
B

behavior — Definition
The term behavior refers to the way an implementation reacts to a given construct. When a
construct conforms to the descriptions within the Standard, then its behavior should be predictable
from the Standard’s descriptions alone. When a construct does not conform to the descriptions
within the Standard, then one of the following four types of abnormal behavior results:

Unspecified behavior
This is behavior produced by a correct construct for which the Standard supplies no
description. An example is the order in which a program evaluates the arguments to a
function.

Undefined behavior
This is behavior produced by an erroneous construct for which the Standard supplies no
description. An example of a construct that generates undefined behavior is attempting to
divide by zero.

The Standard does not mandate how a conforming implementation reacts when it detects a
construct that will produce undefined behavior: it may pass over it in silence, with
unpredictable (and usually unwelcome) results; generate a diagnostic message and continue
to translate or execute; or stop translation or execution and produce a diagnostic message.

A portable program, however, should not depend upon undefined behavior performing in
any predictable way. Undefined behavior is precisely that: undefined. Whatever happens,
happens — from printing an error message to reformatting your hard disk.

Implementation-defined behavior
This is behavior produced by a correct construct that is specific to a given implementation.
An example is the number of register objects that can actually be loaded into machine
registers. The Standard requires that the implementation document all such behaviors.

Locale-specific behavior
This is behavior that depends upon the program’s locale. An example is the character that
the function atof recognizes as marking a decimal point. The Standard requires that an
implementation document all such behaviors.

Cross-reference
Standard, §1.6

See Also
compliance, Definitions

Notes
For a program to be maximally portable, it should not rely on any of the above deviants of behavior.

BIOS — Definition
BIOS is an acronym for basic input/output system. In most machines, the BIOS consists of a group
of routines carried in the read-only memory (ROM). These routines contain basic instructions for
accessing the various aspects of the hardware. MS-DOS uses these routines to help protect itself
from the peculiarities of the hardware on which it is running.

See Also
Definitions, STDIO

LEXICON

behavior — BIOS 187

bios.h — Header
Outline ROM BIOS data area

bios.h is a header file to be used with programs that directly access the IBM PC’s BIOS data area. It
declares a structure that defines the entire BIOS data area, for examination and alteration.

The sample program biosdata.c, which is included with Let’s C, uses bios.h to take a ‘‘snapshot’’ of
the BIOS data area and print a summary of it.

See Also
BIOS data area, header, peek, poke

bit — Definition
The term bit is an abbreviation for binary digit. It is the element of storage that can hold either of
exactly two values. A contiguous sequence of bits forms a byte. A byte consists of at least eight
bits. The macro CHAR_BIT specifies the number of bits that constitute a byte for the execution
environment.

On most machines a bit cannot be addressed directly; a byte is the smallest unit of storage that can
be addressed.

Cross-reference
Standard, §1.6

See Also
bit-field, bitwise operations, byte, Definitions

bit-fields — Definition
A bit-field is a member of a structure or union that is defined to be a cluster of bits. It provides a
way to represent data compactly. For example, in the following structure

struct example {
int member1;
long member2;
unsigned int member3 :5;

}

member3 is declared to be a bit-field that consists of five bits. A colon ‘:’ precedes the integral
constant that indicates the width, or the number of bits in the bit-field. Also, the bit-field declarator
must include a type, which must be one of int, signed int, or unsigned int. If a bit-field is declared
to be in type int, the implementation defines whether the highest bit is used to hold the bit-field’s
sign.

The Standard states, ‘‘An implementation may allocate any addressable storage unit large enough to
hold a bit-field.’’ This suggests that if a bit-field is defined as holding more bits than are normally
held by an int, then the implementation may place the bit-field into a larger data object, such as a
long.

If two bit-fields are declared side-by-side and together are small enough to fit into an int, then they
must be packed together. However, if together they are too large to fit into an int, then the
implementation determines whether they are in separate objects or if the second bit-field is partly
within the object that holds the first and partly within a second object.

The implementation also defines where the bit-field resides within its object — whether it is built
from the low-order bit up, or from the high-order bit down. For example, consider an
implementation in which an int has 16 bits. If a five-bit bit-field is declared to be part of an int,
and that bit-field is initialized to all ones, then the int may appear like this under one

LEXICON

188 bios.h — bit-fields

implementation:

0000 0000 0001 1111 /* low-order bits set */

and like this under another:

1111 1000 0000 0000 /* high-order bits set */

A bit-field that is not given a name may not be accessed. Such an object is useful as ‘‘padding’’
within an object so that it conforms to a template designed elsewhere.

A bit-field that is unnamed and has a length of zero can be used to force adjacent bit-fields into
separate objects. For example, in the following structure

struct example {
int member1;
int member2 :5;
int :0;
int member3 :5;

};

the zero-length bit-field forces member2 and member3 to be written into separate objects,
regardless of the default behavior of the implementation.

Finally, it is not allowed to take the address of a bit-field.

Cross-references
Standard, §3.5.2.1
The C Programming Language, ed. 2, pp

See Also
bit, bit map, byte, Definitions

Notes
Because bit-fields have many implementation-specific properties, they are not considered to be
highly portable. Bit-fields use minimal amounts of storage, but the amount of computation needed
to manipulate and access them may negate this benefit. Bit-fields must be kept in integral-sized
objects because many machines cannot access a quantity of storage smaller than a ‘‘word’’ (a word
is generally used to store an int).

bit map — Definition
A bit map is a string of bits in which each bit has a symbolic, rather than numeric, value.

