
F

fabs() — Mathematics (libm)
Compute absolute value
#include <math.h>
double fabs(double z);

fabs calculates and returns the absolute value for a double-precision floating-point number. It
returns z if z is zero or positive, and it returns -z if z is negative.

Example
For an example of this function, see sin.

Cross-references
Standard, §4.5.6.2
The C Programming Language, ed. 2, p. 251

See Also
abs, ceil, floor, fmod, mathematics

false — Definition
In the context of a C program, an expression is false if it is zero.

See Also
Definitions, true

fclose() — STDIO (libc)
Close a stream
#include <stdio.h>
int fclose(FILE *fp);

fclose closes the stream pointed to by fp.

fclose flushes all of fp’s output buffers. Unwritten buffered data are handed to the host
environment for writing into fp, and unread, buffered data are thrown away. It then dissociates the
stream pointed to by fp from the file (i.e., ‘‘closes’’ the file). If the buffer associated with fp was
allocated, it is then de-allocated.

The function exit calls fclose to close all open streams.

fclose returns zero if it closed fp correctly, and EOF if it did not.

Example
For an example of this function, see fopen.

Cross-references
Standard, §4.9.5.1
The C Programming Language, ed. 2, p. 162

See Also
fclose, fflush, fopen, freopen, setbuf, setvbuf, STDIO

Notes
The function exit closes all open streams, which flushes their buffers.

LEXICON

246 fabs() — fclose()

fcvt() — Extended function (libc)
Convert floating-point numbers to strings
char *fcvt(double d, int w, int *dp, int *signp);

fcvt converts floating point numbers to ASCII strings. Its operation resembles that of the %f
operator to printf. It converts d into a null-terminated string of decimal digits with a precision (i.e.,
the number of characters to the right of the decimal point) of w. It rounds the last digit and returns
a pointer to the result.

On return, fcvt sets dp to point to an integer that indicates the location of the decimal point relative
to the beginning of the string: to the right if positive, and to the left if negative. Finally, it sets signp
to point to an integer that indicates the sign of d: zero if positive, and nonzero if negative. fcvt
rounds the result to the FORTRAN F-format.

Example
For an example of this function, see the entry for ecvt.

See Also
ecvt, extended miscellaneous, frexp, gcvt, ldexp, modf, printf

Notes
fcvt performs conversions within static string buffers that are overwritten by each execution.

fdopen() — Extended function (libc)
Open a stream for standard I/O
#include <xstdio.h>
FILE *fdopen(short fd, char *type);

fdopen allocates and returns a FILE structure, or stream, for the file descriptor fd, as obtained from
open, creat, or dup.

type is the manner in which you wish to open fd, as follows:

r Read a file
w Write into a file
a Append onto a file

fdopen returns NULL if it cannot allocate a FILE structure.

Example
The following example obtains a file descriptor with open, and then uses fdopen to build a pointer
to the FILE structure.

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <xstdio.h>

/* prototype for extended function */
extern int open(char *file, int type);

fatal(char *message)
{

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

LEXICON

fcvt() — fdopen() 247

main(int argc, char *argv[])
{

extern FILE *fdopen();
FILE *fp;
short fd;
short holder;

if (--argc != 1)
fatal("Usage: example filename");

if ((fd = open(argv[1], 0)) == -1)
fatal("open failed.");

if ((fp = fdopen(fd, "r")) == NULL)
fatal("fdopen failed.");

while ((holder = fgetc(fp)) != EOF) {
if ((holder > ’\177’) && (holder < ’ ’))

switch(holder) {
case ’\t’:
case ’\n’:

break;
default:

fprintf(stderr, "Seeing char %d\n", holder);
exit(EXIT_FAILURE);

}

fputc(holder, stdout);
}
return(EXIT_SUCCESS);

}

See Also
creat, dup, fopen, open, STDIO

Notes
Currently, 20 FILE structures can be allocated per program, including stdin, stdout, and stderr.

To conform to the ANSI Standard, this function has been moved from the header stdio.h to the
header xstdio.h. This may require that some code be altered.

fdopen is not described in the ANSI Standard. Programs that use it do not conform strictly to the
Standard, and may not be portable to other compilers or environments.

feof() — STDIO (stdio.h)
Examine a stream’s end-of-file indicator
#include <stdio.h>
int feof(FILE *fp);

feof examines the end-of-file indicator for the stream pointed to by fp. It returns zero if the indicator
shows that the end of file has not been reached, and returns a number other than zero if the
indicator shows that it has.

Examples
This example checks whether a file can be read directly to the end.

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>

LEXICON

248 feof()

main(int argc, char *argv[])
{

long size;
FILE *ifp;

if(argc != 2) {
printf("usage: example inputfile\n");
exit(EXIT_FAILURE);

}

if((ifp = fopen(argv[1], "rb")) == NULL) {
printf("Cannot open %s\n", argv[1]);
exit(EXIT_FAILURE);

}

for(size = 0; fgetc(ifp) != EOF; size++)
;

if(feof(ifp))
printf("EOF at character %ld\n", size);

if(ferror(ifp)) {
printf("Error at character %ld\n", size);
perror(NULL);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.10.2
The C Programming Language, ed. 2, p. 176

See Also

Notes
feof is often used with getw or fgetw, to distinguish a value of -1 from EOF.

ferror() — STDIO (libc)
Examine a stream’s error indicator
#include <stdio.h>
int ferror(FILE *fp);

ferror examines the error indicator for the stream pointed to by fp. It returns zero if an error has
occurred on fp, and a number other than zero if one has not.

Cross-references
Standard, §4.9.10.3
The C Programming Language, ed. 2, p. 164

See Also
clearerr, feof, perror, STDIO

Notes
Any error condition noted by ferror will persist either until the stream is closed, until clearerr is
used to clear it, or until the file-position indicator is reset with rewind.

LEXICON

ferror() 249

fflush() — STDIO (libc)
Flush output stream’s buffer
#include <stdio.h>
int fflush(FILE *fp);

fflush flushes the buffer associated with the file stream pointed to by fp. If fp points to an output
stream, then fflush hands all unwritten data to the host environment for writing into fp. If, however,
fp points to an input stream, behavior is undefined.

With Let’s C, stdout is buffered. Here, fflush can be used to write a prompt that is not terminated
by a newline.

fflush returns zero if all goes well, and returns EOF if a write error occurs.

The function exit calls fclose to flush all output buffers before the program exits.

Example
This example asks for a string and returns it in reply.

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>

static char reply[80];
char *
askstr(char *msg)
{

printf("Enter %s ", msg);
/* required by the absence of a \n */
fflush(stdout);
if(gets(reply) == NULL)

exit(EXIT_SUCCESS);
return(reply);

}

main(void)
{

for(;;)
if(!strcmp(askstr("a string"), "quit"))

break;
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.5.2
The C Programming Language, ed. 2, p. 242

See Also
fclose, fopen, freopen, setbuf, setvbuf, STDIO

fgetc() — STDIO (libc)
Read a character from a stream
#include <stdio.h>
int fgetc(FILE *fp);

fgetc reads a character from the stream pointed to by fp. Each character is read initially as an
unsigned char, then converted to an int before it is passed to the calling function. fgetc then
advances the file-position indicator for fp.

LEXICON

250 fflush() — fgetc()

fputc returns the character read from fp. If the file-position indicator is beyond the end of the file to
which fp points, fputc returns EOF and sets the end-of-file indicator. If a read error occurs, fgetc
returns EOF and the stream’s error indicator is set.

Example
For an example of this function, see tmpfile.

Cross-references
Standard, §4.9.7.1
The C Programming Language, ed. 2, p. 246

See Also
fgets, fgetw, getc, getchar, gets, getw, STDIO

fgetpos() — STDIO (libc)
Get value of file-position indicator
#include <stdio.h>
int fgetpos(FILE *fp, fpos_t *position);

fgetpos copies the value of the file-position indicator for the file stream pointed to by fp into the area
pointed to by position. position is of type fpos_t, which is defined in the header stdio.h. The
information written into position can be used by the function fsetpos to return the file-position
indicator to where it was when fgetpos was called.

fgetpos returns zero if all went well. If an error occurred, fgetpos returns nonzero and sets the
integer expression errno to the appropriate value. See errno for more information on its use.

Example
This example seeks to a random line in a very large file.

