
#%2=0 .nr # 0

Questions and Answers

The following is a list of questions asked most often by Let’s C users, and suggestions for solving
problems. If you have a problem with Let’s C, look here first.

Programming problems

Why doesn’t cpp execute? cpp execute?’>=29
Most likely, cc cannot find cpp because it is in another directory and you did not tell cc
where to look for it. If this is the case, use the -xc option in the cc command line, as
described in the Lexicon entry for cc. Also see the sub-section Setting the environment, in
section 1 of this manual.

Can I keep the compiler and source code on separate disks?
Yes, when you use the -x options on the cc command line. See the description of these
options in the Lexicon entry for cc. Also see the sub-section Setting the environment, in
section 1 of this manual.

My program won’t read a carriage return from a file. Why? read a carriage return from a file.
Why?’>=29
When you open a file stream, by default it is opened in ASCII mode. A file stream opened in
ASCII mode will handle only alphanumeric characters plus the newline character ‘\n’. All
other characters, including the carriage return character ‘\r’ will be dropped from the file
stream. To read a file that contains a carriage return or other non-alphanumeric characters
correctly, open the file in binary mode.

To read from a binary file you must open it in binary mode; for example:

fopen("filename", "rb")

For more information, see the entry for fopen in the Lexicon.

My automatic large array is corrupted. Why?
Most likely, you did not allocate enough stack when you compiled your program. Let’s C by
default sets aside two kilobytes of memory for stack, but your program may require more.
To increase stack size, use the -ys option to cc, or make the array static by moving it
outside of the body of the program. The -ys option takes the number of bytes in decimal;
for example, -ys 10000 gives you 10,000 bytes worth of stack.
Note that using too much stack space can itself cause other unpredictable results to appear.

Can I reduce the size of my compiled modules?
Yes. A number of techniques will save space in your programs. For example, try making
automatic variables into register variables. This also increases the speed of execution. Use
register variables only for heavily used data items. Normally, the compiler uses registers SI
and DI for intermediate work. The first register variable you assign uses SI, the second uses
DI. After that, the register typing is ignored.

Another technique is to perform repetitive function calls by means of a table definition. This
will eliminate the code needed to make each of the function calls except one. Also, try
removing the modules’ symbol tables with the command strip. This will reduce their size
significantly.

If your program does not use any STDIO routines, you can compile it with the -ns option.

91

92 Questions and Answers

The order of evaluation is not what I expected. Why?
Note the following passage from The C Programming Language: ‘‘C, like most languages,
does not specify in what order the operands of an operator are evaluated In any
expression that involves side effects, there can be subtle dependencies on the order in which
variables taking part in the expression are stored. One unhappy situation is typified by the
statement

a[i] = i++;

‘‘The question is whether the subscript is the old value of i or the new. The compiler can do
this in different ways, and generate different answers depending on its interpretation... The
moral of this discussion is that writing code which depends on order of evaluation is a bad
programming practice in any language.’’

printf gives incorrect output when rounding numbers. Why?
For example:

printf("%6.0f", (double) 9/10.0);

yields 0 instead of 1. This, however, represents a misunderstanding of how printf works.
The instruction %6.0f tells printf to truncate the value and print it, not round it; because
9/10 is less than 1, the output is zero, not one.

Where does make look for mactions and mmacros?
mmacros and mactions are files of preset macros and definitions that make uses by
default. make looks for them first in the directories named by the environmental variable
LIBPATH. If this variable is not set, it then looks in directory lib; if there is no directory
with this name, it finally looks in the current directory.

My Tandy 2000 cannot access my printer with lpt1. Why?
The Tandy 2000 is not fully IBM-compatible. One way in which it differs from the IBM PC is
that it cannot recognize the logical device lpt1. Use prn to access the printer on this
machine.

What does the error message temporary file write error mean?
Let’s C is a multiphase compiler in which each phase performs a different task. Because
each phase stands alone (as a single program), it must write its output to a temporary file
that is read by the following phase. Thus, this error means that a phase could not write out
its temporary file. This is usually due to a hardware problem such as a full disk, or a
write-protected disk. To overcome this problem, it might be necessary to write temporary
files to another directory or to another disk drive.

What does the error message lvalue required mean?
Your program uses a constant where it should use a variable. A variable is the name of any
data element whose value can change; for example

int foo;

declares the variable foo. A constant, on the other hand, is any number or fixed address.
The name of an array, for example, is a fixed address and cannot be altered. The code

int foo[];
int *bar;

...
foo = bar;

will generate an lvalue required error message, because the name of an array is a constant
rather than a variable. On the other hand, the code

Let’s C

Questions and Answers 93

int *foo;
int *bar;

...
foo = bar;

will not, because both foo and bar are pointers and, therefore, are variables. See the
Lexicon entries for lvalue and rvalue for more information.

