
#%2=0 .nr # 0

Error Messages

This chapter lists all of the error messages that can be produced by the compiler, the assembler as,
and make.

The messages are in alphabetical order, and each is marked to indicate which program generated it
(e.g., cc0, ccp). Each message from the compiler indicates whether it is a fatal, error, warning, or
strict condition. The compilation phases are cpp, the preprocessor; cc0, the parser; cc1, the code
generator; cc2, the optimizer; and cc3, the disassembler.

A fatal message usually indicates a condition that caused the compiler to terminate execution. Fatal
errors from the later phases of compilation often cannot be fixed, and may indicate problems in the
compiler.

An error message points to a condition in the source code that Let’s C cannot resolve. This almost
always occurs when the program does something illegal, e.g., has unbalanced braces.

Warning messages point out code that is compilable, but may produce trouble when the program is
executed. A strict message refers to a passage in the code that is unorthodox and may not be
portable.

add of two non-constants (as, error)
The present expression adds one or more elements that will be relocated.

address out of range (as, error)
jmp addresses must be to a place within 127 bytes.

address wraparound (ld, fatal)
A segment of the program has exceeded the size allowed by the microprocessor’s
architecture.

; after target or macroname (make, error)
A semicolon appeared after a target name or a macro name.

ambiguous reference to ‘‘string’’ (cc0, error)
string is defined as a member of more than one struct or union, is referenced via a pointer
to one of those structs or unions, and there is more than one offset that could be assigned.

argument list has incorrect syntax (cc0, error)
The argument list of a function declaration contains something other than a comma-
separated list of formal parameters.

string argument mismatch (cpp, error)
The argument string does not match the type declared in the function’s prototype. Either
the function prototype or the argument should be changed.

array bound must be a constant (cc0, error)
An array’s size can be declared only with a constant; you cannot declare an array’s size by
using a variable. For example, it is correct to say foo[5], but illegal to say

bar = 5;
foo[bar];

array bound must be positive (cc0, error)
An array must be declared to have a positive number of elements. The array flagged here
was declared to have a negative size, e.g., foo[-5].

97

98 Error Messages

array bound too large (cc0, error)
The array is too large to be compiled with 16-bit index arithmetic. You should devise a way
to divide the array into compilable portions.

array row has 0 length (cc0, error)
This message can be triggered by either of two problems. The first problem is declaring an
array to have a length of zero; e.g., foo[0]. The second problem is failing to declare the size
of a dimension other than the first in a multi-dimensional array. C allows you to declare an
indefinite number of array elements of n bytes each, but you cannot declare n array
elements of an indefinite length. For example, it is correct say foo[][5] but illegal to say
foo[5][].

#assert failure (cpp, error)
The condition being tested in a #assert statement has failed.

associative expression too complex (cc1, fatal)
An expression that uses associative binary operators (e.g., ‘+’) has too many operators; for
example, i=i1+i2+i3+ . . . +i30;. You should simplify the expression.

at beginning of macro (cpp, error)
Macro replacement lists may contain tokens that are separated by ##, but ## cannot
appear at the beginning or the end of the list. The tokens on either side of the ## are
pasted together into one token.

at end of macro (cpp, error)
Macro replacement lists may contain tokens that are separated by ##, but ## cannot
appear at the beginning or the end of the list. The tokens on either side of the ## are
pasted together into one token.

auto ‘‘string’’ is not addressable (cc0, error)
The identifier string cannot be addressed on the stack, probably because it is an
extraordinarily large automatic array. Large automatic arrays should usually be declared
global or static, not automatic.

bad argument storage class (cc0, error)
An argument was assigned a storage class that the compiler does not recognize. The only
valid storage class is register.

bad base type for field (cc0, error)
The expression uses a bitwise operator (i.e., ‘<<’, ‘>>’, ‘&’, or ‘|’) with an incorrect type of
variable. A bit field must be declared within a char, unsigned char, int, or unsigned int.
No other base type is allowed.

bad external storage class (cc0, error)
An extern has been declared with an invalid storage class, e.g., register or auto.

bad field width (cc0, error)
A field width was declared either to be negative or to be larger than the object that holds it.
For example, char foo:9 or char foo:-1 will trigger this error.

bad filler field width (cc0, error)
A filler field width was declared either to be negative or to be larger than the object that
holds it. For example, char foo:9 or char foo:-1 will trigger this error.

bad flexible array declaration (cc0, error)
A flexible array is missing an array boundary; e.g., foo[5][]. C permits you to declare an
indefinite number of array elements of n bytes each, but you cannot declare an array to
have n elements of an indefinite number of bytes each.

