316 label — Language

label — Definition

A label is an identifier followed by a colon ‘’ or that follows a goto statement. It marks a point
within a function to which a goto statement can jump.

Cross-references

Standard, §3.1.2.6
The C Programming Language, ed. 2, pp. 65

See Also
goto, name space

labs() — General utility (libc)

Compute the absolute value of a long integer
#include <stdlib.h>

int labs(long n);

labs computes the absolute value of the long integer n. The absolute value of a number is its
distance from zero. This is n if n>=0, and -n otherwise.

Cross-references

Standard, §4.10.6.3
The C Programming Language, ed. 2, p. 253

See Also
abs, general utilities

Language — Overview

The description of the language, both in the Standard and in this Lexicon, has the following topics,
which describe completely the syntax and semantics of the language:

N constant expressions

. conversions

. declarations

° expressions

. external definitions

. lexical elements

° preprocessing

. statements

Each of these topics is introduced by its own Lexicon article.

Implementation of the C Language
The following summarizes how Let’s C implements the C language.

LEXICON

Language

317

Identifiers:
Characters allowed: A-Z, a-z, _, 0-9

Case sensitive.

Number of significant characters in a variable name:

at compile time: 128
at link time: 16

Appends ‘_’ to end of external identifiers

Reserved identifiers (keywords):

alien extern
auto float
break for

case goto
char if
continue int
const long
default readonly
do register
double return
else short
enum

signed
sizeof
static
struct
switch
typedef
union
unsigned
void
volatile
while

In conformity with the proposed ANSI standard, the keyword entry is no longer recognized. The
keywords const and volatile are now recognized, but not implemented. The compiler will produce a
warning message if the keyword volatile is used with the peephole optimizer.

Data formats (in bits):

char

double

float

int

long

long double

pointer (SMALL model)
pointer (LARGE model)
short

unsigned char
unsigned int
unsigned long
unsigned short

LEXICON

318 Language

float format:

IEEE floating point format:

1 sign bit

8-bit exponent

24-bit normalized fraction with hidden bit
IEEE double format:

1 sign bit

11-bit exponent

52-bit fraction
Reserved values:

+- infinity, -0
All floating-point operations are done as doubles.
Note that this will change when the ANSI standard is
adopted.

Limits:
Maximum bitfield size: 16 bits
Maximum number of cases in a switch: no formal limit
Maximum block nesting depth: no formal limit
Maximum parentheses nesting depth: no formal limit
Maximum structure size: 64 kilobytes
Maximum array size: 64 kilobytes

Structure name-spaces:
Supports both Berkeley, and Kernighan and Ritchie conventions
for structure in union.

Register variables:
Two available for ints (SMALL and LARGE models)
Two available for pointers (SMALL model only)

Function linkage:

Return values for ints: AX

Return values for longs: DX:AX

Return values for SMALL-model pointers: AX

Return values for LARGE-model pointers: DX:AX

Return values for doubles in DX:AX

Parameters pushed on stack in reverse order, chars and shorts pushed
as words, longs and pointers pushed as longs, structures
copied onto stack

Caller must clear parameters off stack

Stack frame linkage is done through SP register

Register usage:
AX: returned ints and SMALL-model pointers
BP: Frame pointer
DI: register variable (int or SMALL-model pointer)
DX:AX: returned longs and LARGE-model pointers
SI: register variable (int or SMALL-model pointer)

Note that registers not described above (BX, CX, DX, plus DS and ES in LARGE model) may be
freely overwritten by code that the compiler generates. Programs that include assembly-language
modules should take this into account.

Special features and optimizations:

LEXICON

LARGE model — LC_ALL 319

o Branch optimization is performed: this uses the smallest branch instruction for the required
range.

. Unreached code is eliminated.

o The contents of word registers are remembered by a peephole optimizer, to avoid reloading.

. Duplicate instruction sequences are removed.

o Jumps to jumps are eliminated.

o Multiplication and division by constant powers of two are changed to shifts when the results

are the same.
o Sequences that can be resolved at compile time are identified and resolved.

Cross-references

Standard, §3.0
The C Programming Language, ed. 2, pp. 191ff

See Also

byte ordering, declarations, function calls, keywords, Lexicon, Library, memory allocation,
types

LARGE model — Technical information

Intel multi-segment memory model

The i8086/88 microprocessor uses a segmented architecture. This means that memory is divided
into segments of 64 kilobytes each. No program or data element can exceed that limit.

Intel Corporation has devised a number of memory models for handling segmented memory.
Let’s C implements the two most useful of these: SMALL model and LARGE model.

In LARGE model, pointers consist of an offset and a segment. The address is calculated by left-
shifting the segment by four and adding the offset. Thus, LARGE model programs can access up to
1,048,576 bytes (one megabyte) of code and data. Because of the design of the IBM PC and
compatibles, however, the practical limit of memory is 640 kilobytes.

In terms of execution, LARGE-model programs are less efficient than SMALL-model programs, but
for many purposes the advantages of the expanded address space of the LARGE model outweigh the
decreased efficiency.

When the -VLARGE option is used with the ee command, the object program follows the rules of the
LARGE model. When you compile a program with the -VLARGE option, cc defines the global
variable LARGE to the C preprocessor. This allows you to use the preprocessor statement #ifdef
LARGE to flag model-dependent code.