See Also
bit, byte, Definitions

Notes
C permits the manipulation of bits within a byte through the use of bit field routines. These
generate code rather than calls to routines. Bit fields are generally less efficient than masking
because they always generate masking and shifting.

block — Definition
A block is a set of statements that forms one syntactic unit. It can have its own declarations and
initializations.

In C terminology, a block is marked off by braces ‘{ }’. Block-scoped variables are visible only in the
block in which they are declared.

LEXICON

bit map — block 189

Cross-references
Standard, §3.6.2
The C Programming Language, ed. 2, p. 55

See Also
auto, compound statement, Definitions, scope

Notes
Another term for ‘‘block’’ is compound statement.

break — C keyword
Exit unconditionally from loop or switch
break;

break is a statement that causes the program to exit immediately from the smallest enclosing
switch, while, for, or do statement.

Example
For an example of this statement, see printf.

Cross-references
Standard, §3.6.6.3
The C Programming Language, ed. 2, p. 64

See Also
C keywords, continue, goto, statements, return

bsearch() — General utility (libc)
Search an array
#include <stdlib.h>
void *bsearch(const void *item, const void *array, size_t number,

size_t size, int (*comparison)(const void *arg1, const char *arg2));

bsearch searches a sorted array for a given item.

item points to the object sought. array points to the base of the array; it has number elements, each
of which is size bytes long. Its elements must be sorted into ascending order before it is searched by
bsearch.

comparison points to the function that compares item with an element of array. comparison must
return zero if its arguments match, a number greater than zero if the element pointed to by arg1 is
numerically greater than the element pointed to by arg2, and a number less than zero if the element
pointed to by arg1 is numerically less than the element pointed to by arg2.

bsearch returns a pointer to the array element that matches item. If no element matches item, then
bsearch returns NULL. If more than one element within array matches item, which element is
matched is unspecified.

Example
This example uses bsearch to translate English into ‘‘bureaucrat-ese’’.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

LEXICON

190 break — bsearch()

struct syntab {
char *english, *bureaucratic;

} cdtab[] = {
/* The left column is in alphabetical order */

"affect", "impact",
"after", "subsequent to",
"building", "physical facility",
"call", "refer to as",
"do", "implement",

"false", "inoperative",
"finish", "finalize",
"first", "initial",
"full", "in-depth",
"help", "facilitate",

"lie", "inoperative statement",
"order", "prioritize",
"talk", "interpersonal communication",
"then", "at that point in time",
"use", "utilize"

};

int
comparator(key, item)
char *key;
struct syntab *item;
{

return(strcmp(key, item->english));
}

main(void)
{

struct syntab *ans;
char buf[80];

for(;;) {
printf("Enter an English word: ");
fflush(stdout);

if(gets(buf) || !strcmp(buf, "quit") == NULL)
break;

if((ans = bsearch(buf, (void *)cdtab,
sizeof(cdtab)/ sizeof(struct syntab),
sizeof(struct syntab),
comparator)) == NULL)

printf("%s not found\n");

else
printf("Don’t say \"%s\"; say \"%s\"!\n",

ans->english, ans->bureaucratic);
}

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.10.5.1
The C Programming Language, ed. 2, p. 253

LEXICON

bsearch() 191

See Also
qsort, searching-sorting

byte — Definition
A byte is a contiguous set of at least eight bits. It is the unit of storage that is large enough to hold
each character within the basic C character set. It is also the smallest unit of storage that a C
program can address.

The least significant bit is called the low-order bit, and the most significant bit is the high-order bit.

In terms of C programming, a byte is synonymous with the data type char: a char is defined to be
equal to one byte’s worth of storage. The macro CHAR_BIT gives the number of bits in a byte for
the execution environment.

Cross-reference
Standard, §1.6

See Also
bit, char, Definitions

byte ordering — Technical information
Describe order of bytes

Byte ordering is the order in which a given machine stores successive bytes of a multibyte data
item. Different machines order bytes differently.

The following example displays a few simple examples of byte ordering:

#include <stddef.h>
#include <stdio.h>
#include <stddef.h>

main(void)
{

union
{

char b[4];
int i[2];
long l;

} u;
u.l = 0x12345678L;

printf("%x %x %x %x\n",
u.b[0], u.b[1], u.b[2], u.b[3]);

printf("%x %x\n", u.i[0], u.i[1]);
printf("%lx\n", u.l);
return(EXIT_SUCCESS);

}

When run on the 68000 or the Z8000, the program gives the following results:

12 34 56 78
1234 5678
12345678

As you can see, the order of bytes and words from low to high memory is the same as is represented
on the screen.

When run on a PDP-11, however, the program gives these results:

LEXICON

192 byte — byte ordering

34 12 78 56
1234 5678
12345678

As you can see, the PDP-11 inverts the order of words in memory.

Finally, when the program is run on the i8086 you see these results:

78 56 34 12
5678 1234
12345678

The i8086 inverts both words and long words.

See Also
Language, technical information

LEXICON

byte ordering 193

