
A

abort() — General utility (libc)
End program immediately
void abort(void)

abort terminates a program’s execution immediately. It is used to ‘‘bail out’’ of a program when a
severe, unrecoverable problem occurs. It does not return.

abort terminates the program by calling exit with status EXIT_FAILURE.

abort prints the relative address from the beginning of the program, so that you can look the
location up in the symbol table. See the entry for nm for more information on how to extract the
symbol table from an executable program.

Example
This example simply aborts itself. For an example that uses abort in a more realistic manner, see
signal.

#include <stdlib.h>
#include <stdio.h>

main(void)
{

puts("...Dave ... I can feel my memory going ...");
abort();

}

Cross-references
Standard, §4.10.4.1
The C Programming Language, ed. 2, p. 252

See Also
atexit, exit, general utilities, getenv, program termination, system

Notes
Some implementations of abort, specifically the one included with UNIX system V, permit it to
return. The Standard forbids abort to return.

abs() — General utility (libc)
Compute the absolute value of an integer
#include <stdlib.h>
int abs(int n);

abs returns the absolute value of integer n. The absolute value of a number is its distance from
zero. This is n if n>=0, and -n otherwise.

Example
This example checks whether abs is defined for all values on your implementation.

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>

LEXICON

154 abort() — abs()

main(void)
{

if(INT_MAX != abs(INT_MIN))
printf("abs of %d is undefined\n", INT_MIN);

return(EXIT_SUCCESS);
}

Cross-reference
Standard, §4.10.6.1
The C Programming Language, ed. 2, p. 253

See Also
div, general utilities, labs, ldiv

Notes
On two’s complement machines, the absolute value of the most negative number may not be
representable.

abs was originally declared in the header math.h. The Standard moved this function to stdlib.h on
the grounds that it does not return double. This change may require that some existing code be
altered.

access() — Access checking (libc)
Check if a file can be accessed in a given mode
#include <access.h>
int access(char *filename, int mode);

access checks whether a file can be accessed in the mode you wish. filename is the full path name
of the file you wish to check. mode is the mode in which you wish to access filename, as follows:

1 AEXEC Execute the file
2 AWRITE Write into the file
4 AREAD Read the file

The header access.h defines the manifest constants that are commonly used with access.

access returns zero if filename can be accessed in the requested mode, and a number greater than
zero if it cannot.

Example
The following example checks if a file can be accessed in a particular manner.

#include <access.h>
#include <path.h>
#include <stdio.h>
#include <stdlib.h>

void
fatal(char *message)
{

sprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

LEXICON

access() 155

main(int argc, char *argv[])
{

char *env, *pathname;
extern char *getenv(), *path();
int mode;
extern int access();

if (argc != 3)
fatal("Usage: access filename mode");

switch(*argv[2]) {
case ’e’:
case ’E’:

mode = AEXEC;
break;

case ’w’:
case ’W’:

mode = AWRITE;
break;

case ’r’:
case ’R’:

mode = AREAD;
break;

default:
fatal("modes: e=execute, w=write, r=read");

}

env = getenv("PATH");
if ((pathname = path(env,argv[1],mode)) != NULL) {

printf("PATH = %s\n", env);
printf("pathname = %s\n", pathname);

if (access(pathname, mode) == 0)
printf("%s accessible in mode %s\n",

pathname, argv[2]);
else

printf("%s not accessible in mode %d\n",
pathname, mode);

} else {
printf("file %s of mode %d not found in path\n",

argv[1], mode);
exit(EXIT_FAILURE);

}
return EXIT_SUCCESS;

}

See Also
access checking, access.h, path

Notes
access is included mainly for compatibility with the UNIX operating system. The only meaningful
test that access can perform on the Atari ST is to check if a file is writable.

access.h — Header
Define manifest constants used by access()
#include <access.h>

access.h is a header file that defines the manifest constants used with the function access.

LEXICON

156 access.h

See Also
access, access checking, header

access checking — Overview
Let’s C includes the following routines to check the access to a given file:

access.h
access Check if a file can be accessed in a given mode

path.h
path Build a path name for a file

stat.h
stat Find file attributes

These routines are not described in the ANSI Standard. Any program that uses any of them does
not conform strictly to the Standard, and may not be portable to other compilers or environments.

See Also
Library

acos() — Mathematics (libm)
Calculate inverse cosine
#include <math.h>
double acos(double arg);

acos calculates the inverse cosine of arg, which should be in the range of from -1.0 to 1.0. Any
other argument will trigger a domain error.

acos returns the result, which is in the range of from zero to π radians.

Cross-references
Standard, §4.5.2.1
The C Programming Language, ed. 2, p. 251

See Also
asin, atan, atan2, cos, mathematics, sin, tan

address — Definition
An address designates a location in memory.

Example
The following prints the address and contents of a given byte of memory.

#include <stdio.h>
#include <stdlib.h>
main(void)
{

char byte = ’a’;
/* Note use of the ‘%p’ format specifier */
printf("Address==%p Contents==\"%c\"\n",

&byte, byte);
return EXIT_SUCCESS;

}

Cross-reference
The C Programming Language, ed. 2, p. 94

LEXICON

access checking — address 157

See Also
&, Definitions, pointer

alias — Definitions
An alias for an object is alternative way to access that object.

Because C uses pointers, it can be impossible for the translator to keep track of all possible aliases
for an object. Often, the translator must use ‘‘worst-case aliasing assumptions’’ when memory is
read. These assumption are explained below.

The Standard refers to aliasing in the section on expressions (3.3). It allows the translator to
assume that the only way to reference a given object is by an object of the same type, a pointer to an
object of that type, or by a character pointer. Type qualifiers and sign do not count in this situation.
The reason a character pointer is assumed to point to any type of object is one of historical practice.

By making use of this information concerning types, a translator is said to make more favorable
aliasing assumptions, and produce better code. For example, consider the following code fragment:

fn(int *ip, float *fp)
{

int i;
float f;

ip = &i; /* line 1 */
fp = f; / line 2 */

}

Normally in an assignment to a dereferenced pointer (line 2), the translator must assume that such
a statement can overwrite the values of all global variables and the values of all local variables that
have had their addresses taken.

Because fp is a pointer to float, the assignment to *fp need not invalidate the value of i. The
translator must assume only that the current values of other floats may have been changed.

Any attempt to trick the translator, such as with a statement of the form

*fp = (float) i;

generates undefined behavior.

See Also
Definitions, type qualifier

alien — C keyword
Name a non-standard function

The alien declaration tells Let’s C that the following function name is not a standard C function.

With the Mark Williams family of C compilers, alien indicates that a function uses the PL/M calling
conventions. These differ from C in a number of ways. First, the calling sequence for PL/M pushes
the leftmost argument first, whereas the calling sequence for C functions pushes the rightmost
argument first. In addition, PL/M arguments are popped by the called function, whereas C
arguments are popped by the calling function. Finally, when Let’s C compiles a C function, it
appends an underbar ‘_’ to the end of the function’s name.

Use of the alien keyword allows direct calls of most PL/M procedures and functions; that is, it can
generate PL/M calls as well as C calls. For example,

extern alien plmfn();

LEXICON

158 alias — alien

declares plmfn to be a function that uses PL/M calling conventions. Of course, the types of the
arguments to plmfn must correspond to the types of the arguments the PL/M functions expects.