#include <math.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void
fatal(char *format, ...)
{

va_list argptr;

if(errno)
perror(NULL);

if(format != NULL) {
va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);

}
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

int c;
long count;
FILE *ifp, *tmp;
fpos_t loc;

LEXICON

fgetpos() 251

if(argc != 2)
fatal("usage: fscanf inputfile\n");

if((ifp = fopen(argv[1], "r")) == NULL)
fatal("Cannot open %s\n", argv[1]);

if((tmp = tmpfile()) == NULL)
fatal("Cannot build index file");

/* seed random-number generator */
srand((unsigned int)time(NULL));

for(count = 1;!feof(ifp); count++) {
/* for monster files */
if(fgetpos(ifp, &loc))

fatal("fgetpos error");

if(fwrite(&loc, sizeof(loc), 1, tmp) != 1)
fatal("Write fail on index");

rand();
while(’\n’ != (c = fgetc(ifp)) && EOF != c)

;
}

count = rand() % count;
fseek(tmp, count * sizeof(loc), SEEK_SET);

if(fread(&loc, sizeof(loc), 1, tmp) != 1)
fatal("Read fail on index");

fsetpos(ifp, &loc);
while((c = fgetc(ifp)) != EOF) {

if(’@’ == c)
putchar(’\n’);

else
putchar(c);

if(’\n’ == c)
break;

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.9.1
The C Programming Language, ed. 2, p. 248

See Also
fseek, fsetpos, ftell, rewind, STDIO

Notes
The Standard introduced fgetpos and fsetpos to manipulate a file whose file-position indicator
cannot be stored within a long. Under MS-DOS, fgetpos behaves the same as the function ftell.

fgets() — STDIO (libc)
Read a line from a stream
#include <stdio.h>
char *fgets(char *string, int n, FILE *fp);

fgets reads characters from the stream pointed to by fp into the area pointed to by string until either
n-1 characters have been read, a newline character is read, or the end of file is encountered. It
retains the newline, if any, and appends a null character to the end of of the string.

LEXICON

252 fgets()

fgets returns the pointer string if its read was performed successfully. It returns NULL if it
encounters the end of file or if a read error occurred. When a read error occurs, the contents of
string are indeterminate.

Example
This example displays a text file. It breaks up lines that are longer than 78 characters.

#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void
fatal(char *format, ...)
{

va_list argptr;

if(errno)
perror(NULL);

if(format!=NULL) {
va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);

}
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

char buf[79];
FILE *ifp;

if(argc != 2)
fatal("usage: fgets inputfile\n");

if((ifp = fopen(argv[1], "r")) == NULL)
fatal("Cannot open %s\n", argv[1]);

while(fgets(buf, sizeof(buf), ifp) != NULL) {
printf("%s", buf);
if(strchr(buf, ’\n’) == NULL)

printf("\\\n");
}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.7.2
The C Programming Language, ed. 2, p. 247

See Also
fgetc, fgetw, getc, getchar, gets, getw, STDIO

fgetw() — Extended function (libc)
Read integer from stream
#include <xstdio.h>
short fgetw(FILE *fp);

LEXICON

fgetw() 253

fgetw is a function that reads and returns a word (short int) from the stream pointed to by fp.

fgetw returns EOF if an error occurs. A call to feof or ferror may be necessary to distinguish this
value from a genuine end-of-file signal.

Example
This example copies one binary file into another. It demonstrates the functions fgetw and fputw.

#include <stdio.h>
#include <stdlib.h>
#include <xstdio.h>

void fatal(char *message)
{

fprintf(stderr, "%s\n"), message);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

FILE *fpin, *fpout;
int word;

if(argc != 3)
fatal("Usage: example sourcefile newfile");

if ((fpin = fopen(infile, "rb")) == NULL)
fatal("Cannot open output file");

if ((fpout = fopen(outfile, "wb")) != NULL)
fatal("Cannot open output file");

while ((word = fgetw(fpin)) != EOF) {
fputw(word, fpout);
if (!ferror(fpin))

fatal("Read error");
}

fclose(fpin);
fclose(fpout);
return(EXIT_SUCCESS);

}

See Also
extended STDIO, fputw

Notes
To conform to the ANSI Standard, this function has been moved from the header stdio.h to the
header xstdio.h. This may require that some code be altered.

fgetw is not described in the ANSI Standard. Programs that use it do not conform strictly to the
Standard, and may not be portable to other compilers or environments.

field — Definition
A field is an area that is set apart from whatever surrounds it, and that is defined as containing a
particular type of data. In the context of C programming, a field is either an element of a structure,
or a set of adjacent bits within an int.

See Also
bit field, Definitions, struct

LEXICON

254 field

file — Definition
A file is a mass of bits that has been named and stored on a mass-storage device.

Opening a File
To read a file, alter its contents, or add data to it, a C program must use a stream. The term
opening a file means to establish a stream through which the program can access the file. The
stream governs the way data are accessed. The information the stream needs to access the file are
encoded within a FILE object. Because environments vary greatly in the information they need to
access a file, the Standard does not describe the internals of the FILE object. If a file does not exist
when a program attempts to open it, then it is created. Because some environments distinguish the
format for a text file from that for a binary file, the Standard distinguishes between opening a
stream into text mode and opening it into binary mode.

To open a file, use the functions fopen or freopen. The former simply opens a file and assigns a
stream to it. The latter reopens a file; that is, it takes the stream being used to access one file,
assigns it to another file, and closes the original file. freopen can also be used to change the mode
in which a file is accessed.

Buffering
When a file is opened, it is assigned a buffer. Access to the file are made through the buffer. Data
written or, in some instances, read from the file are kept in the buffer temporarily, then transmitted
as a block. This increases the efficiency with which programs communicate with the environment.
To change the type of buffering performed, the size of the buffer used, or to redirect buffering to a
buffer of your own creation, use the functions setbuf or setvbuf. See the entry for buffer for more
information on the types of buffers used with files.

File-position Indicator
A file has a file-position indicator associated with it; this indicates the point within the file where it is
being written to or read. Use of this indicator allows a program to walk smoothly through a file
without having to use internal counters or other means to ensure that data are received
sequentially. It also allows a program to access any point within a file ‘‘randomly’’ — that is, to
access any given point in the file without having to walk through the entire file to reach it.

The manipulation of the file-position indicator can vary sharply between binary and text files. In
general, the file-position indicator for a binary file is simply incremented as a character is read or
written. For a text file, however, manipulation of the file-position indicator is defined by the
implementation. This is due to the fact that different implementations represent end-of-line
characters differently. To read the file-position indicator, use the functions fgetpos or ftell; to set it
directly, use the functions fseek or fsetpos.

Error Conditions
When a file is being manipulated, a condition may occur that could cause trouble should the
program continue to read or write that file. This could be an error, such as a read error, or the
program may have read to the end of the file.

To help prevent such a condition from creating trouble, most environments use two indicators to
signal when one has occurred: the error indicator and the end-of-file indicator. When an error
occurs, the error indicator is set to a value that encodes the type of error that occurred; and when
the end of the file is read, then the end-of-file indicator is set. By reading these indicators, a
program may discover if all is going well. Under some implementations, however, a file may not be
manipulated further unless both indicators are reset to their normal values.

To discover the setting of the end-of-file indicator, use the function feof. To discover the setting of
the error indicator, use ferror. To reset the indicators to their normal values, use the function
clearerr.

LEXICON

file 255

Closing a File
When you have finished manipulating a file, you should close it. To close a file means to dissociate
it from the stream with which you had been manipulating it. When a file is closed, the buffer
associated with its stream is flushed to ensure that all data intended for the file are written into it.
To close a file, use the function fclose.

Cross-reference
Standard, §4.9.3

See Also
Definitions, STDIO, stdio.h, stream

Notes
When data are written into a binary file, the file is not truncated by the write. This allows writes to
binary files to be performed at random positions throughout the file without truncating the file at
the position written. Under Let’s C, the same is true for text files.

file descriptor — Definition
A file descriptor is an integer between 1 and 20 that indexes an area in _psbase, which, in turn,
points to the operating system’s internal file descriptors. It is used by routines like open, close, and
lseek to work with files. A file descriptor is not the same as a FILE stream, which is used by
routines like fopen, fclose, or fread.

See Also
Definitions, file, FILE
Advanced MS-DOS, page 261

FILENAME_MAX — Manifest constant
Maximum length of file name
#include <stdio.h>

FILENAME_MAX is a that is defined in the header stdio.h. It gives the maximum length of a file
name that the implementation can open.

