
#%2=0 .nr#0

Becoming familiar with csd

This section walks through the sample C program infl, which is provided on your csd distribution
disk. It demonstrates csd’s basic features, such as how to move the cursor, shift windows, and
execute a program under csd.

infl is a simple program with a for loop. It calculates three different rates of inflation over a span of
ten years. The source code is as follows:

#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /* printf string */
i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;
printf (msg, i, w1, w2, w3);

}
}

This program has already been compiled for you. To see its output, type

infl <return>

at the MS-DOS prompt. Note that in this tutorial, each line that you type must be followed by
<return>, unless the text specifically instructs you differently.

Your screen will show the following:

9

10 Becoming familiar with csd

C>infl
1 1.070000 1.080000 1.100000
2 1.144900 1.166400 1.210000
3 1.225043 1.259712 1.331000
4 1.310796 1.360489 1.464100
5 1.402551 1.469328 1.610510
6 1.500730 1.586874 1.771560
7 1.605781 1.713824 1.948716
8 1.718186 1.850930 2.143588
9 1.838458 1.999004 2.357946
10 1.967150 2.158924 2.593741

C>

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
HMM<

Function keys and what they do
You can manipulate csd through the function keys on your keyboard and with the keys on the
numeric keypad. These keys let you move the cursor, page through your source code, and move to
the beginning or end of your source code.

While using the Mark Williams C compiler, Let’s C, you have probably become familiar with the
editor, MicroEMACS. Switching between MicroEMACS and csd while debugging and recompiling
doesn’t require that you remember two sets of keystrokes. The commands you use to move through
text with MicroEMACS will also work with csd.

Below is a quick reference list which summarizes all of the command keys and their functions.

csd C source debugger

Becoming familiar with csd 11

FUNCTION DESCRIPTION COMMAND

Find Find a string of text <F1> or <esc>1 or
<ctrl-S> or <esc>S or
<ctrl-R> or <esc>R

Select Select an option <F2> or <esc>2
Trace Trace an expression <F3> or <esc>3
Run Run the program <F4> or <esc>4
Cancel Cancel the last command <F5> or <esc>5

or <F5>
Help Display a help screen <F6> or <esc>6

or <F6>
Program Display program window <F7> or <esc>7
Source Display source window <F8> or <esc>8
Evaluation Enter evaluation window <F9> or <esc>9
History Display history window <F10> or <esc>0
Up Move cursor up <↑> or <ctrl-P>
Down Move cursor down <↓> or <ctrl-N>
Out Move to calling function <←> or <ctrl-B>
In Undo an Out <→> or <ctrl-F>
Exit Exit csd <Shift-F1> or <ctrl-X> <ctrl-C>
Current Return to current line <Shift-F8> or <ctrl-X>X
Page Up Move cursor up a page <ctrl- ↑> or <esc>V
Page Down Move cursor down a page <ctrl- ↓> or <ctrl-V>
Delete Delete a line or <ctrl-K>
Insert Insert a line <Ins> or <ctrl-O>
Beginning Beginning of source <ctrl- ←> or <esc><
End End of source <ctrl- →> or <esc>>

See section 5, Commands reference, for a complete listing of all the function and keypad keys, the
corresponding MicroEMACS command keys, and alternate keystrokes used to control csd.

Running csd
Now, try running infl under csd. If you are using the graphics interface to MWS, invoke csd on the
program as described in the Introduction.

If, however, you are using the !DOS Escape option, simply type the following at the prompt:

csd infl

In a moment, csd will load your program and display the beginning of the source code on your
screen.

The screen is divided into two parts. The first and largest of these parts is the source window, the
top portion of the screen where the source code is displayed. The reverse video line separates the
two windows and displays the name of the program module you are currently debugging. Under the
reverse video line is the evaluation window; it is now empty.

Your screen appears as follows:

csd C source debugger

12 Becoming familiar with csd

[#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /* printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;
printf (msg, i, w1, w2, w3);

infl.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

The program window displays the output of the program you are running. The program window
does not appear at the same time as the source and evaluation windows; when you display the
program window, the entire screen will be redrawn temporarily.

To see the program window, type the program key, <F7>. Your screen now shows the following:

csd C source debugger

Becoming familiar with csd 13

C>infl
1 1.070000 1.080000 1.100000
2 1.144900 1.166400 1.210000
3 1.225043 1.259712 1.331000
4 1.310796 1.360489 1.464100
5 1.402551 1.469328 1.610510
6 1.500730 1.586874 1.771560
7 1.605781 1.713824 1.948716
8 1.718186 1.850930 2.143588
9 1.838458 1.999004 2.357946
10 1.967150 2.158924 2.593741

C>csd infl
C Source Language Debugger Version 1.1
Copyright 1984-1988 by Mark Williams Co., Lake Bluff, IL
Reading source...
Loading..

