
J

j0() — Extended function (libm)
Compute Bessel function
#include <xmath.h>
double j0(double z);

j0 computes the Bessel function of the first kind for order 0, for its argument z.

Example
This example, called bessel.c, demonstrates the Bessel functions j0, j1, and jn. Compile it with the
following command line

cc -f bessel.c -lm

to include floating-point functions and the mathematics library.

#include <math.h>
#include <stdlib.h>
#include <xmath.h>
dodisplay(double value, char *name)
{

if (errno)
perror(name);

else
printf("%10g %s\n", value, name);

errno = 0;
}

#define display(x) dodisplay((double)(x), #x)

main()
{

extern char *gets();
double x;
char string[64];

for(;;) {
printf("Enter number: ");
if(gets(string) == 0)

break;
x = atof(string);

display(x);
display(j0(x));
display(j1(x));
display(jn(0,x));

display(jn(1,x));
display(jn(2,x));
display(jn(3,x));

}
}

See Also
extended mathematics, j1, jn

Notes
j0 is not described in the ANSI Standard. Any program that uses it does not conform strictly to the
Standard, and may not be portable to other compilers or environments.

LEXICON

j0() 311

j1() — Extended function (libm)
Compute Bessel function
#include <xmath.h>
double j1(double z);

j1 takes the argument z and computes the Bessel function of the first kind for order 1.

Example
For an example of this function, see the entry for j0.

See Also
extended mathematics, j0, jn

Notes
j1 is not described in the ANSI Standard. Any program that uses it does not conform strictly to the
Standard, and may not be portable to other compilers or environments.

jday_to_time() — Extended function (libc)
Convert Julian date to system time
#include <time.h>
#include <xtime.h>
time_t jday_to_time(jday_t time);

jday_to_time converts Julian time to system time.

time is the Julian time to be converted. It is of type jday_t, which is defined in the header xtime.h.
jday_t is a structure that consists of two unsigned longs. The first gives the number of the Julian
day, which is the number of days since the beginning of the Julian calendar (January 1, 4713 B.C.).
The second gives the number of seconds since midnight of the given Julian day.

jday_to_time returns the Julian time as converted to type time_t. This type is defined in the header
time.h as being equivalent to a long. Let’s C defines the current system time as being the number
of seconds from January 1, 1970, 0h00m00s GMT, which is equivalent to the Julian day
2,440,587.5.

See Also
extended time, jday_to_tm, time_to_jday, tm_to_jday, xtime.h

Note
This function is of use mainly to astronomers, geographers, and historians.

To conform to the ANSI Standard, this function has been moved from the header time.h to the
header xtime.h. This may require that some code be altered.

jday_to_tm() — Extended function (libc)
Convert Julian date to system calendar format
#include <time.h>
#include <xtime.h>
tm *jday_to_tm(jday_t time);

jday_to_tm converts Julian time to the system calendar format.

time is the Julian time to be converted. It is of type jday_t, which is defined in the header xtime.h.
jday_t is a structure that consists of two unsigned longs. The first gives the number of the Julian
day, which is the number of days since the beginning of the Julian calendar (January 1, 4713 B.C.).

LEXICON

312 j1() — jday_to_tm()

The second gives the number of seconds since midnight of the given Julian day.

jday_to_tm returns a pointer to a copy of the structure tm, which is defined in the header file
time.h. For more information on this structure, see the Lexicon entry for time.

See Also
extended time, jday_to_time, time_to_jday, tm_to_jday, xtime.h

Note
This function is of use mainly to astronomers, geographers, and historians.

To conform to the ANSI Standard, this function has been moved from the header time.h to the
header xtime.h. This may require that some code be altered.

jmp_buf — Type
Type used with non-local jumps
#include <setjmp.h>

jmp_buf is a type defined in the header setjmp.h. It is the type used to hold the current
environment to enable a non-local jump. The usual contents of the jmp_buf array will be the
contents of registers; however, its contents are defined by the implementation.

Cross-references
Standard, §4.6
The C Programming Language, ed. 2, p. 254

See Also
non-local jumps, setjmp.h

Notes
Because jmp_buf usually does not contain anything except the current contents of the registers, one
should not expect values of local variables or register variables to restored properly.

Historically, code has been written that calls setjmp and longjmp with an argument of type
jmp_buf, but without taking its address. This code works because an array passed as a parameter
is automatically converted to a pointer. Because structures can now be passed by value, such
arguments are no longer converted to pointers. However, because both setjmp and longjmp expect
a pointer argument, the type of jmp_buf is restricted to an array type in order to preserve existing
code.

If jmp_buf must be a structure of heterogeneous elements, then it could be defined as a one-element
array of such structures.

jn() — Extended function (libm)
Compute Bessel function
#include <xmath.h>
double jn(short n, double z);

jn takes an argument z and computes the Bessel function of the first kind for order n.

Example
For an example of this function, see the entry for j0.

See Also
extended mathematics, j0, j1

LEXICON

jmp_buf — jn() 313

Notes
jn is not described in the ANSI Standard. Any program that uses it does not conform strictly to the
Standard, and may not be portable to other compilers or environments.

LEXICON

314 jn()

