
#%2=0 .nr # 0

Compiling with Let’s C

This section describes how to compile C programs with Let’s C.

In brief, a C compiler transforms files of C source code into machine code. Compilation involves
several steps; however, Let’s C simplifies it with the cc command, which controls all the actions of
the compiler.

The phases of compilation
Let’s C is not just one program, but a number of different programs that work together. Each
program performs a phase of compilation. The following summarizes each phase:

cpp The C preprocessor. This processes any of the ‘#’ directives, such as #include or #ifdef, and
expands macros.

cc0 The parser. This phase parses programs. It translates the program into a parse-tree format,
which is independent of both the language of the source code and the microprocessor for
which code will be generated.

cc1 The code generator. This phase reads the parse tree generated by cc0 and translates it into
machine code. The code generation is table driven, with entries for each operator and
addressing mode.

cc2 The optimizer/object generator. This phase optimizes the generated code and writes the
object module.

cc3 Let’s C also includes a fifth phase, called cc3, which can be run after the object generator,
cc2. cc3 generates a file of assembly language instead of a relocatable object module. This
phase is optional, and allows you to examine the code generated by the compiler. If you want
Let’s C to generate assembly language, use the -VASM option on the cc command line.

Unless you specify the -VASM option, Let’s C creates an object module that is named after the
source file being compiled. This module has the suffix .obj. An object module is not executable; it
contains only the code generated by compiling a C source file, plus information needed to link the
module with other program modules and with the library functions.

As the final step in its execution, cc calls the linker ld to produce an executable program.

Edit errors automatically
The first option, and one that you’ll use most often, is the MicroEMACS option -A. Often when
you’re writing a new program, you try to compile it, only to have the compiler tell you that you’ve
made a mistake. You must then invoke your editor, change the program, exit from the editor, and
start compiling the program again.

To make this process easier, cc command has the automatic (or MicroEMACS) option, -A. If Let’s C
detects any errors in your program, it will automatically invoke the MicroEMACS screen editor.
MicroEMACS will display all error messages in one window and your source code in another, with
the cursor set at the number of the line where the first error occurred.

Try the following example. Use MicroEMACS to create a program called error.c. To invoke
MicroEMACS, type the command

me error.c

43



44 Compiling with Let’s C

at the MS-DOS prompt, or use the display interface to MWS, the Mark Williams shell, as described
in section 1 of this manual. Then type the following code:

main()
{

printf("Hello, world")
}

Note that the semicolon was left off of the printf statement. Type <ctrl-X><ctrl-S> to save the file to
disk, and <ctrl-X><ctrl-C> to exit from MicroEMACS. Now, try compiling error.c with the following
cc command:

cc -A error.c

or use MWS’s display interface, as described in section 1. You will see no messages from the
compiler because they are all being diverted into a file to be used by MicroEMACS. Then,
MicroEMACS will appear automatically. In the upper window you will see the message:

4: missing ’;’

and in the lower window you will see your source code for error.c, with the cursor set on line 4. If
you had more than one error, typing <ctrl-X>> would move you to the next line with an error in it;
typing <ctrl-X>< would return you to the previous error.

With some errors, such as those for missing braces or semicolons, the compiler cannot always tell
exactly which line the error occurred on; it will point to a line that is near the source of the error.

Now, use <ctrl-E> to move the cursor to the end of line 3, and type a semicolon to correct the error.
Type <ctrl-X><ctrl-S> to save the file to disk, and then type <ctrl-X><ctrl-C> to exit from
MicroEMACS. cc will recompile the program automatically, to produce a normal working executable
file.

cc will continue to invoke the MicroEMACS editor either until the program compiles without error,
or until you exit from the editor by typing <ctrl-U> followed by <ctrl-X><ctrl-C>.

Renaming executable files
When Let’s C compiles a source file, by default it names the executable program after the source
file. For example, when you compiled error.c, Let’s C automatically named the executable file
error.exe.

