
C

cabs() — Extended function (libm)
Complex absolute value function
#include <xmath.h>
double cabs(struct { double r, i; } z);

cabs computes the absolute value, or modulus, of its complex argument z. The absolute value of a
complex number is the length of the hypotenuse of a right triangle whose sides are given by the real
part r and the imaginary part i. The result is the square root of the sum of the squares of the parts.

See Also
extended mathematics, hypot

Notes
To conform to the ANSI Standard, cabs has been moved from the header math.h to the header
xmath.h. This may require that some code be altered.

cabs is not described in the ANSI Standard. Any program that uses it does not conform strictly to
the Standard, and may not be portable to other compilers or environments.

calloc() — General utility (libc)
Allocate and clear dynamic memory
#include <stdlib.h>
void *calloc(size_t count, size_t size);

calloc allocates a portion of memory large enough to hold count items, each of which is size bytes
long. It then initializes every byte within the portion to zero.

calloc returns a pointer to the portion allocated. The pointer is aligned for any type of object. If it
cannot allocate the amount of memory requested, it returns NULL.

Example
For an example of this function, see stdarg.

Cross-references
Standard, §4.10.3.1
The C Programming Language, ed. 2, p. 167

See Also
alignment, free, general utilities, malloc, realloc

Notes
If count or size is equal to zero, then the behavior of calloc is implementation defined: calloc returns
either NULL or a unique pointer. This is a quiet change that may silently break some existing code.

case — C keyword
Mark entry in switch table
case expression:

case is a label that introduces an entry within the body of a switch statement. The value of the
switch statement’s conditional expression is compared with the value of every case label’s
expression. When the two match, then the program jumps to the point marked by that case label
and execution continues from there. Execution continues until a break statement is encountered.

LEXICON

194 cabs() — case

Each case label must mark an expression whose value differs from those of every other case label
for that switch statement. See switch for more information.

Example
For an example, see printf.

Cross-references
Standard, §3.6.1
The C Programming Language, ed. 2, p. 58

See Also
break, C keywords, default, statements, switch

Notes
Every conforming implementation must be able to accept at least 257 case labels within a switch
statement.

cc — Command
Compiler controller
cc [options] file . . .

cc is the program that controls compilation. It guides files of source and object code through each
phase of compilation and linking. cc has many options to assist in the compilation of C programs;
in essence, however, all you need to do to produce an executable file from your C program is type cc
followed by the name of the file or files that hold your program. It checks whether the file names
you give it are reasonable, selects the right phase for each file, and performs other tasks that ease
the compilation of your programs.

File Names
cc assumes that each file name that ends in .c or .h is a C program and passes it to the C compiler
for compilation.

cc assumes that each file argument that ends in .s is in Mark Williams assembly language and
processes it with the assembler as; and that every file with the suffix .asm is written in Microsoft
macro assembly language, and attempts to assemble it with the macro assembler MASM.

cc assumes that all files with the suffix .m are assembly-language files that also use C preprocessor
instructions. cc will pass these files to the C preprocessor cpp, and pass its output to the
assembler as. This hybrid allows you to write assembly-language programs that are model-
independent. For an example of a .m file, see the Lexicon entry for as, the assembler. For more
information on building .m files, see the entry for larges.h.

cc also passes all files with the suffixes .obj or .lib unchanged to the linker MS-LINK.

How cc Works
cc normally works as follows: First, it compiles or assembles the source files, naming the resulting
object files by replacing the .c, .s, .m, or .asm suffixes with the suffix .obj. Then, it links the object
files with the C runtime startup routine and the standard C library, and leaves the result in file
file.exe. If only one object file is created during compilation, it is deleted after linking; however, if
more than one object file is created, or if an object file of the same name existed before you began to
compile, then the object file or files are not deleted.

Arguments and Wildcards
The option -na (for ‘‘no arguments’’) tells Let’s C that a program does not take command-line
arguments. This option may be used with or without the -ns option, which suppresses the linking

LEXICON

cc 195

of STDIO into your program.

The option -w (for ‘‘wildcard’’) tells Let’s C to include code in your program that will allow it to
expand the wildcard characters ‘?’ and ‘*’ in command-line arguments. For example, if program
example.exe is not built with the -w option, the command

example *.c

results in an argument count of two, and an argument list that contains two non-NULL members. If
example.exe is built with the -w option, Let’s C will include code so that your program will
automatically expand the wildcard argument *.c. The argument count and argument list are altered
to reflect the number of such files and their names, respectively.

If a program defines a global array char _cmdname[] that gives the name of the command, the -w
option fills in argv[0] with the command name and looks for environmental variables of the form
<name>HEAD and <name>TAIL. If found, these are added to argv[] before and after command-line
arguments, respectively. This option limits your program to 256 arguments at any one time. If you
happen to need to use more than 256 arguments, use the program msdoscvt, which is presented as
an example in the entry for exargs.

For example, the wc command is built with the -w option and defines

_cmdname = "wc";

If the current directory contains files a.c and b.c, and environmental variable WCHEAD is set to -l,
the command

wc *.c

has the same effect as the command

wc -l a.c b.c

that is, it counts the lines in a.c and b.c.

The arguments to main are defined as

main(argc, argv)
int argc; char *argv[];

On some systems, a third argument is available:

main(argc, argv, envp)
int argc; char *argv[], *envp[];

The envp argument is a NULL-terminated array of pointers to environmental variables, each of the
form var=value. If a program is compiled without the -w option, Let’s C passes an empty list as
envp. If a program is compiled with the -w option, Let’s C passes an envp that contains MS-DOS
environmental variables.