Cross-references
Standard, §4.9.1
The C Programming Language, ed. 2, p. 242

See Also
fopen, STDIO, stdio.h

fileno() — Extended function (libc)
Get file descriptor
#include <xstdio.h>
short fileno(FILE *fp);

fileno returns the file descriptor associated with the file stream fp. The file descriptor is the integer
returned by open or creat. It is used by routines such as fopen used to create a FILE stream.

Example
This example reads a file descriptor and prints it on the screen.

LEXICON

256 file descriptor — fileno()

#include <stdio.h>
#include <stdlib.h>
#include <xstdio.h>

void fatal(char *message)
{

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

FILE *fp;
int fd;

if (argc !=2)
fatal("Usage: fd_from_fp filename");

if ((fp = fopen(argv[1], "rw")) == NULL)
fatal("Cannot open input file");

fd = fileno(fp);
printf("The file descriptor for %s is %d\n",

argv[1], fd);
return(EXIT_SUCCESS);

}

See Also
extended STDIO, FILE, file descriptor

Notes
To conform to the ANSI Standard, this function has been moved from the header stdio.h to the
header xstdio.h. This may require that some code be altered.

fileno is not described in the ANSI Standard. Programs that use it do not conform strictly to the
Standard, and may not be portable to other compilers or environments.

float — C keyword
A float is a data type that represents a single-precision floating-point number. It is defined as being
no larger than a double.

Like all floating-point numbers, a float consists of one sign bit, which indicates whether the number
is positive or negative; bits that encode the number’s exponent; and bits that encode the number’s
mantissa, or the number upon which the exponent works. The exponent often uses a bias. This is a
value that is subtracted from the exponent to yield the power of two by which the mantissa will be
increased. The format of a float and the range of values that it can encode are set in the following
macros, all of which are defined in the header limits.h:

FLT_DIG
This holds the number of decimal digits of precision. This must be at least ten.

FLT_EPSILON
Where b indicates the base of the exponent (default, two) and p indicates the precision (or
number of base b digits in the mantissa), this macro holds the minimum positive floating-
point number x such that 1.0 + x does not equal 1.0, b^1-p. This must be at least 1E-5.

FLT_MAX
This holds the maximum representable floating-point number. It must be at least 1E+37.

LEXICON

float 257

FLT_MAX_EXP
This is the maximum integer such that the value of FLT_RADIX raised to its power minus
one is a representable finite floating-point number.

FLT_MAX_10_EXP
This holds the maximum integer such that ten raised to its power is within the range of
representable finite floating-point numbers. It must be at least +37.

FLT_MANT_DIG
This gives the number of digits in the mantissa.

FLT_MIN
This gives the minimum value encodable within a float. This must be at least 1E-37.

FLT_MIN_EXP
This gives the minimum negative integer such that when the value of FLT_RADIX is raised
to that power minus one is a normalized floating-point number.

FLT_MIN_10_EXP
This gives the minimum negative integer such that ten raised to that power is within the
range of normalized floating-point numbers.

Several formats are used to encode floats, including IEEE, DECVAX, and BCD (binary coded
decimal). Let’s C uses IEEE format throughout.

The following describes DECVAX, IEEE, and BCD formats, for your information.

DECVAX Format
The 32 bits in a float consist of one sign bit, an eight-bit exponent, and a 24-bit mantissa, as
follows:

Sign Exponent 1 Mantissa
|s eeeeeee|e fffffff|ffffffff|ffffffff|

Byte 4 Byte 3 Byte 2 Byte 1

The exponent has a bias of 129.

If the sign bit is set to one, the number is negative; if it is set to zero, then the number is positive. If
the number is all zeroes, then it equals zero. An exponent and mantissa of zero plus a sign of one
(‘‘negative zero’’) is by definition not a number. All other forms are numeric values.

The most significant bit in the mantissa is always set to one and is not stored. It is usually called
the ‘‘hidden bit’’.

The format for doubles simply adds another 32 mantissa bits to the end of the float representation,
as follows:

Sign Exponent Mantissa
|s eeeeeee|e fffffff|ffffffff|ffffffff|

Byte 8 Byte 7 Byte 6 Byte 5

ffffffff|ffffffff|ffffffff|ffffffff|
Byte 4 Byte 3 Byte 2 Byte 1

IEEE Format
The IEEE encoding of a float is the same as that in the DECVAX format. Note, however, that the
exponent has a bias of 127, rather than 129.

Unlike the DECVAX format, IEEE format assigns special values to several floating point numbers.
In the following description, a tiny exponent is one that is all zeroes, and a huge exponent is one
that is all ones:

LEXICON

258 float

• A tiny exponent with a mantissa of zero equals zero, regardless of the setting of the sign bit.

• A huge exponent with a mantissa of zero equals infinity, regardless of the setting of the sign bit.

• A tiny exponent with a mantissa greater than zero is a denormalized number, i.e., a number
that is less than the least normalized number.

• A huge exponent with a mantissa greater than zero is, by definition, not a number. These
values can be used to handle special conditions.

An IEEE double, unlike DECVAX format, increases the number of exponent bits. It consists of a
sign bit, an 11-bit exponent, and a 53-bit mantissa, as follows:

Sign Exponent Mantissa
|s eeeeeee|eeee ffff|ffffffff|ffffffff|
Byte 8 Byte 7 Byte 6 Byte 5

ffffffff|ffffffff|ffffffff|ffffffff|
Byte 4 Byte 3 Byte 2 Byte 1

The exponent has a bias of 1,023. The rules of encoding are the same as for floats.

BCD Format
The BCD (‘‘binary coded decimal’’) format is used in accounting to eliminate rounding errors that
alter the worth of an account by a fraction of a cent. For that reason, BCD format consists of a sign,
an exponent, and a chain of four-bit numbers, each of which is defined to hold the digits zero
through nine.

A BCD float has a sign bit, seven bits of exponent, and six four-bit digits, as follows:

Sign Exponent Mantissa
|s eeeeeee| dddd dddd|dddd dddd|dddd dddd|

Byte 4 Byte 3 Byte 2 Byte 1

A BCD double has a sign bit, 11 bits of exponent, and 13 four-bit digits, as follows:

Sign Exponent Mantissa
|s eeeeeee|eeee dddd|dddd dddd|dddd dddd|

Byte 8 Byte 7 Byte 6 Byte 5

dddd dddd|dddd dddd|dddd dddd|dddd dddd|
Byte 4 Byte 3 Byte 2 Byte 1

Passing the hexadecimal numbers A through F in a digit yields unpredictable results.

The following rules apply when handling BCD numbers:

• A tiny exponent with a mantissa of zero equals zero.

• A tiny exponent with a mantissa of non-zero indicates a denormalized number.

• A huge exponent with a mantissa of zero indicates infinity.

• A huge exponent with a mantissa of non-zero is, by definition, not a number; these non-
numbers are used to indicate errors.

Example
For an example of a program that uses float, see sin.

Cross-references
Standard, §2.2.4.2, §3.1.2.4, §3.1.3.1, §3.5.2
The C Programming Language, ed. 2, p. 211

LEXICON

float 259

See Also
double, float.h, long double, types

Notes
Because the printf routines that print floating-point numbers are quite large, they are included only
optionally. If you wish to have printf print floats or doubles, you must compile your program with
the -f option to the cc command. See cc for more details.

float.h — Header
The header float.h defines a set of macros that return the limits for computation of floating-point
numbers.

The following lists the macros defined in float.h. With the exception of FLT_ROUNDS, each macro is
an expression; each value given is the minimum maximum that each expression must yield. The
prefixes DBL, FLT, and LDBL refer, respective, to double, float, and long double.

DBL_DIG
Number of decimal digits of precision. Must yield at least ten.

DBL_EPSILON
Smallest possible floating-point number x, such that 1.0 plus x does not test equal to 1.0.
Must be at most 1E-9.

DBL_MANT_DIG
Number of digits in the floating-point mantissa for base FLT_RADIX.

DBL_MAX
Largest number that can be held by type double. Must yield at least 1E+37.

DBL_MAX_EXP
Largest integer such that the value of FLT_RADIX raised to its power minus one is less
than or equal to DBL_MAX.

DBL_MAX_10_EXP
Largest integer such that ten raised to its power is less than or equal to DBL_MAX.

DBL_MIN
Smallest number that can be held by type double.

DBL_MIN_EXP
Smallest integer such that the value of FLT_RADIX raised to its power minus one is greater
than or equal to DBL_MIN.

DBL_MIN_10_EXP
Smallest integer such that ten raised to its power is greater than or equal to DBL_MAX.

