

Copyright 1994 by Mark Williams Company, Northbrook, Illinois.
Copyright 1994 by Ready-to-Run Software, Incorporated, Reading, Massachusetts.

All rights reserved.

Portions of this manual are based on reference materials provided on the X11 tape, which is copyrighted
 1985-1994 the Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital
Equipment Corporation, Maynard, Massachusetts. These materials are supplied under terms of its
copyright, subject to the following conditions:

‘‘Permission to use, copy, modify and distribute this documentation for any purpose
and without fee is hereby granted, provided that the above copyright notice appears in
all copies and that both the copyright notice and this permission notice appear in
supporting documentation, and that the name of MIT or Digital not be used in
advertising or publicity pertaining to distribution of the software without specific,
written prior permission. MIT and Digital make no representations about the suitability
of the software described herein for any purpose. It is provided ‘as is’ without
expressed or implied warranty.’’

This manual significantly rewrites much of the documentation supplied by MIT and Digital, and has
reformatted it for this publication. These revisions and reformattings are copyright 1993,1994 by Mark
Williams Company. This manual shall not be copied, reproduced or duplicated in whole or in part without
the express written permission of Mark Williams Company. Mark Williams Company makes no warranty
of any kind with respect to this material and disclaims any implied warranties of merchantability or
fitness for any particular purpose.

The information contained herein is subject to change without notice.

COHERENT is a trademark of Mark Williams Company. Microsoft Windows is a trademark of
Microsoft Corporation. UNIX is a trademark of Unix System Laboratories. PostScript is a trademark
of Adobe Systems Incorporated. All other products are trademarks or registered trademarks of the
respective holders.

Revision 2 Printing 5 4 3 2 1

Published by Mark Williams Company, 60 Revere Drive, Northbrook, Illinois 60062.

Sales: Phone: (800) MARK-WMS
FAX: (708) 291-6750
E-mail: sales@mwc.com

Technical Support:
Phone: (708) 291-6700
FAX: (708) 291-6750
E-mail: support@mwc.com

CompuServ: 76256,427

This manual was written under the COHERENT operating system, using the MicroEMACS text editor.
Text formatting was performed by the COHERENT edition of the troff text formatter, using its PostScript
output function. Capitals and ornaments are derived from the Golden Bible of Augsburg, and were
supplied in encapsulated PostScript form by BBL Typographic, 137 Narrow Neck Rd., Katoomba, NSW
2780, Australia. The key-caps font was supplied by SoftMaker, Inc., 2195 Faraday Avenue, Suite A,
Carlsbad, CA 92008. Page design was implemented with custom-written macros written in the troff text-
formatting language and in PostScript. Typesetting of this manual, from the table of contents through the
index, was performed by one script written in the COHERENT Bourne shell. Camera-ready copy was
printed on a Hewlett-Packard LaserJet IIP printer using the Pacific Page PostScript cartridge.

Table of Contents

Introduction to COHERENT X . 1
How to Use This Manual. 1

System Requirements . 1
Contents of This Package . 1
Bibliography . 2
Technical Support . 2

Help Us Help You . 3
Where To Go From Here . 3

Using the X Window System. 5
Introduction to a Graphical Interface . 5

Using the Mouse . 6
Moving and Resizing Windows . 6
Screen Buttons . 8
Sliders . 9
Menus . 9
Introduction to xvt . 14
Cutting and Pasting . 15
Introduction to xclock . 16
The Applications Menu. 17
Shutting Down X . 18
Conclusion. 18

A Tour of the X System . 18
The Structure of X . 19

Background . 19
X Architecture . 20
Libraries, Widgets, and Resources . 21
Bit Maps . 22
Fonts . 22
Colors. 22

Customing the Window Manager. 23
Customizing xinitrc. 23
Customizing .twmrc . 25
Variables . 25
Bindings . 28
Menus . 29

Where To Go From Here . 30
X Windows Clients. 31

X Utilities. 31
Bit Maps . 31
Colors. 32
Fonts . 32
Manipulating the Console . 33
Programming Tools . 33
Resources and Properties . 34
System Monitoring . 35
Miscellaneous Utilities . 36

Clients . 37
Games . 37
Observing the System . 38
Pretty Pictures. 38
Timepieces . 38
Tools . 38

Customizing X Programs. 39
Resources . 39
Modifying Applications. 40
Modifying a Font Resource . 41

i

ii The COHERENT System

Where To Go From Here . 42
Recompiling X Applications. 43

Imakefiles and Makefiles. 43
Modifications to Makefiles . 43
Problems Seen During Compilation . 44
Recompiling an Example Application . 45
Building Your Own Makefile . 46
Where To Get X Sources . 47

The Lexicon. 49
appres List an application´s resource data base . 51
atobm. Convert ASCII to an X bit-mapped image . 51
bdftopcf. Generate a PCF font from a BDF file . 52
bitmap Bit map editor . 53
bmtoa. Convert an X bit-mapped image to ASCII . 60
editres Resource editor for X Toolkit applications . 60
ico Animate an icosahedron or other polyhedron . 66
imake C preprocessor interface to the make utility . 67
listres List resources in widgets. 70
maze Create and solve a random maze . 70
mkdirhier. Make a directory hierarchy . 71
mkfontdir. Create file fonts.dir from directory of font files . 71
oclock. Display an analogue clock. 72
puzzle The X scrambled-number game. 73
resize Set environmental variables to show window size 74
showrgb Un-compile an RGB color-name data base . 74
startx Initiate an X session . 74
twm Tab Window Manager for the X Window System. 75
viewres Graphical class browser for Xt . 92
X. X Window System server. 95
X clients . 98
X utilities. 98
x11perf Test performance of the X11 server . 100
x11perfcomp. Compare the output of multiple runs of x11perf. 105
xauth Display/edit authorization information . 106
xbiff Notify the user that mail has arrived. 107
xcalc Scientific calculator for X . 110
xclipboard Hold multiple selections for later retrieval . 115
xclock. Display a clock . 117
xcmsdb Manipulate xlib screen-color characterization data 119
xcmstest XCMS test program. 120
xcutsel Copy text between the cut buffer and the primary selection 121
xdpyinfo Display information about an X server . 123
xedit. Simple text editor for X . 123
xev. Print contents of X events . 126
xeyes Display two roving eyes . 126
xfd. Display all the characters in an X font . 127
xfontsel Interactively select X11 fonts . 129
xgas Animated simulation of an ideal gas . 132
xgc. X graphics demonstration . 133
xinit Initiate the X Window System. 134
xkill Kill an X client. 136
xload Display your system´s load average . 136
xlogo Display the X Window System logo. 137
xlsatoms List atoms defined on server . 138
xlsclients List client applications running on a display . 139
xlsfonts List fonts being used on a server . 140
xmag Magnify a part of the screen. 140
xmkmf Control the building of a Makefile . 142
xmodmap. Modify X keymaps . 142
xpr. Print a dump of an X window . 145
xprop Display an application´s properties . 149

CONTENTS

The COHERENT System iii

xrdb Read/set the X server´s resource data base . 152
xrefresh. Refresh all or part of an X screen. 155
xset Set preferences for the display . 156
xsetroot. Set preferences for the root window . 158
xstdcmap. X standard color-map utility . 159
xterm Terminal emulator for X . 160
xtetris. Wildly amusing implementation of Tetris . 177
xvt VT100 emulator . 178
xwd Dump an image of an X window . 181
xwininfo Display information about a window. 182
xwud Un-dump a window image. 183

Index . 185

CONTENTS

Introduction to COHERENT X

Congratulations on your purchase of X Windows for COHERENT! This product is a port of XFree386 release 1.2,
which implements release 11, revision 5, of the Massachusetts Institute of Technology’s X Window System. The X
Window System (or ‘‘X Windows’’ for short) lets you use your keyboard and mouse to open multiple windows and
run multiple graphics programs simultaneously on your screen. With X Windows, you can use on your COHERENT

system the wealth of graphics-oriented programs — games, graphics-manipulation programs, images, tools, and
utilities — available at minimal cost from many public sources.

How to Use This Manual

This manual consists of the following:

• An introduction — what you are reading right now.

• An introduction to the X Window System and the window manager twm, including directions on how to
customize X Windows and twm to suit your tastes.

• An introduction to the X utilities and clients, and directions on how to use resources to modify clients.

• A discussion of how to recompile X programs. This covers such topics as how to construct a Makefile from
an Imakefile, and commonly encountered problems.

• A Lexicon of manual pages for every X utility and client included with X Windows for COHERENT. Note that
every Lexicon entry is also available on-line, and can be read by using the COHERENT command man.

If you are experienced in using X, you can jump to the Lexicon for a summary of the utility or client that interests
you. The Lexicon entries X clients and X utilities list the clients and utilities included with X Windows for
COHERENT. If you are a beginner, however, we suggest that you read through the tutorials at the beginning of this
manual. They will help you understand how X works, and so help you to become productive more quickly.

System Requirements
To run this X Windows for COHERENT, you need the following:

• A computer that is running COHERENT release 4.2 or later.

• At least four megabytes of RAM. At least eight megabytes is needed to run the color X server; 16 megabytes is
preferred.

• Twenty-five megabytes of hard-disk space on the file system that holds directory /usr/X11. More is preferred.

• A serial mouse — that is, a mouse that is plugged into a serial port on your computer. Note that X Windows
does not work with a bus mouse — that is, a mouse that is plugged directly into your system’s mother board.
We recommend a three-button mouse, although two-button mice can also be used. This implementation of X
works with mice from Microsoft, Mouse Systems, and Logitech (Mouseman), and with devices that mimic one
of the above, such as those manufactured by Honeywell.

• A VGA or SVGA video board and monitor.

Contents of This Package
X Windows for COHERENT includes all of the tools you need to run X on your system. It also includes tools with
which you can import and write X applications. The package includes the following:

• A large selection of X clients and utilities.

• Object modules from which the included X programs are linked.

• Bit-mapped images that can be displayed by an X client.

• Sample and default configuration files for X programs.

• A selection of fonts.

1

2

• Header files used by X clients and utilities.

• Libraries of X functions.

Please note that the included libraries do not support a mathematics co-processor.

Bibliography
The X Window System is a huge and elaborate system, for which a huge literature exists. This manual can only
scratch the surface of X. It walks you through installing, invoking, and configuring X Windows, and introduces the
tools and clients. However, much of X lies beyond the scope of this manual, especially if you wish to import or
write X applications. We recommend the following books for further reading.

If you are an experienced programmer and you wish to import or write your own X Windows applications, there is
no substitution for the first five volumes of The X Window System, published by O’Reilly & Associates, Inc. Contact
your local bookseller, or write to O’Reilly & Associates, Inc., 632 Petaluma Avenue, Sebastopol, CA 95472 (1-800-
338-6887). Another useful volume is The X Window System in a Nutshell, second edition, edited by Ellie Cutler,
Daniel Gill, and Tim O’Reilly. (Sebastopol, Calif., O’Reilly & Associates, Inc., 1992), which is a handy pocket
reference for people who already know X internals.

If you are new to the X Window System, we recommend the following two books:

• Mansfield, Niall: The Joy of X: An Overview of the X Window System. New York, Addison-Wesley Publishing
Co., 1993.

• Quercia, Valerie, O’Reilly, Tim: The X Window System. Vol. 3, X Window System User’s Guide, ed 4.
Sebastopol, Calif., O’Reilly & Associates, Inc., 1992.

Technical Support
Mark Williams Company provides free technical support to all registered users of X Windows for COHERENT. If you
are experiencing difficulties with this product, feel free to contact the Mark Williams Technical Support Staff. You
can telephone, send electronic mail, or write. Please note that this support is available only if you have returned
your User Registration Card for COHERENT.

Before you contact Mark Williams Technical Support with your problem, please check this manual first. If you do
not find an article in the Lexicon that addresses your problem, be sure to check the index at the back of the
manual. Often, the information that you want is kept in an article that you didn’t consider, and the index will
point you to it.

Another good way to find a topic in the manual is to use the command apropos, which is part of the COHERENT

system. apropos finds every article in the Lexicon that mentions a given word or phrase. For details on how to
use this command, see its entry in the COHERENT Lexicon.

If the manual does not solve your problem — or if you find it to be misleading or difficult to understand — then
Mark Williams Technical Support is available to help you. You can reach Technical Support via the following
routes:

Electronic Mail
If you have access to the Internet, send mail to support@mwc.com. This is the preferred means of
communication. Be sure to include your surface address and telephone number as well as your e-mail
address, so we can contact you even if return electronic mail fails.

FAX Send your technical FAXes to 1-708-291-6750.

Surface Mail
Write to Technical Support, Mark Williams Company, 60 Revere Drive, Northbrook, IL 60062.

Telephone
To contact Technical Support via telephone, call 1-708-291-6700, between 9 AM and 5 PM, Central Time.
Please have your manual at hand. Please collect as much information as you can concerning your
difficulty before you call. If possible, call while you are at your machine, so the technical-support person
can walk you through your problem.

TUTORIALS

3

Help Us Help You

Mark Williams Technical Support wants to help you fix your problem as quickly as possible. You can help us to
help you by doing the following:

Before you contact Technical Support, write down as carefully as possible what you did that triggered the
problem. Copy down exactly any error messages that appeared on the screen.

If the problem is triggered by a script or program, try to edit the script or program to the chunk of code that
triggers the problem. The smaller the chunk of code, the better.

In your message, please include the following information:

• The make of your computer, and the type and clock speed of its microprocessor.

• The amount of RAM that you have.

• The size and make of your hard disk, and the make of its controller.

• The make of your display (i.e., tube) and controller card, and the amount of video RAM it has, if known.

If you have found an error in the manual, please mention the page on which the error occurs.

This information will help us to to clear up your problem as quickly as possible.

Where To Go From Here
If you have not yet done so, you should now install X Windows for COHERENT onto your system. For directions on
how to do so, turn to the release notes that came with this manual and follows the directions given there.

The release notes also give errata — that is, mistakes in this manual that were discovered since its publication,
and problems with X Windows for COHERENT that remain unresolved. We suggest that you note these in the
appropriate places in this manual, and we hope you will accept our apologies for any inconvenience they may have
have caused you.

After you have install X Windows for COHERENT, you should turn to the part of the manual that is most
appropriate for your level of experience:

• If you are a beginner, turn to the following tutorial, entitled Using the X Window System. This walks you
through X Windows, and teaches you how to use the window manager twm.

• If you are experienced with the X Window System, turn to the Lexicon articles entitled X utilities and X
applications. These summarize the utilities and applications that are included with X.

• If you are interested in porting code to X, turn to the chapter entitled Porting to X. This gives practical advice
on how to import X code, and walks you through the modification and compilation of a sample X application.

TUTORIALS

4

TUTORIALS

Using the X Window System

This chapter introduces you to the using the X Window System. This and the following chapter are intended for
novices to X Windows. If you are experienced at using the X Window System, we suggest that you look at the
Lexicon articles X clients and X utiities to see what programs are included with this package.

This chapter first introduces a graphical-user interface (GUI) and the window manager twm. The window manager
is responsible for the appearance of the screen, and manages windows and icons. This portion of the chapter
assumes that you have little or no experience with a GUI. Even if you have worked with other GUIs, such as
Microsoft Windows, you should look over this section to see how twm differs from what you are used to.

This chapter then gives a tour of the X Window System, to show you what files are stored where. It then discusses
the structure of the X Window System and the elements that comprise it. Some of this is a little dry for a novice;
however, knowing something of what X can do and how it works will make it much easier for you to learn how to
work with X.

Finally, this chapter ends with a description of how to modify the window manager to suit your needs and tastes.

Introduction to a Graphical Interface
To bring up X, log into your system’s console, and type startx. If you have installed X properly, your screen will
clear and within a minute your console will appear something like this:

The actual amount of screen space that the windows take up depends upon the mode of your physical screen and
the size of the virtual screen, as described in the installation notes.

5

6 Using X

As you can see, there are three windows on the screen: a window that shows a clock, in the upper left corner of the
screen; a small window at the top of the screen that displays the word xvt; and a large, blank window that has a
prompt in it. The rest of the window is filled with a gray field.

Using the Mouse

To begin, try working with the mouse. The mouse should turned so that the wire on the mouse is away from you
and the buttons are under your fingertips. As you slide the mouse ‘‘up’’ on the desk (that is, away from you),
watch the screen. You’ll see a small cursor moving ‘‘up’’ on the screen — that is, toward the top of the screen.
Now, slide the mouse toward you. The cursor moves toward the bottom of the screen. Slide the mouse to the right
— the cursor slides to the right; slide it to the left — the cursor moves to the left. The principle is obvious: the
cursor moves around the screen in a manner analogous with the movement of the mouse. This cursor is called the
mouse cursor; in X nomenclature is also called the pointer.

Notice that as the cursor moves around the screen, it changes shapes. When it is against the gray background, it
is an × shape; when it is in the clock window or the little window labelled xvt it is an ←; while when it is the large,
blank window its shape resembles a capital I. (For the sake of brevity, we will refer to the large, blank window as
the xvt window. We’ll discuss below just what xvt is.)

Also, as the cursor enters and leaves windows, things happen: when the cursor enters the xvt window, its border
changes color, the text cursor changes from outlined to solid, and the inner border of the small window at the top
of the screen also changes color. The same things happen when you shift the cursor into the small window, which
suggests that the two windows are somehow linked.

As you’ve noticed, your mouse has buttons on it. (Some mice have two buttons, some have three. For present,
we’ll ignore the middle-mouse button and work only with the left and right buttons.) By pressing the mouse
button, you can tell an application to do something; what happens depends on what programs you are running
under X.

There are two kinds of stroke on a mouse buttons: clicking and dragging. Clicking is when you rapidly depress and
release the button, just like you press a key on your keyboard. You often will use this stroke to press a ‘‘button’’
on the screen. Dragging is when you depress a mouse button, slide the mouse, and then release the mouse
button. You often use this stroke to select an item from a menu or to move or resize a window. (How you can do
these actions is described below.)

To try this, slide the mouse so that the mouse cursor shifts into the little window at the top of the screen. The
cursor is in the little window when the window’s outline brightens. Click the left-mouse button. The xvt window
disappears from the screen, and a small, stylized ‘X’ appears in the little window. Without moving the cursor, click
the left-mouse button again. The xvt window reappears, just as it was before, and the stylized ‘X’ disappears.

To explain what just happened, the small window is an icon for the xvt window. Icons give you a way to run a
large number of programs simultaneously, without cluttering the screen with windows. You can specifically
exclude certain X programs from having an icon. You would do this because an icon (like every other X object)
consumes memory, and some programs (such as the clock program) always appear on the screen. We’ll discuss
icons further below.

Moving and Resizing Windows

With the mouse you can move and resize a window. Both involve dragging the mouse.

First, try to resize a window. Slide the mouse so that its cursor is touching the right or bottom border of the
window. When the cursor touches the frame, it changes shape, from an × to an ←. Now, press the left-mouse
button and hold it down. When you do this, three things happen:

1. The mouse cursor changes to a stylized ‘+’ sign.
2. The clock window is covered with a grid.
3. A small window pops up in the upper left corner and displays a message that gives the X and Y dimensions of

the window.

(If nothing happens, the tip of the ← is not touching the window’s frame but is in the inner part of the window.
Release the left-mouse button, slide the cursor until the tip of the ← is touching the frame, and then press the left
button again.)

The numbers in the small pop-up window give the dimensions of the window, in pixels. (A pixel is one of the tiny
dots that comprise your screen.) While holding down the left-mouse button, slide the mouse to the right and down
until the numbers in the small window are approximately 230×230. (We say ‘‘approximately’’ because a mouse is
not a precision instrument, and trying to position it exactly can be a maddening task.) Note that as you drag the

TUTORIALS

Using X 7

mouse, the grid that was superimposed on the window ‘‘stretches’’ to match the movement of the mouse cursor.
Now release the left-mouse button. The clock window is now larger, and your screen looks something like this:

The clock window is now larger, the image of the clock has expanded to fill the larger window, and the clock
window now overlaps the xvt window.

Now, try moving the xvt window. First, however, we need to shift the xvt window from behind the clock window
(in X nomenclature, this is called the background) to in front of the clock window (in X nomenclature, the
foreground). Move the mouse cursor into the icon and click the left-mouse button: the xvt window vanishes from
the screen. Now, click the icon again: the xvt window appears again, but this time in the foreground,
superimposed upon the clock window.

Now, slide mouse cursor into the xvt window. When the cursor enters the window, observe the area at the top of
the window that has the word xvt in it — this area is called the title bar. When the cursor enters the xvt window, a
small, gray patch appears in title bar. The other shapes in the title bar are screen buttons. A screen button is not a
physical button, like the button on your mouse; however, it works like physical buttons in that you can ‘‘press’’ it
by moving the mouse cursor to it and then clicking a mouse button.

Slide the mouse cursor so that it is touching in the title bar, but not touching any of the buttons. (The gray patch
is part of the title bar, not a button.) Now, press and hold down the left-mouse button. Once again, the mouse
cursor changes to a stylized ‘+’. While holding down the left-mouse button, drag the mouse up and to the right;
while you slide the mouse, an outline of the window follows. Keep sliding the mouse until the xvt window is
positioned to the right of the clock window; then release the left-mouse button. When you release the mouse
button, X redraws the xvt window in its new position. Your screen should now appear something like this:

TUTORIALS

8 Using X

Screen Buttons

As we noted earlier, the little drawings in the title bar are screen buttons. Moving the mouse cursor to a screen
button and clicking the left-mouse button tells X — or, to be more precise, the screen manager twm — to do
something, just like pressing a button on your telephone.

The window manager displays three buttons on the title bar of each client’s window. The following describes them
in the order they appear in the title bar, from left to right:

1. The leftmost button, which has a bullet ‘•’ in it, ‘‘iconifies’’ the window. That is, it erases the window from the
screen and draws the stylized ‘X’ in that window’s icon. The window will not appear on the screen until you
‘‘de-iconify’’ it by clicking on its icon.

Try this. Slide the mouse cursor so that it touches the leftmost button in the xvt window’s title bar. When it
touches the button, the cursor changes to a ☞, except pointing to the left. Click the left-mouse button: this
‘‘presses’’ the screen button. The xvt window vanishes, as before; it is now iconified. Now, slide the mouse
cursor to the icon, and click the left-mouse button again. The xvt window is de-iconified, and reappears on
the screen.

2. The second button from the left, which has a stylized ‘D’ in it, displays a drop-down menu. We will discuss
this button below, when we introduce menus.

3. The rightmost button, which has a staggered set of squares in it, lets you resize the window, just as if you had
clicked on the window’s frame. To resize the window, move the mouse cursor to this button; press the left-
mouse button and, while holding down the mouse button, slide the mouse cursor to the right and down, until
the window is sized to suit your preferences.

Note that by default twm does not shrink a window until you have first moved the mouse cursor past the
window’s current borders. Thus, if you want to shrink a window, you have to first stretch the grid out past
the current borders of the window, then slide it back in.

TUTORIALS

Using X 9

Many applications use screen buttons to gather information from you, but you operate each in the same way: move
the mouse cursor to it and click the left-mouse button.

Sliders

If you look at the following figure, you’ll see something different along the left edge of the xvt window:

The object to the left of the window is a column, with a gray patch at the bottom. This column is called a slider.
You can use the mouse to move the gray patch up or down. By moving the slider, you change the value of a
variable that is associated with the slider.

To change the value of a slider, move the mouse cursor onto the gray patch, then press the middle-mouse button
and hold it down. (If you have a two-button mouse, click both buttons simultaneously and hold them down.) Then
drag the mouse up or down on your desk; the gray patch follows the mouse cursor up or down. When you release
the mouse buttons, the gray patch stays fixed where you dragged it; the corresponding value will have been raised
or lowered by a proportionate amount.

Clients often use sliders to let you set a range of integral or ratio values. For example, xvt uses the a slider to let
you set display lines of text that had scrolled off the top of the window earlier, up to a maximum of 64. By
dragging the slider up or down, you can review text that had been displayed in the window, but no longer fits
within the window — in effect, you are choosing which line will be the first line in the display.

Many applications use a slider or sliders to set numeric values of this sort. Sliders will pop up again and again as
you work with X.

Menus

A menu is a list of entries, like a menu in a restaurant. You can select one of the items on the menu; the program
then performs the action that corresponds to the item you have selected.

Many applications use menus. The window manager twm has three menus built into it. This section describes
how to invoke these menus and their contents.

TUTORIALS

10 Using X

The first menu that we will describe is the one that appears when you press the screen button that is second from
the left in a window’s title bar. (This is the button with the stylized ‘D’ in it.) To invoke this menu, slide the mouse
cursor to this button in the title bar for the xvt window; then press the left-mouse button and hold it down. The
window now appears something like this:

As you can see, the menu has 13 entries. The entry at the top is the menu’s title. If you look carefully, you can
see that three of the entries have a small button on the right. The button indicates that that entry introduces a
sub-menu; a sub-menu pops up if the mouse cursor simply touches the button — you don’t have to press a mouse
button (which is fortunate, as you are already holding down the left-mouse button). For example, if the mouse
cursor touches the button in the menu entry labelled (Properties)a three-item sub-menu drops down, and the
screen appears something like this:

TUTORIALS

Using X 11

The contents of this sub-menu will be discussed below.

The following describes each entry in the WINDOW OPS menu:

(Iconify)

Iconify this window. This is the same as clicking the leftmost button on the title bar.

(Lower)Lower this window into the background — that is, if this window overlaps with any other window, draw
that window atop this window.

(Move) Move this window. This works exactly as if you had clicked on the title bar.

(Raise)Raise this window into the foreground — that is, if this window overlaps with any other window, draw this
window atop that window.

(Refresh)

Redraw the window. Do this if any ‘‘junk’’ has appeared to ‘‘mess up’’ the window.

(Resize)

Change the size of the window. This works exactly the same as if you had clicked on the window’s frame.

(Applications)

This entry has a button that, when touched by the mouse cursor, drops a sub-menu that shows a
selection of applications that you can run under X. This menu will be discussed later.

(Properties)

This entry has a button that, when touched by the mouse cursor, drops a sub-menu that lets you change
some of twm’s properties. The term property has a precise meaning under X, and will be discussed later;
for now, consider a property as being a feature of an object that affects the object’s appearance or behavior.
The Properties sub-menu has the following three entries:

(Autoraise)

If you turn on this property, the window manager raises this window to the foreground whenever
the mouse cursor enters it. To turn off this property, simply select this sub-menu entry again.

TUTORIALS

12 Using X

(Focus)Focus the window manager’s attention on this window. This means that the window’s frame is
always bright, even when the mouse cursor is not in this window. Further, whatever you type on
the keyboard appears in this window, regardless of where the mouse cursor is on the screen.

(Unfocus)

Stop focusing the window manager’s attention on this window. This is the default.

(Twm_Operations)

This menu entry drops a long sub-menu that lets you invoke many features of the window manager twm.
This menu and its contents are discussed below.

(Info...)

This menu entry opens displays information about the current window: its name, position on the screen,
and other information.

(Kill_Program)

This kills the current window dead, just the same as if you had typed the command kill -SIGKILL for this
program. Do not use this option unless you absolutely must kill an application, because a program that
dies in this way often leaves memory and the file system littered with debris.

(Close_Window)

This is a kinder, gentler way of killing the program in this window. It closes this window; in theory, an
application perishes gracefully when its last (or only) window is closed. Unfortunately, this does not work
for every application, and in some cases you may be compelled to resort to the heavy, blunt object of the
previous menu entry.

To see how a menu works, try selecting an item from it. Click the title-bar button that drops this menu; then,
while holding down the left-mouse button, drag your mouse down until the entry (Iconify)is highlighted. Then
release the mouse button. This invokes the ‘‘iconify’’ feature, and ‘‘iconifies’’ the window. Now, click the xvt icon
at the top of the screen to redisplay the xvt window.

As we mentioned above, the menu entry Twm_Operations drops a menu of things that you can do to, and with,
the window manager twm. The same menu appears if you move the mouse cursor so that it is positioned over the
screen’s background (when changes shape to an ×) and press the right-mouse button. Try it; your screen should
appear something like this:

TUTORIALS

Using X 13

If the physical screen is smaller the virtual screen, you won’t be able to see all of the menu at once. To see the
bottom of the menu, keeping sliding the mouse cursor down; the borders of the physical screen will shift downward
to keep the mouse cursor in view.

The following describes the entries in the TWM Operations menu:

(Beep) Ring the bell.

(Close_Window)

Close the current window. This is the same as the (Close_Window)entry in the previous menu.

(Destroy_Application)

Kill an application. This is the same as the (Kill_Program)entry in the previous window.

(Focus)Focus the window manager’s attention on a window. If you invoked the TWM Operations menu from
within the WINDOW OPS menu, twm fixes its focus on the window from within which you invoked
WINDOW OPS. If, however, you invoked TWM Operations by clicking the right-mouse button, then twm
lets you pick the window interactively: it changes the mouse cursor to a bull’s-eye; move the mouse cursor
to the window upon which you want twm to focus, and click the left-mouse button. twm will focus on this
window until you go through this procedure again for that window, or invoke the Unfocus menu entry,
below.

(Force_Move)

Move a window, even if the window’s properties specifically exclude its being moved.

(Full_Zoom)

Expand a window to fill the entire screen. The window that twm ‘‘zooms’’ is determined just as with the
(Focus)entry, above.

(Hide_Icon_Manager)

Erase, or ‘‘hide,’’ all icons from the screen. The icons are kept in memory, waiting for you to ‘‘un-hide’’
them.

TUTORIALS

14 Using X

(Iconify)

Iconify a window. The window that twm iconifies is determined just as with the (Focus)entry, above.

(Info...)

Display information about a window, such as its name, size, and position on the screen. The window
about which twm displays information is determined just as with the Focus entry, above.

(Lower)Lower a window. Again, the window that twm lowers depends upon how you invoked this menu.

(Lower_Current_Window)

This lowers the window that was raised last.

(Move) Move a window. This works just as if you had clicked on a window’s frame.

(Open_A_New_Window)

This invokes the application xvt to open a new window and run your shell of choice in it. Yes, this is the
same xvt whose window you have manipulated so far. This application is introduced below; for detailed
information on it, see its entry in the Lexicon at the back of this manual.

(Raise)Raise a window. Again, the window that twm raises depends on how you invoked this menu.

(Raise_Current_Window)

Raise the window that was lowered last.

(Raise_or_Lower)

Select a window interactively: if it is lowered, raise it; if it is lowered, raise it.

(Resize)

Resize a window. This works just as if you had clicked on a window’s title bar. Again, the window that
twm resizes depends on how you invoked this menu.

(Refresh_Window)

Refresh a window.

(Refresh_Screen)

Refresh every window on the screen. twm blanks the screen briefly, then redraws it.

(Show_Icon_Manager)

Redisplay the icon manager, if it is hidden.

(Unfocus)

If twm is focused on a window, unfocus it. If twm is not focused on a window, do nothing.

(Window_List)

This entry has a button on it. If the mouse cursor touches this button, a sub-menu appears that lists
every window twm is handling at this moment, whether or not it is iconified or hidden.

(Zoom) Expand a window to fill the window vertically; do not, however, change its horizontal dimension.

(Quit_Window_Mgr.)

Finally, shut down the twm window manager. This also shuts down the X server, and returns control to
the ordinary COHERENT console interface.

