
#%2=0 .nr # 0

Introduction to MicroEMACS

This section introduces MicroEMACS, the interactive screen editor for Let’s C. It is written for two
types of reader: the one who has never used a screen editor and needs a full introduction to the
subject, and the one who has used a screen editor before but wishes to review specific topics.

What is MicroEMACS?
MicroEMACS is an interactive screen editor. An editor lets you type text into your computer, name
it, store it, and recall it later for editing. Interactive means that MicroEMACS will accept an editing
command, execute it, display the results for you immediately, then wait for your next command.
Screen means that you can use nearly the entire screen of your terminal as a writing surface: you
can move your cursor up, down, and around your screen to create or change text, much as you
move your pen up, down, and around a piece of paper.

These features, plus the others that will be described in the course of this tutorial, make
MicroEMACS a tool that is powerful yet easy to use. You can use MicroEMACS to create or change
computer programs or any type of text file.

The MS-DOS version of MicroEMACS was adapted by Mark Williams Company from a public-
domain program written by David G. Conroy. This tutorial is based on the descriptions in his essay
MicroEMACS: Reasonable Display Editing in Little Computers MicroEMACS is derived from the
mainframe display editor EMACS, which was created at the Massachusetts Institute of Technology
by Richard Stallman.

For a summary of MicroEMACS and its commands, see the entry for me in the Lexicon.

Keystrokes — <ctrl>, <esc>
The MicroEMACS commands use control characters
and meta characters.
Control characters use
the
control key, which is marked Control
on your keyboard; meta characters
use the escape key, which
is marked Esc.


Ctrl
works like the shift key: you hold it down while
you strike the other key.
Here, this will be
represented with a hyphen; for
 example, pressing the control key and the letter ‘X’
 key
simultaneously will be shown as follows:


<ctrl-X>


The esc 
key, on the other hand, works like an ordinary
character.
You should strike it first, then
strike the 
letter character you want.
Escape character codes will not be represented
with a hyphen;
for example, escape X will be represented as:


<esc>X


Becoming acquainted with MicroEMACS
Now
 you are ready for a few simple exercises that will help
 you get a feel for how MicroEMACS
works.



To begin, type the following command to
MS-DOS:


me sample

If you are using Let’s C through the MWS display interface, return to the main menu and then
press <return>. When the Edit menu appears, press the <> key until the cursor bar is at New File;
then press <return> and type sample.

53



54 MicroEMACS

Within a few seconds, your screen will have been cleared of writing,
the cursor will be positioned in
the upper left-hand corner of
 the screen, and a command line will appear at the bottom of your

screen.


Now type the following text.
If you make a mistake, just backspace over it and
retype the text.
Press
the carriage return or enter key
after each line:


main()

{


printf("Hello, world!\n");

}


Notice how the text appeared on the screen character by character
as you typed it, much as it would
appear on a piece
of paper if you were using a typewriter.


Now, type 
<ctrl-X><ctrl-S>; 
that is, type <ctrl-X>,
and then type <ctrl-S>.
It does not matter whether
you type capital or lower-case letters.
Notice that this message has appeared at the bottom of your

screen:


[Wrote 4 lines]


This command has permanently stored, or saved, what you
typed into a file named sample.

Type the next few commands, which demonstrate some of the tasks that
MicroEMACS can perform
for you.
These commands will be explained in full in the sections
that follow; for now, try them to
get a feel
for how MicroEMACS works.


Type <esc><.
 Be sure that you type a less-than symbol
 ‘<’, instead of a comma.
Notice that the
cursor has returned to the upper left-hand corner
 of the screen.
 Type <esc>F.
 The cursor has
jumped forward by one word, and is now
 on the left parenthesis. Type <ctrl-N>.
Notice that the
cursor has jumped to the next line, and is now
just to the right of the left brace ‘{’.
Type <ctrl-A>.

The cursor has jumped to the beginning of the second line
of your text.
Type <ctrl-N> again, and
the cursor is at the beginning of the
third line of the program, the printf statement.


Now, type <ctrl-K>.
The third line of text has disappeared, leaving an empty space.
Type <ctrl-K>
again.
The empty space where the third line of text had been has now
disappeared.


Type <esc>>.
Be sure to type a greater-than symbol
‘>’, not a period.
The cursor has jumped to the
space just
below the last line of text.
Now type <ctrl-Y>.
The text that you erased a moment ago has
now been restored.


By now, you should be feeling more at ease with typing
MicroEMACS’s control and escape codes.

The following sections will explain what these commands mean.
For now, exit from MicroEMACS by
typing <ctrl-X><ctrl-C>, and
when the message


Quit [y/n]?


appears type y and then <return>. This will return you to MS-DOS or MWS.

Beginning a document

If your computer does not have a hard disk, do the following before you begin: insert disk 2, the
compiler disk, into drive A of your computer. Insert disk 8, which holds the sample programs, into
drive B. Then, log into directory sample on drive B by typing the following command:

cd b:\sample

If your system does have a hard disk, log into directory sample on your hard disk by typing the
following:

cd c:\sample

Let’s C



MicroEMACS 55

Now, edit the file called example1.c. First, use the cd to move to directory \src, which is where this
file was stored when you installed Let’s C. If you stored the sample programs in a different
directory, then use the cd command to transfer to that directory. Now, type the following command:

me example1.c

If you are working through the MWS display interface, invoke MicroEMACS as follows: First, make
sure that you are in the main menu, and that the cursor bar is positioned over Edit. Type
<return>. When the Edit menu appear, press the <> key to move the cursor bar to Files. Press
<return>. A box will appear on the screen that shows all of the files available for editing. Press the
<> key until the cursor bar is positioned over the file labelled example1.c; then press <return>. As
you can see, example1.c now appears in the command box, which is at the top of the screen. Press
<end>, to return to the Edit menu; then press <return>, to execute the command you have just
built. This will invoke MicroEMACS to edit the file example1.c.

In a moment, the following text will appear on your
screen:


/*

* This is a simple C program that computes the results

* of three different rates of inflation over the

* span of ten years. Use this text file to learn

* how to use MicroEMACS commands

* to make creating and editing text files quick,

* efficient and easy.

*/


#include <stdio.h>

main()

{


int i; /* count ten years */

float w1, w2, w3; /* three inflated quantities */

char *msg = " %2d\t%f %f %f\n";/* printf string */

i = 0;

w1 = 1.0;

w2 = 1.0;

w3 = 1.0;

for (i = 1; i<= 10; i++) {


w1 *= 1.07; /* apply inflation */

w2 *= 1.08;

w3 *= 1.10;

printf (msg, i, w1, w2, w3);


}

}


When you type the MicroEMACS
 command and a file name, MicroEMACS
 copies that file into
memory. Your cursor also moved to the upper left-hand corner of the screen. At the bottom of the
screen appears the status line, as follows:



-- MicroEMACS -- example1.c -- File: example1.c ----------




The word to the left, MicroEMACS, is the name of
the editor.
The word in the center, example1.c, is
the name of the buffer
that you are using.
What a buffer is and how it is used will be covered later.

The name to the right is the name of the text file
that you will be editing.


Moving the Cursor
Now that you have read a text file into memory, you will want to edit it. The first step is to learn to
move the cursor.


Let’s C



56 MicroEMACS

Try these commands for yourself as they are described in the
following paragraphs.
That way, you
will quickly acquire a feel for handling
MicroEMACS’s commands.
You can also use your arrow keys
with MicroEMACS.
 The arrow keys are found on the keypad on the right-hand
 side of your
keyboard.
If when you press the arrow keys, numbers appear in the text instead
of the cursor being
moved, press the number lock key, which
 is the key marked Num Lock.
 That should solve the
problem. 


Moving the cursor forward

This first set of commands moves the cursor forward.


<ctrl-F> Move forward one space

<esc>F Move forward one word

<ctrl-E> Move to end of line


To see how these commands work, do the following: Type the forward command <ctrl-F>.
This is
equivalent to pressing <Rationale>. As before, it does not matter whether the letter ‘F’ is
upper case
or lower case.
The cursor has moved one space to the right, and now is over
the character ‘*’ in the
first line.


