
#%2=0 .nr # 0

C for Beginners

In the last few years, C has grown from a relatively obscure language used by a handful of
programmers at universities, to a ‘‘must know’’ language throughout the computer industry. C has
become known as a language that is powerful, fast, and efficient.

This chapter briefly introduces C. It is in two parts. Part 1 describes what a programming language
is, and gives the history of the C programming language. This section also introduces some
concepts basic to C, such as structured programming, pointer, and operator. Part 2 walks through a
C programming session. It emphasizes how a C programmer deals with a real problem, and
demonstrates some of the aspects of the language.

This chapter is not designed to teach you the entire C language. It will introduce you to C, so you
can read the rest of this manual with some understanding. We urge you to look up individual
topics of C programming in the Lexicon, and especially to study the example programs given there.

Programming languages and C
Before beginning with C, it is worthwhile to review how a microprocessor and a computer language
work.

A microprocessor is the part of your computer that actually computes. Built into it is a group of
instructions. Each instruction tells the microprocessor to perform a task; for example, one
instruction adds two numbers together, another stores the result of an arithmetic operation in
memory, and a third copies data from one point in memory to another.

Together, a microprocessor’s instructions form its instruction set. The instruction set is, in effect,
the microprocessor’s ‘‘native language’’.

A microprocessor also contains areas of very fast storage, called registers. The registers are
essential to arithmetic and data handling within the microprocessor. How many registers a
microprocessor has, and how they are designed, help to determine how much memory the
microprocessor can read and write, or address, and how the microprocessor handles data.

A computer language, as the name implies, lets a human being use the microprocessor’s instruction
set. The lowest level language is called ‘‘assembly language’’. In assembly language, the
programmer calls instructions directly from the microcomputer’s instruction set, and manipulates
the registers within the microprocessor. To write programs in assembly language, a programmer
must know both the microprocessor’s instruction set and the configuration of its registers.

Assembly and high-level languages

With assembly language, the programmer can tailor the program specifically to the microprocessor.
However, because each microprocessor has a unique instruction set and configuration of registers, a
program written in one microprocessor’s assembly language cannot be run on another
microprocessor. For example, no program written in the assembly language for the Motorola 68000
microprocessor can be run on the IBM PC or any PC-compatible computer. The program must be
entirely rewritten in the assembly language for the Intel 8086 microprocessor, which is difficult and
time consuming.

A high-level language helps programmers to avoid these problems. The programmer does not need
to know the microprocessor in detail; instead of specific microprocessor instructions, he writes a set
of logical constructions. These constructions are then handed to another program, which translates
them into the instructions and registers calls used by a specific microprocessor. In theory, a

27



28 C for Beginners

program written in a high-level language can be run on any microprocessor for which someone has
written a translation program.

A high-level language allows the programmer to concentrate on the task being executed, rather than
on the details of registers and instructions. This means that programs can be written more quickly
than in assembly language, and can be maintained more easily.

So, what is C?

C was invented in the mid-1970s by Dennis Ritchie, a programmer at Bell Laboratories. Ritchie
created C specifically to re-write the UNIX operating system from PDP-11 assembly language.
Ritchie designed C to have the power, speed, and flexibility of assembly language, but the portability
of high-level languages.

In 1978, Ritchie and Brian W. Kernighan published The C Programming Language, which describes
and defines the C language. The C Programming Language is the ‘‘bible’’ of C, a standard work to
which all programmers can refer when writing their programs.

Because C is modeled after assembly language, it has been called a ‘‘medium-level’’ language. The
programmer doesn’t have to worry about specific registers or specific instructions, but he can use all
of the power of the computer almost as directly as he can with assembly language. The price is that
a C program often can be terse and difficult to understand.

Also, because C was written by experienced programmers for experienced programmers, it makes
little effort to protect a programmer from himself. A programmer can easily write a C program that
is legal and compiles correctly but crashes the system. Also, C’s punctuation marks, or ‘‘operators’’,
closely resemble each other. Thus, a mistake in typing can create a legal program that compiles
correctly but behaves very differently from what you expect.

Structured programming

C is a structured language. This means that a C program is assembled from a number of sub-
programs, or functions, each of which performs a discrete task. If this concept is difficult to grasp,
consider the following example.

