
D

daemon — Definition
A daemon, in the context of C programming, is a process that is designed to perform a particular
task or control a particular device without requiring the intervention of a human operator.

See Also
Definitions, process

date and time — Overview
#include <time.h>
The Standard describes nine functions that can be used to represent date and time, as follows:

Time conversion
asctime Convert broken-down time to text
ctime Convert calendar time to text
gmtime Convert calendar time to Universal Coordinated Time
localtime Convert calendar time to local time
strftime Format locale-specific time

Time manipulation
clock Get processor time used by the program
difftime Calculate difference between two times
mktime Convert broken-down time into calendar time
time Get current calendar time

These functions use the following structures:

clock_t System time
time_t Calendar time
tm Broken-down time

Let’s C defines time_t as a 32-bit number that holds the number of seconds since January 1, 1970,
0h00m00s UTC.

The structure tm is defined as follows:

typedef struct tm {
int tm_sec; /* second [0-60] */
int tm_min; /* minute [0-59] */
int tm_hour;/* hour [0-23]: 0 = midnight */
int tm_mday;/* day of the month [1-31] */
int tm_mon; /* month [0-11]: 0=January */
int tm_year;/* year since 1900 A.D. */
int tm_wday;/* day of week [0-6]: 0=Sunday */
int tm_yday;/* day of the year [0-366] */
int tm_isdst;/* daylight savings time flag */

} tm_t;

The member tm_sec can hold 61 seconds. This is done so that it can hold the ‘‘leap seconds’’ that
are used internationally to help coordinate atomic clocks with pulsars and solar time.

Finally, the manifest constant CLK_TCK is used to convert the value returned by the function clock
into seconds of real time. It is defined as being equivalent to one tick of the system clock. On the
IBM PC and compatibles, this is equivalent to 18.206481933 milliseconds. This value does not
change on machines that run at speeds higher than the standard 4.77 megahertz.

To print the local time, a program must perform the following tasks: First, read the system time with

LEXICON

daemon — date and time 219

time. Then, it must pass time’s output to localtime, which breaks it down into the tm structure.
Next, it must pass localtime’s output to asctime, which transforms the tm structure into an ASCII
string. Finally, it must pass the output of asctime to printf, which displays it on the standard
output.

Let’s C also includes numerous extensions to the ANSI Standard’s time functions. These
extensions increase the scope and accuracy of the Standard, and ease calculation of some time
elements. See the entry on extended time for more information.

Cross-references
Standard, §4.12
The C Programming Language, ed. 2, pp. 255ff

See Also
broken-down time, calendar time, daylight saving time, extended time, local time, Library,
TIMEZONE, universal coordinated time

dayspermonth() — Extended function (libc)
Return number of days in a given month
#include <xtime.h>
int dayspermonth(int month, int year);

dayspermonth returns the number of days in a given month of a given year A.D. month is the
number of the month in question, from one to 12. year is the year A.D. in which month appears.
Note that there is no year 0.

See Also
extended time, isleapyear, xtime.h

Notes
To conform to the ANSI Standard, this function has been moved from the header time.h to the
header xtime.h. This may require that some code be rewritten.

DBL_DIG — Manifest constant
#include <float.h>
DBL_DIG is a manifest constant that is defined in the header float.h. It is an expression that
defines the number of decimal digits of precision representable in an object of type double. It is
defined to be ten.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 258

See Also
float.h, numerical limits

decimal-point character — Definition
The decimal-point character as being the character that marks the beginning of the fraction in a
floating-point number. How this character is represented depends upon the program’s locale. The
locale specifier LC_NUMERIC describes how a particular locale represents the decimal-point
character. In the C locale, it is the period ‘.’.

This character is used by the functions that convert a floating-point number to a string, or read a
string and convert it to a floating-point number, i.e., atof, fprintf, fscanf, printf, scanf, sprintf,
sscanf, strtod, vfprintf, vprintf, and vsprintf. This character is not used within C source; for

LEXICON

220 dayspermonth() — decimal-point character

example,

sqrt(1,2);

passes two integer constants to sqrt, even if ‘,’ is the decimal-point character for the current locale.
Therefore, to print a C source file use the C locale, even if the program establishes another locale.