To use the alien keyword in a program compiled with Let’s C, you must compile the program using
the -VALIEN option to the cc command.

See Also
C keywords, Language, statements

alignment — Definition
The term alignment refers to the fact that some environments require the addresses of certain data
types to be evenly divisible by a certain integer. Different processors have different alignment
requirements. For example, the Motorola 68000 requires that every int have an address that is even
(i.e., that is evenly divisible by two). The translator must ensure that data objects are aligned
properly so that fetches to memory will be performed efficiently and on the correct data types.

The environment may require that empty bytes of ‘‘padding’’ be inserted into structures to ensure
that every type is aligned properly. For example, on the M68000 the following structure

struct example {
char member1;
int member2;

};

will actually consist of four bytes: one byte to hold the char, two bytes to hold the int, and between
them, one byte of padding to ensure that the int is aligned properly. Often, the alignment of a
struct member will be the maximum alignment required to align any of its members’ data types.

Because different environments require different forms of alignment, a program that is intended to
be portable should not assume that the members of a structure abut each other.

An object of type char * has the least strict alignment.

Cross-references
Standard, §1.6
The C Programming Language, ed. 2, p. 185

See Also
char, Definitions, struct

arena — Definition
An arena is the area of memory that is available for a program to allocate dynamically at run time.
It consists of an area of memory that is divided into allocated and unallocated blocks. Normally,
SMALL model programs cannot increase the size of the arena at run time; however, LARGE model
programs can do so to a limited extent. The unallocated blocks together form the ‘‘free memory
pool.’’

Portions of the arena can be allocated using the functions malloc, calloc, or realloc; returned to the
free memory pool with free; or checked to see if they are allocated or not with notmem.

See Also
Definitions, extended STDIO, LARGE model, SMALL model, STDIO

LEXICON

alignment — arena 159

argc — Definition
argc is the conventional name for the first argument to the function main. It is of type int. It gives
the number of strings in the array pointed to by argv, which is the second argument to main.

By definition, the value of argc is never negative.

Cross-references
Standard, §2.1.2.2
The C Programming Language, ed. 2, p. 114

See Also
argv, Environment, envp, main

argument — Definition
An argument is an expression that appears between the parentheses of a function call or invocation
of a function-like macro. Multiple arguments are separated by commas. For example, the following
function call

example(arg1, arg2, arg3);

has three arguments.

Cross-references
Standard, §1.6
The C Programming Language, ed. 2, p. 201

See Also
conversions, Definitions, parameter

Notes
The Standard uses the term ‘‘argument’’ when it refers to the actual arguments of a function call or
macro invocation. It uses the term ‘‘parameter’’ to refer to the formal parameters given in the
definition of the function or macro.

argv — Definition
char *argv[];
argv is the conventional name for the second argument to the function main. It points to an array of
pointers to type char. The strings to which argv points are passed by the host environment. Each
may change the behavior of the program, and each may be modified by the program. Thus, the
strings are called program parameters.

The number of pointers in the argv array is given by argc, which is the first argument to main. By
definition, argv[0] always points to the name of the program. If the name is not available from the
environment, then *argv[0] must be a null character. argv[1] through argv[argc-1] point to the set
of program parameters; argv[argc] must be a null pointer.

Cross-references
Standard, §2.1.2.2
The C Programming Language, ed. 2, p. 114

See Also
argc, Environment, envp, main

LEXICON

160 argc — argv

array declarators — Definition
An array declarator declares an array. It can also establish the size of the array and cause storage
to be allocated for it.

For example, consider the declaration:

int example[10];

The brackets ‘[]’ establish that example is an array; the constant 10 establishes that example has
ten elements. Thus, example is established to be an array of ten ints; memory is reserved for the
ten members.

The constant expression that sets the size of an array must be an integral constant greater than
zero. It must be known by translation phase 7 so the appropriate amount of storage can be
allocated.

An array declarator may be empty; for example:

int example[];

In this case, example is an incomplete type. It will be completed when it is initialized.

Cross-references
Standard, §3.5.4.2
The C Programming Language, ed. 2, p. 216

See Also
[], declarators, initialization

Notes
For two array types to be compatible, the type of element in each, the number of dimensions in
each, and the size of each corresponding dimension (except the first) must be identical.

as — Command
i8086 assembler
as [-bglx] [-ofile] filename.s ...

as is a multipass assembler that will assemble functions written in i8086 assembly language. as
will assemble programs into either SMALL or LARGE model, and will generate an object module in
MS-DOS object format. It also supports i8087 opcodes, and it allows you to write functions in a
model-independent manner.

as is not intended to be used for full-scale assembly-language programming; therefore, it does not
include some of the more elaborate features found in full-fledged assemblers. For example, it has no
facility for conditional compilation or user-defined macros. However, Let’s C allows you to use
preprocessor instructions to perform conditional assembly and expand macros. In addition, as
optimizes branches to take advantage of short addressing forms, where the span of the branch
permits.

File Names
All files of assembly language must have the suffix .s or .m. A .s file contains only assembly
language, and may be assembled either directly by as using the command line shown below, or
through the cc command. If you ask as to assemble a file that does not have the suffix .s, it will
refuse to do so.

A file with the suffix .m is one that is passed through the C preprocessor cpp before it is assembled.
These files cannot be assembled directly by as, but must be passed to the compiler controller cc,

LEXICON

array declarators — as 161

which will first invoke cpp and then as. For example, to assemble the file foo.m, use the
instruction

cc foo.m

This allows you to use preprocessor instructions that conditionalize code within a file; for example,
the same file can contain code for SMALL model and LARGE model, with cpp selecting the correct
code when you assemble the file. An example of a .m file is given below. For more information on
.m files, see the Lexicon entry for larges.h.

Usage
To invoke as directly through MS-DOS, use the following command:

as [-bglsx] [-o file] filename.s ...

The named files are concatenated and the resulting object code is written either into the file
specified by the -o option, or into the file l.out if the -o option is not used.

The other options are as follows:

-b Create a LARGE-model object module. This module hs two segments: modname_code and
modname_data. By default, as creates an object module that is in SMALL model. See the
Lexicon entry for model for more information on how these differ.

-g Give all symbols that are undefined at the end of the first pass the type undefined external,
as though they had been declared with a .globl directive.

-l Generate a listing of your program. The listing is written to the standard output device; you
can redirect it to a file or to the printer by using the ‘>’ operator after the as command line.

-s Strip all non-global symbols from the symbol table. This option should be used with
programs whose symbol tables are large enough to cause the linker ld to fail.

-x Strip all non-global symbols that begin with the character ‘L’ from the symbol table of the
object module. This is a limited version of the -s option described above. It speeds up the
linking of files by removing compiler-generated labels from the symbol table.

Lexical Conventions
Assembler tokens consist of identifiers (also called ‘‘symbols’’ or ‘‘names’’), constants, and operators.

An identifier is a sequence of alphanumeric characters (including the period ‘.’ and the underscore
‘_’). The first character must not be numeric. Only the first 16 characters of the name are
significant; the remainder are quietly thrown away. Upper case and lower case are considered
different. The machine instructions, assembly directives, and frequently used built-in symbols are
in lower case.