So far, we have discussed twm and how to manipulate windows: how to move them, change their size, change their
focus, hide them, redisplay them, and so on. Now we will discuss just what’s going on within the windows
themselves — which is, after all, the whole point of the X Window System.

Introduction to xvt

The window we’ve called the ‘‘xvt window’’ is the window for an X program named xvt. This program mimics a VT-
100 terminal. COHERENT ‘‘thinks’’ that this window is another terminal, just as if you had plugged a dumb
terminal into a serial port on your machine.

When xvt opens its window, by default it invokes a shell through which you can give commands to COHERENT.
You can invoke other X clients via xvt, dial out to another system, edit files, and play games.

You can open more than one xvt window on your screen if you wish. The number of windows you can manage
comfortably depends upon the size of your screen; if you have a small screen, you may wish to iconify the xvt
windows that you are not using at the moment. If your system were on a network, you could open a number of
different windows, each logged into a different machine on the network. In this way, users who are hooked into the

TUTORIALS

Using X 15

Internet can simultaneously view and manipulate data from machines that are thousands of miles apart.

To give COHERENT a command via xvt, simply move the mouse cursor into the xvt window (so that X knows that
what you type at the keyboard is intended for this window), and type the command as you always do. To spawn
another terminal window, simply type:

xvt &

In a moment, X draws the outline of an xvt window, and fixes it to the mouse cursor. Slide the mouse until the
window outline is where you want the new window to be, then click the left-mouse button. The new terminal
window appears, with a COHERENT prompt in it. You can shrink the new terminal window so it and the original
terminal window fit together onto your screen; or you can iconify it, or use the Raise and Lower entries from the
twm menus to help you work with both windows.

Note that when xvt opens a window, the window is set to 80 characters wide by 25 rows high, just like an ordinary
terminal’s screen. Most COHERENT applications expect that size of a screen, and have no idea that they are talking
to a window that can be resized. Thus, if you shrunk an xvt window, you can expect that some visually oriented
COHERENT applications — such as MicroEMACS, vsh, or chase — will not work correctly. Note, too, that if you kill
an xvt window, any program that you invoked from it — either a COHERENT application or an X client — dies as
well. (The COHERENT command nohup will help you get around this limitation; for details, see its entry in the
COHERENT Lexicon.)

The following screen shows one unusual application of multiple xvt windows: the user here is conversing with
himself in two different windows via the COHERENT utility write:

Cutting and Pasting

X has a built-in facility with which you can cut and paste text. This facility is impractical for moving large
amounts of text, but is handy for copying a command or a set of information from one window into another, or into
a file. Note that this facility only works with text — you cannot use it to copy a bit-mapped image or an icon.

TUTORIALS

16 Using X

To cut text, move the mouse cursor to the point where you want to start cutting, then press the left-mouse button.
Drag the mouse to the end of the block of text you wish to cut; then release the left-mouse button. The X server
copies the cut text into both its cut buffer and into its primary selection (that is, the property PRIMARY).

Another way to cut text is to click the left-mouse button at the beginning of the block of text you wish to cut, then
move the mouse cursor to the end of the block and click the right-mouse button. All text between the two clicks is
highlighted, to show that you have cut it.

To un-cut text, move the mouse and click the left-mouse button again. The text will be un-highlighted, to show
that it is no longer cut.

To paste text, move the mouse cursor to the spot where you want to ‘‘drop’’ the text, then press the middle-mouse
button. (If your mouse has only two buttons, press both buttons simultaneously.) X handles the pasted text just
as if you had typed it from the keyboard: if the text is pasted into a window that cannot accept keyboard input,
then the pasted text goes into the bit bucket. To drop the cut text into a file, invoke an editor or the COHERENT

command cat in an xvt window, then drop the text into that window. The program you invoked in the window will
save the text into a file, just as if you had typed it by hand.

Introduction to xclock

The window that we’ve called the ‘‘clock window’’ is the window for an X program named xclock. This program has
many options, some of which you can invoke via command-line options, like any other COHERENT program.

For example, xclock by default displays an analogue clock — that is, a clock with a dial and hands. You can,
however, request a digital clock: to do so, just type the following command into your xvt window:

xclock -digital -update 1 &

The option -update 1 tells xclock to update itself every second. The default is every 60 seconds.

Once again, a small outline of a window appears. Slide the mouse until the window is placed where you want,
then click the left-mouse button. You now have a small digital clock, which displays the date as well as the time:

To remove your new clock, select the command (Close_Window)from the menu TWM Operations.

TUTORIALS

Using X 17

For a full list of options to xclock, see its entry in this manual’s Lexicon.

The Applications Menu

Earlier, we noted that twm has three menus available to you. We have described two: WINDOW OPS and TWM
Operations.

The third menu is APPLICATIONS. Through it, you can invoke some of the more commonly used X clients, without
having to type a command into an xvt window. (This explains, among other things, how you can invoke an xvt
window when the screen has no xvt window into which you can type the command.) This menu appears when you
position the mouse cursor over the background of the screen (as shown by the fact that the mouse cursor changes
to an ×), and click the left-mouse button. The following figure shows the menu APPLICATIONS:

APPLICATIONS contains the following entries:

(Font_Select)

Invoke the X client xfontsel, which helps you to select a font interactively. The description of fonts
under X is something of a ‘‘black art’’; for details, see below or see the entry for xfontsel in the
Lexicon.

(Puzzle) Invoke the X client puzzle, which lets you play a scrambled-tiles game.

(XBiff) Invoke the X client xbiff, which displays an icon of an old-fashioned roadside mailbox. When you
receive new mail, the flag on the ‘‘mailbox’’ pops up.

(XCalc) Invoke the X client xcalc, which displays the image of scientific calculator — either a Hewlett-Packard
or a Texas Instruments model, whichever you prefer. By clicking on the image’s buttons, you can
invoke all of the features of a real scientific calculator. As you can see from the previous figure, this
entry invokes a sub-menu, from which you can select the type of calculator you want.

(XClock) Invoke the client xclock, described above.

TUTORIALS

18 Using X

(Xeyes) Invoke the X client xeyes. This client draws on the screen a pair of eyes whose pupils follow the mouse
cursor around the screen. This can help you find the mouse cursor on a cluttered screen.

(XLoad) Invoke the client xload. This client displays a histogram that graphs the load on your system. You can
use this client to gain an idea of how many cycles a given program consumes.

(XLogo) Invoke the X client xlogo, which merely displays the X logo. This logo is the stylized X that appears in
an icon when you have iconified a window.

(XMag) Invoke the X client xmag. This client magnifies part of the screen, to help you see how a shape is built
out of individual pixels.

(Xvt) Invoke another xvt window.

(XTetris) Invoke the X client xtetris, which plays the popular game Tetris.

Each of these applications is invoked with selected command-line options; for example, xclock is invoked to
display an analogue clock rather than a digital one. Below, we will show you how to change these defaults.

Shutting Down X

Shutting down X is a two-stage operation: first, you must close all xvt windows, and then you must kill the server.

To shut an xvt window, simply move the mouse pointer into the window (so that its frame is highlighted), then
type the command exit. If nothing appears to be happening, wiggle the mouse a bit; X often waits for you to do
something before it redraws the screen to reflect the effects of any commands you may have issued.

Once all xvt windows are closed, you can shut down the X server. There are two ways to do this.

The first way is to do so via a menu. Invoke the menu TWM Operations by moving the mouse cursor over the
screen’s background, then press the right-mouse button. Drag the mouse until the last entry in the menu, which
is labelled (Quit_Window_Mgr.)is highlighted. Then release the right-mouse button. All windows close, the X server
turns itself off, and you are returned to the standard COHERENT character-based interface.

The other way is simply to type <ctrl><alt><backspace>. No matter when you type this combination of keys, the X
server will detect it and shut itself down.

The two methods vary in how they flush buffers and tidy up after themselves. In general, it is better to shut down
in a controlled fashion, through the menu entry, than by pressing the magic combination of keys.

Note that you can kill the X server without closing your xvt windows. However, this is not a good idea because
COHERENT may ‘‘think’’ that you are still logged into an xvt window, even though that window no longer exists.
This may create problems for you at some future time.

Conclusion

This concludes the introduction to the twm screen interface. We have introduced the basic ‘‘vocabulary’’ of the X
GUI, discussed twm and its menus, and shown how you can invoke and operate some other X clients under twm.

The following section gives you a ‘‘nickel tour’’ of the files and directories that comprise the X Window System.
Subsequent sections introduce the internal structure of X. Knowing how X is structured internally will help you
grasp how to configure X. The final section in this chapter describes how to configure twm to suit your
preferences.

A Tour of the X System
The X Window System is installed into directory /usr/X11. The following describes the contents of each directory
in the X Window System:

/usr/X11/bin
This directory holds the executable programs themselves. Most are created when you install your system
from the object modules in /usr/X11/objs. For an introduction to these program, see the following
chapter, X Windows Clients.

/usr/X11/doc
This directory holds public-domain documentation on the X Window System that you may find useful.

/usr/X11/include/X11
This directory holds header files and bit-mapped images that are included in the source code of an X
application. It holds the following sub-directories:

TUTORIALS

Using X 19

Xaw Header files used with the Athena widget set.

Xmu Header files used with miscellaneous X utilities.

bitmaps
This holds the C source code for bit-mapped images that X Windows uses. You can include these
images in programs that you import or write.

extensions
Header files for extensions to the X Window System.

sys System-level header files that are used with X Windows.

/usr/X11/lib
This directory holds libraries of X Windows routines. Please note that these libraries do not include code to
use or emulate a mathematics co-processor.

This directory also holds configuration files for the X server, in particular Xconfig.

/usr/X11/lib contains the following sub-directories:

app-defaults
Files of settings, or ‘‘resources,’’ for selected X programs. By modifying an program’s resource file,
you can modify its appearance and behavior without having to modify its source code. The next
chapter describes how to do this.

config This holds files that describe how this implementation of the X Window System is configured.
They are read by the utility imake to build a correctly configured Makefile from an Imakefile. For
details, see the Lexicon entries for imake and xmkmf.

fonts This directory holds the fonts used by the X Window System. X Windows for COHERENT comes
with two directories of fonts: fonts/misc, which holds miscellaneous fonts (such as the font used
by the mouse cursor); and fonts/75dpi; which holds 75 dot-per-inch, proportionally spaced fonts.
For information on how to display a font, see the Lexicon entry for xfd.

nls This holds tools used by X developers.

twm This directory holds the file system.twmrc, which is the default resource file for the twm window
manager. twm reads this file if your home directory does not contain a file named .twmrc. If you
want to customize twm to your liking, copy system.twmrc into your home directory, rename it
.twmrc, and modify it. The following section describes how to modify $HOME/.twmrc.

x11perfcomp
This holds scripts used to help gauge system performance

xinit This directory holds the file xinitrc. The utility xinit reads this file if your home directory does not
contain a file named .xinitrc. If you want to customize xinit to your liking, copy xinitrc into your
home directory, rename it .xinitrc, and modify it to your liking. The following section describes
how to modify $HOME/.xinitrc.

/usr/X11/objs
The object modules for the clients and utilities included with this package. When you install the package
onto your system, they are linked with the libraries in /usr/X11/lib to create executable programs.

This concludes our nickel tour of the X Window System. The next section discusses the structure of X Windows, in
preparation to discussing how you can modify X.

The Structure of X
This section introduces the structure of the X Window System. If you are a beginner, you may find some of this
section to be a little dry. However, if you take a few minutes to read these descriptions, you probably will find it
easier to learn how to customize the X Window System.

Background

To begin, a little history. What we call the X Window System was created at the Massachusetts Institute of
Technology. The first edition, or release, of X appeared in 1984; release 11, which is the current release of X,
appeared in 1987. Since 1987, release 11 has been revised several times, to fix bugs and widen its scope; the
current edition of X is release 11, revision 5. (X documentation often uses a kind of shorthand to indicate the

TUTORIALS

20 Using X

release and revision for which a given program is intended, e.g., ‘‘X11R5’’ or ‘‘X11.5’’.)

MIT performed much of its work on X in partnership with Sun Microsystems; other computer manufacturers also
contributed to X. The notes at the end of each Lexicon entry usually name the company or person who
contributed the given program to X. The bulk of the X Window System is copyrighted by MIT; source code,
however, is available for a minimal cost from MIT, and MIT does not demand a royalty for X. (Some packages —
such as X Windows for COHERENT, which you are now using — contain code that is proprietary; therefore, do not
assume that you can copy and give away your X software.)

Unlike other graphical user interfaces (GUIs), X makes no assumptions either about the operating system that is
running underneath it, or about the manner by which the user communicates with the computer. This approach
has a few disadvantages. In particular, it has led manufacturers to create a number of different user interfaces, of
which the best known are Motif (created by the Open Software Foundation) and OPEN LOOK (created by Sun and
AT&T). Thus, the appearance and behavior of an X system can vary greatly from one computer to another.

However, the disadvantages of this approach are greatly outweighted by its advantages. Because X makes no
assumptions about its underlying operating system, X has been adopted as a de facto standard by a number of
leading computer manufacturers. Although it usually runs with some version of the UNIX operating system (or a
UNIX-like operating system, such as COHERENT), it has also been ported to limited operating systems like MS-DOS.
Its design also makes X an ideal interface for a network of computers: even if each computer has a different
architecture and operating system, all can appear the same to the user and run in more or less the same manner,
thanks to X.

The flexibility of X also means that it is easy to port X programs from one operating system to another. Thus, as
soon as X is brought up on an operating system, a wealth of software quickly becomes available to users.

X Architecture

The flexibility of the X system results from the fact that X carefully isolates into a single program each class of
tasks that it must perform. For example, it isolates into one program, called the server, all of the work of driving
the hardware. If an X application needs to draw something onto the screen, it simply invokes a feature of the
server, which does the job. Thus, to port X to new operating system, one must rewrite the server; but once that is
done, importing an X application often involves no more than recompiling it. (There are exceptions to this, of
course, but on the whole an X application that ‘‘plays by the rules’’ can be ported with very little trouble.)

Therefore, X can be compared to a well-designed machine. Each part of the machine does one thing, and only one
thing. If one part needs to perform a task that falls into the domain of second part, the first part sends a message
to the second part and lets the second part execute that task for it. Any one part can be pulled out of the machine
and replaced without affecting the performance of any other part. This way of fashioning a computer program is
called object-oriented program design (OOP). Although the principles of OOP lie beyond the scope of this manual,
you will find it helpful when you work with X to try to think in terms of objects and how they fit together.

The manner in which the parts of the X machine fit together is called its architecture. The architecture of X has
three major parts: the server, the client, and the window manager.

server The server is the program that actually runs the X system. It does all the low-level work of drawing images
on the screen; it manages communications among X programs; and on networked X systems, it manages
permissions. Every other X program registers with the server when they come up; all of its work with the
screen is done via requests to the server.

X Windows for COHERENT comes with two servers: one that supports color VGA for a set of the most
popular VGA chip sets; and one that supports monochrome images on practically every variety of VGA or
SVGA card. Most programs run without alteration on either server.

As a rule of thumb, there is one server for each computer at which a person works. Here, the term
‘‘computer’’ includes such devices as X terminals, as well as PCs and workstations.

clients A client is a program that registers with the X server, and uses the server’s facilities to work with the user.
As noted above, a client does not contain any code for manipulating hardware — it does not know how to
talk to the mouse or the screen. All it does is send requests to the server and receive information from the
server.

In this manual, we speak of two types of application: clients and utilities. In this manual, a client is
something that let you do something under X, such as play a game or edit a file. A utility helps you to run
X itself. Both clients and utilities, however, are X clients in the broad sense: both register with the server
and do their work through it.

TUTORIALS

Using X 21

On a networked X system, a client can register itself with any server on the network, provided that the
user who launched the client has permission to register with that server. For example, a person sitting at
one workstation can invoke a client and tell it to register itself with the server on another person’s
workstation, to show that other person a document or graph. COHERENT does not yet support networking;
when it does, you will be able to tie your machine into a network of computers and work together via X.

window manager
The window manager is a special client that manages the screen for all other clients. It allocates screen
space to all other clients, and makes sure that no client intrudes on another client’s space. It provides the
tools with which you you can move a window or change its size. It also manages all parts of the screen
that belong to no individual client; these include the background of the screen (also called the screen’s root
window), icons, window frames, title bars, and drop-down menus. The window manager is largely
responsible for the ‘‘look and feel’’ of a given implementation of X.

In your day-to-day work you probably will not need to concern yourself with the architecture of X. Its parts fit
together to make one smoothly running machine. However, you will find it helpful to bear the above descriptions
in mind, because they will help you track down the cause of any problems that you may encounter.

Libraries, Widgets, and Resources

Internally, X has a hierarchical design. The lowest level of the hierarchy are the routines in the library Xlib. These
routines do all primitive tasks, such as drawing lines and shapes on the screen, reading input from the keyboard,
and polling the mouse. Xlib underlies all versions of X.

On top of Xlib sit toolkits. A toolkit is a set of routines that combine the low-level routines of Xlib into tools that
applications can use directly. For example, a toolkit routine may combine a set of Xlib routines that draws shapes
into one routine that draws a button. A toolkit sometimes includes its own low-level routines to cover tasks that
are not addressed in Xlib; for obvious reasons, this is discouraged.

Numerous toolkits have been written for X. The tools in this package are built from the MIT toolkit Xt.

Atop a toolkit sits a widget set. A widget combines a set of routines with one or more bit-mapped shapes that can
be displayed on the screen. For example, a button widget can display a bit-mapped shape, superimpose a button
from the toolbox upon the shape, and include routines for polling the mouse and reacting to the mouse events
(e.g., when a mouse button is pressed or released).

Widgets can be assembled to form ‘‘composite widgets.’’ Thus, a widget set has a hierarchy within itself: whatever
affects a widget that is lower in the hierarchy affects all widgets that are built atop it.

A screen interface, such as Motif or OPEN LOOK, consists of a toolkit, a widget set, and a screen manager that is
built from the toolkit and widget set. The interface embodies a design of how the screen should appear and how
the interface should behave.

X’s widgets are designed so that you can change ‘‘on the fly’’ many of their aspects. For example, a button widget
can let you set the text that appears in it, its color, its position on the screen, dimensions, whether it has rounded
or square corners, and so on. You can do this by setting a widget’s resources.

You can set resources in any, or all, of three ways:

1. First, many applications read information from command-line options. Applications that are built from the Xt
toolkit take a standard set of command-line options, which (among other things) let you set colors, the
window’s geometry (that is, its initial size and position on the screen), and whether it appears in reverse video
in reaction to an event. The suite of command-line options varies from application to application: Some have
a rich set that lets you fine-tune the application, whereas others’ are sparse.

2. Some applications read a file from directory /usr/X11/lib/app-defaults. In this file, you set resources for
that application. For some applications, such as xcalc or xfontsel, the application file can be quite large and
complex. The settings in an application’s defaults file apply only that application. By modifying its defaults
file, you can change an application’s appearance and, in some instances, its behavior.

3. You can use the command xrdb to build a resource data base within the X server. Most applications read this
data base as they come up. The contents of this data base override any defaults built into any application, or
any resource settings they may have read from an application-defaults file. The settings in the resource data
can apply either to an individual application or to all applications, depending upon how you ‘‘phrase’’ them.

As we noted above, widgets most often are built out of other widgets. If a widget is used to build other widgets,
that first widget is said to be a widget class. X has a mechanism by which you can set a widget class; if you alter a
widget class, every subordinate widget that incorporates the first widget into itself is altered as well.

TUTORIALS

22 Using X

The next chapter, which introduces the X clients, describes how to set widget classes. X widgets and widget
classes are a large and complex topic of study; however, it is possible even for novices to make minor modifications
to a defaults file, as we will show below.

Bit Maps

A bit map is a picture that is formed by turning cells in a grid on and off. X interprets each cell in the grid as a
pixel. The mouse cursor, for example, is a bit-mapped picture.

You can draw a bit-mapped image with a ordinary text editor, using a pattern of pound signs ‘#’ and hyphens ‘-’, or
you can use one of the tools that comes with X. You can then ‘‘compile’’ the bit map into C code that can be
included in an application, just like any other header file.

X includes tools with which you can draw, edit, and compile bit maps. These are introduced in the next chapter.

X Windows for COHERENT comes with a selection of bit maps. These are stored in directory
/usr/X11/include/X11/bitmaps.

Fonts

A font is a collection of shapes that comprise the letters of the alphabet and most commonly used punctuation
marks. A font has 14 attributes that describe its size, weight, style, manufacturer, the character set it encodes,
and other information.

The characters in a font are bit-mapped images. Thus, a ‘‘font’’ does not necessarily have to be the letters of the
alphabet; for example, the mouse cursors are stored in a special font called cursor. (For a table of all available
mouse cursors, see the entry in this manual’s Lexicon for the X utility xfd.) This also means that, if you are so
inclined, you can create and use your own fonts.

Fonts are stored in the directories named in the server’s font path, which is set in the file /usr/X11/lib/Xconfig.

Because font files can be quite large, it is customary for them to be compressed so they take up less space on disk.
X can use fonts in their compressed form; you do not have to uncompress a font for X to use it.

Each directory named in the font path must contain a file named fonts.dir. Each entry in this file gives a font’s
full, 14-part name and the file in which it resides. If you move a new font into a font directory, you must modify
this file or X will not be able to find the font.

The X utility mkfontdir reads all of the fonts in a directory and rebuilds that directory’s fonts.dir file to show what
fonts that directory actually contains.

A font’s full name describes all 14 of a font’s attributes. For example, the following gives the full name of the font
used for on titles:

-adobe-times-bold-*-normal-*-*-140-*-*-*-*-*-*

For the sake of brevity, you can use an alias for a font’s full name. A font directory should also contain a file
named fonts.alias; this file maps aliases to full font names.

X Windows for COHERENT comes with a selection of fonts for your applications. It also comes with tools for
selecting fonts interactively, and for modifying a fonts.dir file. These are introduced in the next chapter. For more
information on selecting fonts, and for more information on the elements of a font’s name, see the entry in this
manual’s Lexicon for the X utility xfontsel.

Colors

X Windows includes tools for describing and managing colors. The monochrome server also manages colors;
however, it only recognizes two colors — black and white.

The file /usr/X11/lib/rgb.txt defines and names each color that the X server recognizes. The following gives a
typical entry:

65 105 225 RoyalBlue

The three numbers give the intensity settings on the three electron guns in your color monitor: respectively red,
green, and blue. Each intensity can range from 0 through 255. Setting all three guns to the maximum intensity,
255, creates white; setting all three to zero creates black.

TUTORIALS

Using X 23

When you name a color in a defaults file or command-line option, the X server looks up the name in this file and
translates it into its numeric settings. If you wish to add a new name for a color, just edit this file. Note that it is
unwise to modify or delete any color names from this file; otherwise, if an application requests that color by name,
X will not be able to find it.

So far, so good. A problem, however, arises because you can describe up to 16,777,216 colors (that is, 256 cubed),
but most VGA cards can display no more than 16 colors at any one time. An application usually requests a set, or
palette, of colors from the server; the server, then, has to somehow juggle the palettes of all of the applications it is
handling into one master palette that it can request from your system’s video card.

X manages its palette automatically, and in most instances you do not have to do anything. X Windows for
COHERENT does include tools to help you manage colors by hand, should you wish to do so.

If you wish, you can edit Xconfig to set the mode of color display. X recognizes any of the following settings:

DirectColor
TrueColor
PsuedoColor
StaticColor
GrayScale
StaticGray

Place the value on a line by itself. The default is PsuedoColor.

This concludes our brief introduction to the structure of X. Although X is large and complex, it never departs from
the principles outlined here — well, hardly ever. The following section describes how to customize the window
manager twm; you will see some of these principles in action.

Customing the Window Manager
As noted earlier, the window manager is the master client that manages the appearance of the entire screen. Its
window fills the entire screen; thus, the window of the window manager is sometimes called the screen’s root
window.

All other windows on the screen are sub-windows of the root window; thus, the window manager positions all other
windows on the screen (or, to be more exact, within the root window), and for supplying services within the root
window such as the drop-down menus, the window frames, icons, and window title bars. As a rule of thumb,
remember that everything within a window’s frame is defined by the client displayed within that window, whereas
everything from the frame out is the responsibility of the window manager. You could run more than one
application under X without a window manager, but you would have no way to reposition or resize windows, or
perform many of the other actions that make X Windows so flexible and useful.

Like many other X clients, the window manager twm has a defaults file that defines the resources it uses. We will
discuss how to modify this file to change the appearance and behavior of the window manager. First, however, we
must introduce the program xinit, which invokes the window manager and the other clients that appear on your
screen when you invoke X.

Customizing xinitrc

As you recall, to invoke X you must issue the command startx. This is actually a shell script that invokes the X
utility xinit; this utility is responsible for invoking the X server, the window manager, and any other utilities that
you want to appear on the screen when you start up X.

When xinit is invoked, it reads the file /usr/X11/lib/xinit/xinitrc, which gives the default configuration of X.
This file reads as follows:

xclock -geometry 135x141+15+26 -fg blue -chime -update 1 &
xvt -geometry 80x24+130+146 &
twm

The first two commands, xclock and xvt, invoke the applications xclock and xvt, and display them on the screen.
The argument -geometry gives the size of the window and its position on the screen. The first two numbers, which
are separated by an ‘x’, give the size. This can be either in pixels or, as with the xvt command, in rows and
columns. The second two numbers give, respectively, the X and Y position of the upper left corner of the window.
If a number is positive, it is counted from the upper-left corner of the screen; if negative, it is counted from the
lower-right corner. Note that both xclock and xvt are invoked in the background, as shown by the ‘&’ that
concludes the command.

TUTORIALS

24 Using X

The last command, twm, invokes the window manager. This is invoked in the foreground, because you want the X
server to die when you exit from the window manager. Thus, when you select the command (Quit_Window_Mgr.)

from the menu TWM Operations, the X server also dies, and the console returns to its normal, character-based
interface.

Suppose, however, that you want the screen to appear differently. To do so, you would first enter the command

cp /usr/X11/lib/xinit/xinitrc $HOME/.xinitrc

This gives you a private copy of xinitrc. When xinit is invoked, it first looks for file .xinitrc in your home directory;
only if it cannot find this file does it read file /usr/X11/lib/xinit/xinitrc.

Now, you can use MicroEMACS or any other text editor to modify your $HOME/.xinitrc as you wish. For example,
if you wish to tile the root window with a plaid design (so that it resembles a picnic tablecloth), use the command
xsetroot as follows:

xsetroot -bitmap /usr/X11/include/X11/bitmaps/plaid &

The next time you invoke X, the root window will appear like this:

For details on the command, xsetroot see its entry in this manual’s Lexicon.

As another example, suppose that you prefer to have a digital clock rather than an analogue one. Just modify the
xclock command to the following:

xclock -geometry 135x141+15+26 -digital -fg blue -chime -update 1 &

You can invoke other X clients, if you wish. For example, many users like to invoke the X client xbiff. This client
displays a picture of a mailbox; when you receive mail, the flag on the mailbox pops up. Try adding the command

xbiff -geometry 91x81+476+44 &

after the xsetroot command. The mailbox will then be displayed automatically the next time you invoke X.

TUTORIALS

Using X 25

Many users also like to invoke the X client xeyes when they bring up X. This command displays a pair of eyes
whose pupils follow the mouse cursor around the screen. Inserting the command

xeyes -geometry 150x100+286+66 &

into .xinitrc brings up the eyes near the top center of your screen.

Note that changing the -geometry argument to a command can be rather difficult. The best approach is invoke
the client through xvt; position and size its window as you want it; then select the (Info)option from the menu
WINDOW OPS, to show you the size and position of the window; and copy this information into xinit.

Customizing .twmrc

As shown above, the window manager twm is invoked last from within xinitrc, so that when it exits the X session
will end as well. When twm comes up, it reads the file /usr/X11/lib/twm/system.twmrc, which sets its default
behaviors. twm has many features that you can set or invoke, so twmrc can be extremely complex. The following
introduces a few of the more commonly used features that you can set or invoke from within twmrc.

To begin, copy the file /usr/X11/lib/twm/system.twm to $HOME/.twmrc. twm reads system.twmrc only if it
cannot find .twmrc in your home directory. You can now use MicroEMACS or any other text editor to edit your
private copy of .twmrc to suit your preferences.

.twmrc is divided into three sections:

Variables This section sets switches and variables within twm, such as the colors used with various objects, the
cursor shapes used in various circumstances, and how icons are managed.

Bindings This binds function keys, mouse buttons, and title buttons to various actions. It also lets you define
functions. These functions are much like shell functions, in that they consist of one or more of twm’s
built-in functions bundled together.

Mouse buttons and function keys can be given different bindings, depending upon the object in which
the mouse cursor is positioned. A binding can tell twm to display a menu, execute a command under
the shell, invoke one of twm’s built-in functions, or invoke a user-defined function.

Menus These define the contents of the menus that twm displays. Note that the Bindings section defines
what menus appear when.

The following sub-sections describe these portions of .twmrc in more detail. For a full description of twm’s
variables, functions, and menus, see the entry for twm in this manual’s Lexicon.

Variables

As noted above, twm has many variables that you can set to change its appearance or behavior. Some variables
are Boolean and some take a numeric value, but most take a string value as an argument. Some variables also
take a window list, or a list of windows to which a given argument applies.

As an example of a Boolean variable, consider the variable DontMoveOff. When this variable is present in .twmrc,
the window manager will not let you move a window off the physical screen. Thus, inserting the variable

DontMoveOff

into your .twmrc restricts window movement to the physical screen. You can override this default setting, as will
be described.

The variable NoTitle is another Boolean variable: if set, twm does not display a title bar on its windows. You can,
however, use a window list with this variable to restrict it to selected windows. system.twmrc defines NoTitle as
follows:

NoTitle
{

"Twm Door"
"TWM Icon Manager"
"oclock"
"xbiff"
"xclock"
"xload"

}

As you can see, xclock is on this list; and when it comes up on your screen, it does not have a title bar.

TUTORIALS

26 Using X

The variable BorderWidth is an example of a variable that takes an integer value. This variable sets the default
width, in pixels, of a window’s border (or frame). (Note that in X, the terms ‘‘border’’ and ‘‘frame’’ are used almost
interchangeably.) The default setting is three. You can change this value. For example, inserting the instruction

BorderWidth 50

makes the window borders 50 pixels wide; and when your screen comes up, it will look like this:

Fifty pixels probably is too wide a border; but, if you wish, you can thicken the border to four or five pixels to make
it easier for you to resize and move the window.

Finally, as an example of a variable that takes one or more string arguments, consider the variable Cursors. This
variable sets the shape of the cursor in various parts of the screen, or when certain actions are occurring.
system.twmrc defines this variable as follows:

Cursors
{

Frame "top_left_arrow"
Title "top_left_arrow"
Icon "top_left_arrow"
IconMgr "top_left_arrow"
Move "fleur"
Resize "fleur"
Menu "sb_left_arrow"
Button "hand2"
Wait "watch"
Select "dot"
Destroy "pirate"

}

The terms in the left column define a portion of the screen or an action. For the most part, these are self-
explanatory: for example, Move and Resize refer to when you are, respectively, moving and resizing a window;
whereas Frame refers to when the cursor touches the window border.