Suppose you want to turn a file of text into upper-case letters and print it on the screen. This job
seems simple, but a program to do it must perform five tasks:

1. Accept the name of the file to open.

2. Open the file so it can be read, in much the same way that you must open a book before
you can read it.

3. Read the text from the file.

4. Turn what is read into upper-case letters.

5. Finally, print the transformed text onto the screen.

A good program will also perform the following tasks:

1. Check that the file requested actually exists.

2. Check that the file requested is actually a text file rather than a file of binary information;
the latter makes very little sense when printed on the screen.

3. Close the program neatly when the work is finished.

4. Stop processing and print an error message if a problem occurs.

Let’s C



C for Beginners 29

A structured language like C allows you to write a separate function for each of these tasks.

A structured programming language offers two major advantages over a non-structured language.
First, it is easier to debug a function than an entire program because the function can be unplugged
from the program as a whole, made to work correctly, and then plugged back in again. Second,
once a function works, it can be used again and again in different programs. This allows you to
create libraries of reliable functions that you can pull off the shelf whenever you need them.

The functions within a program communicate by passing values to each other. The value being
passed can be an integer, a character, or—most commonly—an address within memory where a
function can find data to manipulate. This passing of addresses, or pointers, is the most efficient
way to manipulate data because by receiving one number, a function can find its way to a large
amount of data. This speeds up a program’s execution.

C adds some extra tools to help you construct programs. To begin, C allows you to store functions
in compiled form. These precompiled functions are added only when the program is finally loaded
into memory; this spares you the trouble of having to recompile the same code again and again.
Second, C adds a preprocessor that expands definitions, or macros, and pulls in special material
stored in header files. This allows you to store often-used definitions in one file and use them just
by adding one line to your program.

Compiling a C program

When Let’s C compiles a C program, it invokes a number of sub-programs, or phases, each of which
performs part of the work of turning your file of C code into an executable program. The phases are
as follows:

cpp The preprocessor. This reads the file of source code, adds any header files that you have
requested, and expands any user-defined macros in the program.

cc0 The preprocessed file is then handed to cc0, the parser, which examines the program to see
that it is written in legal C and translates it into a logical structure, or tree.

cc1 The output of the parser is then handed to cc1, the code generator, which translates the
logical structure created by the parser into machine instructions.

cc2 The output of the code generator is then handed to cc2, the optimizer, which examines the
code, eliminates redundant instructions, and then writes the object module file. The output
of cc2 is the relocatable object module, which always has the suffix .obj.

The relocatable object module is handed to MS-LINK, the linker, which opens the libraries and adds
the library functions to create the executable program. What the linker does will be explained in
more detail below.

This sounds complicated, and it is; for that reason, Let’s C includes a command, called cc, that
guides a program through the compilation process automatically. For example, to compile the
program test.c with Let’s C, all you have to do is type:

cc test.c

or use the MWS display interface, as described in section 1, Tutorial Introduction. cc takes care of
the rest.

Writing a C program

As noted above, a C program consists of a bundle of sub-programs, or functions, which link together
to perform the task you want done. Every C program must have at least one function that is called
main. This is the main function; when the computer reads this, it knows that it must begin to
execute the program. All other functions are subordinate to main. When the main function is
finished, the program is over.

Let’s C



30 C for Beginners

Here is a simple C program; all it does is print the message ‘‘Hello, world!’’ on the screen:

main()
{

printf("Hello, world!\n");
}

As you can see, this program begins with the word main. The program begins to work at this point.
The parentheses after main enclose all of the arguments to main — or would, if this program’s main
took any. An argument is an item of information that a function uses in its work.

The braces ‘{’ and ‘}’ enclose all the material that is subsidiary to main.

The word ‘‘printf’’ calls a function called printf. This function performs formatted printing. The line
of characters (or ‘‘string’’) Hello, world! is the argument to printf: this argument is what printf is to
print.

The characters ‘\n’ stand for a carriage return; this ensures that when the program is finished, the
cursor is not left fixed in the middle of the screen. Finally, the semicolon ‘;’ at the end of the
command indicates that the command is finished.

One point to remember is that printf is not part of the C language. Rather, it is a function that was
written by Mark Williams Company, then compiled and stored in a library for later use. This means
that you do not have to re-invent a formatted printing function to perform this simple task: all you
have to do is call the one that Mark Williams Company has written for you.

