make Programming Discipline

make is a utility that relieves you of the drudgery of building a complex C program.
How does make work?

To understand how make works, it is first necessary to understand how a C program is built: how
Let’s C takes you from the C source code that you write to the executable program that you can run
on your computer.

The file of C source code that you write is called a source module. When Let’s C compiles a source
module, it uses the C code in the source module, plus the code in the header files that the code calls
to produce an object module. This object module is not executable by itself. To create an executable
file, the object module generated from your source module must be handed to a linker, which links
the code in the object module with the appropriate library routines that the object module calls, and
adds the appropriate C runtime startup routine.

For example, consider the following C program, called hello.c:
mai n()

printf("Hello, world\n");
}

When Let’s C compiles the file that contains C code shown above, it generates an object module
called hello.obj. This object module is not executable because it does not contain the code to
execute the function printf; that code is contained in a library. To create an executable program,
you must hand hello.obj to the linker 1d, which copies the code for printf from a library and into
your program, adds the appropriate C runtime startup routine, and writes the executable file called
hello.exe. This third file, hello.exe, is what you can execute on your computer.

The term dependency describes the relationship of executable file to object module to source
module. The executable program depends on the object module, the library, and the C runtime
startup. The object module, in turn, depends on the source module and its header files (if any).

A program like hello.exe has a simple set of dependencies: the executable file is built from one
object module, which in turn is compiled from one source module. If you changed the source
module hello.c, creating an updated version of hello.exe would be easy: you would simply compile
hello.c to create hello.obj, which you would link with the library and the runtime startup to create
hello.exe. Let’s C, in fact, does this for you automatically: all you need to do is type

cc hello.c
and Let’s C takes care of everything.

On the other hand, the dependencies of a large program can be very complex. For example, the
executable file for the MicroEMACS screen editor is built from several dozen object modules, each of
which is compiled from a source module plus one or more header files. Updating a program as large
as MicroEMACS, even when you change only one source module, can be quite difficult. To rebuild
its executable file by hand, you must remember the names of all of the source modules used,
compile them, and link them into the executable file. Needless to say, it is very inefficient to
recompile several dozen object modules to create an executable when you have changed only one of
them.

81

82 Introduction to make

make automatically rebuilds large programs for you. You prepare a file, called a makefile, that
describes your program’s chain of dependencies. make then reads your makefile, checks to see
which source modules have been updated, recompiles only the ones that have been changed, and
then relinks all of the object modules to create a new executable file. make both saves you time,
because it recompiles only the source modules that have changed, and spares you the drudgery of
rebuilding your large program by hand.

Try make

The following example shows how easy it is to use make.

To begin, make examines the time and date that MS-DOS has stamped on each source file and
object module. When you edit a source module, MS-DOS marks it with the time at which you
edited it. Thus, if a source module has a time that is later than that of its corresponding object
module, then make knows that the source module was changed since the object module was last
compiled and it will compile a new object module from the altered source module. If you do not
reset the time on your system whenever you reboot, every time, some files will not have the correct
date and time and make cannot work correctly.

To see how make works, try compiling a program called factor. It is built from the following files:

atod. c
factor.c
makefil e

All three are included with your copy of Let’s C.

If you do not have a hard disk, insert disk 8 (which holds the sample programs) into drive B, and
make sure that disk 2 (the compiler disk) is in drive A. Use the ed command to shift into directory
src.

Now, type make. make will begin by reading makefile, which describes all of factor’s
dependencies. It will then use the makefile description to create factor. The following will appear
on your screen:

cc -c factor.c
cc -c atod.c
cc -f -o factor.exe factor.obj atod.obj -Im

Each of these messages describes an action that make has performed. The first shows that make is
compiling factor.c, the second shows that it is compiling atod.c, and the third shows that it is
linking the compiled object modules atod.obj and factor.obj to create the executable file factor.exe.

When make has finished, the MS-DOS prompt will return. To see how your newly compiled
program works, type

factor 100
factor will calculate the prime factors of its argument 100, and print them on the screen.

To see what happens if you try to re-make your file, type make again. make will run quietly for a
moment, and then exit. make checked the dates and times of the object modules and their
corresponding source modules and saw that the object modules had a time later than that of the
source modules. Because no source module changed, there was no need to recompile an object
module or relink the executable file, so make quietly exited.