Cross-reference
Standard, §4.1.1

See Also
Definitions, localization

declarations — Overview
A declaration gives the type, storage class, linkage, and scope of a given identifier.

If a declaration also causes storage to be allocated for the object declared, then it is called a
definition.

Declarators may be within a list, separated by commas. Each declarator has the type given at the
beginning of the list, although a declarator may also have additional type information. For example,

int example1, *example2;

declares two variables: example1 has type int, whereas example2 has type ‘‘pointer to int.’’

Objects may be initialized when they are declared. See initialization for more information.

Cross-references
Standard, §3.5
The C Programming Language, ed. 2, pp. 210ff

See Also
bit-fields, declarators, definition, initialization, Language, linkage, scope, storage-class
specifiers, type qualifiers, type specifiers

declarators — Overview
A declarator consists of an object being declared plus its array, pointer, and function modifiers.

For example,

int arrayname[10];

declares an array.

int functionname(int arg1, int arg2, char *arg3);

declares a function.

int *pointername;

declares a pointer.

An implementation must be able to support at least 12 levels of declarators. Most implementations
had given a lower limit.

Cross-references
Standard, §3.5.4
The C Programming Language, ed. 2, pp. 215ff

LEXICON

declarations — declarators 221

See Also
array declarators, declarations, function declarators, pointer declarators

Notes
To clarify some terminology that may be confusing:

A declaration encompasses the object declared, plus its specifiers, qualifiers, and levels of
declarators.

A declarator consists of the object declared, plus its levels of specifiers (which set array dimensions,
functions, or pointers).

A definition is a declaration that allocates storage.

default — C keyword
Default entry in switch table

default is a label that marks the default entry in the body of a switch statement. If none of the
case labels match the value of the switch statement’s conditional expression, then the switch
statement jumps to the point marked by the default label, and begins execution from there.

Example
For an example of this label, see printf.

Cross-references
Standard, §3.6.1
The C Programming Language, ed. 2, p. 58

See Also
C keywords, case, statements, switch

Notes
A switch statement is not required to include a default label, but it is good programming practice to
include one.

defined — C keyword
Check if identifier is defined
defined(identifier)
defined identifier

The Standard describes a new C keyword, defined. This keyword is used to check if identifier has
been defined as macro or manifest constant. The preprocessing directives

#if defined(identifier)

and

#if defined identifier

have exactly the same effect as the directive:

#ifdef identifier

The defined operator is permitted only within #if and #elif expressions. It may not be used in any
other context.

defined is not a reserved word. It can be used in more complex conditional statements, i.e.:

LEXICON

222 default — defined

#if LEVEL==3 && defined FOO

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

See Also
#if, #ifdef, keywords, preprocessing

definition — Definition
A definition is a declaration that also allocates storage for the item declared. For example,

int example[];

declares that example names an array of ints. Because the declaration does not say how large of an
array example is, no memory is reserved; thus, this is a declaration but not a definition.

However, the declaration

int example[10];

declares that example names an array of ten ints. Because the declaration states how large
example is, an appropriately sized portion of memory is reserved for it. Thus, this declaration is
also a definition.

declaration and definition are easily confused, because the words are used in ways that are
somewhat contrary to their normal English meanings.

A function definition is a special kind of definition that operates by its own rules. See function
definition for more details.

Cross-references
Standard, §3.5
The C Programming Language, ed. 2, pp. 201, 210

See Also
declarations, function definition

Definitions — Overview
These definitions apply to topics throughout this Lexicon:

address
alias
alignment
argument
arena
ASCII
behavior
BIOS
bit
bit-fields
bit map
block
buffer
byte
compliance
cc0
cc1

LEXICON

definition — Definitions 223

cc2
cc3
cc4
daemon
decimal-point character
directory
domain error
executable file
false
field
file
file descriptor
interrupt
letter
link
manifest constant
nested comments
nybble
object format
object
parameter
pattern
port
portability
process
pun
quiet change
random access
range error
ranlib
read-only memory
record
register
rvalue
spirit of C
stack
Standard
standard error
standard input
standard output
stream
string
true
Universal Coordinated Time
wildcards

Cross-references
Standard, §1.6

See Also

LEXICON

224 Definitions

diagnostics — Overview
The term diagnostics has two meanings in the ANSI Standard. The first is a set of macros that are
used to test an expression at run time. The second refers to the way Let’s C warns a user that a
program contains an error.