The following lists the identifiers that represent the i8086 machine registers, which are predefined:

ax sp al ah cs
bx bp bl bh ds
cx si cl ch es
dx di dl dh ss

With regard to constants, the assembler uses the same syntax as the C compiler: A sequence of
digits with a leading ‘0’ is taken to be an octal constant. A sequence of digits with a leading ‘0x’ is
taken to be a hexadecimal constant; in this base, the letters ‘A’ through ‘F’ have the decimal values
10 through 15. Any strings of digits that do not begin with ‘0’ are taken to be decimal constants.

A character constant consists of an apostrophe followed by an ASCII character. The constant’s value
is the ASCII code for the character, which is right-justified in the machine word. For example, an
instruction to move the letter ‘A’ to the register al could be expressed in any of four equivalent

LEXICON

162 as

ways:

movb al $0x41 / hexadecimal
movb al $0101 / octal
movb al $’A / character
movb al $65 / decimal

The dollar sign indicates an immediate operand.

A blank space can be represented either as 0x20 (its ASCII value in hexadecimal), or as an
apostrophe followed by a space (’), which on the page or screen resembles an apostrophe alone.

as represents character constants with the following escape sequences:

\b backspace (0010)
\f form feed (0014)
\n newline (0012)
\r carriage return (0015)
\t tab (0011)
\v vertical tab (0013)
\nnn octal value (0nnn)

The semicolon character ‘;’ indicates a line break. This character must be used at the end of a line
in a .m file, because the ANSI definition of the C preprocessor assumes that multi-line macro
definitions are always a single logical line.

In the ANSI preprocessor, a macro expansion always occupies no more than one line, no matter how
many lines the definition or the actual parameters to the macro span; therefore, you must embed
semicolons in macros that you want to expand to more than one line. For example,

#define enter(n) .globl n;n: push si; push di

will be treated by as as if it read

.globl n
n: push si

push di

The following gives a more readable form of the macro enter:

#define enter(n) .globl n;\
n: push si;\

push di

Blanks and Tabs
Blanks and tab characters may be used freely between tokens, but not within identifiers. A blank
or a tabulation character is required to separate adjacent tokens not otherwise separated, e.g.,
between an instruction opcode and its first operand.

Comments
Comments are introduced by a slash (‘/’) and continue until the end of the line. All characters in
comments are ignored by the assembler.

Program Sections
as permits you to divide programs into sections, each corresponding to a functional area of the
address space. as gives each program section its own location counter during assembly.

Under SMALL model, a program can have up to eight program sections, which are organized into
three groups, as shown below:

LEXICON

as 163

code: shri shared instruction
prvi private instruction
bssi uninitialized instruction

data: prvd private data
bssd uninitialized data
shrd shared data
strn strings

tables: symt symbol table

All Mark Williams assemblers use the same set of sections. This contributes to the portability of
programs between operating systems. Not all the sections are distinct under MS-DOS, however; the
meanings of the sections under MS-DOS are as follows:

shri (shared instruction) is the same as prvi (private instruction); shared refers to the sharing of
physical memory between two or more concurrent processes, and this capability does not exist
under MS-DOS. prvi is used for all code generated by the C compiler.

There is no distinction between shrd and prvd. The latter is used by the compiler for all external
and static data that are explicitly initialized in a C program.

bssi and bssd are initialized to zero. Let’s C uses the bssd section for external or static data that
are not initialized: the C language guarantees that these data are in fact initialized to zeros. Let’s C
does not use the bssi section.

The strn (strings) section is actually a special part of the data section, that Let’s C uses to store
string constants. It is synonymous with prvd under MS-DOS.

The symt section contains the symbol table used by the linker. Both the C compiler and the
assembler generate symbol tables that go in this section.

In most cases, you need not worry about what all these program sections are, and can simply write
code under the keywords .prvi or .shri, and write data under the keywords .prvd or .shrd. Do not to
place items in the symt section, because the C compiler, the assembler, and the linker use it to
communicate among themselves.

Under LARGE model, the assembled module has two sections: filename_code and filename_data.
The former contains all code, that is,w hat goes into the shri, prvi, and bssi sections in SMALL
model. The latter contains all data, that is, what goes into the shrd, prvd, bssd, and strn sections
under SMALL model.

When a program is assembled, the sections of a program are concatenated so that in the assembly
listing the whole program looks like a solid block of code and data. All code sections are combined
into the i8086 code segment, and all data sections into the i8086 data segment. The symbol table
is not actually linked when the program is executed, and so is not assigned to any i8086 segment

The Current Location
The special symbol ‘.’ (dot) is a counter that represents the current location. The current location
can be changed by an assignment; for example:

. = .+START

The assignment must not cause the value to decrease, and it must not change the program section,
i.e., the right-hand operand must be defined in the same section as the current section.

Expressions
An expression is a sequence of symbols representing a value and a program section. Expressions
are made up of identifiers, constants, operators, and brackets. All binary operators have equal
precedence and are executed in a strict left-to-right order (unless altered by brackets).

LEXICON

164 as

Notice that brackets ‘[’ and ‘]’ group expression elements, because parentheses are used for indexed
register addressing.

Types
Every expression has a type determined by its operands. The simplest operands are symbols. The
following names the types of symbols available:

Undefined A symbol is defined if it is a constant or a label, or if it is assigned a defined value;
otherwise, it is undefined. A symbol may become undefined if it is assigned the
value of an undefined expression. It is an error to assemble an undefined
expression in pass 2. Pass 1 allows assembly of undefined expressions, but phase
errors may be produced if undefined expressions are used in certain contexts, such
as in a .blkw or .blkb.

Absolute An absolute symbol is one defined ultimately from a constant or from the difference
of two relocatable values.

Register These are the machine registers.

Relocatable All other user symbols are relocatable symbols in some program section. Each
program section is a different relocatable type.

Any keyword may be used in an expression to obtain the basic value of the keyword. This may be
useful when employing the keywords that define machine instructions. The basic value of a
machine operation by default has the highest opcode associated with it; for example

.word push

yields FF.

Note that the type of an expression does not include such attributes as length (word or byte), so the
assembler will not remember whether you defined a particular variable to be a word or a byte.
Addresses and constants have different types, but the assembler does not treat a constant as an
immediate value unless it is preceded by a dollar sign ‘$’. If you use a constant where an address is
expected, as will treat the constant like an address (and vice versa). You must distinguish between
variables and addresses or immediate values.

Operators
The following lists the operators that as recognizes:

+ addition
- subtraction
* multiplication
- unary negation
~ unary complement
^ type transfer
| segment construction

Expressions may be grouped with brackets. Parentheses are reserved for use in address mode
descriptions.

Type propagation
When operands are combined in expressions, the resulting type is a function of both the operator
and the types of the operands. The ‘*’, ‘~’, and unary ‘-’ operators can only manipulate absolute
operands and always yield an absolute result.

The ‘+’ operator signifies the addition of two absolute operands to yield an absolute result, and the
addition of an absolute to a relocatable operand to yield a result with the same type as the

LEXICON

as 165

relocatable operand.

The binary ‘-’ operator allows two operands of the same type, including relocatable, to be subtracted
to yield an absolute result; it also allows an absolute to be subtracted from a relocatable, to yield a
result with the same type as the relocatable operand.

