
E

ecvt() — Extended function (libc)
Convert floating-point numbers to strings
char *ecvt(double d, int prec, int *dp, int *signp);

ecvt converts d into a null-terminated ASCII string of numerals with the precision of prec. Its
operation resembles that of printf’s %e operator. ecvt rounds the last digit and returns a pointer to
the result. On return, ecvt sets dp to point to an integer that indicates the location of the decimal
point relative to the beginning of the string, to the right if positive, to the left if negative. It sets
signp to point to an integer that indicates the sign of d, zero if positive and nonzero if negative.

Example
The following program demonstrates ecvt, fcvt, and gcvt.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* prototypes for extended functions */
extern char *ecvt(double d, int prec, int *dp, int *signp);
extern char *fcvt(double d, int w, int *dp, int *signp);
extern char *gcvt(double d, int prec, char *buffer);

main(void)
{

char buf[64];
double d;
int i, j;
char *s;

d = 1234.56789;
s = ecvt(d, 5, &i, &j);
/* prints ecvt="12346" i=4 j=0 */
printf("ecvt=\"%s\" i=%d j=%d\n", s, i, j);

strcpy(s, fcvt(d, 5, &i, &j));
/* prints fcvt="123456789" i=4 j=0 */
printf("fcvt=\"%s\" i=%d j=%d\n", s, i, j);

s = gcvt(d, 5, buf);
/* prints gcvt="1234.56789" */
printf("gcvt=\"%s\"\n", s);

return EXIT_SUCCESS;
}

See Also
extended miscellaneous, fcvt, frexp, gcvt, ldexp, modf, printf

Notes
ecvt performs conversions within static string buffers that are overwritten by each execution.

egrep — Command
Extended pattern search
egrep [option ...] [pattern] [file ...]

The command egrep searches each file for occurrences of pattern (also called a regular expression).
If no file is specified, it searches what is typed into the standard input. Normally, it prints each line

LEXICON

ecvt() — egrep 231

matching the pattern.

Wildcards
The simplest patterns accepted by egrep are ordinary alphanumeric strings. egrep can also process
patterns that include the following wildcard characters:

^ Match beginning of line, unless it appears immediately after ‘[’ (see below).

$ Match end of line.

* Match zero or more repetitions of preceding character.

. Match any character except newline.

[chars]
Match any one of the enclosed chars. Ranges of letters or digits may be indicated using ‘-’.

[^chars]
Match any character except one of the enclosed chars. Ranges of letters or digits may be
indicated using ‘-’.

\c Disregard special meaning of character c.

| Match the preceding pattern or the following pattern. For example, the pattern cat|dog
matches either cat or dog. A newline within the pattern has the same meaning as ‘|’.
Under MS-DOS, the ‘|’ has special meaning, and must be enclosed within apostrophes.

+ Match one or more occurrences of the immediately preceding pattern element; it works like
‘*’, except it matches at least one occurrence instead of zero or more occurrences.

? Match zero or one occurrence of the preceding element of the pattern.

(...) Parentheses may be used to group patterns. For example, (Ivan)+ matches a sequence of
one or more occurrences of the four letters ‘I’ ‘v’ ‘a’ or ‘n’.

Because the metacharacters ‘*’ and ‘?’, are also special to MS-DOS, patterns that contain those
literal characters must be quoted by enclosing pattern within double quotation marks.

Options
The following lists the available options:

-b With each output line, print the block number in which the line started (used to search file
systems).

-c Print how many lines match, rather than the lines themselves.

-e The next argument is pattern (useful if the pattern starts with ‘-’).

-f The next argument is a file that contains a list of patterns separated by newlines; there is
no pattern argument.

-h When more than one file is specified, output lines are normally accompanied by the file
name; -h suppresses this.

-l Print the name of each file that contains the string, rather than the lines themselves. This
is useful when you are constructing a batch file.

-n When a line is printed, also print its number within the file.

-s Suppress all output, just return exit status.

LEXICON

232 egrep

-v Print a line only if the pattern is not found in the line.

-y Lower-case letters in the pattern match lower-case and upper-case letters on the input
lines. A letter escaped with ‘\’ in the pattern must be matched in exactly that case.

Diagnostics
egrep returns an exit status of zero for success, one for no matches, and two for error.