Options
The following lists all of cc’s command-line options. cc passes some options through to the linker
MS-LINK unchanged, and correctly interprets to it the options -o, -u, -y/, -yf, -ym, -yn, -ys, and -
yu.

A number of the options are esoteric and normally are not used when compiling a C program. The
following are the most commonly used options:

LEXICON

196 cc

-A invoke MicroEMACS when errors occur
-f include floating-point printf
-lname pass library libname.lib to linker
-o name call executable file name
-V print details of compiler’s actions
-VASM generate assembly-language output

-A MicroEMACS option. If an error occurs during compilation, cc automatically invokes the
MicroEMACS screen editor. The error or errors are displayed in one window and the source
code file in the other, with the cursor set to the line number indicated by the first error
message. Typing <ctrl-X>> moves to the next error, <ctrl-X>< moves to the previous error.
To recompile, close the edited file with <ctrl-Z>. Compilation will continue either until the
program compiles without error, or until you exit from the editor by typing <ctrl-U> followed
by <ctrl-X><ctrl-C>.

-c Compile option. Suppress linking and the removal of the object files.

-cc2l Use a LARGE-model version of the code generator cc2. This allows the creation of extremely
large programs, but runs more slowly than the default cc2, which is in SMALL model.

-Dname[=value]
Define name to the preprocessor, as if set by a #define directive. If value is present, it is used
to initialize the definition.

-E Expand option. Run the C preprocessor cpp and write its output onto the standard output.

-f Floating point option. Include library routines that perform floating-point arithmetic.
Because the floating-point routines require approximately five kilobytes of memory, the
standard C library does not include them; the -f option tells the compiler to include them. If
a program is compiled without the -f option but attempts to print a floating point number
during execution by using the e, f, or g format specifications to printf, the message

You must compile with -f option for floating point

will be printed and the program will exit.

-Idirectory
Include option. Specify the directory the preprocessor should search for files given in
#include directives, using the following criteria: If the #include statement reads

#include "file.h"

cc searches for file.h first in the source directory, then in the directory named in the -
Idirectory option, and finally in the system’s default directories. If the #include statement
reads

#include <file.h>

cc searches for file.h first in the directory named in the -Idirectory option, and then in the
system’s default directories. Multiple -Idirectory options are executed in their order of
appearance.

-K Keep option. Do not erase the intermediate files generated during compilation. Temporary
files will be written into the current directory. The -K option takes precedence over the -xt
option: when -K is set, the temporary files are always written into the directory in which the
source code is kept.

LEXICON

cc 197

-l name
library option. Pass the name of a library to the linker. cc expands -lname into libname.a.

-m Mini-make option: Compile file of source code only if it has been changed since its identically
changed object file was last compiled.

-na No arguments option. The compiled program does not use argc or argv. See Arguments and
wildcards, above, for more information.

-ns Do not link in stdio. If the standard I/O library is not needed, the -ns option produces much
smaller object modules.

-o name
Output option. Rename the executable file from the default file.exe to name.

-U name
Undefine symbol name. Use this option to undefine symbols that the preprocessor defines
implicitly, such as the name of the native system or machine.

-V Verbose option. cc prints onto the standard output a step-by-step description of each action
it takes.

Vstring
Variant option. Toggle (i.e., turn on or off) the variant string during the compilation. Options
marked Strict: generate messages that warn of the conditions in question. If you name an
option once in the CCHEAD environmental variable and again on the cc command line, these
two togglings will cancel each other out. cc recognizes the following variants:

-V80186 Output code that uses the instructions native to the Intel i80186 and i80286
microprocessors. This switch also works with the assembler as: assembly-
language programs that contain i80186/286 instructions will be assembled
correctly when the assembler is invoked using this option. Programs compiled
with this option cannot be run on an IBM PC or strictly compatible machines,
but will take full advantage of the instruction set of the IBM AT and its
compatibles. The code will also execute correctly on the NEC V20 and V30
processors. Default is off.

-VALIEN Enable the alien keyword. Under Let’s C, the alien keyword allows direct calls
of PL/M, Pascal, and FORTRAN functions and procedures. These differ from C
functions in the following ways: (1) C pushes arguments from right to left; the
other languages push from left to right. (2) C arguments are popped by the
calling function, whereas under the other languages arguments are popped by
the called function. (3) Let’s C appends an underbar character to the end of
every function name, whereas the other languages do not. Default is off.

-VASM Output assembly-language code. It can be used with the -VLINES option,
described below, to generate a line-numbered file of assembly language. Default
is off.

-VCSD Generate debugging information for csd, the Mark Williams C Source Debugger.

-VFLOAT Include floating point printf routines. Same as -f option, above.

-VLARGE LARGE-model output. Default is off.

-VLINES Generate line number information. Can be used with the option -S, described
above to generate assembly language output that uses line numbers. Default is
off.

LEXICON

198 cc

-VNDP Generate i8087 floating-point code. The code generated with this option will run
only on machines that have an i8087 mathematics co-processor. If this option
is not used, Let’s C automatically uses libraries that sense the presence of the
i8087: if an i8087 is present, floating point routines will be run on it; but if one
is not present, they will be emulated in software. Default is off.

-VOPT Turn on optimization. Default is off.

-VPSTR Put strings into the shared segment, if possible. Used to generate ROMable
code. Default is off.

-VQUIET Suppress all messages. Default is off.

-VSBOOK Strict: note deviations from The C Programming Language, ed. 2. Default is off.