To see what happens when one of the source modules changes, try the following. Use the
MicroEMACS screen editor to open the file factor.c for editing. Insert the following line into the
comments at the top, immediately following the /*:

Let’s C

Introduction to make 83

* This comment is for test purposes only.
Now exit. Type make once again. This time, you will see the following on your screen:

cc -c factor.c
cc -f -o factor.exe factor.obj atod.obj -Im

Because you altered the source module factor.c, its time was later than that of its corresponding
object module, factor.obj. When make compared the times of factor.c and factor.obj, it noted that
factor.c had been altered. It then recompiled factor.c and relinked factor.obj and atod.obj to re-
create the executable file factor.exe. make did not touch the source module atod.c because atod.c
had not been changed since the last time it was compiled.

As you can see, make greatly simplifies the construction of a C program that uses more than one
source module.

Essential make

Although make is a powerful program, its basic features are easy to master. This section will show
you how to construct elementary make scripts.

The makefile

When you invoke make, it searches the directories named in the environmental variable PATH for a
file called makefile. As noted earlier, the makefile is a text file that describes a C program’s
dependencies. It also describes the type of program you wish to build, and the commands for
building it.

A makefile has three basic parts.

First, the makefile describes the executable file’s dependencies. That is, it lists the object modules
needed to create the executable file. The name of the executable file is always followed by a colon *’
and then by the names of files from which the target file is generated.

For example, if the program feud.exe is built from the object modules hatfield.obj and mccoy.obj,
you would type:

f eud. exe: hatfi el d. obj ntcoy. obj

If the files hatfield.obj and mccoy.obj do not exist, make knows to create them from the source
modules hatfield.c and mccoy.c.

Second, the makefile holds one or more command lines. The command line gives the command to
compile the program in question. The only difference between a makefile command line and an
ordinary cc command is that a makefile command line must begin with a space or a tab character.

For example, the makefile to generate the program feud.exe must contain the following command
line:

cc -o feud. exe hatfield.obj ntcoy.obj

For a detailed description of the ce command and its options, refer to the entry for ce in the
Lexicon.

Third, the makefile lists all of the header files that your program uses. These are given so that
make can check if they were modified since your program was last compiled. For example, if the
program hatfield.c used the header file shotgun.h and mccoy.c used the header files rifle.h and
pistol.h, the makefile to generate feud.exe would include the following lines:

hatfiel d. obj: shotgun.h
nccoy.obj: rifle.h pistol.h

Thus, the entire makefile to generate the program feud.exe is as follows:

Let’s C

84 Introduction to make

feud. exe: hatfield.obj nctcoy. obj
cc -o feud.exe hatfield.obj ntcoy.obj

hatfi el d. obj: shotgun.h
nccoy.obj: rifle.h pistol.h

A makefile may also contain macro definitions and comments. These are described below.
Building a simple makefile

The program factor.exe is built from two source modules, factor.c and atod.c. No header files are
used. The makefile contains the following two lines:

factor.exe: factor.obj atod.obj
cc -f -o factor.exe factor.obj atod.obj -Im

The first line describes the dependency for the executable file factor.exe by naming the two object
modules needed to build it. The second line gives the command needed to build factor.exe. The
option -lm at the end of the command line tells cc that this program needs the mathematics library
libm when the program is linked. No header file dependencies are described because these
programs use no header files.

Comments and macros

You can embed comments within a makefile. A comment is a line of text that is ignored; this lets
you “document” the file, so that whoever reads it will now know what it is for. make ignores all
lines that begin with a pound sign ‘#. For example, you may wish to include the following
information in your makefile for factor:

This nakefile generates the program"factor".

"factor" consists of the source nodules "factor.c" and
"atod.c". It uses the standard nathematics library

"libm', but it requires no special header files.

"-f" lets you use printf for floating-point nunbers.

factor: factor.obj atod. obj
cc -f -o factor.exe factor.obj atod.obj -Im

Anyone who reads this file will know immediately what it is for by looking at the comments.

make also lets you define macros within your makefile. A macro is a symbol that represents a
string of text. Usually, a macro is defined at the beginning of the makefile using a macro definition
statement. This statement uses the following syntax:

SYMBOL = string of text

Thereafter, when you use the symbol in your makefile, it must begin with a dollar sign ‘¢’ and be
enclosed within parentheses.