FLT_DIG
Number of decimal digits of precision. Must yield at least six.

FLT_EPSILON
Smallest floating-point number x, such that 1.0 plus x does not test equal to 1.0. Must be
at most 1E-5.

FLT_MANT_DIG
Number of digits in the floating-point mantissa for base FLT_RADIX.

FLT_MAX
Largest number that can be held by type float. Must yield at least 1E+37.

LEXICON

260 float.h

FLT_MAX_EXP
Largest integer such that the value of FLT_RADIX raised to its power minus one is less
than or equal to FLT_MAX.

FLT_MAX_10_EXP
Largest integer such that ten raised to its power is less than or equal to FLT_MAX.

FLT_MIN
Smallest number that can be held by type float.

FLT_MIN_EXP
Smallest integer such that the value of FLT_RADIX raised to its power minus one is greater
than or equal to FLT_MIN.

FLT_MIN_10_EXP
Smallest integer such that ten raised to its power is greater than or equal to FLT_MIN.

FLT_RADIX
Base in which the exponents of all floating-point numbers are represented.

FLT_ROUNDS
Manner of rounding used by the implementation, as follows:

-1 Indeterminable, i.e., no strict rules apply
0 Toward zero, i.e., truncation
1 To nearest, i.e., rounds to nearest representable value
2 Toward positive infinity, i.e., always rounds up
3 Toward negative infinity, i.e., always rounds down

Any other value indicates that the manner of rounding is defined by the implementation.

LDBL_DIG
Number of decimal digits of precision. Must yield at least ten.

LDBL_EPSILON
Smallest floating-point number x, such that 1.0 plus x does not test equal to 1.0. Must be
at most 1E-9.

LDBL_MANT_DIG
Number of digits in the floating-point mantissa for base FLT_RADIX.

LDBL_MAX
Largest number that can be held by type long double. Must yield at least 1E+37.

LDBL_MAX_EXP
Largest integer such that the value of FLT_RADIX raised to its power minus one is less
than or equal to LDBL_MAX.

LDBL_MAX_10_EXP
Largest integer such that ten raised to its power is less than or equal to LDBL_MAX.

LDBL_MIN
Smallest number that can be held by type long double. Must be no greater than 1E-37.

LDBL_MIN_EXP
Smallest integer such that the value of FLT_RADIX raised to its power minus one is greater
than or equal to LDBL_MIN.

LDBL_MIN_10_EXP
Smallest integer such that ten raised to its power is greater than or equal to LDBL_MIN.

LEXICON

float.h 261

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
Environment, header, numerical limits

floating constant — Definition
A floating constant is a constant that represents a floating-point number. A floating constant has
three parts: the value, an exponent, and a suffix. Both the exponent and the suffix are optional.

The value section gives the value of the floating-point number. It also has three parts: a sequence of
decimal digits, a period, and another set of digits. The first set of digits gives the whole-number part
of the number, the period indicates the end of the whole-number part and the beginning of the
fractional part, and the second sequence of digits encodes the fractional part. The period (which is
sometimes called the ‘‘radix point’’) is always the character that marks the end of the whole-number
sequence, regardless of the character recognized by the program’s locale. In other words, the format
of the C language floating constant is not locale-sensitive.

The exponent is used when the floating constant uses exponential notation. Here, the exponent
gives the power of ten by which the base value is multiplied. For example,

1.05e10

represents the number

1.05*10^10

or

10,500,000,000

stored as a double. The exponent is introduced by the characters e or E followed by either + or -,
which indicates the sign of the exponent. There follows the exponent itself, which consists of a
sequence of decimal digits.

Finally, a floating constant may be followed by the suffixes f, F, l, or L. The first two indicate that
the constant is of type float; the latter two, that the constant is of type long double. If a floating
constant has no suffix, the translator assumes that it is of type double.

Cross-references
Standard, §3.1.3.1
The C Programming Language, ed. 2, p. 194

See Also
constants, float

floor() — Mathematics (libm)
Numeric floor
#include <math.h>
double floor(double z);

floor returns the ‘‘floor’’ of a number, or the largest integer not greater than z. For example, the floor
of 23.2 is 23, and the floor of -23.2 is -24.

floor returns the value expressed as a double.

LEXICON

262 floating constant — floor()

Cross-references
Standard, §4.5.6.3
The C Programming Language, ed. 2, p. 251

See Also
ceil, fabs, fmod, mathematics

fmod — Mathematics (libm)
Calculate modulus for floating-point number
#include <math.h>
double fmod(double number, double divisor);

fmod divides number by divisor and returns the remainder. If divisor is nonzero, the return value
will have the same sign as divisor. If divisor is zero, however, it will either return zero or set a
domain error.

Cross-references
Standard, §4.5.6.4
The C Programming Language, ed. 2, p. 251

See Also
ceil, fabs, floor, mathematics

fopen() — STDIO (libc)
Open a stream for standard I/O
#include <stdio.h>
FILE *fopen (const char *file, const char *mode);

fopen opens the stream file, and allocates and initializes the data stream associated with it. This
makes the file available for STDIO operations. file may name either a file on a mass-storage device
or a peripheral device. file can be no more than FILENAME_MAX characters long.

mode points to a string that consists of one or more of the characters ‘‘rwab+’’; this indicates the
mode into which the file is to be opened. The following set of mode strings are recognized:

a Append, text mode
ab Append, binary mode
a+ Append, text mode
ab+ Append, binary mode
a+b Append, binary mode

r Read, text mode
rb Read, binary mode
r+ Update, text mode
rb+ Update, binary mode
r+b Update, binary mode

w Write, text mode
wb Write, binary mode
w+ Update, text mode
wb+ Update, binary mode
w+b Update, binary mode

Note the following:

LEXICON

fmod — fopen() 263

• Opening file into any of the ‘a’ (append) modes means that data can be written only onto the
end of the file. These modes set the file-position indicator to point to the end of the file. All
other modes set it to point to the beginning of the file.

• To open file into any of the ‘r’ (read) modes, it must already exist and contain data. If file does
not exist or cannot be opened, then fopen returns NULL.

• When a file is opened into any of the ‘w’ (write) modes, it is truncated to zero bytes if it already
exists, or created if it does not.

• Opening file into any of the ‘+’ (update) modes allows you to write data into it or read data from
it. When used with ‘r’ or ‘w’, data may be read from file or written into it at any point. When
used with ‘a’, data may be written into it only at its end. To switch from reading a file to
writing into it, either the stream’s input buffer must be flushed with fflush or the file-position
indicator repositioned with fseek, fsetpos, or rewind.

fopen returns a pointer to the FILE object that controls the stream. It returns NULL if the file
cannot be opened, for whatever reason.

fopen can open up to FOPEN_MAX files at once. This value is 20, including stdin, stdout, and
stderr.

Example
This example opens a test file and reports what happens.

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>

main(int argc, char *argv[])
{

FILE *fp;

if(argc != 3) {
fprintf(stderr, "usage: fopen filename mode\n");
exit(EXIT_FAILURE);

}

if((fp = fopen(argv[1], argv[2])) == NULL) {
perror("Fopen failure");
exit(EXIT_FAILURE);

}

fclose(fp);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.5.3
The C Programming Language, ed. 2, p. 160

See Also
fclose, fflush, freopen, setbuf, setvbuf, STDIO

Notes
To update an existing file, use the mode r+

fopen associates a fully buffered stream with file only if file does not access an interactive device.

A conforming implementation must support all of the modes described above. It may also offer
other modes in which to open a file.

LEXICON

264 fopen()

for — C keyword
Loop construct
for(initialization; condition; modification) statement

for introduces a conditional loop. It takes three expressions as arguments; these are separated by
semicolons ‘;’. initialization is executed before the loop begins. condition describes the condition
that must be true for the loop to execute. modification is the statement that modifies variable to
control the number of iterations of the loop. For example,

for (i=0; i<10; i++)

first sets the variable i to zero; then declares that the loop will continue as long as i remains less
than ten; and finally, increments i by one after every iteration of the loop. This ensures that the
loop will iterate exactly ten times (from i==0 through i==9). The statement

for(;;)

will loop until its execution is interrupted by a break, goto, or return statement.

The for statement is equivalent to:

initialization;
while(condition) {

statement
modification;

}

Example
For an example of this statement, see putc.