See Also
model, pointer, SMALL model, technical information

LC ALL — Manifest constant

All locale information
#include <locale.h>

LC_ALL is a manifest constant that is defined in the header locale.h. When passed to the function
setlocale, it queries or sets all information for a given locale. Information obtained with this macro
alters the operation of all functions that are affected by the program’s locale, as well as the contents
of the structure lconv. The following lists the functions affected by LC_ALL:

LEXICON

320 LC COLLATE

Collation
strcoll
strxfrm

ctype
isdigit
isxdigit
Date and time
strftime

Formatted I/ O
fprintf
fscanf
printf
sprintf
scanf
sscanf
viprintf
vprintf
vsprintf

Multibyte characters
mblen
mbstowcs
mbtowc
wcstombs
wctomb

String conversion
atof
atoi
atol
strtod
strtol
strtoul

Cross-reference
Standard, §4.4

See Also

LC_COLLATE, LC CTYPE, LC_MONETARY, LC NUMERIC, LC TIME, Iconv, localization,
locale.h, setlocale

LC COLLATE — Manifest constant

Locale collation information
#include <locale.h>

LC_COLLATE is a manifest constant that is defined in the header locale.h. When used with the
function setlocale, it queries or sets collation information for a given locale.

This information can affect the operation of the functions strcoll and strxfrm.

Cross-reference
Standard, §4.4

LEXICON

LC CTYPE — LC_NUMERIC 321

See Also
LC _ALL, LC CTYPE, LC_MONETARY, LC NUMERIC, LC_TIME, localization, locale.h, setlocale

LC CTYPE — Manifest constant

Locale character-handling information
#include <locale.h>

LC _CTYPE is a manifest constant that is defined in the header locale.h. When used with the
function setlocale, it sets or queries the character-handling information for a given locale. This
information helps determine the action of the functions declared in ctype.h, except isdigit and
isxdigit, as well as the multiple-byte character functions mblen, mbstowcs, mbtowc, wcstombs,
and wctomb.

Cross-reference
Standard, §4.4

See Also

LC _ALL, LC COLLATE, LC_MONETARY, LC_ NUMERIC, LC TIME, lconv, localization, locale.h,
setlocale

LC MONETARY — Manifest constant

Locale monetary information
#include <locale.h>

LC_MONETARY is a manifest constant that is defined in the header locale.h. When used with the
function setlocale, it queries or sets the monetary information for a given locale.

It affects all of the fields within the structure lconv, except decimal_point.

Cross-reference
Standard, §4.4

See Also
LC_ALL, LC_COLLATE, LC_CTYPE, LC_NUMERIC, LC_TIME, localization, locale.h, setlocale

LC NUMERIC — Manifest constant

Locale numeric information
#include <locale.h>

LC_NUMERIC is a manifest constant that is defined in the header locale.h. When used with the
function setlocale, it queries or sets the information for formatting numeric strings.

This information will alter the operation of the following functions:

Formatted I/O
fprintf
fscanf
printf
sprintf
scanf
sscanf
viprintf
vprintf
vsprintf

LEXICON

322 LC TIME — Iconv

String conversion
atof
atoi
atol
strtod
strtol
strtoul

This information also affects the following fields within the structure lconv:

decimal_ point

thousands_sep

grouping
Cross-reference
Standard, §4.4

See Also

LC ALL, LC_COLLATE, LC CTYPE, LC_MONETARY, LC TIME, lconv, localization, locale.h,
setlocale

LC_TIME — Manifest constant

Locale time information
#include <locale.h>

LC_TIME is a manifest constant that is defined in the header locale.h. When used with the function
setlocale, it queries or sets the information for formatting time strings.

This information affects the operation of the function strftime.
Cross-reference
Standard, §4.4

See Also

LC _ALL, LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_NUMERIC, Iconv, localization, locale.h,
setlocale

Iconv — Type

Hold monetary conversion information
#include <locale.h>

lconv is a structure that is defined in the header locale.h. Its members hold many details needed to
format monetary and non-monetary numeric information for a given locale.

To initialize lconv for any given locale, use the function localeconv. To change any aspect of the
locale information being used, use the function setlocale.

lconv contains the following fields:

char *currency_symbol
This points to a string that contains the symbol used locally to represent currency, e.g., the
‘$’. The C locale sets this to point to a null string.

char *decimal_point
This points to a string that contains the character used to indicate the decimal point. The C
locale sets this to point to *.".

