
I

i8086 support — Overview
Let’s C includes a number of routines that support the i8086 microprocessor. They are as follows:

_copy Copy memory from one address to another
csreg Read the CS segment register
dsreg Read the DS segment register
esreg Read the ES segment register
exargs Parse the command line
execall Pass a command to command.com
getanb Get unbuffered input from aux device
getcnb Get unbuffered input from con device
in Read a word from a port
inb Read a byte from a port
intcall Call an MS-DOS interrupt
out Output a word to a port
outb Output a byte to a port
ptoreg Convert C ponters to register pairs
PTR Expand pointers to offset/segment
putanb Send unbuffered output to aux device
putcnb Send unbuffered output to con device
regtop Set a pointer to value of register pair
ssreg Read the SS segment register
_zero Zero out a segment of memory

See Also
i8087, Library

Notes
These functions are not described in the ANSI Standard. A program that uses any of them does not
conform strictly to the Standard, and may not be portable to other compilers or environments.

i8087 — Technical information
Floating-point co-processor

The Intel i8087 is the mathematics coprocessor for the i8086/88 family of microprocessors. It
greatly accelerates the computation of floating-point numbers.

Let’s C includes two sets of libraries for use with the i8087: the sensing and the non-sensing
libraries.

If your compiled program is always going to run on a computer system that includes an i8087, you
should compile and link programs with the -VNDP option. This program will use the non-sensing
libraries. These libraries contain instructions that perform floating point operations directly on the
i8087 coprocessor; programs compiled with them will not operate correctly on a system which does
not include an i8087.

You should not compile and link programs with the -VNDP option if your system does not include
an i8087 coprocessor or if you want the compiled program to run on target systems that might or
might not contain an i8087.

If you do not use the -VNDP option, Let’s C by default will use its sensing libraries. These libraries
check if an i8087 is present on the system on which the compiled program is being run. If one is
present, the libraries use it to perform floating-point operations. If one is not present, the libraries
emulate i8087 floating-point operations in software. The compiled program will be somewhat larger

LEXICON

i8086 support — i8087 295



than the same program compiled with the -VNDP option, because it will include the code to perform
software floating point, and will run slightly slower. The program must be linked with the -VROM
option if it is to run in ROM.

A program that uses floating-point numbers will not necessarily yield the same results when
executed on systems with and without an i8087 coprocessor. In particular, the i8087 represents
floating-point numbers internally with an 80-bit representation (64 fraction bits, 15 exponent bits,
one sign bit), whereas Let’s C software floating point uses the 64-bit IEEE representation internally
(52 fraction bits, 11 exponent bits, one sign bit). Thus, the low-order digits of floating point
computations may differ on systems with and without an i8087.

Compatability With Previous Versions
Versions of Let’s C prior to 4.0 used DECVAX format rather than IEEE format for software floating
point operations. Any program using software floating point that was compiled by a previous
version must be recompiled with the current version to use IEEE software floating point. Binary
files that include DECVAX format floating point data are not compatible with the current IEEE
floating point version.

Checking Presence of the i8087
In i8087 sensing mode, the C runtime startup routine discovers whether an i8087 is present on the
machine. This datum is written into the global char _has8087. Zero indicates that an i8087 is
absent, and a value other than zero indicates that it is present.

If you wish, you can read and change this variable. If you wish to test how a program would work
without an i8087, it is easier to clear this byte than to pull the i8087 chip out of your computer. If,
however, you set this byte to a non-zero value and an i8087 is not present, your computer will hang
when it tries to use the non-existent i8087.

See Also
float, double, technical information

Notes
The assembler as will assemble programs that use i8087 opcodes. For a full table of these opcodes,
see the entry for as.

identifiers — Overview
An identifier names one of the following lexical elements:

• Functions

• Labels

• Macros

• Members of a structure, a union, or an enumeration

• Objects

• Tags

• typedefs

An identifier with internal linkage may have up to at least 31 characters, which may be in either
upper or lower case. An identifier with external linkage, however, may have up to at least six
characters, and it is not required to recognize both upper and lower case. These limits are defined
by the implementation, and may be increased by it.

An identifier is a string of digits and non-digits, beginning with a non-digit. For a translator to know
that two identifiers refer to the same entity, the identifiers must be identical. If two identifiers are

LEXICON

296 identifiers



meant to refer to the same entity yet differ in any character, the behavior is undefined.

Keywords in C are reserved. Therefore, no identifier may match a keyword.