TUTORIALS

Using X 27

The right column names the cursor to be used. Because the names are strings, you must enclose them within
quotation marks. The names of the cursors are defined in file /usr/X11/include/X11/cursorfont.h, with except
that the prefix XC_ is dropped from each name. Read this file for suggestion on other cursors you can use; for
example, you can change the Wait cursor from watch to coffeemug, which shows a stylized coffee mug. For a
picture of what cursors are available, see the entry for the command xfd in this manual’s Lexicon.

As noted above, the X cursors are stored in a font; a font, after all, is simply a set of bit-mapped images. A cursor
actually consists of two bit-mapped images: one draws the cursor itself, and the second (which is drawn in a
constrasting color) forms a mask around the cursor. This is done so that the cursor will never disappear against
its background. If you wish, you can use a bit-mapped image of your own creation as a mouse cursor. To do so,
simply replace the name of the cursor from the cursor font with the name of the bit-mapped image you want, plus
its mask. For example, if you replace the definition of the Frame cursor with the following:

Frame "/usr/X11/include/X11/bitmaps/star" \
"/usr/X11/include/X11/bitmaps/starMask"

then, the next time you restart X, the cursor will change to an asterisk whenever the mouse cursor touches a
window frame.

Some string variables let you set specific values for one or more windows. For example, consider the variable
Color, which sets the window manager’s color scheme under the color server. system.twmrc defines it as follows:

Color
{

DefaultBackground "#5f9ea0" # cadet blue
DefaultForeground "#ffffff" # white
BorderColor "#00ff00" # green
{
"xload" "khaki"
"xclock" "khaki"
"xbiff" "red"
}
BorderTileBackground "black" # {winList}
BorderTileForeground "white" # {winList}
MenuBackground "firebrick"
MenuForeground "white"
MenuTitleBackground "green"
MenuTitleForeground "black"
IconBackground "gray85" # {winList}
IconForeground "brown" # {winList}
IconBorderColor "yellow" # {winList}
IconManagerBackground "blue" # {winList}
IconManagerForeground "white" # {winList}
IconManagerHighlight "#ffff00" # {winList}
MenuShadowColor "grey40"
TitleBackground "firebrick3" # {winList}
TitleForeground "white" # {winList}

}

The left column names the section of the screen being defined. Most of these are self-explanatory.

The right column names the color to be used in that portion of the screen. Because these are strings, you must
enclose them within quotation marks. A color can be defined either by name or as a number. The color names
that twm recognizes are defined in file /usr/X11/lib/rgb.txt. A number consists of a pound sign ‘#’ followed by
six hexadecimal digits: two each for the red, green, and blue video guns. For example, #00ff00 defines solid green.

As noted earlier, Color (like some other string variables) lets you set colors for individual windows by name. For
example, the following sets the colors for the window border:

BorderColor "#00ff00" # green
{
"xload" "khaki"
"xclock" "khaki"
"xbiff" "red"
}

The default border color is green; however, the windows for the X applications xload and xclock have a khaki
border, and the X application xbiff has a red border.

TUTORIALS

28 Using X

If, for whatever reason, you want xvt to have a pink border, insert the line

"xvt" "pink"

into the above list. Then, the next time you invoke X, xvt will come up bordered in pink.

For a complete list of the variables that you can set or modify your .twmrc, see the entry for twm in this manual’s
Lexicon.

Bindings

The second part of .twmrc are bindings: that is, entries that define functions, and entries that bind functions to
mouse-button events, function keys, and title-button events.

Function bindings combine one or more existing functions into a new function. For example, the following defines
the function xrdb-color:

Function "xrdb-color"
{

f.exec "xrdb -remove"
f.exec "xrdb -DCOLOR -load $HOME/.Xdefaults"

}

This function consists of two calls to the function f.exec, which is built into twm; this function executes its
argument under a shell. The two calls to f.exec invoke the X utility xrdb; the first invocation drops the current
resource table, and the second loads the contents of file $HOME/.Xdefaults into the server. (For details on what
these actions accomplish, see the Lexicon entry for xrdb.) The section on menus, below, will show how to call a
function. twm has a number of functions built into it; for a full list, see the entry for twm in this manual’s
Lexicon.

The binding of a title button consists of the name of the title button, followed by the name of the bit-mapped image
to be drawn on the title bar, followed by the action to execute when it is invoked. For example, following entry
from system.twmrc binds the left-title button:

LeftTitleButton ":menu" = f.menu "LeftTitleButton"

The LeftTitleButton is the button that appears immediately to the left of the name of the window in the title bar.
:menu is the bit-mapped image to display for that button; it is what we have called a stylized ‘D’. This menu is
built into twm. Finally, the binding indicates that when this button is ‘‘pressed,’’ twm is to invoke its internal
function f.menu and display the menu called LeftTitleButton. This menu, which is described below, is the menu
that on the screen has the title WINDOW OPS.

A binding for a button or keyboard event consists of three parts: the name of the key or button in question, the
context in which the binding applies, and the action to take. The name of the key or mouse button can be
combined with metakeys (i.e., the <shift> key, the <ctrl> key, and the <esc> key) to form other key combinations.

Context gives the context in which a pressing a given button or key performs a given action. The following lists the
possible contexts:

a All
f Frame
i Icon
m Icon Manager
r Root Window
t Title
w Window

A button or key can have more than one context; if so, the context letters must be separated by a vertical bar ‘|’.
Note that with regard to the w context, this simply sets a default action; the application, of course, governs what
goes on within its own window, and can overrule this setting should it wish.

The action calls a function, as shown above.

The following gives the bindings from system.default for mouse button 1 (that is, the left-mouse button):

TUTORIALS

Using X 29

Button1 = c|m : i|f|t|w : f.raise
Button1 = : root : f.menu "Applications"
Button1 = : t|i : f.move
Button1 = : frame : f.resize
Button1 = : m|i : f.iconify

The following discusses these lines in order:

1. This first line defines Button1 with a <ctrl> or <esc> (meta) key. If the mouse cursor is in an icon, on the
window frame, on the title bar, or within a window, then holding down the <ctrl> key and pressing the left-
mouse button invokes the twm function f.raise, which raises the window to the foreground.

2. The second and succeeding lines contain no key entries, which means that this button is not used with
metakeys. The second line instructs twm to invoke the function f.menu to display the menu Applications
should you press the left-mouse button while the mouse cursor is positioned over the background of the root
window.

3. Invoke the twm function f.move, which moves the current window, should you press the left-mouse button
while the mouse cursor is positioned over the title bar or the window’s icon.

4. Invoke the twm function f.resize, which resizes a window, should you press the left-mouse button while the
mouse cursor is positioned over the window’s frame.

5. Finally, invoke the twm function f.iconify, which iconifies a window, should you press the left-mouse button
while the mouse cursor is positioned over the icon manager or the window’s icon. Note that this contradicts
the definition given in line 3, which told twm to raise the window should you click the left-mouse button while
the cursor is positioned over the window’s icon. In the case of contradiction like this, twm uses the last
binding to appear in its resource file.

You can modify these bindings if you wish. For example, you can modify the setting for the left-mouse button in
the context of the window’s frame to the following:

Button1 = : frame : f.destroy

Normally, when you click the left-mouse button while the mouse cursor is resting on the window’s frame, twm
resizes the window; this change destroys the application and closes its window. This is an extreme case, but it
shows that you can rebind the buttons and keys to suit your preferences in almost every case.

For a complete list of the elements that you can bind, and the internal twm functions to which you can bind them,
see the Lexicon entry for twm.

Menus

Menus are in many ways the easiest part to define in a the twm resource file. A menu begins with the keyword
Menu, followed by the menu’s name. Then comes the default color scheme for the menu, foreground first and then
background. The entries for the menu follow, between braces. Each entry consists of the stub that appears in the
menu, followed by an optional color scheme, then the action to take when this entry is selected.

The following gives the definition of the menu Applications from system.twmrc:

Menu "Applications" ("black":"lightseagreen")
{

"APPLICATIONS" ("black":"lightseagreen")f.title
"Font Select" ("lightseagreen":"black")!"xfontsel &"
"Puzzle" !"puzzle &"
"XBiff" !"xbiff &"
"XCalc" f.menu " Calculator "
"XClock" !"xclock -chime -fg blue -update 1 &"
"Xeyes" !"xeyes -fg red &"
"XLoad" !"xload &"
"XLogo" !"xlogo &"
"XMag" !"xmag &"
"XTerm" !"xvt -ls -cr red &"
"XTetris" ("lightseagreen":"black") !"xtetris &"

}

This menu is shown in one of the figures reproduced earlier. Most of the entries are self-explanatory. Note that
the ‘!’ is a synonym for f.exec, which executes its argument under the shell.

TUTORIALS

30 Using X

The entry APPLICATIONS invokes the twm function f.title, which indicates that this is the title entry for the
menu. You cannot select it.

The entry for XCalc

"XCalc" f.menu " Calculator "

invokes the function f.menu. This function displays a button at the right of the menu entry, and displays a sub-
menu when the button is touched. Its argument is the name of the menu to drop down, in this case the menu
entitled Calculator, which is also defined in system.twmrc.

If you wish, you can add commands to this menu: just insert a line in the appropriate spot. The entries in the
menu are sorted by hand; twm does not rearrange their order in any way. For example, to insert into this menu
the game xgas, shown above, just add the line

"Xgas" !"xgas -fg red &"

directly after the entry labelled Xeyes.

If you wish, you can also change the arguments to existing commands. For example, the entry

"XClock" !"xclock -chime -fg blue -update 1 &"

invokes the X client xclock invokes an analogue clock with a blue face, which is updated once every second, and
chimes on the hour and half-hour. If you wish to eliminate chiming and have a digital clock instead, modify this
command to read:

"XClock" !"xclock -digital -fg blue -update 1 &"

For the options available with each of these commands, see its entry in this manual’s Lexicon.

The color settings are used only by the color server. If you wish, you can give a separate color combination to each
entry in the menu. Note that the first and last selectable entries in this menu both have the color settings of:

("lightseagreen":"black")

There is a reason for giving the same colors to the first and last entries: if the first and last color settings in the
menu are not exactly the same, twm generates colors for the menu that fade from the first known pair of colors to
the last known pair. To see this in action, try removing the first instance of:

("lightseagreen":"black")

If a menu does not set any colors, the server uses the settings for MenuBackground and MenuForeground in the
variable Color. The monochrome server ignores all color settings, and uses the settings for MenuBackground and
MenuForeground in the variable Monochrome.

This concludes the discussion of how to customize the window manager. For more information, see the Lexicon
entries for twm, xinit, and xsetroot.

Where To Go From Here
This concludes our introduction to the X Window System. For more information, see the following chapter, which
introduces the clients and utilities that comes with X Windows for COHERENT. The Lexicon discusses each client
and utility in detail. If you wish to explore X further, we suggest that you buy the books named in the introduction
to this manual.

However, there is no better teacher than experience. We suggest that you work with X, try modifying the defaults
files (or, to be exact, copies of the defaults files), and play with the system. X Windows is well designed and robust.
You will become proficient quickly. We hope that you enjoy using X Windows!

TUTORIALS

X Windows Clients

This chapter introduces the clients and utilities included with X Windows for COHERENT.

Strictly speaking, a client is a program that registers with, and runs under, the X server. ‘‘Client’’ often is used as a
synonym for the term application. This manual uses the term utility to refer to a program that helps you to manage
and run the X Window System itself; and the term client to refer to a program with which you can perform some
task under the X Window System (e.g., edit a file or play a game).

This chapter introduces the utilities and clients included with X Windows for COHERENT. It then gives examples of
how to modify an application’s appearance or behavior by changing its resources.

X Utilities
A utility helps you to run the X Window System itself. X Windows for COHERENT includes utilities to help run
every aspect of the X system. The following introduces them by category.

Bit Maps

A bit map is an image that is composed of black and white pixels within a defined space. X uses bit maps
extensively; for example, the shapes of the mouse cursor, fonts of alphabetic characters, buttons, and icons are all
bit maps.

X stores a bit map in the form of a array. For example, the file /usr/X11/include/X11/bitmaps/xlogo32,which
is a bit map of the X logo, consists of the following:

#define xlogo32_width 32
#define xlogo32_height 32
static char xlogo32_bits[] = {

0xff, 0x00, 0x00, 0xc0, 0xfe, 0x01, 0x00, 0xc0, 0xfc, 0x03, 0x00, 0x60,
0xf8, 0x07, 0x00, 0x30, 0xf8, 0x07, 0x00, 0x18, 0xf0, 0x0f, 0x00, 0x0c,
0xe0, 0x1f, 0x00, 0x06, 0xc0, 0x3f, 0x00, 0x06, 0xc0, 0x3f, 0x00, 0x03,
0x80, 0x7f, 0x80, 0x01, 0x00, 0xff, 0xc0, 0x00, 0x00, 0xfe, 0x61, 0x00,
0x00, 0xfe, 0x31, 0x00, 0x00, 0xfc, 0x33, 0x00, 0x00, 0xf8, 0x1b, 0x00,
0x00, 0xf0, 0x0d, 0x00, 0x00, 0xf0, 0x0e, 0x00, 0x00, 0x60, 0x1f, 0x00,
0x00, 0xb0, 0x3f, 0x00, 0x00, 0x98, 0x7f, 0x00, 0x00, 0x98, 0x7f, 0x00,
0x00, 0x0c, 0xff, 0x00, 0x00, 0x06, 0xfe, 0x01, 0x00, 0x03, 0xfc, 0x03,
0x80, 0x01, 0xfc, 0x03, 0xc0, 0x00, 0xf8, 0x07, 0xc0, 0x00, 0xf0, 0x0f,
0x60, 0x00, 0xe0, 0x1f, 0x30, 0x00, 0xe0, 0x1f, 0x18, 0x00, 0xc0, 0x3f,
0x0c, 0x00, 0x80, 0x7f, 0x06, 0x00, 0x00, 0xff};

The manifest constants xlogo32_width and xlogo32_height give the width and height of the image, in pixels. The
zero-bits within the array represent white pixels, whereas the non-zero bits represent black pixels.

If you wish, you can draw new bit maps or edit existing bitmaps. X Windows for COHERENT includes the following
tools for working with bit maps:

bitmap Bit map editor
atobm Convert ASCII to an X bit-mapped image
bmtoa Convert an X bit-mapped image to ASCII

bitmap is a bit-map editor. With it you can draw a bit-mapped image using the mouse. It also has tools for
copying or inverting regions of the bit map, drawing geometric shapes, rotating bit maps, and the like.

bmtoa converts a bit map to an ASCII format that you can edit with an ordinary text editor. For example, the
command

bmtoa /usr/X11/include/X11/bitmaps/xlogo32

turns the bit map shown above into the following:

31

32 X Clients

########----------------------##
-########---------------------##
--########-------------------##-
---########-----------------##--
---########----------------##---
----########--------------##----
-----########------------##-----
------########-----------##-----
------########----------##------
-------########--------##-------
--------########------##--------
---------########----##---------
---------########---##----------
----------########--##----------
-----------#######-##-----------
------------#####-##------------
------------####-###------------
-------------##-#####-----------
------------##-#######----------
-----------##--########---------
-----------##--########---------
----------##----########--------
---------##------########-------
--------##--------########------
-------##---------########------
------##-----------########-----
------##------------########----
-----##--------------########---
----##---------------########---
---##-----------------########--
--##-------------------########-
-##---------------------########

By default, bmtoa represents a white pixel with a hyphen ‘-’ and a black pixel with a pound sign ‘#’.

Finally, atobm turns an ASCII image into a bit map that X can use. You could, for example, use a text editor to
edit the image generated by bmtoa, then use atobm to re-compile the image into bit-map format.

As a side note, you can use a bit map to ‘‘tile’’ the root window of your screen — simply invoke the command
xsetroot with its option bitmap. For example, the command

xsetroot -bitmap /usr/X11/include/X11/bitmaps/xlogo32

tiles the root window with the X logo.

Colors

X Windows for COHERENT includes the following utilities for manipulating colors:

showrgb Un-compile an RGB color-name data base
xcmsdb Manipulate xlib screen-color characterization data
xstdcmap X standard color-map utility

showrgb names the colors that the server recognizes. The file /usr/X11/lib/rgb.txt gives an example of its
output, and also shows colors that the X color server recognizes by default.

xcmsdb and xstdcmap let you display and manipulate color information within widgets and the server. Using
these utilities requires a detailed knowledge of X internals. For details, see the entry in the Lexicon for each utility.

Fonts

A font is a set of bit-mapped images that form the letters of the alphabet and commonly used punctuation marks.
X Windows for COHERENT includes the following utilities for manipulating text fonts:

bdftopcf Generate a PCF font from a BDF file
mkfontdir Create file fonts.dir from directory of font files
xfd Display all the characters in an X font
xfontsel Interactively select X11 fonts
xlsfonts List fonts being used on a server

TUTORIALS

X Clients 33

X reads fonts from the directories named in its FontPath, which is set in the file /usr/X11/lib/Xconfig. Each
directory in the FontPath contains a file named fonts.dir, which gives the full, 14-part name of each font in the
directory and the file that holds it. This is done because font files normally are compressed, and uncompressing
and searching all of the files in a directory to see if a given font was available would be unacceptably time-
consuming. Thus, when you copy a new font into a font directory, you must modify fonts.dir, or X will not be able
to find the font. The utility mkfontdir reads the fonts in a given font directory and rebuilds fonts.dir
automatically.

The utility xlsfonts displays the full, 14-part of each font that is currently available to the X server.

The utility xfontsel lets you select a font interactively. It uses a series of 14 drop-down menus to help you build a
font name, based on the fonts that are available to your system. The Lexicon entry for this utility also explains just
what the elements of a font name mean.

Fonts can be encoded in a number of different ways. X Windows for COHERENT uses fonts that are in the portable
compiled format (PCF). Fonts, however, often are shipped in the bitmap distribution format (BDF). The utility
bdftopcf converts a BDF font into PCF so you can use it on your system.

Finally, the utility xfd displays a font. For example, the command

xfd -fd 6x10 -center

displays the font kept in file /usr/X11/lib/fonts/misc/6x10.pcf.Z. When you click on a cell of the display, xfd
displays detailed information about the character in that cell. For an example of a displayed font (albeit a special
font), see the entry for xfd in this manual’s Lexicon.

Manipulating the Console

The following utilities let you modify the console’s appearance:

xrefresh Refresh all or part of an X screen
xset Set preferences for the display
xsetroot Set preferences for the root window

xrefresh redraws a given window or the entire screen, whichever you prefer. You can use this to redraw a window
or the screen, should it become cluttered with stuff from other, non-X processes, or should it somehow become
confused.

xsetroot lets you modify the appearance of the root window — that is, the window that forms the background of
the screen. You can change the window to a solid color, a pair of stippled colors, a gray scale, or tile it with a bit-
mapped image. It also lets you change the mouse cursor that is displayed against the root window.

Finally, the utility xset lets you set parameters for the display, and for other input devices. For example, xset lets
you set the acceleration rate for the mouse, and the loudness of both the key click and the bell. To set the key
click to 50% of its maximum volume, type:

xset c 50

Note that not every computer lets you reset the volume of the keyclick or bell. For details, see the Lexicon entry for
xset.

Programming Tools

X Windows for COHERENT includes the following tools for remaking X utilities:

imake C preprocessor interface to the make utility
makedepend Create dependencies in makefiles
mkdirhier Make a directory hierarchy
xmkmf Create a Makefile from an Imakefile

None of these tools interact with the X server; if you wish, you can use them with your ordinary, character-based
applications as well as on X applications.

imake is a superset of the COHERENT utility make. It understands a more complex set of dependencies than those
encompassed by make’s grammar. These dependencies include widgets, operating system, and microprocessor.
imake reads an Imakefile, which contains dependencies plus C-preprocessor directives. You can define constants
on the imake command line to determine what the resulting program will look like. Note that you will seldom, if
ever, need to invoke imake directly. Usually, you will invoke it via the script xmkmf, which is described below.

TUTORIALS

34 X Clients

makedepend reads a set of C source files and header files, and builds a table of dependencies from them. From
this table, you can construct a makefile or an Imakefile.

mkdirhier creates a directory hierarchy. That is, if the parent directories of a target directory do not exist,
mkdirhier creates them first, then creates the directory you requested.

Finally, xmkmf is a script that invokes imake to build Makefile from an Imakefile. It passes appropriate
arguments to imake to ensure that it builds a Makefile that runs correctly on your system.

These utilities are discussed at greater length in the next chapter.

Resources and Properties

The following utilities help you examine and manage resources and properties:

appres List an application’s resource data base
editres Resource editor for X Toolkit applications
listres List resources in widgets
viewres Graphical class browser for Xt
xprop Display the X server’s properties
xrdb Read/set the X server’s resource data base

appres prints on the standard output the resources that an application uses. The following gives a portion of the
output of the command appres XTerm:

*VT100*color2: green
*VT100*font5: 9x15
*VT100*color6: cyan

...
*VT100*font1: nil2
*VT100*font4: 7x13
*VT100*color5: magenta
*tekMenu*vtshow*Label: Show VT Window

...
*tekMenu*tektext3*Label: #3 Size Characters
*tekMenu.Label: Tek Options
*fontMenu*font5*Label: Large
*fontMenu*font6*Label: Huge
*fontMenu*font2*Label: Tiny

...
*mainMenu.Label: Main Options
*vtMenu*hardreset*Label: Do Full Reset
*vtMenu*scrollbar*Label: Enable Scrollbar
*vtMenu*scrollkey*Label: Scroll to Bottom on Key Press
*vtMenu*scrollttyoutput*Label: Scroll to Bottom on Tty Output

...
*vtMenu*autolinefeed*Label: Enable Auto Linefeed
*vtMenu*altscreen*Label: Show Alternate Screen
*vtMenu*appcursor*Label: Enable Application Cursor Keys
*vtMenu*softreset*Label: Do Soft Reset
*vtMenu*appkeypad*Label: Enable Application Keypad

...
*tek4014*fontSmall: 6x10

Resources are discussed in more detail below.

editres is an interactive program that lets you edit an application’s resources on the fly. By selecting options from
buttons and menus, you can add or delete resources from an application, or change a resource’s value, then view
the result and dump the altered resources into a file. In effect, editres gives you a way to edit an application’s
resource file interactively. Playing with editres is a good way to learn about resources.

listres lists resources used in a widget. For example

listres -all

prints information about all known widgets.

In the context of X, the term property means a string that holds information about an application, such as its color
or the size of its window. Properties are stored within the server, so they can be read by all other clients, including
the window manager. xprop displays the properties associated with a given client. The following gives the output

TUTORIALS

X Clients 35

of xprop when invoked for the X client xclock:

WM_STATE(WM_STATE):
window state: Normal
icon window: 0x0

WM_PROTOCOLS(ATOM): protocols WM_DELETE_WINDOW
WM_CLASS(STRING) = "xclock", "XClock"
WM_HINTS(WM_HINTS):

Client accepts input or input focus: False
Initial state is Normal State.
bitmap id # to use for icon: 0x1000001
bitmap id # of mask for icon: 0x1000003

WM_NORMAL_HINTS(WM_SIZE_HINTS):
user specified location: 15, 26
user specified size: 135 by 141
window gravity: NorthWest

WM_CLIENT_MACHINE(STRING) = "chelm"
WM_COMMAND(STRING) = { "xclock", "-geometry", "135x141+15+26", \

"-fg", "blue", "-chime", "-update", "1" }
WM_ICON_NAME(STRING) = "xclock"
WM_NAME(STRING) = "xclock"

Finally, the utility xrdb reads and sets the X server’s resource data base. It manipulates the contents of the
properties RESOURCE_MANAGER and SCREEN_RESOURCES. Applications read these properties to obtain
resources that are common to all resources under a given server. Note that the contents of these properties
usually override what an application may read from its defaults file. These properties are also read by applications
that do not normally read a defaults file (e.g., xbiff), and so can be used to modify them.

xrdb is of particular use in a networked environment. It lets you embed resources within your machine’s server, so
that every client that appears on your machine, regardless of the machine it originates from, conforms to the way
you want it to appear. This spares you from having to store a defaults file on every machine from which you might
invoke a client.

xrdb is invoked by default by the X display manager xdm, which is not included with X Windows for COHERENT. If
you wish to set defaults with xrdb, you should call it from within the file $HOME/.xinitrc. The next sections gives
some examples of how to use xrdb to set resources.

System Monitoring

The following utilities help you keep an eye on your system:

xauth Display/edit authorization information
xdpyinfo Display information about an X server
xev Print contents of X events
xlsatoms List atoms defined on server
xlsclients List client applications running on a display
xwininfo Display information about a window

xauth lets you create or edit an authorization file. This file determines who from what system can execute what
clients on your system. This utility is used mainly in networked environments, where the question of system
security becomes very important.

xdpyinfo displays information about the X server running on your system. The following gives a portion of its
output:

name of display: :0.0
version number: 11.0
vendor string: Ready-to-Run Software, Inc.
vendor release number: 5000
maximum request size: 262140 bytes
motion buffer size: 0
bitmap unit, bit order, padding: 8, MSBFirst, 32

If your server were handling more than one display, information would be shown for each.

An event is something that occurs on your system that sends a signal to the X server. For example, the mouse
sliding on your desk is an event, because the server must reposition the mouse cursor. Events are generated every
time you press a mouse button, press a key on the keyboard, or in any other way interact with your system. The X
utility xev displays a small window on the screen, and then displays information about every events received by

TUTORIALS

36 X Clients

the server.

In the context of X, an atom is an elemental portion of the server that is available to clients. For example,
properties are atoms, as are the names of fonts, some static strings, and other information. The X utility xlsatoms
lists your server’s atoms. The following gives a portion of its output:

1 PRIMARY
2 SECONDARY
3 ARC
4 ATOM

...
9 CUT_BUFFER0

...
126 -Misc-Fixed-Medium-R-Normal--10-100-75-75-C-60-ISO8859-1
127 EditresComm

...
134 -Misc-Fixed-Bold-R-Normal--13-120-75-75-C-80-ISO8859-1

The utility xlsclients displays information about all of the clients currently running under your server.

Finally, xwininfo displays information about a window. The following gives a sample of its output:

xwininfo: Window id: 0x1000009 "xclock"

Absolute upper-left X: 18
Absolute upper-left Y: 29
Relative upper-left X: 0
Relative upper-left Y: 0
Width: 135
Height: 141
Depth: 1
Visual Class: StaticGray
Border width: 0
Class: InputOutput

...
Corners: +18+29 -647+29 -647-430 +18-430
-geometry 135x141+15+26

Miscellaneous Utilities

The following utilities do not fit neatly into any of the above categories. These miscellaneous utilities, however,
include some of the most useful and interesting programs shipped with X Windows for COHERENT:

resize Set environmental variables to show window size
sessreg Manage utmp/wtmp entries for non-init clients
startx Initiate an X session
twm Tab Window Manager for the X Window System
xclipboard Hold multiple selections for later retrieval
xcmstest XCMS test program
xcutsel Copy text between the cut buffer and the primary selection
xinit Initiate the X Window System
xkill Kill an X client
xmodmap Modify X keymaps

startx, twm, and xinit were introduced in the previous chapter.

The utility resize reads the size of the current xvt window, then prints onto the standard output a shell script that,
when run, sets the environmental variables ROWS and COLUMNS to reflect the size of the window. These
variables can be read by programs that run within that window, such as screen editors, so they can size
themselves properly. Note that most COHERENT programs, such as MicroEMACS and vi, cannot yet resize
themselves.

sessreg assists with logging within the system file /etc/utmp all X clients that run under the X server. It does
nothing unless you have enabled process logging.

X includes a system-wide facility for cutting and pasting text. With this, you can cut text from one window and
paste it into another. Normally, X has only one buffer into which you can store cut text. The utility xclipboard
stores an indefinite number of text ‘‘cuttings’’, and retrieve them for repasting an indefinite number of times. For
more information on cutting and pasting, see the entry for xclipboard in this manual’s Lexicon.

TUTORIALS

X Clients 37

Earlier releases of X did not use the property PRIMARY to store cut text; rather, they stored cuttings only in a cut
buffer. If you cut and paste text between an up-to-date X client and an older one, you may find that the older one
does not reset the property PRIMARY correctly, and thus does not produce what you think it will when you cut
text under it. xcutsel copies text between a cut buffer and the property PRIMARY, to help keep different
generations of applications synchronized. All of the utilities and clients included with X Windows for COHERENT

support the latest implementation of X; therefore, you should not need this utility unless you import an obsolete
application from elsewhere.

xkill kills an X program. Note that a killed program often leaves debris in memory and on the file system, so you
should use xkill only in the direst extremity.

The X server has its own internal keyboard mapping. For most users, this does not create a problem, because both
they and the X server use the default U.S. keyboard mapping; however, if you have used the COHERENT driver nkb
to load a foreign keyboard or to customize a keyboard to your preferences, this behavior of the server’s can create
serious difficulty. The utility xmodmap lets you modify the mappings that the X server recognizes for the keyboard
and the mouse. With this program, you can (for example) exchange the left mouse button with the right mouse
button, switch the <ctrl> key with the <CapsLock> key, and perform other tasks to help your system work as you
prefer. The file /usr/X11/lib/.Xmodmap.ger gives an example script that remaps the keyboard for X; in this
case, it remaps the keyboard to the German standard. For details, see the entry for xmodmap in this manual’s
Lexicon.

This concludes our introduction of the utilities included with X Windows for COHERENT. The next section
introduces clients.

Clients
X Windows for COHERENT includes a selection of clients — that is, programs that run under the X server and let
you do something that is not necessarily related to the running of X itself. It is in the wealth of clients available for
it that the true power, and usefulness, of X becomes apparent.

Games

The following are just for fun:

ico Animate an icosahedron or other polyhedron
maze Create and solve a random maze
puzzle The X scrambled-number game
xeyes Display two roving eyes
xgas Animated simulation of an ideal gas
xtetris Wildly amusing implementation of Tetris

ico draws a polyhedron, and bounces it around the screen. The object can be either a wire-frame outline, or solid.
Note that unless you have a very robust system, the animation will be rather jerky, and ico will ‘‘suck up’’
practically all of your system’s computation cycles.

maze draws, and then solves, a random maze. You cannot play this game interactively, but it does appear exciting
on the screen.

puzzle implements a scrambled-tile game. It displays a window divided into 16 cells. Fifteen of the cells contain
numbered tiles, the 16th is empty. Clicking one button scrambles the tiles. When you click a tile, it (or its row or
column) slides into the empty cell, if possible; by maneuvering the tiles, you can un-scramble them. When you
give up, you can click another button and have puzzle un-scramble itself.

xeyes displays a pair of ‘‘eyes’’ on the screen. The pupils of the ‘‘eyes’’ move to follow the mouse cursor around the
screen.

xgas models the random motion of gas molecules in a heated, divided chamber. By setting command-line options,
you can set parameters of the molecules’ movement, such as the degree of randomness with which they bounce off
the chamber’s walls. By dragging sliders, you can change the temperature of either of the two sides of the
chamber.

Finally, xtetris is a implements the popular game Tetris.

TUTORIALS

38 X Clients

Observing the System

In addition to the utilities that help you monitor the operation of X itself, X Windows for COHERENT also includes
two clients to help you observe your COHERENT system:

xbiff Notify the user that mail has arrived
xload Display your system’s load average

xbiff displays a bit map of an old-fashioned mailbox. When you receive mail, the flag on the mailbox pops up.

xload displays a histogram — that is, a bar graph — that shows the load on your system. Every few seconds, it
measures activity on your system and adds a new bar to the graph. You can use client to measure roughly how
much in the way of system resources a given program consumes.