Type <esc>F.
The cursor has moved one word to the right,
and is now over the space after the word
this.
 MicroEMACS considers only alphanumeric characters when it moves from word to word.
Therefore, the cursor moved from under the * to the space after the word this, rather than to the
space after the *. Now type the end of line command <ctrl-E>.
The cursor has jumped to the end of
the line and is now
just to the right of the e of the word three.


Moving the cursor backward

The following summarizes the commands for moving the cursor backwards.

<ctrl-B> Move back one space

<esc>B Move back one word

<ctrl-A> Move to beginning of line


To see how these work, first type the backward command <ctrl-B>.
This is equivalent to pressing <>.
As you can see, the cursor has moved one space to the left, and now is over the letter e of the word
three.
Type <esc>B.
The cursor has moved one word to the left and now
is over the t in three.
Type
<esc>B again, and the cursor will be positioned on the o of
the word of.


Type the beginning of line command <ctrl-A>.
The cursor jumps to the beginnning of the line,
and
once again is resting over the ‘/’ character
in the first line.


From line to line

<ctrl-P> Move to previous line

<ctrl-N> Move to next line


These two commands move the cursor up and down the screen.
Type the next line command <ctrl-
N>.
The cursor jumps
to the space before the ‘*’ in the next line.
Type the end of line command
<ctrl-E>, and the cursor moves
to the end of the second line to the right of the period.


Continue to type <ctrl-N> until the cursor reaches the
bottom of the screen.
This is the same as if
you typed <>. As you reached the first line in your text, the
cursor jumped from its position at the
right of the period
on the second line to just right of the
brace on the last line of the file.
When you
move your cursor up or down the screen, MicroEMACS
will try to keep it at the same position within
each line.
If the line to which you are moving the cursor is not long enough
to have a character at
that position,
MicroEMACS will move the cursor to the end of the line.


Let’s C



MicroEMACS 57

Now, practice moving the cursor back up the screen.
Type the previous line command <ctrl-P>.
This
has the same effect as pressing <>. When the cursor jumped to the previous
line, it retained its
position at the end of the line.
 MicroEMACS remembers the cursor’s position on the line,
 and
returns the cursor there when it jumps to a line
long enough to have a character in that position.


Continue pressing <ctrl-P>.
The cursor will move up the screen until it reaches
the top of your text.


Moving up and down by a screenful of text

The next two cursor movement commands allow you to roll forward
or backwards by one screenful
of text.


<ctrl-V> Move forward one screen

<esc>V Move back one screen


If you are editing a file with MicroEMACS that is too big
to be displayed on your screen all at once,
MicroEMACS
will display the file in screen-sized portions
(22
lines at a time).
The view commands
<ctrl-V> and <esc>V allow you
to roll up or down one screenful of text at a time.


Type <ctrl-V>.
Your screen now contains only the last three lines of the file.
This is because you have
rolled forward by the equivalent of one
screenful of text, or 22 lines.


Now, type <esc>V.
Notice that your text rolls back onto the screen, and your
cursor is positioned in
the upper left-hand corner of the
screen, over the character ‘/’ in the first line.


Moving to beginning or end of text

Finally, these two cursor movement commands allow you to jump immediately
to the beginning or
end of your text.


<esc>< Move to beginning of text

<esc>> Move to end of text


The end of text command <esc>> moves the cursor to the
end of your text.
Type <esc>>.

Be sure to
type a greater-than symbol ‘>’; this
 symbol may have been placed anywhere on your keyboard,
although
on IBM-style keyboards it appears above the period.
Your cursor has jumped to the end of
your text. 


The beginning of text command <esc>< will move the cursor
back to the beginning of your text.

Type <esc><.
Be sure to type a less-than symbol 

‘<’; 
on IBM-style keyboards it appears above the
comma. 
The cursor has jumped back to the upper left-hand corner
of your screen.


These commands will move you immediately to the beginning or the end
of your text, regardless of
whether the text is one page long or 20
pages long.


Saving text and quitting

If you do not wish to continue working at this time,
you should save your text, and then quit.


It is good practice to save your text file every so often while you
 are working on it; then, if an
accident occurs, such as a power failure,
you will not lose all of your work.
You can save your text
with the save command <ctrl-X><ctrl-S>.
Type <ctrl-X><ctrl-S>—that 
is, first type <ctrl-X>, then type
<ctrl-S>.
If you had modified this file, the following message would appear:

[Wrote 23 lines]


The text file would have been saved to your computer’s disk.
MicroEMACS will send you messages
from time to time;
the messages enclosed in square brackets ‘[’ ‘]’ are for your
information, and do
not necessarily mean that something is wrong.
To exit from MicroEMACS, type the quit command
<ctrl-X><ctrl-C>.
This will return you to MS-DOS or MWS.

Killing and deleting

Let’s C



58 MicroEMACS

Now that you know how to move the cursor, you are ready
to edit your text.


To return to MicroEMACS, type the command:


me example1.c

Within a moment, example1.c will be restored to your screen.


By now, you probably have noticed that MicroEMACS is always ready to insert material
into your
text; unless you use the <ctrl> or <esc>
keys, MicroEMACS will assume that whatever you type is
meant
to be text and will insert it onto your screen where
your cursor is positioned.


The simplest way to erase text is simply to position the
cursor to the right of the text you want to
erase and backspace
over it.
MicroEMACS, however, also has a set of commands that
allow you to
erase text easily. These commands, kill and delete,
 perform differently; the distinction
 is
important, and will be explained in a moment.


Deleting versus killing

When text is deleted, it is erased completely; however, when
 text is killed, it is copied into a
temporary storage area in memory. This storage area is overwritten when you
move the cursor and
then kill additional text.
Until then, however, the killed text
 is saved.
This aspect of killing allows
you to restore text that you
killed accidentally, and it also allows you to move or copy portions
of
text from one position to another.


MicroEMACS is designed so that when it erases
text, it does so beginning
at the left edge of the
cursor.
This left edge is called the current position.

You should imagine that an invisible vertical bar separates the cursor from
 the character
immediately to its left; as you
enter the various kill and delete commands,
this vertical bar moves to
the right or the left with the cursor, and
erases the characters it touches.
Therefore, if you wish to
erase a word 
but wish to keep both spaces around it, 
position your cursor directly over the first

character of the word and strike <esc>D.
 If you wish to erase a word and
 the space before it,
position the cursor at the
space before you strike <esc>D, so that the
invisible vertical bar sweeps
away the space at which
the cursor is positioned, as well as the word that follows.


Erasing text to the right

The first two commands to be presented erase text to the right.


<ctrl-D> Delete one character to the right

<esc>D Kill one word to the right


<ctrl-D> deletes one character to the right of the current position.
<esc>D deletes one word to the
right of the current position.


To try these commands, type the delete command <ctrl-D>.
The character ‘/’
 in the first line
has
been erased, and the rest
of the line has shifted one space to the left.


Now, type <esc>D.
The ‘*’ character and the word This
have been erased, and the line has shifted six
spaces to the left.
The cursor is positioned at the space
before the word is.
Type <esc>D again.
The
word is has vanished along
with the space that preceded it, and the line
has shifted four spaces to
the left.


<ctrl-D> deletes text, but
<esc>D kills text.


Let’s C



MicroEMACS 59

Erasing text to the left

You can erase text to the left with the following commands:

<del> Delete one character to the left

<ctrl-H> Delete one character to the left

<esc><del> Kill one word to the left

<esc><ctrl-H> Kill one word to the left


To see how to erase text to the left, first type the
end of line command <ctrl-E>; this will move the

cursor to the right of the
word three on the first line of text.
Then, type <del>.
The second e of the
word three has vanished.


Type <esc><del>.
 The rest of the word three
 has disappeared,
and the cursor has moved to the
second space following
the word of.


Move the cursor four spaces to the left, so that
it is over the letter o of the word of.
Type <esc><del>.

The word results has vanished, along with the
 space that was immediately to the right of it.
 As
before, these commands erased text beginning
immediately to the left of the cursor.
The <esc><del>
command can be used to erase
words throughout your text.


If you wish to erase a word to the left yet preserve
both spaces that are around it, position the
cursor
at the space immediately to the right of the word
and type <esc><del>.
If you wish to erase a
word to the left plus
the space that immediately follows it, position
the cursor under the first letter
of the next
word and then type <esc><del>.