Let’s C

Error Messages 99

bad line number after # (as, error)
The present expression uses an incorrect line number after a ‘#’, e.g,. a negative number.

Bad macro name (make, error)
A bad macro name was used; for example, a macro name included a control character.

break not in a loop (cc0, error)
A break occurs that is not inside a loop or a switch statement.

call of non function (cc0, error)
What the program attempted to call is not a function. Check to make sure that you have
not accidentally declared a function as a variable; e.g., typing char *foo; when you meant
char *foo();.

cannot add pointers (cc0, error)
The program attempted to add two pointers. ints or longs may be added to or subtracted
from pointers, and two pointers to the same type may be subtracted, but no other
arithmetic operations are legal on pointers.

cannot apply unary ‘&’ to a bit field (cc0, error)
The program attempted to use the address of a bit within a byte, which is illegal. Only
bytes can be addressed, not the bits within them.

cannot apply unary ‘&’ to a register variable (cc0, error)
Because register variables are stored within registers, they do not have addresses, which
means that the unary & operator cannot be used with them.

cannot apply unary ‘&’ to an alien function (cc0, error)
The unary ‘&’ operator cannot be used with any function that has been declared to be of
type alien. alien functions cannot be called by pointers.

cannot cast double to pointer (cc0, error)
The program attempted to cast a double to a pointer. This is illegal.

cannot cast pointer to double (cc0, error)
The program attempted to cast a pointer to a double. This is illegal.

cannot cast structure or union (cc0, error)
The program attempted to cast a struct or a union. This is illegal.

cannot cast to structure or union (cc0, error)
The program attempted to cast a variable to a union or struct. This is illegal.

string: cannot create (as, error)
The assembler cannot create the output file it was requested to create. This often is due to
a problem with the output device; check and make sure that it is not full, and that it is
working correctly.

string: cannot create (cpp, fatal)
The preprocessor cpp cannot create the output file string that it was asked to create. This
often is due to a problem with the output device; check and make sure that it is not full and
that it is working correctly.

cannot declare array of functions (cc0, error)
For example, the declaration extern int (*f)[](); declares f to be an array of pointers to
functions that return ints. Arrays of functions are illegal.

cannot declare flexible automatic array (cc0, error)
The program does not explicitly declare the number of elements in an automatic array.

Let’s C

100 Error Messages

cannot fold this expression (as, error)
The assembler cannot fold an expression, e.g., (ax+bx). This can occur for any of several
reasons.

cannot initialize fields (cc0, error)
The program attempted to initialize bit fields within a structure. This is not supported.

cannot initialize unions (cc0, error)
The program attempted to initialize a union within its declaration. unions cannot be
initialized in this way.

cannot move ‘.’ back (as, error)
The assembler cannot move the location counter backward, only forward.

string: cannot open (cpp, cc0, fatal)
The compiler cannot open the file string of source code that it was asked to read. cpp may
not have been told the correct directory in which this file is to be found; check that the file
is located correctly, and that the -I options, if any, are correct.

cannot open include file string (cpp, cc0, fatal)
The program asked for file string, which was not found in the same directory as the source
file, nor in the default include directory specified by the environmental variable INCDIR,
nor in any of the directories named in -I options given to the cc command.

string: cannot reopen (cc2, fatal)
The optimizer in cc2 cannot reopen a file with which it has worked. Make sure that your
mass storage device is working correctly and that it is not full.

case not in a switch (cc0, error)
The program uses a case label outside of a switch statement. See the Lexicon entry for
case.

character constant overflows long (cc0, error)
The character constant is too large to fit into a long. It should be redefined.

character constant promoted to long (cc0, warning)
A character constant has been promoted to a long.

class not allowed in structure body (cc0, error)
A storage class such as register or auto was specified within a structure.

compound statement required (cc0, error)
A construction that requires a compound statement does not have one, e.g., a function
definition, array initialization, or switch statement.

conditional stack overflow (cpp, fatal)
A series of #if expressions is nested so deeply that it overflowed the allotted stack space.
You should simplify this code.

constant expression required (cc0, error)
The expression used with a #if statement cannot be evaluated to a numeric constant. It
probably uses a variable in a statement rather than a constant.

constant ‘‘number’’ promoted to long (cc0, warning)
The compiler promoted a constant in your program to long; although this is not strictly
illegal, it may create problems when you attempt to port your code to another system,
especially if the constant appears in an argument list.