Pretty Pictures

The following clients show some of the graphics capabilities of X:

xlogo Display the X Window System logo
xmag Magnify a part of the screen
xgc X graphics demonstration

xlogo simply displays the X logo in a window. This is not a bit-mapped image, because when you resize the
window, the X logo changes size to match it.

xmag magnifies part of the screen. It translates each pixel of the magnified portion of the screen into a cell in a
grid. With xmag, you can see exactly how an image is built of a pixel map.

Finally, xgc demonstrates X graphics. It displays a screen with a great number of buttons and sliders on it. By
pressing buttons, you can construct images and play with X’s graphics capabilities. Playing with xgc is a good way
to learn about X graphics.

Timepieces

X helps you keep track of the time:

oclock Display an analogue clock
xclock Display a clock

Both of these clients display a clock on the screen, which displays the time as your system understands it. These
clients differ mainly in the shape of their windows, and in the fact that xclock offers some extra features — it can
display a digital clock, and ‘‘chime’’ on the hour and half-hour, if you wish. Most users permanently display either
oclock or xclock on their X screen.

Tools

Finally, the following clients do not fall into any of the above categories. These include some of the most useful
and interesting of the X programs included with X Windows for COHERENT:

xcalc Scientific calculator for X
xedit Simple text editor for X
xpr Print a dump of an X window
xterm Terminal emulator for X
xvt VT100 emulator
xwd Dump an image of an X window
xwud Un-dump a window image

xcalc displays a picture of a scientific calculator, either a Texas Instruments 30 or a Hewlett-Packard 10C,
whichever you prefer. You can use the mouse to press the buttons on the calculator and so perform computations,
just as with a real calculator. The virtual calculator implements most of the features of a real scientific calculator
— although clicking virtual buttons with a mouse is more difficult than pressing real buttons with your fingers.

xedit is a simple text editor for X. Its default keystrokes closely resemble those used by MicroEMACS, with the
exception that xedit supports only one window and buffer at a time. (Of course, under X this is not much of a
restriction, because you can invoke multiple xedit sessions and cut-and-paste among the windows.)

xvt emulated a DEC VT-100 terminal. It opens a window, logs into your system from it via a pseudo-tty, while
emluating a VT-100 terminal. Normally, you will run a shell in this window, although you can invoke xvt to run a
COHERENT program (such as an editor or a data-entry program) instead of shell — just as if you were logging in

TUTORIALS

X Clients 39

from another terminal. On a networked X system, you can have, on one screen, multiple xvt windows, each logged
into a different system. You can also use X’s cut-and-paste facility to cut text from one terminal window and paste
it into another.

xterm is an expanded — and more robust — version of xvt. It emulates a Tektronix terminal as well as a VT-100.
It also includes a number of features that let you set colors and features more easily. Note that unlike xvt, xterm
emulates the VT-100’s graphics characters; thus, you can display such COHERENT programs as vsh and have them
appear the same (or almost the same) as they do when shown through the ordinary, non-X console interface.

xwd dumps an image of a window into a file. You can select a window by name, or dump the root window —
which, in effect, saves an image of the entire screen (including menus). The program xwud un-dumps a dumped
image, by displaying it in a window.

xpr prints an image dumped by xwd. By default, it generates PostScript, although you can instruct it to generate
code for a variety of other printers as well.

For what it’s worth, the images in this manual were captured with xwd, then post-processed with xpr. The
PostScript output of xpr was edited slightly by hand, then patched into the manual’s troff sources by using a set of
specially written troff macros.

Customizing X Programs
As noted in the previous chapter, you can customize an X application through any of three ways: (1) by setting
command-line options, (2) by modifying its defaults file, or (3) by modifying the X server’s resource data base.

The Lexicon entry for an application describes the command-line options that are available with that application.
These work in exactly the same way as with any other COHERENT application, and are largely self-explanatory.
Methods 2 and 3, however, depend upon setting resources, which can be rather tricky.

Resources

As explained in the previous chapter, most X applications are constructed in whole or in part from widgets. A
widget bundles a a graphical image with a routine that invokes an action when a selected event occur. For
example, a widget may dictate that when a button (the graphical image) is clicked (the event), a menu appears (the
invoked action).

Widgets often are built out of other widgets. A widget that comprises part of one or more other widgets is called a
widget class.

A resource is an aspect of a widget, such as its color, size, or shape. The syntax of a resource string mirrors the
structure of a widget, as follows:

[app]*|.[class*|.[...*|. ...]]*|.[resource]:value

app names the application in question. If no application is named and the resource is in the X server’s resource
data base, then it applies to all applications. If, however, no application is named and the resource is in an
application’s defaults file, the resource applies only to the application in question.

class names a widget class. A widget class can itself be built out of other widget classes, so a resource string can
be an indefinite number of classes.

resource names the particular resource being set.

Finally, value gives the value to which you are setting resource. This can be a Boolean setting (True or False), a
number, or a string, depending on the aspect being modified.

The elements of a resource are linked by either a period ‘.’ or an asterisk ‘*’. A period binds tightly: that is, no
widget classes can intervene between two classes named in the resource. An asterisk binds loosely: that is, an
indefinite number of widget classes can come between the two widget classes so named.

For example, the following gives two lines from the file /usr/X11/lib/app-defaults/XCalc:

Font: --helvetica-medium-r-normal--*-100-*-*-*-*-*-*
bevel.screen.LCD.Font: --helvetica-bold-r-normal--*-120-*-*-*-*-*-*

The first line sets the Font for every widget (as indicated by the single preceding asterisk) to ten-point Helvetica
medium. The second line overrides this default to set the Font within the widget bevel.screen.LCD (which is the
liquid-crystal display within calculator’s ‘‘screen’’) to 12-point Helvetica bold. A Font widget naturally must be set
to a string.

TUTORIALS

40 X Clients

The following gives two more resources from XCalc:

*ti.bevel.screen.LCD.width: 108
*hp.bevel.screen.LCD.width: 180

The first line sets the width of the virtual liquid-crystal display for the Texas Instruments calculator; the second
gives the same for the Hewlett-Packard calculator. Here, the use of the period to bind tightly the classes of widget
ensures that the dimensions are exactly on the correct virtual calculator. As you can see, a width resource
requires a dimension, usually pixels.

Modifying Applications

Before we begin, the following examples involve editing files that define how X functions. Before you edit any file,
make a backup copy! This will let you back out of any cul-de-sac you may get yourself into through error or
mishap.

To begin, you will recall that the client xbiff displays on the screen a small window that contains a bit map of an
old-fashioned mailbox. When new mail arrives, the bit map changes to one with the flag popped up that is
displayed in reverse video.

X Windows for COHERENT comes with many bit-mapped images that you can use with existing applications. Two,
named mailfull and mailempty, respectively show a full and empty mail in-tray, much like you may have on your
desk. Suppose, for the sake of argument, that you wanted to use these bit-mapped images in place of the default
mailboxes. You can do this by resetting the appropriate resources, and commanding xbiff to use them instead of
its built-in defaults.

The first step is to check the Lexicon entry for xbiff. Among other things, this names the resources that xbiff uses.
This entry shows, among many others, the following resources:

fullPixmap(class Pixmap)
Name the bit map to display when mail arrives.

fullPixmapMask(class PixmapMask)
Name the mask for the bit map to display when mail arrives.

emptyPixmap(class Pixmap)
Name the bit map to display when no new mail is present.

emptyPixmapMask(classPixmapMask)
Name the mask for the bit map to display when no new mail is present.

These look like the ones we need to modify. The first part of each entry names the widget; its class is given in
parentheses.

The next step is to write the resources that we want to use. These are as follows:

xbiff*fullPixmap:mailfull
xbiff*fullPixmapMask:mailfullmsk
xbiff*emptyPixmap:mailempty
xbiff*emptyPixmapMask:mailemptymsk

The prefix xbiff indicates that these settings are to apply only to this application. The asterisk ‘*’ means that an
indefinite number of widget classes can occur between the name of the application and the widget in which we are
interested; this spares us the trouble of having to build the entire widget tree — and having to rebuild the tree
should the designers of xbiff decide in the future to insert another layer or two into the widget hierarchy. Finally,
value names the file in directory /usr/X11/include/X11/bitmaps that holds the bit map we want.

xbiff does not read a defaults file out of /usr/X11/lib/app-defaults; but we can still make xbiff use our new
resources by using the X utility xrdb to load them into the X server’s resources data base. We save these resources
into a file — we will use the conventional file $HOME/.Xdefaults, although the name of this file doesn’t really
matter — then type the following command:

xrdb -merge < $HOME/.Xdefaults

This command merges the contents of $HOME/.Xdefaults into the X server’s resource data base. So, the next
time you invoke xbiff, you see:

instead of the old-fashioned mailbox.

TUTORIALS

X Clients 41

To extend this example, the documentation for xbiff also mentions the following two resources:

shapeWindow(class ShapeWindow)
Specify whether to shape the window to the fullPixmapMask and emptyPixmapMask. The default is false.

flip(class Flip)
Invert the image when new mail arrives. The default is true.

To change these defaults, insert the following lines into $HOME/.Xdefaults:

xbiff*shapeWindow:True
xbiff*flip:False

Then, type:

xrdb -merge < $HOME/.Xdefaults

The next time you invoke xbiff, its window will be shaped that of the bit-mapped mask; and it will not pop into
reverse video when mail arrives.

If an application uses a defaults file, you can simply edit that file to change a resource. For example, the
application xclock reads the defaults file /usr/X11/lib/app-defaults/XClock,which consists of exactly one line:

XClock.input: false

Note that because this resource is in a defaults file, the resource

*input: false

would behave exactly the same. If you wanted, for whatever reason, to permit a user to type input into xclock, edit
this line to read:

XClock.input: true

As noted earlier, the resources in the X server’s resource data base take precedence over the contents of a defaults
file. For example, the X client xgas reads the default file /usr/X11/lib/app-defaults/XGas, which (among many
others) contains the following resource:

*quit.label: Quit

This resource defines the text that appears on the ‘‘quit’’ button. If you decide that you want this button to be
labelled FOO, you can insert the following resource into $HOME/.Xdefaults:

xgas*quit.label:FOO

Then, type the command:

xrdb -merge < $HOME/.Xdefaults

The next time you invoke xgas, the ‘‘quit’’ button will be labelled FOO, thus overriding the setting in XGas.

Modifying a Font Resource

Fonts are an important aspect of X. A font incorporates textual information; thus, a well-selected font can make
your system much more useful.

For example, the defaults file /usr/X11/lib/app-defaults/XTerm sets a number of different fonts for using in
different situations. The default font is called fixed. If you wish to change this to a larger font, try the following:

• cd to directory /usr/X11/lib/fonts. This directory holds the fonts available to the X system. These are kept
two sub-directories: misc and 75dpi. The former holds ‘‘miscellaneous’’ fonts, such as the cursor font; the
latter holds fancier fonts built in a 75 dots-per-inch format. Most of the commonly used fonts are in misc.

• cd to misc. Read file fonts.alias. This gives the commonly used aliases for fonts used on the system. As you
can see, the font named fixed is actually the font:

-misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-iso8859-1

When you look further in fonts.alias, you will see that this is the same as the font named 6x13. The alias
indicates that the font is 13 pixels high and 6 pixels wide. (For information on how to interpret the full, 14-
field font name, see the Lexicon entry for xfontsel.) To select a larger font, pick one whose height is greater
than 13 pixels or whose width is greater than six. For example, the font whose alias is 8x13 is the same
height as the fixed font, but is two pixels wider.

TUTORIALS

42 X Clients

• Close fonts.alias. Then edit your .Xdefaults file to insert the following entry:

xvt*font:8x13

This sets the font resource for xvt to the font with the alias 8x13.

• Type:

xrdb -merge < $HOME/.Xdefaults

This merges your new resource setting into the X server’s resource data base.

That’s all there is to it. The next time you invoke xvt, it will use font 8x13, which is slightly larger and more
legible. Because the geometry of the xvt window is set to 80×25 (that, 80 columns by 25 rows), the window will be
resized automatically to use the new font.

Note, by the way, that an xvt window using the 8x13 font will not completely fit onto a 640×480 screen — the last
column slips off the right edge of the screen. If you find this to be a real problem, try using a narrower font.

Where To Go From Here
This concludes our introduction to X applications and how to customize them. We could only scratch the surface
of resources, widgets, and the internals of X; however, we hope that you now know enough to make minor
modifications to your system, and to begin to learn more about X.

For more information on a given application, see its entry in the Lexicon. The books referenced in the introduction
will also give you more information.

The next chapter discusses how to recompile X applications under X Windows for COHERENT.

TUTORIALS

Recompiling X Applications

A wealth of X source code is available to the public. In all probability, somebody has already written the X program
that you want. By checking publically accessible archives, you will find many interesting, useful, and amusing
programs. The following gives hints on how to recompile X source code under COHERENT.

In many cases, importing an X application to COHERENT is simply matter of recompiling its source code. This
section describes how to do so. It also discusses some problems that are commonly encountered during
recompilation.

Imakefiles and Makefiles
The UNIX/COHERENT application make manages the building of programs. It reads the contents of a Makefile,
which describes how to build the program, and names the source modules from which the program is created. If
you are not familiar with make, see tutorial for it that appears in your COHERENT manual.

Although make is the programmer’s best friend, adapting a Makefile from one operating system to another can be
difficult. This is because different operating systems — even different flavors of UNIX or UNIX-like systems like
COHERENT — can vary quite a bit in their capacities, in the functions available in their libraries, and in how they
have structured their header files and libraries.

To help you avoid this problem, most X applications use the utility imake to build a Makefile. imake reads the
contents of an Imakefile that is written by the programmer, invokes the C preprocessor cpp to combine the
Imakefile with a set of configuration files designed for your operating system, and writes a Makefile from which
you can build the application. In many instances, the Imakefile simply names the application you wish to build
and the source files from which it is built. An example Imakefile is shown below.

The script xmkmf invokes imake with the arguments and configuration files that are appropriate for COHERENT.
In most instances, all you have to do to build a Makefile is type xmkmf; and once the Makefile is built, all you
have to do to build the application is type make.

Naturally, some problems may arise during this process. The commonest ones are discussed below.

Modifications to Makefiles
Some applications come with a Makefile instead of an Imakefile. If this is the case, you probably will need to
modify this Makefile so that the program will compile correctly under COHERENT.

The following changes must be made to most Makefiles:

• X Windows for COHERENT keeps X header files in directory /usr/X11/include/X11. Most other releases of X
keep their header files in directory /usr/include/X11; therefore, you must add an instruction to the Makefile
to tell it to look in the correct directory.

A Makefile must use the option -I to name this directory explicitly:

-I/usr/X11/include

This tells the C compiler to look in /usr/X11/include for any header file whose name is prefixed with X11,
such as:

#include <X11/Xos.h>

Often, this is done as part of the macro CCFLAGS. Therefore, if you see an instruction of the form:

-I/usr/include/X11

change it to read:

-I/usr/X11/include

• X Windows for COHERENT keeps its X libraries in directory /usr/X11/lib. A Makefile must name that
directory explicitly. Many Makefiles use a macro named something like LIBFLAGS to set linking options and
name libraries. Before the list of libraries, you must add the option:

43

44

-L/usr/X11/lib

• Add -lXbsd to the end of the list of libraries to be linked into the application. This tells the linker to link in
library libXbsd.a, which holds the socket-emulation routines.

• If the option -lsocket appears on the list of libraries, remove it. This library holds the Berkeley socket
functions; these are emulated in libXbsd.a and so are not needed.

• Add the option -DCOHERENT to the macro CCFLAGS. If you make any COHERENT-specific changes to the
source code, you can bracket them with the preprocessor directives

#ifdef COHERENT
...

#endif

and the instruction -DCOHERENT will ensure that they appear in the compiled program.

Once you have made these changes, you can begin compiling.

Problems Seen During Compilation
The following discusses problems that can come up during compilation.

• The COHERENT compiler is not ANSI compliant, although it recognizes some ANSI extensions to the C
language. If the X application is written using ANSI-specific grammar (in particular, function prototypes), you
must compile it with an ANSI-compliant compiler, e.g., GNU C. When doing so, modify the Makefile or
Imakefile to define the macro CC to gcc.

• During the link phase, you may see the linker complain about the undefined symbol select. This indicates
that one of the source modules has called the socket function select(). Under X Windows for COHERENT, this
function is named soselect().

To fix this problem, go through the sources and conditionally replace every instance of

select([arguments]);

with:

#if defined(COHERENT)
soselect ([arguments]);

#else
select ([arguments]);

#endif

Note that this is the proper way to add new COHERENT-specific code to X sources. If the application comes
only with a Makefile, you must make sure the instruction -DCOHERENT appears as part of the macro
CFLAGS; however, this is not necessary if you have built a Makefile from an Imakefile, as xmkmf ensures
that this instruction is included automatically.

• The COHERENT C compiler does not include by default the code to print floating-point numbers, as this code
increases the size of the linked executable noticeably. If your X application uses any of the options %e, %f, or
%g with the function printf(), and if you are compiling with COHERENT’s cc command, you must add the
option -f to the macro CFLAGS. Note that you must do this in either a Makefile or an Imakefile, as xmkmf
does not add this option by default.

You do not need to do this if you are compiling with GNU C.

• Some applications redeclare the manifest constant PI; COHERENT declares this constant in header file
<math.h>. The COHERENT C compiler will abort if manifest constants are redeclared (GNU C does not); so if
this problem arises, conditionalize out the declaration of PI within the application, as shown above.

• You may find problems with the following routines: bcopy(), bcmp(), bzero(), index(), and rindex(). The
problems usually consist of a clash between the manner in which these routines are declared or defined
within the application, and they way they are declared or defined in the COHERENT header files. In most
instances, you should conditionalize out the declaration within the application, and ensure that the proper
COHERENT header file is included. For details, use the command man command to view the manual entries
for the routine in question.

TUTORIALS

45

• Some versions of UNIX declare string-handling functions in the header file <strings.h>. COHERENT, however,
keeps them in <string.h>. If the compiler complains that it cannot open strings.h, conditionally replace it in
the sources with <string.h>, as described above.

• If you are compiling with GNU C, the linker may complain of a number of undefined symbols of the form
_dmul. This is due to the fact that GNU C always creates code that performs hardware floating-point
arithmetic and by default attempts to link in the COHERENT libraries that contain hardware floating-point
routines, but the COHERENT X libraries were compiled to use software floating-point arithmetic. To get
around this problem, you must modify the file specs for GNU C: change the line that reads

%scrt1.o %scrtbegin.o -u _dtefg -L/lib/ndp -L/usr/lib

to:

%scrt1.o %scrtbegin.o -u _dtefg -L/lib -L/usr/lib

Note that this is a work-around for GNU C, and may create problems of its own. For example, when you link
software floating-point code with modules compiled to use hardware floating-point arithmetic, the function
atof() will always return NAN.

For a fuller description of how COHERENT manages floating-point arithmetic, see the Lexicon entry for cc.

If other problems arise that are not described here, please send a detailed description to MWC Technical Support,
as described at the beginning of this manual.

Recompiling an Example Application
The following walks you through the recompilation of the X application xwave. This application, whose source code
is included with X Windows for COHERENT, was written by Mike Friedman, Paul Riddle, and Jim McBeath. It
draws a three-dimensional animation of a wave. By setting command-line parameters, you can dictate the size of
the grid used and the type of wave to be plotted. The following steps describe how to recompile this program:

• cd to directory /usr/X11/src.

• De-archive the sources by typing the command:

gtar -xvzf xwave.gtz

• cd to directory xwave.

• Type the command xmkmf. This builds a Makefile from the Imakefile included with this package.

• To recomile, type make.

• When compilation has finished, install the program as follows:

mv xwave /usr/X11/bin

• To test the program, invoke X as described in an earlier section; then type xwave. The application opens a
window and animates a sample wave.

That’s all there is to it. A formatted manual page for xwave is included in directory /usr/X11/src/xwave/man.

The following gives the contents of xwave’s Imakefile:

LOCAL_LIBRARIES = $(XLIB)
OBJS = xwave.o force.o plot.o prop.o
SRCS = xwave.c force.c plot.c prop.c
SYS_LIBRARIES = -lm
ComplexProgramTarget(xwave)

When xmkmf and imake process this five-line Imakefile, it expands in a 370-line Makefile. The following
describes each line in the Imakefile.

LOCAL_LIBRARIES names the libraries to be linked into the program. The macro XLIB means that the
programmer wants to include the standard suite of X libraries for your system. The configuration files included
with X Windows for COHERENT give the information that imake needs to expand XLIB into the correct set of
libraries.

TUTORIALS

46

OBJS and SRCS name, respectively, the object modules from which the application is built, and the source files
from which those objects are compiled.

SYS_LIBRARIES names the system libraries to be included, apart from the X libraries. The programmer has
included the argument -lm, which indicates that the program needs routines within the mathematics library
libm.a. For details on the contents of this library, see its entry in the COHERENT Lexicon.

Finally, the line

ComplexProgramTarget(xwave)

is a macro whose body is kept in file /usr/X11/lib/config/Imake.rules. This macro contains all of the
instructions and commands that make needs to build a complex X program. The argument xwave names the
application to be built.

For a discussion of the macros that can be included in an Imakefile, see the Lexicon entry for imake in this
manual.

Building Your Own Makefile
If you do not want to use xmkmf and imake, you can build a Makefile by hand. You probably will never need to
do this, but knowing how to do so may come in handy some time:

1. Build a skeletal Makefile. Place the following declarations at its beginning:

CFLAGS = -I/usr/X11/include
LIBS = -L/usr/X11/lib -lX11 -lXbsd

Follow this with a declaration of the object modules from which this application is built. As a rule of thumb,
there is one object for each source module. For example, if the application consists of source modules foo.c,
bar.c, and baz.c, write the following into your Makefile:

OBJS = foo.o bar.o baz.o

Finally, add the target line for the executable you wish to build. If the application is to be called xapp, add
the following to your skeletal Makefile:

xapp: $(OBJS)
$(CC) $(CFLAGS) $(OBJS) $(LIBS)

2. Use the command

cc -c -I/usr/X11/include/X11 source.c

for each source module. Some modules will compile correctly on the first try; others will require several
attempts. Those that require several attempts may require that you use the cc option -D to set one or more
switches within the source module. Use the command grep to find every instance with the source module of
the C preprocessor directive #if. These will indicate the options that are available within the source code, and
suggest which switches you should set.

3. Once you have succeeded in compiling all of the source files to objects, type make. Because all of the objects
already exist, make will attempt to link an executable.

At this stage, you probably will see errors about undefined symbols. Note which symbols are undefined; then
use the COHERENT utility nm to list the symbols in all of the X libraries and find which libraries contains the
symbols you need. Include them in your Makefile.

Note that an X application always need the libraries libX11.a and libXbsd.a; the declarations given above
invoke those libraries automatically. The difficulty is in arranging the other libraries in the proper order in the
Makefile. This can be done only by trial and error: sometimes many trials and many errors. When you have
the correct order, copy the information into your Makefile.

Unresolved identifiers within the program may also be manifest constants that the programs expects to be set
with the -D option to the cc command.

When you have finished linking the program, you should have a working executable. Thereafter, you can use the
Makefile you just created to rebuild the application, should you decide to modify the source code.

TUTORIALS

47

Most applications come with a manual page that describe the program and how to run it. You may, for example,
need to install a font or a resource file in the appropriate directory. You will, of course, need to test the program to
make sure that it runs correctly. We have found that, in most instances, if a program can be compiled and linked
under COHERENT, it will also run correctly.

Where To Get X Sources
Numerous X programs have already been ported to COHERENT. Archives of sources are available for free on the
Mark Williams BBS. For directions on how to contact the MWC BBS, see the directions in the tutorial for UUCP
that appears in the COHERENT manual.

If you have access to the Internet, you can retrieve source files from the site raven.alaska.edu. Use ftp to access
that site; then log in as ‘‘anonymous’’. New sources are added continually.

The master site for X software is ftp.x.org. If you have access to the Internet, you can log into that system via
anonymous ftp. This site contains many megabytes of sources, so you would be well advised to think about what
you would like to retrieve before you enter this site.

Finally, Mark Williams Company sells packages of X applications that have been ported to COHERENT. Called
Xware, these packages bring together interesting, useful, and amusing programs for your COHERENT X system.
Each has been ported to COHERENT; most include full source code and a formatted manual page that can be
viewed with the COHERENT man command. For details on Xware, see the release notes that come with this
manual.

TUTORIALS

48

TUTORIALS

The Lexicon

The rest of this manual consists of a Lexicon. This Lexicon contains one article for each of the utilities and clients
included with X Windows for COHERENT. The articles appear in alphabetical order.

49

50

TUTORIALS

appres — X Utility
List an application’s resource data base
appres [[class [instance]] [-1]

appres prints the resources that are seen by an application (or subhierarchy of an application) and have class and
instance. You can use it to determine which resources a particular program will load. For example, the command

appres XTerm

lists the resources that the command xterm loads. If you specify no application class, appres uses the class
AppResTest.

To match a particular instance name, specify that name explicitly after the class name; for example:

appres XTerm myxterm

To list resources that match a subhierarchy of an application, name the hierarchical classes and instance names.
The number of class and instance components must be equal. To list just the resources that match a specific level
in the hierarchy, use the option -1. For example, the command

appres XTerm.VT100 xterm.vt100 -1

lists the resources that match the xterm widget vt100.

See Also
xprop, xrdb, X utilities, xwininfo

Notes
Copyright 1989, Massachusetts Institute of Technology.

appres was written by Jim Fulton of the MIT X Consortium.

atobm — X Utility
Convert ASCII to an X bit-mapped image
atobm [-chars cc] [-name variable] [-xhot number] [-yhot number] [file]

atobm converts ASCII text into an X bit-mapped image. file must hold a bit-mapped image that had been created
with the editor bitmap and had been converted into ASCII by the utility bmtoa. For details on what constitutes a
bit-mapped image, see the Lexicon entry for bitmap. For an example of using a bit-mapped image with the X
server, see the Lexicon entry for xsetroot.

file gives the file in which the text resides. If no file appears on the command line, atobm reads the standard
input.

atobm recognizes the following command-line options:

-chars cc
Specify the pair of characters to use when converting strings into bits. The first character of the pair
represents the zero bit, and the second represents the one bit. The default is to use a hyphen ‘-’ to
represent zero and a pound sign ‘#’ to represent one.

-name variable
Set to variable the name used when writing out the bit-map file. The default is to use the base name of the
command-line argument file (or leave it blank if atobm is reading the standard input).

-xhot number
Give the X coordinate of the image’s ‘‘hot spot.’’ The hot spot is the pixel that, on an image used as a
mouse cursor, identifies exactly where the image is pointing. Only positive values are allowed. By default,
a bit-mapped image includes no hot-spot.

-yhot number
Give the Y coordinate of the image’s ‘‘hot spot.’’ Only positive values are allowed.

Example
Consider following the bit-mapped image:

LEXICON

appres — atobm 51

-------#--------
-------#--------
---#---#---#----
----#--#--#-----
-----#-#-#------
------#-#-------
-#####---#####--
------#-#-------
-----#-#-#------
----#--#--#-----
---#---#---#----
-------#--------
-------#--------

You may have created this image with the bit-map editor bitmap, or you may simply have created it with a text
editor, such as MicroEMACS. If you have saved it in a file called star, you can filter it through atobm via the
following command:

atobm star

This produces the following:

#define star_width 16
#define star_height 16
static char star_bits[] = {

0x00, 0x00, 0x80, 0x00, 0x80, 0x00, 0x88, 0x08, 0x90, 0x04, 0xa0, 0x02,
0x40, 0x01, 0x3e, 0x3e, 0x40, 0x01, 0xa0, 0x02, 0x90, 0x04, 0x88, 0x08,
0x80, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00};

Your bit-mapped image is now ready for loading into an X application.

See Also
bitmap, bmtoa, X utilities

Notes
atobm was written by Davor Matic of the X Consortium.

bdftopcf — X Utility
Generate a PCF font from a BDF file
bdftopcf [-i] [-L] [-l] [-M] [-m] [-o pcf_file] [-pnumber] [-t] [-unumber] [bdf_file]

bdftopcf converts a font from bitmap distribution format (BDF) to the portable compiled format PCF normally
used by X Windows for COHERENT. bdf_file names the file that holds the BDF font; if none is named, bdftopcf
reads the standard input.

bdftopcf recognizes the following command-line options:

-i Do not compute ‘‘ink metrics’’ for terminal-emulator fonts.

-L Force the byte order to least-significant-byte first.

-l Force the bit order to least-significant-bit first.

-M Force the byte order to most-significant-byte first.

-m Force the bit order to most-significant-bit first.

-o pcf_file
Write the output into pcf_file. If this command-line option is not used, bdftopcf writes the PCF file to the
standard output.

-pnumber
Force the glyph padding to number, which can be one, two, four, or eight.

LEXICON

52 bdftopcf

-t Expand the glyphs in the terminal-emulator fonts to fill the bounding box.

-unumber
Force the scanline-unit padding to number, which must be one of one, two, or four.

See Also
mkfontdir, X utilities

bitmap — X Utility
Bit map editor
bitmap [-options] [filename] [basename]

bitmap is a rudimentary tool for creating or editing rectangular images made up of 1’s and 0’s. X uses bit-maps to
define clipping regions, cursor shapes, icon shapes, and tile and stipple patterns.

Using bitmap
bitmap displays a grid, each square of which represents one pixel in the picture being edited. To see the bit-
mapped image in its actual size, as it appears both normally and inverted, press <ctrl-I>. You can drag the popped-
up image out of the way to continue editing. To remove the bit-mapped image, either move the mouse cursor into
the pop-up window and press the left mouse button, or press <ctrl-I> again.

If you wish to use the bit-mapped image to define a mouse cursor, you can designate one of the squares in the
image as the ‘‘hot spot’’ — that is, the point in the cursor that determines exactly where the cursor is pointing. For
cursors with sharp points (e.g., an arrow or finger), the hot spot is usually at the tip; for symmetric cursors (such
as a cross or bull’s-eye), it usually is at the center.

bitmap stores a bit-map as a fragment of C code that is suitable for loading in applications. The C code gives an
array of bits as well as symbolic constants that give the width, height, and hot spot (if specified) that can be used
to create cursors, icons, and tiles. For examples of the output of bitmap, see the Lexicon entry for bmtoa.

Editing
To edit a bit-mapped image, simply click on one of the buttons with drawing commands and move the mouse
cursor into the bit-map grid window. When you press one of the buttons on your mouse, bitmap performs the
appropriate action. You can set, clear, or invert a grid square. Setting a square corresponds to setting a bit in the
bit-mapped image to one; clearing a square corresponds to setting a bit to zero. Inverting a grid square
corresponds to changing a bit from zero to one or one to zero. The following gives the default behavior of the
mouse buttons:

MouseButton1 (left mouse button): Set
MouseButton2 (center mouse button): Invert
MouseButton3 (right mouse button): Clear

This default behavior can be changed by setting the mouse buttons’ function resources. The following example
inverts the default behavior of the center and right mouse buttons:

bitmap*button1Function: Set
bitmap*button2Function: Clear
bitmap*button3Function: Invert

The button function applies to all drawing commands, including copying, moving, and pasting, flood filling, and
setting the hot spot.