Typing <del> deletes text, but
typing <esc><del> kills text.


Erasing lines of text

Finally, the following command erases a line of text:

<ctrl-K> Kill from cursor to end of line


This command erases the line beginning
from immediately to the left of the cursor.


To see how this works, move the cursor to the beginning
of line 2.
Now, strike <ctrl-K>.
All of line 2
has vanished and been replaced
with an empty space.
Strike <ctrl-K> again.
The empty space has
vanished, and the cursor
is now positioned at the beginning of what used to be
line 3, in the space
before * Use.


As its name implies, the <ctrl-K> command kills
the line of text.


Yanking back (restoring) text

The following command allows you restore material that you have killed:

<ctrl-Y> Yank back (restore) killed text


Remember that when material is killed, MicroEMACS has
temporarily stored it elsewhere.
You can
return this material to the screen by using the yank back command <ctrl-Y>.
Type <ctrl-Y>.
All of
line 2 has returned; the cursor, however,
remains at the beginning of line 3.


Quitting

When you are finished, do not save the text.
If you do so, the undamaged copy of the text that
you
made earlier will be replaced with the
present changed copy.
Rather, use the quit command 
<ctrl-
X><ctrl-C>.
Type <ctrl-X><ctrl-C>.
On the bottom of your screen, MicroEMACS will respond: 


Quit [y/n]?


Reply by typing y and a carriage return.
If you type n, MicroEMACS will
simply return you to where

Let’s C



60 MicroEMACS

you were in the text.
MicroEMACS will now return you to MS-DOS.

Block killing and moving text
As noted above, text that is killed is stored temporarily within
 the computer.
Killed text may be
yanked back
onto your screen, and not necessarily in the spot where it was
originally killed.
This
feature allows you to move text from one position to another.


Moving one line of text

You can kill and move one line of text with the following commands:

<ctrl-K> Kill text to end of line

<ctrl-Y> Yank back text


To test these commands, invoke MicroEMACS for the
 text example1.c
 by typing the following
command:


me example1.c

or use the MWS interface, as you did earlier. When MicroEMACS appears, the
 cursor will be
positioned in the
upper left-hand corner of the screen.


To move the first line of text, begin by
typing the kill command 
<ctrl-K> twice.
Now, press <esc>> to
move the cursor to the
bottom of text.
Finally, yank back the line by typing <ctrl-Y>.
The line that
reads


/* This is a simple C program that computes the results


is now at the bottom of your text.


Your cursor has moved to the point on your screen that is
after the line you yanked back.


Multiple copying of killed text

When text is yanked back onto your screen, it is not deleted
from within the computer.
Rather, it is
simply copied back onto the
screen.
This means that killed text can be reinserted into the text more

than once.
To see how this is done, return to the top of the text by typing
<esc><.
Then type <ctrl-
Y>.
The line you just killed now appears as both the first and last line of
the file.


The killed text will not be erased from its temporary
storage until you move the cursor
and then kill
additional text.
 If you kill several lines or portions of lines in a row, all of the
killed text will be
stored in the buffer; if you are not careful,
you may yank back a jumble of accumulated text.


Kill and move a block of text

If you wish to kill and move more than one line of text at a time, use the following commands:

<ctrl-@> Set mark
<ctrl-W> Kill block of text

If you wish to kill a block of text, you can either
type the kill command <ctrl-K> repeatedly
to kill the
block one line at a time, or you can
use the block kill command <ctrl-W>.
To use this command,
you must first
set a mark on the screen,
an invisible character that acts as a signal to the computer.

The mark is set with the mark command <ctrl-@>.


Once the mark is set, you must move your cursor to the
other end of the block of text you wish to
kill, and then strike
<ctrl-W>.
The block of text will be erased, and will be ready to be
yanked back
elsewhere.


Let’s C



MicroEMACS 61

Try this out on example1.c.
Type <esc>< to move the cursor to the upper left-hand
corner of the
screen.
 Then type the set mark command <ctrl-@>.
 By the way, be sure to type ‘@’, not ‘2’.

MicroEMACS will respond with the message


[Mark set]


at the bottom of your screen.
Now, move the cursor down six lines, and type <ctrl-W>.
Note how the
block of text you marked out has disappeared.


Move the cursor to the bottom of your text.
Type <ctrl-Y>.
The killed block of text has now been
reinserted.


When you yank back text, be sure
to position the cursor at the exact point
where you want the text
to be yanked back.
This will ensure that the text will be yanked back in
the proper place.


To try this out, move your cursor up six lines.
Be careful that the cursor is at the beginning of the
line.
Now, type <ctrl-Y> again.
The text reappeared above where the cursor
was positioned, and the
cursor has not moved from its position at the beginning of the line — which is not
what would have
happened had you positioned it in the middle
or at the end of a line.


Although the text you are working with has only 23 lines,
you can move much larger portions of text
using only
 these three commands.
Remember, too, that you can use this technique to duplicate

large portions of text at several positions to save
yourself considerable time in typing and reduce the
number of possible
typographical errors.


Capitalization and other tools
The next commands perform a number of useful tasks that
will help with your editing.
Before you
begin this section, destroy the old text on
your screen with the quit command <ctrl-X><ctrl-C>,
and
read into MicroEMACS a fresh copy of the program,
as you did earlier.


Capitalization and lowercasing

The following MicroEMACS commands can automatically
capitalize a word (that is, make the first
letter
of a word upper case), or make an entire word upper case or
lower case.


<esc>C Capitalize a word

<esc>L Lowercase an entire word

<esc>U Uppercase an entire word


To try these commands, do the following: First, move the cursor to the letter d of
the word different
on line 2.
Type the capitalize command <esc>C.
The word is now capitalized, and
the cursor is now
positioned at the space after the word.
Move the cursor forward so that it is over the letter t
in rates.

Press <esc>C again.
 The word changes to raTes.
 When you press <esc>C, MicroEMACS will
capitalize
the first letter the cursor meets.


MicroEMACS can also change a word to all upper case or
all lower case.
(There is very little need for
a command that will
change only the first character of an upper-case word
to lower case, so it is not
included.)


Type <esc>B to move the cursor so that it is again to the left of the
word Different.
It does not matter
if the cursor is directly over the D
or at the space to its left; as you will see, this means
that you can
capitalize or
lowercase a number of words in a row without having to
move the cursor.


Type the uppercase command <esc>U.
The word is now spelled
DIFFERENT, and the
cursor has
jumped to the space after the word.


Again, move the cursor to the left of the word DIFFERENT.
Type the lowercase command <esc>L.

The word has changed back to different.
Now, move the cursor to the space at the beginning of line
3 by typing
<ctrl-N> then <ctrl-A>.
Type <esc>L once again.
The character ‘‘*’ is not affected by the
command,
but the letter U is now lower case.
<esc>L not only shifts a word that is all upper case to


Let’s C



62 MicroEMACS

lower case: it can also un-capitalize a word.


The uppercase and lowercase commands
stop at the first punctuation mark they meet
after the
first letter they find.
This means that, for example,
to change the case of a word with an apostrophe
in it
you must type the appropriate command twice.


Transpose characters

MicroEMACS allows you to reverse the position of two characters,
or transpose them, with the
transpose command
<ctrl-T>.


Type <ctrl-T>.
 The character that is under the cursor
 has been transposed with the character
immediately to its left.
In this example,


* use this


in line 3 now appears:


* us ethis


The space and the letter e have been transposed.
Type <ctrl-T> again.
The characters have returned
to their original order.


Screen redraw


 Occasionally, while you are editing you may interrupt MicroEMACS
to invoke another program,
such as an electronic calculator or a clock.
When you exit from that program, you may find that it
has
 left material on your screen and scrambled it.
Although this extraneous material will not be
recorded
 into your text, you will need to redraw your screen in order
 to continue to edit. 
 The
redraw screen command <ctrl-L> will redraw your screen to
the way it was before it was scrambled.


Type <ctrl-L>.
Notice how the screen flickers and the text is rewritten.
Had your screen been spoiled
by extraneous material,
that material would have been erased and the original
text rewritten.