-VSLCON Strict: int constant promoted to long because value is too big. Default is on.

-VSMALL Generate SMALL-model output. Default is on.

-VSMEMB Strict: check use of structure/union members for adherence to standard rules of
C. Default is on.

-VSNREG Strict: register declaration reduced to auto. Default is on.

-VSPVAL Strict: pointer value truncated. Default is off.

-VSRTVC Strict: risky types in truth contexts. Default is off.

-VSTAT Give statistics on optimization.

-VSTRICT Turn on all strict checking. Default is on.

-VSUREG Strict: note unused registers. Default is off.

-VSUVAR Strict: note unused variables. Default is on.

-V3GRAPH
Translate ANSI trigraphs. Default is off.

-w Wildcards option: the compiled program can take wildcards in its command line. See
Arguments and wildcards, above, for more information.

-x<key><directory>
Use the given directory as the location for one of the following: for compiler files if key is c;
libraries if key is l; output files if key is o; or temporary files if key is t.

-y/switch
Pass switch directly to MS-LINK.

-yf Force MS-LINK to create a linker command file. For more information on what a linker
command file is, see the Lexicon entry for MS-LINK.

-ym Force MS-LINK to create a map file. For more information on what a map file is, see the
Lexicon entry for MS-LINK.

-yn Reset the MS-LINK segments to 1,024, using the form /segments=1024 required by MS-
LINK versions 3.02 and later.

-ysnumber
Force MS-LINK to set the stack size to number, where number gives the number of bytes of
stack required, in decimal figures.

LEXICON

cc 199

-yuname
Undefine name for MS-LINK.

-Z Pause between passes and prompt for disk change. Used with the compiler using single-
sided disks.

See Also
as, cc0, cc1, cc2, cc3, commands, cpp, ld

cc0 — Definition
cc0 is the Let’s C preprocessor and parser. It performs all preprocessing tasks, and parses C
programs using the method of recursive descent. It then translates the program into a logical-tree
format.

See Also
cc, cc1, cc2, cc3, cpp, Definitions, preprocessing

cc1 — Definition
cc1 is the Let’s C code generator. This phase generates code from the trees created by the parser,
cc0. Code generation is table driven, with entries for each operator and addressing mode.

See Also
cc, cc0, cc2, cc3, cpp, Definitions

cc2 — Definition
cc2 is the optimizer/object generator phase of Let’s C. It optimizes the code generated by cc1, and
writes the object code.

Let’s C uses multiple optimization algorithms. One optimizes jump sequences: it eliminates
common code, optimizes span-dependent jumps, and removes jumps to jumps. The other function
scans the generated code repeatedly to eliminate unnecessary instructions.

The cc option -cc2l uses a LARGE-model version of cc2. This allows you to create extremely large
programs, but runs more slowly than the default version of cc2, which is in SMALL model.

See Also
cc, cc0, cc1, cc3, cpp, Definitions

cc3 — Definition
cc3 is the output phase of Let’s C that writes a file of assembly language rather than a relocatable
object module. This phase is optional. It allows you to examine the code generated by the compiler.
To produce an assembly-language output of a C program, use the -VASM option on the cc
command line. For example,

cc -VASM foo.c

tells cc to produce a file of assembly language called foo.s, instead of an object module.

See Also
cc, cc0, cc1, cc2, cpp, Definitions

LEXICON

200 cc0 — cc3

CCTAIL — Environmental variable
Variables at end of compilation command

CCTAIL is an environmental variable that is read by the cc command. When you issue a cc
command, cc reads CCTAIL and appends it to the end of the list of arguments you have given cc.

You should set CCTAIL in autoexec.bat to add options routinely to your cc commands. For
example, adding the command

set CCTAIL=-lm

to autoexec.bat ensures that the mathematics library libm.lib is always linked into your C
programs. Thus, typing the command

cc foo.c

will have the same effect as typing

cc foo.c -lm

See Also
cc, CCHEAD, environmental variable

ceil() — Mathematics (libm)
Integral ceiling
#include <math.h>
double ceil(double z);

The function ceil returns the ‘‘ceiling’’ of a function, or the smallest integer less than z. For example,
the ceiling of 23.2 is 23, and the ceiling of -23.2 is -23.

ceil returns the value expressed as a double.

Cross-references
Standard, §4.5.6.1
The C Programming Language, ed. 2, p. 251

See Also
fabs, floor, fmod, mathematics

char — C keyword
The data type char is the smallest addressable unit of data. It consists of one byte of storage, and it
can encode all of the characters that can be used to write a C program. sizeof(char) returns one by
definition, with all other data types defined as multiples thereof.

A char may be either signed or unsigned; this is up to the implementation. Let’s C uses a signed
char by default. If a char holds any of the characters that make up the C character set, then it is
positive. ANSI C allows the corresponding types signed char and unsigned char. Programmers can
create signed and unsigned versions of char where needed.

The range of values that can be encoded within a char are set by the macros CHAR_MIN and
CHAR_MAX. These are defined in the header limits.h. The minimum values of these macros depend
upon whether the implementation sign-extends a char when it is used in an expression. If the
implementation does sign extend, then CHAR_MIN is equal to SCHAR_MIN (at least -127) and
CHAR_MAX is equal to SCHAR_MAX (at least +127). If it does not sign extend, however,
CHAR_MIN is equal to zero and CHAR_MAX is equal to UCHAR_MAX (at least +255).