If you wish, you can give the executable file a different name. Use the -o (output) option, followed by
the desired name. For example, should you wish the executable file to have the name example.exe,
use the command:

cc -o example.exe error.c

This command will compile the source file error.c and generate an executable file called
example.exe. The suffix .exe tells MS-DOS that the file is executable.

Floating-point numbers
Often, you will need to use floating-point numbers in your programs. If you are unsure what a
floating-point number is, see the Lexicon entry for float.

The routines that print floating-point numbers are large, and most C programs do not need to print
floating-point numbers; therefore, the code to perform floating-point arithmetic is not included in a
program by default. You must ask Let’s C to include these routines with your program by using the
-f option with the cc command.

Let’s C



Compiling with Let’s C 45

For example, if the program example.c used floating-point numbers, you would compile it with the
following command line:

cc -f example.c

If your program prints floating-point numbers or reads them from an input device, and it is not
compiled with the -f option, it will print the following error message when it is run:

You must compile with the -f option
to include printf() floating point!

Compiling multiple source files
Many programs are built from more than one file of C source code. For example, the program
factor, which is provided with Let’s C, is built from the C source files factor.c and atod.c. To
produce the executable program factor, both source files must be compiled; the linker ld then joins
them to form an executable file.

To compile a program that uses more than one source file, type all of the source files onto the cc
command line. For example, to compile factor type the following:

cc -f factor.c atod.c -lm

This command compiles both C source files to create the program factor.

When the cc command line includes several file name arguments, by default it uses the first to
name the executable file. In the above example, cc produces the non-executable object modules
factor.obj and atod.obj, and then links them together to produce the executable file factor.exe.

The argument -lm tells cc to include routines from the mathematics library when the object
modules are linked. This option must come after the names of all of the source files, or the program
will not be linked correctly.

Wildcards
A wildcard character is one that represents a variety of characters. MS-DOS recognizes the asterisk
‘*’ and the question mark ‘?’. The asterisk can represent any string of characters of any length
(including no character at all), whereas the question mark can represent any one character.

For example, if the current directory held the following files:

a.c
ab.c
abc.c
abcd.c

typing dir a?.c would print:

ab.c

whereas typing dir a*.c would print all four files.

The cc command lets you use wildcards in your command line to save you time and effort. For
example, you can compile all of the C source files in the current directory simply by typing:

cc *.c

This command compiles all of the files with the suffix .c and links the resulting object modules.

In another example, if the program example were built from the source files example1.c,
example2.c, and example3.c, you could compile them with the following command:

Let’s C



46 Compiling with Let’s C

cc example?.c

Tailoring the command line interface
With Let’s C, you can tailor the command-line interface that your compiled programs use. Some
programs do not use command-line arguments; others take a few; whereas others may need to read
the environment and expand wildcard characters. The following options allow you to select the
interface you want for your program.

The option -na (for ‘‘no arguments’’) tells Let’s C that a program does not use command line
arguments. The -na option may be used with or without the -ns option, which suppresses STDIO.

The option -w (for ‘‘wildcard’’) tells Let’s C to include code that expands the wildcards ‘?’ and ‘*’ used
in command-line arguments. For example, if the program example.exe is compiled with the -w
option, it will expand the command:

example *.c

The wildcard argument *.c will expand into all file names in the current directory that end in .c.

If your program defines a global array char _cmdname[] that gives the name of the command, then
compiling the program with the -w option will include code that fills in argv[0] with the command
name and looks for environmental variables of the form nameHEAD and nameTAIL. If found, these
are added to the argv[] array, respectively, before and after the command-line arguments.

For example, the word-count command wc is built with the -w option. If you set the environmental
variable WCHEAD to -l, then the command

wc foo.c

has the same effect as the command

wc -l foo.c

The arguments to the function main are usually defined as

main(argc, argv)
int argc; char *argv[];

On some systems, a third argument is available:

main(argc, argv, envp)
int argc;
char *argv[], *envp[];

The argument envp is a NULL-terminated array of pointers to environmental variables, each of the
form var=value. If a program is compiled without the -w option, Let’s C passes an empty list as
envp. If a program is compiled with this option, Let’s C passes an envp that points to all of the
MS-DOS environmental variables. Note that your program does not have to use envp; like argc and
argv, it is available should you want it.

