
#%2=0 .nr # 2

Installing and Running Let’s C

This section describes how to install Let’s C onto your computer, and how to use it to compile
simple programs.

Installing Let’s C
Before you can use Let’s C, you must install it on your computer. As Let’s C comes to you, its files
are fitted together to save space on its disks, not to run conveniently. This helps us lower our costs,
to give you Let’s C at the lowest possible price; however, it also means that before you can use the
compiler you must recopy the files into organized groups.

To install Let’s C, you must copy files from the distribution disks onto either a hard disk or, if you
don’t have a hard disk, a set of floppy disks. To make this job easy for you, Let’s C includes the
utility install, which does the copying for you. By running install and answering a few simple
questions, you can build a working copy of Let’s C on your system in a few minutes.

If you have a hard disk, use the directions in the section Installing Let’s C onto a hard disk. If you
do not have a hard disk, skip below to the section Installing Let’s C onto a floppy-disk system, and
follow the directions there.

Installing Let’s C onto a hard disk

To begin, log into drive C on your system. You can do so by typing c at the MS-DOS prompt. On
nearly all computers, drive C is the hard disk.

Now, insert Let’s C’s distribution disk 1 into floppy drive A and type the following command:

a:install

In a moment, install will begin to work. It will print some information on your screen, and then ask
you the following question:

Do you have a hard disk?

Type ‘y’, for ‘‘yes’’.

install will then ask you:

Do you wish to install all the files?

Answer ‘y’.

install will now ask you in which directories you wish to install the files, as follows:

Where do you want the executable programs?
Where do you want the header files?
Where do you want the libraries?
Where do you want the sample programs?
Where do you want the source files?
Where do you want the temporary files?

After each question, type <return>, which signifies the default setting. Later, you may wish to re-
install Let’s C into other directories, but you should use the default settings until you gain some
familiarity with Let’s C.

7

8 Installing and Running

install will now copy the files from the distribution disk onto your hard disk. Depending on how
fast your system is and how fast your hard disk is, this can take from five to 15 minutes. When all
the files from one disk are copied, install will ask for the next disk, until all files are copied.

When install exits, it will print some information on the screen, and then an instruction of the form:

set CCHEAD=@c:\lib\ccargs

Copy down this instruction. You should then write this instruction into the file autoexec.bat on
your MS-DOS boot disk. This instruction tells Let’s C where you have stored all of its components,
so it can find everything correctly. This will be discussed below, in the section entitled Setting your
computer’s environment.

Once all the files are copied, place your copy of the MS-DOS disk into the floppy disk drive. If you
have version 3.2 of MS-DOS, you have two MS-DOS disks; insert the disk labelled ‘‘supplemental
programs’’. Now, type the command:

copy a:link.exe \bin

This copies the MS-DOS linker MS-LINK into directory \bin on your hard disk. Let’s C uses MS-
LINK to link its executable files, so MS-LINK must be copied into a directory where Let’s C can find
it. If you did not use the default directory names, copy link.exe into the directory where you stored
Let’s C’s executable files.

That’s all there is to it. Let’s C is now installed on your hard disk. Now, skip below to the section
entitled Setting your computer’s environment. This will tell you how to set the environment, so
Let’s C can work efficiently.

Installing Let’s C onto a floppy-disk system

Let’s C is too large to fit onto a single floppy disk. Therefore, if your system does not have a hard
disk you must install Let’s C onto a set of seven floppy disks, as follows:

Disk 1 The shell disk. This disk holds MWS, the Mark Williams shell. You will use it only to
boot MWS, then put it away.

Disk 2 The compiler disk for standard-sized programs. You should use this disk to compile
programs that are of normal size and complexity. This disk holds the compiler
controller cc, the phases of compilation, the MicroEMACS screen editor, and other
tools used during compilation.

Disk 3 The compiler disk for unusually large programs. If you have written a program thatis
unusually large or complex, and it will not compile correctly with disk 2, use disk 3
instead. This disk has all of the files that appear on disk 2, plus LARGE-model
versions of the compiler phases cc0 and cc2.

Disk 4 This disk holds the SMALL-model libraries. You will need to copy MS-LINK onto this
disk.

Disk 5 This disk holds the LARGE-model libraries. You will also need to copy MS-LINK onto
this disk.

Disk 6 This disk holds the Let’s C commands and utilities. For a fuller description of the
commands, see the Lexicon entry for commands.

Disk 7 This disk holds the sample programs and source code that comes with Let’s C. This
includes the full source code for the MicroEMACS screen editor.