Let’s C

Error Messages 101

constant used in truth context (cc0, strict)
A conditional expression for an if, while, or for statement has turned out to be always true
or always false. For example, while(1) will trigger this message.

construction not in Kernighan and Ritchie (cc0, strict)
This construction is not found in The C Programming Language; although it can be compiled
by Let’s C, it may not be portable to another compiler.

continue not in a loop (cc0, error)
The program uses a continue statement that is not inside a for for while loop.

data in bssd (as, error)
The program attempted to initialize something in the bssd segment, which can contain only
uninitialized data.

‘.’ declared as label (as, error)
The present expression uses as a label, e.g., ‘‘.:’’. This is illegal.

#define argument mismatch (cpp, warning)
The definition of an argument in a #define statement does not match its subsequent use.
One or the other should be changed.

declarator syntax (cc0, error)
The program used incorrect syntax in a declaration.

default label not in a switch (cc0, error)
The program used a default label outside a switch construct. See the Lexicon entry for
default.

divide by zero (cc0, warning)
The program will divide by zero if this code is executed. Although the program can be
parsed, this statement may create trouble if executed.

duplicated case constant (cc0, error)
A case value can appear only once in a switch statement. See the Lexicon entries for case
and switch.

#elif used without #if or #ifdef (cpp, error)
An #elif control line must be preceded by an #if, #ifdef, or #ifndef control line.

#elif used after #else (cpp, error)
An #elif control line cannot be preceded by an #else control line.

#else used without #if or #ifdef (cpp, error)
An #else control line must be preceded by an #if, #ifdef, or #ifndef control line.

empty switch (cc0, warning)
A switch statement has no case labels and no default labels. See the Lexicon entry for
switch.

#endif used without #if or #ifdef (cpp, error)
An #endif control line must be preceded by an #if, #ifdef, or #ifndef control line.

EOF in comment (cpp, fatal)
Your source file appears to end in mid-comment. The file of source code may have been
truncated, or you failed to close a comment; make sure that each open-comment symbol ‘/*’
is balanced with a close-comment symbol ‘*/’. Also, be sure that you did not accidentally
embed a <ctrl-Z> in the line.

Let’s C

102 Error Messages

EOF in macro string invocation (cpp, error)
Your source file appears to end in a macro call. The source file may have been truncated, or
you may have accidentally embedded a <ctrl-Z> in the line.

EOF in midline (cpp, warning)
Check to see that your source file has not been truncated accidentally. Also, make sure
that you did not accidentally embed a <ctrl-Z> in the line.

EOF in string (cpp ,error)
Your file appears to end in the middle of a quoted string literal. Check to see that your
source file has not been truncated accidentally. Also, check that you did not accidentally
embed a <ctrl-Z> in the line.

#error: string (cpp, fatal)
An #error control line has been expanded, printing the remaining tokens on the line and
terminating the program.

error creating address (as, error)
The object generator could not build an address in MS-DOS object format. Please contact
Mark Williams Company.

error in #define syntax (cpp, error)
The syntax of a #define statement is incorrect. See the Lexicon entry for #define for more
information.

error in enumeration list syntax (cc0, error)
The syntax of an enumeration declaration contains an error.

error in expression syntax (cc0, error)
The parser expected to see a valid expression, but did not find one.

error in #include syntax (cpp, error)
An #include directive must be followed by a string enclosed by either quotation marks (" ")
or angle brackets (<>). Anything else is illegal.

expected comma (as, error)
The assembler expected to find a comma in the present expression, but did not.

expected constant (as, error)
The assembler expected to find a constant in the present expression, but did not.

exponent overflow in floating point constant (cc0, warning)
The exponent in a floating point constant has overflowed. The compiler has set the
constant to the maximum allowable value, with the expected sign.

exponent underflow in floating point constant (cc0, warning)
The exponent in a floating point constant has underflowed. The compiler has set the
constant to zero, with the expected sign.

expression too complex (cc1, fatal)
The code generator cannot generate code for an expression. You should simplify your code.

external syntax (cc0, error)
This could be one of several errors, most often a missing ‘{’.

field too wide (cc0, error)
A field must fit within an int, so the declared field width must not be greater than 16.

file ends within a comment (cc0, error)
The source file ended in the middle of a comment. If the program uses nested comments, it
may have mismatched numbers of begin-comment and end-comment markers. If not, the

Let’s C

Error Messages 103

program began a comment and did not end it, perhaps inadvertently when dividing by
*something, e.g., a=b/*cd;.

function cannot return a function (cc0, error)
The function is declared to return another function, which is illegal. A function, however,
can return a pointer to a function, e.g., int (*signal(n, a))()

function cannot return an array (cc0, error)
A function is declared to return an array, which is illegal. A function, however, can return a
pointer to a structure or array.