Run-Time Diagnostics
The Standard describes a mechanism whereby an expression can be tested at run time. The macro
assert tests the value of a given expression as the program runs. If the expression is false, assert
prints a message into the standard error stream and then calls abort.

assert is defined in the header assert.h. This header also defines the manifest constant NDEBUG. If
you define this macro before including assert.h, assert is redefined as follows:

#define assert(ignore)

This turns off assert. If an expression evaluated by assert has any side effects, using NDEBUG will
change the program’s behavior.

Diagnostic Warnings
Let’s C produces a diagnostic for every translation unit that contains one or more errors of syntax
rules or syntax constraints. A diagnostic can be either a fatal error, which prints a message and
aborts translation, or simply a warning that prints a message and allows translation to proceed.

Cross-reference
Standard, §2.1.1.3

See Also
Library

difftime() — Time function (libc)
Calculate difference between two times
#include <time.h>
double difftime(time_t newtime, time_t oldtime);

difftime subtracts oldtime from newtime, and returns the difference in seconds.

Both arguments are of type time_t, which is defined in the header time.h.

Example
This example uses difftime to show an arbitrary time difference.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(void)
{

time_t t1, t2;

time(&t1);
printf("Press enter when you feel like it.\n");
getchar();
time(&t2);

printf("You waited %f seconds\n", difftime(t2, t1));
return(EXIT_SUCCESS);

}

LEXICON

diagnostics — difftime() 225

Cross-references
Standard, §4.12.2.2
The C Programming Language, ed. 2, p. 256

See Also
clock, date and time, mktime, time_t

digit — Definition
A digit is any of the following characters:

0 1 2 3 4 5 6 7 8 9

Cross-reference
Standard, §3.1.2

See Also
identifiers, nondigit

directory — Definition
A directory is a table that maps names to files. In other words, it associates the names of a file
with their locations on the mass storage device. Under some operating systems, directories are also
files, and can be handled like a file.

Directories allow files to be organized on a mass storage device in a rational manner, by function or
owner.

See Also
Definitions, file, path

div() — General utility (libc)
Perform integer division
#include <stdlib.h>
div_t div(int numerator, int denominator);

div divides numerator by denominator. It returns a structure of the type div_t. This structure
consists of two int members, one named quot and the other rem. div writes the quotient into quot
and the remainder into rem.

The sign of the quotient is positive if the signs of the arguments are the same; it is negative if the
signs of the arguments differ. The sign of the remainder is the same as the sign of the numerator.

If the remainder is non-zero, the magnitude of the quotient is the largest integer less than the
magnitude of the algebraic quotient. This is not guaranteed by the operators / and %, which merely
do what the machine implements for divide.

Example
For an example of this function, see memchr.

Cross-references
Standard, §4.10.6.2
The C Programming Language, ed. 2, p. 253

See Also
/, div_t, general utilities, ldiv

LEXICON

226 digit — div()

Notes
The Standard includes this function to permit a useful feature found in most versions of FORTRAN,
where the sign of the remainder will be the same as the sign of the numerator. Also, on most
machines, division produces a remainder. This allows a quotient and remainder to be returned from
one machine-divide operation.

If the result of division cannot be represented (e.g., because denominator is set to zero), the behavior
of div is undefined.

div_t — Type
Type returned by div()
#include <stdlib.h>

div_t is a typedef that is declared in the header stdlib.h. It is the type returned by the function div.

div_t is a structure that consists of two int members, one named quot and the other rem. div
writes its quotient into quot and its remainder into rem.

Example
For an example of using this type in a program, see memchr.

Cross-references
Standard, §4.10.6.2
The C Programming Language, ed. 2, p. 253

See Also
div, general utilities, integer arithmetic, stdlib.h

do — C keyword
Loop construct
do { statement } while(condition);

do establishes conditional loop. Unlike the loops established by for and while, the condition in a do
loop is evaluated after the operation is performed. This guarantees that at least one iteration of the
loop will be executed.

do always works in tandem with while. For example

do {
puts("Next entry? ");
fflush(stdout);

} while(getchar() != EOF);

prints a prompt on the screen and waits for the user to reply. The do loop is convenient in this
instance because the prompt must appear at least once on the screen before the user replies.