To begin, format eight new floppy disks. Label them respectively as follows:

Let’s C

Installing and Running 9

1. shell
2. normal compiler
3. compiler for large programs
4. SMALL-model libraries
5. LARGE-model libraries
6. commands
7. source code and samples

Now, at the MS-DOS prompt, type B:. This will log into drive B on your machine. Insert Let’s C’s
distribution disk 1 into drive A; type the following command:

a:install

In a moment, install will begin to execute, and will print some information on your screen. It will
then ask you this question:

Do you have a hard disk?

Answer ‘n’, for ‘‘no’’.

install will then ask:

Do you wish to install all of the files?

Type ‘y’, for ‘‘yes’’.

install will now ask you in which directories you wish to install the files, as follows:

Where do you want the executable programs?
Where do you want the header files?
Where do you want the libraries?
Where do you want the sample programs?
Where do you want the source files?
Where do you want the temporary files?

After each question, type <return>, which accepts the default setting. Later, you may wish to re-
install Let’s C into other directories, but you should use the default settings until you gain some
familiarity with Let’s C.

install will now tell you:

Insert the shell disk into drive B.

Insert the formatted floppy disk that you labelled ‘‘shell’’ into drive B. install will copy the
appropriate files onto it. When install needs a new source disk, it will prompt you for it.

install will go through this procedure for each of the seven floppy disks that you will be building. It
will prompt you when to change disks, and tell you which disk to insert into drive A or drive B.

When install exits, it will print some information on the screen, and then an instruction of the form:

set CCHEAD=@a:\ccargs

Copy down this instruction. You should then edit this instruction into the file autoexec.bat on
your MS-DOS boot disk. This instruction tells Let’s C where you have stored all of its components,
so it can find everything correctly. This will be discussed below, in the section entitled Setting your
computer’s environment.

When install has finished, you must do the following for each of the four library disks, disks 3
through 6. First, place your computer’s MS-DOS disk into drive A. If you have MS-DOS version 3.2
or later, your copy of MS-DOS comes on two disks; insert the disk labelled ‘‘supplemental programs’’
into drive A. Then, place disk 4 (which holds the SMALL-model libraries) into drive B. Type the
following command:

Let’s C

10 Installing and Running

copy a:link.exe b:\bin

This command will copy the MS-DOS linker MS-LINK into directory \bin on your library disk.
Let’s C uses MS-LINK to link the executable files it creates, so MS-LINK must be copied into a
directory where Let’s C can find it.

Repeat this procedure for disk 5.

That is all there is to it: Let’s C is now installed on your computer.

When you are finished, you may wish to recopy your installed disks, to save yourself the trouble of
having to reinstall should something happen to your working copy.

Now, read the following section Setting your computer’s environment, which tells you how to set your
computer’s environment so you can use Let’s C.

Re-installing a portion of Let’s C

If you wish, you can re-install just a portion of the compiler. When install asks

Do you wish to install all of the files?

answer ‘n’. install will then prompt you for which portion, or portions, of Let’s C you wish to
install, and will then install it for you.

Setting your computer’s environment
As you have probably noticed by now, Let’s C is not just one program: it is a collection of more than
100 files and programs, which together form one of the most sophisticated C programming systems
available at any price. Despite its complexity, Let’s C is designed to work smoothly, and transform
your source code into an executable file in the shortest possible time.

For Let’s C to work at peak efficiency, however, you should pay some attention to your computer’s
environment. The environment is a set of variables that are available to all of the programs run on
your computer. By setting the environment properly, you will help Let’s C find all of its programs
quickly to speed your work.

Setting the PATH

When you installed Let’s C, all of its commands were copied into a directory called \bin. When you
type a command into MS-DOS, MS-DOS looks for it in the directories named in the environmental
variable PATH. To ensure that MS-DOS can find Let’s C’s commands you must set the PATH so
that it names the directory \bin.

To set the PATH, use the MS-DOS command path. For example, if you want keep your executable
files in the directories bin and mwc, type:

PATH=C:\BIN;C:\MWC

If your computer does not have a hard disk, use the following form of the path command:

PATH=A:\BIN;A:\MWC;B:\BIN;B:\MWC

This tells MS-DOS to look for cc in the directories bin and mwc on both of your floppy disk drives.
With the PATH set to this configuration, it does not matter which disk drive holds your compiler
disk when you work: MS-DOS will find cc in either drive automatically.

When the PATH is set properly, you should copy the path command you used into the file
autoexec.bat, on your computer’s boot disk. Then, the PATH will be set automatically whenever
you boot your computer.

Let’s C

Installing and Running 11

Finding the ccargs file

When you installed Let’s C onto your computer, the program install created a file called ccargs.
This file contains the names of all of the directories in which install stored the elements of Let’s C.