functions cannot be parameters (cc0, error)
The program uses a function as a parameter, e.g., int q(); x(q);. This is illegal.

identifier string has too many arguments (cpp, error)
Too many actual parameters have been provided.

identifier ‘‘string’’ is being redeclared (cc0, error)
The program declares variable string to be of two different types. This often is due to an
implicit declaration, which occurs when a function is used before it is explicitly declared.
Check for name conflicts.

identifier ‘‘string’’ is not a label (cc0, error)
The program attempts to goto a nonexistent label.

identifier ‘‘string’’ is not a parameter (cc0, error)
The variable ‘‘string’’ did not appear in the parameter list.

identifier ‘‘string’’ is not defined (cc0, error)
The program uses identifier string but does not define it.

identifier ‘‘string’’ not bound to register (cc0, strict)
Let’s C allows two variables to be bound to registers. If more than two variables are
declared to be of type register, the first two will be bound to registers and all others defined
as ordinary autos. If a variable is declared register but does not fit in a 16-bit register, it is
defined as an auto.

identifier ‘‘string’’ not usable (cc0, error)
string is probably a member of a structure or union which appears by itself in an
expression.

illegal character constant (cc0, error)
A legal character constant consists of a a backslash ‘\’ followed by a, b, f, n, r, t, v, x, or up
to three octal digits.

illegal character (number decimal) (cc0, error)
A control character was embedded within the source code. number is the decimal value of
the character.

illegal # construct (cc0, error)
The parser recognizes control lines of the form #line_number (decimal) or #file_name.
Anything else is illegal.

illegal control line (cpp, error)
A ‘#’ is followed by a word that the compiler does not recognize.

illegal cpp character (n decimal) (cpp, error)
The character noted cannot be processed by cpp. It may be a control character or a non-
ASCII character.

Let’s C

104 Error Messages

illegal integer constant suffix (cc0, error)
Integer constants may be suffixed with u, U, l, or L to indicate unsigned, long, or unsigned
long.

illegal label ‘‘string’’ (cc0, error)
The program uses the keyword string as a goto label. Remember that each label must end
with a colon.

illegal operation on ‘‘void’’ type (cc0, error)
The program tried to manipulate a value returned by a function that had been declared to
be of type void.

illegal structure assignment (cc0, error)
The structures have different sizes.

illegal subtraction of pointers (cc0, error)
A pointer can be subtracted from another pointer only if both point to objects of the same
size.

illegal use of a pointer (cc0, error)
A pointer was used illegally, e.g., multiplied, divided, or &-ed. You may get the result you
want if you cast the pointer to a long.

illegal use of a structure or union (cc0, error)
You may take the address of a struct, access one of its members, assign it to another
structure, pass it as an argument, and return. All else is illegal.

illegal use of defined (cpp, error)
The construction defined(token) or defined token is legal only in #if, #elif, or #assert
expressions.

illegal use of floating point (cc0, error)
A float was used illegally, e.g., in a bit-field structure.

illegal use of ‘‘void’’ type (cc0, error)
The program used void improperly. Strictly, there are only void functions; Let’s C also
supports the cast to void of a function call.

illegal use of void type in cast (cc0, error)
The program uses a pointer where it should be using a variable.

improper operand pair (as, error)
The expression uses one or more improper operands to an instruction. For example, mov
a, b will trigger this message; the instruction should be rendered mov ax, b or mov a, ax.

string in #if (cpp, error)
A syntax error occurred in a #if declaration. string describes the error in detail.

= in or after dependency (make, error)
An equal sign ‘=’ appeared within or followed the definition of a macro name or target file;
for example, OBJ=atod.obj=factor.obj will produce this error.

inappropriate signed (cc0, error)
The signed modifier may only be applied to char, short, int, or long types.

include stack overflow (cpp, fatal)
A set of #include statements is nested so deeply that the allotted stack space cannot hold
them. Examines the files for a loop. You should try to fold some of the header files into
one, instead of having them call each other.

Let’s C

Error Messages 105

Incomplete line at end of file (make, error)
An incomplete line appeared at the end of the makefile.

(in|out)(b|) must be DX or constant (as, error)
The present expression must use either DX or a constant.