Linking without compiling
When you are writing a program that consists of several source files, you will need to compile the
program, test it, and then change one or more of the source files. Rather than recompile all of the
source files, you can save time by recompiling only the modified files and relinking the program.

For example, if you modify the factor program by changing the source file factor.c, you can
recompile factor.c and relink the entire program with the following command:

Let’s C



Compiling with Let’s C 47

cc -f factor.c atod.obj -lm

The first two arguments are the C source file factor.c and the object module atod.obj. cc recognizes
that atod.obj is an object module and simply passes it to the linker ld without compiling it. You
will find this particularly useful when your programs consist of many source files and you need to
compile only a few of them.

To simplify compiling, especially if you are developing systems that use many source modules, you
should consider using the make command that is included with Let’s C. For more information on
make, see the entry in the Lexicon, or see the tutorial for make that appears later in this manual.

Compiling without linking
At times, you will need to compile a source file but not link the resulting object module to the other
object modules. You will do this, for example, to compile a module that you wish to insert into a
library. Use the -c option to tell cc not to link the compiled program. This option is used most
often to create relocatable object modules that can be archived into a library for later use.

For example, if you wanted just to compile factor.c without linking it, you would type:

cc -c factor.c

To link the resulting object module with the object module atod.obj and with the appropriate
libraries, type the following command:

cc -f factor.obj atod.obj -lm

Mini-make option
When you write a program that consists of several files of source code, you may find that, at one
time or another, you need to alter the code in just one or two files, to update the program or to fix a
bug. You must then recompile and relink the program to create an executable file; however, it is
wasteful to recompile every file of source code when did not modify all of them. What you need is an
easy way to recompile only the files that you edited, and then relink all of the object modules into an
executable file.

The -m (mini-make) option allows you to create an up-to-date version of your program without
recompiling all of your source files. When you use the -m option, the compiler compares the date
the source file was last modified with the date its object module was last created. If the object
module has a later date than the source file, then the source file has not been modified since it was
last compiled, and Let’s C will not recompile it. It will, however, re-link the previously compiled
object module to build a new executable file.

This option is quite useful when recompiling programs that are built out of many different modules
because unchanged source files are not recompiled unnecessarily. Note, however, that the -m
option does not recognize header file dependencies, so you should use it with some caution.

Note, too, that this option will not work properly if you do not reset your system’s time whenever
you reboot. If you do not, files will be date-stamped to the default time, and cc will not be able
organize them properly.

Assembly-language files
C makes most assembly language programming unnecessary. However, you may wish to write
small parts of your programs in assembly language for greater speed or to access processor features
that C cannot use directly. Let’s C includes an assembler, named as, which is described in detail in
the Lexicon.

Let’s C



48 Compiling with Let’s C

To compile a program that consists of the C source file example.c and the assembly-language
source file example.s, simply use the cc command as usual:

cc example1.c example2.s

cc recognizes that the suffix .s indicates an assembly-language source file, and assembles it with as;
then it links both object modules to produce an executable file.

If you wish, you can also write programs that combine assembly language with C preprocessor
instructions. These files should have the suffix .m. When you name a .m file in a cc command, cc
will pass it first to the C preprocessor cpp, and then pass what cpp produces to the assembler as.
These allow you to write assembly-language programs that are independent of i8086 memory model.
For more information on how to use the .m format, see the Lexicon entries for larges.h and for as.

Changing the size of the stack
The stack is the segment of memory that holds function arguments, local variables, and function
return addresses. Let’s C by default sets the size of the stack to two kilobytes (2,048 bytes). This is
enough stack space for most programs; however, some programs, such as the example program on
page 26 of the first edition of The C Programming Language, ed. 2, require more than two kilobytes
of stack. A program that uses more than its allotted amount of stack will cause a stack overflow;
this may force you to reboot your computer.