When you compile a program, Let’s C reads ccargs and uses its entries to find all of the files it
needs. If you have a floppy-disk system, install wrote ccargs into directory a:\ on disk 2 (the
compiler disk). If you have a hard disk, install wrote ccargs into the directory in which you
installed the Let’s C libraries (the default is c:\lib\).

You must set an additional environmental variable so that Let’s C can locate ccargs when you
compile a program: the environmental variable CCHEAD. As noted above, when install finished
installing Let’s C on your system, it printed on your screen an instruction of the form

set CCHEAD=@directory\ccargs

where directory is the name of the directory into which it wrote ccargs. For example, if you have a
floppy-disk system, install printed the message

set CCHEAD=@a:\ccargs

whereas if you have a hard disk, it printed the message

set CCHEAD=@c:\lib\ccargs

Be sure that you copy this instruction into the file autoexec.bat on your MS-DOS boot disk. Once
you have done this, reboot your system; this ensures that CCHEAD is set for your system.

That’s all there is to it. When you copy the set commands for PATH and CCHEAD into
autoexec.bat and reboot your system, you have set Let’s C’s environment. Let’s C is now ready to
start working for you.

Editing ccargs

ccargs correctly describes where everything is stored on your computer. The default ccargs for a
hard disk reads as follows:

-xcc:\bin\
-xlc:\lib\
-xtc:\tmp\
-Ic:\include\

The default ccargs for a floppy disk system reads as follows:

-xca:\bin\
-xla:\lib\
-Ia:\include\
-Z

If you later decide to move part of Let’s C from one directory to another, you must edit ccargs to
reflect this change, or Let’s C will not know where you moved Let’s C. You should edit ccargs as
follows:

Executable files
If you move the executable files from where you installed them, change the line in ccargs that
begins -xc. For example, if you have a floppy disk system and you move the executable files
from directory \bin to directory \mwc, change the line

-xca:\bin\

to read

Let’s C

12 Installing and Running

-xca:\mwc\

Libraries
If you move the libraries from where you installed them, you should change the line in ccargs
that begins -xl. For example, if you have a hard disk and you move the libraries from
directory \lib to directory \library, change the line

-xlc:\lib\

to read

-xlc:\library\

Header files
If you move the header files from where you installed them, you should change the line in
ccargs that begins -I. For example, if you have a floppy disk system and you move the header
files from directory \include to directory \header, change the line

-Ia:\include\

to read

-Ia:\header\

Temporary files
Finally, ccargs tells Let’s C where to write your temporary files. This is set only in the
version of ccargs that is used with a hard disk. If you decide to change where Let’s C writes
its temporary files, you must edit the line in ccargs that begins -xt. For example, if you want
to write temporary files into directory nowhere, change the line

-xtc:\tmp\

to read

-xtc:\nowhere\

If you need more information on where Let’s C looks for files, or how Let’s C works in general, look
at the Lexicon entry for cc. This will describe in some detail how Let’s C works, and also describe
other ways that you can change how Let’s C looks for its files.

Using MWS, the Let’s C command interface
Let’s C includes an interface program, MWS, which is designed to help you develop programs more
quickly and efficiently. MWS, which stands for ‘‘Mark Williams shell’’, accelerates the speed with
which your programs work, and it has a display interface that helps you build commands with ease.

To invoke MWS, simply do the following. If you do not have a hard disk, insert disk 1 (the ‘‘shell’’
disk) into disk drive A. Then, at the MS-DOS prompt type:

MWS

In a moment, the screen will clear and the MWS main menu will appear:

Let’s C

Installing and Running 13

Let’s C Version 4.0
(c) 1987 Mark Williams Company, Chicago

+----------------+
| Edit |
| Compile |
| Run |
| Debug |
| Make |
| Buffers |
| Quick DOS |
| !DOS Escape |
| New directory |
+----------------+

<return> select <F1> more help
<→> use arrow keys <esc> exit menu

As you can see, the entry for Edit on the menu is marked by a reverse-video band, called the cursor
bar. In this tutorial, the cursor bar will be shown as shading. The cursor bar indicates the entry in
the main menu you wish to select. Try pressing the down-arrow key (↓) on the keypad. The cursor
bar now covers the entry Compile. Each selection will be discussed in detail in the following sub-
sections.

Note that if you do not want to bother with moving the cursor bar, you can pick an option simply by
typing its first letter. For example, you can begin to edit a file simply by typing ‘e’.

At the bottom of the screen are listed the commands that you can give MWS. As noted above,
pressing the arrow keys moves the cursor bar up and down the menu. Pressing <return> tells MWS
to select the menu entry that the cursor bar is highlighting. Pressing <esc> exits. If you are in a
sub-menu, pressing <esc> returns you to the previous menu; whereas if you are already in the main
MWS menu, pressing <esc> exits you from MWS altogether, and returns you to MS-DOS.