Cross-references
Standard, §3.6.5.3
The C Programming Language, ed. 2, pp. 60ff

See Also
break, C keywords, continue, do, statements, while

fpos_t — Type
Encode current position in a file

The type fpos_t is defined in the header stdio.h. It is used by the functions fgetpos and fsetpos to
encode the current position within a file (the file-position indicator). Its type may vary from
implementation to implementation.

fpos_t and its functions are designed to manipulate files whose file-position indicator cannot be
encoded within a long.

Cross-references
Standard, §4.9.1, §4.9.9.1, §4.9.9.3
The C Programming Language, ed. 2, p. 248

See Also
fgetpos, file, FILE, file-position indicator, fsetpos, STDIO, stdio.h

Notes
The Standard leaves the actual type of fpos_t to the implementation. The intent is to define a data
type that can be obtained by a call to fgetpos and used on later calls to fsetpos. It is not wise to try

LEXICON

for — fpos_t 265

to manipulate this type directly or to dissect it. Code that depends on specific properties of fpos_t
may not be portable.

fprintf() — STDIO (libc)
Print formatted text into a stream
#include <stdio.h>
int fprintf(FILE *fp, const char *format, ...);

fprintf constructs a formatted string and writes it into the stream pointed to by fp. It can translate
integers, floating-point numbers, and strings in a variety of text formats.

format points to a string that can contain text, character constants, and one or more conversion
specifications. A conversion specification describes how a particular data type is to be converted
into text. Each conversion specification is introduced with the percent sign ‘%’. (To print a literal
percent sign, use the escape sequence ‘‘%%’’.) See printf for further discussion of the conversion
specification, and for a table of the type specifiers that can be used with fprintf.

After format can come one or more arguments. There should be one argument for each conversion
specification in format, and the argument should be of the type appropriate to the conversion
specification. For example, if format contains conversion specifications for an int, a long, and a
string, then format should be followed by three arguments, being, respectively, an int, a long, and a
char *.

If there are fewer arguments than conversion specifications, then fprintf’s behavior is undefined. If
there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding conversion specifier,
then the behavior of fprintf is undefined. Thus, presenting an int where fprintf expects a char *
may generate unwelcome results.

If it could write the formatted string, fprintf returns the number of characters written; otherwise, it
returns a negative number.

Example
This example prints two messages: one into stderr and the other into stdout.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

fprintf(stderr, "A message to stderr.\n");
printf("A message to stdout.\n");
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.6.1
The C Programming Language, ed. 2, p. 243

See Also
printf, sprintf, STDIO, vfprintf, vprintf, vsprintf

Notes
fprintf can construct and output a string of up to at least 509 characters.

The character that fprintf uses to represent the decimal point is affected by the program’s locale, as
set by the function setlocale. For more information, see localization.

LEXICON

266 fprintf()

Because the printf routines that print floating-point numbers are quite large, they are included only
optionally. If you wish to have printf print floats or doubles, you must compile your program with
the -f option to the cc command. See cc for more details.

fputc() — STDIO (libc)
Write a character into a stream
#include <stdio.h>
int fputc(int character, FILE *fp);

fputc converts character to an unsigned char, writes it into the stream pointed to by fp, and
advances the file-position indicator for fp.

fputc returns character if it was written successfully; otherwise, it sets the error indicator for fp and
returns EOF.

Example
The following example uses fputc to copy the contents of one file into another.

#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>

void
fatal(char *format, ...)
{

va_list argptr;

if(errno)
perror(NULL);

if(format != NULL) {
va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);

}
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

FILE *ifp, *ofp;
int ch;

if(argc != 3)
fatal("usage: fputc oldfile newfile\n");

if((ifp = fopen(argv[1], "r")) == NULL)
fatal("Cannot open %s\n", argv[1]);

if((ofp = fopen(argv[2], "w")) == NULL)
fatal("Cannot open %s\n", argv[2]);

while ((ch = fgetc(ifp)) != EOF)
if (fputc(ch, ofp) == EOF)

fatal("Write error for %s\n", argv[2]);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.7.3
The C Programming Language, ed. 2, p. 247

LEXICON

fputc() 267

See Also
fputs, fputw, putc, putchar, puts, putw, STDIO

fputs() — STDIO (libc)
Write a string into a stream
#include <stdio.h>
int fputs(char *string; FILE *fp);

fputs writes the string pointed to by string into the stream pointed to by fp. The terminating null
character is not written. Unlike the related function puts, it does not append a newline character to
the end of string.

fputs returns a non-negative number if it could write string correctly. If it could not, it returns
EOF.

Cross-references
Standard, §4.9.7.4
The C Programming Language, ed. 2, p. 247

See Also
fputc, putc, putw, putchar, puts, putw, STDIO

fputw() — Extended function (libc)
Write an integer to a stream
#include <xstdio.h>
short fputw(short word, FILE *fp);

fputw writes word into the file stream fp, and returns the value written.

fputw returns EOF when an error occurs. A call to ferror or feof may be needed to distinguish this
value from a valid end-of-file signal.

Example
For an example of this function, see the entry for fgetw.

See Also
extended STDIO, fgetw

Notes
To conform to the ANSI Standard, this function has been moved from the header stdio.h to the
header xstdio.h. This may require that some code be altered.

fputw is not described in the ANSI Standard. Programs that use it do not conform strictly to the
Standard, and may not be portable to other compilers or environments.

fread() — STDIO (libc)
Read data from a stream
#include <stdio.h>
size_t fread(void *buffer, size_t size, size_t n, FILE *fp);

fread reads up to n items, each being size bytes long, from the stream pointed to by fp and copies
them into the area pointed to by buffer. It advances the file-position indicator by the amount
appropriate to the number of bytes read.

fread returns the number of items read. If the value returned by fread is not equal to n, use the
functions ferror and feof to find, respectively, if an error has occurred or if the end of file has been

LEXICON

268 fputs() — fread()

encountered.

Example
This example reads data structures into an array of structures. It is more to be read than used.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#define COUNT 10

struct aStruct {
double d;
float f;
int i;

} arrayStruct[COUNT];

main(void)
{

int i;
FILE *ifp;

if((ifp = fopen("a.s", "rb")) == NULL) {
perror("Cannot open a.s");
exit(EXIT_FAILURE);

}

/* buffer blocksize count FILE */
i=fread(arrayStruct,sizeof(struct aStruct),COUNT,ifp);
if(i != COUNT) {

fprintf(stderr, "Only read %d blocks\n", i);
return(EXIT_FAILURE);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.8.1
The C Programming Language, ed. 2, p. 247

See Also
fwrite, STDIO

Notes
If an error occurs while data are being read, then the value of the file-position indicator is
indeterminate. If either size or n is zero, then fread returns zero and reads nothing.

free() — General utility (libc)
Deallocate dynamic memory
#include <stdlib.h>
void free(void *ptr);

free deallocates a block of dynamic memory that had been allocated by malloc, calloc, or realloc.
Deallocating memory may make it available for reuse.

ptr points to the block of memory to be freed. It must have been returned by malloc, calloc, or
realloc. free marks the block indicated by ptr as unused, so the malloc search can coalesce it with
contiguous free blocks.

free returns nothing. It prints a message and calls abort if it discovered that the arena has been
corrupted. This most often occurs by storing data beyond he bounds of an allocated block.

LEXICON

free() 269

Cross-references
Standard, §4.10.3.2
The C Programming Language, ed. 2, p. 167

See Also
calloc, malloc, general utilities, realloc

Notes
If ptr does not point to a block of memory that had been allocated by calloc, malloc, or realloc, the
behavior of free is undefined.

If ptr is equivalent to NULL, then no action occurs.

Finally, if a program attempts to access memory that has been freed, its behavior is undefined.

freopen() — STDIO (libc)
Re-open a stream
#include <stdio.h>
FILE *freopen(const char *file, const char *mode, FILE *fp);

freopen opens file and associates it with the stream pointed to by fp, which is already in use. It
first tries to close the file currently associated with fp. Then it opens file, and returns a pointer to
the FILE object, through which other STDIO routines can access file. Under some execution
environments, freopen can be used to access a peripheral device as well as a file. Thus, freopen is
often used to change the device associated with the streams stdin, stdout, or stderr, as well as to
the change the access modes for an open file.

mode indicates the manner in which file is to be accessed. For a table of the modes described by the
Standard, see fopen.

freopen returns NULL if file could not be opened properly; otherwise, it returns fp.

Example
This example uses freopen to copy a list of files into one file.