Macros eliminate the chore of retyping long strings of file names. For example, with the makefile
for the program factor, you may wish to use a macro to substitute for the names of the object
modules out of which it is built. This is done as follows:

This nakefile generates the program"factor".

"factor" consists of the source nodules "factor.c" and
"atod.c". It uses the standard nathematics library

"libm', but it requires no special header files.

"-f" lets you use printf for floating-point nunbers.

Let’s C

Introduction to make 85

OBJ = factor.obj atod. obj
factor: $(0BJ)
cc -o factor.exe $(OBJ) -Im

The macro OBJ is used in this makefile. If you use a macro that has not been defined, make
substitutes an empty string for it. The use of a macro makes sense when generating large files out
of a dozen or more source modules. You avoid retyping the source module names, and potential
errors are avoided.

Setting the time

As noted above, make checks to see which source modules have been modified before it regenerates
your C program. This is done to avoid wasteful recompiling of source modules that have not been
updated.

make determines that a source module has been altered by comparing its date against that of the
target program. For example, if the object module factor.obj was generated on March 16, 1987,
10:52:47 A.M., and the source module factor.c was modified on March 20, 1987, at 11:19:06 A.M.,
make will know that factor.c needs to be recompiled because it is younger than factor.obj.

For this reason, if you wish to use make, you must reset the date and time every time you reboot
your system. Some users do not do this routinely; however, unless the time is reset every time,
make will not work correctly.

Building a large program

As shown earlier, make can ease the task of generating a large program. The following is the
makefile used to generate the screen editor MicroEMACS:

M5-DOS limts command line tails to no nore

than 128 characters. To skirt this limt, the
command line is built into a tenporary file,

which we pass to nake.

Ol = ansi.obj basic.obj buffer.obj display.obj file.obj \
fileio.obj line.obj nain.obj

wi ndow. obj word. obj tcap. obj

random obj region.obj search.obj spawn.obj term o.obj vt52.o0bj

exe: $(O0L) $(®2) $(®W)
echo $(0OLl) > maketenp
echo $(2) >> meketenp
echo $(3B) >> naketenp
cc -0 ne.exe @mketenp
del maket enp

$(01) $(2) $(®@): ed.h

This file shows how the elements of a makefile are used to control the generation of a large
program.

2
(0¢)
ne.

The first four lines consist of comments that describe a peculiarity of the file, as fair warning to
future programmers.

The next four lines define the macros 01, 02, and 03, which substitute for the 17 files that make
up this program. Three macros must be used because, as explained in the comments, under MS-
DOS no command line can have a tail longer than 128 characters.

The next line gives the name of the target file, me.exe, and the files needed to generate it; in this
case, these file names are represented by the macros O1, 02, and 03.

Let’s C

86 Introduction to make

The next three lines begin with the command echo. These command lines copy the three macros
into the temporary file maketemp; this strategy is one way around the 128-character limit on
command lines.

The next line is the command line. It controls the compiling of the files listed in maketemp.

The next to last line deletes maketemp, so that this file is no longer cluttering up your directory.
Finally, the last line notes that all 17 of the MicroEMACS object modules are built in from the
header file ed.h.

Command line options

Although make is controlled by your makefile, you can also control make by using command line
options. These allow you to alter make’s activity without having to edit your makefile.

Options must follow the command name on the command line and begin with a hyphen, -, using
the following format. The square brackets merely indicate that you can select any of these options;
do not type the brackets when you use the make command:

make [-dinprst] [-f filename]

Each option is described below.

-d (debug) make describes all of its decisions. You can use this to debug your makefile.

-f filename
(file) option tells make that its commands are in a file other than makefile. For example, the
command

make -f smith

tells make to use the file smith rather than makefile. If you do not use this option, make
searches the directories named in the environmental variable PATH, and then the current
directory for a file entitled makefile to execute.

-i (ignore errors) make ignores error returns from commands and continues processing.
Normally, make exits if a command returns an error status.

-n (no execution) make tests dependencies and modification times but does not execute
commands. This option is especially helpful when constructing or debugging a makefile.

-p (print) make prints all macro definitions and target descriptions.

-r (rules) make does not use the default macros and commands from SLIBPATH\mmacros and
SLIBPATH\mactions. These files will be described below.

-s (silent) make does not print each command line as it is executed.

