
! to ~

! — Operator
Logical negation operator
!operand

The operator ! is the logical negation operator. Its operand must be an expression with scalar type.
! then inverts the logical result of its operand. This result has type int.

If operand is nonzero, !operand yields zero; if operand is zero, then !operand yields one.

The expression !operand is equivalent to (0==operand).

Cross-references
Standard, §3.3.3.3
The C Programming Language, ed. 2, p. 204

See Also
!=, ~, expressions

!= — Operator
Inequality operator
operand1 != operand2

The operator != compares operand1 with operand2. The result of this operation is one if the
operands are not equal, and zero if they are.

The operands must be one of the following:

• Arithmetic types.

• Pointers to compatible types (ignoring qualifiers on these types).

• A pointer to an object or incomplete type, and a pointer to void.

• A pointer and NULL.

If both operands have arithmetic type, they undergo usual arithmetic conversion before being
compared. If one operand is a pointer to an object and the other is a pointer to void, the pointer to
an object is converted to a pointer to void for purposes of the comparison.

Cross-references
Standard, §3.3.9
The C Programming Language, ed. 2, pp. 41, 207

See Also
!, ==, expressions

’’ — Punctuator
String literal character

The quotation mark ‘"’ marks the beginning and end of a string literal. To embed a quotation mark
within a string literal, use the escape sequence \".

Cross-references
Standard, §3.1.2.5
The C Programming Language, ed. 2, p. 194

LEXICON

118 ! — ’’

See Also
string literal

—
String-ize operator

The operator # is read and translated by the preprocessor. It must be followed by one of the formal
parameters of a function-like macro. The token sequence that would have replaced the formal
parameter in the absence of the # is instead converted to a string literal, and the string literal
replaces the both the # and the formal parameter. This process is called string-izing.

For example, the consider the macro:

#define display(x) show((long)(x), #x)

When the preprocessor reads the following line

display(abs(-5));

it replaces it with the following:

show((long)(abs(-5)), "abs(-5)");

The preprocessor replaced #x with a string literal that names the sequence of token that replaces x.

The following rules apply to interpreting the # operator:

1. If a sequence of white-space characters occurs within the preprocessing tokens that replace the
argument, it is replaced with one space character.

2. All white-space characters that occur before the first preprocessing token and after the last
preprocessing token is deleted.

3. The original spelling of the token that is stringized is retained in the string produced. This
means that as the string is formed, the translator appropriately escapes any backslashes or
quotation marks in the tokens.

Example
The following uses the operator # to display the result of several mathematics routines.

#include <errno.h>
#include <math.h>
#include <stddef.h>
#include <stdio.h>

void show(double value, char *name)
{

if (errno)
perror(name);

else
printf("%10g %s\n", value, name);

errno = 0;
}

#define display(x) show((double)(x), #x)

main(void)
{

extern char *gets();
double x;
char string[64];

LEXICON

119

for(;;) {
printf("Enter a number: ");
fflush(stdout);
if(gets(string) == NULL)

break;

x = atof(string);
display(x);
display(cos(x));
display(sin(x));
display(tan(x));
display(acos(cos(x)));

}
}

Cross-references
Standard, §3.8.3.2
The C Programming Language, ed. 2, pp. 90, 230

See Also
##, #define, preprocessing

— Operator
Token-pasting operator

The operator ## is is used by the preprocessor. It can be used in both object-like and function-like
macros. When used immediately before or immediately after an element in the macro’s replacement
list, it joins the corresponding preprocessor token with its neighbor. This is sometimes called ‘‘token
pasting’’.

As an example of token pasting, consider the macro:

#define printvar(number) printf("%s\n", variable ## number)

When the preprocessor reads the following line

printvar(5);

it substitutes the following code for it:

printf("%s\n", variable5);

The preprocessor throws away all white space both before and after the ## operator.

The ## operator must not be used as the first or last entry in a replacement list.

All instances of the ## operator are resolved before further macro replacement is performed.

Cross-references
Standard, §3.8.3.3
The C Programming Language, ed. 2, pp. 90, 230

See Also
#, #define, preprocessing

Notes
Some pre-ANSI translators supported token pasting by replacing a comment in a macro replacement
list with no space. ANSI translators always replace a comment with one space, no matter where
that comment appears.

LEXICON

120 ##

The order of evaluation of multiple ## operators is unspecified.

#define — Preprocessing directive
Define an identifier as a macro
#define identifier replacement-list
#define identifier (parameter-list

opt
) replacement-list

The preprocessing directive #define tells the preprocessor to regard identifier as a macro.

#define can define two kinds of macros: object-like, and function-like.

Object-like Macros
An object-like macro has the syntax

#define identifier replacement-list

This type of macro is also called a manifest constant.

The preprocessor searches for identifier throughout the text of the translation unit, excluding
comments, string literals, and character constants, and replaces it with the elements of replacement-
list, which is then rescanned for further macro substitutions.

For example, consider the directive:

#define BUFFERSIZE 75

When the preprocessor reads the line

malloc(BUFFERSIZE);

it replaces it with:

malloc(75);

Function-like Macros
A function-like macro is more complex. The preprocessor looks for identifier(argument-list)
throughout the text of the translation unit, excluding comments, string literals, and character
constants. The number of comma-separated arguments in argument-list must match the number of
comma-separated parameters in the parameter-list of the macro’s definition. The list is optional in
the sense that some function-like macros do not have any parameters.

In the following description, argument means the sequence of tokens in argument-list that occupies
the same relative position as the parameter under discussion occupies in parameter-list. The
preprocessor replaces identifier(argument-list) with the replacement-list specified in the definition
after it performs the following substitutions: If a parameter is followed or preceded by the operator
##, then the parameter is replaced by the argument. If a parameter is preceded by #, then the #
and the parameter are replaced by a string literal that contains the argument. All other instances of
parameters are replaced by the argument after the argument has first been exhaustively scanned for
further preprocessor macro expansions. All instances of ## are converted to token-paste operations.

For example, the consider the macro:

#define display(x) show((long)(x), #x)

When the preprocessor reads the following line

display(abs(-5));

it replaces it with the following:

show((long)(abs(-5)), "abs(-5)");

LEXICON

#define 121

When an argument to a function-like macro contains no preprocessing tokens, or when an
argument to a function-like macro contains a preprocessing token that is identical to a
preprocessing directive, the behavior is undefined.

Macro Rescanning
As noted above, the preprocessor searches for macro identifiers throughout the text of the
translation unit, excluding comments, string literals, and character constants. The text of replaced
macros is also scanned for macro replacements, but it is not part of the text of the translation unit
(i.e., source file), so it does not follow the same rules.

After it replaces the identifier of an object-like macro or the identifier(argument-list) of a function-like
macro with the appropriate replacement-list, the preprocessor continues to scan for further macro
invocations, starting with the replacement-list.

While the preprocessor scans the replacement-list, it suppresses the definition of the macro that
produced the list. If the preprocessor recognizes a second macro invocation and replaces it before it
processes the tokens that replace the first invocation, then it suppresses the definitions of both the
first and the second macros while it processes the replacement-list of the second macro.