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
HMM<

To redisplay the source window, press the source key, <F8>. The source window is now restored.

Moving through the source code
You can move csd’s cursor by pressing the cursor movement keys, which are found on the numeric
keypad on the right side of your keyboard. If, instead of moving the cursor, numbers appear on the
screen when you press any of the keys on the numeric keypad, press the NumLock key. This
should solve the problem. .PP To move the cursor down on the screen, press the <↓> key. Try it.
As you can see, the cursor is now positioned at the beginning of the second line of the source code.
If you hold the key down, the cursor scrolls down the screen. The MicroEmacs command <ctrl-N>
also moves the cursor down the screen one line at a time.

To move back up the screen, press the <↑> key. As you can see, the cursor has moved to the
previous line. Holding this key down scrolls the cursor up the screen. Typing the MicroEMACS
command <ctrl-P> also moves the cursor up the screen one line at a time.

Note that if you try to move the cursor past the beginning or the end of your source file, csd prints
the error message try Help at the bottom of your screen.

If you wish to move the cursor more than a few lines, it is handier to use the page keys <PgUp> and
<PgDn> . These keys move through your source program a page at a time. A page is one window of
lines. Thus, if your source window displays 19 lines of text, as it does when csd starts up, then
pressing <PgDn> displays the next 19 lines of text (unless, of course, you are at the end of the
source file). When you type <PgUp> , the previous 19 lines of text are displayed. If you are within
19 lines of the end of the source file, <PgDn> will move the cursor to the end of your file; likewise, if
you are within 19 lines of the beginning of your source file, <PgDn> will move the cursor to the
beginning of the file.

The MicroEMACS <ctrl-V> command will also move the cursor to the next page of lines; <esc> V
moves the cursor to the previous page of lines.

csd C source debugger

14 Becoming familiar with csd

To move the cursor to the end of your source file, type <End> . Try it. The cursor is now positioned
at the end of the last line of infl.c. To return to the beginning of your source code, type <Home> Try
it. The cursor is again positioned at the beginning of infl.c.

<ctrl-A> and <ctrl-E> move the cursor to the beginning and end of the source, respectively.

Finding text
If you want to locate a specific line in your program, you could hunt for it by scrolling through the
text line by line or page by page. However, to ease the search, csd has a string search feature. With
the find key, <F1>, you can type in a string that csd will find for you.

To see how this works, type <F1>. At the bottom of the screen, csd prints the following prompt:

find:[pattern] ↑ ↓ <Home> <End> Cancel<F5> Help<F6>

To find the string main in infl.c, type

main

followed by <return> or <↓>. The screen now displays the following:

[main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /* printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;

infl.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

You can control the direction of search with the <↑> and <↓> keys. The <↑> key searches for the
string above the current position of the cursor, and the <↓> key searches below it.

The MicroEMACS commands <ctrl-S> and <ctrl-R> will also search for a string. You can also use
these commands to search for strings in your source code:

<esc>S
<esc>R
<esc>1

Exiting from csd

csd C source debugger

Becoming familiar with csd 15

If you wish to exit from csd, press <Shift-F1>. csd will exit and restore the program window. You
can use the <Shift-F1> key to exit from csd at any time during debugging. However, if you are in
the middle of typing something in the evaluation window, you must type <ctrl-U> before you exit
csd. Type <Shift-F1>. You must also exit the help screens before trying to exit csd.

Setting tracepoints
As noted in section 1, csd lets you set tracepoints within a program to control its execution. When
you set a tracepoint and execute a program, the program stops executing at the tracepoint. You can
examine variables and see what has happened to them up to that point in the program. This allows
you to run a program step by step, so you discover more easily the point at which your program
fails.

To see how you can set tracepoints, invoke csd on the program infl by typing:

csd infl

Using the arrow keys, or the MicroEMACS cursor control keys, position the cursor at the first
executable statement after the for statement:

w1 *=1.07;

Press the trace key, <F3>; pressing <F3> will set a tracepoint on the line where the cursor is
positioned. As you can see, setting a tracepoint on a line of code causes that line to be highlighted
on your screen. Your screen should now look like this:

#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /* printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

00[w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;
printf (msg, i, w1, w2, w3);

infl.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

If you were to type <F3> again, the tracepoint would be removed and the line would return to its
normal intensity. For now, leave the tracepoint on.

Executing to the tracepoint

csd C source debugger

16 Becoming familiar with csd

Now, run the sample program to the traced line. To do so, press <F4> to run, and <F3> to trace.

This combination of keys tells csd to execute your program to the current statement. The current
statement is the next line of code to be executed. In this example, the program began execution at
its beginning, and continued to execute until it encountered the tracepoint you set a few moments
ago.