Although most C programs are more complicated than this example, every C program has the same
elements: a function called main, which marks where exection begins and ends; braces that fence
off blocks of code; functions that are called from libraries; and data passed to functions in the form
of arguments.

A sample C programming session
This section walks you through a C programming session. It shows how you can go about planning
and writing a program in C.

C allows you to be precise in your programming, which should make you a stronger programmer.
Be careful, however, because C does exactly what you tell it to do: if you make a mistake, you can
produce a legal C program that does very unexpected things.

Designing a program

Most programmers prefer to work on a program that does something fun or useful. Therefore, we
will write something useful: a version of the UNIX utility more. It will do the following:

1. Open a text file on disk.

2. Display its contents in 23-line portions (one full screen).

3. After a portion is displayed, wait to see if the user wants to see another portion. If the user
presses the space bar, display another portion; if he types anything else, exit.

4. Exit automatically when the end of file is reached.

As you can see, the first step in writing a program is to write down what the program is to do, in as
much detail as you can manage, and in complete sentences.

Now, invoke the MicroEMACS editor and get ready to type in the program. Use the command

me more.c

or use the MWS display interface as described in section 1 of this manual. Note that the suffix .c on
the file name indicates that this is a file of C code. If you do not use this suffix, Let’s C will not

Let’s C



C for Beginners 31

recognize that this is a file of C code, and will refuse to compile it.

Begin by inserting a description of the program into the top of the file in the form of a comment.
When a C compiler sees the symbol ‘/*’, it throws away everything it reads until it sees the symbol
‘*/’. This lets you insert text into your program to explain what the program does.

Now, type the following:

/*
* Truncated version of the ’more’ utility.
* Open a file, print out 23 lines, wait.
* If user types <space>,
* print another 23 lines,
* if user types any other key, exit.
* Exit when EOF is read.
*/

Save what you have typed by pressing <ctrl-X> and then <ctrl-S>. Now, anyone, including you,
who looks at this program will know exactly what it is meant to do.

The main function

As described earlier, the C language permits structured programming. This means that you can
break your program into a group of discrete functions, each of which performs one task. Each
function can be perfected by itself, and then used again and again when you need to execute its
task. C requires, however, that you signal which function is the main function, the one that
controls the operation of the other functions; thus, each C program must have a function called
main().

Now, add main() to your program. Type the code that is shaded, below:

/*
* Truncated version of the ’more’ utility.
* Open a file, print out 23 lines, wait.
* If user types <space>,
* print another 23 lines,
* if user types any other key, exit.
* Exit when EOF is read.
*/

main()
{
}

The parentheses ‘‘()’’ show that main is a function; if main were to take any arguments, they would
be named between the parentheses. The braces ‘‘{}’’ delimit all code that is subordinate to main;
this will be explained in more detail below.

Note that the shortest legal C program is main(){}. This program doesn’t do anything when you run
it, but it will compile correctly and generate an executable file.

Now, try compiling the program. Save your text by typing <ctrl-X><ctrl-S>, and then exit from the
editor by typing <ctrl-X><ctrl-C>. Compile the program by typing:

cc more.c

or use the MWS display interface, as described in section 1. When compilation is finished, type
more. MS-DOS pauses for a moment, and then returns the prompt to your screen. As you can see,
you now have a legal, compilable C program, but one that does nothing.

Let’s C



32 C for Beginners

Opening a file and showing text

The next step is to install routines that open a file and print its contents. For the moment, the
program will read only a file called tester, and not break it into 23-line portions.

Type the shaded lines into your program, as follows:

/*
* Truncated version of the ’more’ utility.
* Open a file, print out 23 lines, wait.
* If user types <space>,
* print another 23 lines,
* if user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>

main()
{

char string[128];
FILE *fileptr;

/* Open file */
fileptr = fopen("tester", "r");

/* Read material and display it */
for (;;)
{

fgets(string, 128, fileptr);
printf("%s\n", string);

}
}

Note first how comments are inserted into the text, to guide the reader.

Now, note the lines

char string[128];
FILE *fileptr;

These declare two data structures. That is, they tell Let’s C to set aside a specific amount of
memory for them.