The binary operator ‘^’ yields a result with the value of its left operand and the type of its right
operand. It can be used to create expressions, usually used in an assignment statement, with any
desired type.

Statements
A program consists of a sequence of statements separated by newlines or by semicolons. There are
four kinds of statements: null statements, assignment statements, keyword statements, and
machine instructions.

A statement can be proceded by any number of labels. There are two kinds of labels: name and
temporary.

A name label consists of an identifier followed by a colon (:). The program section and value of the
label are set to that of the current location counter. It is an error for the value of a label to change
during an assembly. This most often happens when an undefined symbol is used to control a
location counter adjustment.

A temporary label consists of a digit (‘’ toQ ’) followed by a colon ‘:’. It defines temporary symbols of
the form ‘nf’ and ‘nb’, where ‘n’ is the digit of the label. References of the form ‘nf’ refer to the first
temporary label ‘n:’ forward from the reference; those of the form ‘nb’ refer to the first temporary
label ‘n:’ backward from the reference. Such labels conserve symbol table space in the assembler.

A null statement is an empty line, or a line containing only labels or a comment. It can occur
anywhere. as ignores it, except in the case of a label, which as gives the current value of the
location counter.

An assignment statement consists of an identifier followed by an equal sign ‘=’ and an expression.
The value and program section of the identifier are set to that of the expression. Any symbol defined
by an assignment statement may be redefined, either by another assignment statement or by a
label. An assignment statement is equivalent to the equ keyword statement found in many
assemblers.

Assembler directives
Assembler directives allow you to pass instructions directly to as. Each directive begins with a
period, and most are followed by operands.

The following describes the directives that as recognizes:

.ascii string
The first non-white space character, typically a quotation mark, that appears after the
keyword is taken as a delimiter. Successive characters are assembled into successive bytes
until until the delimiter appears again. To include a quotation mark within a string, use
another character for the delimiter.

It is an error if a newline is encountered before reaching the second delimiter. To insert a
newline into a string, use the character constant ‘\n’, a described above.

.blkb/.blkw
Assemble blocks of bytes or words that are filled with zeroes. The size of the block is
expression bytes or words.

LEXICON

166 as

.bssd Change the current program section to bssd. The current location is reset to the value of the
bssd location counter.

.bssi Change the current program section to bssi. The current location is reset to the value of the
bssi location counter.

.byte The expressions in the list are truncated to byte size and assembled into successive bytes.
Expressions in the list are separated by commas.

.even/.odd
These insert a NULL byte, if necessary, to set the location counter to the next even or odd
location, respectively. They are used to force alignment.

.globl The identifiers in the comma-separated list are marked as global. If they are defined in the
current assembly, they may be referenced by other object modules; if they are undefined,
they must be resolved by the linker before execution.

.page Force the printed listing of your assembly-language program to skip to the top of a new page
by inserting a form-feed character into the file. The title is printed at the top of the page.

.prvd Change the current program section to prvd. The current location is reset to the value of
the prvd location counter.

.prvi Change the current program section to prvi. The current location is reset to the value of the
prvi location counter.

.shrd Change the current program section to shrd. The current location is reset to the value of the
shrd location counter.

.shri Change the current program section to shri. The current location is reset to the value of the
shri location counter.

.strn Change the current program section to strn. The current location is reset to the value of the
strn location counter.

.title string
Print string at the top of every page in the listing. This directive also causes the listing to
skip to a new page.

.word expression [, expression]
Truncate expressions to word length and assemble the resulting data into successive words.
Expressions in the list are separated by commas.

Address descriptors
The source and destination descriptors use the following syntax. r refers to a register and the
symbol e to an expression, as follows:

r: register
al, cl, dl, bl, ah, ch, dh, bh
ax, cx, dx, bx, sp, bp, si, di

e: direct address|
Any eight- or 16-bit number. Eight-bit numbers are sign extended.

(r): indexing
(si) (di) (bx)

fe(r): index displacement
e(si) e(di) e(bx): default segment is ds
e(bp): default segment is ss

LEXICON

as 167

(r,r): double index
(bx), si) (bx, di): default segment is ds
(bp, si) (bp, di): default segment is ss

e(r,r): double index with displacement
e(bx, si) e(bx, di): default segment is ds
e(bp, si) e(bp, di): default segment is ss

Re: immediate

s: segment register|
ss, ds, es, cs: allowed only where explicitliy stated.

Note that the dollar sign is always used to indicate an immediate value, even if the expression is a
constant.

A direct address is interpreted as either a direct address or a PC-relative displacement, depending
on the requirements of the instruction.

If an address descriptor indicates an indexing mode and the base expression is of type absolute, as
uses the shortest displacement length (zero, one, or two bytes) that can hold the expression’s value.
Relocatable base expressions, whose values cannot be completely determined until the program is
linked, are always assigned two-byte displacements.

Any address descriptor may be modified by a segment escape prefix. A segment escape prefix
consists of a segment register name followed by a colon ‘:’. The escape causes as to produce a
segment override prefix that uses the specified segment register as an operand. as does not produce
segment override prefixes unless explicitly required by an instruction.

Instructions
The following machine instructions are defined. The examples illustrate the general syntax of the
operands. Combinations that are syntactically valid may be forbidden for semantic reasons.

The examples use the following references:

a general address
al al register
ax ax register
cl cl register
d direct address
dx dx register
e expression
$e immediate expression
m memory address (not an immediate)
p port address

as treats as ordinary one-byte machine operations some operations that the Intel assembler ASM86
handles with special syntax; these include the lock and repeat prefixes. as makes no attempt to
prevent the generation of incorrect sequences of these prefix bytes.

Although every machine operation has a type and value associated with it, in most cases the value
was chosen to help as format the machine instructions.

For more information on these instructions, see the Intel ASM86 Assembly Language Reference
Manual.

aaa ASCII adjust AL after addition
aad ASCII adjust AX before division
aam ASCII adjust AX after multiply
aas ASCII adjust AL after subtraction

LEXICON

168 as

adcb r, a Add with carry, byte
adc r, a Add with carry, word
adcb a, r Add with carry, byte
adc a, r Add with carry, word
adcb a, $e Add with carry, byte
adc a, $e Add with carry, word
addb r, a Add, byte
add r, a Add, word
addb a, r Add, byte
add a, r Add, word
addb a, $e Add, byte
add a, $e Add, word
andb r, a Logical and, byte
and r, a Logical and, word
andb a, r Logical and, byte
and a, r Logical and, word
andb a, $e Logical and, byte
and a, $e Logical and, word
call d Near call, PC-relative
cbw Convert byte into word
clc Clear carry flag
cld Clear direction flag
cli Clear interrupt flag
cmc Complement carry flag
cmpb r, a Compare two operands, byte
cmp r, a Compare two operands, word
cmpb a, r Compare two operands, byte
cmp a, r Compare two operands, word
cmpb a, $e Compare two operands, byte
cmp a, $e Compare two operands, word
cmps Compare string operands, bytes
cmpsb Compare string operands, bytes
cmpsw Compare string operands, words
cwd Convert word to double
daa Decimal adjust AL after addition
das Decimal adjust AL after subtraction
decb a Decrement by one, byte
dec a Decrement by one, word
divb m Unsigned divide, byte
div m Unsigned divide, word
esc a Escape 0xD8
hlt Halt
icall a Near call, absolute offset at EA word
idivb m Signed divide, byte
idiv m Signed divide, word
ijmp a Jump short, absolute offset at EA word
imulb m Signed multiply, byte
imul m Signed multiply, word
inb al, p Input, byte
in ax, p Input, word
inb al, dx Input, byte
in ax, dx Input, word
incb a Increment by one, byte
inc a Increment by one, word