LEXICON

CCTAIL — char 201

Cross-references
Standard, §3.1.2.5
The C Programming Language, ed. 2, p. 211

See Also
signed char, types, unsigned char

character constant — Definition
A character constant is a constant that encodes a character or escape sequence. A character
constant consists of one or more characters or escape sequences that are enclosed within
apostrophes ´. To include a literal apostrophe within a character constant, use the escape sequence
\’.

A character is regarded as having type char as it is read, and it yields an object with type int. If a
character constant contains one character or escape sequence, then the numeric value of that
character is written into an int-length object. For example, under an implementation that uses
ASCII, the character constant ’a’ yields an int-length object with the value of 0x61. If a character
constant contains more than one character or escape sequence, the result is implementation-
defined.

Because the constant being read is regarded as having type char, the value of a character constant
can change from implementation to implementation, depending upon whether the implementation
uses a signed or unsigned char by default. For example, in an environment in which a char has
eight bits and uses two’s-complement arithmetic, the character constant ’\xFF’ will yield an int
with a value of either -1 or +255, depending upon whether a char is, respectively, signed or
unsigned by default. Let’s C uses signed chars by default.

A wide-character constant is a character constant that is formed of a wide character instead of an
ordinary, one-byte character. It is marked by the prefix ‘L’. For example, in the following

L’m’;

stores the numeric value of ‘m’ in the form of a wide character.

Example
For an example of using character constants in a program, see putchar.

Cross-references
Standard, §3.1.3.4
The C Programming Language, ed. 2, p. 193

See Also
constants, escape sequences

Notes
Although octal escape sequences are limited to three octal digits, hexadecimal escape sequences can
be arbitrary length. However, when the value of a hexadecimal escape sequence exceeds that which
can be represented in an int, behavior is defined by the implementation.

character display semantics — Definition
The Standard describes the semantics by which characters are displayed on an output device. The
active position is where the output device will print the next character produced by the function
fputc. On a video terminal, it usually is marked by a cursor. The locale defines the direction of
printing, whether from left to right, from right to left, or from top to bottom.

The following escape sequences can be embedded within a string literal or character constant to

LEXICON

202 character constant — character display semantics

affect the behavior of an output device:

\a Generate an alert signal. The alert may take the form of ringing a bell or printing a visual
signal on a screen.

\b Backspace: move the active position back one position. If the active position is already at the
beginning of the line, the behavior is undefined.

\f Form feed: move the active position to the beginning of the next page. On a hard-copy printer,
it feeds a fresh sheet of paper. On a video terminal, it may take the form of clearing the screen
and moving the cursor to the ‘‘home’’ position.

\n Newline: move the active position to the beginning of the next line.

\r Return: move the active position to the beginning of the current line.

\t Horizontal tab: move the active position to the beginning of the next horizontal tabulation field.
If the active position is already at or past the last horizontal tabulation field on the current line,
the behavior is undefined.

\v Vertical tab: move the active position to the beginning of the next vertical tabulation field. If
the active position is already at or past the last vertical tabulation field, the behavior is
undefined.

Every implementation must define each of these escape sequences as being a unique value that can
be stored in one char object.

Cross-reference
Standard, §2.2.2

See Also
Environment, escape sequence, trigraph sequences

character handling — Overview
#include <ctype.h>
The Standard’s repertoire of library functions includes 13 that test or alter individual characters, as
follows:

Character testing
isalnum Check if a character is a numeral or letter
isalpha Check if a character is a letter
iscntrl Check if a character is a control character
isdigit Check if a character is a numeral
isgraph Check if a character is printable
islower Check if a character is a lower-case letter
isprint Check if a character is printable
ispunct Check if a character is a punctuation mark
isspace Check if a character is white space
isupper Check if a character is a upper-case letter
isxdigit Check if a character is a hexadecimal numeral

Case mapping
tolower Convert character to lower case
toupper Convert character to upper case

All are declared in the header ctype.h.

LEXICON

character handling 203

The operation of all character-handling functions (with the exception of isdigit and isxdigit) is
modified by the program’s locale, as set by the function setlocale. This allows these function to test
and modify characters using a locale-specific character set. The calls

setlocale(LC_CTYPE, locale);

or

setlocale(LC_ALL, locale);

force these functions to use the locale-specific character set. See localization for more information.

Cross-references
Standard, §4.3
The C Programming Language, ed. 2, p. 248

See Also
character, ctype.h, extended character handling, Library

Notes
Although these functions are described as ‘‘character handling,’’ they are defined as taking an
argument of type int to allow them to accept the special value of EOF and locale-specific character
sets.

clearerr() — STDIO (stdio.h)
Clear a stream’s error indicator
#include <stdio.h>
void clearerr(FILE *fp);

When a file is manipulated, a condition may occur that would cause trouble should the program
continue. This could be an error (e.g., a read error), or the program may have read to the end of the
file. Most environments use two indicators to signal that such a condition has occurred: the error
indicator and the end-of-file indicator.

When an error occurs, the error indicator is set to a value that indicates what error occurred. The
end-of-file indicator is set when the end of a file is read. By checking these indicators, a program
can see if all is going well. A file may not be manipulated further until both indicators have been
reset to their normal values.

clearerr resets to normal the error indicator and the end-of-file indicator for the stream pointed to
by fp.

Cross-references
Standard, §4.9.10.1
The C Programming Language, ed. 2, p. 248

See Also
feof, ferror, perror, STDIO

Notes
The indicators are cleared when a file is opened or when the file-position indicator is reset by the
function rewind. Successful calls to fseek, fsetpos, or ungetc clear the end-of-file indicator.