See Also
commands

Notes
egrep uses a deterministic finite automaton (DFA) for the search. It builds the DFA dynamically, so
it begins doing useful work immediately. This means that egrep is considerably faster than earlier
pattern-searching commands, on almost any length of file.

else — C keyword
Conditionally execute a statement
else statement;

else is the flip side of if: if the condition described in the if statement equals zero, then the
statement introduced by else is executed. If, however, the condition described in the if statement is
nonzero, then the statement it introduces is executed and the statement introduced by else is
ignored.

An else statement is associated with the first preceding else-less if statement that is within the
same block, but not within an enclosed block. For example,

if(conditional1) {
if(conditional2)

statement1
} else

statement2

the else is associated with the if statement that uses conditional1, not the one that uses
conditional2. On the other hand, in the code

if(conditional1)
if(conditional2)

statement1
else

statement2

which does not use braces, the else is associated with the if statement that uses conditional2, not
the one that uses conditional1.

Example
For an example of this statement, see exit.

Cross-references
Standard, §4.6.4.1
The C Programming Language, ed. 2, pp. 55ff

See Also
if, statements, switch

LEXICON

else 233

enum — C keyword
Enumerated data type
enum identifier { enumerations }

An enum is a data type whose possible values are limited to a set of constants.

For example,

enum opinion { yes, no, maybe };

declares type opinion to have one of three constant values; these are identified by the members yes,
no, and maybe.

The translator assigns values to the identifiers from left to right, beginning with zero and increasing
by one for each successive term. In the above example, the values of yes, no, and maybe are set,
respectively, to zero, one, and two. Thus, the following example

enum opinion guess;
. . .

guess = no;

sets the value of guess to one.

All enumerated identifiers must be distinct from all other identifiers in the program. The identifiers
act as constants and are used wherever constants are appropriate.

If a member of an enumeration is followed by an equal sign and an integer, the identifier is assigned
the given value and subsequent values increase by one from that value. For example,

enum opinion {yes, no=50, maybe};

sets the values of the members yes, no, and maybe to zero, 50, and 51, respectively. More than one
enumerator can have the same value. For example:

enum opinion {yes, no=50, nah=50, nope=50, maybe};

assigns duplicate values to the members no, nah, and nope.

An enumeration constant always has type int.

Cross-references
Standard, §3.5.2.2
The C Programming Language, ed. 2, p. 39

See Also
type specifier

Notes
Prior to the introduction of enumerated data types in C, programmers would create lists of manifest
constants whose values took the values that enumerated constants now take.

Unlike more strongly typed languages, in which enumerated constants are checked to ensure that
they are part of the specified set of values, enums in C are only required to be of type int. No
additional checking is performed on enumeration constants.

LEXICON

234 enum

enumeration constant — Definition
An enumeration constant is a member of an enumeration. This constant has type int.

For example, in the enumeration

enum example { blue, green, yellow };

blue is an enumeration constant.

Cross-references
Standard, §3.1.3.3
The C Programming Language, ed. 2, pp. 39, 194

See Also
constants, enum

environmental variable — Overview
An environmental variable is a variable that is set through the operating system, and which a
program can read at run time. These variables are most commonly used to change the way a
program behaves.

Let’s C uses the following environmental variables in its operation:

CCHEAD Variables at head of compilation command
CCTAIL Variables at tail of compilation command
INCDIR Directory that holds include files
LIBPATH Directories that hold libraries
PATH Directories that hold executable files
TIMEZONE Time zone information
TMPDIR Directory that holds temporary files

Because of the limited environment space available under many version of MS-DOS, the variables
INCDIR, LIBPATH, and TMPDIR often are not set. Instead, their information is placed into the file
ccargs, which is built automatically when you install Let’s C. You need to set the variable
TIMEZONE only if you are writing programs that need exact time zone information.

See Also
Environment

envp — Definition
Argument passed to main
char *envp[];

envp is an abbreviation for environmental parameter. It is the traditional name for a pointer to an
array of string pointers passed to a C program’s main function, and is by convention the third
argument passed to main.

The MS-DOS runtime startup routines always set envp to NULL, i.e., no envp is passed. Let’s C
calls main(argc, argv, NULL); however, envp is significant under some other operating systems,
including TOS, UNIX, and COHERENT.