The Standard allows the programmer to use leading underscores ‘_’ to name internal identifiers, but
reserves for the implementation all external identifiers with leading underscores. To reduce ‘‘name
space pollution,’’ the implementor should not reserve anything that is not explicitly defined in the
Standard and that does not begin with a leading underscore.

Identifiers have both scope and linkage. The scope of an identifier refers to the portion of a program
to which it is ‘‘visible.’’ An identifier can have program scope, file scope, function scope, or block
scope; for more information, see the entry for scope. The linkage of an identifier describes whether it
is joined only with its name-sakes within the same file, or can be joined to other files. Linkage can
be external, internal, or none. For more information, see the entry for linkage.

Cross-references
Standard, §3.1.2
The C Programming Language, ed. 2, p. 192

See Also
digit, external name, function prototype, internal name, lexical elements, linkage, name
space, nondigit, scope, storage duration, string literal, types

if — C keyword
Conditionally execute an expression
if(conditional) statement;

if is a C keyword that conditionally executes an expression. If conditional is nonzero, then statement
is executed. However, if conditional is zero, then statement is not executed.

conditional must use a scalar type. It may be a function call (in which case if evaluates what
function returns), an integer, the result of an arithmetic operation, or the value returned by a
relational expression.

An if statement can be followed by an else statement, which also introduces a statement. If
conditional is nonzero, then the statement introduced by if is executed and the one introduced by
else is ignored; whereas if conditional is equal to zero, then the statement introduced by if is ignored
and the one introduced by else is executed.

Example
For an example of this statement, see exit.

Cross-references
Standard, §4.6.4.1
The C Programming Language, ed. 2, pp. 55ff

See Also
else, statements, switch

Notes
If the statement controlled by an if statement is accessed via a label, the statement controlled by an
else statement associated with the if statement is not executed.

LEXICON

if 297



implicit conversions — Definition
The term implicit conversion means that the type of an object is changed by the translator without
the direct intervention of the programmer. For a list of the rules for implicit conversion, see
conversion.

Cross-reference
Standard, §3.2

See Also
conversions, explicit conversion

inb() — Extended function (libc)
Read from a port
int inb(int port);

inb provides a C interface to the i8086 machine instruction in. It reads a byte (eight bits) from port,
and returns it as an integer (16 bits).

Example
This example writes a file to the serial port. It uses inb to read the current status of the port.

#include <stdio.h>
#include <stdlib.h>

/* DOS magic numbers */
#define PRINTER_STATUS 0x3BD
#define PRINTER_OUT 0x3BC
#define PRINTER_BUSY 0x80

main(int argc, char *argv[])
{

FILE *fp;
int data;

if(argc != 2)
printf("Usage: print filename\n");

else if ((fp = fopen(argv[1], "r")) == NULL) {
printf("Cannot open %s\n", argv[1]);
exit(EXIT_FAILURE);

}

else while((data = getw(fp)) != EOF) {
while(inb(PRINTER_STATUS) & PRINTER_BUSY)

;
outb(PRINTER_OUT, data);

}
return EXIT_SUCCESS;

}

See Also
extended miscellaneous, in, out, outb

INCDIR — Environmental variable
Directory that holds include files

INCDIR names the default directory where Let’s C seeks its header files. For example, the
command

LEXICON

298 implicit conversions — INCDIR



set INCDIR=a:\include

tells cc to look for header files in directory include on drive A. This directory is searched, as is the
directory that holds the C source files and the directories named with -I options to the cc command,
if any.

It is recommended that you set INCDIR in autoexec.bat to ensure that it is always set correctly.

See Also
cc, environmental variable

index() — Extended function (libc)
Find a character in a string
char *index(char *string, char character);

index is identical to the ANSI function strchr. It scans the given string for the first occurrence of
character. If it finds character, it returns a pointer to it. If it does not find character, index returns
NULL.

Having index search for a null character will always produce a pointer to the end of a string. For
example,

char *string;
assert(index(string, 0)==string+strlen(string));

will never fail.

Example
For an example of this function, see the entry for strncpy.

See Also
extended miscellaneous, memchr, pnmatch, rindex, strchr, strpbrk

Notes
index is not described in the ANSI Standard. It is recommended that you use strchr instead of
index so your programs will more closely approach strict conformity with the Standard.

initialization — Definition
The term initialization refers to setting a variable to its first, or initial, value.