LEXICON

lconv 323

char frac_digits
This is the number of fractional digits that can be displayed in a monetary string. The C
locale sets this to CHAR_MAX.

char grouping
This points to the string that indicates the grouping characteristics for non-monetary
amounts. Characters in the string can take the following values:

0 Use previous element for rest of digits
MAX_CHAR Perform no further grouping
2 through 9 No. of digits in current group

The C locale sets this to CHAR_MAX.

char *int_curr_symbol
This points to a string that contains the international currency symbol for the locale, as
defined in the publication ISO 4217 Codes for Representation of Currency and Funds. The C
locale sets this to point to a null string.

char *mon_decimal_point
This points to a string that contains the character used to indicate a decimal point in
monetary strings. The C locale sets this to point to a null string.

char mon_grouping
This points to the string of characters that indicate the grouping characteristics for
monetary amounts. Elements can take the following values:

0 Use previous element for rest of digits
MAX CHAR Perform no further grouping
2 through 9 No. of digits in current group

The C locale sets this to CHAR_MAX.

char *mon_thousands_sep
This points to a string that contains the character used to separate groups of thousands in
monetary strings. The C locale sets this to point to a null string.

char n_cs_precedes
This indicates whether the symbol that indicates a negative monetary value precedes or
follows the numerals in the monetary string. Zero indicates that it follows the numerals
and one indicates that it precedes them. The C locale sets this to CHAR_MAX.

char n_sep_by_space
This indicates whether a space should appear between the symbol that indicates a negative
monetary value and the numerals of the monetary string. Zero indicates that it should not
appear, and one indicates that it should. The C locale sets this to CHAR_MAX.

char n_sign_posn
This indicates the position and formatting of the symbol that indicates a negative monetary
value, as follows:

0 Set parentheses around numerals and monetary symbol
1 Set negative sign before currency symbol and numerals
2 Set negative sign after currency symbol and numerals

3 Set negative sign immediately before monetary symbol

4 Set negative sign immediately after monetary symbol
The C locale sets this to CHAR_MAX.

LEXICON

324 Idexp()

char *negative_sign
This points to a string that contains the character that indicates a negative value in a
monetary string. The C locale sets this to point to a null string.

char p_cs_precedes
This indicates whether the currency symbol should precede or follow the numerals in the
string. Zero indicates that it precedes the digits and one indicates that it follows. The C
locale sets this to CHAR_MAX.

char p_sep_by_space
This indicates whether a space should appear between the monetary symbol and the
numerals of the monetary string. Zero indicates that a space should not appear, and one
indicates that it should. The C locale sets this to CHAR_MAX.

char p_sign_posn
This indicates the position and formatting of the symbol that indicates a positive monetary
value, as follows:

0 Set parentheses around numerals and monetary symbol
1 Set positive sign before currency symbol and numerals
2 Set positive sign after currency symbol and numerals

3 Set positive sign immediately before monetary symbol

4 Set positive sign immediately after monetary symbol
The C locale sets this to CHAR_MAX.

char *positive_sign
This points to a string that contains the character that indicates a non-negative value in a
monetary string. The C locale sets this to point to a null string.

char *thousands_sep
This points to a string that contains the character used to separate groups of thousands.
The C locale sets this to point to a null string.

Cross-reference

Standard, §4.4, §4.4.2.1

See Also

CHAR_MAX, locale.h, localeconv, localization, setlocale
Idexp() — Mathematics (libm)

Load floating-point number

#include <math.h>
double ldexp(double number, int n);

ldexp returns number times two to the n power.

See float.h for more information on the structure of a floating-point number.

Cross-references

Standard, §4.5.4.3
The C Programming Language, ed. 2, p. 251

See Also
exp, frexp, log, log10, mathematics, modf

LEXICON

Idiv() — Idiv_ t 325

Idiv() — General utility (libc)

Perform long integer division

#include <stdlib.h>

1div_t 1div(long int numerator, long int denominator);

1div divides numerator by denominator. It returns a structure of the type 1div_t, which consists of
two long members, one named quot and the other rem. ldiv writes the quotient into one long, and
it writes the remainder into the other.

The sign of the quotient is positive if the signs of the arguments are the same; it is negative if the
signs of the arguments differ. The sign of the remainder is the same as the sign of the numerator.

If the remainder is non-zero, the magnitude of the quotient is the largest integer less than the
magnitude of the algebraic quotient. This is not guaranteed by the operators / and %, which merely
do what the machine implements for divide.

Example
This example selects one random card out of a pack of 52.

#i ncl ude <stddef. h>
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <tine. h>

mai n(voi d)

Idiv_t card;

card = |l div((unsigned long)tine(NULL) %52, 13L);
printf("%%\n",
/* note useful addressing for strings */
" A23456789TIK"[card.reni,
"HCDS"[card. quot]);
ret ur n(EXI T_SUCCESS) ;
}

Cross-references

Standard, §4.10.6.2
The C Programming Language, ed. 2, p. 253

See Also
/, div, general utilities, 1div_t
Notes

The Standard includes this function to provide a useful feature of FORTRAN. Also, on most
machines, division produces a remainder. This allows a quotient and remainder to be returned from
one machine-divide operation.

If the result of division cannot be represented (e.g., because denominator is set to zero), the behavior
of 1div is undefined.

Idiv_t — Type
Type returned by 1div()
#include <stdlib.h>

1div_t is a typedef that is declared in the header stdlib.h and is the type returned by the function
1div.

LEXICON

326 lexical elements — Lexicon

ldiv_t is a structure that consists of two long members, one named quot and the other rem. 1div
writes its quotient into quot and its remainder into rem.

Example
For an example of this type in a program, see ldiv.

Cross-references

Standard, §4.10.6.2
The C Programming Language, ed. 2, p. 253

See Also
general utilities, integer arithmetic, 1div, stdlib.h

lexical elements — Overview

A lexical element is one of the elements from which a C program is built. It is the smallest unit with
which a translator can work. “Lexical” refers to the fact that a program is partitioned into tokens
during a translation phase that is usually called “lexical analysis.”