See Also
argc, argv, Environment, main

LEXICON

enumeration constant — envp 235

EOF — Manifest constant
Indicate end of a file
#include <stdio.h>

EOF is an indicator that is returned by several STDIO functions to indicate that the current file
position is the end of the file. Its value is defined by the implementation, but a common value is -1
on many systems, which is also a common error return.

The actual bytes used to delineate the end of a file may vary between implementations.

Many STDIO functions, when they read EOF, set the end-of-file indicator that is associated with the
stream being read. Before more data can be read from the stream, its end-of-file indicator must be
cleared. Resetting the file-position indicator with the functions fseek, fsetpos, or ftell will clear the
indicator, as will returning a character to the stream with the function ungetc.

Example
For an example of this macro in a program, see tmpfile.

Cross-references
Standard, §4.3, §4.9.1; Rationale, §4.3
The C Programming Language, ed. 2, p. 151

See Also
file, stream, STDIO, stdio.h

errno — Macro
External integer that holds error status
#include <errno.h>

errno is a macro that is defined in the header errno.h. It expands to a global integer of type volatile
int.

When a program begins to execute, errno is initialized to zero. Thereafter, whenever a mathematics
function or other library function wishes to return information about any error that occurs during
its operation, it writes the appropriate error number into errno, where it can be read either by the
environment or by another function.

The functions perror and strerror can be used to translate the contents of errno into a text
message.

Example
For an example of using this macro in a program, see vfprintf.

Cross-references
Standard, §4.1.3
The C Programming Language, ed. 2, p. 248

See Also
EDOM, ERANGE, errno.h, errors, mathematics

Notes
Only certain library functions set errno, and then only if certain error conditions occur. Remember
that it is your responsibility to clear errno before the function in question is called. Other functions
may also set errno.

LEXICON

236 EOF — errno

Although it is widely believed that a program that checks the value of errno after each function is
more portable than one that does not, this is not necessarily true. Some implementations use in-
line expansion of library function to speed execution, and so forego the use of errno. The cautious
programmer is best advised to check the value of input arguments before calling a library function
and, of course, to check its return value before checking errno.

errno.h — Header
Define errno and error codes
#include <errno.h>

errno.h is a header that holds information which relates to the reporting of error conditions. It
defines the macro errno, which expands to global variable of type volatile int. If an error condition
occurs, a function can write a value into errno, to report just what type of error occurred.

For a list of the MS-DOS system errors described in errno.h, see errorcodes.

Cross-references
Standard, §4.1.3
The C Programming Language, ed. 2, p. 248

See Also
errno, error codes, errors

escape sequences — Definition
An escape sequence is a set of characters that, together, represent one character that may have a
special significance. The Standard recognizes the following escape sequences:

\’ Literal apostrophe
\" Literal quotation mark
\? Literal question mark
\\ Literal backslash
\a Alert; ring the bell or print visual alert

\b Horizontal backspace
\f Form feed; force output device to begin a new page
\n Newline; move to next line
\r Carriage return; move to beginning of line

\t Horizontal tabulation; move to next tabulation mark
\v Vertical tabulation; move to next tabulation mark
\NNN Octal number
\xNN Hexadecimal number

An escape sequence may be embedded within a character constant or a string literal. In a string
literal, the apostrophe may be represented either by itself or by its escape sequence, whereas in a
character constant the quotation mark may be represented by itself or by its escape sequence.

Two question marks together may introduce a trigraph, which is interpreted even within a string
literal. If you want to print two literal question marks, use the escape sequence \?\?. For more
information, see trigraph sequences.

The escape sequences \a through \v let you use characters that control the output device.

A backslash followed by one, two, or three octal digits encodes an octal number. For example, in
ASCII implementations of C, the escape sequence ’\141’ encodes the octal value 141 into an int-
length object. When interpreted under an environment that uses ASCII, this prints the letter ‘a’.
Likewise, the escape sequence \x followed by an arbitrary number of hexadecimal digits encodes a

LEXICON

errno.h — escape sequences 237

hexadecimal number.

Example
The following example demonstrates the use of the escape sequence \b, which prints a backspace
character. It prints a message, backspaces over it, and then prints another message.