Rules of Initialization
Initializers follow the same rules for type and conversion as do assignment statements.

If a static object with a scalar type is not explicitly initialized, it is initialized to zero by default.
Likewise, if a static pointer is not explicitly initialized, it is initialized to NULL by default. If an
object with automatic storage duration is not explicitly initialized, its contents are indeterminate.

Initializers on static objects must be constant expressions; greater flexibility is allowed for
initializers of automatic variables. These latter initializers can be arbitrary expressions, not just
constant expressions. For example,

double dsin = sin(30);

is a valid initializer, where dsin is declared inside a function.

To initialize an object, use the assignment operator ‘=’. The following sections describe how to
initialize different classes of objects.

LEXICON

index() — initialization 299



Scalars
To initialize a scalar object, assign it the value of a expression. The expression may be enclosed
within braces; doing so does not affect the value of the assignment. For example, the expressions

int example = 7+12;

and

int example = { 7+12 };

are equivalent.

Unions and Structures
The initialization of a union by definition fills only its first member.

To initialize a union, use an expression that is enclosed within braces:

union example_u {
int member1;
long member2;
float member3;

} = { 5 };

This initializes member1 to five. That is to say, the union is filled with an int-sized object whose
value is five.

To initialize a structure, use a list of constants or expressions that are enclosed within braces. For
example:

struct example_s {
int member1;
long member2;
union example_u member3;

};

struct example_s test1 = { 5, 3, 15 };

This initializes member1 to five, initializes member2 to three, and initializes the first member of
member3 to 15.

Strings and Wide Characters
To initialize a string pointer or an array of wide characters, use a string literal.

The following initializes a string:

char string[] = "This is a string";

The length of the character array is 17 characters: one for every character in the given string literal
plus one for the null character that marks the end of the string.

If you wish, you can fix the length of a character array. In this case, the null character is appended
to the end of the string only if there is room in the array. For example, the following

char string[16] = "This is a string";

writes the text into the array string, but does not include the concluding null character because
there is not enough room for it.

The same rules apply to initializing an array of wide characters. For example, the following:

wchar_t widestring[] = L"This is a string";

LEXICON

300 initialization



fills widestring with the wide characters corresponding to the characters in the given string literal.
The appropriate form of the null character is then appended to the end of the array, and the size of
the array is (17*sizeof(wchar_t)). The prefix L indicates that the string literal consists of wide
characters.

A pointer to char can also be initialized when the pointer is declared. For example:

char *strptr = "This is a string";

initializes strptr to point to the first character in This is a string. This declaration automatically
allocates exactly enough storage to hold the given string literal, plus the terminating null character.

Arrays
To initialize an array, use a list of expressions that is enclosed within braces. For example, the
expression

int array[] = { 1, 2, 3 };

initializes array. Because array does not have a declared number of elements, the initialization fixes
its number of elements at three. The elements of the array are initialized in the order in which the
elements of the initialization list appear. For example, array[0] is initialized to one, array[1] to two,
and array[2] to three.

If an array has a fixed length and the initialization list does not contain enough initializers to
initialize every element, then the remaining elements are initialized in the default manner: static
variables are initialized to zero, and other variables to whatever happens to be in memory. For
example, the following:

int array[3] = { 1, 2 };

initializes array[0] to one, array[1] to two, and array[2] to zero.

The initialization of a multi-dimensional array is something of a science in itself. The Standard
defines that the ranks in an array are filled from right to left. For example, consider the array:

int example[2][3][4];

This array contains two groups of three elements, each of which consists of four elements.
Initialization of this array will proceed from example[0][0][0] through example[0][0][3]; then from
example[0][1][0] through example[0][1][3]; and so on, until the array is filled.

It is easy to check initialization when there is one initializer for each ‘‘slot’’ in the array; e.g.,

int example[2][3] = {
1, 2, 3, 4, 5, 6

};

or:

int example[2][3] = {
{ 1, 2, 3 }, { 4, 5, 6 }

};

The situation becomes more difficult when an array is only partially initialized; e.g.,

int example[2][3] = {
{ 1 }, { 2, 3 }

};

which is equivalent to:

LEXICON

initialization 301



int example[2][3] = {
{ 1, 0, 0 }, { 2, 3, 0 }

};

As can be seen, braces mark the end of initialization for a ‘‘cluster’’ of elements within an array. For
example, the following:

int example[2][3][4] = {
5, { 1, 2 }, { 5, 2, 4, 3 }, { 9, 9, 5 },
{ 2, 3, 7 } };

is equivalent to entering:

int example[2][3][4] = {
{ 5, 0, 0, 0 },
{ 1, 2, 0, 0 },
{ 5, 2, 4, 3 },

{ 9, 9, 5, 0 },
{ 2, 3, 7, 0 },
{ 0, 0, 0, 0 }

};

The braces end the initialization of one cluster of elements; the next cluster is then initialized. Any
elements within a cluster that have not yet been initialized when the brace is read are initialized in
the default manner.