LEXICON

204 clearerr()

CLK_TCK — Manifest constant
#include <time.h>
CLK_TCK is a manifest constant that is defined in the header time.h. It represents the number of
‘‘ticks’’ in a second. A ‘‘tick’’ is the unit of time measured by the function clock.

clock returns the type clock_t. To determine how many seconds a program required to run to the
given point, divide the value returned by clock by the value of CLK_TCK.

Example
For an example of using this macro in a program, see clock.

Cross-references
Standard, §4.12.1
The C Programming Language, ed. 2, p. 255

See Also
clock, clock_t, date and time

clock() —
Get processor time used
#include <time.h>
clock_t clock(void);

clock calculates and returns the amount of processor time a program has taken to execute to the
current point. Execution time is calculated from the time the program was invoked. This, in turn,
is set as a point from the beginning of an era that is defined by the implementation. For example,
under the COHERENT operating system, time is recorded as the number of milliseconds since
January 1, 1970, 0h00m00s UTC.

The value clock returns is of type clock_t. This type is defined in the header time.h. The Standard
defines it merely as being an arithmetic type capable of representing time. If clock cannot
determine execution time, it returns -1 cast to clock_t.

To calculate the execution time in seconds, divide the value returned by clock by the value of the
macro CLK_TCK, which is defined in the header time.h.

Example
This example measures the number of times a for loop can run in one second on your system. This
is approximate because CLK_TCK can be a real number, and because the program probably will not
start at an exact tick boundary.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(void)
{

clock_t finish;
long i;

/* finish = about 1 second from now */
finish = clock() + CLK_TCK;
for(i = 0; finish > clock(); i++)

;

LEXICON

CLK_TCK — clock() 205

printf("The for() loop ran %ld times in one second.\n", i);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.12.2.1
The C Programming Language, ed. 2, p. 255

See Also
CLK_TCK, clock_t, date and time, difftime, mktime

clock_t — Type
System time
#include <time.h>

clock_t is a data type that is defined in the header time.h. It is an arithmetic type, and is the type
returned by the function clock.

The unit that clock_t holds is implementation-defined. The manifest constant CLK_TCK expands
to a number that expresses how of many of these units constitute one second of real time.

Example
For an example of using this type in a program, see clock.

Cross-references
Standard, §4.12.1
The C Programming Language, ed. 2, p. 255

See Also
CLK_TCK, clock, date and time, time_t

close() — Extended function (libc)
Close a file
short close(short fd);

close closes the file identified by the file descriptor fd, which was returned by creat, dup, or open.
close frees the associated file descriptor.

close returns -1 if an error occurs, such as its being handed a bad file descriptor. Otherwise, it
returns zero.

Because each program can have only a limited number of files open at any given time, programs
that process many files should close files whenever possible.

Example
For an example of this function, see the entry for open.

See Also
creat, extended miscellaneous, open

Notes
When a program exits, Let’s C automatically closes all files that had been opened via the STDIO
function fopen. However, you must explicitly call close to close all files that had been opened with
open, or the unclosed file will be truncated to zero bytes when the program exits.

LEXICON

206 clock_t — close()

cmp — Command
Compare bytes of two files
cmp [-ls] file1 file2 [skip1 skip2]

cmp is a command that is included with Let’s C. It compares file1 and file2 character by character,
for equality. If file1 is ‘-’, cmp reads the standard input.

Normally, cmp notes the first difference and prints the line and character position, relative to any
skips. If it encounters EOF on one file but not on the other, it prints the message ‘‘EOF on filen’’.
The following are the options that can be used with cmp:

-l Each differing byte by printing the positions and octal values of the bytes of each file.

-s Print nothing, but return the exit status.

If the skip counts are present, cmp reads skip1 bytes on file1 and skip2 bytes on file2 before it
begins to compare the two files.

The exit status is zero for identical files, one for non-identical files, and two for errors, e.g., bad
command usage or inaccessible file.

See Also
commands

commands — Overview
Let’s C includes a number of commands. They are listed below, with the command given on the left
and a description on the right.

Commands included with Let’s C:

cc The compiler driver
cmp Compare two files
cpp The C preprocessor
egrep String search utility
exetocom Convert .exe files to .com files
fixobj Edit object modules to allow cross-linking
make Programming discipline
me Microemacs screen editor
mwlib Librarian for libraries in MS-DOS format
MWS Mark Williams shell
nm Print symbol tables
pr Paginate text for printing
size Print size of a file
strip Remove debug tables from some executables
tail Print the end of a file
wc Count words/lines in ASCII files

Additional commands included with Let’s C Utilities:

diff Compare two files
ed Line editor
m4 Macro processor
sort Sort ASCII files
uniq List/destroy duplicate lines

LEXICON

cmp — commands 207

For more information on any of these commands, see its entry within the Lexicon.

See Also
DOS-specific features, MWS

comment — Definition
A comment is text that is embedded with a program but is ignored by the translator. It is intended
to guide the reader of the code.

A comment is introduced by the characters /*. The only exceptions are when these characters
appear within a string literal or a character constant. In these instances, the characters /* have no
special significance. When /* is read, all text is ignored until the characters */ are read. Once a
comment is opened, the translator does nothing with the text except scan it for multi-byte
characters and for the characters */ that close the comment.

The translator replaces a comment with a single white-space character; this is done during phase 3
of translation.

Cross-references
Standard, §3.1.9
The C Programming Language, ed. 2, p. 192

See Also
/, /, lexical elements, translation phases

Notes
The Standard’s definition of a comment does not allow comments to ‘‘nest.’’ That is, you cannot have
a comment within a comment. This may require that some code be revised. If you wish to exclude
some code from translation temporarily, a sounder practice is to use the preprocessing directives
#ifdef and #endif. For example,

#ifdef DEBUG
. . .