Finally, pressing the function key <F1> prints a help message. Each screen has its own help
message, to guide you through MWS even if you do not have this manual available.

Editing a file

MWS includes a full-featured screen editor, called MicroEMACS. An editor is a program that lets
you type text into your computer, store it on disk, then recall it from disk and change it. You will
use an editor to type all of the programs that you compile with Let’s C.

MicroEMACS allows you to divide the screen into sections, called windows, and display and edit a
different file in each one. It has a full search-and-replace function, allows you to define keyboard
macros, and has a large set of commands for killing and moving text. Also, MicroEMACS has a full
help function for C programming. Should you need information about any macro or library function
that is included with Let’s C, all you need to do is move the text cursor over that word and press a
special combination of keys; MicroEMACS will then open a window and display information about
that macro or function.

Let’s C

14 Installing and Running

Let’s C includes both a compiled, binary version of MicroEMACS that is ready to use, and the full
source code. We invite you to examine the code, modify it, and enhance MicroEMACS to suit your
preferences.

For a list of the MicroEMACS commands, see the Lexicon entry for me, the MicroEMACS command.
A following section of this introduction gives a full tutorial on MicroEMACS. In the meantime,
however, you can begin to use MicroEMACS by learning a half-dozen or so commands.

MWS lets you access the MicroEMACS screen directly through its display interface. To edit a file
through MWS, do the following. First, if you do not have a hard disk, remove the ‘‘shell’’ floppy disk
from drive A and put it aside. Place disk 2, the ‘‘compiler’’ disk, into drive A. Then, press the up-
arrow key (↑) until the cursor bar covers the entry Edit. Press <return>. This selects the edit
feature; that is, it tells MWS that you wish to use the MicroEMACS editor to edit a file.

In a moment, MWS redraws the screen as follows:

Edit

+==+
| me |
+==+

+============+
| Execute |
| Files |
| New File |
+============+

<return> select <F1> more help
<→> use arrow keys <esc> exit menu

The cursor bar is now positioned over the selection Execute. Press the ↓ key two times, so the
cursor bar is positioned over New File. Press <return>. The menu disappears, and MWS prompts
you to enter the name of the file you wish to create.

Type hello.c. Note that the name hello.c appears in the long box at the top of the screen; this box
is called the command box, because it is where MWS builds your command. Note, too, that the
cursor bar has returned to the entry Execute on the menu.

Now press <return>. This tells MWS to execute the command that is displayed in the command
box. The screen again clears: you have just invoked the MicroEMACS editor to edit the file hello.c.

Now, type the following text, as it is shown here. If you make a mistake, simply backspace over it
and type it correctly; the backspace key will wrap around lines:

main()
{

printf("hello, world\n");
}

When you have finished, save the file by typing <ctrl-X><ctrl-S> (that is, hold down the control key
and type ‘X’, then hold down the control key and type ‘S’). MicroEMACS will tell you how many lines
of text it just saved. Exit from the editor by typing <ctrl-X><ctrl-C>.

Let’s C

Installing and Running 15

When you have exited from MicroEMACS, MWS redisplays the edit menu, with the cursor bar
positioned over Execute. Note that MWS remembers the last command you built for each of the
commands on the main menu (that is, the last Edit command, the last Compile command, and so
on). If you do not wish to build a new command, you can re-execute the last command you built by
simply pressing <return>.

Now, type <return>. MWS will invoke MicroEMACS with the last file you edited, hello.c. The text of
the file you just typed is now displayed on the screen. Try changing the word hello to Hello, as
follows: First, type <ctrl-N> That moves you to the next line. (The command <ctrl-P> would move
you to the previous line, if there were one.) Now, type the command <ctrl-F>. As you can see, the
cursor moved forward one space. Continue to type <ctrl-F> until the cursor is located over the
letter ‘h’ in hello. If you overshoot the character, move the cursor backwards by typing <ctrl-B>.

If you prefer, you can also move the cursor by pressing the arrow keys.

When the cursor is correctly positioned, delete the ‘h’ by typing the delete command <ctrl-D>; then
type a capital ‘H’ to take its place.

With these few commands, you can load files into memory, edit them, create new files, save them to
disk, and exit. This just gives you a sample of what MicroEMACS can do, but it is enough so that
you can begin to do real work.

Now, again save the file by typing <ctrl-X><ctrl-S>, and exit from MicroEMACS by typing <ctrl-
X><ctrl-C>. Again, the screen shows the Edit screen. Type <esc>; as shown at the bottom of the
screen, this will exit you from the Edit menu, and so return you to the main menu.