The final entry in a list of initializers may end with a comma. For example:

int array[3] = { 1, 2, 3, };

will initialize array correctly. This is a departure from many current implementations of C.

ANSI C requires that the initializers of a multi-dimensional array be parsed in a top-down manner.
Some implementations had parsed such initializers in a bottom-up manner. Code that expects
bottom-up parsing may behave differently under ANSI C, and probably without warning. This is a
quiet change that may require that some code be rewritten.

Cross-references
Standard, §3.5.7
The C Programming Language, ed. 2, pp. 218ff

See Also
array, declarations

int — C keyword
The type int holds an integer. It is usually the same size as a word (or register) on the target
machine.

int is a signed integral type. This type can be no smaller than an short and no greater than a long.

A int can encode any number between INT_MIN and INT_MAX. These are macros that are defined
in the header limits.h;

The types signed and signed int are synonyms for int.

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.2.1.1, §3.5.2
The C Programming Language, ed. 2, p. 211

LEXICON

302 int



See Also
types

Notes
Because ints may be the size of shorts on some machines and the size of longs on others, programs
that are meant to be portable can avoid bugs by explicitly declaring all ints to be either short or
long.

intcall() — i8086 support (libc)
Call MS-DOS interrupt
#include <dos.h>
int intcall(struct reg *srcreg, struct reg *destreg, int intnum);

intcall lets you call MS-DOS interrupts. The arguments srcreg and destreg point to elements in the
structure reg, which is defined in the header file dos.h, as follows:

struct reg {
unsigned r_ax;
unsigned r_bx;
unsigned r_cx;
unsigned r_dx;
unsigned r_si;
unsigned r_di;
unsigned r_ds;
unsigned r_es;
unsigned r_flags;

};

intcall sets the processor registers to the values given in srcreg, without setting the processor flags.
Then it calls the interrupt specified by intnum to perform the desired system function. Most often,
the manifest constant DOSINT (0x21) is used, although intcall can handle almost all MS-DOS
interrupts. Finally, it sets the structure pointed to by destreg to the values of those registers, and
returns.

Example
The following program uses function 8 of interrupt 21, which receives raw input from the keyboard
and does not echo it on the screen. The program receives up to 80 characters typed at the
keyboard, and echoes them to the screen either when the carriage return is pressed or when the
limit of 80 characters is exceeded.

The sample program fdir.c, which is included with your copy of Let’s C, also demonstrates intcall.

#include <dos.h>
#include <stdio.h>
#include <stdlib.h>

char getch(void)
{

struct reg r;

r.r_ax = CONRAW;
intcall(&r, &r, DOSINT);

/* mask off top of ax pair */
return (r.r_ax & 0xff);

}

LEXICON

intcall() 303



main(void)
{

char string[80];
int i;

for(i = 0; i <80; i++)
if((string[i] = getch()) == ’\r’)

break;

printf("%s\n", string);
return(EXIT_SUCCESS);

}

See Also
dos.h, i8086 support, ptoreg, PTR, regtop, signals/interrupts

Notes
Registers that are not included in the structure reg cannot be passed to a system routine explicitly.

incall cannot use interrupts 25 and 26, absolute disk read and write, because they do not restore
the stack correctly when they exit.

integer constant — Definition
An integer constant is a constant that holds an integer. An integer constant has the following
structure:

• It begins with a digit.

• It has no period or exponent.

• It may have a prefix that indicates its base, as follows: 0X and 0x both indicate hexadecimal. 0
(zero) indicates octal.

• It may have a suffix that indicates its type. u and U indicate an unsigned integer; l and L
indicate a long integer.

A hexadecimal number may consist of the digits ‘0’ through ‘9’ and the letters ‘a’ through ‘f’ or ‘A’
through ‘F’. An octal number may consist of the digits ‘0’ through ‘7’.