The preprocessor suppresses a definition as long as any of the tokens that remain to be processed
are derived directly from the original macro replacement or from further macro replacements that
use parts of the original macro replacement. Thus, when the object-like macro definition

#define RECURSE RE ## CURSE

is invoked by the token RECURSE, it is replaced by the token RECURSE formed by pasting RE and
CURSE together, but the scanning of the replacement list would not invoke the macro RECURSE a
second time. Likewise, the function-like macro definition

#define RECURSE(a, b) a ## b(a, b)

when invoked with the sequence RECURSE(RE, CURSE) would be replaced by the token sequence
RECURSE(RE, CURSE), but the scanning of the replaced token sequence would not invoke the
macro RECURSE() again.

Be warned that you should not test a PC-based compiler for compliance with these macro
definitions unless you are prepared to turn off your machine. If the compiler fails to detect the
recursion, it may become locked in an infinite loop, and there may be no other way to terminate the
substitution.

Example
For an example of using a function-like macro in a program, see #.

Cross-references
Standard, §3.8.3
The C Programming Language, ed. 2, pp. 229ff

See Also
#, ##, #undef, preprocessing

Notes
A macro expansion always occupies exactly one line, no matter how many lines are spanned by the
definition or the actual parameters.

A macro definition can extend over more than one line, provided that a backslash ‘\’ appears before
the newline character that breaks the lines. The size of a #define directive is therefore limited by
the maximum size of a logical source line, which can be up to at least 509 characters long.

LEXICON

122 #define

A macro may be redefined only if the new definition matches the old definition in all respects except
the spelling of white space.

#elif — Preprocessing directive
Include code conditionally
#elif constant-expression <newline> group

opt

The preprocessing directive #elif conditionally includes code within a program. It can be used after
any of the instructions #if, #ifdef, or #ifndef, and before #endif that ends the chain of conditional-
inclusion directives.

If the conditional expression of the preceding #if, #ifdef, or #ifndef directive is false and the
constant-expression that follows #elif is non-zero, then group is included within the program up to
the next #elif, #else, or #endif directive. An #if, #ifdef, or #ifndef directive may be followed by any
number of #elif directives.

The constant-expression must be an integral expression, and it cannot include a sizeof operator, a
cast, or an enumeration constant. All macro substitutions are performed upon the constant-
expression before it is evaluated. All integer constants are treated as long objects, and are then
evaluated. If constant-expression includes character constants, all escape sequences are converted
into characters before evaluation. The implementation defines whether the result of evaluating a
character constant in constant-expression matches the result of evaluating the same character
constant in a C expression. For example, it is up to the implementation whether

#elif ’z’ - ’a’ == 25

yields the same value as:

else if (’z’ - ’a’ == 25)

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

See Also
#else, #endif, #if, #ifdef, #ifndef, preprocessing

#else — Preprocessing directive
Include code conditionally
#else newline group

opt

The preprocessing directive #else conditionally includes code within a program. It is preceded by
one of the directives #if, #ifdef, or #ifndef, and may also be preceded by any number of #elif
directives. If all preceding directives evaluate to false, then the code introduced by #else is included
within the program up to the #endif directive that concludes the chain of conditional-inclusion
directives.

A #if, #ifdef, or #ifndef directive can be followed by only one #else directive.

Example
For an example of using this directive in a program, see assert.

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

LEXICON

#elif — #else 123

See Also
#elif, #endif, #if, #ifdef, #ifndef, preprocessing

#endif — Preprocessing directive
End conditional inclusion of code
#endif

The preprocessing directive #endif must follow any #if, #ifdef, or #ifndef directive. It may also be
preceded by any number of #elif directives and an #else directive. It marks the end of a sequence of
source-file statements that are included conditionally by the preprocessor.

Example
For an example of using this directive in a program, see assert.

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

See Also
#elif, #else, #if, #ifdef, #ifndef, preprocessing

#error — Preprocessing directive
Error directive
#error message newline

The preprocessing directive #error prints message when an error occurs.

Cross-references
Standard, §3.8.5
The C Programming Language, ed. 2, p. 233

See Also
preprocessing

#if — Preprocessing directive
Include code conditionally
#if constant-expression newline group

opt

The preprocessing directive #if tells the preprocessor that if constant-expression is true, then include
the following lines of code within the program until it reads the next #elif, #else, or #endif directive.

The constant-expression must be an integral expression, and it cannot include a sizeof operator, a
cast, or an enumeration constant. All macro substitutions are performed upon the constant-
expression before it is evaluated. All integer constants are treated as long objects, and are then
evaluated. If constant-expression includes character constants, all escape sequences are converted
into characters before evaluation.

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

See Also
#elif, #else, #endif, #ifdef, #ifndef, preprocessing

LEXICON

124 #endif — #if

Notes
The keyword defined determines whether a symbol is defined to #if. For example,

#if defined(SYMBOL)

or

#if defined SYMBOL

is equivalent to

#ifdef SYMBOL

except that it can be used in more complex expressions, such as

#if defined FOO && defined BAR && FOO==10

#ifdef — Preprocessing directive
Include code conditionally
#ifdef identifier newline group

opt

The preprocessing directive #ifdef checks whether identifier has been defined as a macro or manifest
constant. If identifier has been defined, then the preprocessor includes group within the program,
up to the next #elif, #else, or #endif directive. If identifier has not been defined, however, then
group is skipped.

An #ifdef directive can be followed by any number of #elif directives, by one #else directive, and
must be followed by an #endif directive.

Example
For an example of using this directive in a program, see assert.

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

See Also
#elif, #else, #endif, #if, #ifndef, defined, preprocessing

Notes
This is the same as:

#if defined IDENTIFIER

#ifndef — Preprocessing directive
Include code conditionally
#ifndef identifier newline group

opt

The preprocessing directive #ifndef checks whether identifier has been defined as a macro or
manifest constant. If identifier has not been defined, then the preprocessor includes group within
the program up to the next #elif, #else, or #endif directive. If identifier has been defined, however,
then group is skipped.

An #ifndef directive can be followed by any number of #elif directives, by one #else directive, and
by one #elif directive.

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

LEXICON

#ifdef — #ifndef 125

See Also
#elif, #else, #endif, #if, #ifndef, defined, preprocessing

Notes
This is the same as:

#if !defined IDENTIFIER

#include — Preprocessing directive
Read another file and include it
#include <file>
#include "file"

The preprocessing directive #include tells the preprocessor to replace the directive with the contents
of file.

The directive can take one of two forms: either the name of the file is enclosed within angle brackets
(<file>), or it is enclosed within quotation marks ("file"). The name of the file can be enclosed within
angle brackets (<file.h>) or quotation marks ("file.h"). Angle brackets tell the preprocessor to look
for file in the directories named with the -I options to the cc command line, and then in the
directory named by the environmental variable INCDIR. Quotation marks tell cpp to look for file.h
in the source file’s directory, then in directories named with the -I options, and then in the directory
named by the environmental variable INCDIR. #include directives may be nested up to at least
eight deep. That is to say, a file included by an #include directive may use an #include directive to
include a third file. That third file may also use a #include directive to include a fourth file, and so
on, up to at least eight files.