The <ctrl-L> command also has another use: you can
 move the line on which the cursor is
positioned to the
center of the screen.
If you have a file that contains more than one screenful
of text
and you wish to have that particular line in the center
of the screen, position the cursor on that line
and type
<ctrl-U><ctrl-L>.
Immediately, the screen will be rebuilt with the line you
were interested
in positioned in the center.


Return indent

<ctrl-J> Return and indent


You may often be faced with a situation in which, for the sake of
programming style, you need many
lines of indented text.
After every line, you must return, then tab the correct number of
times, then
type your text.
 Block indents can be a time-consuming typing chore.
 The MicroEMACS <ctrl-J>
command makes this task easier.
When you type a file that has many lines of indented text, such as
a C
 program, you can save
many keystrokes by using the <ctrl-J> command.
<ctrl-J> moves the
cursor to the next line on the screen, and
 positions the cursor at the previous line’s level of
indentation.


To see how this works, first
move the cursor to the line that reads


w3 *= 1.10:


Press <ctrl-E>, to move the cursor to the end of the line.
Now, type <ctrl-J>.


As you can see, a new line opens up and the cursor is indented the same
amount as the previous
line.
Type


Let’s C



MicroEMACS 63

/* Here is an example of auto-indentation */


This line of text begins directly under the previous line.


Word wrap

<ctrl-X>F Set word wrap


Although you have not yet had much opportunity to use it,
MicroEMACS will automatically wrap
around text that you are typing into
 your computer.
Word wrapping is controlled with the word
wrap command
<ctrl-X>F.
To see how the word wrap command works, first exit from MicroEMACS

by typing <ctrl-X><ctrl-C>; then reinvoke MicroEMACS by typing


me cucumber


or use the MWS display interface, as you did earlier. When MicroEMACS re-appears,
 type the
following text; however, do not type
any carriage returns:


A cucumber should be

well sliced, and dressed

with pepper and vinegar,

and then thrown out, as

good for nothing.


When you reached the edge of your screen,
 a dollar sign was printed and you were allowed to
continue
typing.
MicroEMACS accepted the characters you typed, but it placed
them at a location

beyond the right edge of your screen.


Now, move to the beginning of the next line and type <ctrl-U>.
MicroEMACS will reply with the
message:


Arg: 4


Type 30.
The line at the bottom of your screen now appears as follows:


Arg: 30


(The use of the argument command <ctrl-U> will be
explained in full in a few sections.) Now type the
word-wrap command <ctrl-X>F.
MicroEMACS will now say at the bottom of your screen:


[Wrap at column 30]


This sequence of commands has set the word-wrap function, and
told it to wrap to the next line all
words that extend beyond
the 30th column on your screen.


The word wrap feature automatically moves your cursor to the
beginning of the next line once you
type past a preset border on your
 screen.
 When you first enter MicroEMACS, that limit is
automatically set
at the first column, which in effect means that word wrap has
been turned off.


When you type prose for a report or a letter of some sort, you
probably will want to set the border at
the 65th column, so that
 the printed text will fit neatly onto a sheet of paper.
 If you are using
MicroEMACS to type in a program, however, you probably
will want to leave word wrap off, so you
do not
accidentally introduce carriage returns into your code.


To test word wrapping,
type the above text again,
without using the carriage return key.
When you
finish, it should appear as follows:


A cucumber should be well

sliced, and dressed with

pepper and vinegar, and then

thrown out, as good for nothing.


MicroEMACS automatically moved your cursor to the next line when you typed
a space character

Let’s C



64 MicroEMACS

after the 30th column on your screen.


If you wish to fix the border at some special point on your screen
but do not wish to go through the
tedium of figuring out how many
columns from the left it is, simply position the cursor where you

want the border to be, type <ctrl-X>F, and then type a carriage
return.
When <ctrl-X>F is typed
without being preceded by a <ctrl-U>
 command, it sets the word-wrap border at the point your
cursor
happens to be positioned.
When you do this, MicroEMACS will then print a message at the
bottom
of your terminal that tells you where the word-wrap border is now set.


If you wish to turn off the word wrap feature again, simply set the
word wrap border to one. 


Search and Reverse Search
When you edit a large text, you may wish to change particular
words or phrases.
To do this, you can
roll through the text and read each
line to find them; or you can have MicroEMACS find them for
you.
Before you continue, close the present file by typing
<ctrl-X> <ctrl-C>;
now, reinvoke the editor
to edit the file example1.c, as you did before. The following sections will perform some exercises
with this
file.


Search forward

<ctrl-S> Search forward incrementally

<esc>S Search forward with prompt


As you can see from the display, MicroEMACS has two ways to search
forward:
incrementally, and
with a prompt.


An
 incremental search is one in which the search is performed as you type the characters.
To see
how this works, first type the beginning of text
command <esc>< to move the cursor to the
upper
left-hand corner of your screen.
Now, type the incremental search command <ctrl-S>.
MicroEMACS
will respond by prompting with the message


i-search forward:


at the bottom of the screen.


We will now search for the pointer
*msg. Type the letters *msg one at a time, starting with *.
The
cursor has jumped to the first place that a * was found:
at the second character of the first line.
The
cursor moves forward in the text file and the message at the bottom
of the screen changes to
reflect
what you have typed.


Now type m.
The cursor has jumped ahead to the letter s in *msg.
Type s.
The cursor has jumped
ahead to the letter g in *msg. Finally, type g. The cursor is over the space after the token *msg.
Finally, type <esc> to end the string.
MicroEMACS will reply with the message


[Done]


which indicates that the search is finished.


If you attempt an incremental search for a word that is not in the file,
MicroEMACS will find as
many of the letters as it can, and then give you
an error message.
For example, if you tried to search
incrementally for the word
*msgs, MicroEMACS would move the cursor to the phrase *msg;
when
you typed ‘s’, it would tell you


failing i-search forward: *msgs


With the
prompt search, however, you type in the word all at once.
To see how this works, type

<esc><, to return to the top of the file.
Now, type the
prompt search command
<esc>S. MicroEMACS
will respond by prompting with the message


Let’s C



MicroEMACS 65

Search [*msgs]:


at the bottom of the screen.
The word *msgs
is shown because that was the last word for which you
searched,
and so it is kept in the search buffer.


Type in the words editing text, then press the carriage return.
Notice that the cursor has jumped to
the period after the
word text in the next to last line of your text.
MicroEMACS searched for the
words editing text, found them, and moved
the cursor to them.


If the word you were searching for was not in your text,
or at least was not in the portion that lies
between
your cursor and the end of the text, MicroEMACS
would not have moved the cursor, and
would have displayed the message


Not found


at the bottom of your screen.


Reverse search

<ctrl-R> Search backwards incrementally

<esc>R Search backwards with prompt


The search commands, useful as they are,
can only search forward through your text.
To search
backwards, use the reverse search commands
<ctrl-R> and <esc>R.
These work exactly the same as
their forward-searching counterparts,
except that they search toward the beginning of the file rather
than
toward the end.


For example,
type <esc>R.
MicroEMACS will reply with the message


Reverse search [editing text]:


at the bottom of your screen.
The words in square brackets are the words you
entered earlier for the
search command; MicroEMACS
remembered them.
If you wanted to search for editing text again,
you would just
press the carriage return.
For now, however, type the word program and press
the
carriage return.


Notice that the cursor has jumped so that it is under the
 letter p of the word program in line 1.

When you search forward, the cursor will move to the
space after the word you are searching for,
whereas
when you reverse search, the cursor will be moved to the
first letter of the word you are
searching for.


Cancel a command

<ctrl-G> Cancel a search command


As you have noticed, the commands to move the cursor
 or to delete or kill text all execute
immediately.
 Although this speeds your editing, it also means that
 if you type a command
 by
mistake, it executes before you can
stop it.


The
search and
reverse search commands, however, wait for
you to respond to their prompts before
they execute.
If you type <esc>S or <esc>R
by accident, MicroEMACS will interrupt your editing and

wait for you to initate a search that you do not
 want to perform.
You can evade this problem,
however, with the cancel
 command <ctrl-G>.
 This command tells MicroEMACS to ignore the
previous command.


To see how this command works, type <esc>R.
When the prompt appears at the bottom of your
screen, type
<ctrl-G>.
Three things happen: your
terminal beeps,
the characters
^G appear at the
bottom of your screen, and the cursor returns
to where it was before you first
typed <esc>R.
The
<esc>R command has been cancelled, and you
are free to continue editing.