#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>

void
fatal(char *format, ...)
{

va_list argptr;

/* if there is a system message, display it */
if(errno)

perror(NULL);

/* if there is a user message, use it */
if(format != NULL) {

va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);

}
exit(EXIT_FAILURE);

}

LEXICON

270 freopen()

main(int argc, char *argv[])
{

FILE *ifp, *ofp;
int i, c;

if(argc < 3)
fatal("usage: freopen input1 input2 ... output\n");

if((ofp = fopen(argv[argc - 1], "wb")) == NULL)
fatal("Cannot open %s\n", argv[argc - 1]);

ifp = stdin;
for(i = 1; i < argc; i++) {

if((ifp = freopen(argv[i], "rb", ifp)) == NULL)
fatal("Cannot open %s\n", argv[i]);

while((c = fgetc(ifp)) != EOF)
fputc(c, ofp);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.5.4
The C Programming Language, ed. 2, p. 162

See Also
fclose, fflush, fopen, setbuf, setvbuf, STDIO

Notes
freopen will attempt to close the file currently associated with fp. However, if it cannot be closed,
freopen will still open file and associate fp with it.

frexp() — Mathematics (libm)
Fracture floating-point number
#include <math.h>
double frexp(double real, int *exp);

frexp breaks a double-precision floating-point number into its mantissa and exponent. It returns
the mantissa m of the argument real, such that 0.5 <= m < 1 or m=0, and stores the binary
exponent in the area pointed to by exp. The exponent is an integral power of two.

See float.h for more information about the structure of a floating-point number.

Cross-references
Standard, §4.5.4.3
The C Programming Language, ed. 2, p. 251

See Also
atof, ceil, fabs, floor, ldexp, mathematics, modf

fscanf() — STDIO (libc)
Read and interpret text from a stream
#include <stdio.h>
int fscanf(FILE *fp, const char *format, ...);

fscanf reads characters from the stream pointed to by fp, and uses the string pointed to by format to
interpret what it has read into the appropriate type of data. format points to a string that contains
one or more conversion specifications, each of which is introduced with the percent sign ‘%’. For a

LEXICON

frexp() — fscanf() 271

table of the conversion specifiers that may be used with fscanf, see scanf.

After format can come one or more arguments. There should be one argument for each conversion
specification in format, and the argument should point to a data element of the type appropriate to
the conversion specification. For example, if format contains conversion specifications for an int, a
long, and a string, then format should be followed by three arguments: respectively, a pointer to an
int, a pointer to a long, and an array of chars.

If there are fewer arguments than conversion specifications, then fscanf’s behavior is undefined. If
there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding type specification,
then fscanf returns.

fscanf returns the number of input elements it scanned and formatted. If an error occurs while
fscanf is reading its input, it returns EOF.

Example
This example reads and displays data from a file of strings with the following format:

ABORT C 312 1-24-88 11:03a
ABS C 239 1-24-88 11:03a

This is the output of the MS-DOS command dir.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

main(int argc, char *argv[])
{

int count;
long size;
char fname[8], ext[3];
FILE *ifp;

if(argc != 2) {
printf("usage: fscanf inputfile\n");
exit(EXIT_FAILURE);

}

if((ifp = fopen(argv[1], "r")) == NULL) {
printf("Cannot open %s\n", argv[1]);
exit(EXIT_FAILURE);

}

while((count = fscanf(ifp, "%8s %3s %ld %*[^\n]",
fname, ext, &size)) != EOF)
if(count == 3)

printf("%s.%s %ld\n", fname, ext, size);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.6.2
The C Programming Language, ed. 2, p. 245

See Also
scanf, sscanf, STDIO

LEXICON

272 fscanf()

Notes
fscanf is best used to read data you are certain are in the correct format, such as strings previously
written out with fprintf.

The character that fscanf recognizes as representing the decimal point is affected by the program’s
locale, as set by the function setlocale. For more information, see localization.

fseek() — STDIO (libc)
Set file-position indicator
#include <stdio.h>
int fseek(FILE *fp, long int offset, int whence);

fseek sets the file-position indicator for stream fp. This changes the point where the next read or
write operation will occur.

offset and whence specify how the value of the file-position indicator should be re-set. offset is the
amount to move it, in bytes; this is a signed quantity. whence is the point from which to move it, as
follows:

SEEK_CUR From the current position
SEEK_END From the end of the file
SEEK_SET From the beginning of the file

The values of these macros are set in the header stdio.h.

fseek clears the end-of-file indicator and undoes the effects of a previous call to ungetc; the next
operation on fp may be input or output.

fseek returns a number other than zero for what the Standard calls an ‘‘improper request.’’
Presumably, this means attempting to seek past the end or the beginning of a file, attempting to
seek on an interactive device (such as a terminal), or attempting to seek on a file that does not exist.

Example
This example implements the UNIX game fortune. It randomly selects a line from a text file, and
prints it. Multi-line fortunes, such as poems, should have ‘@’s embedded within them to mark line
breaks.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(int argc, char *argv[])
{

FILE *ifp;
double randomAdj;
int c;

if(argc != 2) {
printf("usage: fseek inputfile\n");
exit(EXIT_FAILURE);

}

if ((ifp = fopen(argv[1], "r")) == NULL) {
printf("Cannot open %s\n", argv[1]);
exit(EXIT_FAILURE);

}

fseek(ifp, 0L, SEEK_END);
randomAdj = (double)ftell(ifp)/((double)RAND_MAX);

LEXICON

fseek() 273

/* Exercise rand() to make number more random */
srand((unsigned int)time(NULL));
for(c = 0; c < 100; c++)

rand();

fseek(ifp, (long)(randomAdj * (double)rand()), SEEK_SET);
while(’\n’ != (c = fgetc(ifp)) && EOF != c)

;

if(c == EOF) {
printf("File does not end with newline\n");
exit(EXIT_FAILURE);

}

while(’\n’ != (c = fgetc(ifp))) {
if(EOF == c) {

fseek(ifp, 0L, SEEK_SET);
continue;

}

/* display multi-line fortunes */
if(’@’ == c)

c = ’\n’;
putchar(c);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.9.2
The C Programming Language, ed. 2, p. 248

See Also
fsetpos, ftell, STDIO

Notes
Although the Standard does not describe the behavior of fseek if you attempt to seek beyond the
end of a file, it does not result in an error condition until the corresponding read or write is
attempted.

Note, too, that fseek allows a user to seek past the beginning of a binary file as well as past its end.
Caveat utilitor.

fsetpos() — STDIO (libc)
Set file-position indicator
#include <stdio.h>
int fsetpos(FILE *fp, const fpos_t *position);

fsetpos resets the file-position indicator. fp points to the file stream whose indicator is being reset.
position is a value that had been returned by an earlier call to fgetpos; it is of type fpos_t, which is
defined in the header stdio.h.

Like the related function fseek, fsetpos clears the end-of-file indicator and undoes the effects of a
previous call to ungetc. The next operation on fp may read or write data.

fsetpos returns zero if all goes well. If an error occurs, it returns nonzero and sets the integer
expression errno to the appropriate error number.

LEXICON

274 fsetpos()

Example
For an example of this function, see fgetpos.

Cross-references
Standard, §4.9.9.3
The C Programming Language, ed. 2, p. 248

See Also
fgetpos, fseek, ftell, rewind, STDIO

Notes
The Standard designed fsetpos to be used with files whose file position cannot be represented
within a long. Under Let’s C, it behaves the same as fseek.

Note, too, that there is no given way to obtain the value of the file-position indicator other than by a
previous call to fgetpos.

ftell() — STDIO (libc)
Get value of file-position indicator
#include <stdio.h>
long int ftell(FILE *fp);

ftell returns the value of the file-position indicator for the stream pointed to by fp.

The information returned by ftell varies, depending upon the run-time environment and whether
the stream pointed to by fp was opened into text mode or binary mode. If fp was opened into binary
mode, then ftell returns the number of characters from the beginning of the file to the current
position. If fp was opened into text mode, however, ftell returns an implementation-defined
number.

For example, in UNIX-style environments, ftell returns the number of characters the current
position is from the beginning; whereas under MS-DOS, where lines are terminated by a carriage
return-newline pair, ftell counts each carriage return and each newline as a character in its return
value.

If an error occurs, ftell returns -1L and sets the integer expression errno to the appropriate value.
An error will occur if, for example, you attempt to use ftell with a stream that is associated with a
device that is not file-structured.

Example
For an example of this function, see fseek.