A subordinate header is sought relative to the original source file, rather than relative to the header
that calls it directly. For example, suppose that under the UNIX operating system, a file example.c
resides in directory /v/fred/src. If example.c contains the directive #include <header1.h>. The
operating system will look for header1.h in the standard directory, /usr/include. If header1.h
includes the directive #include <../header2.h> then the implementation should look for header2.h
not in directory /usr, but in directory /v/fred/src.

Some file systems allow characters to be used in file names that are used as delimiters in other file
systems. Therefore, if any of the characters ‘*’, ‘‘\’, or ‘,’ are part of a file name, behavior is
undefined. If ‘"’ is part of a file name between angle-bracket delimiters, behavior is also undefined.

A #include directive may also take the form #include string, where string is a macro that expands
into either of the two forms described above.

Cross-references
Standard, §2.2.4.1, §3.8.2
The C Programming Language, ed. 2, p. 88

See Also
header, header names, Language, preprocessing

Notes
Trigraphs that occur within a #include directive are substituted, because they are processed by an
earlier phase of translation than are #include directives.

LEXICON

126 #include

#line — Preprocessing directive
Reset line number
#line number newline
#line number filename newline
#line macros newline

#line is a preprocessing directive that resets the line number within a file. The Standard defines the
line number as being the number of newline characters read, plus one.

#line can take any of three forms. The first, #line number, resets the current line number in the
source file to number. The second, #line number filename, resets the line number to number and
changes the name of the file referred to by _ _FILE_ _ to filename. The third, #line macros, contains
macros that have been defined by earlier preprocessing directives. When the macros have been
expanded by the preprocessor, the #line instruction will then resemble one of the first two forms
and be interpreted appropriately.

number specifies the number of the next source line in the file, not the number of the #line
directive’s source line.

Cross-references
Standard, §3.8.4
The C Programming Language, ed. 2, p. 233

See Also
preprocessing

Notes
Most often, #line is used to ensure that error messages point to the correct line in the program’s
source code. A program generator may use this directive to associate errors in generated C code
with the original sources. For example, the program generator yacc uses #line instructions to link
the C code it generates with the yacc code written by the programmer.

#pragma — Preprocessing directive
Perform implementation-defined task
#pragma preprocessing-tokens

opt
newline

The preprocessing directive #pragma causes the implementation to behave in an implementation-
defined manner. A #pragma might be used to give a ‘‘hint’’ to the translator about the best way to
generate code, optimize, or diagnose errors. It may also pass information to the translator about the
environment, or add debugging information. The design of #pragma is left up to the
implementation.

Cross-references
Standard, §3.8.6
The C Programming Language, ed. 2, p. 233

See Also
preprocessing

Notes
An unrecognized pragma is ignored. Because of this subtlety, one should be careful when porting
code that contains pragmas to other implementations.

As of this writing, no Mark Williams compiler uses #pragma.

LEXICON

#line — #pragma 127

#undef — Preprocessing directive
Undefine a macro
#undef identifier

The preprocessing directive #undef tells the C preprocessor to disregard identifier as a manifest
constant or macro. It undoes the effect of the #define directive.

#undef does not give an error if identifier is not defined. It can also undefine macros that are
predefined by the implementation, other than those specified by the Standard to be unreadable.

Cross-references
Standard, §3.8.3.5
The C Programming Language, ed. 2, p. 230

See Also
#define, preprocessing

Notes
If an implementation has defined a function both as a macro and as a library function, then the
directive

#undef function

undefines the macro version, and forces the implementation to use the library version.

Some previous implementations allowed a user to ‘‘stack’’ macro definitions and ‘‘unstack’’ them by
#undefing them one level at a time. The Standard, however, states that one #undef directive
undefines all previous definitions.

% — Operator
Remainder operator
operand1 % operand2

The operator % divides operand1 by operand2 and yields the remainder.

Both operand1 and operand2 must have integral type. Both undergo the usual arithmetic
conversions before they are divided, and the type of the result is that to which the operands were
converted. If operand2 is zero, the behavior is undefined. If either operand is negative, the sign of
the result is implementation-defined.

The remainder operation normally throws away the quotient. The division operator / returns the
quotient of a division operation, and throws away the remainder. If you wish to obtain both
quotient and remainder, use the functions div or ldiv. To obtain the remainder from floating-point
division, use the function fmod.

Cross-references
Standard, §3.3.5
The C Programming Language, ed. 2, p. 205

See Also

LEXICON

128 #undef — 128

%= — Operator
Remainder assignment operator
operand1 %= operand2

The operator %= divides operand1 by operand2 and assigns the remainder to operand1. It is
equivalent to the expression:

operand1 = operand1 % operand2

Each operand must have an integral type. If the value of operand2 is zero, the result is undefined.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

See Also
%, expressions

& — Operator
&operand
operand1 & operand2
The operator & has two meanings, depending upon whether it has one operand or two. In the
former instance, it yields the address of its operand. In the latter instance, it performs a bitwise
AND operation upon its operands.

Address-of Operator
When used with one operand, & yields the value of the address of its operand in the form of a
pointer to the type of its operand. The operand must be an lvalue or function designator, with the
following restrictions: the operand may not be a bitfield, and it may not be declared with the
storage-class specifier register. The resulting pointer has the type ‘‘pointer to type’’, where type is
the type of the operand.

ANSI C allows you to take the address of a function or array.

Bitwise AND Operator
When used with two operands, & performs a bitwise AND operation. Each operand must have
integral type. Each undergoes the normal arithmetic conversions before the operation. & yields a
result whose type is the same as the promoted operands.

A bitwise AND operation compares the operands bit by bit. It sets a bit in the object it creates only
if the corresponding bits in both operands are set.

For example, consider an environment that uses extended ASCII. Here, the character ‘)’ has the bit
pattern:

0010 1001

and the character ‘L’ has the bit pattern:

0100 1100

The operation ’)’&’L’ yields an object with the following bit pattern:

0000 1000

Only one bit was set in the result because in only one instance were both corresponding bits set in
the operands.

LEXICON

129= — & 129

The & operation is sometimes called the ‘‘intersection’’ of two bit sets.

Cross-references
Standard, §3.3.3.2, §3.3.10
The C Programming Language, ed. 2, pp. 48, 93

See Also
expressions

&& — Operator
Logical AND operator
operand1 && operand2

The operator && performs a logical AND operation. Both operand1 and operand2 must have scalar
type.

The result of this operation has type int. The result has a value of one if both operands are true (i.e.,
nonzero). If either operand is false (zero), then the result has a value of zero.

The operands are evaluated from left to right. If operand1 is false, then operand2 is not evaluated.
If operand2 is an expression that yields a side-effect, the results of the && operation may not be
what you expect. If operand1 is false, operand2 is not evaluated and its side-effect not generated.

Cross-references
Standard, §3.3.13
The C Programming Language, ed. 2, p. 207

See Also
||, expressions

&= — Operator
Bitwise-AND assignment operator
operand1 &= operand2

The operator &= performs a bitwise AND operation on operand1 and operand2 and assigns the
result to operand1. It is equivalent to the expression

operand1 = operand1 & operand2

Both operands must have integral type.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

See Also
&, expressions

() — Punctuator
functionname (arguments)
(newtype) identifier
(primary expression)
The characters () have two uses in the C world: as punctuators and as operators. Parentheses must
be used in pairs.