The first declaration, char string[128];, declares an array of 128 chars. A char is a data entity that
is exactly one byte long; this is enough space to store exactly one alphanumeric character in
memory, hence its name. An array is a set of data elements that are recorded together in memory.
In this instance, the declaration sets aside 128 chars-worth of memory. This declaration reserves
space in memory to hold the data that your program reads.

The second declaration, FILE *fileptr, declares a pointer to a FILE structure. The asterisk shows
that the data element points to something, rather than being the thing itself. When a variable is
declared to be a pointer, Let’s C sets aside enough space in memory to hold an address. When your
program reads that address, it then knows where the actual data are residing, and looks for them
there. C uses pointers extensively, because it is much more efficient to pass the address of data
than to pass the data themselves. You may find the concept of pointers to be a little difficult to
grasp; however, as you gain experience with C, you will find that they become easy to use.

Let’s C



C for Beginners 33

The FILE structure is the data entity that holds all the information your program needs to read
information from or write information to a file on the disk. For now, all you need to remember is
that this declaration sets aside a place to hold a pointer to such a structure, and the structure itself
holds all of the information your program needs to manipulate a file on disk. In effect, the variable
fileptr is used within your program as a synonym for the file itself.

Now, the line

fileptr = fopen("tester", "r");

opens the file to be read. The function fopen opens the file, fills the FILE structure, and fills the
variable fileptr with the address of where that structure resides in memory.

fopen takes two arguments. The first is the name of the file to be opened, within quotation marks.
The second argument indicates the mode in which to open the file; r indicates that the file will be
read only.

The lines

for(;;)
{

begin a loop. A loop is a section of code that is executed repeatedly until a condition that you set is
met. For example, you may define a loop that executes until the value of a particular variable
becomes greater than zero.

for is built into the C language. Note that it has braces, just like main() does; these braces mean
that the following lines, up to the next right brace (}) are part of this loop. You can set conditions
that control how a for loop operates; in its present form, it will loop forever. This will be explained
in more detail shortly.

Two library functions are executed within the loop. The first,

fgets(string, 128, fileptr);

reads a line from the file named in the fileptr variable, and writes it into the character array called
string. The middle argument ensures that no more than 128 characters will be read at a time. The
second line within this loop,

printf("%s\n", string);

prints out the line. printf is a powerful and subtle function; in its present form, it prints on the
screen the string named in the variable string.

Finally, the line at the top of the program

#include <stdio.h>

tells Let’s C to read a header file called stdio.h. The term ‘‘STDIO’’ stands for ‘‘standard input and
output’’; stdio.h declares and defines a number of routines that will be used to read data from a file
and write them onto the screen.

When you have finished typing in this code, again compile the program as you did earlier. If an
error occurs, check what you have typed and make sure that it exactly matches the code shown on
the previous page. If you find any errors, fix them and then recompile. If errors persist, see the
sections Error Messages and Questions and Answers for help.

When compilation is finished, execute more as you did earlier. The file tester is included with
Let’s C. You will see the text from tester scroll across the screen. When the text is finished,
however, the DOS prompt does not return; you have not yet inserted code that tells the program to
recognize that the file is finished. Type <ctrl-C> to break the program and return to DOS.

Let’s C



34 C for Beginners

Accepting file names

Of course, you will want more to be able to display the contents of any file, not just files named
tester. The next step is to add code that lets you pass arguments to the program through its
command line. This task requires that you give the main() function two arguments; by tradition,
these are always called argc and argv. How they work will be described in a moment.

The enhanced program now appears as follows:

/*
* Truncated version of the ’more’ utility.
* Open a file, print out 23 lines, wait.
* If user types <space>,
* print another 23 lines,
* if user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
/* Declare arguments to main() */
int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptr;

/* Open file */
fileptr = fopen(argv[1], "r");

/* Read material and display it */
for (;;)
{

fgets(string, MAXCHAR, fileptr);
printf("%s\n", string);

}
}

First, a small change has been added: the line

#define MAXCHAR 128

defines the manifest constant MAXCHAR to be equivalent to 128. This is done because the ‘‘magic
number’’ 128 is used throughout the program. If you decide to change the number of characters
that this program can handle at once, all you would have to do is to change this one line to alter the
entire program. This cuts down on mistakes in altering and updating the program. If you look
lower in the program, you will see that the declaration

char string[128]

has been changed to read

char string[MAXCHAR]

The two forms are equivalent; the only difference is that the latter is easier to use. It is a good idea
to use manifest constants wherever possible, to streamline changes to your program.