Drawing Commands
The following lists the buttons on the left side of bitmap’s window. Each accessing a drawing command. You can
abort some commands by pressing ‘A’ inside the bit-map window:

(Circle) Change the grid squares in a circle between two squares. Once you press a mouse button in the grid
window, bitmap highlights the circle from the square where the mouse button was initially pressed to
the square where the mouse cursor is located. Releasing the mouse button causes the change to take
effect, and the highlighted circle disappears.

(Clear) Clear all bits in the bit-mapped image. The grid squares are set to the background color. Pressing ‘C’
inside the window has the same effect.

LEXICON

bitmap 53

(Clear_Hot_Spot)

Remove any designated hot spot from the bit-mapped image.

(Copy) Copy an area of the grid from one location to another. If no marked grid area is displayed, This
command behaves like Mark, described below.

Once a marked grid area is displayed in the highlighting color, this command has two alternative
behaviors. If you click a mouse button inside the marked area, you can drag the rectangle that
represents the marked area to the desired location. After you release the mouse button, the area is
copied. If you click outside the marked area, Copy assumes that you wish to mark a different region
of the bit-map image; thus, it again behaves like Mark.

(Curve) Change the grid squares underneath the mouse cursor if a mouse button is being pressed down. If
you drag the mouse continuously, bitmap ensures that the line is continuous. If your system is slow
or bitmap receives very few mouse motion events, it might behave quite strangely.

(Down) Moves the bit-map image one pixel down. If a marked area of the grid is highlighted, it operates only
within the marked area. Pressing (º) inside the window has the same effect.

(Filled_Circle)

This command is identical to Circle, except that the circle is filled rather than outlined.

(Filled_Rectangle)

Identical to Rectangle, except at the end the rectangle is filled rather than outlined.

(Flip_Horizontally)

Flip the bit-map image along the horizontal axis. If a marked area of the grid is highlighted, this
command operates only within the marked area. Pressing ‘F’ inside the window has the same effect.

(Flip_Vertically)

Flip the bit-mapped image along the vertical axis. If a marked area of the grid is highlighted, this
command operates only within the marked area. Pressing ‘V’ inside the window has the same effect.

(Flood_Fill)

Flood-fill the connected area beneath the mouse cursor when you click on the desired square.
Diagonally adjacent squares are not considered to be connected.

(Fold) Fold the bit-mapped image so that the opposite corners become adjacent. This is useful when creating
bit-mapped images for tiling. Pressing ‘F’ inside the window has the same effect.

(Invert) Invert all bits in the bit-mapped image. The grid squares are inverted appropriately. Pressing ‘I’ inside
the window has the same effect.

(Left) Moves the bit-mapped image one pixel to the left. If a marked area of the grid is highlighted, it
operates only within the marked area. Pressing (æ) inside the window has the same effect.

(Line) Change the grid squares in a line between two squares. When you press a mouse button in the grid
window, bitmap highlights the line from the square where the mouse button was initially pressed to
the square where the mouse cursor is located. Releasing the mouse button causes the change to take
effect, and the highlighted line disappears.

(Mark) Mark an area of the grid by dragging out a rectangular shape in the highlighting color. Once the area
is marked, it can be operated on by commands Up, Down, Left, Right, Rotate, Flip, or Cut. Only one
marked area can be present at any time. If you attempt to mark another area, the old mark will
vanish. The same effect can be achieved by simultaneously pressing <shift> and the left mouse
button, and dragging out a rectangle in the grid window. Simultaneously pressing <shift> and the
middle mouse button marks the entire grid area.

(Move) Move an area of the grid from one location to another. Its behavior resembles the behavior of the
command Copy, except that the marked area is moved instead of copied.

(Point) Change the grid squares underneath the mouse cursor if a mouse button is being pressed down. If
you drag the mouse continuously, the line may not be continuous, depending on the speed of your
system and frequency of mouse-motion events.

(Rectangle)Change the grid squares in a rectangle between two squares. When you press a mouse button in the
grid window, bitmap highlights the rectangle from the square where the mouse button was initially
pressed to the square where the mouse cursor is located. Releasing the mouse button causes the

LEXICON

54 bitmap

change to take effect, and the highlighted rectangle disappears.

(Right) Moves the bit-mapped image one pixel to the right. If a marked area of the grid is highlighted, it will
operate only within the marked area. Pressing (Æ) inside the window has the same effect.

(Rotate_Left)

Rotate the bit-map image 90˚ to the left (counter-clockwise). If a marked area of the grid is highlighted,
it will operate only within the marked area. Pressing ‘L’ inside the window has the same effect.

(Rotate_Right)

Rotate the bit-mapped image 90˚ to the right (clockwise). If a marked area of the grid is highlighted, it
operates only within the marked area. Pressing ‘R’ inside the window has the same effect.

(Set) Set all bits in the bit-mapped image. The grid squares are set to the foreground color. Pressing ‘S’
inside the window has the same effect.

(Set_Hot_Spot)

Designate one square in the grid as the hot spot. Pressing a mouse button in the desired square
displays a diamond shape.

(Undo) Undo the last executed command. It has depth one — that is, pressing Undo after Undo will undo
itself.

(Unmark) Erase the marked area. The same effect can be achieved by simultaneously pressing <shift> and the
right mouse button.

(Up) Move up the bit-mapped image by one pixel. If a marked area of the grid is highlighted, this command
operates only within the marked area. Pressing (ª) inside the window has the same effect.

File Menu
To access the File Menu’s commands, click the (File) button and select the appropriate menu entry, or press
<ctrl> key with another key. These commands deal with files, and with global parameters of the bit map (e.g., size,
basename, and file name):

(Basename)Change the base name, if you want one other than the specified file name.

(Filename)Change the file name without changing the base name or saving the file. If you specify ‘-’ for a file
name, bitmap writes its output to the standard output.

(Insert) Insert a bit-map image into the image being currently edited. After bitmap has prompted you for the
name of the file that holds the bit-mapped image to insert, click inside the grid window and drag the
outlined rectangle to the point where you wish to insert the newly loaded image.

(Load) Load a new bit-mapped image into the editor. If you have not yet saved the current image, bitmap
asked you whether to save the changes. The editor can edit only one file at a time. If you need
interactive editing, run a number of editors and use the cut-and-paste mechanism, as described below.

(New) Clear the editing area and prompt for the name of the new file to edit. It will not load in the new file.

(Quit) Terminate bitmap. If the file was not saved, bitmap prompts you to ask whether to save the image.
This command is preferred over killing the process.

(Rescale) Rescale the editing area to the new width and height. Enter the size in the format width×height. This
commands does not do antialiasing, and information is lost if you rescale to the smaller sizes.

(Resize) Resize the editing area to the new number of pixels. Enter the size in the format width×height. The
information in the image being edited will not be lost unless the new size is smaller that the current
image size. NB, the editor was not designed to edit huge files.

(Save) Save the bit-map image. It does not prompt for the file name unless it is said to be <none>. If you
leave the file name undesignated or ‘-’, bitmap writes the image to the standard output.

(Save_As) Save the bit-mapped image after prompting for a new file name. It should be used if you want to
change the file name.

Edit Menu
To access the Edit Menu’s commands, press the (Edit)button and select the appropriate menu entry, or press
<esc> with another key. These commands deal with editing facilities, such as grid, axes, zooming, and cut and
paste:

LEXICON

bitmap 55

(Axes) Highlight the main axes of the image being edited. These lines are not part of the image, but are
provided to help you keep your images symmetrical.

(Copy) Copy the contents of the highlighted image area into the internal cut-and-paste buffer.

(Cut) Cut the highlighted image area into the internal cut-and-paste buffer.

(Dashed) Control the stipple for drawing the grid lines. The stipple specified by the resource dashes can be
turned on or off by activating this command.

(Grid) Control the grid in the editing area. If the grid spacing is less than that specified by the resource
gridTolerance (default, eight), bitmap automatically turn the grid off.

(Image) Open a separate window and display therein the image being edited and its inverse in their actual size.
You can move the new window. To erase the new window, move the mouse cursor into it and press
the left mouse button.

(Paste) Copy into the current image either the highlighted area from another image or the contents of
bitmap’s internal cut-and-paste buffer. To place the copied image, click in the editing window, drag
the outlined image to the position where you want to place it, then release the button.

(Proportional)

Toggle proportional mode. If proportional mode is on, bitmap forces all squares to have the same
width and height, regardless of the proportions of the bit-map window.

(Stippled)Toggle stippling of the highlighted areas of the bit-mapped image. The stipple is specified by resource
stipple.

(Zoom) Toggle zoom mode. If an area of the image is highlighted, bitmap automatically zooms into it.
Otherwise, bitmap lets you highlight an area to be edited in the zoom mode; bitmap then
automatically switches into it. You can use all the editing commands and other utilities in the zoom
mode. When you zoom out, the command undo undoes the entire zoom session.

Cut and Paste
bitmap supports two cut-and-paste mechanisms: the internal cut-and-paste, and the global X selection cut-and-
paste.

bitmap uses the internal cut-and-paste feature when it executes the drawing commands copy and move, and
when it executes the commands cut and copy on its Edit menu. It uses the global X selection cut-and-paste
whenever any area of a bit-mapped image is highlighted.

To copy part of an image from another bit-map editor, simply use the command Mark to highlight the desired area,
or pressing the <shift> key and drag the area with the left mouse button. When X highlights the selected area, any
other application (such as xterm) that use the primary selection will discard its selection values and unhighlight
the appropriate information. To drop the cut portion of an image into the image you are now editing, use the Paste
command from the Edit menu, or press the mouse’s control button.

If you attempt to do this without a visible highlighted image area, bitmap reads its internal cut-and-paste buffer
and pastes whatever is stored there at the moment.

Widgets
Below is the widget structure of the bitmap application. Indentation indicates hierarchical structure. The widget
class name is given first, followed by the widget instance name. All widgets except the bitmap widget are from the
standard Athena widget set.

Bitmap bitmap
TransientShell image

Box box
Label normalImage
Label invertedImage

TransientShell input
Dialog dialog

Command okay
Command cancel

LEXICON

56 bitmap

TransientShell error
Dialog dialog

Command abort
Command retry

TransientShell qsave
Dialog dialog

Command yes
Command no
Command cancel

Paned parent
Form formy

MenuButton fileButton
SimpleMenu fileMenu

SmeBSB new
SmeBSB load
SmeBSB insert
SmeBSB save
SmeBSB saveAs
SmeBSB resize
SmeBSB rescale
SmeBSB filename
SmeBSB basename
SmeLine line
SmeBSB quit

MenuButton editButton
SimpleMenu editMenu

SmeBSB image
SmeBSB grid
SmeBSB dashed
SmeBSB axes
SmeBSB stippled
SmeBSB proportional
SmeBSB zoom
SmeLine line
SmeBSB cut
SmeBSB copy
SmeBSB paste

Label status

LEXICON

bitmap 57

Pane pane
Bitmap bitmap
Form form

Command clear
Command set
Command invert
Toggle mark
Command unmark
Toggle copy
Toggle move
Command flipHoriz
Command up
Command flipVert
Command left
Command fold
Command right
Command rotateLeft
Command down
Command rotateRight
Toggle point
Toggle curve
Toggle line
Toggle rectangle
Toggle filledRectangle
Toggle circle
Toggle filledCircle
Toggle floodFill
Toggle setHotSpot
Command clearHotSpot
Command undo

Colors
If you want bitmap to be viewable in color, include the following in the #ifdef COLOR section of the file you read
with xrdb:

*customization: -color

This tells bitmap to pick up the colors in the color-customization file /usr/X11/lib/app-defaults/Bitmap-color.

Command-line Options
bitmap recognizes the following command-line arguments:

-axes Turn the major axes off.

+axes Turn the major axes on.

basename Specify the base name to use in the output file of C code. If it differs from the base name in the
working file, bitmap changes it when saving the file.

-dashed [filename]
Turn off dashing for the frame and grid lines. filename names the bit-map to use as a stipple.

+dashed Turn on dashing for the frame and grid lines.

filename Name the bit-map to be initially loaded into the program. If filename does not exist, bitmap assumes
it is a new file.

-fr color Use color for the frame and grid lines. For a list of colors that X recognizes, see file
/usr/X11/lib/rgb.txt.

-grid Turn the grid off.

+grid Turn the grid on.

-gt dimension
Set grid tolerance. If the square dimensions fall below dimension, bitmap automatically turns the grid
off.

LEXICON

58 bitmap

-hl color Use color for highlighting.

-proportional
Turn off proportional mode. If proportional mode is on, square width equals square height. If
proportional mode is off and the square’s dimensions differ, bitmap uses the smaller dimension.

+proportional
Turn on proportional mode.

-sh pixels Set the height of squares, in pixels.

-size width×height
Set the size of the grid in squares.

-stipple filename
Set the bit-map to be used as a stipple for highlighting.

-stippled Turn off stippling of highlighted squares.

+stippled Turn on stippling of highlighted squares.

-sw pixels Set the width of squares, in pixels.

Bitmap Widget
The widget bitmap is a stand-alone widget for editing raster images. It is not designed to edit large images,
although you can use it for that purpose as well. You can incorporate it with other applications and use it as a
standard editing tool. The following are the resources provided by the widget bitmap:

Bitmap Widget

Header file Bitmap.h
Class bitmapWidgetClass
Class Name Bitmap
Superclass Bitmap

This widget uses all of the simple-widget resources, plus the following:

Name Class Type Default Value
foreground Foreground Pixel XtDefaultForeground
highlight Highlight Pixel XtDefaultForeground
framing Framing Pixel XtDefaultForeground
gridTolerance GridTolerance Dimension 8
size Size String 32x32
dashed Dashed Boolean True
grid Grid Boolean True
stippled Stippled Boolean True
proportional Proportional Boolean True
axes Axes Boolean False
squareWidth SquareWidth Dimension 16
squareHeight SquareHeight Dimension 16
margin Margin Dimension 16
xHot XHot Position NotSet (-1)
yHot YHot Position NotSet (-1)
button1Function Button1Function DrawingFunction Set
button2Function Button2Function DrawingFunction Invert
button3Function Button3Function DrawingFunction Clear
button4Function Button4Function DrawingFunction Invert
button5Function Button5Function DrawingFunction Invert
filename Filename String None ("")
basename Basename String None ("")

See Also
atobm, bmtoa, editres, X utilities

Notes
The default screen for bitmap is extremely large. With its default resource file, it may not entirely fit onto a
640×480 screen.

LEXICON

bitmap 59

bitmap was written by Davor Matic of the X Consortium.

bmtoa — X Utility
Convert an X bit-mapped image to ASCII
bmtoa [-chars cc] [file]

bmtoa converts into ASCII an X bit-mapped image that had been created with the editor bitmap.

file names the file that holds the image. If no file is named on the command line, bmtoa reads the standard input.

The command-line option -chars specifies the pair of characters to use in the string version of the bit-mapped
image. The first character of the pair cc represents zero bits, and the second represents one bits. The default is to
use a hyphen ‘-’ to represent zero and a pound sign ‘#’ to represent one.

Example
Consider the file /usr/X11/include/X11/bitmaps/star,which reads as follows:

#define star_width 16
#define star_height 16
#define star_x_hot 7
#define star_y_hot 7
static char star_bits[] = {

0x00, 0x00, 0x80, 0x00, 0x80, 0x00, 0x88, 0x08, 0x90, 0x04, 0xa0, 0x02,
0x40, 0x01, 0x3e, 0x3e, 0x40, 0x01, 0xa0, 0x02, 0x90, 0x04, 0x88, 0x08,
0x80, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00};

When you execute the command

bmtoa /usr/X11/include/X11/bitmaps/star

you see:

-------#--------
-------#--------
---#---#---#----
----#--#--#-----
-----#-#-#------
------#-#-------
-#####---#####--
------#-#-------
-----#-#-#------
----#--#--#-----
---#---#---#----
-------#--------
-------#--------

See Also
atobm bitmap, X utilities

Notes
bmtoa was written by Davor Matic of the X Consortium.

editres — X Utility
Resource editor for X Toolkit applications
editres [-toolkitoption ...]

The X utility editres lets you view the full widget hierarchy of any X Toolkit client that speaks the Editres protocol.
In addition, editres helps you construct a resource specification, then lets you apply the resource to the
application and view the results. Once you are happy with a resource specification, editres appends the resource
string to your X resources file.

Command-line Options
editres recognizes the following command-line options:

LEXICON

60 bmtoa — editres

-bd color Set the color of the border to color.

-bg color Set the color of the background to color.

-bw pixels Set the width of the border to pixels.

-display host[:server][.screen]
Display the client’s window on screen number screen of server on host system host.

-fg color Set the color of the foreground to color.

-fn font Use font in the display.

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of
the window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

-rv Simulate reverse video by exchanging the foreground and background colors.

-xrm resourcestring
Use resourcestring to define a resource.

editres Window
editres displays a window that consists of the following four areas:

Menu Bar A set of pop-up menus that allow you full access to editres’s features.

Panner This lets the user ‘‘pan’’ through an image. This is a more intuitive way to scroll the application tree’s
display.

Message Area
Display information about the action that editres expects of the user.

Application Widget Tree
Display the selected client’s widget tree.

To begin an editres session, first select the menu item (Get_Widget_Tree)from the command menu. This changes
the mouse cursor to a cross hair. Click on the window of the application you wish to examine. If this application
understands the Editres protocol, then editres displays the client’s widget tree in its tree window. If the
application does not understand the Editres protocol, editres informs you of this fact in the message area.

editres Menu Commands
Once you have read a widget tree, you can manipulate it by selecting any of the following options from the editres
menu:

(Dump_Widget_Tree_to_a_File)

This option dumps into a file a text description of the application’s widget tree. The output of this
option is especially useful when you wish to include an application’s widget tree in a manual page.
When you select this option, editres actives a pop-up dialogue. Type into the dialogue the name of the
file into which you wish to dump the description; then either click the button labelled (okay),or press
the (¢) key. editres dumps the widget tree to this file. To cancel the file dialogue, click the buttom
labelled (cancel).

(Quit) Exit editres.

(Refresh_Widget_Tree)

editres only knows about the widgets that an application was using at the moment you read its widget
tree. Many applications create and destroy widgets ‘‘on the fly.’’ This menu item tells editres to re-
read an application’s widget tree, thus updating its information to the current state of the application.

(Send_Widget_Tree)

Read the widget tree of any client that speaks the Editres protocol by clicking on any of its windows.

(Set_Resource)

This command displays a dialogue box in which you can set a resource for all selected widgets. Type
the name of the resource and the value to which you are setting it. To jump between the resource-
name field and the resource-value field, press the (Tab)key.

LEXICON

editres 61

(Show_Resource_Box)

Display a resource box for the current client. This box (described in detail below) lets you see exactly
which resources can be set for the widget that is currently selected in the widget tree’s display. Only
one widget can be selected at a time; if more or fewer are selected, editres refuses to display the
resource box and displays an error message in the Message Area.

Tree Commands
The Tree menu contains the following commands with which you can manipulate the widget tree:

(Flash_Active_Widgets)

This command is the inverse of the command Select Widget in Client: for each widget that is currently
selected in the widget tree, it flashes the corresponding widget in the application. It flashes each widget
numFlashes times (default, three) in flashColor.

(Invert_All)

Invert every widget in the widget tree.

(Select_All)

Select all widgets in the widget tree.

(Select_Ancestors)

Select all parents of each of the currently selected widgets. This is a recursive search.

(Select_Children)

Select the immediate children of each of the currently selected widgets.

(Select_Descendants)

Select all children of each of the currently selected widgets, yea, even unto the last generation. This is a
recursive search.

(Select_Parents)

Select the immediate parent of each of the currently selected widgets.

(Select_Widget_in_Client)

When you select this command, the mouse cursor turns into a cross hair. When you click a widget in the
application, editres highlights the corresponding entry in the widget tree’s display. Because some widgets
are obscured by their children, it is not possible to display to every widget this way.

(Show_Class_Names)

Change the label of every widget in the tree to show the widget’s class name instead of the widget’s name.

(Show_Widget_IDs)

Change the label of every widget in the tree to show the widget’s ID, in hexadecimal, instead of the widget’s
name.

(Show_Widget_Names)

Change the label of every widget in the tree to show the widget’s name. This is the default.

(Show_Widget_Windows)

Change the label of every widget in the tree to show the widget’s window, in hexadecimal, instead of the
widget’s name.

(Unselect_All)

Unselect all widgets in the widget tree.

Most of the above commands have a keyboard equivalent, as follows:

LEXICON

62 editres

Key Command Translation Entry
space Unselect Select(nothing)

C Show Class Names Relabel(class)
I Show Widget IDs Relabel(id)
N Show Widget Names Relabel(name)
T Toggle Widget/Class Name Relabel(toggle)
W Show Widget Windows Relabel(window)
a Select Ancestors Select(ancestors)
c Select Children Select(children)
d Select Descendants Select(descendants)
i Invert Select(invert)
p Select Parent Select(parent)
s Select Select(all)
w Select Select(widget)

To add a widget to the set of selected widgets, click the left mouse button. To select a widget and un-select all
other widgets, click the middle mouse button on that widget. Clicking the right mouse button on a widget toggles
a widget’s label between the widget’s instance name and the widget’s class name.

Using the Resource Box
The resource box contains five areas, as follows:

Resource Line
This area, which is at the top of the resource box, shows the name of the current resource exactly as it
would appear if you were to save it into a file or apply it.

Widget Names and Classes
This area allows you to select the widgets to which this resource will apply. The area contains four lines,
as follows:

1. The name of the selected widget and all its ancestors, and the more-restrictive period ‘.’ separator.
2. The class names of each widget, and well as the less-restrictive asterisk ‘*’ separator.
3. A set of special buttons labelled (Any_Widget),which generalizes this level to match any widget.
4. A set of special buttons labelled (Any_Widget_Chain),which turns the single level into something that

matches zero or more levels.

The initial state of this area is the most restrictive, using the resource names and the period separator. By
selecting the other buttons in this area, you can ease the restrictions to allow more and more widgets to
match the specification. The extreme case is to select all the (Any_Widget_Chain)buttons, which matches
every widget in the application. As you select different buttons, the tree’s display updates to show you
exactly which widgets are affected by the resource specification.

Normal and Constraint Resources
The next area lets you select the name of the normal or constraint resources you wish to set. Some
widgets may not have constraint resources, so that area will not appear.

Resource Value
This next area allows you to enter the resource value. Enter this value exactly as you would type a line
into your resource file; thus, it should contain no unescaped new-lines. There are a few special character
sequences for this file:

\n A newline.
\OOO

A number, where OOO represents three octal digits. This is replaced by one byte that contains this
sequence interpreted as an octal number. For example, a NUL can be represented by the sequence
\000.

\<new-line>
A blank line.

\\ A literal backslash.

Command Area
This area contains the following command buttons:

LEXICON

editres 63

(Apply)Perform a XtSetValues() call on all widgets that match the resource line described above. The
value specified is applied directly to all matching widgets. This behavior is an attempt to give a
dynamic feel to the resource editor. Because this feature lets you put an application into a state
that it is not willing to handle, a hook has been provided to allow specific clients block these
XtSetValues() requests (see the discussion of blocking editres requests, below).

Unfortunately, the X Toolkit and Resource Manager impose constraints on widgets; thus,trying to
coerce an inherently static system into dynamic behavior can produce strange results. There is no
guarantee that when you save a value and restart an application, that application behaves the
same as it appeared under editres. This feature is provided to give you a rough feel for what your
changes will do; the results should be considered suspect at best.

(Popdown_Resource_Box)

Remove the resource box from the display.

(Save) Append the resource line described above onto the end of the save file. If no save file has been set,
editres displays the (Set_Save_File)dialogue box.

(Save_and_Apply)

Combine into one button the Save and Apply actions described above.

(Set_Save_File)

Change the file into which the resources are saved. When you press this button, editres displays
a dialogue box that requests a file name. Once the file name has been entered, either press (¢) or
click on the button labelled (okay).To close the dialogue box without changing the file, click the
button labelled (cancel)

Blocking editres Requests
The editres protocol has been built into the Athena Widget set. This allows all application that are linked against
Xaw to be able to speak to the resource editor. Although this provides great flexibility, and is a useful tool, it can
quite easily be abused. It is therefore possible for any Xaw client to specify a value for the resource editresBlock,
described below, to keep editres from divulging information about its internals, or to disable the SetValues part of
the protocol.

editresBlock (Class EditresBlock)
Specify the type of blocking this client wishes to impose on the editres protocol. The accepted values are
as follows:

all Block all requests.
setValues Block all setvalues requests. This is the only editres request that actually modifies the

application; in effect, it states that the application is read-only.
none Allow all editres requests.

Remember that these resources are set on any Xaw client, not editres. They allow individual clients to stop some
or all of the requests that editres makes from ever succeeding.

Note that editres is also an Xaw client, so it can view and modify itself; these commands can be blocked by setting
the editresBlock resource on editres itself.

Resources
editres uses the following application-specific resources:

numFlashes (Class NumFlashes)
Set the number of times editres flashes the widgets in the client application when you invoke the
command Show Active Widgets.

flashTime (Class FlashTime)
Amount of time between the flashes described above.

flashColor (Class flashColor)
Set the color used when editres flashes clients. A bright color should be used, such as red or yellow —
one that immediately draws your attention to the area being flashed.

saveResourcesFile (Class SaveResourcesFile)
The file into which the resource line is append to when the you select the Save button Resource box.

LEXICON

64 editres

Widgets
The following gives the widgets that editres uses:

Editres editres
Paned paned

Box box
MenuButton commands

SimpleMenu menu
SmeBSB sendTree
SmeBSB refreshTree
SmeBSB dumpTreeToFile
SmeLine line
SmeBSB getResourceList
SmeLine line
SmeBSB quit

MenuButton treeCommands
SimpleMenu menu

SmeBSB showClientWidget
SmeBSB selectAll
SmeBSB unselectAll
SmeBSB invertAll
SmeLine line
SmeBSB selectChildren
SmeBSB selectParent
SmeBSB selectDescendants
SmeBSB selectAncestors
SmeLine line
SmeBSB showWidgetNames
SmeBSB showClassNames
SmeBSB showWidgetIDs
SmeBSB showWidgetWindows
SmeLine line
SmeBSB flashActiveWidgets

Paned hPane
Panner panner
Label userMessage
Grip grip

Porthole porthole
Tree tree

Toggle <name of widget in client>
.
.
.
TransientShell resourceBox

Paned pane
Label resourceLabel
Form namesAndClasses

Toggle dot
Toggle star
Toggle any
Toggle name
Toggle class

.

.

.

Label namesLabel
List namesList
Label constraintLabel
List constraintList
Form valueForm

Label valueLabel
Text valueText

LEXICON

editres 65

Box commandBox
Command setFile
Command save
Command apply
Command saveAndApply
Command cancel

Grip grip
Grip grip

Environment
editres reads the following environmental variables:

DISPLAY The default host and display number.

XENVIRONMENT
The name of a resource file that overrides the global resources stored in the property
RESOURCE_MANAGER.

Files
/usr/X11/lib/app-defaults/Editres— Required resources

See Also
bitmap, X utilities

Notes
Copyright 1990, Massachusetts Institute of Technology.

This program is a prototype. Caveat utilitor.

editres was written by Chris D. Peterson, formerly of the MIT X Consortium.

ico — X Client
Animate an icosahedron or other polyhedron
ico [-display name] [-geometry geometry] [-r] [-d pattern] [-i] [-dbl] [-faces] [-noedges]

[-sleep n] [-obj object] [-objhelp] [-colors list]

ico displays and rotates a wire-frame or solid polyhedron. The object is either wire frame with the hidden lines
removed, or solid with the hidden faces removed. A number of polyhedra are available; adding a new polyhedron to
the program is quite simple.

ico recognizes the following command-line options:

-colors color color ...
Name the colors to use to draw the filled faces of the object. If fewer colors are named than the object
has faces, ico reuses colors.

-d pattern Use pattern as a bit pattern for drawing the dashed lines of a wire-frame object.

-dbl Use double buffering on the display. This works for either wire-frame or solid-fill drawings. For solid-
fill drawings, using this switch results in substantially smoother movement. Note that this option
doubles the number of bit planes required. Because some colors typically are allocated by other
programs, most eight-bit-plane displays will be limited to eight colors when using double buffering.

-faces Draw filled faces instead of wire frames.

-i Use inverted colors for wire frames.

-noedges Do not draw the wire frames. Typically, this option is used only when -faces is specified.

-r Dislay the polyhedron on the root window, instead of creating a new window.

-obj object Draw object. If no object is specified, ico draws an icosahedron.

-objhelp Print a list of the available objects, plus information about each object.

-sleep n Sleep n seconds between each movement of the object.

LEXICON

66 ico

Adding Polyhedra
If you have the source code to ico, it is very easy to add more polyhedra. Each polyhedron is defined in a header
file file of the name of objXXX.h, where XXX relates to the name of the polyhedron. The format of the header file is
defined in the file polyinfo.h. Look at the file objcube.h to see what the exact format of an objXXX.h file should be,
then model your new object’s header file after that.

After making the new header file (or copying in a new one from elsewhere), simply invoke the command make
depend. This recreates the file allobjs.h, which lists all of the header files. Executing make after this rebuild ico
with the new object.

See Also
X clients

Notes
ico consumes an enormous number of computation cycles — so many, in fact, that you may have trouble getting
the attention of the system in order to quit ico. Unless you have a very robust system, expect ico to ‘‘nail it to the
wall’’. Caveat utilitor.

ico does not correctly display pyramids and tetrahedrons with filled faces.

Copyright 1988, Massachusetts Institute of Technology.

imake — X Utility
C preprocessor interface to the make utility
imake [-Ddefine] [-Idir] [-Ttemplate] [-f filename] [-s filename] [-e] [-v]

The utility imake generates a Makefile from a template, a set of cpp macros, and a per-directory input file called
Imakefile. This allows you to keep machine-dependencies (such has compiler options, alternate command names,
and special make rules) apart from the descriptions of the items to be built.

Note that imake is almost always invoked through the script /usr/X11/bin/xmkmf. This script passes to imake
the names of the appropriate configuration files needed to build a Makefile correctly under X Windows for
COHERENT. The following information is included for the sake of completeness, but you probably will never need to
use it.

Command-line Options
imake recognizes the following command-line options:

-Ddefine Pass define directly to the C preprocessor cpp. This option typically is used to set directory-specific
variables. For example, the X Window System uses this flag to set TOPDIR to the name of the
directory that contains the top of the core distribution, and CURDIR to the name of the current
directory, relative to the top.

-e Execute the generated Makefile. The default is let you do this later, by hand.

-f filename Name the per-directory input file. The default is Imakefile.

-Idirectory Pass directory directly to the C preprocessor cpp. This option typically is used to name the directory in
which the imake template and configuration files may be found.

-s filename Name the make description file to be generated, but do not invoke make. The file name ‘-’ indicates the
standard output. The default is to generate, but not execute, a Makefile.

-Ttemplate Specify the name of the master template file used by cpp. This file usually is kept in a directory that is
named with the option -I.

-v Verbose: print the cpp command line that imake uses to generate the Makefile.