#include <stdio.h>
main()
{

printf("BLINK!\b\b\b\b\b\bhello, world\n");
}

Cross-references
Standard, §2.2.2, §3.1.3.4
The C Programming Language, ed. 2, p. 193

See Also
character constant, constants, string literal, trigraph sequences

Notes
Previous releases of Let’s C defined the escape sequences \a and \x differently.

Some implementations of C permit the digit ‘8’ to be used with an octal number. For example, the
character constant ’\078’ is regarded by these implementations as being equivalent to octal 100.
Under ANSI C, ’\078’ will be interpreted as representing octal 7 plus the character constant ’8’.
This, too, is a quiet change that may break some existing code.

The escape sequence ‘\0’ is used by many existing implementations to represent the null character.

esreg() — i8086 support (libc)
Get value from ES segment register
#include <dos.h>
unsigned esreg(void)

esreg returns the value from from the i8086 ES register, which points to the base of the ‘‘extra’’
segment. In SMALL model, this register always holds the same value as the DS register.

Example
For an example of this function, see the entry for csreg.

See Also
csreg, dsreg, i8086 support, ssreg " ENVIRONMENTS: LC

exargs() — Extended miscellaneous (libc)
Get and parse a command line
int exargs(char *name, int argc, char *argv[],

char *xargv[], int maxarg);

exargs provides a uniform mechanism by which programs that are run under MS-DOS can read and
parse command lines. It cooperates with the C runtime startup to be as transparent as possible to
the user.

The parameters argc and argv are the usual parameters to main. They are parsed from the MS-DOS
command tail by _main in the C runtime startup routine. exargs simply takes all of a command’s
arguments from argv.

exargs parses command lines by breaking them into a list of arguments separated by white space
(i.e., a space or tab character). It expands wildcard arguments, writes pointers to the arguments

LEXICON

238 esreg() — exargs()

into the array xargv, and returns the number of arguments. exargs then puts a NULL pointer at the
end of the list, so xargv looks much like the argv parameter to main. maxarg is the maximum
number of arguments that a command can take, that is, the maximum number that will fit into the
array xargv.

exargs interprets a command line of the form @name as a file reference: it opens the file name and
reads command lines from it. Such files can also contain references to yet other files.

exargs uses getenv to search the environment for the strings nameHEAD and nameTAIL. If found,
it adds the value of nameHEAD at the beginning of the argument list and the value of nameTAIL at
the end. For example, the cc command uses exargs with a name argument of cc; accordingly, it
looks for CCHEAD and CCTAIL in the environment to provide command-specific information.

exargs returns the size of its argument list, which is suitable for assignment to argc.

Example
The following function converts UNIX and COHERENT utilities to MS-DOS utilities by changing argc
and argv via exargs.

#define MAXARGS 1023
#include <stdio.h>
#include <stdlib.h>

void
msdoscvt(int *argc, char *name, ***argv)
{

char **xargv;

if(NULL == (xargv = malloc((MAXARGS + 1)
* sizeof(char *))))
abort();

*argc = exargs(name, *argc, *argv, &xargv[1], MAXARGS) + 1;
xargv[0] = name;
*argv = realloc(xargv, (*argc + 1) * sizeof(char *));

}

/*
* Expand argument list and display it.
*/

#ifdef TEST
main(int argc, char **argv)
{

int i;

msdoscvt("test", &argc, &argv);
for(i = 0; i < argc; i++)

printf("Argument %d -- %s\n", i, argv[i]);
return EXIT_SUCCESS;

}
#endif

See Also
cc (-w option), end, extended miscellaneous, malloc, runtime startup

Diagnostics
exargs prints an appropriate message and aborts if it cannot open or read an indirect file, or if there
are too many arguments in a command line.

Notes
This routine is specific to MS-DOS, and cannot be ported to other compilers or operating systems.

LEXICON

exargs() 239

The -w (‘‘wildcards’’) option to the cc command uses a special runtime startup routine that gives
argv much of the functionality of exargs. See the entry for cc for more information.

exception — Definition
An exception is said to occur when an expression generates a result that cannot be represented by
the hardware or defined mathematically, e.g., division by zero. When an exception occurs, behavior
is undefined.