Just as a reminder, the following table gives the MicroEMACS commands presented above:

<ctrl-N> or ↓ Move cursor to the next line
<ctrl-P> or ↑ Move cursor to the previous line

<ctrl-F> or → Move cursor forward one character
<ctrl-B> or ← Move cursor backward one character

<ctrl-D> Delete a character

<ctrl-X><ctrl-S> Save the edited file
<ctrl-X><ctrl-C> Exit from MicroEMACS

Simple compiling

Now that you have prepared a C program with the MicroEMACS editor, the next step is to compile it
into executable form.

To compile a program under Let’s C, you must use the command cc. MWS’s display interface lets
you easily construct commands for cc to execute. To see how this works, press the ↓ key once, so
the cursor bar is positioned over Compile. Press <return>, to select this option.

MWS redraws the screen so it appears as follows:

Let’s C

16 Installing and Running

Compile

+--+
| cc |
+--+

+------------+
| Execute |
| Options |
| Files |
+------------+

<return> select <F1> more help
<→> use arrow keys <esc> exit menu

The cursor bar is positioned over Execute. Press the ↓ key, to move the cursor bar to Options;
then press <return>. The screen will be redrawn to appear as follows:

Compile

+==+
| cc <filename> |
+==+

+====+
| -A | Automatically invoke editor
| -c | Compile only, do not link
| -d | Define symbol
| -e | Expand preprocessor output
| -f | Floating point output
| -i | Include directory
| -k | Keep temporary files
| -l | Library options ...
| -m | Mini-make
| -n | No extra libraries ...
| -o | Output file
| -u | Undefine symbol
| -v | Variant options ...
+====+

<return> select <backspace> de-select <F1> more help
<→> use arrow keys <end> end options <esc> exit menu

cc’s options cannot all fit onto one screen; if you press the ↓ key until it is at the bottom of the
menu, you can then scroll through the options that are not initially shown on the screen. The
options with ellipses ‘‘...’’ after their descriptions have a menu of sub-options associated with them.

For the present exercise, type the ↓ key until the cursor bar is positioned over the entry -v, for
variant options. Press <return>. A second set of options appears on the screen, which now appears
as follows:

Let’s C

Installing and Running 17

Compile

+==+
| cc <filename> |
+==+

+====+ +=========+
| -A | Automatically invoke editor | verbose | verbose output
| -c | Compile only, do not link | 80186 | Generate ...
| -d | Define symbol | asm | Produce ...
| -e | Expand preprocessor output | cnest | Allow ...
| -f | Floating point output | csd | Generate ...
| -i | Include directory | float | Produce ...
| -k | Keep temporary files | large | Generate ...
| -l | Library options ... | lines | Generate ...
| -m | Mini-make | ndp | Produce ...
| -n | No extra libraries ... | noopt | Turn off ...
| -o | Output file | pstr | Put strings ...
| -u | Undefine symbol | quiet | Suppress ...
| -v | Variant options ... | sbook | Strict K&R ...
+====+ +=========+

<return> select <backspace> de-select <F1> more help
<→> use arrow keys <end> end options <esc> exit menu

The cursor bar is over the verbose option. Type <return>; this selects the verbose option, which
tells you what steps the compiler is executing as it compiles. The command box now reads:

cc -V <filename>

Type <end>. The variant options box disappears, and the cursor is repositioned over the -v option.
Type <end> again. The options box has disappeared, and you are back in the Compile menu.

Now, press the ↓ key, to position the cursor bar over Files. Press <return>. In a moment, two
boxes will appear. One displays all of the files that have the suffix .c, and the other displays all of
the files that have the suffix .obj, if any. To move between the boxes, press <tab>, as shown at the
bottom of the screen. Press the ↓ until the cursor bar is positioned over hello.c. Press <return>.
This completes the construction of the cc command line, as shown in the command box.

Note that you must select a file by moving the cursor bar to its name and pressing return; you
cannot select a file by typing the first character in its name, because more than one file could use
that character.

Press <end> to tell MWS that you have selected all of the files you want. MWS then returns you to
the compile menu, with the cursor bar positioned over Execute. Press <return>, to begin execution
of the command you have built.

Compilation now begins automatically. The switch -V tells cc to describe each step in compilation.

If your computer does not have a hard disk, Let’s C will print the following prompt on your screen
when it comes time to link your program:

Insert floppy disk 3 (SMALL-model, i8087-sensing libraries)

Open drive A, remove the compiler disk, and insert floppy disk 3. If your computer does have a hard
disk, you will not need to do this. As noted earlier, when you installed Let’s C, this disk holds the
libraries for SMALL-model programs that sense the presence of the i8087 co-processor. For more
information on how these libraries work, see the Lexicon entries for library, model, and i8087.
When you have inserted this disk, press <return>. Let’s C will now invoke MS-LINK and link your
program.