A C program is built from the following lexical elements:

constants

header names
identifiers

keywords

operators
preprocessing numbers
punctuators

string literals

Cross-reference
Standard, §3.1

See Also

comment, constant, header name, identifier, keyword, Language, operators, preprocessing
number, punctuators, string literal, token

Lexicon — Introduction

The Mark Williams Lexicon is a new approach to documentation of computer software. The Lexicon
is designed to improve documentation and eliminate some limitations found in more conventional
documentation.

How to Use the Lexicon

The Lexicon consists of one large document that contains entries for every aspect of Let’s C. You
will not have to search through a number of different manuals to find the entry you are looking for.

Every entry in the Lexicon has the same structure. The first line gives the name of the topic being
discussed, followed by its type (e.g., Mathematics) and, where appropriate, the file in which it is
kept.

The next lines briefly describe the item, then give the item’s usage, where applicable. These are
followed by a brief discussion of the item, and an example.

Cross-references follow. These can be to other entries or to other texts, notably to the ANSI
Standard, The Art of Computer Programming and the second edition of The C Programming
Language. Diagnostics and notes, where applicable, conclude each entry.

LEXICON

libcxs87.lib — LIBPATH 327

Internally, the Lexicon has a tree structure. The “root” entry is the present entry, for Lexicon.
Below this entry comes the set of Overview entries. Each Overview entry introduces a group of
entries; for example, the Overview entry for string introduces all of the string functions and macros,
lists them, and gives a lengthy example of how to use them.

Each entry cross-references other entries. These cross-references point up the documentation tree,
toward an overview article and, ultimately, to the entry for Lexicon itself. They also point down the
tree to subordinate entries, and across to entries on related subjects. For example, the entry for
getchar cross-references STDIO, which is its Overview article, plus putchar and getc, which are
related entries of interest to the user. The Lexicon is designed so that you can trace from any one
entry to any other, simply by following the chain of cross-references up and down the
documentation tree.

Use the Lexicon

If, while reading an entry, you encounter a technical term that you do not understand, look it up in
the Lexicon. You should find an entry for it. For example, if a function is said to return a data type
float and you do not know exactly what a float is, look it up. You will find it described in full. In
this way, you should increase your understanding of Let’s C, and make your programming easier
and more productive.

libcxs87.lib — Library
Standard library, SMALL model/i8087 only

libcxs87.1ib is the archive file that holds the SMALL-model version of the more commonly used C
functions, system calls, and compiler run-time support routines.

The routines in this library use the i8087 exclusively. They cannot be run on a computer that does
not contain an i8087.

To edit this library or create a table of its contents, use the librarian mwlib.

See Also
Library, mwlib

libm — Library
libm is the archive file that holds the mathematics library. For a summary of these routines, see
mathematics and extended mathematics.

libm’s table of contents can be printed and its contents altered with the archiver mwlib.

See Also
extended mathematics, Library, mathematics, math.h, mwlib, xmath.h

LIBPATH — Environmental variable
Directories that hold libraries

LIBPATH names the directories that ecc searches to find the compiler's executable programs and
libraries. make also searches these directories for the files mmacros and mactions.

For example, the command
set LIBPATH=\1ib;\ mwc

uses the MS-DOS command set to define LIBPATH as equalling \lib;\mwc. This definition of
LIBPATH tells cc to look for the compiler's executable files first in directory lib, and then in
directory mwe.

LEXICON

328 limits.h

You may wish to write this command into the file autoexec.bat, so that INCDIR will be set
automatically whenever you boot your system.

See Also
cc, environmental variables, make, PATH

limits.h — Header

The header limits.h defines a group of macros that set the numerical limits for the translation
environment.

The following table gives the macros defined in limits.h. Each value given is the macro’s minimum
maximum: a conforming implementation of C must meet these limits, and may exceed them.

CHAR_BIT
Number of bits in a char; must be at least eight.

CHAR_MAX
Largest value representable in an object of type char. If the implementation defines a char
to be signed, then it is equal to the value of the macro SCHAR_MAX; otherwise, it is equal
to the value of the macro UCHAR MAX.

CHAR_MIN
Smallest value representable in an object of type char. If the implementation defines a char
to be signed, then it is equal to the value of the macro SCHAR_MIN; otherwise, it is zero.

INT MAX
Largest value representable in an object of type int; it must be at least 32,767.

INT_MIN
Smallest value representable in an object of type int; it must be at most -32,767.

LONG_MAX
Largest value representable in an object of type long int; it must be at least 2,147,483,647.

LONG_MIN
Smallest value representable in an object of type long int; it must be at most
-2,147,483,647.

MB_LEN_MAX
Largest number of bytes in any multibyte character, for any locale; it must be at least one.

SCHAR_MAX

Largest value representable in an object of type signed char; it must be at least 127.
SCHAR_MIN

Smallest value representable in an object of type signed char; it must be at most -127.
SHRT _MAX

Largest value representable in an object of type short int; it must be at least 32,767.
SHRT_MIN

Smallest value representable in an object of type short int; it must be at most -32,767.
UCHAR_MAX

Largest value representable in an object of type unsigned char; it must be at least 255.
UINT _MAX

Largest value representable in an object of type unsigned int; it must be at least 65,535.