Note that the cursor is again positioned where you set the tracepoint.

Again, type <F4>and <F3>. csd runs until it again encounters the traced line. While it is executing
the program to the tracepoint, it will temporarily display the program window. When csd has
executed to the tracepoint, it restores the source window.

To see the program’s output, press <F7>. The screen will show the following:

4 1.310796 1.360489 1.464100
5 1.402551 1.469328 1.610510
6 1.500730 1.586874 1.771560
7 1.605781 1.713824 1.948716
8 1.718186 1.850930 2.143588
9 1.838458 1.999004 2.357946
10 1.967150 2.158924 2.593741

C> csd infl
C Source Language Debugger Version 1.1
Copyright 1984-1988 by Mark Williams Co., Lake Bluff, IL
Reading source..
Loading...

C> csd infl
C Source Language Debugger Version 1.1
Copyright 1984-1988 by Mark Williams Co., Lake Bluff, IL
Reading source...
Loading...
1 1.070000 1.080000 1.100000

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
HMM<

Because the tracepoint is set within the for loop, you can see what the program generates with each
iteration.

Return to the source window by typing <F8>. Press the trace key <F3>; this removes the tracepoint.
The line returns to normal intensity, and the cursor remains at that line.

History window
Every time your program stops at a tracepoint, csd writes a copy of the traced line into the history
window. This window is where csd logs all the statements that have been traced during the
execution of your program.

To see the history window, type the history key, <F10>. If you have followed the steps of the tutorial
so far, your screen will look like this:

csd C source debugger

Becoming familiar with csd 17

w1 *= 1.07;
w1 *= 1.07;

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
HMM<

The same statement appears twice because the program stopped executing there twice.

Type <F8> to return to the source window.

Single-stepping through a program
With csd, you can step through a program a line at a time and examine its execution in detail. This
procedure is called single-stepping.

To see how single-stepping works, you should first restart your program. You need to do this
because if you have been following the steps of this tutorial, the program is midway through its
execution. To restart a program, type <F4> followed by the begin key, <Home> . csd reloads the
program, then returns the cursor to the beginning of the source file. Your screen appears as
follows:

csd C source debugger

18 Becoming familiar with csd

[#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /* printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) {

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;
printf (msg, i, w1, w2, w3);

infl.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Now, to execute your program one step at a time, press <F4> followed by <return>. The program
window (which shows the program’s output) is displayed briefly; then, the source window is
restored, with the cursor positioned at the first executable statement in the program:

i = 0;

Again, press <F4> followed by <return>. csd runs to the next executable line in the program, which
is:

w1 = 1.0;

Now, single-step through infl.c, pressing <F4> and <return>; stop after the first iteration of the for
loop: your cursor will be positioned at the line

w1 *= 1.07;

for the second time since you began single-stepping. This is the point at which the next iteration of
the for loop would begin. Press the <F7> key, and you will see the program output to this point.
Your screen will appear as follows:

csd C source debugger

Becoming familiar with csd 19

4 1.310796 1.360489 1.464100
5 1.402551 1.469328 1.610510
6 1.500730 1.586874 1.771560
7 1.605781 1.713824 1.948716
8 1.718186 1.850930 2.143588
9 1.838458 1.999004 2.357946
10 1.967150 2.158924 2.593741

C> csd infl
C Source Language Debugger Version 1.1
Copyright 1984-1988 by Mark Williams Co., Lake Bluff, IL
Reading source..
Loading...

C> csd infl
C Source Language Debugger Version 1.1
Copyright 1984-1988 by Mark Williams Co., Lake Bluff, IL
Reading source...
Loading...
1 1.070000 1.080000 1.100000

Reloading...
1 1.070000 1.080000 1.100000

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
HMM<

Once you single-stepped to the end of the for loop, infl generated one line of output, which you can
see at the bottom of the screen.

If you wish, you can single-step through portions of a program. For example, you can locate the
area in which a program goes astray by setting tracepoints; then, you can single-step through that
area to find the exact line on which the problem occurs. Press <F8> to return to the source window.

Displaying variables
csd lets you type expressions from your program in order to display the value of variables. You can
evaluate any legal C expression, even function calls.

Local variables are declared at the beginning of a function. The local variable you wish to evaluate
must be defined within the current scope. The scope of a local variable is the part of the program
between the braces ‘{ }’ of the function in which that variable is declared. Global, or external,
variables are available from within any function’s scope because they are defined outside of all
functions.

Before entering local variables into csd’s evaluation window, you must first position the cursor in
the source window so that it is between the braces of the function in which the variable is defined.
Then switch to the evaluation window, and type in the variable you wish to see.