Let’s C

18 Installing and Running

As you can see, cc guides the program through all phases of compilation, invokes the linker, and
links in all necessary routines from the libraries to produce a file called hello.exe that is ready to
execute.

When compilation is finished, you will be returned to the MWS main menu.

Running a program

The next step is to run the program you just compiled. MWS lets you run any program you have
compiled with Let’s C, or in fact any executable program whatsoever, through its display interface.

If your computer does not have a hard disk, before you begin this step you should open drive A,
remove floppy disk 3 (a libraries disk), and reinsert floppy disk 2 (the compiler disk). If your
computer does have a hard disk, you do not need to do this.

To run hello.exe, which you created when you compiled hello.c, press the ↓ key until the cursor
bar is positioned over Run. Then, press <return> to select this option. The main menu disappears,
and MWS redraws the screen as follows:

Run

+==+
| <filename> |
+==+

+============+
| Execute |
| Arguments |
| Files |
+============+

<return> select <F1> more help
<→> use arrow keys <esc> exit menu

As before, you can use the arrow keys to move the cursor bar up and down the menu. If you press
<return> with the cursor positioned over Execute, MWS will re-execute the last command you built,
if any. If your program needs arguments, select the Arguments option, which will prompt you to
enter them. If your command does not take any arguments, simply type <return>.

Press the ↓ key once. The cursor bar is now positioned over Files. Press <return>. MWS draws a
box that holds all executable files in the current directory—that is, all files that have the suffix .exe.
Press the ↓ key until the cursor bar covers hello.exe. Press <return>. As you can see, the
command box now shows hello.exe. Press <esc> to exit from this menu.

You have returned to the Run menu, with the cursor bar over Execute. Press <return>. MWS now
executes the command shown in the command box, hello.exe. It executes, and prints on your
screen hello, world. To return to MWS’s main menu, press any key.

As you can see, it is easy to create, compile, and execute a program through the MWS menu
interface.

Let’s C

Installing and Running 19

Quick DOS and !DOS options

MWS gives you two ways to give commands directly to MS-DOS while still enjoying MWS’s
acceleration of your programs.

To give just one command to MS-DOS, press the ↓ key until the cursor bar is positioned over Quick
DOS. Press <return>. At the bottom of your screen appears the prompt

DOS command:

Type dir. MS-DOS executes dir and prints the contents of the current directory on your screen.
When dir has finished executing, press any key to return to MWS’s main menu.

If you want to give a number of commands directly to MS-DOS, press the ↓ key until the cursor bar
is positioned over !DOS Escape. Press <return>. The main menu again disappears, and your MS-
DOS prompt appears on the screen. MS-DOS is now ready to receive any number of your
commands. If you are familiar with the cc command or MicroEMACS, you can now type these
commands directly to MS-DOS. MWS does not require you to use its display interface, but it will
still accelerate your work.

When you are done working with MS-DOS, type exit. The MS-DOS prompt will disappear, and the
MWS main menu will reappear.

Using the make programming discipline

MWS gives you quick access to make, the Mark Williams programming discipline.

make helps you build large, complex programs. It reads a makefile that you prepare, and follows
the makefile’s descriptions to build your program. If you need more information on make, see the
entry for make in the Lexicon, and see the tutorial on make that appears in section 5 of this
manual. The tutorial also describes in detail how to write a makefile.

To invoke make through MWS, press the ↓ key until the cursor bar covers Make. Type <return>.
The main menu disappears, and the screen appears as follows:

Make

+==+
| make |
+==+

+===========+
| Execute |
| Options |
| Macros |
| Targets |
+===========+

<return> select <F1> more help
<→> use arrow keys <esc> exit menu

The cursor bar is over the top entry in the menu, Execute. MWS remembers the last command you
gave make, if any; so, if you press <return> MWS will automatically execute the last make

Let’s C

20 Installing and Running

command you issued.

If you wish to construct a new make command, the first step is to change make’s default macros so
that make will produce the sort of executable program that you want. Note that this step often is
not necessary. For more information on make’s macros and the files in which they are kept, see the
Lexicon entry for make; also see the make tutorial.

To redefine a macro, press the ↓ key twice, to move the cursor bar to Macros; then press <return>.
MWS will prompt you to enter the new macro; what you type will then be used instead of any macro
that has the same name.

Likewise, should you wish to change the default targets that make constructs, press the ↓ key until
the cursor bar covers Targets; then press <return>. MWS will prompt you to type the new target or
targets that you want to build. For more information on what a target is and how make builds one,
see the tutorial for make, or see the Lexicon entry for make.