Let’s C



C for Beginners 35

Now, look at the line that declares main(). You will see that main() has two arguments: argc and
argv.

The first is an int, or integer, as shown by its declaration — int argc;. argc gives the number of
entries typed on a command line. For example, when you typed

more filename

the value of argc was set to two: one for the command name itself, and one for the file-name
argument. argc and its value are set by Let’s C. You do not have to do anything to ensure that this
value is set correctly.

argv, on the other hand, is an array of pointers to the command line’s elements. In this instance,
argv[1] points to name of the file that you want more to read. This, too, is set by Let’s C, and
works automatically.

If you look below at the line that delares fopen(), you will see that tester has been replaced with
argv[1]; this means that you want fopen() to open the file named in the first argument to the more
command.

Now, try running the program by typing

more tester

more will open tester and display its contents on the screen. You still need to type <ctrl-C> when
the file is finished; the code to recognize the end of the file will be inserted later.

Also, be sure that you give the command only one file name as an argument, no more and no less.
Code that checks against errors has not yet been inserted, and handing it the wrong number of
arguments could cause MS-DOS to crash.

Error checking

Obviously, the program runs at this stage, but is still fragile, and could cause problems for you.
The next step is to stabilize the program by writing code to check for errors. To do so, a programmer
must first write code to capture error conditions, and then write a routine to react appropriately to
an error.

Our edited program now appears as follows:

/*
* Truncated version of the ’more’ utility.
* Open a file, print out 23 lines, wait.
* If user types <space>,
* print another 23 lines,
* if user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
/* define arguments to main() */
int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptr;

Let’s C



36 C for Beginners

/* Check if right number of arguments was passed */
if ((argc-1) != 1)

error("Usage: more filename");

/* Open file */
if ((fileptr = fopen(argv[1], "r")) == NULL)

error("Cannot open file");

/* Read material and display it */
for (;;)
{

fgets(string, MAXCHAR, fileptr);
printf("%s\n", string);

}
}

/* Process error messages */
error(message)
char *message;
{

printf("%s\n", message);
exit(1);

}

The additions to the program are introduced by comments.

The first addition

if ((argc-1) != 1)
error("Usage: more filename");

checks to see if the correct number of arguments was passed on the command line; that is to say, it
checks to make sure that you named a file when you typed the more command.

As noted above, argc is the number of arguments on the command line, or rather, the number of
arguments plus one, because the command name itself is always considered to be an argument.
The statement if((argc-1) != 1) will check this. The if statement is built into C. If the condition
defined between its parentheses is true, then do something, but if it is not true, do nothing at all.
The operator != means ‘‘does not equal’’. Therefore, our statement means that if argc minus one is
not equal to one (in other words, if there is not one and only one argument to the more command),
execute the function error. error is defined below.

Our fopen function also has some error checking added (which will be described in a moment):

if ((fileptr = fopen(argv[1], "r")) == NULL)
error("Cannot open file");

fopen will return a value called ‘‘NULL’’ if, for any reason, it cannot open the file you requested.
Thus, our new if statement says that if fopen cannot open the file named on the first argument to
the command line (that is, argv[1]), it should invoke the error function.

C always executes nested functions from the ‘‘inside out’’. That means that the innermost function
(that is, the function that is enclosed most deeply within the pairs of parentheses) is executed first.
Its result, or what it returns, is then passed to next outermost function as an argument; that
function is then executed and what it returns is, in turn, passed to the function that encloses it,
and so on. In this instance, the innermost function is

fileptr = fopen(argv[1], "r")

fopen is executed and what it returns is written into fileptr. What fopen returned is then passed to

Let’s C



C for Beginners 37

the next outer operation; in this case, it is compared with NULL, as follows:

(fileptr = fopen(argv[1], "r") == NULL

What that operation returns is then passed to the outermost function, in this case the if statement,
which evaluates what it is passed, and acts accordingly. If fileptr is NULL (that is, if fopen couldn’t
open the file), the if statement will be true and the error function will be called. If, however, the file
was opened, fileptr will not equal NULL and the program will proceed.