When an integer constant initializes a variable, the form of the constant should match that of the
variable as closely as possible. For example, when an integer constant initializes a long int, the
constant should have the suffix l or L. If the constant does not have this suffix, the variable may not
be initialized correctly.

The type of an integer constant is fixed by the following rules:

• A decimal integer constant that has no suffix is given the first of the following types that can
represent its value: int, long int, or unsigned long int.

• A hexadecimal or octal integer constant that has no suffix is given the first of the following
types that can represent its value: int, unsigned int, long int, or unsigned long int.

• An integer constant with the prefixes u or U is given the first of the following types that can
represent its value: unsigned int or unsigned long int.

• An integer constant with the prefixes l or L is given the first of the following types that can
represent its value: long int or unsigned long int.

• An integer constant with both the unsigned and the long suffixes is an unsigned long int.

These rules, as they preserve the value of a given constant, are part of what is known as the value-

LEXICON

304 integer constant



preserving rules.

Cross-references
Standard, §3.1.3.2
The C Programming Language, ed. 2, p. 193

See Also
constants, conversions

internal name — Definition
An internal name is an identifier that has internal linkage. The minimum maximum for the length
of an internal name is 31 characters, and an implementation must distinguish upper-case and
lower-case characters.

Cross-references
Standard, §3.1.2
The C Programming Language, ed. 2, p. 35

See Also
external name, identifiers, linkage

interrupt — Definition
An interrupt is an interruption of the sequential flow of a program. It can be generated by the
hardware, from within the program itself, or from the operating system.

See Also
Definitions, intcall, interrupt handling, interrupts

isalnum() — Character handling (ctype.h)
Check if a character is a numeral or letter
#include <ctype.h>
int isalnum(int c);

The macro isalnum tests whether c is a letter or a numeral. A letter is any character for which
isalpha returns true; likewise, a numeral is any character for which isdigit returns true. c must be
a value that is representable as an unsigned char or EOF.

isalnum returns nonzero if c is a letter or a numeral, and zero if it is not.

Cross-references
Standard, §4.3.1.1
The C Programming Language, ed. 2, pp

See Also
character handling

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

LEXICON

internal name — isalnum() 305



isalpha() — Character handling (ctype.h)
Check if a character is a letter
#include <ctype.h>
int isalpha(int c);

The macro isalpha tests whether c is a letter. In the C locale, a letter is any of the characters ‘a’
through ‘z’ or ‘A’ through ‘Z’. In any other locale, a letter is any character for which the functions
iscntrl, isdigit, ispunct, and isspace all return false. c must be a value that is representable as an
unsigned char or EOF.

isalpha returns nonzero if c is an alphabetic character, and zero if it is not.

Cross-references
Standard, §4.3.1.2
The C Programming Language, ed. 2, p. 249

See Also
character handling

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

isascii() — Extended macro (xctype.h)
Check if a character is an ASCII character
#include <xctype.h>
int isascii(c) int c;

The macro isascii tests whether the argument c is an ASCII character (0 <= c <= 0177). It returns a
number other than zero if c is an ASCII character, and zero if it is not. Many other ctype macros
will fail if passed a non-ASCII value other than EOF.

See Also
extended character handling

Notes
To conform to the ANSI Standard, this macro has been moved from the header ctype.h to the
header xctype.h. This may require that some code be altered.

This macro is not described in the ANSI Standard. Any program that uses it does not conform
strictly to the Standard, and may not be portable to other compilers or environments.

iscntrl() — Character handling (ctype.h)
Check if a character is a control character
#include <ctype.h>
int iscntrl(int c);

The macro iscntrl tests whether c is a control character under the implementation’s character set.
The Standard defines a control character as being a character in the implementation’s character
that cannot be printed. c must be a value that is representable as an unsigned char or EOF.

iscntrl returns nonzero if c is a control character, and zero if it is not.

Cross-references
Standard, §4.3.1.3

LEXICON

306 isalpha() — iscntrl()



The C Programming Language, ed. 2, p. 249

See Also
character handling

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

isdigit() — Character handling (ctype.h)
Check if a character is a numeral
#include <ctype.h>
int isdigit(int c);

The macro isdigit tests whether c is a numeral (any of the characters ‘0’ through ‘9’). c must be a
value that is representable as an unsigned char or EOF.

isdigit returns nonzero if c is a numeral, and zero if it is not.