(in|out)(b|) must use AX or AL (as, error)
The present expression must use use AX or AL.

inappropriate ‘‘alien’’ modifier (cc0, error)
The alien type is used to interface C with non-C functions; your program tried to use alien
as an internal function rather than as a reference to an external function.

inappropriate ‘‘long’’ (cc0, error)
Your program used the type long inappropriately, e.g., to describe a char.

inappropriate ‘‘short’’ (cc0, error)
Your program used the type short inappropriately, e.g., to describe a char.

inappropriate ‘‘unsigned’’ (cc0, error)
Your program used the type unsigned inappropriately, e.g., to describe a double.

index by non-register (as, error)
The present expression attempted to index either by using a variable, or by using a non-
existent register.

indirection through non pointer (cc0, error)
The program attempted to use a scalar (e.g., a long or fBint) as a pointer; you must first
cast it to a pointer.

initializer too complex (cc0, error)
An initializer was too complex to be calculated at compile time. You should simplify the
initializer to correct this problem.

integer pointer comparison (cc0, strict)
The program compares an integer or long with a pointer without casting one to the type of
the other. Although this is legal, the comparison may not work on machines with non-
integer pointers, e.g., Z8001 or LARGE-model i8086, or on machines with pointers larger
than ints, e.g., the 68000.

integer pointer pun (cc0, strict)
The program assigns a pointer to an integer, or vice versa, without casting the right-hand
side of the assignment to the type of the left-hand side. For example,

char *foo;
long bar;
foo = bar;

Although this is permitted, it is often an error if the integer has less precision than the
pointer does, as in LARGE-model programs. Make sure that you properly declare all
functions that returns pointers.

internal compiler error (cc0, cc1, cc2, cc3, fatal)
The program produced a state that should not happen during compilation. Forward a copy
of the program, preferably on a machine-readable medium, to Mark Williams Company,
together with the version number of the compiler, the command line used to compile the
program, and the system configuration. For immediate advice during business hours,
telephone Mark Williams Company.

Let’s C

106 Error Messages

internal error, c=number in expr. (as, error)
The assembler has detected a situation that ‘‘should not occur’’. Please send a copy of the
source code that triggered this error to Mark Williams Company. For immediate help
during business hours, contact Mark Williams Company.

invalid floating-point register (as, error)
The present instruction addresses a floating-point register that does not exist.

invalid identifier (as, error)
The present expression uses an invalid identifier, e.g., 39xy.

invalid index (as, error)
The present expression attempted to index in a context where it is illegal.

invalid index register (as, error)
The present expression attempted to index using an incorrect register, e.g., cx, dx, sp, ip,
*s, *l, *h.

invalid local symbol (as, error)
The present expression uses an invalid local symbol, e.g., 21f.

invalid operand (as, error)
The program uses an invalid operand, e.g., mov ax, 39f.

invalid operand pair (as, error)
The expression uses one or two incorrect operands. For example, mov a, b will trigger this
message; this expression should be rendered mov ax, b or mov a, ax.

invalid operand type (as, error)
The present instruction uses an invalid operand type, e.g., or cs, cs’.

invalid symbol (as, error)
The present instruction uses an invalid symbol, i.e., either an undefined symbol or a symbol
that is illegal, such as an opcode or an assembler instruction.

‘‘string’’ is a enum tag (cc0, error)

‘‘string’’ is a struct tag (cc0, error)

‘‘string’’ is a union tag (cc0, error)
string has been previously declared as a tag name for a struct, union, or enum, and is now
being declared as another tag. Perhaps the structure declarations have been included
twice.

‘‘string’’ is not a tag (cc0, error)
A struct or union with tag string is referenced before any such struct or union is declared.
Check your declarations against the reference.

‘‘string’’ is not a typedef name (cc0, error)
string was found in a declaration in the position in which the base type of the declaration
should have appeared. string is not one of the predefined types or a typedef name. See the
Lexicon entry on typedef for more information.

‘‘string’’ is not an ‘‘enum’’ tag (cc0, error)
An enum with tag string is referenced before any such enum has been declared. See the
Lexicon entry for enum for more information.

class ‘‘string’’ [number] is not used (cc0, strict)
Your program declares variable string or number but does not use it.

Let’s C

Error Messages 107

jmp must be direct address (as, error)
The jmp instruction must be used with a direct address; the present expression violates
this rule.

label ‘‘string’’ undefined (cc0, error)
The program does not declare the label string, but it is referenced in a goto statement.

left side of ‘‘string’’ not usable (cc0, error)
The left side of the expression string should be a pointer, but is not.

lvalue required (cc0, error)
The left-hand value of a declaration is missing or incorrect. See the Lexicon entries for
lvalue and rvalue.

macro body too long (cpp, fatal)
The size of the macro in question exceeds 200 bytes, which is the limit designed into the
preprocessor. Try to shorten or split the macro.