Cross-references
Standard, §4.9.9.4
The C Programming Language, ed. 2, p. 248

See Also
errno, fgetpos, fseek, fsetpos, rewind, STDIO

function call library archive
function — Definition
A function is a construct that performs a task. It includes statements and related variables,
including those passed to it as arguments. A C program commonly consists of many functions,
each of which performs one or more tasks.

A function can be compiled and stored in a library or archive, from which it can be extracted by a

LEXICON

ftell() — function 275

linker.

Cross-references
Standard, §1.6
The C Programming Language, ed. 2, pp. 67ff

See Also
Definitions

function call — Definition
A function call invokes a function at a particular point in a program. A function call consists of an
identifier followed by a pair of parentheses ‘()’; between the parentheses may appear a list of
arguments.

The behavior of a function call is affected by the following: a function declaration, a function
prototype, and a function definition. Some or all of these may be visible to the translator when it
interprets the function call. The translator must respond appropriately to the presence or absence
of each when it translates the function call. The following paragraphs describe how these elements
affect the behavior of a function call.

Function Declaration
If a function declaration is visible when function is called, then the function is assumed to return
the type and to have the linkage noted in the declaration.

For example, the following declaration

static char *example();

declares that the function example has static linkage and returns a pointer to char.

If no function declaration is visible to the translator when it reads the function call, then it assumes
that the function has the declaration:

extern int example();

where example is the name of the function being called. This action is sometimes referred to as an
implicit declaration of a function. It declares the function to have external linkage and return type
int.

If a declaration, whether explicit or implict, does not match what the function actually returns, the
behavior is undefined.

Consider a function call of the form:

char *value;
value = example(argument1, argument2);

If the translator sees the declaration for example, then it knows that example returns a pointer to
char and reacts accordingly. If, however, it does not see the declaration for example, then it
implicitly declares example to return an int, and generates code appropriate for that. What
happens after this error occurs may vary from implementation to implementation.

A function declaration does not check the number or the type of arguments of the function call; to
check arguments, you should use a function prototype (described below). If the number and the
types of the arguments to a function call do not match those that the function requires, and if no
prototype is visible when the function is called, then behavior is undefined.

Function Prototype
A function prototype is a more detailed form of function declaration. A function prototype lists not
only the linkage and the return value of a function, but also its parameters and the type of each.

LEXICON

276 function call

This allows the translator to check each function call to ensure that it has the correct number of
arguments and that each argument has the correct type. See function prototype for a full
description.

Function Definition
A function definition defines code for a function. In effect, the function definition is where the
function ‘‘lives’’.

A function definition begins with a declarator, which includes a list of the parameters the function
needs. Behavior is undefined if a function call’s list of arguments does not match the function
declaration’s list of parameters, both in number and in type, and no prototype is visible. A function
call in the presence of a prototype-style function definition will be prototype-checked against this
declaration.

Let’s C Calling Conventions
The following presents the calling conventions for Let’s C.

The design of the calling conventions had to take into account the fact that C does not require that
the number of arguments passed to a function be the same as the number of arguments specified in
the function’s declaration. Routines with a variable number of arguments are not uncommon; for
example, printf and scanf can take a variable number of arguments. Another consideration was the
availability of register variables.

Therefore, Let’s C uses the following calling sequence. The function arguments are pushed onto the
stack from the first, or rightmost, through the last, or leftmost. longs are pushed high-half first.
This makes the word order compatible with the dd instruction. doubles are pushed so that the byte
order on the stack is compatible with the i8087 co-processor. The function is then called with a
NEAR call (either directly or indirectly) for SMALL model, or a FAR call for LARGE model. An add
instruction after the call removes the arguments from the stack.

For example, the function call

int a;
long b;
char c;

foo(void)
{

example(a, b, c);
}

generates the code

movb al,c
cbw
push ax
push b+2
push b
push a
call example_
add sp,8

An underbar character ‘_’ has been appended to the function name. This serves two purposes.
First, it makes it harder to accidentally call routines written in other languages. Second, it means
that two routines with the same name can be called from C and another language in identical
fashions.

The parameters and local variables in the called function are referenced as offsets from the BP
register. In SMALL model, the arguments begin at offset 8 and continue toward higher addresses,
whereas the local variables begin at offset -2 and continue toward lower addresses.

LEXICON

function call 277

The SP register points the local variable with the lowest address. Thus, when example_ is reached
in the above model, the SMALL-model stack frame resembles the following:

High +-----------------------+
| c (widened to a word) |
+-----------------------+
| high half of b |
+-----------------------+
| low half of b |
+-----------------------+
| a |

Low +-----------------------+

In LARGE model, the return address occupy two words.

Functions return ints in the AX register, longs in the DX:AX register pair, pointers in the AX
register for SMALL model and in DX:AX for LARGE model, and doubles on the top of the i8087’s
stack. The following program

example(int a, b, c)
{

return (a * b - c);
}

when compiled with the -VASM option, produces the following assembly language program:

.shri

.globl example_

example_:
push si
push di
push bp
mov bp, sp
mov ax, 10(bp)
imul 8(bp)
sub ax, 12(bp)
pop bp
pop di
pop si
ret

In SMALL model, the runtime startup initializes the registers CS, DS, ES, and SS, and the segment
registers remain unchanged. In LARGE model, the runtime startup initializes registers SS and SP.
The generated code loads the other segment registers as needed. As noted above, a C function
preserves registers SI, DI, BP, and SP, plus the segment registers in SMALL model; other registers
may be overwritten.

Source code for some runtime startup routines is included with the sample programs that come
with your copy of Let’s C.

Let’s C pushes function arguments as follows.

LEXICON

278 function call

char Widened to int, then pushed
double Pushed in i8087 order
float Widened to double, then pushed
int Pushed in machine word order
long double Same as double
double Pushed in i8087 order
struct Pushed in memory order
union Pushed in memory order
pointer SMALL: offset pushed

LARGE: base pushed, then offset pushed

Functions return values as follows:

char In AL
double On i8087 stack
float Same as double
int In AX
long In DX:AX
long double Same as double
struct SMALL: pointer in AX

LARGE: pointer in DX:AX
union SMALL: pointer in AX

LARGE: pointer in DX:AX
pointer SMALL: in AX

LARGE: in DX:AX

A function that returns a struct or union actually returns a pointer. The code generated for the
function call block-moves the result to its destination. Functions that return a float or double
return it on the i8087 stack if your computer has an i8087 co-processor; otherwise, they return it in
the global double fpac_.

For example, consider the call

example(int i, long l, char c, char *cp);

where example declares two automatic ints. After execution of the call and the prologue of
example, the SMALL-model stack contains the following 11 words:

LEXICON

function call 279

High +------------------+
| cp |
+------------------+
| c |
+------------------+
| high word of l |
+------------------+
| low word of l |
+------------------+
| i |
+------------------+
| return address |
+------------------+
| saved SI |
+------------------+
| saved DI |
+------------------+
| saved BP |
+------------------+
| space for auto 1 |
+------------------+
| space for auto 2 |

Low +------------------+

The following example performs a simple function call:

main(void)
{

example(1, 2); /* call sample routine */
}

example(int p1, int p2)
{

int a, b;

a = 3;
b = 4;

}

When the function example is about to return, the stack appears as follows:

LEXICON

280 function call

SMALL LARGE
High +------------------+

| 2 | parm 2 10(bp) 12(bp)
+------------------+
| 1 | parm 1 8(bp) 10(bp)
+------------------+
| Return Address: |
| 2 words in |
| LARGE model, |
| 1 in SMALL model | ret.addr. 6(bp) 6(bp)
| 1 in SMALL model |
+------------------+
| main’s SI | 4(bp) 4(bp)
+------------------+
| main’s DI | 2(bp) 2(bp)
+------------------+
| main’s BP | (bp) (bp)
+------------------+
| 3 | a -2(bp) -2(bp)
+------------------+
| 4 | SP b -4(bp) -4(bp)

Low +------------------+

Cross-references
Standard, §3.3.2.2
The C Programming Language, ed. 2, p. 201

See Also
(), function declarators, function definition, function prototype, operators

Notes
C passes arguments by value; this is known as call-by-value semantics. This means that C always
passes a copy of an argument to the called function. If the called function alters the value of its
copy, the original argument will not change. The only way the called function can change the value
of the original argument is if it is passed the address of that argument.

C does not specify the order of evaluation of arguments. Hence, for maximally portable code, you
should not rely on any specific order of evaluation.