Cross-references
Standard, §4.3.1.4
The C Programming Language, ed. 2, p. 249

See Also
character handling

isgraph() — Character handling (ctype.h)
Check if a character is printable
#include <ctype.h>
int isgraph(int c);

The macro isgraph tests whether c is a printable letter within the Let’s C character set, but
excluding the space character. The Standard defines a printable character as any character that
occupies one printing position on an output device. c must be a value that is representable as an
unsigned char or EOF.

isgraph returns nonzero if c is a printable character (except for space), and zero if it is not.

Cross-references
Standard, §4.3.1.5
The C Programming Language, ed. 2, p. 249

See Also
character handling

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

islower() — Character handling (ctype.h)
Check if a character is a lower-case letter
#include <ctype.h>
int islower(int c);

The macro islower tests whether c is a lower-case letter. In the C locale, a lower-case letter is any of
the characters ‘a’ through ‘z’. In any other locale, this is a character for which the functions iscntrl,

LEXICON

isdigit() — islower() 307



isdigit, ispunct, isspace, and isupper all return false. c must be a value that is representable as
an unsigned char or EOF.

islower returns nonzero if c is is a lower-case letter, and zero if it is not.

Cross-references
Standard, §4..1.6
The C Programming Language, ed. 2, p. 249

See Also
character handling, character set

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

isprint() — Character handling (ctype.h)
Check if a character is printable
#include <ctype.h>
int isprint(int c);

The macro isprint tests whether c is a printable letter within the implementation’s character set,
including the space character. The Standard defines a printable character as any character that
occupies one printing position on an output device. c must be a value that is representable as an
unsigned char or EOF.

isprint returns nonzero if c is a printable character, and zero if it is not.

Cross-references
Standard, §4.3.1.7
The C Programming Language, ed. 2, p. 249

See Also
character handling

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

ispunct() — Character handling (ctype.h)
Check if a character is a punctuation mark
#include <ctype.h>
int ispunct(int c);

The macro ispunct tests whether c is a punctuation mark in the implementation’s character set.
The Standard defines a punctuation mark as being any printable character, except the space
character, for which the function isalnum returns false. c must be a value that is representable as
an unsigned char or EOF.

ispunct returns nonzero if c is a punctuation mark, and zero if it is not.

Cross-references
Standard, §4.3.1.8
The C Programming Language, ed. 2, p. 249

LEXICON

308 isprint() — ispunct()



See Also
character handling

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

isspace() — Character handling (ctype.h)
Check if character is white space
#include <ctype.h>
int isspace(int c);

The macro isspace tests whether c represents a white-space character. In the C locale, a white-
space character is any of the following: space (‘ ’), form feed (‘\f’), newline (‘\n’), carriage return (‘\r’),
horizontal tab (‘\t’), or vertical tab (‘\v’). In any other locale, a white-space character is one for
which the functions isalnum, iscntrl, isgraph, and ispunct all return false. c must be a value that
is representable as an unsigned char or EOF.

isspace returns nonzero if c is a space character, and zero if it is not.

Cross-references
Standard, §4.3.1.1
The C Programming Language, ed. 2, p. 249

See Also
character handling

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
For example, Middle-Eastern languages use alternate characters to denote white space. See
localization for more information.

isupper() — Character handling (ctype.h)
Check if a character is an upper-case letter
#include <ctype.h>
int isupper(int c);

The macro isupper tests whether c is a upper-case letter. In the C locale, a upper-case letter is any
of the characters ‘A’ through ‘Z’. In any other locale, this is a character for which the functions
iscntrl, isdigit, islower, ispunct, and isspace all return false. c must be a value that is
representable as an unsigned char or EOF.

isupper returns nonzero if c is an upper-case letter, and zero if it is not.

Cross-references
Standard, §4.3.1.6
The C Programming Language, ed. 2, p. 249

See Also
character handling, character sets

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

LEXICON

isspace() — isupper() 309



isxdigit() — Character handling (libc)
Check if a character is a hexadecimal numeral
#include <ctype.h>
int isxdigit(int c);

isxdigit tests whether c is a hexadecimal numeral (any of the characters ‘0’ through ‘9’, any of the
letters ‘a’ through ‘d’, or any of the letters ‘A’ through ‘D’). c must be a value that is representable as
an unsigned char or EOF.

isxdigit returns nonzero if c is a hexadecimal numeral, and zero if it is not.

Cross-references
Standard, §4.3.1.11
The C Programming Language, ed. 2, p. 249

See Also
character handling

LEXICON

310 isxdigit()