Macro definition too long (make, error)
Macro definitions are limited to 128 characters.

macro expansion buffer overflow in string (cpp, fatal)
A macro call has expanded into more characters than cpp can handle. Try to shorten the
macro, or break it up.

macro string redefined (cpp, error)
The program redefined the macro string.

macro string requires arguments (cpp, error)
The macro calls for arguments that the program has not supplied.

macros nested number deep, loop likely (cpp, error)
Macros call each other number times; you may have inadvertently created an infinite loop.
Try to simplify the program.

member ‘‘string’’ is not addressable (cc0, error)
The array string has exceeded the machine’s addressing capability. Structure members are
addressed with 16-bit signed offsets on most machines.

member ‘‘string’’ is not defined (cc0, error)
The program references a structure member that has not been declared.

mismatched conditional (cc0, error)
In a ‘?:’ expression, the colon and all three expressions must be present.

misplaced ‘‘:’’ operator (cc1, error)
The program used a colon without a preceding question mark. It may be a misplaced label.

missing ‘‘(’’ (cc0, error)
The if, while, for, and switch keywords must be followed by parenthesized expressions.

missing ‘)’ (as, error)
The assembler expected to find a right parenthesis in the present expression, but did not.

missing ‘‘)’’ (cc0, error)
A right parenthesis ‘)’ is missing anywhere after a left parenthesis ‘(’.

missing ‘‘=’’ (cc0, warning)
An equal sign is missing from the initialization of a variable declaration. Note that this is a
warning, not an error: this allows Let’s C to compile programs with ‘‘old style’’ initializers,
such as int i 1. Use of this feature is strongly discouraged, and it will disappear when the

Let’s C

108 Error Messages

draft ANSI standard for the C language is adopted in full.

missing ‘‘,’’ (cc0, error)
A comma is missing from an enumeration member list.

missing ‘‘:’’ (cc0, error)
A colon ‘:’ is missing after a case label, after a default label, or after the ‘?’ in a ‘?’-‘:’
construction.

missing ‘‘;’’ (cc0, error)
A semicolon ‘;’ does not appear after an external data definition or declaration, after a struct
or union member declaration, after an automatic data declaration or definition, after a
statement, or in a for(;;) statement.

missing ‘]’ (as, error)
The assembler expected to find a right bracket in the present expression, but did not.

missing ‘‘]’’ (cc0, error)
A right bracket ‘]’ is missing from an array declaration, or from an array reference; for
example, foo[5.

missing ‘‘{’’ (cc0, error)
A left brace ‘{’ is missing after a struct tag, union tag, or enum tag in a definition.

missing ‘‘}’’ (cc0, error)
A right brace ‘}’ is missing from a struct, union, or enum definition, from an initialization,
or from a compound statement.

missing ‘‘while’’ (cc0, error)
A while command does not appear after a do in a do-while() statement.

missing #endif (cpp, error)
An #if, #ifdef, or #ifndef statement was not closed with an #endif statement.

missing label name in goto (cc0, error)
A goto statement does not have a label.

missing member (cc0, error)
A ‘.’ or ‘->’ is not followed by a member name.

missing output file (cpp, fatal)
The preprocessor cpp found a -o option that was not followed by a file name for the output
file.

missing right brace (cc0, error)
A right brace is missing at end of file. The missing brace probably precedes lines with
errors reported earlier.

missing ‘‘string’’ (cc0, error)
The parser cc0 expects to see token string, but sees something else.

missing semicolon (cc0, error)
External declarations should continue with ‘,’ or end with ‘;’.

missing type in structure body (cc0, error)
A structure member declaration has no type.

Multiple actions for name (make, error)
A target is defined with more than one single-colon target line.

Let’s C

Error Messages 109

multiple classes (cc0, error)
An element has been asigned to more than one storage class, e.g., extern register.

Multiple detailed actions for name (make, error)
A target is defined with more than one single-colon target line.

multiple #else’s (cpp, error)
An #if, #ifdef, or #ifndef expression can be followed by no more than one #else expression.

multiple types (cc0, error)
An element has been assigned more than one data type, e.g., int float.

multiply defined symbol (as, error)
The current line has re-defined or multiply defined a symbol.

must be CL or 1 (as, error)
The present expression must use CL or one, but does not.

must load address into register (as, error)
For example, lea y, x will trigger this message; this expression should be rendered lea ax x.

must load direct address (as, error)
For example, lea ax, (bx, si) will not work on an i8086.