How It Works
imake invokes cpp with any -I or -D flags that you passed to it on its command line, and passes it the following
three lines:

#define IMAKE_TEMPLATE "Imake.tmpl"
#define INCLUDE_IMAKEFILE "Imakefile"
#include IMAKE_TEMPLATE

LEXICON

imake 67

where Imake.tmpl and Imakefile may be overridden by its command-line options -T and -f, respectively

The IMAKE_TEMPLATE typically reads a file that contains machine-dependent parameters (specified as cpp
symbols), a file of site-specific parameters, a file that defines variables, a file that contains cpp macro functions
that generate make rules, and finally the Imakefile (specified by INCLUDE_IMAKEFILE) in the current directory.
The Imakefile uses the macro functions to set the targets to build; imake generates the appropriate rules.

imake configuration files contain two types of variables: imake variables and make variables. cpp interprets the
former when you run imake. By convention, they are in mixed case. The latter are copied into the Makefile for
later interpretation by make. By convention, make variables are in upper case.

The rules file (usually named Imake.rules in the configuration directory) contains a variety of cpp macros that are
configured for the machine on which the Makefile is being generated — in this case, X Windows for COHERENT.
Imake replaces every occurrence of the string ‘‘@@’’ with a newline to allow macros that generate more than one
line of make rules. For example, the macro

#define program_target(program, objlist) @@\
program: objlist @@\

$(CC) -o $@ objlist $(LDFLAGS)

when called with with the macro

program_target(foo, foo1.o foo2.o)

expands into:

foo: foo1.o foo2.o
$(CC) -o $@ foo1.o foo2.o $(LDFLAGS)

On systems whose cpp reduces multiple tabs and spaces to one space character, imake attempts to replace any
necessary tab characters. (make is very picky about the difference between tabs and spaces). For this reason, you
must precede every colon ‘:’ in a command line with a backslash ‘\’.

Use With the X Window System
The X Window System uses imake extensively to build both the source tree and external software. As mentioned
above, imake sets two special variables, TOPDIR and CURDIR, to ease the referencing files via relative path
names. For example, imake automatically generates the following command to build the Makefile in the directory
lib/X11 (relative to the top of the sources):

% ../.././config/imake -I../.././config \
-DTOPDIR=../../. -DCURDIR=./lib/X11

When building X programs outside the source tree, define the special symbol IUseInstalled and omit TOPDIR and
CURDIR.

In most cases, you should use the script xmkmf, rather than attempt to do this by hand.

Input Files
The following names the files that imake reads. The indentation shows which files are included by other files:

Imake.tmpl (generic variables)
site.def (site-specific, BeforeVendorCF defined)
*.cf (machine-specific)

*Lib.rules (shared-library rules)
site.def (site-specific, AfterVendorCF defined)
Project.tmpl (X-specific variables)

*Lib.tmpl (shared-library variables)
Imake.rules (rules)

Imakefile
Library.tmpl (library rules)
Server.tmpl (server rules)

All of these are kept in directory /usr/X11/lib.

Note that site.def is included twice: once before the *.cf file and once after. Although most site customizations
should be specified after the *.cf file, some, such as the choice of compiler, need to be specified before, because
other variable settings may depend on them.

LEXICON

68 imake

The first time site.def is included, the variable BeforeVendorCF is defined; the second time, the variable
AfterVendorCF is defined. All code in site.def should be inside an #ifdef for one of these symbols.

Environment Variables
imake reads the following environmental variables. Note, however, that their use is not recommended as they
introduce dependencies that are not readily apparent when you run imake:

IMAKEINCLUDE
This should be a valid include argument for the C preprocessor; e.g., -I/usr/include/local. Actually, any
valid cpp argument will work here.

IMAKECPP
This should be a valid path to a preprocessor program; e.g., /usr/local/cpp. By default, imake uses
/lib/cpp.

IMAKEMAKE
This should be a valid path to a make program, such as /usr/local/make. By default, imake uses
whatever make program is found using execvp(). imake uses this variable only if its command-line option
-e is specified.

Example
As can be seen from the above descriptions, imake is a complex program, and the writing of an Imakefile a
difficult exercise. However, one appealing feature of imake is that if you adhere to the default settings of the local
implementation, an Imakefile can be quite simple.

For example, the following gives the Imakefile for the program xwave, whose source code is included with X
Windows for COHERENT:

LOCAL_LIBRARIES = $(XLIB)

OBJS = xwave.o force.o plot.o prop.o

SRCS = xwave.c force.c plot.c prop.c

SYS_LIBRARIES = -lm

ComplexProgramTarget(xwave)

LOCAL_LIBRARIES expands into the standard suite of X libraries. SYS_LIBRARIES gives the COHERENT libraries
that the program also requires; in this case, xwave also requires the mathmatics library libm.a.

OBJS names the relocatable object modules from which the executable is built. SRCS names the source files from
which the objects are built. There is usually — though by no means always — a one-to-one correspondence
between source files and objects. Most source files consists of files of C code, although some may be written in
other languages (e.g., C++, yacc, or lex), or be in some specialized format (e.g., uuencoded).

Finally, the function-like macro ComplexProgramTarget() expands into a mass of instructions that will build
xwave.

To convert this Imakefile into a Makefile, simply enter the directory that holds it and type the command xmkmf.
This five-line Imakefile expands into several hundred lines of Makefile that will build xwave.

Files
/usr/tmp/tmp-imake.nnnnnn— Temporary input file for cpp
/usr/tmp/tmp-make.nnnnnn— Temporary input file for make
/lib/cpp — Default C preprocessor

See Also
xmkmf, X utilities
COHERENT Lexicon: C preprocessor, cpp, make
COHERENT tutorial: The make Programming Discipline

Notes
Because imake invokes the C preprocessor cpp to expand macros, its behavior will vary from system to system
depending upon the C preprocessor used: an Imakefile that compiles correctly on one system may die a painful
death on another because of differences in the preprocessor. Please note the following common problems that are
seen under COHERENT:

LEXICON

imake 69

0.3i imake normally recognizes a line that begins with a ‘#’ as being a comment. However, if a comment
contains an apostrophe, imake will pass that line to cpp, which will then attempt to interpret it as a C
preprocessor instruction. The solution is to remove the comment, or to surround it with C-style
comments.

• Some Imakefiles that are built from a resource-control system (RCS) will have an RCS-related comment at
the top. This comment will also confuse imake. Again, the solution is to remove the comment, or to
enclose it within C-style comments.

imake was written by Todd Brunhoff of Tektronix and MIT Project Athena, and Jim Fulton of the MIT X
Consortium.

imake requires the C preprocessor from the GCC compiler. This is included with X Windows for COHERENT.

Makefiles generated by imake must be processed through gmake, not the default COHERENT implementation of
make.

listres — X utility
List resources in widgets
listres [-option]

listres generates a listing of a widget’s resource data base. The listing gives the class in which each resource is
first defined, the instance and class name, and the type of each resource. listres generates a listing for every
widget named on its command line. If the command line names no widgets, or includes the switch -all, listres
generates a listing for every widget.

listres recognizes the following command-line options:

-all Print information for all known widgets and objects.

-format printf-string
Use a printf()-style format string to print the name, instance, class, and type of each resource.

-nosuper Do not list resources that are inherited from a superclass. This is useful for determining which
resources are new to a subclass.

-top name name gives the widget to be treated as the top of the hierarchy. Case is not significant, and name can
match either the class variable name or the class name. The default is core.

-variable Identify widgets by the names of the class-record variables rather than by the class name given in the
variable. This is useful for distinguishing subclasses that have the same class name as their
superclasses.

See Also
editres, X utilities
COHERENT Lexicon: printf()

Notes
Copyright 1989, Massachusetts Institute of Technology.

listres was written by Jim Fulton of the MIT X Consortium.

maze — X Client
Create and solve a random maze
maze [-S] [-r] [-geometry geometry] [-display display]

maze creates a ‘‘random’’ maze, and then solves it on its own. It recognizes the following command-line options:

-display host[:server][.screen]
Display the client’s window on screen number screen of server on host.

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of the
window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

LEXICON

70 listres — maze

-r Simulate reverse video by exchanging the foreground and background colors.

-S Full-screen window: Fill the screen with the maze window.

Clicking the left mouse button clears the window and restarts maze. Clicking the middle mouse button toggles the
program: the first click tells maze to stop, and the second click tells it to continue. Finally, clicking the right
mouse button kills maze.

See Also
puzzle, X clients, xgas, xtetris

Notes
maze insists on playing by itself — you cannot try to solve the maze on your own.

Copyright 1988 by Sun Microsystems, Inc. Mountain View, CA.

maze was written by Richard Hess of Consilium, and Dave Lemke and Martin Weiss of Sun MicroSystems.

mkdirhier — X Utility
Make a directory hierarchy
mkdirhier directory ...

The X utility mkdirhier creates each directory. Unlike the COHERENT command mkdir, mkdirhier creates any of
the parent directories of directory if do not exist.

See Also
X utilities
COHERENT Lexicon: mkdir

mkfontdir — X Utility
Create file fonts.dir from directory of font files
mkfontdir [directory ...]

The X utility mkfontdir constructs a table of font names. For every directory, it reads every font file and
constructs a font name for the font in that file. mkfontdir derives the font name from the property FONT within
the font file, or, if the file contains no such property, from name of the font file stripped of its suffix. mkfontdir
writes the name of each font and the file that contains into file fonts.dir in directory.

The kinds of font files that mkfontdir reads depends on configuration parameters, but typically include PCF fonts
(suffix, .pcf), SNF fonts (suffix, .snf), and BDF fonts (suffix, .bdf). If a font exists in multiple formats, mkfontdir
first chooses PCF, then SNF, and finally BDF.

Scalable Fonts
Because scalable-font files do not usually include the X font name, you must edit by hand the file fonts.dir in a
directory that contains such fonts, to include the appropriate entries for these fonts. However, when you run
mkfontdir, it will erase all of those additions, so be careful.

Font Name Aliases
Both the X server and the font server look for files fonts.dir and fonts.alias in each directory in the font path each
time it is set.

The file fonts.alias, which can be put in any directory of the font path, maps new names to existing fonts, and
should be edited by hand. The format is straightforward: two columns separated by white space, first of which
contains aliases and the second of which contains font-name patterns.

When you use a font alias, the X server looks through each font directory in turn, and searches in the normal
manner for the name the alias references. This means that the aliases need not mention fonts in the same
directory as the alias file.

To embed white-space in either name, simply enclose them in quotation marks. To embed a literal quotation mark
(or any other character), precede it with backslash ‘\’. For example:

"magic-alias with spaces" "\"font\name\" with quotes"
regular-alias fixed

LEXICON

mkdirhier — mkfontdir 71

If the string FILE_NAMES_ALIASES stands alone on a line, each file-name in the directory (stripped of its suffix) is
used as an alias for that font.

See Also
fs, xset, X utilities

oclock — X Client
Display an analogue clock
oclock [options]

oclock is an X client that displays an analogue clock on the screen:

The clock’s time is set to the current system time, and is continually updated to show the current time.

oclock recognizes the following options:

-bd color Set the color of the border to color.

-bg color Set the color of the background to color.

-bw pixels Set the width of the border to pixels.

-display host[:server][.screen]
Display the clock on screen number screen of server on host system host.

-fg color Set the color of the foreground to color.

-geometry geometry
Set the geometry of the clock to geometry. The term ‘‘geometry’’ means the dimensions of the clock and
its location on the screen. geometry has the form width×height±xoffset±yoffset.

-hour color Set the color of the hour hand to color.

-jewel color Set the color of the ‘‘jewel’’ (the diamond-shaped spot that marks 12 o’clock) to color.

-minute color
Set the color of the minute hand to color.

-noshape Forbid the clock to reshape itself.

Colors
If you want your clock to be viewable in color, include the following in the #ifdef COLOR section you read with
xrdb:

*customization: -color

This causes oclock to pick up the colors in the color-customization file /usr/X11/lib/app-defaults/Clock-color.
Below are the default colors:

Clock*Background: grey
Clock*BorderColor: light blue
Clock*hour: yellow
Clock*jewel: yellow
Clock*minute: yellow

LEXICON

72 oclock

See Also
X clients, xclock

Notes
Unlike the X client xclock, oclock uses a round window.

oclock was written by Keith Packard of the MIT X Consortium.

puzzle — X Client
The X scrambled-number game
puzzle [-option ...]

The X client puzzle implements one of those maddening scrambled-number puzzles. The puzzle is divided into 16
squares: one is blank, and the other 15 are numbered, one through 15. The point of the game is to unscramble
the numbered squares, so they are in numeric order, from top to bottom and left to right, as follows:

Clicking the small, square button at the top left of the puzzle scrambles the squares into random order. To move a
numbered square, click on it; the square slides into the empty square. When you give up trying to solve the
puzzle, click the small, square button at the top right of the puzzle; puzzle then unscrambles the puzzle
automatically — just to prove how much smarter it is than the average user.

puzzle recognizes the following command-line options:

-bd color Set the color of the border to color.

-bg color Set the color of the background to color.

-bw pixels Set the width of the border to pixels.

-display host[:server][.screen]
Display the client’s window on screen number screen of server on host system host.

-fg color Set the color of the foreground to color.

-fn font Use font in the display.

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of
the window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

-picture file
Build the puzzle from the image in file, instead of numbered tiles. file must be the special puzzle
picture format. The X client xgrabsc (which is not included in this package) can ‘‘grab’’ images of
windows and store them in the puzzle format, for use with puzzle. Note that there is a strict limit on
the size of image that puzzle can use.

-rv Simulate reverse video by exchanging the foreground and background colors.

-xrm resourcestring
Use resourcestring to define a resource.

LEXICON

puzzle 73

See Also
maze, X clients, xgas, xtetris

resize — X Utility
Set environmental variables to show window size
resize [-cu]

The X utility resize generates a shell script that resets the environmental variables COLUMNS and ROWS to reflect
the dimensions of the window within which it was run.

resize recognizes the following options:

-c Generate a script for the C shell, regardless of the shell you are using. Note that COHERENT does include the
C shell, although one can be obtained from a third-party source.

-u Generate a script for the Bourne shell, regardless of the shell you are using.

See Also
X utilities, xterm

Notes
Copyright 1984, 1985 by Massachusetts Institute of Technology.

Most COHERENT screen-oriented applications assume that the size of the screen is 24 rows by 80 columns. This
will change gradually in the future; but at present, do not expect this command do have much effect on the way
things work.

This client is by Mark Vandevoorte of MIT Project Athena and Edward Moy of the University of California, Berkeley.

showrgb — X Utility
Un-compile an RGB color-name data base
showrgb [database]

showrgb reads an RGB color-name data base compiled for use with the DBM data-base routines, converts it back
to source form, and prints the result onto standard output. The default data base is the one that X was built with,
and may be overridden on the command line. Specify the data base name without the suffix .pag or .dir.

Files
/usr/X11/lib/rgb.dir — Default data base.

See Also
xcmsdb, xstdcmap, X utilities

startx — X Utility
Initiate an X session
/usr/X11/bin/startx [[client] options ...] [-- [server] options ...]

The script startx is a front end to the application xinit. It provides a somewhat easier interface for running a
session of the X Window System. It typically is run with no arguments.

To determine which client to run, startx first looks for a file called $HOME/.xinitrc. If it cannot find that file, it
uses the file /usr/X11/lib/xinit/xinitrc. If command-line client options are given, they override this behavior.

$HOME/.xinitrc typically is a shell script that starts many clients according to the user’s preference. When this
shell script exits, startx kills the server and performs any other tasks needed to shut down a session. Most of the
clients that $HOME/.xinitrc starts should be run in the background. The last client should run in the
foreground; when it exits, the session exits. People often choose a session manager, window manager, or xterm as
the ‘‘magic’’ client.

Example
Below is a sample $HOME/.xinitrc that starts several applications and leaves the window manager running as the
‘‘last’’ application. Assuming that the window manager has been configured properly, the user then chooses the
Exit menu item to shut down X.

LEXICON

74 resize — startx

xrdb -load $HOME/.Xresources
xsetroot -solid gray &
xbiff -geometry -430+5 &
oclock -geometry 75x75-0-0 &
xterm -geometry +0+60 -ls &
xterm -geometry +0-100 &
xconsole -geometry -0+0 -fn 5x7 &
twm

Environment
startx sets the environmental variable DISPLAY, which names the display to which clients should connect.

Files
$(HOME)/.xinitrc — Clients to run
$(HOME)/.xserverrc — Server to run; the default is X
/usr/X11/lib/xinit/xinitrc — Name default clients
/usr/X11/lib/xinit/xserverrc — Name default server

See Also
xinit, X utilities

twm — X Utility
Tab Window Manager for the X Window System
twm [-display dpy] [-s] [-f initfile] [-v]

twm is a window manager for the X Window System. It provides title bars, shaped windows, several forms of icon
management, user-defined macro functions, click-to-type and mouse-driven keyboard focus, and user-specified
bindings for keys and mouse buttons.

The following describes how to ‘‘program’’ twm — that is, how to modify its appearance and its behavior by setting
variables, and by defining functions and macros. For a description of how to use twm interactively, see the tutorial
at the beginning of this manual. This tutorial also introduces many of the terms used in this article, and describes
twm’s in the grand hierarchy of the X Window System.

Invoking twm
To begin, twm usually is started by the X utility xinit. When launched by xinit, twm frequently is executed in the
foreground as the last client named in the file $HOME/.xinitrc. When run this way, exiting twm terminates the X
session.

When twm opens a window for an application, it surrounds the window with a ‘‘frame’’ that has special border and
a title bar at the top. The following shows the window for the X client xeyes:

The top of the window has a title bar , which displays the name of the program, and three screen buttons. The
following describes the buttons from left to right:

LEXICON

twm 75

• The leftmost button, which has a bullet in it, ‘‘iconifies’’ the program: when you click it, the window
disappears from the screen and its icon at the top of the screen displays the X logo. To redraw the window on
the screen, click on its icon.

• The second button from the left, which displays displays a stylized capital ‘D’, controls a menu for modifying
aspects of the window. When you click on this button, a drop-down menu appears that has the following
entries:

(Iconify)

Iconify the window. This is identical to clicking on the leftmost button.

(Lower)If this window overlaps with one or more other windows, this option puts this window in the
background below the overlapping windows.

(Move) Move the window. An outline of the window appears, which you can drag to another position on the
screen. When you release the left mouse button, twm re-draws the window in its new position.

(Raise)If this window overlaps with one or more other windows, raise this to the foreground atop the other
windows.

(Refresh)

Re-draw the window, to eliminate ‘‘garbage’’ that may have appeared on the screen.

(Resize)

Resize the window: twm draws an outline of the window; by dragging the mouse, you can change the
size of the window. Note that the size of the window does not change until the you drag the mouse
cursor past the current border of the window; therefore, if you want to make the window smaller, first
stretch the window larger, then shrink it.

(Applications)

Display the Applications menu, the same menu you see if you click the left mouse button while the
mouse cursor is not in any application window.

(Properties)

Display a sub-menu that has three entries: (Autoraise),(Focus),and (Unfocus).Selecting an entry
from the sub-menu toggles the corresponding property of the window.

Twm Operations
Display the Operations menu, the same menu you see if you click the right mouse button while the
mouse cursor is not in any application window.

(Info) Display a pop-up window that gives the geometry of the window, plus other information.

(Kill_Program)

Invoke the twm function f.destroy, which kills an application. This function is described below.

(Close_Window)

Invoke the twm function f.delete, which closes the current window. If you close all of an
application’s windows, the application dies gracefully. This function, which is less violent than
f.destroy, is described below.

• The rightmost button, which displays four nested boxes, lets you move the window.

In addition, clicking on the title bar itself, apart from the three buttons, lets you move the window.

For details on how to modify the appearance of the title bar, see below for the description of the variable
ShowIconManager and of the function f.showiconmgr.

When a client creates a new window, twm honors any size and location information, usually requested through the
command-line option -geometry, or the application’s resources. If the user supplies no location or size when he
invokes the application, twm displays an outline of the window’s default size, its title bar, and lines that divide the
window into a 3×3 grid that tracks the mouse cursor. Clicking the left mouse button fixes the window at the
current position and give it the default size. Pressing the middle mouse button (or both mouse buttons, should the
mouse have only two buttons) and dragging the outline gives the window its current position but lets you resize the
sides as described above. Clicking the right mouse button tells twm to give the window its current position but
make it long enough to touch the bottom the screen.

LEXICON

76 twm

Options
twm recognizes the following command-line options:

-display dpy
Specify the display to use. Under COHERENT X, twm recognizes only the default display.

-f filename
Name the start-up file to use. By default, twm uses file $HOME/.twmrc. If no such file exists, it uses file
/usr/X11/lib/twm/start.twmrc.

-s Manage only the default display, as specified by option -display or by the environmental variable DISPLAY.
By default, twm attempts to manage all displays under a given server.

-v Verbose: tell twm to print error messages whenever an unexpected X error occurs. This can be useful
when debugging an applications, but can be distracting in regular use.

Customization
When twm comes up, it reads the following start-up files, in the order in which the appear here:

$HOME/.twmrc
This gives your personal start-up file on systems that have only one screen.

/usr/X11/lib/twm/system.twmrc
If it does not find preceding file, twm reads this file for a default configuration. You can tailor this file to
give novice users a default configuration.

If you want to customize twm to suit your tastes, copy file /usr/X11/lib/twm/system.twmrc into your home
directory, rename it .twmrc, and modify it as you like. You can, for example, change the default colors used on the
windows, add or delete entries in twm’s pop-up menus, or change the options on the programs that the menus
invoke. The tutorial Using X Windows, earlier in this manual, introduces how to modify this file.

If it finds neither of these start-up files, twm uses the built-in defaults described above. The only resource used by
twm is bitmapFilePath, which gives a colon-separated list of directories to search when looking for bit-map files.

A start-up file contains the following classes of specifications:

Variables
These specifications come first in a start-up file. They describe fonts, colors, cursors, border widths, icon
and window placement, highlighting, autoraising, layout of titles, jumping the cursor (or ‘‘warping’’), and
use of the icon manager.

Bindings
These specifications usually come in the start-up file after the Variables specifications. They specify the
functions to be invoked when keyboard and mouse buttons are pressed in windows, icons, titles, and
frames.

Menus These specifications give any user-defined menus. These menus contain functions to be invoked or
commands to be executed.

Variable names and keywords are case-insensitive. Strings must be surrounded by quotation marks, and are case-
sensitive. A pound sign ‘#’ outside of a string tells twm to treat the rest of the line as a comment.

The following three sections detail these classes of specifications.

Variables
Many aspects of twm’s user interface are controlled by variables that you can set at the beginning of a start-up file.
Some variables are Boolean — that is, the option a variable controls is turned on if that variable is present, and is
turned off if it is absent. Other options require keywords, numbers, strings, or lists of all of these.

Some variables can take a list of options or arguments that are enclosed within braces; items within a list are
separated by white space or newlines. For example:

AutoRaise { "xclock" "XTerm" }

or

LEXICON

twm 77

AutoRaise
{

"xclock"
"XTerm"

}

When twm searches a variable that contains a list of strings that represent windows (e.g., to determine whether to
enable AutoRaise, as shown above), the string must exactly match the window’s name (given by the window
property WM_NAME), or its resource or class name (both given by the window property WM_CLASS). The above
example turns on AutoRaise for all windows named xclock and all windows of class XTerm.

A string argument that is interpreted as a file name (as with the resources Pixmaps, Cursors, and IconDirectory)
is prefixed by your home directory (as given by the environmental variable HOME) if its first character is a tilde ‘~’.
If, however, its first character is a colon ‘:’, twm assumes that the name refers to one of the internal bit-maps used
to create the default title bars symbols, that is, :xlogo or :iconify (both hold the X logo used within the (iconify)

button), :resize (the nested squares used within the (resize)button), and :question (the question mark used in
place of non-existent bit-map files).

You can set the following variables at the beginning of a start-up file:

AutoRaise { win-list }
Raise every window automatically whenever the mouse cursor enters it. This action can be enabled or
disabled interactively on an individual window by using the function f.autoraise.

AutoRelativeResize
When you size or resize a window, twm by default waits for the mouse cursor to cross an edge of the
window before it begins the resizing operation. Command AutoRelativeResize turns off this default
behavior. Instead, moving the mouse cursor automatically shifts the nearest edge or edges by the same
amount. This lets you resize windows that extend past the edge of the screen. This option is particularly
useful for people who like the press-drag-release method of sweeping out the size of a window.

BorderColor string [{ wincolorlist }]
Set the default color of the border drawn around every non-iconified window. This variable can be given
only within a Color or Monochrome list. The optional wincolorlist lists pairs of windows and colors, with
the given window being assigned the corresponding color. For example:

BorderColor "gray50"
{

"XTerm" "red"
"xclock" "green"

}

The default border color is black.

BorderTileBackgroundstring [{ wincolorlist }]
Set the default background color in the gray pattern used in unhighlighted borders. It is used only if
NoHighlight has not been set, and it can be given only within a Color or Monochrome list. wincolorlist
sets the color for specific windows, as described above for BorderColor. The default color is white.

BorderTileForeground string [{ wincolorlist }]
Exactly like BorderTileBackground, described above, except that it sets the foreground color rather than
the background color. The default color is black.

BorderWidth pixels
Set the width, in pixels, of the border that surrounds a window frame. This variable applies to every client
has not set the variable ClientBorderWidth, and to windows that twm creates (e.g., the icon manager).
The default width is two pixels.

ButtonIndent pixels
Set the amount, in pixels, by which title buttons are indented on all sides. Positive values make the
buttons smaller than the window text and highlight area, so they stand out. Setting this and the variable
TitleButtonBorderWidth to zero makes title buttons as tall and wide as possible. The default is one pixel.

ClientBorderWidth
Set the width of the border of a window’s frame to the width of the window’s initial border, rather than to
the value of BorderWidth.

LEXICON

78 twm

Color { colors-list }
Set the colors to use on polychromatic displays. colors-list consists of the following color variables and
their values:

DefaultBackground
DefaultForeground
MenuBackground
MenuForeground
MenuTitleBackground
MenuTitleForeground
MenuShadowColor

Each of the following color variables can take a list of pairs of window names and colors, thus letting you
assign specific colors to specific windows. For details, see the description of the variable BorderColor,
above:

BorderColor
IconManagerHighlight
BorderTitleBackground
BorderTitleForeground
TitleBackground
TitleForeground
IconBackground
IconForeground
IconBorderColor
IconManagerBackground
IconManagerForeground

For example:

Color
{

MenuBackground "gray50"
MenuForeground "blue"
BorderColor "red" { "XTerm" "yellow" }
TitleForeground "yellow"
TitleBackground "blue"

}

All of these color variables may also be specified for the variable Monochrome, thus letting you use the
same initialization file for both color and monochrome displays.

For a list of recognized colors, see the file /usr/X11/lib/rgb.txt.

ConstrainedMoveTime milliseconds
Set the time interval during which two button clicks begin a constrained-move operation. Double-clicking
within this period of time when invoking f.move causes the window to move only horizontally or vertically.
Setting this variable to zero disables constrained moves. The default is 400 milliseconds.

Cursors { cursor-list }
Set the glyphs that twm uses for mouse cursors. Each cursor can be defined either from the cursor font
or from two bit-map files. Shapes from the cursor font can be specified directly, as follows:

cursorname "string"

where cursorname is one of the cursor names given below, and string is the name of a glyph, as set in the
file /usr/X11/include/cursorfont.h (without the prefix XC_).

If the cursor is to be defined from a bit-map file, use the following syntax:

cursorname "image" "mask"

image and mask name the files that contain, respectively, the glyph image and mask in bit-map form. (For
details on bit-mapped images, see the Lexicon entry for the X client bitmap). The cursor bit-map files are
located in the same manner as icon bit-map files.

LEXICON

twm 79

The following gives the default cursor definitions:

Cursors
{

Frame "top_left_arrow"
Title "top_left_arrow"
Icon "top_left_arrow"
IconMgr "top_left_arrow"
Move "fleur"
Resize "fleur"
Menu "sb_left_arrow"
Button "hand2"
Wait "watch"
Select "dot"
Destroy "pirate"

}

For a table that shows available cursor shapes, see the entry in this manual for the X program xfd.

DecorateTransients
Give title bars to transient windows (that is, windows that contain the property WM_TRANSIENT_FOR). By
default, transient windows are not reparented.

DefaultBackground string
Set the background color used in the sizing and information windows. The default is white.

DefaultForeground string
Set the foreground color used in the sizing and information windows. The default is black.

DontIconifyByUnmapping { win-list }
List the windows not to be iconified by simply unmapping the window (as is the case if the variable
IconifyByUnmapping has been set). This variable often is used to force some windows to be treated as
icons whereas other windows are handled by the icon manager.

DontMoveOff
Do not let windows be moved off the screen. The function f.forcemove overrides this function.

DontSqueezeTitle [{ win-list }]
Do not squeeze title bars, as described below for the variable SqueezeTitle. If the optional list of windows
is supplied, only the windows named therein are stopped from being squeezed.

ForceIcons
The icon pixel maps specified in the variable Icons, described below, should override any client-supplied
pixel maps.

FramePadding pixels
Set the gap between the title-bar decorations (the button and text) and the window’s frame. The default is
two pixels.

IconBackground string [{ win-list }]
Set the background color of icons. It can be specified only within a Color or Monochrome list. The
optional wincolorlist lets you set the color for specific windows, as described above for BorderColor. The
default color is white.

IconBorderColor string [{ win-list }]
Set the color of the border of icon windows. It can be specified only inside of a Color or Monochrome list.
The optional wincolorlist lets you set the color for specific windows, as described above for BorderColor.
The default color is black.

IconBorderWidth pixels
Set the width, in pixels, of the border of icon windows. The default is two pixels.

IconDirectory string
Set the directory that twm should search if it cannot find a bit-map file in any of the directories named in
the resource bitmapFilePath.

IconFont string
Set the font to be used to display icon names within icons. The default font is variable.

LEXICON

80 twm

IconForeground string [{ win-list }]
Set the foreground color used when displaying icons. It can be specified only inside of a Color or
Monochrome list. The optional wincolorlist lets you set the color for specific windows, as described above
for BorderColor. The default color is black.

IconifyByUnmapping [{ win-list }]
Iconify windows by unmapping them, without trying to map any icons. This assumes that you will remap
the window through the icon manager, the function f.warpto, or the menu TwmWindows. If the optional
win-list is provided, only the windows it names will be iconified by unmapping. Windows that have set
both this and the option IconManagerDontShow may not be accessible if the user’s start-up file does not
contain a binding to the menu TwmWindows.

IconManagerBackgroundstring [{ win-list }]
Set the background color for icon-manager entries. It can be specified only within a Color or
Monochrome list. The optional wincolorlist lets you set the color for specific windows, as described above
for BorderColor. The default color is white.

IconManagerDontShow [{ win-list }]
The icon manager should not display any windows. If the optional win-list is given, only the windows
named therein will not be displayed. This variable is used to prevent windows that are rarely iconified
(such as xclock or xload) from taking up space in the icon manager. For example:

IconManagerDontShow
{

"Virtual Desktop"
"xbiff"
"xclock"
"xload"
"oclock"

}

IconManagerFont string
Set the font used when displaying icon-manager entries. The default font is variable.

IconManagerForegroundstring [{ win-list }]
Set the foreground color used when displaying icon-manager entries. It can be specified only within a
Color or Monochrome list. The optional wincolorlist lets you set the color for specific windows, as
described above for BorderColor. The default color is black.