Let’s C



66 MicroEMACS

If you cancel an
incremental search command,
<ctrl-S> or
<esc-S>, the cursor will return to where it
was before you began the search.
For example, type
<esc>< to return to the top of the file.
Now type

<ctrl-S> to begin an incremental search, and type
m. When the cursor moves to the
m in
simple,
type
<ctrl-G>. The bell will ring, and your cursor will be returned to the top of the
 file, which is
where you began the search.


Search and replace

<esc>% Search and replace


MicroEMACS also gives you a powerful function that allows you
to search for a string and replace it
with a keystroke.
You can do this by executing
the search and replace command <esc>%.


To see how this works, move to the top of the
text file by typing <esc><; then type
<esc>%.
You will
see the following message at the bottom of your screen:


Old string:


As an exercise, type msg.
MicroEMACS will then ask:


New string:


Type message, and press the carriage return.
 As you can see, MicroEMACS jumps to the first
occurrence of
the string msg, and prints the following message
at the bottom of your screen:


Query replace: [msg] -> [message]


MicroEMACS is asking if it should proceed with the replacement.
 Type a carriage return:
 this
displays the options that are available to you at the
bottom of your screen:


<SP>[,] replace, [.] rep-end, [n] dont, [!] repl rest <C-G> quit


The options are as follows:


Typing a space or a comma will execute the replacement, and move the cursor
 to the next
occurrence of the old string; in this case, it will replace
msg with message, and move the cursor to
the next occurrence
of msg.


Typing a period ‘.’ will replace this one occurrence of the old
string, and end the search and replace
procedure; in this example,
typing a period will replace this one occurrence of msg
with message
and end the procedure.


Typing the letter ‘n’ tells MicroEMACS not to replace
this instance of the old string, and move to the
next occurrence of
the old string; in this case, typing ‘n’ will not
replace msg with message, and the
cursor will jump
to the next place where msg occurs.


Typing an exclamation point ‘!’ tells MicroEMACS to replace
all instances of the old string with the
new string, without checking
 with you any further.
 In this example, typing ‘!’ will replace all
instances
of msg with message without further queries from
MicroEMACS.


Finally, typing <ctrl-G> aborts the search and replace procedure.


Saving text and exiting
This set of basic editing commands allows you to save your
 text and exit from the MicroEMACS
program.
They are as follows: 


<ctrl-X><ctrl-S> Save text

<ctrl-X><ctrl-W> Write text to a new file


<ctrl-Z> Save text and exit

<ctrl-X><ctrl-C> Exit without saving text


Let’s C



MicroEMACS 67

You have used two of these commands already: the save command 
<ctrl-X><ctrl-S>
and the quit
command 
<ctrl-X><ctrl-C>, which respectively allow you to save text or to exit
 from MicroEMACS
without saving text.
(Commands that begin with <ctrl-X> are called extended
commands; they are
used frequently in the advanced editing to be
covered in the second half of this tutorial.)


Write text to a new file

<ctrl-X> <ctrl-W> Write text to a new file


If you wish, you may copy the text you are currently
editing to a text file other than the one from
which you originally
took the text.
Do this with the write command <ctrl-X><ctrl-W>.


To test this command, type <ctrl-X><ctrl-W>.
MicroEMACS will display the following message on the
bottom of
your screen: 


Write file: 


MicroEMACS is asking for the name of the file to which you
wish to write the text.
Type sample.

MicroEMACS will reply: 


[Wrote 23 lines]


The 23 lines of your text have been copied to a new file
called sample.
The status line at the bottom
of your screen
has changed to read as follows:





-- MicroEMACS -- example1.c -- File: sample --------------




The significance of the change in file name will be discussed in the
second half of this tutorial.


Before you copy text into a new file, be sure that you have not
selected a file name that is already
being used.
If you do, whatever is stored under that file name
will be erased, and the text created
with MicroEMACS will
be stored in its place.


Save text and exit

Finally, the store command
<ctrl-Z> will save your text and move you out of
the MicroEMACS editor.

To see how this works, watch the bottom line of your terminal
carefully and type <ctrl-Z>.
The MS-
DOS MicroEMACS has saved your text, and now you can issue commands directly to MS-DOS.

Advanced editing
The second half of this tutorial introduces the advanced features of MicroEMACS.

The techniques described here will help you
execute complex editing tasks with minimal trouble.

You will be able to edit more than one text at a time,
display more than one text on your screen at a
time,
enter a long or complicated phrase repeatedly with only
one keystroke, and give commands to
MS-DOS
without having to exit from MicroEMACS.


Before beginning, however, you must prepare a new text
 file.
Type the following command to MS-
DOS:

me example2.c

If you are using the display interface of MWS, the Mark Williams shell, invoke example2.c in the
same way that you invoked example1.c earlier.

In a moment, example2.c will appear on your screen,
as follows:


Let’s C



68 MicroEMACS

/* Use this program to get better acquainted

* with the MicroEMACS interactive screen editor.

* You can use this text to learn some of the

* more advanced editing features of MicroEMACS.

*/


#include <stdio.h>

main()

{


FILE *fp;

int ch;

int filename[20];


printf("Enter file name: ");

gets(filename);


if ((fp =fopen(filename,"r")) !=NULL) {

while ((ch = fgetc(fp)) != EOF)


fputc(ch, stdout);
}


else

printf("Cannot open %s.\n", filename);


fclose(fp);

} 


Arguments
Most of the commands already described in this tutorial can be used with arguments.
An argument
is a subcommand that tells MicroEMACS to
 execute a command a given number of times.
With
MicroEMACS, arguments are introduced by
typing <ctrl-U>.


Arguments — default values

By itself, <ctrl-U> sets the argument at four.
To illustrate this, first type the next line command
<ctrl-N>.
By itself, this command moves the cursor down one
 line, from being over the ‘/’ at the
beginning
of line 1, to being over the space at the beginning
of line 2.


Now, type <ctrl-U>.
MicroEMACS replies with the message: 


Arg: 4


Now type <ctrl-N>.
The cursor jumps down four
lines, from the beginning of line 2 to the 
letter m of
the word main at the beginning of line 6.


Type <ctrl-U>.
The line at the bottom of the screen again shows that
the value of the argument is
four.
Type <ctrl-U> again.
Now the line at the bottom of the screen reads: 


Arg: 16


Type <ctrl-U> once more.
The line at the bottom of the screen now reads:


Arg: 64


Each time you type <ctrl-U>, the value of the argument
 is multiplied by four.
Type the forward
command <ctrl-F>.
The cursor has jumped ahead 64 characters, and is now
over the i of the word
file in the printf statement in
line 11.


Let’s C



MicroEMACS 69

Selecting values

Naturally, arguments do not have to be powers of four.
 You can set the argument to whatever
number you wish,
simply by typing <ctrl-U> and then typing in
the number you want.


For example, type <ctrl-U>, and then type 3.
The line at the bottom of the screen now reads:


Arg: 3


Type the delete command <esc>D.
MicroEMACS has deleted three words to the right.


Arguments can be used to increase the power of any
cursor movement command, or any kill or
delete
command.
The sole exception is <ctrl-W>, the block
kill command.


Deleting with arguments—an exception

Killing and deleting were described in the first
part of this tutorial.
They were said to differ in that
text that was killed was
stored in a special area of the computer and could be
yanked back, whereas
text that was deleted was erased outright.
However, there is one exception to this rule:
any text that
is deleted using an argument can also be
yanked back.


Move the cursor to the upper left-hand corner of the screen by
 typing the begin text command
<esc><.
Then, type <ctrl-U> 5 <ctrl-D>.
The word Use has disappeared.
Move the cursor to the right
until it is between
 the words better and acquainted, then
 type <ctrl-Y>.
 The word Use has been
moved within the line
(although the spaces around it have not been moved).
This function is very
handy, and should greatly speed
your editing.


Remember, too, that unless you move the cursor between
one set of deletions and another,
 the
computer’s storage area will not be erased, and
you may yank back a jumble of text.


Buffers and files
Before beginning this section, replace the changed copy
of the text on your screen with a fresh copy.