LEXICON

as 169

int e Call to interrupt
into Call to interrupt, overflow
iret Interrupt return
ja d Jump short if greater
jae d Jump short if greater or equal
jb d Jump short if less
jbe d Jump short if less or equal
jc d Jump short if carry
jcxz d Jump short if CX equals zero
je d Jump short if equal to
jg d Jump short if greater
jge d Jump short if greater or equal
jl d Jump short if less
jle d Jump short if less or equal
jmp d Jump short, PC-relative word offset
jmpb d Jump short, PC-relative byte offset
jmpl d Jump long
jna d Jump short if not above
jnae d Jump short if not above or equal
jnb d Jump short if not below
jnbe d Jump short if not below or equal
jnc d Jump short if not carry
jne d Jump short if not equal
jng d Jump short if not greater
jnge d Jump short if not greater or equal
jnl d Jump short if not less
jnle d Jump short if not less or equal
jno d Jump short if not overflow
jnp d Jump short if not parity
jns d Jump short if not sign
jnz d Jump short if not zero
jo d Jump short if overflow
jp d Jump short if parity
jpe d Jump short if parity even
jpo d Jump short if parity odd
js d Jump short if sign
jz d Jump short if zero
lahf Load flags into AH register
lds r, a Load double pointer into DS
lea r, a Load effective address offset
les r, a Load double pointer into ES
lock Assert BUS LOCK signal
lodsb Load byte into AL
lods Load byte into AL
lodsw Load byte into AL
loop d Loop; decrement CX, jump short if CX less than zero
loope d Loop; decrement CX, jump short if CZ not zero and equal
loopne d Loop; decrement CX, jump short if CX not zero and not equal
loopnz d Loop; decrement CX, jump short if CZ not zero and ZF equals zero
loopz d Loop; decrement CX, jump short if CX not zero and zero
movb r, a Move, byte
mov r, a Move, word
movb a, r Move, byte
mov a, r Move, word

LEXICON

170 as

movb a, $e Move, byte
mov a, $e Move, word
movb a, s Move, byte
mov a, s Move, word
movb s, a Move, byte
mov s, a Move, word
movsb Move string byte-by-byte
movs Move string word-by-word
movsw Move string word-by-word
mulb m Multiply, byte
mul m Multiply, word
negb a Two’s complement negation, byte
neg a Two’s complement negation, word
nop No operation
notb a One’s complement negation, byte
not a One’s complement negation, word
orb r, a Logical inclusive OR, byte
or r, a Logical inclusive OR, word
orb a, r Logical inclusive OR, byte
or a, r Logical inclusive OR, word
orb a, $e Logical inclusive OR, byte
or a, $e Logical inclusive OR, word
outb p, al Output to port, byte
out p, ax Output to port, word
outb dx, al Output to port, byte
out dx, ax Output to port, word
pop m Pop a word from the stack
pop s Pop a word from the stack
popf Pop fom stack into flags register
push m Push a word onto the stack
push s Push a word onto the stack
pushf Push flags register onto the stack
rclb a, $1 Rotate left $1 times, byte
rclb a, cl Rotate left CL times, byte
rcl a, $1 Rotate left $1 times, word
rcl a, cl Rotate left CL times, word
rcrb a, $1 Rotate right $1 times, byte
rcrb a, cl Rotate right CL times, byte
rcr a, $1 Rotate right $1 times, word
rcr a, cl Rotate right CL times, word
rep Repeat following string operation
repe Find nonmatching bytes
repne Repeat, not equal
repnz Repeat, not equal
repz Repeat, equal
ret Return from procedure
rolb a, $1 Rotate left, byte
rolb a, cl Rotate left, byte
rol a, $1 Rotate left, word
rol a, cl Rotate left, word
rorb a, $1 Rotate right, byte
rorb a, cl Rotate right, byte
ror a, $1 Rotate right, word
ror a, cl Rotate right, word

LEXICON

as 171

sahf Store AH into flags
salb a, $1 Shift left, byte
salb a, cl Shift left, byte
sal a, $1 Shift left, word
sal a, cl Shift left, word
sarb a, $1 Shift right, byte
sarb a, cl Shift right, byte
sar a, $1 Shift right, word
sar a, cl Shift right, word
sbbb r, a Integer subtract with borrow, byte
sbb r, a Integer subtract with borrow, word
sbbb a, r Integer subtract with borrow, byte
sbb a, r Integer subtract with borrow, word
sbbb a, $e Integer subtract with borrow, byte
sbb a, $e Integer subtract with borrow, word
scasb Compare string data, byte
scas Compare string data, word
shlb a, $1 Shift left, byte
shlb a, cl Shift left, byte
shl a, $1 Shift left, word
shl a, cl Shift left, word
shrb a, $1 Shift right, byte
shrb a, cl Shift right, byte
shr a, $1 Shift right, word
shr a, cl Shift right, word
stc Set carry flag
std Set direction flag
sti Set interrupt enable flag
stosb Store string data, byte
stos Store string data, byte or word
stosw Store string data, word
subb r, a Integer subtraction, byte
sub r, a Integer subtraction, word
subb a, r Integer subtraction, byte
sub a, r Integer subtraction, word
subb a, $e Integer subtraction, byte
sub a, $e Integer subtraction, word
testb r, a Logical compare, byte
test r, a Logical compare, word
testb a, r Logical compare, byte
test a, r Logical compare, word
testb a, $e Logical compare, byte
test a, $e Logical compare, word
wait Wait until BUSY pin is inactive
xcall d, d Far call, immediate four-byte address
xchgb r, a Exchange memory, byte
xchg r, a Exchange memory, word
xicall Far call, address at EA double word
xijmp Jump far, address at memory double word
xjmp d, d Jump far, immediate four-byte address
xlat Table look-up translation
xorb r, a Logical exclusive OR, byte
xor r, a Logical exclusive OR, word
xorb a, r Logical exclusive OR, byte

LEXICON

172 as

xor a, r Logical exclusive OR, word
xorb a, $e Logical exclusive OR, byte
xor a, $e Logical exclusive OR, word
xret Return, intersegment

i8087 instructions
as can also generate object files that use the i8087 mathematics co-processor. The example
instructions use the following references:

d direct address
st0 floating point register 0
st1 any floating point register except 0