IconManagerGeometrystring [columns]
Set the geometry of the icon-manager window. string gives the dimensions of the icon manager’s window,
in standard nomenclature. twm divides that window into columns pieces, which are scaled according to
the number of entries in the icon manager. The icon manager arranges its icons in rows, each of which
contains columns icons. The default number of columns is one.

IconManagerHighlightstring [{ win-list }]
Set the border color to be used when highlighting the icon manager entry that currently has the focus. It
can be set only inside of a Color or Monochrome list. The optional wincolorlist lets you set the color for
specific windows, as described above for BorderColor. The default color is black.

IconManagers { iconmgr-list }
This variable specifies a list of icon managers to create. Each item in iconmgr-list has the following format:

"winname" ["iconname"] "geometry" columns

where winname names the window to put into this icon manager, iconname names the icon manager
window’s icon, geometry is a standard geometry specification, and columns is the number of columns in
this icon manager as described by the variable IconManagerGeometry (described above). For example:

IconManagers
{

"XTerm" "=300x5+800+5" 5
"myhost" "=400x5+100+5" 2

}

In this example, a client whose name or class is XTerm will has an entry created in the XTerm icon
manager, and a client whose name is myhost will be put into the myhost icon manager.

LEXICON

twm 81

IconManagerShow { win-list }
The windows in win-list appear in the icon manager. When used with the variable
IconManagerDontShow, only the windows in this list appear in the icon manager.

IconRegion geomstring vgrav hgrav gridwidth gridheight
Set the area in the root window to place icons if the client provides no icon-location information.
geomstring is a quoted string that contains a standard geometry specification. If multiple IconRegion lines
are given, twm places icons put into succeeding icon regions when the first is full. vgrav controls whether
icons fill the region from top to bottom or vice versa; this must be either North or South. Likewise, hgrav
controls whether icons fill the region from left to right or vice versa; it must be either East or West. Icons
are laid out within the region on a grid whose cells are gridwidth pixels wide and gridheight pixels high.

Icons { win-list }
Name the bit-map files to use as icons for selected windows. For example:

Icons
{

"XTerm" "xterm.icon"
"xfd" "xfd_icon"

}

Windows that match XTerm are not iconified by unmapping, and use the icon bit-map in file xterm.icon.
If the variable ForceIcons is set, twm uses this bit-map even if the client has requested its own icon pixel
map.

InterpolateMenuColors
Interpolate menu-entry colors between the specified colors. Consider the example:

Menu "mymenu"
{

"Title" ("black":"red") f.title
"entry1" f.nop
"entry2" f.nop
"entry3" ("white":"green") f.nop
"entry4" f.nop
"entry5" ("red":"white") f.nop

}

The foreground colors for entry1 and entry2 are interpolated between black and white, and the
background colors between red and green. Likewise, the foreground color for entry4 is half-way between
white and red, and the background half-way between green and white.

MakeTitle { win-list }
List the windows on which a title bar should be placed. Use it to request titles on specific windows when
NoTitle has been set.

MaxWindowSize string
Set the maximum size for a window. This typically is used to prevent a window from becoming larger than
the screen. The default is 30000×30000.

MenuBackground string
Set the background color for menus. It can be used only within a Color or Monochrome list. The default
color is white.

MenuFont string
Set the font to use when displaying menus. The default is font variable.

MenuForeground string
Set the foreground color for menus. It can be used only within of a Color or Monochrome list. The
default color is black.

MenuShadowColor string
Set the color of the shadow behind a pull-down menu. It can be used only within a Color or Monochrome
list. The default color is black.

MenuTitleBackground string
Set the background color for f.title entries in a menu. It can be used only within a Color or Monochrome
list. The default color is white.

LEXICON

82 twm

MenuTitleForeground string
Set the foreground color for f.title entries in a menu. It can be used only within of a Color or
Monochrome list. The default color is black.

Monochrome { colors }
List the color assignments to make if the screen is monochrome. See the description of the variable
Colors, above.

MoveDelta pixels
Set the number of pixels the mouse cursor must move before the function f.move starts to work. Also, see
the description of the function f.deltastop, below. The default is zero pixels.

NoBackingStore
Menus should not use backing storage. This minimizes repainting of menus. This is typically used with
servers that can repaint faster than they can handle backing storage.

NoCaseSensitive
Ignore case when sorting icon names within an icon manager. This option is typically used with
applications that capitalize the first letter of their icon name.

NoDefaults
Do not supply the default title buttons and bindings. Use this option only if the start-up file contains an
entirely new set of bindings and definitions.

NoGrabServer
Do not grab the server when it pops up menus or moves opaque windows.

NoHighlight [{ win-list }]
Do not highlight the borders of a window when the mouse cursor enters it or its icon. If the optional win-
list is given, twm disables highlighting only for the windows named therein. When the border is
highlighted, twm draws it in the current BorderColor; when the border is not highlighted, twm stipples it
with a gray pattern constructed from the variables BorderTileForeground and BorderTileBackground.

NoIconManagers
Do not use an icon manager.

NoMenuShadows
Do not draw drop shadows behind menus. Use this with slower servers, because it speeds up menu
drawing at the expense of making the menu slightly harder to read.

NoRaiseOnDeiconify
Do not raise window to the foreground when the user de-iconifies it.

NoRaiseOnMove
Do not raise a window to the foreground when the user moves it. This lets windows slide underneath each
other.

NoRaiseOnResize
Do not raise a window to the foreground when the user resizes it. This allow windows to be resized
beneath each other.

NoRaiseOnWarp
Do not raise a window to the foreground when the function f.warpto jumps (or ‘‘warps’’) the mouse cursor
into it. If this option is set, jumping to an occluded window may force in the mouse cursor into the
occluding window instead the occluded window (which causes unexpected behavior with f.warpring).

NoSaveUnders
Do not request save-unders. This minimizes window repainting after menu selection. This variable
typically is set on displays that can repaint faster than they can handle save-unders.

NoStackMode [{ win-list }]
Ignore requests from client windows to change stacking order. If the optional win-list is given, twm ignores
requests only from the windows named therein. This typically is used to stop a ‘‘pushy’’ application from
relentlessly popping itself into the window’s foreground. Do not give title bars to windows. If the optional
win-list is given, only the windows named therein should not have title bars. Use the variable MakeTitle
with this option to force twm to draw title bars only in specific windows.

LEXICON

twm 83

NoTitleFocus
Do not set the keyboard-input focus to a window when the mouse cursor enters it. Normally, twm sets the
focus so that focus and key events from the title bar and icon managers are delivered to the application. If
you move the mouse cursor quickly and twm is slow to respond, it may direct input into the old window
instead of into the new. This option is typically used to prevent this ‘‘input lag’’ and to work around bugs
in older applications that have problems with focus events.

NoTitleHighlight [{ win-list }]
Do not display the highlight area of the title bar; this area indicates the window that has the input focus.
If the optional win-list is given, only the windows named therein are not highlighted. Setting this and the
variable SqueezeTitle substantially reduces the amount of screen space required by title bars.

OpaqueMove
The function f.move moves the window, instead of just an outline of it. This option is typically used on
fast displays (particularly if variable NoGrabServer is set).

Pixmaps { pixmaps }
List the pixel maps that define the appearance of various images. Each entry consists of two strings: the
first names the pixel map to set, and the second names the bit-map file. The following pixel maps may be
specified:

Pixmaps
{

TitleHighlight "gray1"
}

The default for TitleHighlight is an even stipple pattern.

RandomPlacement
When twm opens an application whose window has no specified geometry, it should drop the window into
a pseudo-random location instead of having the user drag an outline of the window to where she wants it.

ResizeFont string
Name the font to display in the dimensions window as twm resizes a window. The default font is fixed.

RestartPreviousState
Use the property WM_STATE on client windows to remember which windows should be iconified and
which should be left visible. This typically is used to regenerate the state the screen was in before the
previous window manager was shut down.

SaveColor { colors-list }
List the color assignments to be stored as pixel values in the root-window property
_MIT_PRIORITY_COLORS. A client may elect to preserve these values when it installs its color map. Note
that this mechanism is a way an for application to avoid the ‘‘technicolor’’ problem, whereby useful screen
objects (e.g., window borders and title bars) vanish when the window manager installs a program’s custom
colors. For example:

SaveColor
{

BorderColor
TitleBackground
TitleForeground
"red"
"green"
"blue"

}

This places on the root window three pixel values for borders and title bars, as well as the three color
strings, all taken from the default color map.

ShowIconManager
Display the icon manager’s window when the window manager comes up. This window can always be
brought up by invoking the function f.showiconmgr.

SortIconManager
Sort the entries in icon manager alphabetically, rather than by simply appending new windows to the end.

LEXICON

84 twm

SqueezeTitle [{ squeeze-list }]
Use the SHAPE extension to confine title bars to the screen space they need, rather than letting them
extend across the top of the window. The optional squeeze-list controls the location of the squeezed title
bar along the top of the window. It contains entries of the form:

"name" justification num denom

where name names a window, justification is left, center, or right, and num and denom are numbers that
specify a ratio that gives the relative position about which the title bar is justified. The ratio is measured
from left to right if the numerator is positive, and right to left if negative. A denominator of zero indicates
that the numerator should be measured in pixels. For convenience, the ratio 0/0 is the same as 1/2 for
center and -1/1 for right. For example:

SqueezeTitle
{

"XTerm" left 0 0
"xterm1" left 1 3
"xterm2" left 2 3
"oclock" center 0 0
"emacs" right 0 0

}

You can use the variable DontSqueezeTitle to turn off squeezing for selected titles.

StartIconified [{ win-list }]
Leave client windows as icons until the user explicitly de-iconifies them. If the optional win-list is given,
only the windows named therein begin life as icons. This option is useful for programs that do not support
the command-line option -iconic.

TitleBackground string [{ win-list }]
Set the background color for title bars. It can be specified only within a Color or Monochrome list. The
optional wincolorlist lets you set the color for specific windows, as described above for BorderColor. The
default color is white.

TitleButtonBorderWidth pixels
Give the width, in pixels, of a title button’s border. This is typically set to zero, to allow title buttons to
take up as much space as possible. The default is one.

TitleFont string
Name the font used when displaying window names in title bars. The default font is variable.

TitleForeground string [{ win-list }]
Name the foreground color to use in title bars. It can be specified only within a Color or Monochrome list.
The optional wincolorlist lets you set the color for specific windows, as described above for BorderColor.
The default color is black.

TitlePadding pixels
Give the distance between the various buttons, text, and highlight areas in the title bar. The default is
eight pixels.

UnknownIcon string
Name the bit-map file to be used as the default icon. This bit-map is used as the icon for every clients that
does not provide an icon bit-map and is not named in the Icons list.

UsePPosition string
Honor program-requested locations (given by the flag PPosition in the property WM_NORMAL_HINTS) in
the absence of a user-specified position. The argument string can be one of the following three values:

off Ignore the program-supplied position. This is the default.
on Use the position.
non-zero

Use the position if it is other than (0,0).

This option is for working around a bug in older toolkits.

WarpCursor [{ win-list }]
Warp the mouse cursor into a window when it is de-iconified. If the optional win-list is given, twm jumps
the cursor only into the windows named therein.

LEXICON

twm 85

WindowRing { win-list }
List the windows along which the function f.warpring cycles.

WarpUnmapped
Force function f.warpto to de-iconify a window when it jumps the mouse cursor into it. This typically is
used to create a key binding that pops up a window no matter where it is. The default is for f.warpto to
ignore iconified windows.

XorValue number
Set the value to use when drawing window outlines for moving and resizing. Set this to a value that
results in a variety of distinguishable colors when exclusive-OR’ed with the contents of a typical user’s
screen. Setting this variable to one often gives nice results if adjacent colors in the default color map are
distinct. By default, twm attempts to draw the temporary lines at the opposite end of the color map from
the graphics.

Zoom [count]
‘‘Zoom’’ a window when it is iconified or de-iconified. Whenever a window is iconified or de-iconified, twm
rapidly displays a sequence of gradually enlarging outlines that suggest the window’s movement to and
from its iconified state. count gives the number of outlines to draw; the default is eight.

The following variables must be set after the fonts have been assigned; tberefore, it is best to put them at the end of
the variables section:

DefaultFunction function
Execute function when twm receives a key or button event for which no binding is provided. This typically
is bound to f.nop, to f.beep, or to a menu that contains window operations.

WindowFunction function
Execute function when the user selects a window from menu TwmWindows. If this variable is not set,
TwmWindows is de-iconified and raised.

Bindings
After the variables have been set, your start-up file can have a section of bindings. These link functions to title
buttons, mouse buttons, and keys on the keyboard.

Title buttons can be added from the left or right side, and appear in the title bar from left-to-right, according to the
order in which they are specified. Key and mouse-button bindings can appear in any order.

A title-button’s specifications must name the pixel map to use in the button box and the function to invoke when
the user presses a mouse button within it. For example:

LeftTitleButton "bitmapname" = function

or

RightTitleButton "bitmapname" = function

bitmapname can name one of the built-in bit-maps (which are scaled to match TitleFont) by using the appropriate
colon-prefixed name, described above.

Key and mouse-button specifications give the modifiers that must be pressed, the parts of the screen over which
the mouse must be positioned, and the function to invoke when the event occurs. Keys are given as strings that
contain the appropriate keysym name; buttons are given as the keywords Button1 through Button5. For example:

"FP1" = modlist : context : function
Button1 = modlist : context : function

modlist is any combination of the following modifier names:

shift control lock
meta mod1 mod2
mod3 mod4 mod5

These can be abbreviated as follows:

s c l
m m1 m2
m3 m4 m5

LEXICON

86 twm

Each entry must be separated by a vertical bar ‘|’.

Likewise, context is any combination of the following variables:

window title icon
root frame iconmgr

Each of the above can be abbreviated. The entries must be separated by a vertical bar. The entry all combines all
of the above variables.

function is any of the functions described below.

For example, the following gives the bindings from the default start-up file:

Button1 = : root : f.menu "TwmWindows"
Button1 = m : window | icon : f.function "move-or-lower"
Button2 = m : window | icon : f.iconify
Button3 = m : window | icon : f.function "move-or-raise"
Button1 = : title : f.function "move-or-raise"
Button2 = : title : f.raiselower
Button1 = : icon : f.function "move-or-iconify"
Button2 = : icon : f.iconify
Button1 = : iconmgr : f.iconify
Button2 = : iconmgr : f.iconify

A user who wanted to manipulate windows from the keyboard could use the following bindings:

"F1" = : all : f.iconify
"F2" = : all : f.raiselower
"F3" = : all : f.warpring "next"
"F4" = : all : f.warpto "xmh"
"F5" = : all : f.warpto "emacs"
"F6" = : all : f.colormap "next"
"F7" = : all : f.colormap "default"
"Left" = m : all : f.backiconmgr
"Right" = m | s : all : f.forwiconmgr
"Up" = m : all : f.upiconmgr
"Down" = m | s : all : f.downiconmgr

In the above example, the keys Left, Right, Up, and Down invoke, respectively, the keys (æ), (Æ), (ª), and (º).
twm provides many more window-manipulation primitives than can be conveniently stored in a title bar, menu, or
set of key bindings. Although a small set of defaults are supplied (unless the NoDefaults is specified), most users
will want to bind their most common operations to key and button strokes. To do this, twm associates names with
each of the primitives and provides user-defined functions for building higher-level primitives, and menus for
interactively selecting among groups of functions.

A user-defined function consists of the name by which it is referenced in calls to f.function, and a list (enclosed in
braces) of the functions to execute when this function is invoked. For example:

Function "move-or-lower" { f.move f.deltastop f.lower }
Function "move-or-raise" { f.move f.deltastop f.raise }
Function "move-or-iconify" { f.move f.deltastop f.iconify }
Function "restore-colormap" { f.colormap "default" f.lower }

You must use the new function’s name in f.function exactly as it appears in its specification.

In the following descriptions, if the function is said to operate on the selected window but is invoked from a root
menu, the mouse cursor changes to the Select cursor and twm executes the function on the next window to
receive a mouse-button click:

! string This is an abbreviation for f.exec string.

f.autoraise Toggle whether to raise the selected window when the mouse cursor enters it. See the description of
the variable AutoRaise, above.

f.backiconmgr
Warp the mouse cursor into the previous column in the current icon manager. If necessary, wrap
back to the previous row.

LEXICON

twm 87

f.beep Sound the bell.

f.bottomzoom
This function resembles the function f.fullzoom, but resizes the window to fill only the bottom half of
the screen.

f.circledown
Lower the top-most window that occludes another window.

f.circleup Raise the bottom-most window that is occluded by another window.

f.colormap string
Rotate the color maps (obtained from the property WM_COLORMAP_WINDOWS on the window) that
twm displays when the mouse cursor is in this window. string can be one of the following values:
next, prev, and default. Note that, in general, the installed color map is determined by the keyboard
focus. A mouse-driven keyboard focus installs a private color map when it enters the window that
owns that color map. Using the click-to-type model, twm does not install a private color map until the
user presses a mouse button on the target window.

f.deiconify De-iconify the selected window. If the window is not an icon, this function does nothing.

f.delete Sends the message WM_DELETE_WINDOW to the selected window if the client application has
requested it through the window property WM_PROTOCOLS. The application should respond to the
message by removing the indicated window. If the window has not requested WM_DELETE_WINDOW
messages, twm beeps to indicate that the user should choose an alternative method. Note this is very
different from the behavior of the function f.destroy. The intention here is to delete one window, not
necessarily the entire application.

f.deltastop Abort a user-defined function if the mouse cursor moves more than MoveDelta pixels. See the example
definition given for function move-or-raise at the beginning of the section.

f.destroy Tell the X server to close the display connection of the client that created the selected window. This
should only be used as a last resort for shutting down runaway clients. For a kinder, gentler approach
to terminating applications, see the description of function f.delete, above.

f.downiconmgr
Warp the mouse cursor to the next row in the current icon manger. Wrap to the beginning of the next
column, if necessary.

f.exec string
Pass string to /bin/sh to execute. In multiscreen mode, if string starts a new X client without giving a
display argument, the client appears on the screen from which this function was invoked.

f.focus Toggle the keyboard focus of the server into the selected window; if necessary, change the focus rule
from mouse-driven. If the selected window is already focused, execute function f.unfocus.

f.forcemove
This function resembles function f.move, except that it ignores the variable DontMoveOff.

f.forwiconmgr
Warp the mouse cursor to the next column in the current icon manager. Wrap to the beginning of the
next row if necessary.

f.fullzoom Resize the selected window to the full size of the display. If the window is already zoomed, restore it to
its original size.

f.function string
Executes the user-defined function string.

f.hbzoom This is a synonym for f.bottomzoom.

f.hideiconmgr
Unmap the current icon manager.

f.horizoom This function resembles function f.zoom, except that it resizes the selected window to the full width of
the display.

LEXICON

88 twm

f.htzoom This is a synonym for f.topzoom.

f.hzoom This is a synonym for f.horizoom.

f.iconify Iconify the selected window or icon. If the selected window or icon already is iconified, then de-iconify
it.

f.identify Displays the selected window’s name and geometry. Clicking the mouse or pressing a key in the
window erases the displayed information.

f.lefticonmgr
This function resembles function f.backiconmgr, except that wrapping does not change rows.

f.leftzoom This function resembles function f.bottomzoom, except that it resizes the selected window only to the
left half of the display.

f.lower Lower the selected window.

f.menu string
Invoke the menu string. You can build cascaded menus by nesting calls to f.menu.

f.move Drag an outline of the selected window (or the window itself, should variable OpaqueMove be set) until
the user releases the invoking button on the mouse. Double-clicking within the number of
milliseconds given by variable ConstrainedMoveTime jumps the mouse cursor to the center of the
window and constrains the move to be either horizontal or vertical, depending upon which grid line is
crossed. To abort a move, press another button before releasing the first button.

f.nexticonmgr
Warp the mouse cursor to the next icon manager that contains any windows on the current or any
succeeding screen.

f.nop Do nothing. This function typically is used with the variables DefaultFunction and
WindowFunction, and to introduce blank lines in menus.

f.previconmgr
Warp the mouse cursor to the previous icon manager that contains any windows on the current or
preceding screens.

f.quit Restore the window’s borders and exit from twm. If twm is the first client invoked from xdm, this
function resets the server.

f.raise Raise the selected window.

f.raiselower
Raise the selected window to the top of the stacking order if it is occluded by any windows. If the
window is not occluded, lower it.

f.refresh Refresh all windows.

f.resize Display an outline of the selected window. Crossing a border (or setting the variable
AutoRelativeResize) stretches the outline like a rubber band until the user releases the invoking
button on the mouse. To abort a resize, press another mouse button before you release the first.

f.restart Kill and restart twm.

f.righticonmgr
This function resembles the function f.nexticonmgr, except that wrapping does not change rows.

f.rightzoom
This function resembles the function f.bottomzoom, except that the selected window is resized only to
the right half of the display.

f.saveyourself
Send the message WM_SAVEYOURSELF to the selected window if it has requested the message in its
window property WM_PROTOCOLS. Clients that accept this message are expected to checkpoint all
states associated with the window and update the property WM_COMMAND, as specified in the
ICCCM. If the selected window has not selected for this message, beep.

LEXICON

twm 89

f.showiconmgr
Map the current icon manager.

f.sorticonmgr
Sort the entries in the current icon manager alphabetically. See the description of the variable
SortIconManager, above.

f.source file
Read and parse file as a twm startup file. You should use this function only to re-build your pull-
down menus. None of the twm variables change.

f.title Provide a centered, unselectable item in a menu definition. Do not use it in any other context.

f.topzoom This function resembles function f.bottomzoom, except that it resizes the selected window only to the
top half of the display.

f.twmrc Re-read the startup customization file. This function resembles function f.source, except that you are
not required to name the file that twm is to read.

f.unfocus Reset the focus to mouse-driven. This should be used when a focused window is no longer desired.

f.upiconmgr
Warp the mouse cursor to the previous row in the current icon manager. If necessary, wrap to the last
row in the same column.

f.version Display a window that shows the version of twm that you are using. The window remains displayed
until you either press mouse button, you move the mouse cursor from one window to another.

f.vlzoom This is a synonym for function f.leftzoom.

f.vrzoom This is a synonym for function f.rightzoom.

f.warpring string
Jump (or ‘‘warp’’) the mouse cursor to the next or previous window. string indicates the direction in
which to jump: either next or prev. See the description of the variable WindowRing, above.

f.warpto string
Jump (or ‘‘warp’’) the mouse cursor to the window whose name or class matches string. If the window
is iconified, de-iconify it if the variable WarpUnmapped, or ignore it if that variable is not set.

f.warptoiconmgr string
Jump (or ‘‘warp’’) the mouse cursor from a window to that window’s entry in icon manager string. If
string is empty (i.e., ""), jump to the icon in the current icon manager.

f.warptoscreen string
Warp the mouse cursor to the screen string, which can be any of the following:

• A number (e.g., ‘‘0’’ or ‘‘1’’).
• The word next, which indicates the current screen plus one, skipping over any unmanaged

screens.
• The word back, which indicates the current screen minus one, skipping over any unmanaged

screens.
• The word prev, which indicates the last screen visited.

f.winrefresh
This function resembles the function f.refresh, except that it refreshes only the selected window.

f.zoom This function resembles the function f.fullzoom except that it changes only the height of the selected
window.

Menus
You can group one or more functions into a menu. The user can select interactively one of the menu’s entries;
when an entry is selected, twm executes it.

Menus come in two flavors: pop-up, when the menu is bound to a mouse button; and pull-down, when it is bound
to a title button.

A menu, as you define it, has the following syntax:

LEXICON

90 twm

Menu "menuname" [("forecolor":"backcolor")]
{

name1 [("fore":"back")] function1
name2 [("fore":"back")] function2

.

.

.
nameN [("foreN":"backN")] functionN

}

The keyword Menu tells twm that the following is a menu. This is followed by the name of the menu. You can
pass this name to the function f.menu (described above) to invoke this menu. Note that you must reproduce the
menu name exactly, matching both the case of every character and white space within the name (if any). The
name is followed by optional default foreground and background colors for each entry in the menu.

Then comes the body of the menu, which is enclosed between braces. The body of the menu consists of an
indefinite number of entries, one for each row in the menu. The field name give the name of the entry, as it
appears in the menu. The optional fields fore and back give the foreground and background colors to use with this
entry. These colors are used only on a color display. The default is to use the colors specified by the variables
MenuForeground and MenuBackground. Finally, the field function names the function (or functions) that twm is
to execute when the user selects that menu entry. This can include any user-defined functions or additional
menus.

The following gives an example menu, which invokes some X clients:

Menu "Applications" ("black":"lightseagreen")
{

"APPLICATIONS" ("black":"lightseagreen") f.title
"Font Select" ! "xfontsel &"
"XBiff" ! "xbiff &"
"XCalc" f.menu " Calculator "
"XClock" ! "xclock -chime -fg blue -update 1&"
"Xeyes" ! "xeyes -geometry 200x200+150+150 -fg red&"
"XLoad" ! "xload &"
"XLogo" ! "xlogo &"
"XTerm" ! "xterm -T ’BOURNE SHELL’ -n ’BOURNE SHELL’ -e sh &"
"XTetris" ! "xtetris &"

}

The menu is named Applications. The entries in the menu are given the default colors of green characters on a
black background.

The first entry in the menu calls the function f.title, which displays the menu’s title. This entry sets the title’s
colors to black characters on a green background, so it will stand out.

The entry XCalc calls the function f.menu to display another menu, in this case the one named Calculator. Note
that the quotations marks around the menu’s name includes white space; this is because the author of the menu
Calculator chose (for some reason) to embed white space in its name, and those spaces must be reproduced here.

The other entries invoke the function ‘!’, which (as noted above) is a synonym for the COHERENT command
/bin/sh. The text that follows names the command you want sh to execute (in each case, an X client), plus its
arguments. Each commands ends in an ‘&’, which tells sh to execute the client in the background. (If the
command were executed in the foreground, you would be stuck in this menu until you managed to kill the client
that command invoked.) Note that most X clients live in directory /usr/X11/bin; if the user who invoked twm
does not name this directory in her PATH, sh will not find the client and the command will fail.

A special menu named TwmWindows names all of the windows supplied by twm and its clients. Selecting an
entry tells twm to execute on that window the function defined by the variable WindowFunction. If
WindowFunction has not been set, twm de-iconifies and raises the window.

Icons
twm supports several ways to manipulate iconified windows. The common pixel map-and-text style may be laid
out by hand or automatically arranged, as described by the variable IconRegion. In addition, a terse grid of icon
names, called an icon manager, uses screen space more efficiently and lets the user navigate amongst windows
from the keyboard.

LEXICON

twm 91

An icon manager is a window that names windows. Each entry in the icon manager is a small rectangle that
contains the window’s name. When a window is iconified, the icon manager also displays the iconify symbol to
the left of the window’s name. By default, every client that you invoke is given an entry in the icon manager. You
can, however, exclude selected windows from the icon manager by naming them in the variable
IconManagerDontShow (described above).

When you move the mouse cursor into an entry in the icon manager, the icon manager also directs keyboard focus
to the corresponding window. By invoking the functions f.upiconmgr, f.downiconmgr, f.lefticonmgr, and
f.righticonmgr from the keyboard, you can move the input focus directly from the keyboard.

By default, clicking on an entry in the icon manager invokes the function f.iconify (described above). To change
the actions taken in the icon manager, use the the context iconmgr when you specify button and keyboard
bindings.

Environment Variables
twm reads the following environmental variables:

DISPLAY
Name the X server to use. It is also set during f.exec, so programs appear on the proper screen.

HOME Give the prefix for files that begin with a tilde, and for locating the twm start-up file.

Files
$HOME/.twmrc — Personalized configuration file
/usr/X11/lib/twm/system.twmrc— Default configuration file

See Also
X utilities, xdm, xinit, xrdb

Notes
Double clicking very quickly to obtain the constrained move function sometimes causes the window to move, even
though the mouse cursor is not moved.

If IconifyByUnmapping is on and windows are listed in IconManagerDontShow but not in
DontIconifyByUnmapping, they may be lost if they are iconified and no bindings are set to f.menu or f.warpto.

Portions copyright 1988 by Evans & Sutherland Computer Corporation; portions copyright 1989 Hewlett-
Packard Company and the Massachusetts Institute of Technology.

twm was written by Tom LaStrange of Solbourne Computer; Jim Fulton, Keith Packard, and Dave Sternlicht of the
MIT X Consortium; Steve Pitschke of Stardent Computer; and Dave Payne of Apple Computer.

viewres — X Utility
Graphical class browser for Xt
viewres [-option ...]

viewres displays a tree that show the hierarchy of widget classes of the Athena Widget Set. It can expand each
node in the tree to show the resources that the corresponding class adds (i.e., does not inherit from its parent)
when a widget is created.

viewres recognizes the following command-line options:

-bd color Set the color of the border to color.

-bg color Set the color of the background to color.

-bw pixels Set the width of the border to pixels.

-display host[:server][.screen]
Display the client’s window on screen number screen of server on host system host.

-fg color Set the color of the foreground to color.

-fn font Use font in the display.

LEXICON

92 viewres

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of
the window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

-rv Simulate reverse video by exchanging the foreground and background colors.

-top name Display widget name as the highest widget in the hierarchy. You can use this option to limit the
display to a subset of the tree. The default is Object.

-variable Display in each node the widget’s variable name (as declared in its header file) instead of its class
name. This can help you distinguish widget classes that have the same name (e.g., Text).

-vertical Display the tree from top to bottom on your screen, instead of from left to right (the default).

-xrm resourcestring
Use resourcestring to define a resource.

View Menu
You can invoke the following commands from viewres’s menu View to change the way it displays the widget tree:

(Show_Variable_Names)

Set the label on each node to the variable name used to declare the corresponding widget class. You can
also perform this operation via the translation SetLabelType(variable).

(Show_Class_Names)

Set the label on each node to the class name used when specifying a resource. You can also perform this
operation via the translation SetLabelType(class).

(Layout_Horizontal)

Display the tree from left to right on your screen. You can also perform this operation via the translation
SetOrientation(West).

(Layout_Vertical)

Display the tree from top to bottom on your screen. You can also perform this operation via the
translation SetOrientation(North).

(Show_Resource_Boxes)

Expand the selected nodes (see next section) to show the new widget and constraint resources. You can
also perform this operation via the translation Resources(on).

(Hide_Resource_Boxes)

Remove the resource displays from the selected nodes (usually to conserve space). You can also perform
this operation via the translation Resources(off).

Select Menu
To display the resources for one widget class, either move the mouse cursor to the corresponding node and click
the middle mouse button, or use the right mouse button to add the node to the selection list and then invoke entry
(Show_Resource_Boxes)from menu View. Because the left mouse button toggles the selection state of a node,
clicking on a selected node removes it from the selected list.

You can also use the following commands on the menu Select to collect nodes:

(Unselect_All)

Remove all nodes from the selection list. You can also perform this operation via the translation
Select(nothing).

(Select_All)

Add all nodes to the selection list. You can also perform this operation via the translation Select(all).

(Invert_All)

Invert the select status of all nodes: nodes that are unselected become selected, and selected nodes that
are selected become unselected. You can also perform this operation via the translation Select(invert).

(Select_Parent)

Select the immediate parents of all selected nodes. You can also perform this operation via the translation
Select(parent).

LEXICON

viewres 93

(Select_Ancestors)

Recursively select all parents of all selected nodes. You can also perform this operation via the translation
Select(ancestors).