The next step is to construct the make command line. Press the ↑ key to move the cursor bar to
Options. Press <return>. The screen is redrawn to offer you the options for make, as follows:

Make

+==+
| make |
+==+

+====+
| -d | (Debug) Verbose output
| -f | Alternate make filename
| -i | Ignore error returns and continue
| -n | Show commands but do not execute
| -p | Print macro and target descriptions
| -q | Query target status
| -r | Do not use built-in rules
| -s | Silent running
| -t | Touch all targets to current time
+====+

<return> select <backspace> de-select <F1> more help
<→> use arrow keys <end> end options <esc> exit menu

To select an option, press the ↓ key until the cursor bar is positioned over it, and then press
<return>. The option will be written into the command box at the top of the screen. Should you
select an option by accident, press <backspace>; the option will be erased from the command box at
the top of the screen. If you select the -f option, MWS will prompt you for the name of the file that
you wish to use in place of makefile. For more information on make’s options, see the entry for
make in the Lexicon, or see the tutorial on make later in this manual.

When you have selected all of the options that you want, press <end>. You will be returned to the
main Make menu, and the cursor bar will be positioned over Execute. Press <return>; MWS will
then execute the make command that you have built, which appears in the command box at the top
of the screen. make will look for makefile, read it, and begin to build your program. When make is
finished, you will be returned to the MWS main menu.

Let’s C

Installing and Running 21

Using csd, the C source debugger

MWS also helps you to invoke csd, the Mark Williams C source debugger. csd is an invaluable tool
to a programmer, for it allows you to debug programs while using your C source code, instead of
having to use listings in assembly language. Note that csd is not included with Let’s C, but it is
available as a separate product for use with Let’s C.

If your computer does not have a hard disk, you must insert the disk that came with your copy of
csd into drive A before you can begin to work with csd.

To invoke cs�d,press the ↓ key until the cursor bar is positioned over Debug. Press <return>. MWS
redraws its screen as follows:

Debug

+==+
| csd <filename> |
+==+

+============+
| Execute |
| Options |
| Arguments |
| Files |
+============+

<return> select <F1> more help
<→> use arrow keys <esc> exit menu

If you wish to construct a new csd command, press the ↓ key once, to position the cursor bar over
Options; then type <return>. MWS will redraw its screen to display the available options, as
follows:

Let’s C

22 Installing and Running

Debug

+==+
| csd <filename> |
+==+

+====+
| -D | Data segment size
| -G | Graphics mode for color monitor
| -H | Help files live here
| -R | Memory model override
| -S | Source files live here
| -T | Source files live here
+====+

<return> select <backspace> de-select <F1> more help
<→> use arrow keys <end> end options <esc> exit menu

If you select either -H or -S, MWS will prompt you to enter the name of the directory where you have
stored these files. For more information on csd’s options, see your csd manual.

As before, if you select an option by accident, press <backspace>. This will erase the option from
the command box at the top of your screen. When you have selected all of the options that you
want, press <end>. The list of options will disappear from the screen, and the original Debug menu
reappear.

To complete your csd command, press the ↓ key twice; this moves the cursor bar to Files. Press
<return>. MWS will then draw a box that contains all of the executable files in the current
directory. You can select one by moving the cursor bar to it, and then pressing <return>.

Remember that to debug a file with csd, it must first have been compiled with the -VCSD option to
the cc command line. This writes special debugging information into the executable file.

When you have selected the program you wish to debug and have pressed <return>, MWS will write
the file name into the command box, and return you to the Debug menu; the cursor bar is
positioned over Execute. Press <return> to invoke csd and execute the command you have just
built. You can then debug your program with csd just as it is described in the csd manual.

When you have finished your debugging session and have exited from csd, you will return to the
MWS main menu. MWS will then be ready help you build another command.

Resetting the buffers

As noted earlier, MWS not only gives you an easy way to build commands for Let’s C: it also
contains an accelerator that speeds up your software. The accelerator uses a buffering system that
reduces the number of times that programs need to read the disk drive. Because reading the disk
drive is the slowest part of any program, reducing the number of times the disk must be read
increases the speed with which the program operates.

At times, you may need to change how MWS performs its buffering. To do so, use the Buffers
command on MWS’s main menu.

Let’s C

Installing and Running 23

To begin, press the ↓ key until the cursor bar is positioned at the entry Buffers. Press <return>.
MWS will draw the Buffers screen, as follows:

Buffers

+==+
| Loaded * 128K T |
+==+

+==============+
| Load/Unload |
| Disk Drives |
| Buffer Size |
| Write Option |
| Save Data |
| Change |
+==============+

<return> select <F1> more help
<→> use arrow keys <esc> exit menu

Each command is described below.

