286 gcvit() — general utilities

G

gevt() — Extended function (libc)

Convert floating-point numbers to strings
char *gecvt(double d, int prec, char *buffer);

gevt converts a floating point number into an ASCII string. Its operation resembles that of the %g
operator to printf. gevt converts its argument d into a null-terminated string of decimal numerals
with a precision (i.e., the number of numerals to the right of the decimal point) of prec. Unlike its
cousins ecvt and fevt, gevt uses a buffer that is defined by the caller. buffer must point to a buffer
large enough to hold the result; 64 characters will always be sufficient.

When generating its output, gevt will mimic fevt if possible. Otherwise, it mimics ecvt.
gevt returns buffer.

Example
For an example of this function, see the entry for ecvt.

See Also
ecvt, extended miscellaneous, fcvt, frexp, ldexp, modf, printf

general utilities — Overview
#include <stdlib.h>
The ANSI standard describes a set of general utilities. As its name implies, this set is a grab-bag of
utilities that do not fit neatly anywhere else. In accordance with the Standard’s principle that every
function must be declared in a header, the Committee created the header stdlib.h to hold the
general utilities and their attendant macros and types.

The general utilities are as follows:

Environment communication

abort End program immediately
atexit Register a function to be performed at exit
exit Terminate a program gracefully
getenv Get environment variable
system Suspend program and execute another
Integer arithmetic functions
abs Compute absolute value of an integer
div Perform integer division
labs Compute absolute value of a long integer
1div Perform long integer division
Memory management
calloc Allocate and clear dynamic memory
free De-allocate dynamic memory
malloc Allocate dynamic memory
realloc Reallocate dynamic memory
Multibyte character functions
mblen Compute length of a multibyte character
mbstowcs Convert sequence of multibyte characters to wide characters
mbtowc Convert multibyte character to wide character
wcstombs Convert sequence of wide characters to multibyte characters
wctomb Convert wide character to multibyte character

LEXICON

getc() — getchar() 287

Pseudo-random number functions

rand Generate pseudo-random numbers

srand Seed pseudo-random number generator
Searching-sorting

bsearch Search an array

gsort Sort an array
String conversion functions

atof Convert string to floating-point number

atoi Convert string to integer

atol Convert string to long integer

strtod Convert string to double-precision floating-point number

strtol Convert string to long integer

strtoul Convert string to unsigned long integer
Cross-references

Standard, §4.10.1
The C Programming Language, ed. 2, pp. 251ff

See Also
div_t, 1div_t, Library, stdlib.h, wchar_t

getc() — STDIO (stdio.h)

Read a character from a stream
#include <stdio.h>
int getc(FILE */p);

getc reads a character from the stream pointed to by fp. The character is read as an unsigned char
converted to an int.

If all goes well, gete returns the character read. If it reads the end of file, it returns EOF and sets
the end-of-file indicator. If an error occurs, it returns EOF and sets the error indicator.

Cross-references

Standard, §4.9.7.5
The C Programming Language, ed. 2, p. 247

See Also
fgetc, getchar, gets, putc, putchar, puts, STDIO, ungetc

Notes

Let’s C implements getc as a macro, which means that fp could be evaluated more than once.
Therefore, one should beware of the side-effects of evaluating the argument more than once,
especially if the argument itself has side-effects.

getchar() — STDIO (stdio.h)

Read a character from the standard input stream
#include <stdio.h>
int getchar(void);

getchar reads and returns a character from the file or device associated with stdin. It is equivalent
to:

getc(stdin);

LEXICON

288 getenv()

If getchar reads the end of file, it returns EOF and sets the file’s end-of-file indicator. Likewise, if an
error occurs, it returns EOF and sets the file’s error indicator.

Example

This example copies onto the standard-output device whatever is typed upon the standard-input
device. To exit, type EOF; what this character is depends upon the operating system that your
computer is running.

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

mai n(voi d)
int c;

while((c = getchar()) != EOF)
put char (c);
ret urn(EXI T_SUCCESS) ;
}

Cross-references

Standard, §4.9.7.6

The C Programming Language, ed. 2, p. 247

See Also

getc, gets, putc, putchar, puts, STDIO, ungetc

getenv() — General utility (libc)
Read environmental variable
#include <stdlib.h>

char *getenv(const char *variable);

The environment itself can make information available to a program. This information often is
available in the form of an environment variable, which is a string that forms a definition. For
example, under the UNIX operating system the environment variable TERM indicates the type of
terminal the user has. The variable TERM=myterm indicates that the user is typing on a myterm
variety of terminal. When a program reads that declaration, it knows to use the coding proper for
that terminal.

The environment variables together form the environment list. Given the heterogeneous
environments under which C is implemented, the Standard does not define the mechanism by
which the environment list is passed to a program.

The function getenv scans the environment list and looks for the variable that is named in the
string pointed to by variable.

getenv returns a pointer to the string that defines the variable. It returns NULL if the variable
requested cannot be found.

Example
This program looks up words in the environment and displays them.