As this example shows, C allows a programmer to nest functions quite deeply. Although nested
functions are sometimes difficult to untangle when you read them, they make programming much
more convenient.

Finally, at the bottom of the file is a new function, called error:

error(message)
char *message;
{

printf("%s\n", message);
exit(1);

}

This function stands outside of main, as you can tell because it appears outside of main’s closing
brace. This function is called only when your program needs it. If there are no errors, the program
progresses only until the closing brace and the error function is never called.

error takes one argument, the message that is to be printed on the screen. This message is defined
by the routine that calls error. error uses the function printf to print the message, then calls the
exit function; this, as its name implies, causes the program to stop. The argument 1 is a special
signal that tells MS-DOS that something went wrong with your program.

When the error checking code is inserted, recompile the program without an argument. Previously,
this would crash MS-DOS; now, all it does is print the message

Usage: more filename

and terminate the program.

Print a portion of a file

So far, our utility just opens a file and streams its contents over the screen. Now, you must insert
code to print a 23-line portion of the file. At present, it will only print the first 23 lines, and then
exit.

To do so, you must insert another for loop. Unlike our first loop, which ran forever, this one will
cycle only 23 times, and then stop. Our updated program appears as follows:

/*
* Truncated version of the ’more’ utility.
* Open a file, print out 23 lines, wait.
* If user types <space>,
* print another 23 lines,
* if user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

Let’s C



38 C for Beginners

main(argc, argv)
int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptr;
int ctr;

/* Check if right number of arguments was passed */
if ((argc-1) != 1)

error("Usage: more filename");

/* Open file */
if ((fileptr = fopen(argv[1], "r")) == NULL)

error("Cannot open file");

/* Output 23 lines */
for (;;)
{

for (ctr = 0; ctr < 23; ctr++)
{

fgets(string, MAXCHAR, fileptr);
printf("%s\n", string);

}
exit(0);

}
}

/* Process error messages */
error(message)
char *message;
{

printf("%s\n", message);
exit(1);

}

The new for loop is nested inside the loop governed by for(;;). The program also declares a new
variable, ctr, at the beginning of the program. ctr keeps track of how many times the loop has
executed. Now, look at the line:

for (ctr = 0; ctr < 23; ctr++)

It has three sub-statements, which are separated by semicolons. The first sub-statement sets ctr to
zero; the second says that execution is to continue as long as ctr is less than 23; and the third says
that ctr is to be increased by one every time the loop executes (this is indicated by the ++ appended
to ctr). With each iteration of this loop, fgets reads a line from the file named on the more
command line, and printf prints it on the screen.

Also, an exit call has been set after this new loop; this ensures that the program will exit
automatically after the loop has finished executing. This is a temporary measure, to make sure that
you no longer have to type <ctrl-C> to return to MS-DOS.

When you have updated the program, recompile it in the usual way. When you run it, more will
show the first 23 lines of the file, and then the MS-DOS prompt will return.

The program is now approaching its final form.

Let’s C



C for Beginners 39

Checking for the end of file

The next-to-last step in preparing the program is teaching it to recognize the end of a file when it
sees it. This does not appear to be needed now because the program exits automatically after 23
lines or fewer, but it will be quite necessary when the program begins to display more than one 23-
line portion of text.

The libraries included with Let’s C include a function that checks for the end of file (or EOF); it is
called feof(). Before the program attempts to print out a line of text, it should check if the end of the
file has been reached. This means placing feof in an if statement; the statement will take advantage
of the fact that feof outputs, or returns, a zero if the end of file has not been reached, and returns a
number other than zero if the end of file has been reached. The if statement will capture what feof
returns, and continue execution as long as the value of the number returned is zero.