Load/Unload
This tells MWS to load or unload the accelerator. Note that this command is a toggle: if the
accelerator is unloaded, then pressing <return> tells MWS to load it, and vice-versa. Try
pressing <return>. You will see that the entry in the command box will flip from Loaded to
Unloaded.

Note, too, that this command does not take effect immediately. To unload or load the
accelerator, you must exit from MWS and then re-enter it.

Disk Drives
This command tells MWS which disk drives you want accelerated. The default is ‘*’, which
indicates that all drives are accelerated.

To change the settings, press the ↓ key until the cursor bar is positioned over Disk Drives.
Press <return>. MWS will prompt you for the name of a disk drive. Type A, to indicate that
you want to accelerate disk drive A. Note that the asterisk in the command box has been
replaced with A:. The prompt remains on the screen: if you wish, you can name any
number of disk drives. To end this session, press <return> without typing anything. MWS
will now accelerate only disk drive A:.

Now, re-invoke this command by moving the cursor bar to Disk Drives and pressing
<return>. Type ‘*’, and then press <return> twice. MWS has now resumed accelerating all
disk drives.

Buffer Size
The accelerator reserves a portion of memory to buffer what it reads from your disk drives.
By default, the size of its buffer is 128 kilobytes, as shown in the command box. If your
system has limited amounts of memory, you may wish to decrease this amount. On the
other hand, if your system has memory to spare you may wish to increase the size of the
buffer: the larger the buffer is, the more your software will be accelerated.

Let’s C

24 Installing and Running

To change the size of the buffer, press the ↓ key until the cursor bar is positioned over
Buffer Size, and then press <return>. MWS will prompt you for the new buffer size. If you
change your mind and decide to leave the buffer unchanged, simply press <return> without
entering anything.

Note that this command, like the Load/Unload, does not take effect immediately. You must
leave MWS and then re-enter it before you can begin working with a different sized buffer.

Write Option
The MWS accelerator not only speeds up the rate with which your programs read the disk:
it also speeds up the rate at which they write data to the disk.

The accelerator offers you three ways to save your data to the disk: Memory, Timed Save,
and Disk. The Memory option stores all data in memory. No data are written to the disk
until you choose to save them with the Save Data command, which will be described in a
moment. The Disk option writes all data directly to disk, and does not buffer data at all.
Note that the Memory option is faster than the Disk, but not as safe, because an accident
could cause you to lose the data stored in the buffer.

The Timed Save option combines features of the Memory and Disk options. Data are
stored in memory, but they are automatically written to disk every five minutes. Thus, you
have the speed of in-memory storage, plus the safety of saving data to disk. This is the
default option.

To change the write option, press the ↓ key until the cursor bar is over Write Option, and
then press <return>. A menu will appear that displays the three write options. Move the
cursor bar to the one you want and then press <return>. The option you select will be
shown in the command box, and you will be returned to the Buffers menu.

Save Data
This command writes to disk all data that MWS has stored in its buffer. To use it, simply
press the ↓ key until the cursor bar is positioned over Save Data, and then press <return>.
This command has no options: it will simply write the data, and return you to the Buffers
menu.

You should use this command to save your data before you turn off your machine or before
you leave MWS, should you be using the Memory option.

Change Disk
The last command, Change Disk, must be used before you change the floppy disk in a disk
drive that is being accelerated. This command writes to disk all of the data that MWS has
stored in its buffer, and then empties the buffer to make it ready for the new disk.

If you do not use this command before you change a floppy disk, you could lose data. This
bears repeating: You must use this command before you change a floppy disk in a drive that
is being accelerated, or you could lose data.

To use this command, simply press the ↓ key until the cursor bar is positioned over Change
Disk. Press <return>. Any saved data will be written out, the buffer will be emptied, and
MWS will be ready to accept a new floppy disk.

To return to the main MWS menu, press <esc>.

As you can see, MWS’s accelerator is easy to use. With a few simple commands, you can alter its
settings to suit your preferences. MWS will remember these settings, and use them automatically in
the future.

Let’s C

Installing and Running 25

Where to go from here

The following bibliography lists reference books on C and on the i8086 processor. This list includes
both primers and references for advanced programmers. This list is not exhaustive, but you will
find it helpful should you need detailed information on a topic.

Section 2, C for Beginners, introduces the C language to users who are new to C. If you are
experienced with C you may wish to skip this section, but if you are a novice at C programming you
may find it helpful.

After C for Beginners is a section on Advanced Compiling. This discusses many of the compiler’s
options that were just mentioned here. It also discusses some technical issues on the i8086
microprocessor that both experienced programmers and novices will find helpful.

Finally, if you need more information on any command, library function, C keyword, or technical
term, check the Lexicon.

Let’s C

26 Installing and Running

Let’s C