Cross-references
Standard, §3.3
The C Programming Language, ed. 2, p. 255

See Also
expressions

execall() — Extended function (libc)
Execute a subprogram
int execall(char *command, char *tail);

execall sends a command and its arguments (the ‘‘argument tail’’) directly to MS-DOS. Unlike its
cousin system, it does not work through command.com; therefore, it cannot execute any MS-DOS
built-in commands.

execall looks for the executable file pointed to by command, loads it into memory, and executes it
with the tail that is pointed to by tail. If command has no suffix, execall appends .exe onto it. When
command has finished executing, execall returns its exit status code to the program that called it.

execall works only if command exits by returning to its caller, rather than by executing the MS-DOS
system reset function warm boot. execall can only call programs that exist as executable files.
Therefore, it cannot call the MS-DOS built-in commands, such as dir, or commands that rely on
MS-DOS to parse the command line into the formatted parameter area. You should use system for
these programs.

Commands compiled by Let’s C always exit by returning to their callers and always return a useful
exit status. Therefore, you can use execall to call any program compiled by Let’s C.

An exit status code of zero (EXIT_SUCCESS) means that command executed successfully. An exit
status code other than zero (EXIT_FAILURE) means that it failed. If command cannot be located,
opened, or executed, an explanatory message is printed on the console, and execall returns 0177
(octal).

Example
The following example consists of two brief programs, one of which calls the other. The first
program, called one.c, does the calling:

#include <stdio.h>
#include <stdlib.h>

main(void)
{

printf("This is ’one’\n");
printf("\n’two.exe’ exited with value %d.\n",

execall("two", ""));
printf("Good-bye.\n");
return EXIT_SUCCESS;

}

LEXICON

240 exception — execall()

The second program, two.c, is called by one.c, and returns a value to it:

#include <stdio.h>
#include <stdlib.h>

main(void)
{

printf("\nHere is ’two’.\n");
printf("I’m exiting with value %d\n", EXIT_SUCCESS);
exit(EXIT_SUCCESS);

}

Compile these programs, then run one.exe. It will call two.exe for execution.

See Also
exargs, extended miscellaneous, system

Notes
execall does not fill in the formatted parameter areas.

executable file — Definition
An executable file is one that can be loaded directly by the operating system and executed.
Normally, an executable file is one that has both been compiled, where it is rendered into machine
language, and linked, where the compiled program has received all operating system-specific
information and library functions.

See Also
Definitions, file

exit() — General utility (libc)
Terminate a program gracefully
#include <stdlib.h>
void exit(int status);

exit terminates a program gracefully. Unlike the function abort, exit performs all processing that is
necessary to ensure that buffers are flushed, files are closed, and allocated memory is returned to
the environment.

When it is called, exit does the following:

1. It executes all functions registered by the function atexit, in reverse order of registration.
These functions must execute as if main had returned. If any function accesses an auto, its
behavior is undefined.

2. It flushes all buffers associated with output streams, closes the streams, and removes all files
created by the function tmpfile.

3. It returns control to the host environment. If status is zero or EXIT_SUCCESS, then the
program indicates to the environment that the program terminated with success. If status is
set to EXIT_FAILURE, then the program indicates that the program terminated with failure.

exit does not return to its caller.

Example
This program exits, and returns the first argument on the command line to MS-DOS as an exit code.

LEXICON

executable file — exit() 241

#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

main(int argc, char *argv[])
{

if(argc == 1)
exit(EXIT_SUCCESS);

else
exit(atoi(argv[1]));

}

Cross-references
Standard, §4.10.4.3
The C Programming Language, ed. 2, p. 252

See Also
_exit, abort, atexit, general utilities, getenv, system

explicit conversion — Definition
The term explicit conversion refers to the deliberate changing of an object’s type by means of a cast
operation.

For example, one type of pointer can be cast to another, as follows:

char *charptr;
int *intptr;

. . .
intptr = (int *)charptr;

A cast can be used to defeat optimizations performed by the translator. For instance, if an
implementation performs single-precision arithmetic on operands of type float, an explicit cast will
force the operation to be performed in the wider type double:

float f1, f2, f3;
. . .

f3 = (double) f1 * f2;

Cross-references
Standard, §3.2
The C Programming Language, ed. 2, p. 45

See Also
(), cast operators, conversions, implicit conversion

Notes
A cast is not an lvalue. This renders constructs such as

(int *)pointer++; /* WRONG */

invalid under ANSI C.