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

LEXICON

gets() 289

mai n(voi d)
for(;;) {
char buf[80], *is;

printf("Enter an environmental variable: ");
fflush(stdout);

if(gets(buf) == NULL)
exit (EXI T_SUCCESS) ;

if((is = getenv(buf)) == NULL)
printf("Can’t find %\n", buf);
el se
printf("% = %\n", buf, is);
}

ret ur n(EXI T_SUCCESS) ;
}

Cross-references

Standard, §4.10.4.4
The C Programming Language, ed. 2, p. 253

See Also

environment list, general utilities

Notes

getenv uses a static area to hold the environment variable requested. This buffer will be overwritten
by subsequent calls to getenv.

gets() — STDIO (libc)

Read a string from the standard input stream
#include <stdio.h>

char *gets(char *buffer);

gets reads characters from the standard input stream and stores them in the area pointed to by
buffer. It stops reading as soon as it detects a newline character or the end of file. gets discards the
newline or EOF and appends a null character onto the end of the string it has built.

If all goes well, gets returns buffer. When it has encountered the end of file without having placed
any characters into buffer, it returns NULL and leaves the contents of buffer unchanged. If a read
error occurs, gets returns NULL and the contents of buffer may or may not be altered.

Example
This example echoes whatever is typed upon the standard-input device.

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

mai n(voi d)
char buf[100];
whi | e(gets(buf) !'= NULL)

put s(buf);
ret ur n(EXI T_SUCCESS) ;

LEXICON

290 getw() — gmtime()

Cross-references

Standard, §4.9.7.7
The C Programming Language, ed. 2, p. 247

See Also
fgets, getc, getchar, putc, putchar, puts, STDIO, ungetc

Notes

gets stops reading the input string as soon as it detects a newline character. If a previous read from
the standard input stream left a newline character in the standard input buffer, gets will read it and
immediately stop accepting characters. To the user, it will appear as if gets is not working at all.

For example, if getchar is followed by gets, the first character gets will receive is the newline
character left behind by getchar. A simple statement will remedy this:

while (getchar() !'="\n")

This discards the newline character left behind by getchar. gets will now work correctly. You
should use this only when you know that a newline will be left in the buffer. Otherwise, the desired
line will be lost

getw() — Extended function (libc)
Read word from file stream
#include <xstdio.h>

int getw(FILE */p);

getw reads a word (an int) from the file stream fp, and returns it. It differs from the related function
getc in that getc returns either a char promoted to an int, or EOF.

getw returns EOF on errors; however, you must call feof or ferror distinguish this value from a
valid end-of-file signal.

Example
For an example of this function, see the entry for inb.

See Also
extended STDIO, getc

Notes

getw assumes that the bytes of the word it receives are in the natural byte ordering of the machine.
See the entry on byte ordering for more information. This means that such files might not be
portable between machines.

To conform to the ANSI Standard, this function has been moved from the header stdio.h to the
header xstdio.h. This may require that some code be altered.

getw is not described in the ANSI Standard. A program that uses it does not comply strictly with
the Standard, and may not be portable to other compilers or operating systems.

gmtime() — Time function (libc)

Convert calendar time to universal coordinated time
#include <time.h>

struct tm *gmtime(const time_t *caltime);

The function gmtime takes the calendar time pointed to by caltime and breaks it down into a
structure of the type tm, converting it into universal coordinated time.

LEXICON

goto 291

gmtime returns a pointer to the structure tm that it creates. This structure is defined in the
header time.h. If universal coordinated time cannot be computed, then gmtime returns NULL.

Example
This example shows Universal Coordinated Time in a message of the form “12/22/88 15:27:33".

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <tine. h>

mai n(voi d)
time_t now,
char buffer[80];

ti me(&now);
strftime(buffer, sizeof(buffer),
"o Ye/ Yy 9%t 9Vt B\ n", gntine(&ow));
printf(buffer);
ret urn(EXI T_SUCCESS) ;
}

Cross-references

Standard, §4.12.3.3
The C Programming Language, ed. 2, p. 256

See Also
asctime, ctime, date and time, localtime, strftime, tm, universal coordinated time

Notes

The name “gmtime” reflects the term “Greenwich Mean Time.” the Standard prefers the term
“universal coordinated time,” although for all practical purposes the two are identical.

gmtime is useful only on a system whose time is set to UTC rather than to local time. The Let’s C
time routines read the environmental variable TIMEZONE to translate UTC automatically into your
local time, should you wish. See the entry for TIMEZONE for more information on how this works.

gmtime returns a pointer to a statically allocated data area that is overwritten by successive calls.

goto — C keyword
Unconditionally jump within a function
goto label;

The goto statement forces a program’s execution to jump to the point marked by label. A goto can
jump only to a point within the current function. To jump beyond a function boundary, use the
functions longjmp and setjmp.

The most common use for goto is to exit from nested control structures or go to the top of a control
block. It is used most often to write “ripcord” routines, i.e., routines that are executed when a error
occurs too deeply within a program for the program to disentangle itself correctly.

Example
For an example of this statement, see name space.
Cross-references

Standard, §4.6.6.1
The C Programming Language, ed. 2, p. 65

LEXICON

292 goto

See Also

break, C keywords, continue, label name, non-local jumps, return, statements
Notes

The C Programming Language describes goto as “infinitely-abusable.” Caveat utilitor.

LEXICON