Must use ‘::’ for name (make, error)
A double-colon target line was followed by a single-colon target line.

nested comment (cpp, warning)
The comment introducer sequence ‘/*’ has been detected within a comment. Comments do
not nest.

new line in string literal (cpp, error)
A newline character appears in the middle of a string. If you wish to embed a newline
within a string, use the character constant ‘\n’. If you wish to continue the string on a new
line, insert a backslash ‘\’ before the new line.

Newline after target or macroname (make, error)
A newline character appears after a target name or a macro name.

newline in macro argument (cpp, warning)
A macro argument contains a newline character. This may create trouble when the
program is run.

no ‘pop CS’ instruction (as, error)
The assembler expected to find a ‘pop CS’ instruction in the present expression, but did not.

no string in .ascii statement (as, error)
The present expression uses a .ascii instruction, but does not give it a string.

non scalar field (cc0, error)
A field must be declared within a char, unsigned char, int, or unsigned int. A field with an
array base type is not allowed.

non-constant in multiply (as, error)
The present expression attempts to multiply one or more elements that will be relocated.

non-constant in segment construction (as, error)
The present expression attempts to perform a logical OR on an element that will be
relocated.

Let’s C

110 Error Messages

nonterminated string or character constant (cc0, error)
A line that contains single or double quotation marks left off the closing quotation mark. A
newline in a string constant may be escaped with ‘\’.

not a direct address (as, error)
For example, [(bx)+5] will trigger this message.

not a direct address in this segment (as, error)
For example, the expression [x-y] is acceptable only if x and y are in the same segment.

‘::’ not allowed for name (make, error)
A double-colon target line was used illegally; for example, after single-colon target line.

number has too many digits (cc0, error)
A number is too big to fit into its type.

only one default label allowed (cc0, error)
The program uses more than one default label in a switch expression. See the Lexicon
entries for default and switch for more information.

::: or : in or after dependency list (make, error)
A triple colon is meaningless to make, and therefore illegal wherever it appears. A single
colon may be used only in a target line (which is also called the dependency list), and
nowhere else.

Out of core (adddep) (make, error)
This results from a system problem. Try reducing the size of your makefile.

Out of space (make, error)
System problem. Try reducing the size of your makefile.

Out of space (lookup) (make, error)
System problem. Try reducing the size of your makefile.

out of space (cpp, cc0, cc1, cc2, cc3, fatal)
The compiler ran out of space while attempting to compile the program. To remove this
error, examine your source and break up any functions that are extraordinarily large.

out of tree space (cc0, fatal)
The compiler allows a program to use up to 350 tree nodes; the program exceeded that
allowance.

output write error (cc2, error)
The optimizer cc2 cannot create its output file. Check to see if the output device is working
correctly, and has enough space to hold the file being created.

parameter string is not addressable (cc0, error)
The parameter has a stack frame offset greater than 32,767. Perhaps you should pass a
pointer instead of a structure.

parameter must follow # (cpp, error)
Macro replacement lists may contain # followed by a macro parameter name. The macro
argument is converted to a string literal.

phase error (as, error)
The value of a label changed during the assembly. An expression has a size that differs
between the first and second passes.

potentially nonportable structure access (cc0, strict)
A program that uses this construction may not be portable to another compiler.

Let’s C

Error Messages 111

preprocessor assertion failure (cpp, warning)
A #assert directive that was tested by the preprocessor cpp was found to be false.

string redefined (cpp, error)
cpp macros should not be redefined. You should check to see that you are not #includeing
two different versions of a file somehow, or attempting to use the same macro name for two
different purposes.

return type/function type mismatch (cc0, error)
What the function was declared to return and what it actually returns do not match, and
cannot be made to match.

return(e) illegal in void function (cc0, error)
A function that was declared to be type void has nevertheless attempted to return a value.
Either the declaration or the function should be altered.

risky type in truth context (cc0, strict)
The program uses a variable declared to be a pointer, long, unsigned long, float, or double
as the condition expression in an if, while, do, or ‘?’-‘:’. This could be misinterpreted by
some C compilers.

segment of improper symbol (as, error)
For example, es:ax will trigger this message.

segment override by non-segment register (as, error)
The present expression uses a non-segment register to set
a segment prefix.

size of string overflows size_t (cc0, strict)
A string was so large that it overran an internal compiler limit. You should try to break the
string in question into several small strings.

size of struct ‘‘string’’ is not known (cc0, error)
small strings.

size of union ‘‘string’’ is not known (cc0, error)
A pointer to a struct or union is being incremented, decremented, or subjected to array
arithmetic, but the struct or union has not been defined.