The following lists the i8087 instructions:

fabs Absolute value
fadd st0, st1 Add real
fadd st1, st0 Add real
ffadd d Add real, float
fdadd d Add real, double
faddp Add real and pop
faddp st, st0 Add real and pop
fbld d Load packed decimal (BCD)
fbstp d Store packed decimal (BCD) and pop
fchs Change sign
fclex Clear exception
fnclex Clear exception
fcom Compare real
ffcom d Compare real, float
fdcom d Compare real, double
fcomp Compare real and pop
fcomp st1 Compare real and pop
ffcomp d Compare real and pop, float
fdcomp d Compare real and pop, double
fcompp Compare real and pop twice
fdecstp Decrement stack pointer
fdisi Disable interrupts
fndisi Disable interrupts, no operands
fdiv st0, st1 Divide real
fdiv st1, st0 Divide real
ffdiv d Divide real, float
fddiv d Divide real, double
fdivp Divide real and pop
fdivp st1 Divide real and pop
fdivr st0, st1 Divide real reversed
fdivr st1, st0 Divide real reversed
ffdivr d Divide real reversed, float
fddivr d Divide real reversed, double
fdivrp Divide real reversed and pop
fdivrp st1 Divide real reversed and pop
feni Enable interrupts
fneni Enable interrupts, no operands
ffree st1 Free register
fiadd d Integer add
fladd d Integer add, long
ficom d Integer compare

LEXICON

as 173

flcom d Integer compare, long
ficomp d Integer compare and pop
flcomp d Integer compare and pop, long
fidiv d Integer divide
fldiv d Integer divide, long
fidivr d Integer divide reversed
fldivr d Integer divide, long reversed
fild d Integer load
flld d Integer load, long
fqld d Integer load, quad
fimul d Integer multiply
flmul d Integer multiply, long
fincstp Increment stack pointer
finit Initialize processor
fninit Initialize processor
fist d Integer store
flst d Integer store, long
fistp d Integer store and pop
flstp d Integer store and pop, long
fqstp d Integer store and pop, quad
fisub d Integer subtract
flsub d Integer subtract, long
fisubr d Integer subtract reversed
flsubr d Integer subtract reversed, long
fld st1 Load real
ffld d Load real, float
fdld d Load real, double
ftld d Load real, temp
fldcw d Load control word
fldenv d Load environment
fldlg2 Load log(10)2
fldln2 Load log(e)2
fldl2e Load log(2)e
fldl2t Load log(2)10
fldpi Load pi
fldz Load +0.0
fld1 Load +1.0
fmul Multiply real
fmul st0, st1 Multiply real
ffmul st1, st0 Multiply real, float
fdmul d Multiply real, double
fmulp d Multiply real and pop
fnop st1 No operation
fpatan Partial arctangent
fprem Partial remainder
fptan Partial tangent
frndint Round to integer
frstor d Restore saved state
fsave d Save state
fnsave d Save state
fscale Scale
fsetpm Set protected mode
fsqrt Square root
fst st1 Store real

LEXICON

174 as

ffst d Store real, float
fdst d Store real, double
fstcw d Store control word
fnstcw d Store control word
fstenv d Store environment
fnstenv d Store environment
fstp st1 Store real and pop
ffstp d Store real and pop, float
fdstp d Store real and pop, double
ftstp d Store real and pop, temp
fstsw d Store status word
fnstsw d Store status word
fsub st0, st1 Subtract real
fsub st1, st0 Subtract real
ffsub d Subtract real, float
fdsub d Subtract real, double
fsubp Subtract real and pop
fsubp st1 Subtract real and pop
fsubr d Subtract real reversed
ffsubr d Subtract real reversed, float
fdsubr d Subtract real reversed, double
fsubrp Subtract real reversed and pop
fsubrp st1 Subtract real reversed and pop
ftst Test stack top against +0.0
fwait Wait while 8087 is busy
fxam Examine stack top
fxch st1 Exchange registers
fxch Exchange registers
fxtract Extract exponent and significance
fyl2x Y*log(2)X
fyl2xp1 Y*log(2)(X+1)

Examples
The first example executes the program hello.c in a model-independent assembly language. If
executed, it should be placed in a file called hello.m, and assembled through the cc command, as
follows:

cc -o hello hello.m

The cc command will pass the program first to the C preprocessor cpp, and then to as. For more
information, see the Lexicon entry for larges.h.

#include <larges.h>
.prvd

Hi: .ascii "Hello world.\n"
.shri
Enter(main_) /* Note use of C-style comments */
mov ax, $Hi /* push offset of msg */
push ax

#ifdef LARGEDATA
mov ax, $@Hi /* push segment of msg */
push ax

#endif
Gcall printf_
add sp, $RASIZE
Leave

LEXICON

as 175

The next example program, strchar.s defines a function strchar that returns the number of
occurrences of a character in a string.

FILE: strchar.s

/
/
/ Count and return the occurrences
/ of a character in a string.
/
/ int
/ strchar(s, c)
/ char *s;
/ int c;
/
/

.globl strchar_ / Make the name known externally.

strchar_:
push si / Standard C function
push di / linkage. Save the
push bp / si, di, and bp registers
mov bp, sp / and set up new frame pointer.

mov si, 8(bp) / String ptr -> si.
mov bx, 10(bp) / Char -> bx (actually bl).
sub ax, ax / Clear ax (count register).
sub cx, cx / Clear cx.

0: movb cl, (si) / Get character from string.
jcxz 2f / End of string?
cmpb bl, cl / No. Do chars match?
jnz 1f / No.
inc ax / Yes. Increment count.

1: inc si / Bump string pointer
jmp 0b / and loop again.

2: pop bp / Standard C return
pop di / linkage. Restore
pop si / saved registers and
ret / go home.

The following C program, main.c uses strchar The assembly language listing that follows, main.s
was produced from main.c by the -VASM option in cc. The listing has been edited, and comments
added, to illustrate what is happening.

/* FILE: main.c */

main()
{

int n;
n = strchar("aardvark", ’a’);

}

.shri / ‘‘code’’ program section.

.globl main_

main_:

.strn / ‘‘string’’ program section.

LEXICON

176 as

L2: .byte 0x61 / This is the string
.byte 0x61 / ‘‘aardvark’’
.byte 0x72
.byte 0x64
.byte 0x76
.byte 0x61
.byte 0x72
.byte 0x6B
.byte 0x00

.shri / Back to ‘‘code’’

push si / Standard C function
push di / linkage. Save registers,
push bp / set up new frame pointer (bp),
mov bp, sp / and make room on stack
sub sp, $0x02 / for the auto int, ‘‘n’’

mov ax, $0x61 / Push the
push ax / character ‘a’.
mov ax, $L2 / Push the address
push ax / of the string ‘‘aardvark’’
call strchar_ / Function call.
add sp, $0x04 / Remove args from stack.
mov -0x02(bp), ax / Assign result to auto ‘n’.

mov sp, bp / Standard C return
pop bp / linkage. Adjust stack
pop di / pointer, then restore
pop si / registers and
ret / go home.

See Also
C language, calling conventions, cc, larges.h, memory allocation

ASCII — Definition
ASCII is an acronym for the American Standard Code for Information Interchange. It is a table of
seven-bit binary numbers that encode the letters of the alphabet, numerals, punctuation, and the
most commonly used control sequences for printers and terminals.

The extended ASCII character set defines eight-bit encodings. The lower 127 characters are those of
standard ASCII, and the higher 127 characters are also defined.

Though the standard ASCII character set is used commonly throughout the United States, other
countries use the ISO 646 character set, which is an invariant subset of standard ASCII. See the
entry on trigraphs for a discussion of the representing C characters in environments in which not
all of the 127 ASCII characters are available.