LEXICON

link — linkage 329

ULONG_MAX
Largest value representable in an object of type unsigned long int; it must be at least
4,294,967,295.

USHRT_MAX
Largest value representable in an object of type unsigned short int; it must be at least
65,535.

Cross-references

Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
Environment, header, numerical limits

link — Definition
To link a program means to resolve external references among individual source files. External
references may refer to data or code that reside in another translation unit.

Some function calls may be resolved by the inclusion of the code for that function from a library,
which consists of implementation-defined or user-defined functions.

See Also
compile, Definitions, linkage

linkage — Definition
The term linkage refers to the matching of an identifier with its namesakes across blocks of code,
and among files of source code, pretranslated object modules, and libraries.

Identifiers can have internal linkage, external linkage, or no linkage. An identifier with external
linkage is known across multiple translation units. An identifier with internal linkage is known only
within one translation unit. An identifier with no linkage has no permanent storage allocated for it
and is local to a function or block.

The following describes each type of linkage in more detail:

External linkage
The following identifiers have external linkage:

* Any identifier for a function that either has no storage-class identifier or is marked
with the storage-class identifier extern, but excluding ones marked with the storage-
class identifier static.

. Any global identifier that either has no storage-class identifier or is marked extern.

Internal linkage
The following identifiers have internal linkage:

* Any identifier marked static.
o Any identifier for a function that has file scope and is marked static.

No linkage
The following identifiers have no linkage:

* An identifier for anything that is not an object or function; e.g., a structure member, a
union member, an enumeration constant, a tag, or a label.

LEXICON

330 locale.h

* Any identifier declared to be a function parameter.

U An identifier local to a block (i.e., an auto object), that does not have file scope and is
not marked extern.

An identifier with internal linkage may be up to at least 31 characters long, and may use both
upper- and lower-case characters. An identifier with external linkage, however, may have up to at
least six characters, and is not required to use both upper- and lower-case characters. These limits
are implementation defined.

An object marked extern will have the same linkage as any previous declaration of the same object
within that translation unit. If there is no previous declaration, the object has external linkage.

If an object appears in the same source file with external and internal linkage declarations, behavior
is undefined. This is called a linkage conflict. It may occur if an object is first declared extern, then
later re-declared to be static.

Cross-references

Standard, §3.1.2.2
The C Programming Language, ed. 2, p. 228

See Also
identifiers, name space, scope

locale.h — Header

Localization functions and macros
#include <locale.h>

locale.h is a header that declares or defines all functions and macros used to manipulate a
program’s locale. The Standard describes the following items within this header:

Type
lconv Structure for numeric formatting
Manifest constants
LC ALL All locale information
LC_COLLATE Locale collation information
LC_CTYPE Locale character-handling information
LC_MONETARY Locale monetary information
LC_NUMERIC Locale numeric information
LC_TIME Locale time information
Functions
localeconv initialize lconv structure
setlocale set/query locale
Cross-references

Standard, §4.4
The C Programming Language, ed. 2, pp

See Also
localization

LEXICON

localeconv() — localization 331

localeconv() — Localization (libc)
Initialize lconv structure
#include <locale.h>

struct lconv *localeconv(void);

localeconv initializes the structure lconv and returns a pointer to it. lconv describes the
formatting of numeric strings. For more information about this structure, see lconv.

The function setlocale establishes all or part of pre-defined locale as the current locale. A call to
setlocale with the macros LC_ALL, LC_MONETARY, or LC_NUMERIC may alter a portion of lconv.

Cross-reference
Standard, §4.4.2.1

See Also
lconv, localization, locale.h, setlocale

localization — Overview
The Standard introduced the concept of localization to C programming.

The Problem

C was originally designed to implement the UNIX operating system. As such, its formatting
functions assumed that the Latin alphabet would be used (that is, the only characters ‘a’ through ‘z’
and ‘A’ through Z’), assumed that no accented characters would be required, and also assumed that
numeric strings would be formatted as they are in the United States. Since its invention, however,
C has grown out of its original setting and its original country: it is now used internationally to write
a wide range of application software.

The Standard recognizes that C internally is based on the English language. That is, C’s keywords
and library names reflect its origin in English, and will continue to do so. Localization, however,
allows an application program to use the character set and formatting information that is specific to
a given country in certain aspects of the language.

A locale can be selected when the program is run, so applications can be user-selectable. It may
include things like monetary formatting, but preserve the underlying data: only the presentation
differs. Locales provide a standard way for software developers to use locale-specific information
without having to “reinvent the wheel” for each locale.

If an implementation of C supports various locales, then that locale information need not be
gathered by programmers who write applications software. Rather than each software house writing
support for European collating conventions or Japanese monetary formatting conventions, the
support is provided once, by the implementor, and in a standard fashion.

Locale Functions

The Standard describes two functions that can be used to access information specific to a given
locale.

setlocale can be used in either of two ways: to set the current locale, or to query the current locale
settings. Either part or all of a locale’s strings can be set or queried.

localeconv initializes an instance of the structure lconv and returns a pointer to it. This structure
holds information that can be used to print numeric and monetary strings. For more information
on this structure, see the entry for lconv.