-t (touch) make changes the modification time of each executable file and object module to the

current time. This suppresses recreation of the executable file, and recompilation of the
object modules. Although this option is used typically after a purely cosmetic change to a
source module or after adding a definition to a header file, it must be used with great caution.

Other command line features
In addition to the options listed above, you may include other information on your command line.

First, you can define macros on the command line. A macro definition must follow any command
line options. For example, the command line

meke -n -f smth "CSD=-VCSD"

tells make to run in the no execution mode, reading the file smith instead of makefile, and defining

Let’s C

Introduction to make 87

the macro CSD to mean -VCSD.

The ability to define macros on the command line means that you can create a makefile using
macros that are not yet defined; this greatly increases make’s flexibility and makes it even more
helpful in creating and debugging large programs. In the above example, you can define a command
line as follows:

cc $(CSD) exanple.c

When you define the macro CSD on the command line, then the program is compiled using the -
VCSD option, which creates an executable that can be debugged with csd, the Mark Williams C
Source Debugger. If the macro is not set, however, then it is simply skipped when the command
line is executed, and the program is compiled in the usual manner.

Another command-line feature is the ability to change the name of the target file on the command
line. Normally, the target file is the executable file that you wish to create, although, as will be seen,
it does not have to be. As will be discussed below, a makefile can name more than one target file.
make normally assumes that the target is the first target file named in makefile. However, the
command line may name one or more target files at the end of the line, after any options and any
macro definitions.

To see how this works, recall the program factor described above. factor is generated out of the
source modules factor.c and atod.c. The command

make at od. obj
with the makefile outlined above would produce the following eec command line:
cc -c atod.c

if the object module atod.obj does not exist or is outdated. Here, make compiles atod.c to create
the target specified in the make command line, that is, atod.obj, but it does not create factor. This
feature allows you to apply your makefile to only a portion of your program.

The use of special, or alternative, target files is discussed below.
Advanced make

This section describes some of make’s advanced features. For most of your work, you will not need
these features; however, if you create an extremely complex program, you will find them most
helpful.

Default rules

The operation of make is governed by a set of default rules. These rules were designed to simplify
the compilation of a typical program; however, unusual tasks may require that you bypass or alter
the default rules.

To begin, make uses information from the files mmacros and mactions to define default macros
and compilation commands. make looks for these files in the directories named in the
environmental variable LIBPATH. make uses the commands in mmacros and mactions whenever
the makefile specifies no explicit regeneration commands. The command line option -r tells make
not to use the macros and actions defined in mmacros and mactions.

As shown in earlier examples, make knows by default to generate the object module atod.obj from
the source module atod.c with the command

cc -c atod.c

The macro .SUFFIXES defines the suffixes make knows about by default. Its definition in mmacros
includes both the .obj and .c suffixes.

Let’s C

88 Introduction to make

make’s files mmacros and mactions use pre-defined macros to increase their scope and flexibility.
These are as follows:

$< This stands for the name of the file or files that cause the action of a default rule. For
example, if you altered the file atod.c and then invoked make to rebuild the executable file
factor.exe, $< would then stand for atod.c.

$* This stands for the name of the target of a default rule with its suffix removed. If it had been
used in the above example, $* would have stood for atod.

$< and $* work only with default rules; these macros will not work in a makefile.

$? This stands for the names of the files that cause the action and that are younger than the
target file.

$@ This stands for the target name.

You can use the macros $? and $@ in a makefile. For example, the following rule updates the file
factor with the objects defined by macro $(OBJ) that are out of date:

factor: $(0BJ)
cc -c $? -Im

mmacros also contains a default command that describes how to build additional kinds of files:

o AS and ASFLAGS call the assembler to assemble .obj files out of source modules written in
assembly language rather than C.

You can change the default rules of make by changing them in mactions and changing the
definition of any of the macros as given in mmacros.

Double-colon target lines

An alternative form of target line simplifies the task of maintaining libraries. This form uses the

double colon “::” instead of a single colon *’ to separate the name of the target from those of the files
on which it depends.

A target name can appear on only one single-colon target line, whereas it can appear on several
double-colon target lines. The advantage of using the double-colon target lines is that make will
remake the target by executing the commands (or its default commands) for the first such target line
for which the target is older than a file on which it depends.