Type the quit command 
 <ctrl-X><ctrl-C> to exit from MicroEMACS without
 saving the text; then
return to MicroEMACS to edit the file example2.c, as you did earlier.

Now, look at the status line at the bottom of your screen.
It should appear as follows: 


-- MicroEMACS -- example2.c -- File: example2.c --------------


As noted in the first half of this tutorial, 
 the name on the left of the command line is
that of the
program.
The name in the middle is the name of the buffer with
which you are now working, and
the name to the right is
the name of the file from which you read the
text.


Definitions

A file is a
text that has been given a name and has been
permanently stored by your computer.
A
buffer is a portion of the computer’s
memory that has been set aside for you to use, which may be
given a name,
and into which you can put text temporarily.
You can put text into the buffer by
typing it in from
your keyboard or by copying it from a file.


Unlike a file, a buffer is not permanent: if your computer
were to stop working (because you turned
the power off, for example),
a file would not be affected, but a buffer
would be erased.


You must name your files because you work with many
different files, and you must have some way
to tell them apart.
Likewise, MicroEMACS allows you to name your buffers,
because MicroEMACS
allows you to work with more than one
buffer at a time.


Let’s C



70 MicroEMACS

File and buffer commands

MicroEMACS gives you a number of commands for handling files and buffers. These include the
following:

<ctrl-X><ctrl-W> Write text to file

<ctrl-X><ctrl-F> Rename file


<ctrl-X><ctrl-R> Replace buffer with named file

<ctrl-X><ctrl-V> Switch buffer or create a new buffer


<ctrl-X>K Delete a buffer

<ctrl-X><ctrl-B> Display the status of each buffer


Write and rename commands

The write command <ctrl-X><ctrl-W> was introduced earlier when
the commands for saving text and
exiting were discussed.
To review, <ctrl-X><ctrl-W> changes the name of the
file into which the text
is saved, and then writes a copy of the
text into that file.


Type <ctrl-X><ctrl-W>.
MicroEMACS responds by printing


Write file:


on the last line of your screen.


Type junkfile, then <return>.
Two things happen: First, MicroEMACS writes the message


[Wrote 21 lines]


at the bottom of your screen.
Second, the name of the file shown on the status line
has changed
from
example2.c to junkfile.
MicroEMACS is reminding you that your text is now being saved into
the file junkfile.

The file rename command <ctrl-X><ctrl-F> allows you rename the
file to which you are saving text,
without automatically
writing the text to it.
Type <ctrl-X><ctrl-F>.
MicroEMACS will reply with the
prompt:


Name:


Type example2.c and <return>. MicroEMACS does not send you a message that
lines were written
to the file; however, the name of the
file shown on the status line has changed from
junkfile back to
example2.c.


Replace text in a buffer

The replace command <ctrl-X><ctrl-R> allows
you to replace the text in your buffer with the text

taken from another file.


Suppose, for example, that you had edited example2.c
 and saved it, and now wished to edit
example1.c.
You could exit from MicroEMACS, then re-invoke MicroEMACS
for the file example2.c,
but this is cumbersome.
A more efficient way is to simply replace the example2.c
in your buffer with
example1.c.


Type <ctrl-X><ctrl-R>.
MicroEMACS replies with the prompt: 


Read file: 


Type example1.c.
Notice that example2.c has rolled away and been replaced with
example1.c.
Now,
check the status line.
Notice that although the name of the buffer is still
example2.c, the name of
the file has changed to example1.c.
You can now edit example1.c; when you save the edited
text,
MicroEMACS will copy it back into the file example1.c — unless, 
of course, you again choose to

Let’s C



MicroEMACS 71

rename the file.


Visiting another buffer

The last command of this set, the visit command 
<ctrl-X><ctrl-V>, allows you to create more than

one buffer at a time, to jump from one buffer to another,
 and move text between buffers.
 This
powerful command has numerous features.


Before beginning, however, straighten up your buffer
by replacing example1.c with example2.c.
Type
the replace command 
<ctrl-X><ctrl-R>; when MicroEMACS replies
by asking


Read file:


at the bottom of your screen, type example2.c.


You should now have the file example2.c read into
the buffer named example2.c.


Now, type the visit command <ctrl-X><ctrl-V>.
MicroEMACS replies with the prompt


Visit file:


at the bottom of the screen.
Now type example1.c.
Several things happen.
example2.c rolls off the
screen and is replaced
with example1.c; the status line changes to show
that both the buffer name
and the file name are now
example1.c; and the message 


[Read 23 lines]


appears at the bottom of the screen.


This does not mean that your previous buffer
has been erased, as it would have been had you used
the
 replace command <ctrl-X><ctrl-R>.
 example2.c is still being kept ‘‘alive’’ in a buffer
 and is
available for editing; however,
it is not being shown on your screen at the present
moment.


Type <ctrl-X><ctrl-V> again, and when the prompt
appears, type example2.c.
example1.c scrolls off
your screen and is replaced
by example2.c, and the message


[Old buffer]


appears at the bottom of your screen.
You have just jumped from one buffer to another.


Move text from one buffer to another

The visit command 
 <ctrl-X><ctrl-V> not only allows you to jump
 from one buffer to another, it
allows you to move text
from one buffer to another as well.
The following example shows how you
can do this.


First, kill the first line of example2.c by typing the kill command
<ctrl-K> twice.
This removes both
the line of text and the space that it occupied;
if you did not remove the space as well the line itself,
no new line would be
created for the text when you yank it back.
Next, type <ctrl-X><ctrl-V>. When
the prompt


Visit file:


appears at the bottom of your screen, type example1.c.
 When example1.c has rolled onto your
screen,
 type the yank back command <ctrl-Y>.
 The line you killed in example2.c has now been
moved
into example1.c.


Checking buffer status

The number of buffers you can use at any one time is limited
only by the size of your computer.
You
should create only as many buffers as you need
to use immediately; this will help the computer run
efficiently.


Let’s C



72 MicroEMACS

To help you keep track of your buffers, MicroEMACS has the
buffer status command <ctrl-X><ctrl-
B>.
Type <ctrl-X><ctrl-B>.
The status line has moved up to the middle
of the screen, and the bottom
half of your screen
has been replaced with the following display: 


C Size Lines Buffer File
- ---- ----- ------ ----
* 655 24 example1.c example1.c
* 403 20 example2.c example2.c

This display is called the buffer status window.
The use of windows will be discussed more fully in
the
following section.


The letter C over the leftmost column stands for Changed.
An asterisk on a line indicates that the
buffer has been changed
since it was last saved, whereas
a space means that the buffer has not
been changed.
Size indicates the buffer’s size, in number of characters;
Buffer lists the buffer name,
and File lists the file name.


Now, kill the second line of example1.c by typing the kill command
<ctrl-K>. Then type <ctrl-X><ctrl-
B> once again.
The size of the buffer example1.c has been reduced from
657 characters to 595 to
reflect the decrease in the size of the
buffer.


To make this display disappear, type the one window command
<ctrl-X>1.
This command will be
discussed in full in the next section.


Renaming a buffer

One more point must be covered with the visit command.
MS-DOS will not allow you to have more
than
one file with the same name.
For the
same reason, MicroEMACS will not allow you to have
more than one
buffer with the same name.


Ordinarily, when you visit a file that is not already
in a buffer, MicroEMACS will create a new buffer
and give it the
same name as the file you are visiting.
However, if for some reason you already have
a buffer
with the same name as the file you wish to visit,
MicroEMACS will stop and ask you to give
a new, different name to
the buffer it is creating.


For example, suppose that you wanted to visit a new
 file named sample, but you already had a
buffer
 named sample.
 MicroEMACS would stop and give you this prompt at the bottom
 of the
screen:


Buffer name:


You would type in a name for this new buffer. This name could not duplicate the name of any
existing buffer. MicroEMACS would then read the file sample into the newly named buffer.

Delete a buffer

If you wish to delete a buffer, simply type the delete buffer command
<ctrl-X>K.
This command will
allow you to delete only a buffer that
is hidden, not one that is being displayed.


Type <ctrl-X>K.
MicroEMACS will give you the prompt:


Kill buffer:


Type
example2.c.
Because you have changed the buffer,
MicroEMACS asks:


Discard changes [y/n]?