The macros that begin with LC_ are defined in the header locale.h, and represent the categories of
locales (also known as locale strings). The following describes the areas of C that are affected by

LEXICON

332 localization

locales.

Characters
A national character set may include characters that lie outside of the Latin alphabet.
Typically, these characters are not recognized as alphanumeric characters by functions like
isalpha. To tell the translator to use the alternative character table for a given locale, use
the call

set | ocal e(LC_CTYPE, locale);

The character-handling routines that are defined in the header ctype.h will use this locale
information. This will also affect the functions that handle multibyte characters, as
described below.

Collation

The sorting of strings that include national characters may present a problem. Normal
collation functions depend upon the ASCII character order, and therefore do not know
where additional, locale-specific characters go within the national character set. The
Standard describes two functions, strcoll and strxfrm, that may collate strings which
contain locale-specific characters. To set the locale information needed by these functions
(so they know which national character order is used), use the call

setl ocal e(LC_COLL, locale);
strcoll and strxfrm will work in accordance with the current locale setting.

Date and Time
Most countries have an idiomatic way to express the current date and time. To set the
locale information needed by the function strftime, use the call:

setl ocal e(LC TI ME, locale);
strftime can read the locale and format date and time strings accordingly.

Decimal Point
Different countries may use different characters to mark the decimal point. Occasionally,
one character is used to mark the point in a numeric string and another to mark it in a
string that describes money. The structure lconv contains the field decimal_point, which
points to the character used to mark the decimal point in a numeric string.

To set the locale for functions that read or print the decimal point, use the call:
set| ocal e(LC_NUMERI C, locale);

All functions that perform string conversion, formatted output, or formatted input must
interpret this information so these characters will be handled properly.

Money Each country has its own way to format monetary values. The character that represents
the national currency varies from country to country, as does such aspects as whether the
symbol goes before or after the numerals, how a negative value is rendered, what character
is used to express a monetary decimal point (it may not be the same as the numeric decimal
point), and how many digits are normally printed after the decimal point.

To set the locale information for money, use the call:
set | ocal e(LC_MONETARY, locale);

The structure leonv, which is initialized by the function localeconv, holds information
needed to render monetary strings correctly.

LEXICON

localization 333

Multibyte characters
Many countries, e.g., Japan and China, use systems of writing that use more characters
than can be represented within one byte. Many operating systems and terminal devices,
however, can receive only seven or eight bits at a time. To skirt this problem, the Standard
describes two ways to encode such extensive sets of characters: with wide characters and
multibyte characters.

A wide character is of type wechar_t. This type, in turn, is defined as being equivalent to the
integral type that can describe all of the unique characters in the character set. This type is
used mainly to store such characters in a device-independent manner.

A multibyte character, on the other hand, consists of two or more chars that together are
understood by the terminal device as forming a non-alphabetic character or symbol. One
wide character may map out to any number of multibyte characters, depending upon the
number of systems of multibyte characters that are commonly in use.

The Standard describes five functions that manipulate wide characters and multibyte
characters: mblen, mbstowcs, mbtowc, westombs, and wctomb. The actions of these
functions are determined by the locale, as set by setlocale. To set a locale for the
manipulation of multibyte characters, use the following call:

set | ocal e(LC _CTYPE, locale);

The Standard does not describe the mechanism by which tables of multibyte characters are
made available to these functions.

Thousands
Large numbers can be broken up into groups of thousands to make them easier to read.
The manner of grouping, including the number of items in each group and the character
used to indicate the start of a new group, is locale specific.

The structure leonv, which is initialized by the function localeconv, contains the fields
thousands_sep, mon_grouping, and grouping, which hold this information.

Default Locale

The only locale required of all conforming implementations is the C locale. This is the minimum set
of locale strings needed to translate C source code. For a listing of what constitutes the C locale, see
lconv.

When a C program begins, it behaves as if the call
setlocal e(LC_ALL, "C");
had been issued.

Mechanism for Setting Locales

The Standard does not describe the mechanism by which setlocale makes locale information
available to other functions, and by which the other functions use locale information. It is left to the
implementation.

Cross-reference

Standard, §4.4

See Also

compliance, Iconv, Library, locale.h

Notes

The Standard’s section on compliance states that any program that uses locale-specific information
does not conform strictly to the Standard. Therefore, a program that uses any locale other than the

LEXICON

334 localtime()

C locale is not strictly conforming. A programmer should not count on being able to port such a
program to any other implementation or execution environment.

localtime() — Time function (libc)

Convert calendar time to local time

#include <time.h>

struct tm *localtime(const time_t *timeptr);

localtime takes the calendar time pointed to by timeptr and breaks it down into a structure of type
tm. Unlike the related function gmtime, localtime preserves the local time of the system. This
local time includes conversion to daylight savings time, if applicable. The daylight savings time flag
indicates whether daylight savings time is now in effect, not whether it is in effect during some part
of the year. Note, too, that the time zone is set by localtime every time the value returned by

getenv(" Tl MEZONE")

changes. See the entry for TIMEZONE for more information on how Let’s C handles time zone
settings.

localtime returns a pointer to the structure tm that it creates. This structure is defined in the
header time.h.

