer puns, however, will run correctly under
SMALL model but might fail under LARGE model.

See Also
LARGE model, pointer, pun, SMALL model, technical information

modf() — Mathematics (libm)
Separate floating-point number
#include <math.h>
double modf(double real, double *ip);

modf breaks the floating-point number real into its integer and fraction.

modf stores the integer in the location pointed to by ip, and returns the fraction real. Both the
integer and the fraction have the same sign. f in the range 0 <= f < 1.

LEXICON

362 model — modf()

Cross-references
Standard, §4.5.4.6
The C Programming Language, ed. 2, p. 251

See Also
exp, frexp, ldexp, log, log10, mathematics, modf

mtype.h — Header
List processor code numbers

The header file mtype.h assigns a code number to each of the processors supported by Mark
Williams C compilers. These include the Intel i8086, i8088, i80186, and i80286; the Zilog Z8001
and Z8002; the DEC PDP-11 and VAX; the IBM 370; and the Motorola 68000.

See Also
header, portability

multibyte characters — Overview
C was invented at Bell Laboratories as a portable language for implementing the UNIX operating
system. Since then, C has grown into a language used throughout the world, for both operating
systems and applications.

The character sets of many nations are too large to be encoded within one eight-bit byte. The
Japanese Kanji characters form one such set; the ideograms of Mandarin Chinese form another.
For the sake of brevity, the following discussion will call such sets large-character sets. A character
from a large character set will be called a large character.

Wide Characters
The Standard describes two ways to encode a large character: by using a multibyte character or a
wide character.

wchar_t is a typedef that is declared in the header stdlib.h. It is defined as the integral type that
can represent all characters of given national character set.

The following restrictions apply to objects of this type: (1) The null character still has the value of
zero. (2) The characters of the standard C character set must have the same value as they would
when used in ordinary chars. (3) EOF must have a value that is distinct from every other character
in the set.

wchar_t is a typedef of an integral type, whereas a multibyte character is a bundle of one or more
one-byte characters. The format of a multibyte character is defined by the implementation, whereas
a wchar_t can be used across implementations.

Wide characters are used to store large character sets in a device-independent manner. Multibyte
characters are used most often to pass large characters to a terminal device. Most terminal devices
can receive only one byte at a time. Thus, passing the pieces of a wide character to a terminal
would undoubtedly create problems; the individual characters of a multibyte character, however,
can be passed safely. This is also important because the Standard does not describe any function
that reads more than one byte from a stream at any time — there is no Standard version of fgetw or
fputw.

Multibyte Characters
The Standard describes multibyte characters as follows:

LEXICON

mtype.h — multibyte characters 363

• A multibyte character may not contain a null character or 0xFF (-1, or EOF) as one of its bytes.

• All of the characters in the C character set must be present in any set of multibyte characters.

• An implementation of multibyte characters may use a shift state or a special sequence of
characters that marks when a sequence of multibyte characters begins and when it ends.
Depending upon the shift state, the bytes of a multibyte character may either be read as
individual characters or as forming one multibyte character. Note, too, that a shift state may
allow state-dependent coding, by which one of a number of possible sets of multibyte characters
is indicated by the shift state.

• A comment, string literal, or character constant must begin and end in the same shift state.
For example, a comment cannot consist of multibyte characters mixed with single-byte
characters; it must be all one or all the other. If a comment, string literal, or character
constant is built of multibyte characters, each such character must be valid.

Multibyte Character Functions
The support added to the C language for multibyte characters thus far is limited to character
constants, string literals, and comments. The Standard describes five functions that handle
multibyte characters:

mblenCompute length of a multibyte character
mbstowcs Convert sequence of multibyte characters to wide characters
mbtowc Convert multibyte character to wide character
wcstombs Convert sequence of wide characters to multibyte characters
wctomb Convert a wide character to a multibyte character

As mentioned above, a wide character is encoded using type wchar_t. The macro MB_CUR_MAX
holds the largest number of characters of any multibyte character for the current locale. It is never
greater than the value of the macro MB_LEN_MAX. wcstombs and mbstowcs convert sequences of
characters from one type to the other.

All of the above are defined in the header stdlib.h.

Localization
The sets of multibyte characters and wide characters recognized by the above functions are
determined by the program’s locale, as set by the function setlocale.

To load the appropriate sets of multibyte characters and wide characters, use the call

setlocale(LC_CTYPE, locale);

or

setlocale(LC_ALL, locale);

See the entry for localization for more information.

Cross-reference
Standard, §2.2.1.2, §4.10.7

See Also
general utilities

Notes
Because compiler vendors are active in Asia, and because there is an active Japanese standards
organization, a future version of the Standard may include more extensive support for multibyte
characters, such as additional library functions. The support added to the C language for multibyte
characters thus far is limited to character constants, string literals, and comments.

LEXICON

364 multibyte characters

At present, all function names that begin with wcs are reserved. They should not be used if you
wish your code to be maximally portable.

LEXICON

multibyte characters 365