The size of the stack cannot be altered while a program is running. Should your program need more
than two kilobytes of stack, use the -ys option to the cc command. For example, to increase the
stack size to 8,000 bytes, use the following command to the cc command:

cc -ys8000 hello.c

Note that this option indicates the number of bytes to which you wish to set the stack, not the
number of kilobytes. This must be a decimal number.

i8086 memory models
The i8086/88 microprocessor uses a segmented architecture. This means the i8086/88 divides
memory into segments of 64 kilobytes each. No program or data element can exceed that limit.

Intel Corporation has devised a number of models for organizing the segments of memory into a
program that is larger than any single segment. Let’s C implements the two most useful of these:
SMALL model and LARGE model.

SMALL model C programs use 16-bit pointers and near calls. Because a 16-bit pointer can address
65,536 bytes (64 kilobytes) of memory, SMALL model programs are limited to 64 kilobytes (one
segment) of code and 64 kilobytes of data and stack.

LARGE model C programs use 32-bit pointers and far calls. In the LARGE model, the 32-bit
pointers are converted by the processor to 20-bit addresses, so LARGE model programs can access
up to a total of 1,048,576 bytes (one megabyte) of code and data. The IBM PC and and its imitators
have a physical limit of 640 kilobytes.

In terms of execution, LARGE-model programs run more slowly than SMALL-model programs, but
for many purposes the advantages of the expanded address space of the LARGE model outweigh the
decreased efficiency.

When Let’s C compiles a program with the -VSMALL option, the resulting object module follows the
rules of the SMALL model. This is the default setting for the compiler. When the -VLARGE option
is used with the cc command, the object program follows the rules of the LARGE model.

When you compile a program with the -VLARGE option, cc defines the manifest constant LARGE to
the C preprocessor. This allows you to use the #ifdef LARGE conditional to flag model-dependent
code.

Let’s C



Compiling with Let’s C 49

Note that you cannot mix SMALL-model object modules with those compiled into LARGE model.

Debugging information
One powerful feature of Let’s C is its ability to generate programs that you can debug with csd, the
revolutionary Mark Williams C source debugger. csd lets you debug C source code: you can use it
even if you do not know i8086 assembly language.

csd uses debugging information that Let’s C writes into the object module as it compiles a C
program. Because this information slightly enlarges the file that contains the object modules,
Let’s C does not produce it unless you request it. To include debugging information in an object
module, use the -VCSD option before the file name argument on the cc command line:

cc -VCSD hello.c

The manual for csd describes the C source debugger in full.

A module compiled with the -VCSD option will run exactly the same as one compiled without it, but
the size of the object module will increase by a few bytes. The size of the executable file will
increase, due to the special symbol table that the -VCSD option builds.

With some programs that already approach the limits of the SMALL model, compiling with the -
VCSD option may make them too large to be executed as SMALL model programs. In that case,
recompile the program with the -VCSD and -VLARGE options; the latter option will create a LARGE
model output.

To remove the debug symbol table from the programs that you compile with the -VCSD option, use
the strip command. strip is described in the Lexicon.

i8087 programs
The Intel i8087 chip is a numeric data processor that is designed to execute mathematics routines.
It increases the speed with which programs can compute floating-point numbers. Because of its
expense, however, many personal computers do not include this chip.

Let’s C by default uses a special set of libraries that sense if an i8087 is present. When you compile
a program with these libraries and then run it, the library routines automatically check to see if an
i8087 is present on your computer. If an i8087 is present, then floating-point arithmetic is
automatically computed it; otherwise, it is computed in software. Thus, a program compiled with
Let’s C can be run to best advantage on machines that have an i8087 as well as on machines that
do not, without needing to recompile the program.

If you know that the program you are compiling will always be run on a machine with an i8087, you
may wish to use the libraries that use the i8087 exclusively. You can do this by specifying the -
VNDP option to the cc command. For example, to compile the program factor to run exclusively
with an i8087, use the following command:

cc -VNDP factor.c atod.c -lm

This program will not run on a machine that does not have an i8087; however, the executable file
will be somewhat smaller than one that uses the sensing libraries, and will run slightly faster.

Options passed to MS-LINK
The compiler controller cc passes a number of its options directly to MS-LINK. The following
summarizes them.