What does the message Identifier string is being redeclared mean?
If you use a function without declaring it, Let’s C assumes that it is an integer. If later in
your program you declare that function to be something other than an integer, your
declaration will clash with the implicit declaration you made earlier, and so trigger the error
message. You should check that your functions do not contradict themselves. It is a good
programing practice to declare explicitly all functions and variables your program will use.

What does the error message out of space mean?
Most likely, you created a function that is too large for the compiler to process. Break the
routine into smaller components.

If this error is generated by cc2, try recompiling your program with the option -vcc2l. This
tells cc to use a LARGE-model version of cc2; this version runs more slowly than the
normal SMALL-model version of cc2, but can handle larger programs.

What does Bad value in debug mean?
This error occurs only when you have used the -VCSD option, so that you can debug your
program with csd. Your program probably declared a pointer to a structure tag that does
not exist. Check the declaration of the structure or pointer.

How can I estimate how much stack I need?
Automatic variables and passed parameters go on the stack. Register variables do not go
onto the stack. Each level of call requires eight bytes in SMALL model, and 10 bytes in
LARGE model. The runtime startup routine needs about 200 bytes of stack, and printf
about 100 bytes.

The default stack size is two kilobytes (2,048 bytes). To change it, use the -ys option; for
example, to compile a program with 4,096 bytes (four kilobytes) of stack, use the following
command:

cc -ys 4096 example.c

How do execall and system differ?
execall sends a command and its list of arguments, or ‘‘tail’’, directly to MS-DOS; system,
on the other hand, sends a command through command.com.

execall looks for the executable file, loads it, executes it with the given tail as its
arguments, and returns its exit status code. Thus, it only works if command exits to its
caller rather than by executing the MS-DOS warm boot. MS-DOS built-in commands, such
as dir, do not work with execall for this reason. system passes a command line to
command.com, loads it, and executes it as if it had been typed at the MS-DOS command
level. system can be used with the MS-DOS built-in commands, as well as with commands
that rely on MS-DOS to parse the command line into the formatted parameter area. Note,
too, that system runs more slowly than execall, and it cannot pass to the calling program
what the called program returned upon exiting.

See the Lexicon entries for execall and system for more information and for example
programs that use these routines.

Let’s C

94 Questions and Answers

What does the runtime startup routine do?
This is a routine that is linked with a C program as the first part of the executable object
program. It initializes the stack and saves information necessary to return to the calling
program, and calls the C library function _main to parse the MS-DOS command tail into
the arguments argv, argc, and envp, which are expected by the C program.

How can I make ROMable code?
Use the following steps:

1. Use the option -VROM to move constant strings into the code segment.

2. Put the data segment into ROM, copy it to RAM, and have the data segment point to
where it is in RAM. This must be done explicitly, i.e., you must write a new runtime
startup routine.

3. STDIO routines are linked into a program even if they are not required. Use the cc
option -ns to exclude them from your program. This also gives the program a different
version of the exit command, which does not call fflush or fclose.

4. Tools for converting to Intel hex format and for burning PROMs must be purchased
from third-party vendors. Mark Williams Company does not supply them at present.

How can I declare an array of (row)*(col) elements?
Declare and initialize it to Array[row-1][col-1]. The first element of the array is Array[0][0].

How can I redirect error messages into a file?
Use the greater-than sign ‘>’ with MS-DOS. For example,

cc filename.c > errfile

will work for one file. For multiple compiles, say:

cc file1.c > errfile
cc file2.c >> errfile
cc file3.c >> errfile

This appends the error messages from subsequent compilations onto the error file.

The -A option to cc automatically redirects error messages into a buffer, and invokes the
MicroEMACS editor so you can fix your source file ‘‘on the spot’’. You may find this to be
more convenient than redirecting the error messages into a file. For more information on
this option, see the Lexicon entry for cc.

How can I redirect an object file to another directory?
The option -o filename redirects the object file into filename, whereas the option -xo
directory redirects it into directory.

How can I build pointers for segment and offset functions, like copy?
Use the function ptoreg to convert C pointers to processor register pairs. ptoreg converts a
pointer p relative to segment seg and stores the resulting segment:offset pair in the register
pair segreg:offreg.

The functions csreg, dsreg, esreg, and ssreg return the current segment register values. To
turn a register pair into a C pointer, use the function regtop.

Can I compile a program from within MicroEMACS?
Yes. Use the -A option to the cc command line. If an error occurs, you will be returned to
MicroEMACS automatically, with your source code displayed in one window and the
compiler’s error messages displayed in the other. When you have corrected the problem,
exiting from the editor with either the <ctrl-X><ctrl-S> or <ctrl-Z> automatically recompiles
your program.

Let’s C

Questions and Answers 95

Problems with running programs

My data are being corrupted inexplicably.

My computer is hanging.