When the parentheses follow an identifier, they indicate that it names a function. When used with a

LEXICON

130 && — ()

function declaration, a function prototype, or a function definition, the parentheses may enclose a
list of parameters for the function and the type of each parameter. When used with a function call,
they enclose a list of arguments to be passed to the function.

When parentheses precede an identifier and enclose a typename alone, then they function as the
cast operator. Here, the type of the identifier is changed, or cast, to the type enclosed within
parentheses.

Finally, when parentheses enclose an expression, that expression is by definition considered to be a
primary expression. This means that the expression is resolved before any outer expression is
evaluated.

To see the variety of uses for (), consider the following expression:

if ((fileptr = (void *)fopen("filename", "r")) == NULL)

The outermost pair of parentheses enclose the arguments to if. The next innermost pair of
parentheses enclose the expression

fileptr = (void *)fopen("filename", "r")

which must be resolved before it is compared with NULL. The pair of parentheses that enclose the
type void * casts the object returned by fopen to type void *. Finally, the parentheses that follow
fopen mark that identifier as a function and enclose the arguments that are passed to it, in this
case the string literals filename and r.

Cross-reference
Standard, §3.1.6, §3.3.2.2, §3.3.4

See Also
function calls, function definition, function prototype, operators, punctuators

Notes
Under ANSI C, parentheses affect the grouping of expressions. This is a quiet change from the
definition in the first edition of The C Programming Language, which allowed translators to
rearrange expressions in the presence of parentheses on expressions that involved commutative and
associative operators (binary + and *). The as if rule still applies in this case: if the translator can
produce the same results, it is free to rearrange expressions in the face of parentheses.

* — Operator
*pointer
typename * type-qualifier-list

opt
identifier

operand1 * operand2
The character * is used both as an operator and as a punctuator.

Multiplication Operator
When the * appears between two operands with arithmetic type, it is the multiplicative operator. It
multiplies its operands and yields the product. Both operands undergo normal arithmetic
conversion. The type of the result is the one to which both operands were converted.

Indirection Operator
When * is used before one operand that is of a pointer type, it dereferences the pointer. That is, it
yields the value of the object to which the pointer points. If the pointer points to a function, then
the result is a function designator. If the pointer points to an object, the resulting lvalue has the
type of the object to which the pointer points.

If indirection is performed on any pointer to an incomplete type, the behavior is undefined. This
means that no pointer with type void * can be dereferenced.

LEXICON

* 131

Pointer Punctuator
When the * is used in a declaration, it indicates that the variable being declared is a pointer. For
example, consider the following:

int example1;
int *example2;

Here, example1 has type int, and example2 has type ‘‘pointer to int’’.

Cross-references
Standard, §3.1.6, .3.3.2, §3.3.5, §3.5.4.1
The C Programming Language, ed. 2, pp. 94, 205

See Also
expressions, operators, pointer, punctuators

*/ — Comment delimiter
The characters */ together mark the end of a comment.

Cross-references
Standard, §3.1.9
The C Programming Language, ed. 2, p. 192

See Also
/*, comment

*= — Operator
Multiplication assignment operator
operand1 *= operand2

The operator *= multiplies operand1 by operand2 and assigns the product to operand1. It is
equivalent to the expression:

operand1 = operand1 * operand2

Each operand must have an arithmetic type.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

See Also
*, expressions

+ — Operator
+operand
operand1 + operand2
The operator + has two uses, depending upon whether it is used with two operands or one. In the
former instance, it indicates that the given operand should be computed without any associative or
commutative regrouping that the translator might normally apply to expressions. In the latter, it
adds the two operands together.

The Unary + Operator
The unary operator + takes an operand that has a scalar type and yields its value. If the operand
has a negative value, then a negative value is returned. The operand undergoes integral promotion,

LEXICON

132 */ — +

and the type returned is that to which the operand is promoted.

The Addition Operator
The addition operator + adds two operands. Both operands may have arithmetic types, or one of the
operands may be a pointer and the other an integral type.

If both operands have arithmetic types, then each undergoes integral conversion before addition is
performed; the type of the result is the type to which both are converted.

When an integral type is added to a pointer, the value of the integral operand is first multiplied by
the size of the object to which the pointer points, in bytes, and then addition is performed. The
result of the addition operation returns a pointer that is appropriately offset from the pointer
operand.

Pointer addition is often used for pointers that point to arrays. Note the following rules for
incrementing a pointer to an array:

• If a pointer points to an array, then the result of addition will point to another member of the
same array — assuming that the array is large enough.

• If a pointer to an array is incremented and the resulting pointer does not point to a member of
the array or one past the last member, then behavior is undefined.

• Behavior is also undefined if the pointer operand and the result of the addition operation do
not point to the same array object and the result of the addition operation is then redirected
with the unary * operator. In other words, it is legal for a translator to test array bounds.

Cross-references
Standard, §3.3.3.3, §3.3.6
The C Programming Language, ed. 2, pp. 203, 205

See Also
++, -, expressions

++ — Operator
Increment operator
operand++
++operand

The operator ++ increments its operand. When it appears before its operand, it is called the pre-
increment operator; when it appears after its operand, it is called the post-increment operator. In both
cases, it is equivalent to operand = operand+1. operand must be a modifiable lvalue.

These operators differ as follows: with the prefix operator, the value of the operand is used after it is
incremented; whereas with the postfix operator, the value of the operand is used before it is
incremented.

The following example illustrates the difference between the preincrement and postincrement
operators.

#define MAX 10
int x = 0, count = 0;

/* loop 1 */
while (++x < MAX)

count++;

LEXICON

++ 133

/* loop 2 */
while (x++ < MAX)

count++;

The first loop will iterate nine times, the second will iterate ten times. The first loop preincrements
the loop variable x before using it within the conditional expression. The second loop, which uses
the postincrement operator, first uses the current value of x in the conditional, then increments its
value.

Cross-references
Standard, §3.3.2.4, §3.3.3.1
The C Programming Language, ed. 2, p. 46

See Also
--, expressions

+= — Operator
Addition assignment operator
operand1 += operand2

The operator += adds the value of operand1 with that of operand2 and stores the sum within
operand1. It is equivalent to the expression:

operand1 = operand1 + operand2

Both operands have arithmetic types, or operand1 has a pointer type and operand2 has integral
type.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

See Also
-=, expressions

Notes
The lvalue operand1 is evaluated only once.

, — Operator
identifier1 , identifier2
expression1 , expression2
The character ‘,’ can be used as punctuator or an operator.

The Comma Punctuator
When it is used as a punctuator, the comma separates the parameters in a function declaration, the
parameters to a function-like macro, the arguments to a function call, or the items in a list of
identifiers. For example, in the expression

int foo, bar, baz;

the comma separates the identifiers being declared, all of which are of type int.

The Comma Operator
When used outside of a declaration or parameter list, the comma acts as an operator. The comma
operator evaluates its left argument first, then its right argument. The value and type of the comma
expression is that of the right operand.

LEXICON

134 += — ,

For example, the following shows how the comma operator is used in a loop:

int i, j;
. . .

for (i=j=0; i<10 && j<25; i++, j++);

This loop uses the comma operator to help increment two variables upon each iteration.