The following table gives the lower 127 ASCII characters in octal, decimal, and hexadecimal
numbers.

000 0 0x00 NUL <ctrl-@> Null character
001 1 0x01 SOH <ctrl-A> Start of header
002 2 0x02 STX <ctrl-B> Start of text
003 3 0x03 ETX <ctrl-C> End of text
004 4 0x04 EOT <ctrl-D> End of transmission
005 5 0x05 ENQ <ctrl-E> Enquiry
006 6 0x06 ACK <ctrl-F> Positive acknowledgement
007 7 0x07 BEL <ctrl-G> Alert
010 8 0x08 BS <ctrl-H> Backspace

LEXICON

ASCII 177

011 9 0x09 HT <ctrl-I> Horizontal tab
012 10 0x0A LF <ctrl-J> Line feed
013 11 0x0B VT <ctrl-K> Vertical tab
014 12 0x0C FF <ctrl-L> Form feed
015 13 0x0D CR <ctrl-M> Carriage return
016 14 0x0E SO <ctrl-N> Shift out
017 15 0x0F SI <ctrl-O> Shift in
020 16 0x10 DLE <ctrl-P> Data link escape
021 17 0x11 DC1 <ctrl-Q> Device control 1 (XON)
022 18 0x12 DC2 <ctrl-R> Device control 2 (tape on)
023 19 0x13 DC3 <ctrl-S> Device control 3 (XOFF)
024 20 0x14 DC4 <ctrl-T> Device control 4 (tape off)
025 21 0x15 NAK <ctrl-U> Negative acknowledgement
026 22 0x16 SYN <ctrl-V> Synchronize
027 23 0x17 ETB <ctrl-W> End of transmission block
030 24 0x18 CAN <ctrl-X> Cancel
031 25 0x19 EM <ctrl-Y> End of medium
032 26 0x1A SUB <ctrl-Z> Substitute
033 27 0x1B ESC <ctrl-[> Escape
034 28 0x1C FS <ctrl-\> Form separator
035 29 0x1D GS <ctrl-]> Group separator
036 30 0x1E RS <ctrl-^> Record separator
037 31 0x1F US <ctrl-_> Unit separator
040 32 0x20 SP Space
041 33 0x21 ! Exclamation point
042 34 0x22 " Quotation mark
043 35 0x23 # Pound sign (sharp)
044 36 0x24 $ Dollar sign
045 37 0x25 % Percent sign
046 38 0x26 & Ampersand
047 39 0x27 ’ Apostrophe
050 40 0x28 (Left parenthesis
051 41 0x29) Right parenthesis
052 42 0x2A * Asterisk
053 43 0x2B + Plus sign
054 44 0x2C , Comma
055 45 0x2D - Hyphen (minus sign)
056 46 0x2E . Period
057 47 0x2F / Virgule (slash)
060 48 0x30 0
061 49 0x31 1
062 50 0x32 2
063 51 0x33 3
064 52 0x34 4
065 53 0x35 5
066 54 0x36 6
067 55 0x37 7
070 56 0x38 8
071 57 0x39 9
072 58 0x3A : Colon
073 59 0x3B ; Semicolon
074 60 0x3C < Less-than symbol (left angle bracket)
075 61 0x3D = Equal sign
076 62 0x3E > Greater-than symbol (right angle bracket)

LEXICON

178 ASCII

077 63 0x3F ? Question mark
0100 64 0x40 @ At sign
0101 65 0x41 A
0102 66 0x42 B
0103 67 0x43 C
0104 68 0x44 D
0105 69 0x45 E
0106 70 0x46 F
0107 71 0x47 G
0110 72 0x48 H
0111 73 0x49 I
0112 74 0x4A J
0113 75 0x4B K
0114 76 0x4C L
0115 77 0x4D M
0116 78 0x4E N
0117 79 0x4F O
0120 80 0x50 P
0121 81 0x51 Q
0122 82 0x52 R
0123 83 0x53 S
0124 84 0x54 T
0125 85 0x55 U
0126 86 0x56 V
0127 87 0x57 W
0130 88 0x58 X
0131 89 0x59 Y
0132 90 0x5A Z
0133 91 0x5B [Left bracket (left square bracket)
0134 92 0x5C \ Backslash
0135 93 0x5D] Right bracket (right square bracket)
0136 94 0x5E ^ Circumflex
0137 95 0x5F _ Underscore (underbar)
0140 96 0x60 ‘ Grave
0141 97 0x61 a
0142 98 0x62 b
0143 99 0x63 c
0144 100 0x64 d
0145 101 0x65 e
0146 102 0x66 f
0147 103 0x67 g
0150 104 0x68 h
0151 105 0x69 i
0152 106 0x6A j
0153 107 0x6B k
0154 108 0x6C l
0155 109 0x6D m
0156 110 0x6E n
0157 111 0x6F o
0160 112 0x70 p
0161 113 0x71 q
0162 114 0x72 r
0163 115 0x73 s
0164 116 0x74 t

LEXICON

ASCII 179

0165 117 0x75 u
0166 118 0x76 v
0167 119 0x77 w
0170 120 0x78 x
0171 121 0x79 y
0172 122 0x7A z
0173 123 0x7B { Left brace (left curly bracket)
0174 124 0x7C | Vertical bar
0175 125 0x7D } Right brace (right curly bracket)
0176 126 0x7E ~ Tilde
0177 127 0x7F DEL Delete

See Also
Definitions, trigraph sequences

asctime() — Time function (libc)
Convert broken-down time to text
#include <time.h>
char *asctime(const struct tm *timestruct);

The function asctime converts the data pointed to by timestruct into a text string of the form:

Wed Dec 10 13:57:33 1987\n\0

The structure pointed to by timestruct must first be initialized by either the function gmtime or the
function localtime before it can be used by asctime. See the entry for tm for further information on
this structure.

asctime returns a pointer to the string it creates.

Example
This example uses asctime to display Universal Coordinated Time.

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

main(void)
{

printf(asctime(gmtime(NULL)));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.12.3.1
The C Programming Language, ed. 2, p. 256

See Also
ctime, date and time, gmtime, localtime, strftime, time_t, tm

Notes
asctime writes its string into a static buffer that will be written by another call to either asctime or
ctime.

The name ‘‘asctime’’ is short for ‘‘ASCII time’’; its use, however, is not limited to implementations on
ASCII systems.

The Standard describes the following algorithm with which asctime can generate its string:

LEXICON

180 asctime()

char *
asctime(const struct tm *timeptr)
{

static const char wday_name[7][3] = {
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"

};
static const char mon_name[12][3] = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};
static char result[26];

sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);

return result;
}

asin() — Mathematics (libm)
Calculate inverse sine
#include <math.h>
double asin(double arg);

asin calculates the inverse sine of arg, which must be in the range of from -1.0 to 1.0; any other
value will trigger a domain error.

asin returns the result, which is in the range π/2 to π.

Cross-references
Standard, §4.5.2.2
The C Programming Language, ed. 2, p. 251

See Also
acos, atan, atan2, cos, mathematics, sin, tan

assert() — Diagnostics (assert.h)
Check assertion at run time
#include <assert.h>
void assert(int expression);

assert checks the value of expression. If expression is false (zero), assert sends a message into the
standard error stream and calls abort. It is useful for verifying that a necessary condition is true.