My program is generating garbage.
These problems may have a number of causes; the most likely is improper allocation of
space. Often, the stack size is too small. If the stack grows too large for the space that has
been allocated for it, it will invade and corrupt the static data area. The default value for
stack size is two kilobytes (2,048 bytes), which is large enough for most functions; however,
but highly recursive functions (such as qsort) or programs that use large automatic arrays
(such as the sample program on page 29 of The C Programming Language, ed. 2) will quickly
exhaust the available stack space. There is no way to increase the size of the stack while a
program is running. To increase the stack, you must relink the program and allocate more
stack by using the -ys option to the cc command. For more information, see the Lexicon
entries for cc and stack.

Another common cause of data corruption is using a pointer without allocating space for
the object to which it points. This is called an uninitialized pointer. For instance, if your
program declares the variable str to be a pointer to a char, you cannot assign data to str
unless you ensure that str points to a place that can hold these data; otherwise, the results
will be unpredictable. You can make sure that a pointer works correctly either by
initializing it, or by allocating space with malloc or calloc.

Another cause of this problem is passing a function the wrong number or type of
parameters. Be sure that all functions have the correct number of arguments, and that all
arguments are of the correct type.

My output is not going to the screen as I expected.
MS-DOS buffers output to the console, and does not print it until it gets a newline
character. You can flush out the buffer whenever you want by using the function call
fflush(stdout), or you can use the Mark Williams functions getcnb and putcnb, which go
directly to the console.

getcnb doesn’t work right. Why? work right. Why?’>=29
Problems will arise when you combine getcnb with printf or any other normal STDIO
function. Let’s C follows the UNIX protocol, and buffers all of its STDIO functions. For
example, when you create a printf string, it waits in a buffer until something, such as a
newline character or a fflush instruction, pushes it out of the buffer and onto your screen.
Thus, if you use a printf call to print a prompt string, then use a getcnb call to get the
user’s response, you will not see the prompt until you type the carriage return in response
to the getcnb call. To solve this problem, either use putcnb to display the prompt, or follow
the printf call with fflush(stdout).

How do I clear the screen?
The easiest way to do this is to use the appropriate escape sequences defined in the file
ansi.sys, provided it is loaded by config.sys. You can also call the MS-DOS function that
clears the screen. See the Lexicon entry for ansi.sys for more information.

Can I open more than the default number of files at a time?
Yes. Simply insert the instruction

FILES=n

into the file config.sys, where n is the number of files you want to be able to open at any
given time. Because of the way MS-DOS is designed, no more than 20 files can be opened
by a program at any one time; this limit includes stdin, stdout, stderr, aux, and the

Let’s C

96 Questions and Answers

printer. Make sure that config.sys is on your boot disk, and then reboot your system.

Can I call any MS-DOS function or interrupt?
The function intcall, which is described in the Lexicon, provides a general interrupt calling
routine. See the Lexicon entry for interrupts for the number of the interrupt you need to
hand to intcall, the number of the function you wish to call, and any other information the
function requires. Also read the header file dos.h, which defines constants for most of the
interrupts and function numbers.

For a summary of how to handle interrupts, see the Lexicon entry for interrupt handling.

How can I position the cursor?
The easiest way is to use the escape sequences listed in the file ansi.sys. See the Lexicon
entry for ansi.sys for more information. MS-DOS interrupt 10 can also be used to move the
cursor. The MicroEMACS editor uses interrupt 10, and its source code (which is included
with Let’s C) demonstrates how to use this interrupt.

Can I link my masm routines with Let’s C output?
Yes, as long as you observe Let’s C’s linkage conventions. For more information, see the
Lexicon entry on calling conventions.

The command fixobj lets you edit object modules. With fixobj, you can edit modules
compiled or assembled by other language tools so that they can be linked with programs
generated by Let’s C. For more information, see the Lexicon entry for fixobj.

Where does Let’s C put things in memory?
See the entry on memory allocation in the Lexicon.

Limitations in i8086

What are the limits on the size of arrays?
Let’s C does not limit the size of an array; however, the architecture of the Intel i8086
microprocessor is such that it forbids the creation of a data structure that is larger than 64
kilobytes.

SMALL-model limitations
Programs are limited to 128 kilobytes of code and data combined. Within the 128 kilobytes,
the following limitations apply:

• No program can have more than 64 kilobytes of code.

• No program can have more than 64 kilobytes of data.

Data includes stack (automatic) data, static data, and dynamically allocated memory.

LARGE-model limitations
Programs are limited to one megabyte of code and data combined. Within the one
megabyte, the following limitations apply:

• No module can have more than 64 kilobytes of code.

• No module or library can have more than 64 kilobytes of static data.

• The stack size cannot exceed 64 kilobytes.

• No individual data structure can exceed 64 kilobytes.

Let’s C