Cross-references
Standard, §3.6.5.2
The C Programming Language, ed. 2, p. 63

See Also
break, C keywords, continue, for, statements, while

LEXICON

div_t — do 227

dos.h — Header
Define MS-DOS functions and devices
#include <dos.h>

dos.h is the header that defines MS-DOS functions and devices. It is used with functions that
directly interface with MS-DOS, such as intcall.

See Also
header, intcall, signals/interrupts

DOS-specific features — Overview
Let’s C includes many features that relate specifically to the IBM PC, including the following:

• Source code
• Commands to be used with Let’s C
• Example programs

This manual also includes a number of articles that given information about the i8086 and MS-
DOS. See the Lexicon entry technical information for a list of these articles.

See Also
Lexicon, archive, command, example, technical information

double — C keyword
A double is a data type that represents a double-precision floating-point number. It is defined as
being at least as large as a float and no larger than a long double.

Like all floating-point numbers, a double consists of one sign bit, which indicates whether the
number is positive or negative; bits that encode the number’s exponent; and bits that encode the
number’s mantissa, or the number upon which the exponent works. The exponent often uses a
bias. This is a value that is subtracted from the exponent to yield the power of two by which the
fraction will be increased. The format of a double and the range of values that it can encode are set
in the following macros, all of which are defined in the header limits.h:

DBL_DIG
This holds the number of decimal digits of precision. This must be at least ten.

DBL_EPSILON
Where b indicates the base of the exponent (default, two) and p indicates the precision (or
number of base b digits in the mantissa), this macro holds the minimum positive floating-
point number x such that 1.0 + x does not equal 1.0, b^1-p. This must be at least 1E-9.

DBL_MAX
This holds the maximum representable floating-point number. It must be at least 1E+37.

DBL_MAX_EXP
This is the maximum integer such that the base raised to its power minus one is a
representable floating-point number.

DBL_MAX_10_EXP
This holds the maximum integer such that ten raised to its power is within the range of
representable finite floating-point numbers. It must be at least +37.

DBL_MANT_DIG
This gives the number of digits in the mantissa.

LEXICON

228 dos.h — double

DBL_MIN
This gives the minimum value encodable within a double. This must be at least 1E-37.

DBL_MIN_EXP
This gives the minimum negative integer such that when the base is raised to that power
minus one is a normalized floating-point number.

DBL_MIN_10_EXP
This gives the minimum negative integer such that ten raised to that power is within the
range of normalized floating-point numbers. It must be at least -37.

For information on common floating-point formats, see float.

Cross-references
Standard, §2.2.4.2, §3.1.2.4, §3.1.3.1, §3.5.2
The C Programming Language, ed. 2, p. 211

See Also
float, long double, types

dsreg() — i8086 support (libc)
Get value from DS segment register
#include <dos.h>
unsigned dsreg(void)

dsreg returns the value from from the i8086 DS register, which points to the base of the data
segment.

Example
For an example of this function, see the entry for csreg.

See Also
csreg, esreg, i8086 support, ssreg

dup() — Extended function (libc)
Duplicate a file descriptor
short dup(short fd);

dup duplicates the existing file descriptor fd, and returns the new descriptor. The returned value is
the smallest file descriptor that is not already in use by the calling process. It returns a negative
number when an error occurs, such as a bad file descriptor or no file descriptor available.

See Also
dup2, extended miscellaneous, fdopen, open

dup2() — Extended function (libc)
Duplicate a file descriptor
short dup2(short fd, newfd);

dup2 duplicates the file descriptor fd. Unlike its cousin dup, dup2 allows you to specify a new file
descriptor newfd, rather than have the system select one. If newfd is already open, the system
closes it before assigning it to the new file. dup2 returns the duplicate descriptor. It returns a
number less than zero when an error occurs, such as a bad file descriptor or no file descriptor
available.

LEXICON

dsreg() — dup2() 229

See Also
dup, extended miscellaneous, fdopen, open

LEXICON

230 dup2()