Cross-references
Standard, §3.3.17
The C Programming Language, ed. 2, p. 62

See Also
expressions

Notes
A comma expression cannot be an lvalue.

- — Operator
-operand
operand1 - operand2
The operator - has two uses, depending upon whether it is used with two operands or one. In the
former situation, it subtracts the operand to its right from the operand to its left. In the latter, it
returns the negated value of its operand.

Subtraction Operator
The operator - can subtract the following operands from each other:

• Two arithmetic types.

• Two pointers to objects that have compatible types and compatible qualification.

• Two pointers that point to objects that have compatible types, but not necessarily compatible
qualification.

• An integral type from a pointer.

When both operands have arithmetic type, each undergoes integral promotion. The type of the
result is that to which the operands were promoted. Its value is the difference when the right
operand is subtracted from the left.

When one pointer is subtracted from another, the result is of type ptrdiff_t. This type is defined in
the header stddef.h. If two pointers that do not point to the same array are subtracted from each
other, behavior is undefined. The only exception is the expression

(X+1) - X

where, if X points to the last member of the array, the result is one by definition.

If two pointers that point to the same array are subtracted from each other, the result is
automatically divided by the size of an array member. This yields a value that is the same as would
result if the two appropriate array subscripts had been subtracted from each other. If the result of
pointer subtraction points past the end of an array, the behavior is undefined. The sole exception,
again, is the expression given above.

When subtracting a scalar from a pointer, the result is as if the scalar were multiplied by the size of
the object pointed to by the pointer, and then subtracted.

LEXICON

- 135

Negation Operator
The unary operator - takes an operand with arithmetic type. The operand first undergoes normal
integral promotion. The type of the resulting expression is the one to which the operand was
promoted; and the value of the resulting expression is the negated value of the operand.

Cross-references
Standard, §3.3.3.3, §3.3.6
The C Programming Language, ed. 2, pp. 203, 205

See Also
+, --, expressions

-- — Operator
Decrement operator
operand--
--operand

The operator -- decrements its operand. When it appears before its operand, it is called the pre-
decrement operator; when it appears after its operand, it is called the post-decrement operator. In
both cases, it is equivalent to operand = operand - 1.

These operators differ as follows: with the prefix operator, the value of the operand is used after it is
decremented; whereas with the postfix operator, the value of the operand is used before it is
decremented.

Cross-references
Standard, §3.3.2.4, §3.3.3.1
The C Programming Language, ed. 2, p. 46

See Also
++, expressions

-= — Operator
Subtraction assignment operator
operand1 -= operand2

The operator -= subtracts the value of operand2 from that of operand1 and stores the difference
within operand1. It is equivalent to the expression:

operand1 = operand1 - operand2

Both operands have arithmetic types, or operand1 has pointer type and operand2 has integral type.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

See Also
+=, expressions

-> — Operator
Select a member
objectpointer -> membername

The operator -> selects a member of a structure or a union through a pointer.

LEXICON

136 -- — ->

objectpointer must point to a structure or union. membername must name a member of the
structure or union to which objectpointer points. For example, consider the following:

struct example {
int member1;
long member2;
example *member3;

};

struct example structure;
struct example *pointer = &structure;

To select member1 within structure via pointer, use the expression:

pointer->member1

Behavior is implementation-defined if one member of a union is accessed after another member has
been stored within the union.

Cross-references
Standard, §3.3.2.3
The C Programming Language, ed. 2, p. 131

See Also
., expressions, operators

. — Operator
Member selection
objectname . membername

The operator . is used to select a member of a structure or a union.

objectname must name a structure or union. membername must be a member of the structure or
union that objectname names. For example, consider the following:

struct example {
int member1;
long member2;
example *member3;

};

struct example object;

To read member1 within object, use the expression:

object.member1

Cross-references
Standard, §3.3.2.3
The C Programming Language, ed. 2, p. 128

See Also
->, expressions, member

LEXICON

. 137

/ — Operator
Division operator
operand1 / operand2

The operator / divides operand2 by operand1 and yields the quotient. Each operand must have
arithmetic type and undergoes the usual arithmetic promotion before the operation is performed.
The result of the operation has the type to which the operands are promoted. If the result of X/Y
can be represented, then (X/Y)*Y+(X%Y) must equal X.

If operand2 is zero, the result is undefined. If either operand is negative, the result is either the
largest integer that is less than the algebraic quotient, or the smallest integer that is greater than
the algebraic quotient, whichever the implementation prefers. For example, in the expression

7 / -2

the algebraic quotient is -3.5. The implementation determines whether the result is -4 (the largest
integer less than the algebraic quotient) or -3 (the smallest integer greater than the algebraic
quotient).

The division operation normally throws away the remainder. The remainder operator % returns the
remainder of a division operation and throws away the quotient. If you wish to obtain both quotient
and remainder, use the functions div or ldiv.

Cross-references
Standard, §3.3.5
The C Programming Language, ed. 2, p. 205

See Also
%, div, expressions, ldiv

/* — Comment delimiter
The characters /* together mark the beginning of a comment.

Cross-references
Standard, §3.1.9
The C Programming Language, ed. 2, p. 192

See Also
*/, comment

/= — Operator
Division assignment operator
operand1 /= operand2

The operator /= divides operand1 by operand2, and assigns the quotient to operand1. It is
equivalent to the expression:

operand1 = operand1 / operand2

Each operand must have arithmetic type.

If the value of operand2 is zero, behavior is undefined.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

LEXICON

138 / — /=

See Also
/, expressions

: — Punctuator
When punctuator : follows an identifier, it marks the identifier as being a label. When it precedes
an integer constant in the declaration of a structure or union, it marks the constant as giving the
size of a bit-field.

Cross-reference
Standard, §3.1.6
The C Programming Language, ed. 2, p. 66

See Also
?:, bit-fields, goto, label, punctuators

; — Punctuator
The punctuator ; marks the end of a statement.

Cross-reference
Standard, §3.1.6

See Also
punctuators, statements

< — Operator
Less-than operator
operand1 < operand2

The operator < compares two operands. It yields one if operand1 is less than operand2, and zero if
operand1 is greater than or equal to operand2.

See operators for more information on the types of operands that can be compared.

Cross-references
Standard, §3.3.8
The C Programming Language, ed. 2, pp. 41, 206

See Also
<=, >, expressions

<< — Operator
Bitwise left-shift operator
operand1 << operand2

The operator << shifts the bits in operand1 to the left by operand2 places. This is called the bitwise
left shift operation.

Both operands must have integral types. Both undergo the usual arithmetic conversions, and the
result has the type to which the left operand was promoted.

A bitwise left-shift operation moves the bits of an object to the left, and fills the vacated bits with
zeroes. For example, consider an environment that uses extended ASCII. Here, the character
constant ’?’ has the bit pattern:

0011 1111

LEXICON

: — << 139

In this environment, the expression

’?’ << 4

yields the following pattern of bits:

0000 0011 1111 0000

The ‘‘nybbles’’ to the left result from the promotion of the char to type int. All bits are shifted four
places to the left, and the four vacated bits to the right are filled with zeroes.