The Rationale notes that the original syntax for calling a function through a pointer to a function

(*example)();

has been augmented to allow the pointer to be automatically deferenced as:

example();

This means that pointers to functions stored in structures may be called with the syntax

example.funcmember();

instead of the more cluttered:

(*structure.funcmember)();

Such an expression cannot be used as an lvalue.

The order of evaluation of a function’s arguments is undefined.

LEXICON

function call 281

function declarators — Definition
A function declarator declares a function.

A function declarator is marked by the use of parentheses ‘()’ after the identifier. Function
declarators come in two varieties.

In the first form, the parentheses enclose a list of parameters and their types. The list may end with
an ellipsis ‘...’. This indicates that the function takes an indefinite number of arguments. The list
may also consist merely of void, which indicates that the function takes no arguments.

This form of function declaration is called a parameter type list. It is also called a function prototype,
because a succeeding call to the function can be checked against it to ensure that the call uses the
correct number of arguments and that the type of each is correct. It is also referred to as a new-
style function declarator. See function prototype for more information.

The second form of function declarator names the arguments to a function, but does not give their
types. No prototype checking can be performed against a declarator of this sort. This form is called
a function identifier list. It is also called an old-style function declarator, because the Standard states
that this form is obsolescent.

Either style of function declaration will be checked against any prototype that had been declared
previously and that is within scope.

Finally, a function declarator may consist simply of two parentheses with nothing between them.
This indicates that the identifier names a function, but says nothing about the number or the type
of arguments that the function takes.

Cross-references
Standard, §3.5.4.3
The C Programming Language, ed. 2, p. 218

See Also
(), declarators, function definition, function prototype

function definition — Definition
A definition is a declaration that reserves storage for the thing declared.

A program or its associated libraries must define exactly once each function it uses. A compound-
statement is the code that forms the body of the function.

The declaration-specifiers give the function’s storage class and return type. The storage class may
be either extern or static. If no storage class is specified, then the function is extern by default.
The return type may be any type except an array. This means that a function may return a
structure, which was illegal under Kernighan and Ritchie’s definition of C. If no return type is
specified, the function is assumed to return type int.

The declarator names the function and its formal parameters. A function’s parameters can be
described in either of two ways. The first is to use declaration-specifiers. These name the function’s
parameters and give the type of each. For example, the function fopen has the following
declaration:

FILE *fopen (const char *file, const char *mode);

Here, const char *file and const char *mode name fopen’s parameters and give the type of each.

Each declaration specifier must have both a type and an identifier. The only exception is when a
function takes no parameters; then the type void may be used without an identifier. A declarator of
this form serves as a function prototype for all subsequent calls to this function.

LEXICON

282 function declarators — function definition

The second way to declare a function’s parameters is to use a declaration-list. Here, the declarator
contains only the parameter’s name. Each formal parameter is then declared in a list that follows
the declarator. For example, if fopen used a declaration list, it would appear as follows:

FILE *fopen (file, mode);
const char *file;
const char *mode;

In this example, the declaration list gives the types of the identifiers file and mode. If an identifier
appears in the declarator but is not named in the following identifier list, it is assumed to be of type
int. A declaration list can contain no storage-class specifier except register, and no identifier may
be initialized in the identifier list.

A declarator of this type cannot be used as a function prototype for subsequent calls. The Standard
considers this type of function definition to be obsolete and expects that it will disappear over time.

With either manner of definition, all parameters have automatic storage (as indicated by the fact
that the only storage-class specifier allowed is register). When an argument is read, it is converted
to an object of the type of the corresponding parameter.

Finally, every parameter is considered to be an lvalue.

Cross-references
Standard, §3.7.1
The C Programming Language, ed. 2, p. 225

See Also
conversions, definition, external definitions, function calls, function declarators, function
prototypes, object definition, prototype

Notes
If a function takes an indefinite number of parameters, and its function definition does not use a list
of declaration specifiers that ends with the ellipsis operator ‘...’, the behavior is undefined.

function designator — Definition
A function designator is any expression that has a function type.

A function designator whose type is ‘‘function that returns type’’ is normally converted to the type
‘‘pointer to function that returns type.’’ One exception is when the function designator is the
operand to the unary & operator. In this case, the use of & states explicitly that the address of the
function designator is to be taken, so implicit conversion is not necessary.

Cross-references
Standard, §3.2.2.1
The C Programming Language, ed. 2, p. 201

See Also
conversions, implicit conversion

function prototype — Definition
A function prototype is a sophisticated form of function declaration. A function prototype lists not
only the linkage and the return value of a function, but also lists its arguments and the types of
each. This allows the translator to check each argument in a function call to see that it is of the
correct type.

Function prototypes are normally kept in a header. The header must be explicitly included in the
source module for the prototype to be visible to the translator as it translates the module. For

LEXICON

function designator — function prototype 283

example, consider the following function prototype:

extern char *example(int argument1, long argument2);

This declares that the function example has external linkage; that it returns a pointer to char; and
that it takes two arguments, the first of which is an int and the second of which is a long. The
names of the arguments given in the function prototype are used only in the prototype. They are
not visible outside of it, and so will not affect any other use of those names in your program.

A function prototype may end with an ellipsis ‘...’. This indicates that the function takes a variable
number of arguments. For example, consider the following prototype for the function fprintf:

int fprintf(FILE *fp, const char *format, ...);

The prototype declares that fprintf takes at least two arguments, one of which is a pointer to an
object of type FILE and the other is a pointer to char. The ellipsis at the end of the list of arguments
indicates that a variable number of arguments may follow.

When the translator reads a call to fprintf, it compares the first two arguments against their
declared types. All further arguments in the function call are not checked. Every function that
takes a variable number of arguments must have a function prototype; otherwise, its behavior is
undefined.

Another advantage of function prototypes is that arguments do not undergo the default argument
promotions. Normally, the translator promotes arguments as follows: char and short int are
promoted to int (if it can hold the value encoded within the variable), or to unsigned int (if int
cannot hold the value). float is always to double. This is discussed more fully below.

If a function takes no arguments, its prototype should be of the form:

extern char *example(void);

The type specifier void between the parentheses indicates that the function takes no arguments.
This is not the same as:

extern char *example();

This latter declaration says merely that you have nothing to say about the function’s arguments.

When a function prototype is not visible where the function is called, then the following rules apply:

• The arguments of the function call undergo the default argument promotions. Behavior is
undefined when the number of arguments does not match the number of parameters in the
function definition, regardless of whether the prototype is visible where the function is defined.

• If the function prototype is not visible where the function is defined, then the parameters of the
function definition also undergo default argument promotion. Behavior is undefined when the
type of a promoted argument does not match that of its corresponding promoted parameter.

• If the function prototype is visible where the function is defined, then behavior is undefined
either when the type of a promoted argument does not match that of its corresponding
parameter, or when the function prototype ends with an ellipse ‘...’.

When, however, the function prototype is visible both where the function is defined and where it is
called, each argument of the function call is implicitly converted to the type of its corresponding
parameter. If the function prototype ends in an ellipsis, then such promotion of arguments ends
with the last declared parameter; all arguments thereafter undergo default argument promotion.

For example, consider the following function call:

int fprintf(FILE *fp, const char *format, ...);
. . .

LEXICON

284 function prototype

float argument;
. . .

fprintf(stderr, "%3.2f\n", argument);

The first two arguments in the function call are cast to the types given in the prototype. The third
argument, which is indicated by the ellipsis in the function prototype, undergoes the usual
promotion double before being passed to fprintf.

The last situation allows you to write code like:

#include <math.h>
. . .

d = cos(2);

This works correctly, because the prototype

double cos(double d);

in the header tells the translator to promote the integer constant 2 to double rather than passing an
int to the function, as it would do otherwise.

Cross-references
Standard, §3.1.2.1, §3.3.2.2, §3.5.4.3, §3.7.1
The C Programming Language, ed. 2, p. 202

See Also
function call, function declarators, function definition

fwrite() — STDIO (libc)
Write data into a stream
#include <stdio.h>
size_t fwrite(const void *buffer, size_t size, size_t n, FILE *fp);

fwrite writes up to n items, each being size bytes long, from the area pointed to by buffer into the
stream pointed to by fp. It increments the file-position indicator by the amount appropriate to the
number of bytes written.

fwrite returns the number of items written. This will be equal to n, unless a write error occurs. If a
write error occurs, the value of the file-position indicator is indeterminate.

Example
For an example of this function, see fgetpos.

Cross-references
Standard, §4.9.8.2
The C Programming Language, ed. 2, p. 247

See Also
fread, STDIO

LEXICON

fwrite() 285