LEXICON

242 explicit conversion

extended character handling — Overview
#include <xctype.h>
In addition to the character-handling functions described in the Standard, Let’s C includes the
following extended character-handling functions and macros:

_tolower Change a character to lower case
_toupper Change a character to upper case
isascii See if a character is in the ASCII character set
toascii Convert a character to printable ASCII

These functions and macros are declared or defined in the header xctype.h. In previous releases of
Let’s C, they had been declared in the header ctype.h. This change was made to conform to the
Standard, and may require that some code be altered.

A program that uses any of these routines no longer conforms strictly to the Standard, and may not
be portable to other compilers or environments.

See Also
character handling, extended mathematics, extended miscellaneous, extended STDIO,
extended time, xctype.h

extended time — Overview
#include <xtime.h>
Let’s C includes a number of extensions to the ANSI Standard’s set of time functions. These are
designed to increase the scope and accuracy of the Standard, and to ease calculation of some time
elements.

To begin, Let’s C includes three variables that are used by the function localtime. It parses the
environmental variable TIMEZONE into the following:

timezone Seconds from UTC to give local time
dstadjust Seconds to local standard, if any
tzname Array with names of standard and daylight times

The following functions return information about the calendar:

isleapyear Is this year AD a leap year?
dayspermonth How many days in this historical month?

The way Let’s C models time is based on the method used by the COHERENT operating system. As
noted above, the variable time_t is defined as the number of seconds since January 1, 1970,
0h00m00s UTC. This moment, in turn, is rendered as day 2,440,587.5 on the Julian calendar.
This allows accurate calculation of time as far back as January 1, 4713 B.C.

Conversion to the Gregorian calendar is set to October 1582, when it was first adopted in Rome.
The issue of when a nation changed from the Julian to the Gregorian calendar is moot in the United
States, Canada (except Quebec), Asia, Africa, Australia, and the Middle East; however, users in
Quebec, Latin America, Europe, the Soviet Union, and European-influenced areas of Asia (e.g.,
India) may wish to to write their own functions to convert historical data properly from the Julian to
the Gregorian calendar.

The following functions assist in conversion from Julian to Gregorian time:

time_to_jday Convert time_t to the Julian date
jday_to_time Convert Julian date to time_t
tm_to_jday Convert tm structure to Julian date
jday_to_tm Convert Julian date to tm structure

LEXICON

extended character handling — extended time 243

These functions are not described in the ANSI Standard. A program that uses any of these
functions does not conform strictly to the Standard, and may not be portable to other compilers or
environments.

See Also
date and time, extended character handling, extended mathematics, extended miscellaneous,
extended STDIO, Library, xtime.h

Notes
To conform to the ANSI Standard, all of these functions were moved from the header time.h to the
header xtime.h. This may require that some code be altered.

extern — C keyword
External linkage
extern type identifier

The storage-class specifier extern declares that identifier has external linkage.

Cross-references
Standard, §3.5.1
The C Programming Language, ed. 2, pp. 210, 211

See Also
linkage, storage-class specifiers

external definitions — Overview
A definition is a declaration that reserves storage for the thing declared. An external definition is a
definition whose identifier is defined outside of any function. This makes the object available
throughout the file or the program, depending upon whether it has, respectively, internal or external
linkage.

If an identifier has external linkage and is used in an expression (except as an operand to the sizeof
operator), then an external definition must exist for that identifier somewhere in the program.

There are two varieties of external definition: function definitions and object definitions. See the
appropriate entries for more information.

Cross-references
Standard, §3.7
The C Programming Language, ed. 2, p. 226

See Also
declaration, definition, function definition, linkage, object definition

external name — Definition
An external name is an identifier that has external linkage. The number and range of characters
that may form an external name depends upon the implementation. The minimum maximum for
the length of an external name is six characters, and an implementation is not obliged to recognize
both upper-case and lower-case characters. An implementation may exceed these limits.

Cross-references
Standard, §3.1.2
The C Programming Language, ed. 2, p. 35

LEXICON

244 extern — external name

See Also
identifiers, internal name, linkage

LEXICON

external name 245