Example
The following example recreates the function asctime.

#i ncl ude <stdio. h>
#i ncl ude <tine. h>

char *rmonth[12] = {

"January", "February" "March", "April",

"May", "June", "July", "August",

"Septenber", "Cctober", "Novenber", "Decenber"
}

char *weekday[7] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"
H
mai n()
{
char buf[20];
time_t tnum
struct tm *ts;
int hour = 0;

/* get time fromsystem*/
time(& num;

/* convert time to tmstruct */
ts=localtime(& num;

i f(ts->tm hour==0)
sprintf(buf,"12:992d: 9%92d A M ",
ts->tmmn, ts->tmsec);

LEXICON

log() 335

el se
if(ts->tmhour>=12) {
hour =t s- >t m hour - 12;
i f (hour==0)
hour =12;
sprintf(buf,"%2d: %92d: ¥92d P.M ",
hour, ts->tmnmn,ts->tmsec);

} else
sprintf(buf,"%2d: %92d: ¥92d A M ",
ts->tmhour, ts->mmnmn, ts->tmsec);

printf("\n% % % 19% %\n",
weekday[ts->t mwday], ts->tm nday,
month[ts->tm non], ts->tmyear, buf);

printf("Today is the % day of 19%l\n",
ts->tmyday, ts->tmyear);

if(ts->tm.isdst)
printf("Daylight Saving Time is in effect.\n");
el se
printf("Daylight Saving Time is not in effect.\n");

ret ur n(EXI T_SUCCESS) ;
}

Cross-references

Standard, §4.12.3.4
The C Programming Language, ed. 2, p. 256

See Also

asctime, ctime, date and time, gmtime, local time, strftime, TIMEZONE< tm

Notes

loclzlaltime returns a pointer to a statically allocated data area that is overwritten by each successive
call.

log() — Mathematics (libm)

Compute natural logarithm
#include <math.h>
double log(double z);

log computes and returns the natural (base e) logarithm of its argument z. It is the inverse of the
function exp.

Handing log an argument less than zero triggers a domain error. Handing it an argument equal to
zero triggers a range error.

Cross-references

Standard, §4.5.4.4
The C Programming Language, ed. 2, p. 251

See Also
exp, frexp, ldexp, log10, mathematics, modf

LEXICON

336 log10() — long double

log10() — Mathematics (libm)

Compute common logarithm
#include <math.h>
double log10(double z);

log10 computes and returns the common (base 10) logarithm of its argument z.

Handing log10 an argument less than zero triggers a domain error. Handing it an argument equal
to zero triggers a range error.

Cross-references

Standard, §4.5.4.5
The C Programming Language, ed. 2, p. 251

See Also
exp, frexp, ldexp, log, mathematics, modf

long double — Type

A long double is a data type that represents at least a double-precision floating-point number. It is
defined as being at least as large as a double. In some environments, extra precision can be gained
by representing values with it.

Like all floating-point numbers, a long double consists of one sign bit, which indicates whether the
number is positive or negative; bits that encode the number’s exponent; and bits that encode the
number’s mantissa, or the number upon which the exponent works. The exponent often uses a
bias. This is a value that is subtracted from the exponent to yield the power of two by which the
fraction will be increased. The structure of a long double and the range of values that it can encode
are set in the following macros, all of which are defined in the header limits.h:

LDBL_DIG
This holds the number of decimal digits of precision. This must be at least ten.

LDBL_EPSILON
Where b indicates the base of the exponent (default, two) and p indicates the precision (or
number of base b digits in the mantissa), this macro holds the minimum positive floating-
point number x such that 1.0 + x does not equal 1.0, bA1-p. This must be at least 1E-9.

LDBL_MAX
This holds the maximum representable floating-point number. It must be at least 1IE+37.

LDBL_MAX_EXP
This is the maximum integer such that the base raised to its power minus one is a
representable finite floating-point number. No value is given for this macro.

LDBL _MAX_10_EXP
This holds the maximum integer such that ten raised to its power is within the range of
representable finite floating-point numbers. It must be at least +37.

LDBL_MANT_DIG
This gives the number of digits in the mantissa. No value is given for this macro.

LDBL_MIN
This gives the minimum value encodable within a long double. This must be at least 1E-37.

LDBL_MIN_EXP
This gives the minimum negative integer such that when the base is raised to that power
minus one is a normalized floating-point number. No value is given for this macro.

LEXICON

long int — longjmp() 337

LDBL_MIN_10_EXP
This gives the minimum negative integer such that ten raised to that power is within the
range of normalized floating-point numbers.

A long double constant is represented by the suffix 1 or L on a floating-point constant.
For information about common floating-point formats, see float.

Cross-references

Standard, §2.2.4.2, §3.1.2.4, §3.1.3.1, §3.5.2
The C Programming Language, ed. 2, p. 196

See Also
double, float, types

long int — Type

A long int is a signed integral type. This type can be no closer to zero than an int.

A long int can encode any number between LONG_MIN and LONG_MAX. These are macros that are
defined in the header limits.h. They are, respectively, -2,147,483,647 and 2,147,483,647.