-y/switch
This option sends switch directly to MS-LINK. switch can be any MS-LINK command or
option.

Let’s C



50 Compiling with Let’s C

-ym Tell MS-LINK to create a map file that can be used with the MS-DOS utility DEBUG. For
more information on DEBUG and its uses, see your MS-DOS manual.

-yn Increase the number of segments allowed in a program to 1,024 using the MS-LINK
segments switch. Note that the segments switch is used only version of MS-LINK later 3.0.
Earlier versions use the x switch to increase the number of segments.

-ysnumber
Set the stack size to number where number is a decimal integer that gives the number of
bytes you desire. The stack is set by default to two kilobytes; to set the stack, for example,
to 16,000 bytes type:

cc -ys16000 foo.c

-yf Tell MS-LINK to write a linker command file. This option is useful, should you ever have
trouble linking a program and wish to see just what MS-LINK is doing, or if you wish to
fine-tune how your program is linked.

-yuname
Undefine the variable name for MS-LINK. This tells MS-LINK to link in the library module
called name even though it is not named explicitly in your program. For example, the
command line

cc -yuprintf example.c

tells MS-LINK to link the library module printf into your program, even if your program
does not explicitly call printf. This tactic is sometimes quite useful.

Compiling programs without STDIO
STDIO is an abbreviation for standard input and output. Library routines use STDIO to write to the
screen or read the keyboard. Most of the runtime startup routines included with Let’s C call
STDIO, whether your program uses any STDIO functions or not.

If you have a small program that does not use any of the STDIO functions, you can stop STDIO from
being linked into your program by using the -ns option. This will make your program noticeably
smaller and more efficient. Note that the -ns option gives your program a different version of the
exit command, one that does not call fclose or fflush

Using default options
To make using Let’s C even simpler, cc helps you specify default options with the environment
variables CCHEAD and CCTAIL These variables give options that cc adds to the command line you
give it: it adds CCHEAD to the start of the command line (after the ‘‘cc’’), and it appends CCTAIL to
the end of the command line.

How you can build a nameHEAD and nameTAIL feature into your program is described above, in
the sub-section Tailoring the command line interface.

When you installed Let’s C, the install utility instructed you to set CCHEAD so that Let’s C would
read the file CCARGS. If you wish, though, you can attach additional variables to CCHEAD, or add
them to the file ccargs.

For example, suppose you always wish to use the options -V and -f (for ‘‘verbose’’ compilation and
floating-point routines), and always link in the mathematics library with the -lm option (which, as
you recall, must be mentioned after the source and object modules). Rather than retype these
options every time you type a cc command line, you can set CCHEAD and CCTAIL as follows:

set CCHEAD=@a:\lib\ccargs\ -V -f
set CCTAIL=-lm

Let’s C



Compiling with Let’s C 51

Note that if your computer has a hard disk, CCHEAD should indicate that ccargs is on drive C,
rather than drive A, as shown above. Thereafter, when you type

cc factor.c atod.c

it will be as if you had typed

cc -V -f factor.c atod.c -lm

in addition to the arguments contained in ccargs. These environmental variables allow you to pass
variables to Let’s C with ease. To ensure that these variables are set every time you boot your
system, be sure to enter the set commands described above into the file autoexec.bat on your MS-
DOS boot disk.

Where to go from here
For more information on compiling, see the Lexicon entry for cc. This entry summarizes all of cc’s
options, and presents many that are not discussed here. For more information on the assembler as,
see its entry in the Lexicon as well.

The following section introduces the MicroEMACS screen editor. If you have worked the exercises in
this part of the book, you have already used MicroEMACS a little; this tutorial, however, will show
you how to use all of its advanced features to input text quickly and easily.

Then comes an introduction to make, the Mark Williams programming discipline. If you are
building programs that use multiple files of source code, you will find make to be an invaluable tool.

Section 6, Questions and Answers, answers frequently asked questions about Let’s C and its
utilities. If you have a question about Let’s C, look here first. You may well find the information
you need.

Let’s C



52 Compiling with Let’s C

Let’s C