The left-shift operation is sometimes called the ‘‘logical’’ shift operation, which will fill vacated bits
with zeroes.

If operand2 is negative or is larger than the number of bits in operand1, behavior is undefined.

Example
For a practical example of the operator <<, see rand().

Cross-references
Standard, §3.3.7
The C Programming Language, ed. 2, pp. 48, 207

See Also
<<=, >>, expressions

<<= — Operator
Bitwise left-shift assignment operator
operand1 <<= operand2

The operator <<= shifts the bits in operand1 to the left by operand2 places, and assigns the result to
operand1. It is equivalent to the expression:

operand1 = operand1 << operand2

Both operands must have integral type.

If operand2 is negative or has a value greater than the number of bits in operand1, behavior is
undefined.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

See Also
<<, expressions

<= — Operator
Less-than or equal-to operator
operand1 <= operand2

The operator <= compares two operands. It returns one if operand1 is less than or equal to
operand2, and it returns zero if operand1 is greater than operand2.

See operators for more information on the types of operands that can be compared.

Example
For an example of using this operator in a program, see bitwise operators.

LEXICON

140 <<= — <=

Cross-references
Standard, §3.3.8
The C Programming Language, ed. 2, pp. 41, 206

See Also
<, >=, expressions

= — Operator
Assignment operator
operand1 = operand2

The operator = copies the value of operand2 into operand1. The value of operand2 is converted to
the type of operand1 before they are copied.

The following types of operands are allowed:

• Both have an arithmetic type. operand1 may be qualified.

• Both are compatible structures or unions. operand1 may be qualified.

• Both are pointers to compatible types. operand1 may be a pointer to a qualified type.
operand2 may be NULL. Either may be of type void *, assuming the other points to an object
or an incomplete type.

operand1 must be a modifiable lvalue.

Cross-references
Standard, §3.3.16.1
The C Programming Language, ed. 2, pp. 50, 208

See Also
==, expressions

== — Operator
Equality operator
operand1 == operand2

The operator == compares operand1 with operand2. The result is one if the operands are equal, and
zero if they are not.

The operands must be one of the following:

• Arithmetic types.

• Pointers to compatible types (ignoring qualifiers on these types).

• A pointer to an object or incomplete type and a pointer to void.

• A pointer and NULL.

If both operands have arithmetic type, they undergo usual arithmetic conversion before being
compared. If one operand is a pointer to an object and the other is a pointer to void, the pointer to
an object is converted to a pointer to void for purposes of the comparison.

If two pointers to functions compare equal, then they point to the same function; likewise, if two
pointers to data objects compare equal, then they point to the same object. However, on machines
that provide separate spaces for instructions and data, a pointer to a function may compare equal to
a pointer to a data object. Therefore, you should not depend on being able to distinguish function
pointers from data object pointers by value. Further, on machines that allow many pointer values

LEXICON

= — == 141

to refer to the same object (e.g., i8086 LARGE model), two pointers that do not compare equal may
nonetheless point to the same object.

Cross-references
Standard, §3.3.9
The C Programming Language, ed. 2, pp. 41, 207

See Also
!=, expressions

Notes
Perhaps the commonest mistake made by C programmers is to use the assignment operator ‘=’ in
place of the equality operator ‘==’ where a conditional expression is expected. For example:

if (variable1 = variable2) /* WRONG */
dosomething();

Here, the value of variable2 is copied into variable1; whether the expression succeeds or not
depends upon the value of variable2 rather than the equality of the two variables. Hence, the
condition will be true as long as this operand has a value other than zero. This code will translate,
often without generating a warning message, but probably will not run correctly.

Type conversion will affect comparison, particularly if a char is being compared with an integral type
with a negative value. For example, consider the comparison:

char variable;
. . .

if (variable == -1)
dosomething();

Here, variable is promoted to an int before it is compared with -1. However, if char is unsigned by
default, when it is expanded, it can never compare equal to a negative number. For maximum
portability, when using chars that may take negative values, declare them as type int or type signed
char. All Mark Williams compilers used signed chars by default.

Comparing floats and doubles for equality is usually a mistake, especially as a control expression in
a loop. Implementations of floating-point arithmetic are often inexact.

> — Operator
Greater-than operator
operand1 > operand2

The operator > compares two operands. It returns one if operand1 is greater than operand2. It
returns zero if operand1 is less than, or equal to, operand2.

Cross-references
Standard, §3.3.8
The C Programming Language, ed. 2, pp. 41, 206

See Also
<, >=, expressions

>= — Operator
Greater-than or equal-to operator
operand1 >= operand2

LEXICON

142 > — >=

The operator >= compares two operands. It returns one if operand1 is greater than, or equal to,
operand2; it returns zero if operand1 is less than operand2.

Cross-references
Standard, §3.3.8
The C Programming Language, ed. 2, pp. 41, 206

See Also
<=, >, operators

>> — Operator
Bitwise right-shift operator
operand1 >> operand2

The operator >> shifts the bits in operand1 to the right by operand2 places. This is called the
bitwise right shift operation.

Both operands must have integral type. Both undergo the usual arithmetic conversions, and the
result has the type to which the left operand was promoted.

A bitwise right-shift operation moves the bits of an object to the right. The vacated bits are filled
with zeroes, unless operand1 is signed and has a negative value. In that case, the vacated bits will
propagate the sign bit (i.e., be filled with ones).

For example, consider an environment that uses extended ASCII. Here, the character constant ’?’
has the bit pattern:

0011 1111

In this environment, the expression

’?’ >> 4

yields the following pattern of bits:

0000 0000 0000 0011

The two ‘‘nybbles’’ to the right result from the promotion of the char to type int. All bits are shifted
four places to the right, and the four vacated bits to the left are filled with zeroes. The nybble 1111
disappears.

The right-shift operation is sometimes called the ‘‘arithmetic’’ shift operation.

If operand2 is negative or is larger than the number of bits in operand1, behavior is undefined.

Example
For an example of using this operator in a program, see srand.

Cross-references
Standard, §3.3.7
The C Programming Language, ed. 2, pp. 48, 207

See Also
<<, >>=, expressions

LEXICON

>> 143

>>= — Operator
Bitwise right-shift assignment operator
operand1 >>= operand2

The operator >>= shifts the bits in operand1 to the right by operand2 places, and assigns the result
to operand1. It is equivalent to the expression:

operand1 = operand1 >> operand2

Both operands must have integral type.

If operand2 is negative or has a value larger than the number of bits in operand1, behavior is
undefined.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

See Also
>>, expressions

?: — Operator
Conditional operator
conditional ? expression1 : expression2

The conditional operator ?: causes one or the other of two expressions to be executed.

If the conditional evaluates to true (nonzero), then expression1 is evaluated; otherwise, expression2
is evaluated. The operator as a whole yields the result of whichever expression is executed.

The logical-OR-expression must have a scalar type. The conditional operator may take the following
types:

• Both are arithmetic types. Each undergoes normal arithmetic conversion, and the result has
the type to which they are converted.

• Both have compatible structure or union types. They are converted to a common type, and the
result has that type.

• Both are void types. The result is of type void.

• Both are pointers to compatible types, whether qualified or unqualified. The result is a pointer
that is qualified by all the qualifiers of both operands.