Type y.
 Then type the buffer status command <ctrl-X><ctrl-B>;
 the buffer status window will no
longer show the buffer
example2.c.
Although the prompt refers to killing
a buffer, the buffer is in
fact deleted and cannot be
yanked back.


Windows

Let’s C



MicroEMACS 73

Before beginning this section, it will be necessary to create
a new text file.
Exit from MicroEMACS by
typing the quit command 
<ctrl-X><ctrl-C>; then
reinvoke MicroEMACS for the text file example1.c

as you did earlier.

Now, copy example2.c into a buffer by typing
the visit command <ctrl-X><ctrl-V>.
When the message


Visit file:


appears at the bottom of your screen, type example2.c.
MicroEMACS will read example2.c into a
buffer, and show
the message


[Read 21 lines]


at the bottom of your screen.


Finally, copy a new text, called example3.c, into a buffer.
 Type <ctrl-X><ctrl-V> again.
 When
MicroEMACS asks which file to visit, type example3.c.
The message


[Read 123 lines]


will appear at the bottom of your screen.


The first screenful of text will appear as follows:


/*

* Factor prints out the prime factorization of numbers.

* If there are any arguments, then it factors these. If

* there are no arguments, then it reads stdin until

* either EOF or the number zero or a non-numeric

* non-white-space character. Since factor does all of

* its calculations in double format, the largest number

* which can be handled is quite large.

*/


#include <stdio.h>

#include <math.h>

#include <ctype.h>


#define NUL ’\0’

#define ERROR 0x10 /* largest input base */

#define MAXNUM 200 /* max number of chars in number */


main(argc, argv)
int argc;
register char *argv[];

-- MicroEMACS -- example3.c -- File: example3.c --------------

At this point, example3.c is on your screen,
and example1.c and example2.c are hidden.


You could edit first one text and then another, while remembering
just how things stood with the
texts that were hidden; but
 it would be much easier if you could display all three texts on your

screen simultaneously.
MicroEMACS allows you to do just that by using windows.


Creating windows and moving between them

A window is a portion of your screen that is set aside
and can be manipulated independently from
the rest of the screen.
The following commands let you create windows and move between them:

Let’s C



74 MicroEMACS

<ctrl-X>2 Create a window

<ctrl-X>1 Delete extra windows


<ctrl-X>N Move to next window

<ctrl-X>P Move to previous window


The best way to grasp how a window works is to create one
and work with it.
To begin, type the
create a window
command <ctrl-X>2.


Your screen is now divided into two parts, an upper
and a lower.
The same text is in each part, and
the command lines
give example3.c for the buffer
and file names.
Also, note that you still have only
one cursor, which is in
the upper left-hand corner of the screen.


The next step is to move from one window to another.
Type the next window command <ctrl-X>N.

Your cursor has now jumped to the upper left-hand corner
of the lower window.


Type the previous window command <ctrl-X>P.
Your cursor has returned to the upper left-hand
corner of the
top window.


Now, type <ctrl-X>2 again.
The window on the top of your screen is
now divided into two windows,
for a total of three
on your screen.
Type <ctrl-X>2 again.
The window at the top of your screen has
again
divided into two windows, for a total of four.


It is possible to have as many as 11 windows
on your screen at one time, although each window will

show only the control line and one or two lines of text.
Neither <ctrl-X>2 nor <ctrl-X>1 can
be used
with arguments.


Now, type the one window command <ctrl-X>1.
All of the extra windows have been eliminated, or

closed.


Enlarging and shrinking windows

When MicroEMACS creates a window, it divides the window in which the
cursor is positioned into
half.
You do not have to leave the windows at the size MicroEMACS creates
them, however.
If you
wish, you may adjust the relative size of each window on
your screen, using the enlarge window
and shrink window
commands:


<ctrl-X>Z Enlarge window

<ctrl-X><ctrl-Z> Shrink window


To see how these work, first type <ctrl-X>2 twice.
Your screen is now divided into three windows: two
in the
top half of your screen, and the third in the bottom half.


Now, type the enlarge window command <ctrl-X>Z.
The window at the top of your screen is now one
line
bigger: it has borrowed a line from the window below it.
Type <ctrl-X>Z again.
Once again, the
top window has borrowed a line from
the middle window.


Now, type the next window command
<ctrl-X>N to move your cursor into
the middle window.
Again,
type the enlarge window command <ctrl-X>Z.
 The middle window has borrowed a line from the
bottom
window, and is now one line larger.


The enlarge window command <ctrl-X>Z
 allows you to enlarge the window your cursor is
 in by
borrowing lines from another window,
provided that you do not shrink that
other window out of
existence.
Every window must have at least two lines in it:
one command line and one line of text.


The shrink window command
<ctrl-X><ctrl-Z> allows you to decrease the size of a
window.
Type
<ctrl-X><ctrl-Z>.
The present window is now one line smaller, and
the lower window is one line larger
because the line
borrowed earlier has been returned.


Let’s C



MicroEMACS 75

The enlarge window and shrink window commands can also be used
with arguments introduced
with <ctrl-U>. 
However, remember that MicroEMACS will not accept
an argument that would shrink
another window out of existence.


Displaying text within a window

Displaying text within the limited area of a window can
 present special problems.
 The view
commands <ctrl-V> and <esc>V will roll
 window-sized portions of text up or down, but
 you may
become disoriented when a window shows only
four or five lines of text at a time.
Therefore, three
special commands are available for displaying
text within a window:


<ctrl-X><ctrl-N> Scroll down

<ctrl-X><ctrl-P> Scroll up


<esc>! Move within window


Two commands allow you to move your text by one line at a time, or
 scroll it: the scroll up
command <ctrl-X><ctrl-N>,
and the scroll down command <ctrl-X><ctrl-P>.


Type <ctrl-X><ctrl-N>.
The line at the top of your window has vanished,
a new line has appeared at
the bottom of your window, and
the cursor is now at the beginning of what had been the
second line
of your window.


Now type <ctrl-X><ctrl-P>.
The line at the top that had vanished earlier has now returned, the
cursor
is at the beginning of it, and
the line at the bottom of the window has vanished.
These commands
allow you to move forward in your text
slowly so that you do not become disoriented.


Both of these commands can be used with
arguments introduced by <ctrl-U>.


The third special movement command is the
move within window command <esc>!.
This command
moves the line your cursor is
on to the top of the window.


To try this out, move the cursor down three lines by
typing <ctrl-U>3<ctrl-N>, then type
<esc>!.
(Be
sure to type an exclamation point ‘!’, not a
numeral one ‘1’, or nothing will happen.) 
The line to
which you had moved the cursor
 is now the first line in the window, and three new
 lines have
scrolled up from the bottom of the window.
You will find this command to be very useful as you

become more experienced at using windows.


All three special movement commands can also be used when your
screen has no extra windows,
although you will
not need them as much.


One buffer

Now that you have been introduced to the commands
for manipulating windows, you can begin
to
use windows to speed your editing.


To begin with, scroll up the window you are in
until you reach the top line of your text.
You can do
this
either by typing the scroll up command
<ctrl-X><ctrl-P> several times,
or by typing <esc><.


Kill the first line of text with the kill command <ctrl-K>.
The first line of text has vanished from all
three
windows.
Now, type <ctrl-Y> to yank back the text you just killed.
The line has reappeared in
all three windows.


The main advantage to displaying one buffer with more than one window
is that each window can
display a different portion of
the text.
This can be quite helpful if you are editing or moving a
large
text.


To demonstrate this, do the following:
First, move to the end of the text in your
present window by
typing the end of text command <esc>>, then typing the previous line command <ctrl-P> four times.
Now, kill the last four lines.

Let’s C



76 MicroEMACS

You could move the killed lines to the beginning of your text
 by typing the beginning of text
command <esc><;
however, it is more convenient simply to type the next
window command <ctrl-
X>N, which will move you to
the beginning of the text as displayed in the next window.
MicroEMACS
remembers a different cursor position
for each window.


Now yank back the four killed lines by typing <ctrl-Y>.
You can simultaneously observe that the
lines have been
 removed from the end of your text and that they have been
 restored at the
beginning.