#endif

will include code only if DEBUG has been defined as being a macro.

It is possible to open a comment inadvertently. For example, the code

int *intptr, int1, int2;
. . .

int2 = int1/*intptr;

inadvertently creates a comment symbol out of the division operator ‘/’ and the pointer-dereference
operator ‘*’. Caveat utilitor.

compatible types — Definition
To judge whether two types are compatible, several factors must be considered.

Scalar types
First, the base types must be identical. Second, all specifiers must match, except for
signedness (i.e., it does not matter whether either or both are signed or unsigned). Third,
all type qualifiers must match. There are special semantics to determine whether qualified
objects are compatible to ensure that qualified types are not ‘‘hidden’’. See the entry type
qualifiers for more information.

LEXICON

208 comment — compatible types

Structures
For two structures to be compatible, they must have the same ‘‘tagged type’’. For example,
the structures

FILE struct1;
FILE struct2;

are compatible, because the tagged type of each is FILE. On the other hand, in the following
code

struct s1 { int s1_i } s1;
struct s2 { int s2_i } s2;

the structures s1 and s2 are not compatible.

Pointers
For two pointers to be compatible, they must point to the same type of object. Other
pointers may be compatible if they are suitably cast.

Cross-reference
Standard, §3.1.2.6, §3.5.2-4

See Also
type specifier, types

compile —
To compile a program means to translate it with a compiler. A compiler is a translator that takes a
set of high-level source instructions (i.e., C code) and produces a set of machine instructions that
implement the behavior that the source instructions describe.

See Also
Definitions, interpret, link

compliance — Definition
Compliance refers to the degree to which a program and an implementation conform to the
Standard’s descriptions of the C language.

A strictly conforming program is one that uses only the features of the language and the library
routines that are described within the Standard. It does not produce any behavior that is
implementation defined, unspecified, or undefined. It does not exceed any minimum maximum set
by the Standard. A strictly conforming program should be maximally portable to any environment
for which a conforming implementation exists.

A conforming program is any program that can be translated by a conforming implementation. It
may use library functions other than those described in the Standard, it may evoke non-Standard
behavior, and it may use extensions to the language that are recognized by the implementation.

There are two varieties of conforming implementation: conforming hosted implementation and
conforming freestanding implementation. A conforming hosted implementation is one that can
translate any strictly conforming program. A conforming freestanding implementation is one that
can translate any strictly conforming program whose use of macros and functions is restricted to
those defined in the headers float.h, limits.h, stdarg.h, and stddef.h.

Cross-reference
Standard, §1.7

LEXICON

compile — compliance 209

See Also
behavior, Definitions, limits

con — Operating system device
Logical device for the console

MS-DOS gives names to its logical devices. Let’s C uses these names to allow its STDIO library
routines to access these devices via MS-DOS. con is the logical device for the console.

Example
The following example demonstrates how to open the console device.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

FILE *fp, *fopen();
if ((fp = fopen("con", "w")) != NULL)

fprintf(fp, "con enabled.\n");
else printf("con: cannot open.\n");
return EXIT_SUCCESS;

}

See Also
aux, com1, lpt1, nul, operating system devices

const — C keyword
Qualify an identifier as not modifiable

The type qualifier const marks an object as being unmodifiable. An object declared as being const
cannot be used on the left side of an assignment, or have its value modified in any way. Because of
these restrictions, an implementation may place objects declared to be const into a read-only region
of storage.

Judicious use of const allows the translator to optimize more thoroughly, for it does not have to
include code to check whether the object has been modified.

Most of the prototypes for library functions use const to mark identifiers that are not modified by
the function.

Cross-references
Standard, §3.5.3
The C Programming Language, ed. 2, p. 40

See Also
type qualifier, volatile

constant expressions — Definition
A constant expression is one that represents a constant. Constant expressions are required in a
variety of situations: when the value of an enumeration constant is set; when the size of an array is
declared; as a constant to be used in a case statement; or as the size of a bit-field declaration.

Every constant expression must return a value that is within the range representable by its type.
No constant expression can contain assignment operators, increment or decrement operators,
function calls, or the comma operator. The only exception is when it used as the operand to the
operator sizeof.

LEXICON

210 con — constant expressions

The Standard describes the following varieties of constant expressions:

Address constant expression
This type of constant is an expression that points to an object or a function. The operators
[], *, &, ., and -> may be used to create an address constant, as may a pointer cast.

Arithmetic constant expression
This type of constant has an arithmetic type, and is one the following:

• character constant

• enumeration constant

• floating constant

• integer constant

• sizeof expression

An arithmetic constant expression can be cast only to another arithmetic type, except
when it is an operand to sizeof.

Integral constant expression
This type of constant has integral type, and is one of the following:

• character constant

• enumeration constant

• a floating constant that is the immediate operand of a cast.

• integer constant

• sizeof constant

When a constant expression is used to initialize a static variable, it must resolve, when translated,
into one of the following:

• An address constant.

• An address constant for an object type, plus or minus an integral constant expression.

• An arithmetic constant expression.

Initializers on local variables that are not declared static are not so restrictive.

Cross-references
Standard, §3.4
The C Programming Language, ed. 2, p. 38

See Also
constants, expressions, initializers, Language, void expression

Notes
Constant expressions can be combined when translated. The precision and accuracy of such
translation-time evaluation must be at least those of the execution environment. This requirement
was designed with cross-compilers in mind, where the execution environment might differ from
translation environment.