• One is a pointer and the other NULL. The result is of the pointer’s type.

• One points to an object or incomplete type, and the other is type void *. Both operands are
converted to type void * before evaluation, and the result also has that type.

The logical expression can also be a scalar identifier, constant, or function.

Cross-references
Standard, §3.3.15
The C Programming Language, ed. 2, p. 51

See Also
expressions

LEXICON

144 >>= — ?:

Notes
The conditional operator does not yield an lvalue. For example:

int x, a, b;
(x ? a : b) = 5; /* WRONG */

is incorrect, but

int x;
int *ptr1, *ptr2;
(x ? ptr1 : ptr2) = 5; / RIGHT */

is correct.

[] — Operator
Array subscript operator
arrayname[size]

The array-subscript operator [] is used in different contexts. It is used to declare an array, with or
without the array size. It is used as a subscript operator, and it can also be used when passing an
array as an argument. arrayname is the name of the array to be accessed; size is the number of
objects in the array.

The Standard states that one of the items arrayname or size must be a pointer and the other an
integer. To calculate the address of an element within an array, the integer is multiplied by the size
of an element of the array, and the product added to value of the pointer. In most C programs,
arrayname gives the pointer and size the integer offset.

The operator [] can also be used to select an object within an array; the objects are numbered from
zero through size-1. For example, if arrayname points to an array of ints, and if size is equal to six,
then the expression

arrayname[4]

is equivalent to:

*(arrayname+4)

This expressions yields not an address, but the contents of the array at the requested point.

An array can be followed by more than one pair of brackets. Such arrays are called
multidimensional. To see how such an array works, consider the following multidimensional array:

#define DIMENSION1 5
#define DIMENSION2 10
int arrayname[DIMENSION1][DIMENSION2];

Here, dimension1 holds five objects, each of which is the size set by dimension2: in this instance,
ten ints. Thus, the expression

arrayname[3][5];

is equivalent to writing:

*(arrayname+(3*DIMENSION2)+5)

An expression of the form

arrayname[3];

indicates an entire row of the array. This is sometimes called a ‘‘slice’’.

LEXICON

[] 145

Cross-references
Standard, §3.3.2.1
The C Programming Language, ed. 2, pp. 97ff

See Also
array, expressions

Notes
Given the Standard’s description of how an array is accessed, the elements of an array access may
be reversed. For example, given the following code,

int arrayname[5];
int counter = 3;

the expressions

arrayname[counter]

and

counter[arrayname]

should yield the same result. Using these expressions interchangeably will result in programs that
are very hard to read and maintain.

^ — Operator
Bitwise exclusive OR operator
operand1 ^ operand2

The operator ^ performs an bitwise exclusive OR operation.

Each operand must have integral type, and each undergoes the usual arithmetic conversions. The
result has integral type.

A bitwise exclusive OR operation compares the bit patterns of the operands, then sets each bit in its
result if either, but not both, of the corresponding bits in the operands is set.

For example, consider an environment which uses extended ASCII. In this environment, the
character 9 is represented by the bit pattern

0011 1001

and the character w by the bit pattern:

0111 0111

Thus, the operation:

’9’ ^ ’w’;

yields the following bit pattern:

0000 0000 0100 1110

The extra ‘‘nybbles’’ to the left are created by the promotion of the character constants to type int. If
the corresponding bits in the operands were both set to one, the bit in the result was set to zero.

Example
For an example of using this operator in a program, see srand.

LEXICON

146 ^

Cross-references
Standard, §3.3.11
The C Programming Language, ed. 2, pp. 48, 207

See Also
^=, |, expressions

^= — Operator
Bitwise exclusive-OR assignment operator
operand1 ^= operand2

The operator ^= performs a bitwise exclusive-OR operation on operand1 and operand2, and assigns
the result to operand1. It is equivalent to the expression

operand1 = operand1 ^ operand2;

Both operands must have integral type.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

See Also
^, expressions

_ _DATE_ _ — Manifest constant
Date of translation

_ _DATE_ _ is a manifest constant that is defined by the implementation. It represents the date that
the source file was translated. It is a string literal of the form

"Mmm dd yyyy"

where Mmm is the same three-letter abbreviation for the month as is used by asctime; dd is the
day of the month, with the first d being a space if translation occurs on the first through the ninth
day of the month; and yyyy is the current year. If the date of translation is not available, then a
valid, implementation-defined date must be supplied.

The value of _ _DATE_ _ remains constant throughout the processing of the translation unit. It may
not be the subject of a #define or #undef preprocessing directive.

Cross-references
Standard, §3.8.8
The C Programming Language, ed. 2, p. 233

See Also
_ _FILE_ _, _ _LINE_ _, _ _STDC_ _, _ _TIME_ _, preprocessing

__end — External data
extern char * __end;
__end is an external variable that points to the end of your program’s data space. It is set by the C
runtime startup, and can be incremented by the function sbrk.

See Also
Environment, malloc, maxmem, sbrk

LEXICON

^= — __end 147

_ _FILE_ _ — Manifest constant
Source file name

_ _FILE_ _ is a manifest constant that is defined by the implementation. It represents, as a string
constant, the name of the current source file being translated.

_ _FILE_ _ may not be the subject of a #define or #undef preprocessing directive, but it may be
altered with the #line preprocessing directive.

Cross-references
Standard, §3.8.8
The C Programming Language, ed. 2, p. 233

See Also
#line, _ _DATE_ _, _ _LINE_ _, _ _STDC_ _, _ _TIME_ _, preprocessing

_ _LINE_ _ — Manifest constant
Current line within a source file

_ _LINE_ _ is a manifest constant that is defined by the implementation. It represents the current
line within the source file. The Standard defines the current line as being the number of newline
characters read, plus one.

_ _LINE_ _ may not be the subject of a #define or #undef preprocessing directive.

Cross-references
Standard, §3.8.8
The C Programming Language, ed. 2, p. 233

See Also
_ _DATE_ _, _ _FILE_ _, _ _STDC_ _, _ _TIME_ _, preprocessing

_ _STDC_ _ — Manifest constant
Mark a conforming translator

_ _STDC_ _ is a manifest constant that is defined by the implementation. If it is defined to be equal
to one, then it indicates that the translator conforms to the Standard.

The value of _ _STDC_ _ remains constant throughout the entire program, no matter how many
source files it comprises. It may not be the subject of a #define or #undef preprocessing directive.

Example
For an example of using _ _STDC_ _ in a program, see assert.

Cross-references
Standard, §3.8.8
The C Programming Language, ed. 2, p. 233

See Also
_ _DATE_ _, _ _FILE_ _, _ _LINE_ _, _ _TIME_ _, preprocessing

Notes
If an implementation is not fully compatible with the Standard, then it should not define
_ _STDC_ _. A value greater than one may indicate compliance with a later version of the Standard.

LEXICON

148 _ _FILE_ _ — _ _STDC_ _

_ _TIME_ _ — Manifest constant
Time source file is translated

_ _TIME_ _ is a manifest constant that is defined by Let’s C. It represents the time that a source file
is translated. It is a string literal of the form:

"hh:mm:ss"

This is the same format used by the function asctime. If the time of translation is not available,
then a valid, implementation-defined string must be supplied.