Multiple buffers

Windows are especially helpful when they display more
than one text.
Remember that at present
you are working with three buffers,
named
example1.c,
example2.c, and example3.c, although your
screen
is displaying only example3.c.
To display a different text in a window, use the
switch buffer
command <ctrl-X>B.


Type <ctrl-X>B.
When MicroEMACS asks 


Use buffer:


at the bottom of the screen, type
example1.c.
The text in your present window will be replaced with

example1.c.
The command line in that window
has changed, too, to reflect the fact that the buffer

and the file names are now
example1.c.


Moving and copying text among buffers

It is now very easy to copy
text among buffers.
To see how this is done, first kill the first line of

example1.c
by typing the <ctrl-K> command twice.
Yank back the line immediately by typing <ctrl-
Y>.
Remember, the line you killed has not been
erased from its special storage area, and may be

yanked back any number of times.


Now, move to the previous window by typing <ctrl-X>P,
then yank back the killed line by typing <ctrl-
Y>.
This technique can also be used with the block kill command
<ctrl-W> to move large amounts of
text from one buffer to
another.


Checking buffer status

The buffer status command <ctrl-X><ctrl-B> can
be used when you are already displaying more
than one window
on your screen.


When you want to remove the buffer status window, use either
the one window command <ctrl-X>1,
or move your
cursor into the buffer status window using the next window
command <ctrl-X>N and
replace it with another buffer
by typing the switch buffer command <ctrl-X>B.


Saving text from windows

The final step is to save the text from your windows and buffers.
Close the lower two windows with
the one window
 command <ctrl-X>1.
 Remember, when you close a window, the text that it
displayed
is still kept in a buffer that is hidden from your 
screen.
For now, do not save any of these
altered texts.


When you use the save command <ctrl-X><ctrl-S>, 
only the text in the window in which the cursor

is positioned will be written to its
 file.
 If only one window is displayed on the screen, the save

command will save only its text.


If you made changes to the text in another buffer,
such as moving portions of it to another buffer,
MicroEMACS
will ask


Quit [y/n]:


If you answer ‘n’, MicroEMACS will save
the contents of the buffer you are currently displaying
by
writing them to your disk, but it will ignore the
contents of other buffers, and your cursor will be

Let’s C



MicroEMACS 77

returned
 to its previous position in the text.
 If you answer ‘y’, MicroEMACS again will save the

contents of the current buffer and ignore the other buffers,
but you will exit from MicroEMACS and
return to MS-DOS. Exit from MicroEMACS by typing the quit command <ctrl-X><ctrl-C>.


Keyboard macros
Another helpful feature of MicroEMACS is that it allows you
to create a keyboard macro.


Before beginning this section, reinvoke MicroEMACS to edit
example3.c 
as you did earlier.

The term macro means a number of commands or
characters that are bundled together under a
common name.
Although MicroEMACS allows you to create only one macro
at a time, this macro
can consist of a common
phrase or a common command or
series of commands that you use
while editing
your file.


Keyboard macro commands

The keyboard macro commands are as follows:


<ctrl-X>( Begin macro collection

<ctrl-X>) End macro collection

<ctrl-X>E Execute macro


To begin to create a macro, type the begin macro
 command <ctrl-X>(.
 Be sure to type an open
parenthesis ‘(’, not a numeral ‘9’.
MicroEMACS will reply with the message


[Start macro]


Type the following phrase: 


MAXNUM


Then type the end macro command <ctrl-X>).
Be sure you type a close parenthesis ‘)’, not a numeral
‘0’.
MicroEMACS will reply with the message


[End macro]


Move your cursor down two lines and execute the macro
by typing the execute macro command
<ctrl-X>E.
The phrase you typed into the macro has been inserted
into your text.


Should you give these commands in the wrong order, MicroEMACS
will warn you that you are
making a mistake.
For example, if you open a keyboard macro by typing <ctrl-X>(,
and then attempt
to open another keyboard macro by again typing
<ctrl-X>(, MicroEMACS will say:


Not now


Should you accidentally open a keyboard macro, or enter the
 wrong commands into it, you can
cancel the entire macro simply
by typing <ctrl-G>.


Replacing a macro

To replace this macro with another, go through the same
process.
Type <ctrl-X>(. Then type the
buffer status command
<ctrl-X><ctrl-B>, and type <ctrl-X>).
Remove the buffer status window by
typing the one window
command <ctrl-X>1. 


Now execute your keyboard macro
 by typing the execute macro command <ctrl-X>E.
 The buffer
status command has executed once more.


Whenever you exit from MicroEMACS, your keyboard
macro is erased, and must be retyped when
you return.


Sending commands to MS-DOS

Let’s C



78 MicroEMACS

The only remaining
command
you need to learn
is
the program interrupt
command <ctrl-X>!.
This
command allows
 you to interrupt your editing, give a command
 directly to MS-DOS,
 and then
resume editing without affecting
your text in any way.


The command <ctrl-X>! allows you to send one
command
to the operating system.
To see how this
command works, type <ctrl>!.
The prompt

MS-DOS command: 
has appeared at the bottom of your
screen.
Type
dir.
Observe that the directory’s table of contents scrolls across your
screen.
To return
to your editing, simply type a carriage return.



Compiling and debugging through MicroEMACS

MicroEMACS can be used with the compilation command
 cc to give you a reliable system for
debugging new programs.


Often, when you’re writing a new program, you face the situation in which
you try to compile, but
the compiler produces error messages
 and aborts the compilation.
 You must then invoke your
editor, change the program, close the editor,
 and try the compilation over again.
 This cycle of
compilation—editing—recompilationcan be quite
bothersome.


To remove some of the drudgery from compiling, the
 cc command has the
 automatic, or

MicroEMACS option,
-A. When you compile with this option, the MicroEMACS screen editor will
be
invoked automatically if any errors occur.
The error or errors generated during compilation will be
displayed in
one window, and your text in the other, with the cursor set at the
number of the line
that the compiler indicated had the error.


Try the following example.
Use MicroEMACS to enter the following program, which you should call

error.c:

main() {

printf("Hello, world!\n")


}


The semicolon was left off of the
printf statement, which is an error.
Now, try compiling
error.c with
the following
cc command:


cc -A error.c


You should see no messages from the compiler because they are all being
diverted into a buffer to be
used by MicroEMACS.
Then MicroEMACS will appear automatically.
In one window you should see
the message:


3: missing ’;’


and in the other you should see your source code for
error.c, with the cursor set on line 3.


If you had more than one error, typing
<ctrl-X>> would move you to the next line with an error in it;
typing
 <ctrl-X>< would return you to the previous error.
 With some errors, such as those for
missing braces or
semicolons, the compiler cannot always tell exactly which line the
error occurred
on, but it will almost always point to a line that
is near the source of the error.


Now, correct the error by typing a semicolon at the end of line 2.
Close the file by typing
<ctrl-Z>. cc
will be invoked again automatically.


cc will continue to compile your program either until the program compiles without error, or until
you exit from MicroEMACS by typing
<ctrl-U> followed by
<ctrl-X><ctrl-C>.

Let’s C



MicroEMACS 79

The MicroEMACS help facility

MicroEMACS has a built-in help function. With it, you can ask for information either for a word
that you type in, or for a word over which the cursor is positioned. The MicroEMACS help file
contains the bindings for all library functions and macros included with Let’s C.

For example, consider that you are preparing a C program and want more information about the
function fopen. Type <ctrl-X>?. At the bottom of the screen will appear the prompt

Topic:

Type fopen. MicroEMACS will search its help file, find its entry for fopen, then open a window and
print the following:

fopen - Open a stream for standard I/O
#include <stdio.h>
FILE *fopen (name, type) char *name, *type;

If you wish, you can kill the information in the help window and copy it into your program to ensure
that you prepare the function call correctly.

Consider, however, that you are checking a program written earlier, and you wish to check the call
to fopen. Simply move the cursor until it is positioned over one of the letters in fopen, then type
<esc>?. MicroEMACS will open its help window, and show the same information it did above.

To erase the help window, type <esc>2.

Where to go from here
For a complete summary of MicroEMACS’s commands, see
the entry for
me in the Lexicon.

The next section introduces make, a utility is helpful in building and maintaining large programs.

Let’s C



80 MicroEMACS

Let’s C