To illustrate how to display the value of variables and expressions, run the program to the end by
typing <F4> followed by <End> . Now, position the cursor at the printf statement and type <F3> to
set a tracepoint. Type <F4>, then <F3>: this tells csd to execute until it reaches the tracepoint.
The screen now appears as follows:

csd C source debugger

20 Becoming familiar with csd

#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /*printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00[printf (msg, i, w1, w2, w3);

infl.c

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Now, switch to the evaluation window by pressing the <F9> key. The cursor is now flashing at the
line below the reverse video line that says infl.c; this area of the screen is the evaluation window.

To examine the value of variable w2, type:

w2

If you make a mistake typing in the evaluation window, use the backspace key to delete the error.
You can delete an entire line by pressing <ctrl-U> as long as you have not yet typed <return>.
When you have deleted the mistake, retype the expression.

As soon as you type w2 followed by <return>, the screen will appear as follows:

csd C source debugger

Becoming familiar with csd 21

#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /*printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00[printf (msg, i, w1, w2, w3);

infl.c

w2 :: 1.08

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Notice that the value of w2 is written after two colons, ‘::’. Typing <F4> and <F3> causes the
program to cycle through the for loop once more; as you can see, the value of w2 changes to reflect
this further execution of the program. The screen now appears as follows:

csd C source debugger

22 Becoming familiar with csd

#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /*printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00[printf (msg, i, w1, w2, w3);

infl.c

w2 :: 1.1664

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

Remember that all evaluation expressions in the current scope are re-evaluated in the evaluation
window whenever the debugger stops execution: whether for a traced statement, a traced
expression, the end of the program, or for single-stepped execution.

You can evaluate all legal C expressions, even those that you did not anticipate when you wrote the
program. To see how this works, return to the evaluation window (if your cursor is not there) by
typing <F9>. Now, enter the following expression by typing:

w1 + w3

The screen will show:

csd C source debugger

Becoming familiar with csd 23

#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /*printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00printf (msg, i, w1, w2, w3);

infl.c

w2 :: 1.1664
w1 + w3 :: 2.3549

[

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

csd displays the results of adding w1 with w3 without your having to edit your program and
recompile.

You can also show the value of a string pointer as a string, rather than as the address of the first
character of the string, which is the way your program understands it. To do so, use (str) to cast
the variable to a string type. For example, to see the value of the variable msg in both its forms,
type the following:

msg
(str)msg

The screen will show:

csd C source debugger

24 Becoming familiar with csd

#include <stdio.h>
main()
{

int i; /* count ten years */
float w1, w2, w3; /* three inflated quantities */
char *msg = " %2d\t %f %f %f\n"; /*printf string */

i = 0;
w1 = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i <= 10; i++) { /* apply inflation */

w1 *= 1.07;
w2 *= 1.08;
w3 *= 1.10;

00printf (msg, i, w1, w2, w3);

infl.c

w1 + w3 :: 2.3549
msg :: 0x0124
(str)msg :: " %2d\t %f %f %f\n"

[

IMM;
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
: :
GDD6
GDD6
: :
: :
: :
: :
HMM<

The value shown for msg, which may be different on your screen, is the address of the first
character of its string: that of (str)msg is the string itself.

Note that if you enter an invalid variable in the evaluation window, csd prints an error message; you
will not be able to continue debugging until the invalid variable is removed.

Getting help
Now that you have walked through a simple program and tried csd’s basic debugging features, try
csd on a program of your own. At any time while you are using csd, you can get on-line help with
its functions by typing the help key, <F6>.

Try typing <F6>. csd displays some general help information. Now, type any of the keys listed at
the bottom of the general help screen. csd displays help information for the function you selected.
For example, while the general help screen is displayed, pressing <F3> will show the help screen
that tells you how to trace statements and expressions.

If csd gives you the error message

helpfile.hlp: cannot open

instead of a help screen, it means that csd cannot find the help files in the current path. Use the -H
option to tell csd where to find its help files. See section 6, Commands reference, for complete
information about setting paths for csd.

When you are finished with the help feature, type <F6> again. The help menu will disappear, and
the source window will be restored.

Finally, type <Shift-F1> to exit csd and return to .

Where to go from here
This section demonstrated the basics of csd on a simple program. It showed how to load a program
and display its source code and output. It also discussed how to execute a program a line at a time
or up to the next tracepoint, and how to examin the value of variables by typing an expression into

csd C source debugger

Becoming familiar with csd 25

the evaluation window.

The next section, Advanced features, will expand on the uses of these features. It will also
demonstrate csd’s more powerful capabilities, such as its ability to trace expressions and function
calls within the evaluation window.

csd C source debugger

26 Becoming familiar with csd

csd C source debugger