For example, for the program factor.exe described earlier, assume that two versions of the source
modules factor.c and atod.c exist: factora.c plus atoda.c, and factorb.c plus atodb.c The
makefile would appear as follows:

OBJ1 = factora.obj atoda.obj
OBJ2 = factorb.obj atodb. obj

factor.exe :: $(0BJ1)
cc -c $(0BJ1) -Im

factor.exe :: $(0BJ2)
cc -c $(0BJ2) -Im

This makefile tells make to do the following: (1) Check if either factora.obj or atoda.obj is younger
than factor.exe. (2) If either one is, regenerate factor.exe using this version of these files. (3) If
neither factora.obj nor atoda.obj is younger than factor.exe, then check to see if either factorb.obj
or atodb.obj is younger than factor.exe. (4) If either of them is, then regenerate factor.exe using
the youngest version of these files.

Let’s C

Introduction to make 89

This technique allows you to maintain multiple versions of source files in the same directory and
selectively recompile the most recently updated version without having to edit your makefile or
otherwise trick the system.

You cannot target a file in both a single-colon and a double-colon target line.
Alternative uses
make is a program that helps you construct complex things from a number of simpler things.

make usually is used to build complex C programs: the executable file is made from object modules,
which are made from source modules and header files. However, make can be used to create any
type of file that is constructed from one or more source modules. For example, an accountant can
use make to generate monthly reports from daily inventories: all the accountant has to do is prepare
a makefile that describes the dependencies (that is, the name of the monthly report they wish to
create and the names of the daily inventories from which it is created), and the command required
to generate the monthly report. Thereafter, to recreate the report, all the accountant has to do to
generate a monthly report is type make.

In another example, the makefile can trigger program maintenance commands. For example, the
target name backup might define commands to copy source modules to another directory; typing
make backup saves a copy of the source modules. Similar uses include removing temporary files,
building libraries, executing test suites, and printing listings. A makefile is a convenient place to
keep all the commands used to maintain a program.

The following example shows a makefile that defines two special target files, printall and printnew,
to be used with the source files for the program factor.exe.

This nakefile generates the program "factor. exe".
"factor.exe" consists of the source nodules "factor.c" and

"atod.c". It uses the standard mathenmatics library
libm but it requires no special header files.
oBJ factor.obj atod.obj

SRC

factor: $(0BJ)
cc -o factor $(OBJ) -Im

factor.c atod.c

programto print all the updated source nodul es
used to generate the program "factor.exe"

printall:
pr $(SRC) | print /p
echo junk > printall

printnew. $(0BJ)
pr $? | print /p
echo junk > printnew

In this instance, typing the command
make printall

forces make to generate the target printall rather than the target factor.exe, which is the default as
it appears first in the makefile. The pr and print commands are then used to print a listing of all
files defined by SRC. The macro OBJ cannot be used with these commands because it would trigger
the printing of the object files, which would not be of much use. The word junk is echoed into an
empty file, prnew. This new file serves only to record the time the listing is printed. This tactic is
performed in order to record the time that the listing was last generated so that make will know
what files have been updated when you next use printnew.

Let’s C

90 Introduction to make

Typing the command
make printnew

forces make to generate the target printnew rather than the default target factor. printnew prints
only the files named in the macro SRC that have changed since any files were last printed.

Special targets

A few target names have special meanings to make. The name of each special target begins with .’
and contains upper-case letters.

The target name .DEFAULT defines the default commands make uses if it cannot find any other
way to build a target. The special target .IGNORE in a makefile has the same effect as the -i
command line option. Similarly, .SILENT has the same effect as the -s command line option.

Errors

make prints “command exited with status n” and exits if an executed command returns an error
status. However, it ignores the error status and continues processing if the makefile command line
begins with a hyphen ‘-’ or if the make command line specifies the -i option.

make reports an error status and exits if the user interrupts it. It prints “can’t open file” if it
cannot find the specification file. It prints “Target file is not defined” or “Don’t know how to make
target” if it cannot find an appropriate file or commands to generate target. Other possible errors
include syntax errors in the specification file, macro definition errors, and running out of space.
The error messages make prints are generally self-explanatory; however, a table of error messages
and brief descriptions of them are given in a later section of this manual.

Exit status
make returns a status of zero if it succeeds and -1 if an error occurs.

Where to go from here

make is summarized in the Lexicon. Look there for more information about how to use it with C
programs.

Let’s C