The value of this remains constant throughout the processing of the translation unit. It may not be
the subject of a #define or #undef preprocessing directive.

Cross-references
Standard, §3.8.8
The C Programming Language, ed. 2, p. 233

See Also
_ _DATE_ _, _ _FILE_ _, _ _LINE_ _, _ _STDC_ _, preprocessing

_exit() — Extended function (libc)
Terminate a program
int _exit(int status);

_exit terminates a program directly. It returns status to the calling program, and exits.

Unlike the library function exit, _exit does not perform extra termination cleanup, such as flushing
buffered files and closing open files.

_exit should be used only in situations where you do not want buffers flushed or files closed, such
as when your program detects an irreparable error condition and you want to ‘‘bail out’’ to keep your
data files from being corrupted.

_exit should also be used with programs that do not use STDIO and have been compiled with the -
ns option to the cc command. Unlike exit, _exit does not use STDIO. This will help you create
programs that are extremely small when compiled.

See Also
exit, extended miscellaneous, runtime startup, system

_tolower() — Extended macro (xctype.h)
Convert letter to lower case
#include <xctype.h>
int _tolower(int c);

The macro _tolower converts c to lower case and returns it. If c is not a letter, the result is
undefined.

_tolower differs from its cousin tolower in that _tolower is a macro that does not check whether its
argument is in fact an alphanumeric character, whereas tolower is a function that does check its
argument.

Example
This example opens a file of text and reverses the cases of all characters. It demonstrates _tolower
and _toupper.

LEXICON

_ _TIME_ _ — _tolower() 149

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <xctype.h>

void
fatal(char *message)
{

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

FILE *fp;
int ch;

if (--argc != 1)
fatal("Usage: example filename");

if ((fp = fopen(argv[1], "r")) == NULL)
fatal("Cannot open file for reading");

while ((ch = fgetc(fp)) != EOF) {
if ((isascii(ch) != 0) && ch != ’\r’)

fatal("Not a text file");

if (isalpha(ch) != 0)
fputc((isupper(ch) ? _tolower(ch) : _toupper(ch)),

stdout);
else

fputc(ch, stdout);
}
return EXIT_SUCCESS;

}

See Also
_toupper, character handling, tolower

Notes
To conform to the ANSI Standard, this macro has been moved from the header ctype.h to the
header xctype.h. This may require that some code be altered.

This macro is not described in the ANSI Standard. Any program that uses it does not conform
strictly to the Standard, and may not be portable to other compilers or environments.

_toupper() — Extended macro (xctype.h)
Convert letter to upper case
#include <xctype.h>
_toupper(int c);

The macro _toupper returns c converted to upper case. If c is not a letter, the result is undefined.

_toupper differs from its cousin toupper in that _toupper is a macro that does not check whether
its argument is in fact an alphanumeric character, whereas toupper is a function that does check
its argument.

Example
For an example of this routine, see the entry for _tolower.

LEXICON

150 _toupper()

See Also
_tolower, character handling, toupper

Notes
To conform to the ANSI Standard, this macro has been moved from the header ctype.h to the
header xctype.h. This may require that some code be altered.

This macro is not described in the ANSI Standard. Any program that uses it does not conform
strictly to the Standard, and may not be portable to other compilers or environments.

_zero() — i8086 support (libc)
Zero a block of memory
void _zero(unsigned offs, unsigned seg, unsigned n);

_zero zeros out n bytes of memory at the address given by the segment seg and the offset offs.

_zero requires the full offset/segment address to work properly. If your program is compiled into
SMALL model, you should use the macro PTR to ensure that a full address is used.

Example
The following example initializes a chunk of memory, displays it, and then zeroes it out.

#include <dos.h>
#include <stdio.h>
#include <stdlib.h>

main(void)
{

char foo[80] = "Here is a string.";
printf("Before _zero: %s\n", foo);

_zero(PTR(foo), 80);
printf("\nAfter _zero: %s\n", foo);
return EXIT_SUCCESS;

}

See Also
extended miscellaneous, PTR

{} — Punctuator
The punctuators {}, or ‘‘braces’’, are used to delimit a block, and to group initializers. Braces must
be used in pairs.

Cross-reference
Standard, §3.1.6

See Also
block, initialization, punctuators

| — Operator
Bitwise inclusive OR operator
operand1 | operand2

The operator | performs an bitwise inclusive OR operation. Each operand must have integral type.
Each undergoes the usual arithmetic conversions, and the result has integral type.

A bitwise inclusive OR operation compares the bit patterns of the operands. It then sets each bit in
the result if either, or both, of the corresponding bits in each of the operands is set.

LEXICON

_zero() — | 151

For example, consider an environment which uses extended ASCII. Here, the character 9 is
represented by the bit pattern

0011 1001

and the character w by the bit pattern:

0111 0111

Thus, the operation:

’9’ | ’w’

yields the following bit pattern:

0000 0000 0111 1111

The extra ‘‘nybbles’’ to the left are created by the promotion of the character constants to type int.

The bitwise inclusive OR operation is also called the ‘‘union’’ of two bitsets.

Cross-references
Standard, §3.3.12
The C Programming Language, ed. 2, pp. 48, 207

See Also
^, |=, expressions

|= — Operator
Bitwise inclusive-OR assignment operator
operand1 |= operand2

The operator |= performs a bitwise inclusive OR operation on operand1 and operand2, and assigns
the result to operand1. It is equivalent to the expression

operand1 = operand1 | operand2

Both operands must have integral type.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

See Also
|, expressions

|| — Operator
Logical OR operator
operand1 || operand2

The operator || performs a logical OR operation. Both operand1 and operand2 must have scalar
type.

The result of the || operation has type int. The value of the result is one if either operand is true
(nonzero); if both operands are false (equal to zero), the result has a value of zero.

The operands are evaluated from left to right. If operand1 is true, then operand2 is not evaluated. If
operand2 is an expression that yields a side-effect, the results of the || operation may not be what
you expect: if operand1 is true, operand2 is not evaluated and its side-effect not generated.

LEXICON

152 |= — ||

Cross-references
Standard, §3.3.14
The C Programming Language, ed. 2, p. 208

See Also
&&, expressions

~ — Operator
Bitwise complement operator
~operand

The operator ~ is the bitwise complement operator. Its operand has an integral type, which
undergoes integral promotion. The result is an object whose type is that of the promoted operand
and whose bit pattern inverts that of the operand. This is also called a ‘‘one’s complement
operation’’.

For example, consider the object:

char example = ’a’;

In an environment that uses extended ASCII, example will have the following bit pattern:

0110 0001

Thus, the expression ~example promotes example to an int, and then generates an object with the
following bit pattern:

1111 1111 1001 1110

As can be seen, the lower eight bits have been flipped. The eight bits on the left were added when
the object was promoted to int. These new bits were initially set to zeroes when the character was
promoted to an int, then the complement operation flipped the zeroes to ones. In this case, the sign
bit is said to propagate.

Cross-references
Standard, §3.3.3.3
The C Programming Language, ed. 2, p. 204

See Also
!, expressions, integral promotion

LEXICON

~ 153