The error message includes the text of the assertion that failed, the name of the source file, and the
line within the source file that holds the expression in question. These last two elements consist,
respectively, of the values of the preprocessor macros _ _FILE_ _ and _ _LINE_ _.

Because assert calls abort, it never returns.

To turn off assert, define the macro NDEBUG prior to including the header assert.h. This forces
assert to be redefined as

#define assert(ignore)

LEXICON

asin() — assert() 181

Example
This program generates an error if your implementation does not conform to the Standard.

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>

main(void)
{
#ifdef STDC

assert(STDC);
#else

fprintf(stderr, "Not ANSI C\n");
#endif

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.2.1.1
The C Programming Language, ed. 2, p. 253

See Also
abort, assert.h, diagnostics, NDEBUG

Notes
The Standard requires that assert be implemented as a macro, not a library function. If a program
suppresses the macro definition in favor of a function call, its behavior is undefined.

Turning off assert with the macro NDEBUG will affect the behavior of a program if the expression
being evaluated normally generates side effects.

assert is useful for debugging, and for testing boundary conditions for which more graceful error
recovery has not yet been implemented.

assert.h — Header
Header for assertions
#include <assert.h>

assert.h is the header file that defines the macro assert.

Cross-references
Standard, §4.2
The C Programming Language, ed. 2, pp

See Also
assert, diagnostics, header

atan() — Mathematics (libm)
Calculate inverse tangent
#include <math.h>
double atan(double arg);

atan calculates the inverse tangent of arg, which may be any real number.

atan returns the result, which is in the range of from -π/2 to π/2 radians.

LEXICON

182 assert.h — atan()

Cross-references
Standard, §4.5.2.3
The C Programming Language, ed. 2, p. 251

See Also
acos, asin, atan2, cos, mathematics, sin, tan

atan2() — Mathematics (libm)
Calculate inverse tangent
#include <math.h>
double atan2(double num, double den);

atan2 calculates the inverse tangent of the quotient of its arguments num and den. These may be
any real number except zero.

atan2 returns the result, which is in the range of from -π to π. The sign of the return value is
drawn from the signs of both arguments.

Cross-references
Standard, §4.5.2.4
The C Programming Language, ed. 2, p. 251

See Also
acos, asin, atan, cos, mathematics, sin, tan

Notes
atan2 is provided in addition to atan, to compute arc tangents for numbers that yield very large
results.

atexit() — General utility (libc)
Register a function to be performed at exit
#include <stdlib.h>
int atexit(void (*function)(void));

atexit registers a function to be executed when the program exits. function points to the function to
be executed. The registered function returns nothing. atexit provides a way to perform additional
clean-up operations before a program terminates.

The functions that atexit registers are executed when the program exits normally, i.e., when the
function exit is called or when main returns. The functions registered by atexit can perform clean-
up is needed, beyond what is ordinarily performed when a program exits.

atexit returns zero if function could be registered, and nonzero if it could not.

Example
This example sets one function that displays messages when a program exits, and another that
waits for the user to press a key before terminating.

#include <stdlib.h>
#include <stdio.h>

void
lastgasp(void)
{

perror("Type return to continue");
}

LEXICON

atan2() — atexit() 183

void
get1(void)
{

getchar();
}

main(void)
{

/* set up get1() as last exit routine */
atexit(get1);
/* set up lastgasp() as exit routine */
atexit(lastgasp);

/* exit, which invokes exit routines */
exit(EXIT_SUCCESS);

}

Cross-references
Standard, §4.10.4.2
The C Programming Language, ed. 2, p. 253

See Also
exit, general utility

Notes
atexit must be able to register at least 32 functions.

Functions registered by atexit are executed when exit is called. They are executed in reverse order
of registration.

atof() — General utility (libc)
Convert string to floating-point number
#include <stdlib.h>
double atof(const char *string);

atof converts the string pointed to by string into a double-precision floating point number, and
returns the number it has built. It is equivalent to the call

strtod(string, (char **)NULL);

string must point to the text representation of a floating-point number. It can contain a leading
sign, any number of decimal digits, and a decimal point. It can be terminated with an exponent,
which consists of the letters ‘e’ or ‘E’ followed by an optional leading sign and any number of
decimal digits. For example,

1.23
123e-2
123E-2

are strings that can be converted by atof.

atof ignores leading blanks and tabs; it stops scanning when it encounters any unrecognized
character.

Cross-references
Standard, §4.10.1.1
The C Programming Language, ed. 2, p. 251

LEXICON

184 atof()

See Also
atoi, atol, general utility, strtod, strtol, strtoul

Notes
The character that atof recognizes as representing the decimal point depends upon the program’s
locale, as set by the function setlocale. See localization for more information.

The functionality of atof has largely been subsumed by the function strtod, but the Standard
includes it because it is used so widely in existing code.

atoi() — General utility (libc)
Convert string to integer
#include <stdlib.h>
int atoi(const char *string);

atoi converts the string pointed to by string into an integer. It is equivalent to the call

(int)strtol(string, (char **)NULL, 10);

The string pointed to by string may contain a leading sign and any number of numerals. atoi
ignores all leading white space. It stops scanning when it encounters any non-numeral other than
the leading sign character and returns the int it has built.

Cross-references
Standard, §4.10.1.2
The C Programming Language, ed. 2, p. 251

See Also
atof, atol, general utilities, strtod, strtol, strtoul

Notes
The functionality of atoi has largely been subsumed by the function strtol, but the Standard
includes it because it is used so widely in existing code.

atol() — General utility (libc)
Convert string to long integer
#include <stdlib.h>
long atol(const char *string);

atol converts the string pointed to by string to a long. It is equivalent to the call

strtol(string, (char **)NULL, 10);

The string pointed to by string may contain a leading sign and any number of numerals. atol
ignores all leading white space. It stops scanning when it encounters any non-numeral other than
the leading sign and returns the long it has built.

Cross-references
Standard, §4.10.1.3
The C Programming Language, ed. 2, p. 251

See Also
atof, atol, general utilities, strtod, strtol, strtoul

Notes
The functionality of atol has largely been subsumed by the function strtol, but the Standard
includes it because it is used so widely in existing code.

LEXICON

atoi() — atol() 185

auto — C keyword
Automatic storage duration
auto type identifier

The storage-class specifier auto declares that identifier has automatic storage duration.

Cross-references
Standard, §3.5.1
The C Programming Language, ed. 2, p. 210

See Also
storage-class specifiers, storage duration

aux — Operating system device
Logical device for serial port

MS-DOS gives names to its logical devices. Let’s C uses these names to access these devices via
MS-DOS.

aux is the logical device for the the serial port auxiliary device.

Example
The following example opens the auxiliary port and sends it the string hello, world.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

FILE *fp, *fopen();
if ((fp = fopen("aux", "w")) != NULL) {

printf("aux enabled\n");
fprintf(fp, "hello, world.\n");

}
else printf("aux: cannot open.\n");
return EXIT_SUCCESS;

}

See Also
com1, con, crts, lpt1, nul, operating system devices

LEXICON

186 auto — aux