size of string too large (cc0, error)
The program declared an array or struct that is too big to be addressable, e.g., long
a[20000]; on a machine that has a 64-kilobyte limit on data size and four-byte longs.

sizeof truncated to unsigned (cc0, warning)
An object’s sizeof value has lost precision when truncated to a size_t integer.

sizeof(string) set to number (cc0, warning)
The program attempts to set the value of string by applying sizeof to a function or an
extern; the compiler in this instance has set string to number.

storage class not allowed in cast (cc0, error)
The program casts an item as a register, static, or other storage class.

string initializer not terminated by NUL (cc0, warning)
An array of chars that was initialized by a string is too small in dimension to hold the
terminating NUL character. For example, char foo[3] = "ABC".

structure ‘‘string’’ does not contain member ‘‘m’’ (cc0, error)
The program attempted to address the variable string.m, which is not defined as part of the
structure string.

Let’s C

112 Error Messages

structure or union used in truth context (cc0, error)
The program uses a structure in an if, while, or for, or ‘?:’ statement.

subtracting non-constant (as, error)
The present expression subtracts one or more elements that will be relocated.

switch of non integer (cc0, error)
The expression in a switch statement is not type int or char. You should cast the switch
expression to an int if the loss of precision is not critical.

switch overflow (cc1, fatal)
The program has more than ten nested switches.

symbol ‘‘string’’ truncated to 39 characters (cc2, warning)
A symbol name can have no more than 39 characters.

Syntax error (make, error)
The syntax of a line is faulty.

too many adjectives (cc0, error)
A variable’s type was described with too many of long, short, or unsigned.

too many arguments (cc0, fatal)
No function may have more than 30 arguments.

too many arguments in a macro (cpp, fatal)
The program uses more than the allowed ten arguments with a macro.

too many cases (cc1, fatal)
The program cannot allocate space to build a switch statement.

too many directories in include list (cpp, fatal)
The program uses more than the allowed ten #include directories.

too many initializers (cc0, error)
The program has more initializers than the space allocated can hold.

Too many macro definitions (make, error)
The number of macros you have created exceeds the capacity of your computer to process
them.

too many structure initializers (cc0, error)
The program contains a structure initialization that has more values than members.

trailing ‘‘,’’ in initialization list (cc0, warning)
An initialization statement ends with a comma, which is legal.

type clash (cc0, error)
The parser expected to find matching types but did not. For example, the types of e1 and
e2 in (x) ? e1 : e2 must either both be pointers or neither be pointers.

type of function ‘‘string’’ adjusted to string (cc0, warning)
This warning is given when the type of a numeric constant is widened to unsigned, long, or
unsigned long to preserve the constant’s value. The type of the constant may be explicitly
specified with the u or L constant suffixes.

type of parameter ‘‘string’’ adjusted to string (cc0, warning)
The program uses a parameter that the C language says must be adjusted to a wider type,
e.g., char to int or float to double.

Let’s C

Error Messages 113

type required in cast (cc0, error)
The type is missing from a cast declaration.

undefined local symbol string (as, error)
The program uses the symbol string, but never defines it.

unexpected end of enumeration list (cc0, error)
An end-of-file flag or a right brace occurred in the middle of the list of enumerators.

unexpected end of line (as, error)
The present expression ends abruptly, and may have been truncated.

unexpected EOF (cc0, cc1, cc2, cc3, fatal)
EOF occurred in the middle of a statement. The temporary file may have been corrupted or
truncated accidentally. Check your disk drive to see that it is working correctly. Also,
make sure that you did not accidentally embed a <ctrl-Z> in the line.

union ‘‘string’’ does not contain member m (cc0, error)
The program attempted to address the variable string m, which is not defined as part of the
structure string.

unknown operator (as, error)
The program used an operator that as does not recognize.

string: unknown option (cpp, fatal)
The preprocessor cpp does not recognize the option string. Try re-typing the cc command
line.

= without macro name or in token list (make, error)
An equal sign ‘=’ can be used only to define a macro, using the following syntax:
‘‘MACRO=definition’’. An incomplete macro definition, or the appearance of an equal sign
outside the context of a macro definition, will trigger this error message.

: without preceding target (make, error)
A colon appeared without a target file name, e.g., :string.

write error on output object file (cc2, fatal)
cc2 could not write the relocatable object module. Most likely, your mass storage device
has run out of room. Check to see that your disk drive or hard disk has enough room to
hold the object module, and that it is working correctly.

zero modulus (cc0, warning)
The program will perform a modulo operation by zero if the code just parsed is executed.
Although the program can be parsed, this statement may create trouble if executed.

Let’s C

114 Error Messages

Let’s C