A constant expression may be resolved into a constant by the translator. Therefore, it can be used
in any circumstance that calls for a constant. For this reason, the Standard forbids the use in an

LEXICON

constant expressions 211

#if statement in a constant expression that queries the run-time environment. A program that does
include a #if statement that queries the environment will not run the same when translated by an
ANSI-compatible translator.

constants — Overview
A constant is a lexical element that represents a set numerical value. The four categories of
constants are as follows:

character constants A character constant or wide-character constant
enumeration constants A constant used in an enum
floating constants A floating-point number
integer constants An integer

Each type is determined by the form of the token. For example,

5L

defines a constant of type long, and

5.03

is a floating-point constant.

Cross-references
Standard, §3.1.3
The C Programming Language, ed. 2, pp. 192ff

See Also
constant expressions, lexical elements

continue — C keyword
Force next iteration of a loop
continue;

continue forces the next iteration of a for, while, or do loop. It works only upon the smallest
enclosing loop.

continue forces a loop to iterate by jumping to the end of the loop, which is where iteration
evaluation is made. For example, the code

while(statement) {
. . .

if (statement)
continue;

. . .
}

is equivalent to:

while(statement) {
. . .

if (statement)
goto end;

. . .
end: ;

}

Example
For an example of this statement, see mktime.

LEXICON

212 constants — continue

Cross-references
Standard, §3.6.6.2
The C Programming Language, ed. 2, p. 64

See Also
break, C keywords, goto, return, statements

conversions — Definition
The term conversion means to change the type of an object, function, or constant, either explicitly or
implicitly. Explicit conversion occurs when an object or function is cast to another type by a cast
operator. Implicit conversion occurs when the type of the object or function is changed by an
operator without a cast operator being used.

When an object or function is converted into a compatible type, its value does not change.

The following paragraphs summarize conversion for different types of objects.

Enumeration constants
These constants are always converted implicitly to ints.

Floating types
When a floating type is converted to an integral type, the fractional portion is thrown away.
If the value of the integral part cannot be represented by the new type, behavior is
undefined.

When a float is promoted to double or long double, its value is unchanged. Likewise, when
a double is promoted to a long double, its value is unchanged.

A floating type may be converted to a smaller floating type. If its value cannot be
represented by the new type, behavior is undefined. If its value lies within the range of
values that can be represented by the smaller type but cannot be represented precisely,
then its value is rounded to the next highest or next lowest value, depending upon the
implementation.

Integral types
A char, a short int, an enumerated type, or a bit-field, whether signed or unsigned, may be
used in any situation that calls for an int. The type to be promoted is converted to an int if
an int can hold all of its possible values. If an int cannot hold all of its possible values,
then it is converted to an unsigned int. This rule is called integral promotion. This
conversion retains the value of the type to be promoted, including its sign. Thus, it is called
a value-preserving promotion.

Some current implementations of C use a scheme for promotion that is called unsigned
preserving. Under this scheme, an unsigned char or unsigned short is always promoted to
unsigned int. Under certain circumstances, a program that depends upon unsigned-
preserving promotion will behave differently when subjected to value-preserving promotion,
and probably without warning. This is a quiet change that may break some existing code.

An integral type may be converted to a floating type. If its value lies within the range of
values that can be represented by the floating type, but it cannot be represented precisely,
then its value is rounded to the next highest or next lowest value, depending upon the
implementation.

Signed and unsigned integers
The following rules apply when a signed or an unsigned integer is converted to another
integral type:

LEXICON

conversions 213

• When a positive, signed integer is promoted to an unsigned integer of the same or
larger type, its value is unchanged.

• When a negative integer is promoted to an unsigned integer of the same or larger type,
it is first promoted to the signed equivalent of the unsigned type. It is then converted
to unsigned by incrementing its value by one plus the maximum value that can be held
by the unsigned type. On two’s complement machines, the bit pattern of the promoted
object does not changed. The only exception is that the sign bit is copied to fill any
extra bits of new type, should it be larger than the old type.

• When a signed or unsigned integer is demoted to a smaller, unsigned type, its value is
the non-negative remainder that occurs when the value of the original type is divided
by one plus the maximum value that can be held by the smaller type.

• When a signed or unsigned integer is demoted to a smaller, signed type, if its value
cannot be represented by the new type, the result is implementation-defined.

• When an unsigned integer is converted to a signed type of the same size, if its value
cannot be represented by the new type, the result is implementation-defined.

Usual arithmetic conversions
Many binary operators convert their operands and yield a result of a type common to both.
The rules that govern such conversions are called the usual arithmetic conversions. The
following lists the usual arithmetic conversions. If two conflict, the rule higher in the list
applies:

• If either operand has type long double, the other operand is converted to long double.

• If either operand has type double, the other operand is converted to double.

• If either operand has type float, the other operand is converted to float.

• If either operand has type unsigned long int, then the other operand is converted to
unsigned long int.

• If one operand has the type long int and the other operand has type unsigned int, the
other operand is converted to long int if that type can hold all of the values of an
unsigned int. Otherwise, both operands are promoted to unsigned long int.

• If either operand has type long int, the other operand is converted to long int.

• If either operand has type unsigned int, the other operand is converted to unsigned
int.

• If none of the above rules apply, then both operands have type int.