The updated program now appears as follows:

/*
* Truncated version of the ’more’ utility.
* Open a file, print out 23 lines, wait.
* If user types <space>,
* print another 23 lines,
* if user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptr;
int ctr;

/* Check if right number of arguments was passed */
if ((argc-1) != 1)

error("Usage: more filename");

/* Open file */
if ((fileptr = fopen(argv[1], "r")) == NULL)

error("Cannot open file");

Let’s C



40 C for Beginners

/* Output 23 lines, while checking for EOF */
for (;;)
{

for (ctr = 0; ctr < 23; ctr++)
{

if (feof(fileptr) == 0)
{

fgets(string, MAXCHAR, fileptr);
printf("%s\n", string);

}
else

exit(0);
}
exit(0);

}
}

/* Process error messages */
error(message)
char *message;
{

printf("%s\n", message);
exit(1);

}

First, note that the comment that describes the program’s output has been changed to reflect our
changes to the program. It is important for a programmer to ensure that the comments and the
code are in step with each other.

Our new if statement

if (feof(fileptr) == 0)
{

checks what feof returns: if it returns zero, the end of the file has not been reached, the if
statement is true, and the program prints out the next line. If it returns a number other than zero,
the end of file has been reached, the if statement is false so the else statement is executed, which
causes more to exit. feof takes one argument, which is the FILE that was defined by fopen.

Note, too, that a new control statement is introduced: else. This, like if, is built into the C language.
An else statement is always paired with an if statement; together, they mean that if the condition
for which if is testing is true, the program should do one thing; otherwise, it should do something
else. In this case, the program says that if the end of file has not been reached, another line should
be read from the file and printed on the screen; however, if it has been reached, then the program
should exit. As you can imagine, if/else pairs are common in C programming; they are logical and
useful.

One more task must be done on our program; then it is finished.

Polling the keyboard

For the program to be complete, it has to ask you if you want to see another 23-line portion of text.
The program should write another portion if you press the space bar, and exit if you type anything
else.

The program will use a new function, getcnb, to accomplish this task. getcnb reads what you type
in an unbuffered fashion; that means that you do not have to type the carriage return key for the
keystroke to be read by the program. This is placed within an if statement that compares what
character is typed with the space character. If they are not the same (as indicated by the operator
!=), the program will exit; otherwise, it will loop through again and show another 23 lines.

Let’s C



C for Beginners 41

When these changes are inserted, the program is complete:

/*
* Truncated version of the ’more’ utility.
* Open a file, print out 23 lines, wait.
* If user types <space>,
* print another 23 lines,
* if user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptr;
int ctr;

/* Check if right number of arguments was passed */
if ((argc-1) != 1)

error("Usage: more filename");

/* Open file */
if ((fileptr = fopen(argv[1], "r")) == NULL)

error("Cannot open file");

/* Output 23 lines, while checking for EOF */
for (;;)
{

for (ctr = 0; ctr < 23; ctr++)
{

if (feof(fileptr) == 0)
{

fgets(string, MAXCHAR, fileptr);
printf("%s\n", string);

}
else

exit(0);
}

/* Read keyboard; exit if not <space> */
if (getcnb() != ’ ’)

exit(0);
}

}

/* Process error messages */
error(message)
char *message;
{

printf("%s\n", message);
exit(1);

}

After you have inserted these changes, again compile the program.

Let’s C



42 C for Beginners

When compilation is finished, try typing

more more.c

The first 23 lines of the source code to the program now appear on your screen. Hit the space bar;
the next 23 lines appear. Now, type any other key: the program exits.

You now have a simple but helpful more utility.

For more information

This section has given you a brief, concentrated introduction to writing a C program. If you are new
to programming, much of what happened must seemed strange, but we hope it helped you to
appreciate the logic of how C works.

Numerous books are on the market to teach beginners how to program in C; see the bibliography at
the end of section 1 of this manual for a list of them. Also, look at the sample C programs in the
Lexicon. These demonstrate how to use many of the functions available to you with Let’s C.

With patience, you should discover that programming with C is one of the greatest pleasures to be
had with a computer: few feats are as satisfying as delving into the machine and having it do exactly
what you want it to do.

Where to go from here
The following section, Advanced compiling, introduces some of the more sophisticated features of the
Let’s C compiler. You should look through this section when you feel that you are ready for
advanced programming.

If you have any questions about any of the features of Let’s C, or about any of the functions that
were described in this tutorial, look in the Lexicon. For example, if you have a question about feof
or printf, look them up in the Lexicon. There, you will full descriptions of how to use them, plus
sample C programs that show how to use them. By typing, compiling, and running the sample
programs, you will quickly learn how to use the C language.

Let’s C