The types long, signed long, and signed long int are synonyms for long int.

Cross-references

Standard, §2.2.4.2, §3.1.2.5, §3.2.1.1, §3.5.2
The C Programming Language, ed. 2, p. 211

See Also

int, short int, types

longjmp() — Non-local jumps (libc)
Execute a non-local jump

#include <setjmp.h>
void longjmp(jmp_buf environment, int rval);

A call to longjmp restores the environment that the function setjmp had stored within the array
jmp_buf. Execution then continues not at the point at which longjmp is called, but at the point at
which setjmp was called.

environment is the environment that had been saved by an earlier call to setjmp. It is of type
jmp_buf, which is defined in the header setjmp.h.

longjmp returns the value rval to the original call to setjmp, as if setjmp had just returned. rval
must be a number other than zero; if it is zero, then setjmp will return one.

Cross-references

Standard, §4.6.2.1
The C Programming Language, ed. 2, p. 254

See Also
non-local jumps, setjmp
Notes

Many user-level routines cannot be interrupted and reentered safely. For that reason, improper use
of longjmp and setjmp will result in the creation of mysterious and irreproducible bugs.

longjmp will work correctly “in the contexts of interrupts, signals and any of their associated

LEXICON

338 Iseek()

functions.” Also, longjmp’s behavior is undefined if it is used from within a function called by signal
received during the handling of a different signal.

Experience has shown that longjmp should not be used within an exception handler. The Standard
does not guarantee that programs will work correctly when longjmp is used to exit interrupts and
signals. Experience has shown that even if the longjmp terminates the signal handler and returns
successfully to the context of the setjmp, the program can easily fail to complete the very next
function call it attempts, usually because the signal interrupted an update of a non-atomic data
structure. The Standard guarantees that the implementations of setjmp, longjmp, and signal will
work together; it cannot make any promises about the interactions of these services with other
library functions or with user code. Caveat utilitor.

Iseek() — Extended function (libc)
Set read /write position
long Iseek(short fd, short how, long where);

Iseek sets the file-position indicator for stream fp. this changes the point where the next read or
write operation will occur.

fd is the file’s file descriptor, which is returned by open.

where and how describe the new seek position. where gives the number of bytes that you wish to
move the seek position. It is measured from the beginning of the file if how is zero, from the current
seek position if how is set to one, or from the end of the file if how is set to two.

A successful call to Iseek returns the new seek position. For example,
position = I seek(filenane, 100L, 0);

moves the seek position 100 bytes past the beginning of the file; whereas
position = I seek(filenane, OL, 1);

merely returns the current seek position, and does not change the seek position at all. lseek
returns -1L if an error occurs, such as seeking to a negative position.

Iseek differs from its cousin fseek in that lseek is an MS-DOS call and uses a file descriptor,
whereas fseek is a library function and uses a FILE pointer.

See Also
extended miscellaneous, fseek, ftell
Notes

MS-DOS writes data at a physical address corresponding to the seek address. Thus, if you seek
10,000 bytes past the current end of file and write a string, the string will be written 10,000 bytes
past the old end of file, and all the intervening data will then be made part of the file.

Some operating systems, such as MS-DOS, set the displacement from the file descriptor in bytes;
others, such as VAX VMS, set the displacement in sectors. If you want your programs to be fully
portable, you should avoid handing an absolute value to lseek.

Iseek is not described in the ANSI Standard. A program that uses it does not comply strictly with
the Standard, and may not be portable to other compilers or environments.

LEXICON

Ivalue 339

Ivalue — Definition

An lvalue designates an object in storage. An lvalue can be of any type, complete or incomplete,
other than type void.

A modifiable lvalue is any lvalue that is not of the following types:
N An array type.

o An incomplete type.

* Any type qualified by const.

o A structure or union with a member whose type is qualified by const, or with a member that is
a structure or union with a member that is so qualified.

Only a modifiable lvalue is permitted on the left side of an assignment statement.

An lvalue normally is converted to the value that is stored in the designated object. When this
occurs, it ceases to be an lvalue. For some lvalues, however, this does not occur, as follows:

. Any array type.

o When the lvalue is the operand of the operators sizeof, unary &, --, or ++.
U When the lvalue is the left operand of the . operator.

. When the lvalue is the left operand of any assignment operator.

An lvalue with an array type is normally converted to a pointer to the same type. The value of the
pointer is the address of the first member of the array. The exceptions to this operation are as
follows:

o When it is the operand of the operators sizeof or unary &.
o When it is a string literal that initializes an array of char.
e When it is a string literal of wide characters that initializes an array of wchar_t.

In addition to the restrictions listed above, the following are also not lvalues, and hence cannot
appear on the left side of an assignment statement:

. String literals.
. Character constants.
] Numeric constants.

Cross-references

Standard, §3.2.2.1
The C Programming Language, ed. 2, p. 197

See Also

conversions, function designator, rvalue

Notes

The term itself originally came from the phrase left value; in an expression like
obj ect = val ue;

the element to the left of the ‘=" is the object whose value is modified. Because the Standard
distinguishes between lvalues and modifiable Ivalues, it prefers to define lvalue as being a
contraction of the phrase locator value.

LEXICON

340 Ivalue

LEXICON