Cross-references
Standard, §3.2
The C Programming Language, ed. 2, pp. 197ff

See Also
explicit conversion, function designator, implicit conversion, integral promotions, Language,
lvalue, null pointer constant, value preserving, void expression

Notes
The ‘‘as if’’ rule gives implementors some leeway in applying the rules for usual arithmetic
conversions. For example, the conversion rules specify that operands of type char must first be
widened to type int before the operation is performed; however, if the same result would be
produced by performing the operation on char operands, then the operands need not be widened.

LEXICON

214 conversions

Because the Standard now allows single-precision floating-point arithmetic on float operands, some
round-off error could occur. Casts will force the operands in question to be promoted, and the
operation to be carried out with the wider type.

cos() — Mathematics (libm)
Calculate cosine
#include <math.h>
double cos(double radian);

cos calculates and returns the cosine of its argument radian, which must be expressed in radians.

Example
For an example of this function, see sin.

Cross-references
Standard, §4.5.2.5
The C Programming Language, ed. 2, p. 251

See Also
acos, asin, atan, atan2, mathematics, sin, tan

cosh() — Mathematics (libm)
Calculate hyperbolic cosine
#include <math.h>
double cosh(double value);

cosh calculates and returns the hyperbolic cosine of value. A range error will occur if the argument
is too large.

Cross-references
Standard, §4.5.3.1
The C Programming Language, ed. 2, p. 251

See Also
mathematics, sinh, tanh

cpp — Command
C preprocessor
cpp [option...] [file...]

The command cpp calls the preprocessor/parser cc0 to perform C preprocessing on C programs. It
performs the operations described in section 3.8 of the Standard; these include file inclusion,
conditional code selection, constant definition, and macro definition. See the entry on
preprocessing for a full description of the C’s preprocessing language.

cpp reads each input file, or stdin if no file is specified; processes directives, and writes its product
on stdout. If the option -E is not used, cpp also writes into its output statements of the form #n
filename, so that the parser will be able to connect its error messages and debugger output with the
original line numbers in your source files.

Options
The following summarizes cpp’s options:

LEXICON

cos() — cpp 215

-DVARIABLE
Define VARIABLE for the preprocessor at compilation time. For example, the command

cc -DLIMIT=20 foo.c

tells the preprocessor to define the variable LIMIT to be 20. The compiled program acts as
though the directive #define LIMIT 20 were included before its first line.

-E Strip all comments and line numbers from the source code. This option is used to
preprocess assembly-language files or other sources, and should not be used with the other
compiler phases.

-I directory
C allows two types of #include directives in a C program, i.e., #include "file.h" and
#include <file.h>. The -I option tells cpp to search a specific directory for the files you have
named in your #include directives, in addition to the directories that it searches by default.
You can have more than one -I option on your cc command line.

-o file
Write output into file. If this option is missing, cpp writes its output onto stdout, which
may be redirected.

-UVARIABLE
Undefine VARIABLE, as if an #undef directive were included in the source program. This is
used to undefine the variables that cpp defines by default.

See Also
cc, preprocessing

creat() — Extended function (libc)
Create/truncate a file
short creat(char *file, short mode);

creat creates a new file or truncates an existing file. It returns a file descriptor that identifies file for
subsequent system calls. If file already exists, its contents are erased.

creat ignores its mode argument. This argument exists for compatibility with implementations of
creat under UNIX and related operating systems.

If the call is successful, creat returns a file descriptor. It returns -1 if it could not create the file,
typically because of insufficient system resources, or nonexistent path.

Example
For an example of this routine, see the entry for open.

See Also
extended miscellaneous, fopen, fdopen

csreg() — i8086 support (libc)
Get value from CS register
#include <dos.h>
unsigned csreg(void)

csreg returns the value from the i8086 CS register, which points to the base of the code segment.

Example
The following example uses the functions csreg, dsreg, esreg, and ssreg to print the contents of the
segment registers.

LEXICON

216 creat() — csreg()

#include <dos.h>
#include <stdio.h>
#include <stdlib.h>

main(void)
{

printf("csreg=%04x\n", csreg());
printf("dsreg=%04x\n", dsreg());
printf("esreg=%04x\n", esreg());
printf("ssreg=%04x\n", ssreg());
return EXIT_SUCCESS;

}

See Also
dsreg, esreg, i8086 support, ssreg

ctime() — Time function (libc)
Convert calendar time to text
#include <time.h>
char *ctime(const time_t *timeptr);

The function ctime reads the calendar time pointed to by timeptr, and converts it into a string of the
form

Tue Dec 10 14:14:55 1987\n\0

ctime is equivalent to:

asctime(localtime(timeptr));

timeptr points to type time_t, which is defined in the header time.h.

Example
This example displays the current time.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(void)
{

time_t t;
time(&t);

printf(ctime(&t));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.12.3.2
The C Programming Language, ed. 2, p. 256

See Also
asctime, date and time, gmtime, localtime, strftime, time_t

LEXICON

ctime() 217

ctype.h — Header
Header for character-handling functions
#include <ctype.h>

ctype.h is the header file that declares the functions used to handle characters. These are as
follows:

isalnum Check if a character is a numeral or letter
isalpha Check if a character is a letter
iscntrl Check if a character is a control character
isdigit Check if a character is a numeral
isgraph Check if a character is printable
islower Check if a character is a lower-case letter
isprint Check if a character is printable
ispunct Check if a character is a punctuation mark
isspace Check if a character is white space
isupper Check if a character is a upper-case letter
isxdigit Check if a character is a hexadecimal numeral
tolower Convert character to lower case
toupper Convert character to upper case

Cross-references
Standard, §4.3
The C Programming Language, ed. 2, p. 248

See Also
character handling, header, xctype.h

LEXICON

218 ctype.h