(Select_Children)

Select the immediate children of all selected nodes. You can also perform this operation via the translation
Select(children).

(Select_Descendants)

Recursively select all children of all selected nodes. You can also perform this operation via the translation
Select(descendants).

(Select_Has_Resources)

Select all nodes that add new resources (regular or constraint) to their corresponding widget classes. You
can also perform this operation via the translation Select(resources).

(Select_Shown_Resource_Boxes)

Select all nodes whose resource boxes are currently expanded (usually so that they can be closed by Hide
Resource Boxes). You can also perform this operation via the translation Select(shown).

Actions
viewres lets you perform the following actions:

Quit() Exit from viewres.

SetLabelType(type)
Set what the node labels display. type can be either class or variable.

SetOrientation(direction)
Plant the root of the tree onto the direction edge of your screen. viewres then grows the tree toward the
opposite edge of the screen. direction can be one of the following: West, North, East, or South.

Select(what)
Select the indicated nodes. what indicates the nodes to select, as follows: nothing, invert, parent,
ancestors, children, descendants, resources, or shown. Each is describe in the section on the View
menu, above.

Resources(op)
Change the state of the resource boxes in the selected nodes. op can be on, off, or toggle. If invoked from
within one of the nodes (through the keyboard or pointer), only that node is affected.

Widget Hierarchy
Resources may be specified for the following widgets. variable-name is the widget variable name of each node:

Viewres viewres
Paned pane

Box buttonbox
Command quit

MenuButton view
SimpleMenu viewMenu

SmeBSB layoutHorizontal
SmeBSB layoutVertical
SmeLine line1
SmeBSB namesVariable
SmeBSB namesClass
SmeLine line2
SmeBSB viewResources
SmeBSB viewNoResources

LEXICON

94 viewres

MenuButton select
SimpleMenu selectMenu

SmeBSB unselect
SmeBSB selectAll
SmeBSB selectInvert
SmeLine line1
SmeBSB selectParent
SmeBSB selectAncestors
SmeBSB selectChildren
SmeBSB selectDescendants
SmeLine line2
SmeBSB selectHasResources
SmeBSB selectShownResources

Form treeform
Porthole porthole

Tree tree
Box variable-name

Toggle variable-name
List variable-name

Panner panner

See Also
appres, editres, listres, X utilities

Notes
Copyright 1990, Massachusetts Institute of Technology.

viewres was written by Jim Fulton of the MIT X Consortium.

X — X Utility
X Window System server
X [:displaynumber] [-option ...] [ttyname]

X is the generic name for the X Window System server. It usually is a link to the appropriate server binary for
driving the screen on your machine: /usr/X11/bin/X386color for VGA color, or /usr/X11/bin/X386mono for
monochrome graphics systems.

Starting the Server
To launch the server, invoke the script /usr/X11/bin/startx. This script in turn invokes the X utility xinit with
the appropriate configuration files. When the X server starts up, it takes over the console. You cannot log into the
console while the server is running, although you can use the X client xterm to create a terminal within a window
on your screen, and so give commands to your machine.

Network Connections
The X server by design supports connections via TCP/IP, DECnet, and the local UNIX domain. However, the
COHERENT implementation of X does not yet support networking. The server at this point can interact only with
one display: your machine’s console.

Options
All X servers accept the following command-line options. Note that the ones that apply to networking do not yet
apply to the COHERENT implementation of X, and therefore you should ignore them. You can use the X utility xset
to change many of these parameters while X is in operation:

-a number Set pointer acceleration, i.e., the ratio of how much the mouse cursor moves to how much the user
actually moved the mouse.

-ac Disable host-based access-control mechanisms. This enables access by any host, and permits any
host to modify the access-control list. Use this option with extreme caution. It exists primarily for
running test suites remotely.

-auth file file contains a collection of authorization records used to authenticate access.

bc Disable certain kinds of error checking. This re-enables certain bugs that have been fixed in this
release of the server, to support applications that need those bugs to run correctly.

LEXICON

X 95

-bs Disable backing storage on all screens.

-c Turn off key-click.

c volume Set the volume of the key-click. volume is a percent of the maximum volume.

-cc class Set to class the visual class for the root window of color screens. The class numbers are as specified
in the X protocol. Not every server obeys this option.

-co filename
Read the RGB color data base from filename. The default is /usr/X11/lib/rgb.txt.

-dpi resolution
Set the resolution of the screen, in dots per inch. Use this option when the server cannot derive the
screen size from the hardware.

-f volume Set the volume of the bell. This is a percent of the maximum volume.

-fc cursorfont
Set the font for the mouse cursor. The default is cursor.

-fn font Use font as the default text font.

-fp fontPath Set the search path for fonts. This path is a comma-separated list of directories that the X server
searches for font data bases.

-help Print a usage message.

-I Ignore all remaining command-line arguments.

-logo Turn on display of the X Window System’s logo in the screen saver. This cannot be changed from
within a client.

nologo Do not display the X Window System’s logo in the screen saver. This cannot be changed from within a
client. This is the default.

-p minutes Set to minutes the screen-saver’s time of cycling its pattern.

-probeonly Interrogate the video card to discover its chip set and amount of video RAM, but do not bring up X.

-r Turn off auto-repeat.

r Turn on auto-repeat.

-s minutes Invoke the screen-saver minutes after receiving the last input from the keyboard or mouse.

-su Disable save-under support on all screens.

-t number Set the threshhold of mouse-cursor (pointer) acceleration, in pixels: that is, let acceleration take effect
after the user has moved the mouse cursor number pixels.

-to seconds Set the default connection’s timeout seconds.

v When the screen saver is invoked, turn off video.

-v When the screen saver is invoked, leave video on.

-wm Force the default backing-store of all windows to be WhenMapped. This is one way to get backing-
store to apply to all windows.

-x extension
Load extension at the time of initialization.

Security
The X server implements a simplistic authorization protocol, MIT-MAGIC-COOKIE-1, which uses data private to
authorized clients and the server. This is a trivial scheme: if the client passes authorization data that are the same
as those possessed by the server, it is allowed access. This scheme is worse than the host-based access control
mechanisms in environments with unsecure networks as it allows any host to connect, given that it has discovered
the private key; but in many environments, this level of security is better than the host-based scheme as it allows
access control per user instead of per host.

In addition, the server provides support for a DES-based authorization scheme, XDM-AUTHORIZATION-1, which

LEXICON

96 X

is more secure (given a secure key distribution mechanism). This authorization scheme can be used in
conjunction with XDMCP’s authentication scheme (XDM-AUTHENTICATION-1) or in isolation.

The authorization data are passed to the server in a private file named by the command-line option -auth. Each
time the server is about to accept the first connection after a reset (or when the server is starting), it reads this file.
If this file contains any authorization records, the local host is not automatically allowed access to the server, and
only clients which send one of the authorization records contained in the file in the connection setup information
will be allowed access.

The X protocol intrinsically does not have any notion of window operation permissions or place any restrictions on
what a client can do; if a program can connect to a display, it has full run of the screen. Sites that have better
authentication and authorization systems (such as Kerberos) might wish to make use of the hooks in the libraries
and the server to provide additional security models.

Signals
The X server attaches special meaning to the following signals:

SIGHUP
Close all existing connections, free all resources, and restore all defaults. It is sent by the display manager
whenever the main user’s main client (usually xterm or the window manager twm) exits. This forces the
server to clean up and prepare for its next invocation.

SIGTERM
Exit cleanly.

SIGUSR1
This signal is used quite differently from either of the above. When the server starts, it checks to see if it
has inherited SIGUSR1 as SIG_IGN instead of the usual SIG_DFL. In this case, the server sends SIGUSR1
to its parent process after it has set up the various connection schemes.

Fonts
Fonts usually are stored as individual files in directories. The X server can obtain fonts from directories or from
font servers. The list of directories and font servers the X server uses when trying to open a font is controlled by
the FontPath, which is set in the file /usr/X11/lib/Xconfig. Although most sites start up the X server with the
appropriate font path (using the option -fp, mentioned above), it can be overridden using the X utility xset.

The default font path for the X server contains the following directories:

/usr/X11/lib/fonts/misc
This directory contains miscellaneous bit-mapped fonts. It also has various font-name aliases for the
fonts.

/usr/X11/lib/fonts/75dpi
This directory contains bit-mapped fonts contributed by Adobe Systems, Inc., Digital Equipment
Corporation, Bitstream, Inc., Bigelow & Holmes, and Sun Microsystems, Inc., for 75 dot-per-inch displays.
It contains integrated selection of sizes, styles, and weights for each family of typefaces.

The program mkfontdir create a font data base in the directory that contains the compiled versions of the fonts
(the .pcf files). Whenever you add a font to a directory, run mkfontdir so that the server can find the new font.

Files
/usr/X11/bin/X — Default X server
/usr/X11/bin/X386color — Color X server
/usr/X11/bin/X386mono — Monochrome X server
/usr/X11/lib/Xconfig — Configuration file for X server
/usr/X11/lib/fonts/75dpi — Directory of bit-mapped fonts
/usr/X11/lib/fonts/misc — Directory of miscellaneous fonts
/usr/X11/lib/rgb.txt — Color data base

See Also
fs, mkfontdir, startx, twm, xauth, xinit, xset, xsetroot, xterm

Notes
Copyright 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, Massachusetts Institute of Technology.

LEXICON

X 97

The sample server was originally written by Susan Angebranndt, Raymond Drewry, Philip Karlton, and Todd
Newman of Digital Equipment Corporation, with support from many other persons. It has since been extensively
rewritten by Keith Packard and Bob Scheifler of MIT.

X clients — Overview
In the contents of the X Window System, a client is a program that runs under the tutelage of the X Windows
server. In this manual, a client means a program that does something under the X Windows server other than help
run the system.

Games

The following clients are just for fun:

maze Create and solve a random maze
puzzle The X scrambled-number game
xgas Animated simulation of an ideal gas
xtetris Wildly amusing implementation of Tetris

Monitoring the System

These clients help you observe the operation of your system:

xbiff. Notify the user that mail has arrived
xeyes Display two roving eyes
xload Display your system’s load average

Pretty Pictures

The main attraction of X is, of course, its graphical capabilities. The following clients help you to manipulate pretty
pictures:

ico. Animate an icosahedron or other polyhedron
xlogo Display the X Window System logo
xmag Magnify a part of the screen
xgc X graphics demonstration

Timepieces

X Windows for COHERENT includes two clients that display the current time:

oclock Display an analogue clock
xclock Display a clock

Tools

Finally, the following tools help you do useful work under X:

xcalc Scientific calculator for X
xedit Simple text editor for X
xpr Print a dump of an X window
xterm Terminal emulator for X
xvt VT100 emulator
xwd Dump an image of an X window
xwud Un-dump a window image

See Also
X utilities

X utilities — Overview
In this manual, an X utility is a program that helps you to manage the X Window System.

Bit Maps

The following utilities help you to manage bit-mapped images:

LEXICON

98 X clients — X utilities

atobm Convert ASCII to an X bit-mapped image
bitmap Bit map editor
bmtoa Convert an X bit-mapped image to ASCII

Colors

The following utilities help you manage your system’s color palette:

showrgb Un-compile an RGB color-name data base
xcmsdb. Manipulate xlib screen-color characterization data
xstdcmap X standard color-map utility

Fonts

The following utilities display and list fonts:

bdftopcf Generate a PCF font from a BDF file
mkfontdir Create file fonts.dir from directory of font files
xfd Display all the characters in an X font
xfontsel Interactively select X11 fonts
xlsfonts List fonts being used on a server

Modifying the Screen

These utilities let you modify your screen ‘‘on the fly’’:

xrefresh Refresh all or part of an X screen
xset Set preferences for the display
xsetroot Set preferences for the root window

Programming Tools

These utilities help you program under X. Note that these tools, in particular makedepend, can be used with non-
X applications as well:

imake. C preprocessor interface to the make utility
makedepend . . . Create dependencies in makefiles
mkdirhier Make a directory hierarchy
xmkmf Create a makefile from an Imakefile

Resources

These utilities set and help you to manage resources:

appres List an application’s resource data base
editres Resource editor for X Toolkit applications
listres. List resources in widgets
viewres Graphical class browser for Xt
xprop Display the X server’s properties
xrdb Read/set the X server’s resource data base

System Monitoring

These utilities help you to monitor the operation of your system:

xauth Display/edit authorization information
xdpyinfo Display information about an X server
xev Print contents of X events
xlsatoms List interned atoms defined on server
xlsclients List client applications running on a display
xwininfo Display information about a window

Miscellaneous

Finally, the following utilities do not fit neatly into any other category. These include some of the most interesting
(and important) tools in the X package:

LEXICON

X utilities 99

resize Set environmental variables to show window size
startx Initiate an X session
twm Tab Window Manager for the X Window System
xclipboard Hold multiple selections for later retrieval
xcmstest. XCMS test program
xcutsel Copy text between the cut buffer and the primary selection
xinit Initiate the X Window System
xkill Kill an X client
xmodmap Modify X keymaps

See Also
X clients

x11perf — X Utility
Test performance of the X11 server
x11perf [-option ...]

x11perf runs one or more performance tests and reports how quickly your X server can execute them

Many graphics benchmarks assume that the graphics device is used to display the output of a single fancy
graphics application, and that the user gets his work done on some other device, like a terminal. Such
benchmarks usually measure drawing speed for lines, polygons, text, etc. Because workstations are not used as
stand-alone graphics engines, but as super-terminals, x11perf measures window-management performance as
well as traditional graphics performance. It includes benchmarks for the time your server takes to create and map
windows (as when you start up an application); to map a pre-existing set of windows onto the screen (as when you
deiconify an application or pop-up a menu); and to rearrange windows (as when you slosh windows to and fro
trying to find the one you want).

x11perf also measures graphics performance for operations not normally used in stand-alone graphics displays,
but are nonetheless used frequently by X applications. Such operations include CopyPlane (used to map bitmaps
into pixels), scrolling (used in text windows), and various stipples and tiles (used for CAD and color half-toning,
respectively).

You should use x11perf to analyze the strengths and weaknesses of servers. It is most useful to the writer of a
server who wants to analyze and improve it.

x11perf exercises nearly every X11 operation you can perform; it does not limit itself to a representative sample of
the operations that X11 applications actually use. Although it can be used as a benchmark, it was written and is
intended test performance. As such, x11perf does not whittle down measurements to a single ‘‘HeXStones’’ or
‘‘MeXops’’ number. We consider such numbers to be uninformative at best, and misleading at worst. Some servers
that are very fast for certain applications can be very slow for others. No single number or small set of numbers
are sufficient to characterize how an X implementation performs on all applications. However, by knowledge of
your favorite application, you may be able to use the numbers x11perf reports to predict its performance on a
given X implementation.

That being said, you may also want to look at x11perfcomp a program that compares the outputs of different runs
of x11perf. You provide it a list of files that contain the results from x11perf, and it lays them out in a nice,
tabular format.

For repeatable results, run x11perf using a local connection on a freshly started server. The default configuration
runs each test five times, to see if each trial takes approximately the same amount of time. Strange glitches should
be examined; if non-repeatable, one might chalk them up to daemons and network traffic. Each trial is run for five
seconds, to reduce random differences in time. The number of objects processed per second is displayed to three
significant digits, but you will be lucky on most UNIX systems if the numbers are consistent to two digits.

x11perf moves the cursor out of the test window. Be careful not to bump the mouse and move it back into the
window. (A prize to the person who explains why!)

Before running a test, x11perf determines what the round trip time to the server is, and factors this out of the final
timing reported. It ensures that the server has actually performed the work requested by fetching a pixel back
from the test window; this ensures that servers that talk to graphics accelerators cannot claim that they have
finished while the accelerator is still painting madly.

By default, x11perf automatically calibrates the number of repetitions of each test, so each should take

LEXICON

100 x11perf

approximately the same length of time to run across servers of widely differing speeds. However, as each test must
be run to completion at least once, some slow servers may take a very long time, particularly on the window
moving and resizing tests, and on the arc drawing tests.

All timing reports are for the smallest object involved. For example, the line tests use a PolyLine request to paint
several lines at once, but report how many lines per second the server can paint, not how many PolyLine requests
per second. Text tests paint a line of characters, but report on the number of characters per second. Some
window tests map, unmap, or move a single parent window, but report on how many children windows per second
the server can map, unmap, or move.

Options
x11perf is based solely on Xlib. It recognizes the following command-line options:

-display host:display
Use display on host.

-sync Run the tests in synchronous mode. Normally, this is useful only for debugging x11perf

-pack Run rectangle tests so that they pack rectangles right next to each other. This makes it easy to
debug server code for stipples and tiles: if the pattern looks ugly, you’ve got alignment problems.

-repeat n Repeats each test n times. By default, x11perf runs each test five times.

-time seconds Run each test for seconds. The default is five seconds for each test.

-all Runs every test. This may take a long time to execute.

-range test1[,testN]
Run every test from test1 through testN. The test names should be one of the options starting
from -dot. These are described below. For example, the option

-range line100,dline10

executes every test from line100 through dline10. The option

-range line100

begins with the 100-pixel line test and runs to the last test in the suite.

-labels Generate just the descriptive labels for each test specified. For details, see the Lexicon entry for
x11perfcomp.

-fg color Use color to paint the foreground.

-bg color Use color to paint the background.

-rop rop0 ... ropN
Use the raster operations rop0 through ropN. The default is GXcopy. This option only affects
graphics benchmarks that actually use the graphics function.

-pm pm0 ... pmN
Use plane masks pm0 through pmN. The default is ~0. This option only affects graphics
benchmarks that actually use the plane mask.

-depth depth Use a visual with depth planes per pixel. The default is the default visual.

The following options name the tests that x11perf can perform. They appear here in the order in which x11perf
executes them. If you name the tests with the -range option, you must keep this order in mind. You can also ask
x11perf to perform one or more tests individually, by naming each test on on the command line:

-dot Draw dots.
-rect1 Draw 1×1 solid-filled rectangle.
-rect10 Draw 10×10 solid-filled rectangle.
-rect100 Draw 100×100 solid-filled rectangle.
-rect500 Draw 500×500 solid-filled rectangle.
-srect1 Draw 1×1 transparent stippled rectangle, 8×8 stipple pattern.
-srect10 Draw 10×10 transparent stippled rectangle, 8×8 stipple pattern.
-srect100 Draw 100×100 transparent stippled rectangle, 8×8 stipple pattern.

LEXICON

x11perf 101

-srect500 Draw 500×500 transparent stippled rectangle, 8×8 stipple pattern.
-osrect1 Draw 1×1 opaque stippled rectangle, 8×8 stipple pattern.
-osrect10 Draw 10×10 opaque stippled rectangle, 8×8 stipple pattern.
-osrect100 Draw 100×100 opaque stippled rectangle, 8×8 stipple pattern.
-osrect500 Draw 500×500 opaque stippled rectangle, 8×8 stipple pattern.
-tilerect1 Draw 1×1 tiled rectangle, 4×4 tile pattern.
-tilerect10 Draw 10×10 tiled rectangle, 4×4 tile pattern.
-tilerect100 Draw 100×100 tiled rectangle, 4×4 tile pattern.
-tilerect500 Draw 500×500 tiled rectangle, 4×4 tile pattern.
-bigsrect1 Draw 1×1 stippled rectangle, 161×145 stipple pattern.
-bigsrect10 Draw 10×10 stippled rectangle, 161×145 stipple pattern.
-bigsrect100 Draw 100×100 stippled rectangle, 161×145 stipple pattern.
-bigsrect500 Draw 500×500 stippled rectangle, 161×145 stipple pattern.
-bigosrect1 Draw 1×1 opaque stippled rectangle, 161×145 stipple pattern.
-bigosrect10 Draw 10×10 opaque stippled rectangle, 161×145 stipple pattern.
-bigosrect100 Draw 100×100 opaque stippled rectangle, 161×145 stipple pattern.
-bigosrect500 Draw 500×500 opaque stippled rectangle, 161×145 stipple pattern.
-bigtilerect1 Draw 1×1 tiled rectangle, 161×145 tile pattern.
-bigtilerect10 Draw 10×10 tiled rectangle, 161×145 tile pattern.
-bigtilerect100 Draw 100×100 tiled rectangle, 161×145 tile pattern.
-bigtilerect500 Draw 500×500 tiled rectangle, 161×145 tile pattern.
-eschertilerect1

Draw 1×1 tiled rectangle, 215×208 tile pattern.
-eschertilerect10

Draw 10×10 tiled rectangle, 215×208 tile pattern.
-eschertilerect100

Draw 100×100 tiled rectangle, 215×208 tile pattern.
-eschertilerect500

Draw 500×500 tiled rectangle, 215×208 tile pattern.
-seg1 Draw one-pixel, thin-line segment.
-seg10 Draw ten-pixel, thin-line segment.
-seg100 Draw 100-pixel, thin-line segment.
-seg500 Draw 500-pixel, thin-line segment.
-seg100c1 Draw 100-pixel, thin-line segment (one obscuring rectangle).
-seg100c2 Draw 100-pixel, thin-line segment (two obscuring rectangles).
-seg100c3 Draw 100-pixel, thin-line segment (three obscuring rectangles).
-dseg10 Draw ten-pixel, thin, dashed segment (three on, two off).
-dseg100 Draw 100-pixel, thin, dashed segment (three on, two off).
-ddseg100 Draw100-pixel, thin, double-dashed segment (three foreground, two background).
-hseg10 Draw ten-pixel, thin, horizontal-line segment.
-hseg100 Draw 100-pixel, thin, horizontal-line segment.
-hseg500 Draw 500-pixel, thin, horizontal-line segment.
-vseg10 Draw ten-pixel, thin, vertical-line segment.
-vseg100 Draw 100-pixel, thin, vertical-line segment.
-vseg500 Draw 500-pixel, thin, vertical-line segment.
-whseg10 Draw ten-pixel, wide, horizontal-line segment.
-whseg100 Draw 100-pixel, wide, horizontal-line segment.
-whseg500 Draw 500-pixel, wide, horizontal-line segment.
-wvseg10 Draw ten-pixel, wide, vertical-line segment.
-wvseg100 Draw 100-pixel, wide, vertical-line segment.
-wvseg500 Draw 500-pixel, wide, vertical-line segment.
-line1 Draw one-pixel, thin (width zero) line.
-line10 Draw ten-pixel thin line.
-line100 Draw 100-pixel thin line.
-line500 Draw 500-pixel thin line.
-dline10 Draw ten-pixel, thin, dashed line (three on, two off).
-dline100 Draw 100-pixel, thin, dashed line (three on, two off).
-ddline100 Draw 100-pixel, thin, double-dashed line (three foreground, two background).
-wline10 Draw ten-pixel line, line width one.
-wline100 Draw 100-pixel line, line width ten.

LEXICON

102 x11perf

-wline500 Draw 500-pixel line, line width 50.
-wdline100 Draw 100-pixel dashed line, line width ten (30 on, 20 off).
-wddline100 Draw 100-pixel double-dashed line, line width ten (30 fg, 20 bg).
-orect10 Draw 10×10, thin rectangle outline.
-orect100 Draw 100-pixel, thin, vertical-line segment.
-orect500 Draw 500-pixel, thin, vertical-line segment.
-worect10 Draw 10×10, wide rectangle outline.
-worect100 Draw 100-pixel, wide, vertical-line segment.
-worect500 Draw 500-pixel, wide vertical line segment.
-circle1 Draw one-pixel-diameter, thin (line width zero) circle.
-circle10 Draw ten-pixel-diameter, thin circle.
-circle100 Draw 100-pixel-diameter, thin circle.
-circle500 Draw 500-pixel-diameter, thin circle.
-dcircle100 Draw 100-pixel-diameter, thin, dashed circle (three on, two off).
-ddcircle100 Draw 100-pixel-diameter, thin, double-dashed circle (three foreground, two background).
-wcircle10 Draw ten-pixel-diameter circle, line width one.
-wcircle100 Draw 100-pixel-diameter circle, line width ten.
-wcircle500 Draw 500-pixel-diameter circle, line width 50.
-wdcircle100 Draw 100-pixel-diameter dashed circle, line width ten (30 on, 20 off).
-wddcircle100 Draw 100-pixel-diameter, double-dashed circle, line width ten (30 foreground, 20 background).
-pcircle10 Draw ten-pixel-diameter, thin, partial circle, orientation and arc angle evenly distributed.
-pcircle100 Draw 100-pixel-diameter, thin, partial circle.
-wpcircle10 Draw ten-pixel-diameter, wide, partial circle.
-wpcircle100 Draw 100-pixel-diameter, wide, partial circle.
-fcircle1 Draw one-pixel-diameter, filled circle.
-fcircle10 Draw ten-pixel-diameter, filled circle.
-fcircle100 Draw 100-pixel-diameter, filled circle.
-fcircle500 Draw 500-pixel-diameter, filled circle.
-fcpcircle10 Draw ten-pixel-diameter, partial filled circle, chord fill, orientation and arc angle evenly

distributed.
-fcpcircle100 Draw 100-pixel-diameter, partially filled circle, chord fill.
-fspcircle10 Draw ten-pixel-diameter, partially filled circle, pie-slice fill, orientation and arc angle evenly

distributed.
-fspcircle100 Draw 100-pixel-diameter, partially filled circle, pie slice fill.
-ellipse10 Draw ten-pixel-diameter, thin (line width zero) ellipse, major and minor axis sizes evenly

distributed.
-ellipse100 Draw 100-pixel-diameter, thin ellipse.
-ellipse500 Draw 500-pixel-diameter, thin ellipse.
-dellipse100 Draw 100-pixel-diameter, thin, dashed ellipse (three on, two off).
-ddellipse100 Draw 100-pixel-diameter, thin, double-dashed ellipse (three foreground, two background).
-wellipse10 Draw ten-pixel-diameter ellipse, line width one.
-wellipse100 Draw 100-pixel-diameter ellipse, line width ten.
-wellipse500 Draw 500-pixel-diameter ellipse, line width 50.
-wdellipse100 Draw 100-pixel-diameter dashed ellipse, line width ten (30 on, 20 off).
-wddellipse100 Draw 100-pixel-diameter, double-dashed ellipse, line width ten (30 foreground, 20 background).
-pellipse10 Draw ten-pixel-diameter, thin, partial ellipse.
-pellipse100 Draw 100-pixel-diameter, thin, partial ellipse.
-wpellipse10 Draw ten-pixel-diameter, wide, partial ellipse.
-wpellipse100 Draw 100-pixel-diameter, wide, partial ellipse.
-fellipse10 Draw ten-pixel-diameter filled ellipse.
-fellipse100 Draw 100-pixel diameter filled ellipse.
-fellipse500 Draw 500-pixel-diameter filled ellipse.
-fcpellipse10 Draw ten-pixel-diameter, partially filled ellipse, chord fill.
-fcpellipse100 Draw 100-pixel-diameter, partially filled ellipse, chord fill.
-fspellipse10 Draw ten-pixel-diameter, partially filled ellipse, pie-slice fill.
-fspellipse100 Draw 100-pixel-diameter, partially filled ellipse, pie-slice fill.
-triangle1 Fill one-pixel/side triangle.
-triangle10 Fill ten-pixel/side triangle.
-triangle100 Fill 100-pixel/side triangle.
-trap10 Fill 10×10 trapezoid.

LEXICON

x11perf 103

-trap100 Fill 100×100 trapezoid.
-strap10 Fill 10×10 transparent stippled trapezoid, 8×8 stipple pattern.
-strap100 Fill 100×100 transparent stippled trapezoid, 8×8 stipple pattern.
-ostrap10 Fill 10×10 opaque stippled trapezoid, 8×8 stipple pattern.
-ostrap100 Fill 100×100 opaque stippled trapezoid, 8×8 stipple pattern.
-tiletrap10 Fill 10×10 tiled trapezoid, 4×4 tile pattern.
-tiletrap100 Fill 100×100 tiled trapezoid, 4×4 tile pattern.
-bigstrap10 Fill 10×10 transparent stippled trapezoid, 161×145 stipple pattern.
-bigstrap100 Fill 100×100 transparent stippled trapezoid, 161×145 stipple pattern.
-bigostrap10 Fill 10×10 opaque stippled trapezoid, 161×145 stipple pattern.
-bigostrap100 Fill 100×100 opaque stippled trapezoid, 161×145 stipple pattern.
-bigtiletrap10 Fill 10×10 tiled trapezoid, 161×145 tile pattern.
-bigtiletrap100 Fill 100×100 tiled trapezoid, 161×145 tile pattern.
-eschertiletrap10

Fill 10×10 tiled trapezoid, 216×208 tile pattern.
-eschertiletrap100

Fill 100×100 tiled trapezoid, 216×208 tile pattern.
-complex10 Fill 10-pixel/side complex polygon.
-complex100 Fill 100-pixel/side complex polygon.
-ftext Draw a character in 80-character line (6×13).
-f8text Draw a character in 70-character line (8×13).
-f9text Draw a character in 60-character line (9×15).
-f14text16 Draw a two-byte character in 40-character line (k14).
-tr10text Draw a character in 80-character line (Times-Roman 10).
-tr24text Draw a character in 30-character line (Times-Roman 24).
-polytext Draw a character in a 20/40/20 line (6×13, Times-Roman 10, 6×13).
-fitext Draw a character in a 80-character image line (6×13).
-f8itext Draw a character in a 70-character image line (8×13).
-f9itext Draw a character in a 60-character image line (9×15).
-f14itext16 Draw a two-byte character in a 40-character image line (k14).
-tr10itext Draw a character in a 80-character image line (Times-Roman 10).
-tr24itext Draw a character in a 30-character image line (Times-Roman 24).
-scroll10 Scroll 10×10 pixels vertically.
-scroll100 Scroll 100×100 pixels vertically.
-scroll500 Scroll 500×500 pixels vertically.
-copywinwin10

Copy a 10×10 square from window to window.
-copywinwin100

Copy a 100×100 square from window to window.
-copywinwin500

Copy a 500×500 square from window to window.
-copypixwin10 Copy a 10×10 square from pixmap to window.
-copypixwin100

Copy a 100×100 square from pixmap to window.
-copypixwin500

Copy a 500×500 square from pixmap to window.
-copywinpix10 Copy a 10×10 square from window to pixmap.
-copywinpix100

Copy a 100×100 square from window to pixmap.
-copywinpix500

Copy a 500×500 square from window to pixmap.
-copypixpix10 Copy a 10×10 square from pixmap to pixmap.
-copypixpix100

Copy a 100×100 square from pixmap to pixmap.
-copypixpix500

Copy a 500×500 square from pixmap to pixmap.
-copyplane10 Copy a 10×10 1-bit deep plane.
-copyplane100 Copy a 100×100 1-bit deep plane.
-copyplane500 Copy a 500×500 1-bit deep plane.
-putimage10 PutImage 10×10 square.

LEXICON

104 x11perf

-putimage100 PutImage 100×100 square.
-putimage500 PutImage 500×500 square.
-shmput10 PutImage 10×10 square, MIT shared memory extension.
-shmput100 PutImage 100×100 square, MIT shared memory extension.
-shmput500 PutImage 500×500 square, MIT shared memory extension.
-getimage10 GetImage 10×10 square.
-getimage100 GetImage 100×100 square.
-getimage500 GetImage 500×500 square.
-noop X protocol NoOperation.
-atom GetAtomName.
-prop GetProperty.
-gc Change graphics context.
-create Create child window and map using MapSubwindows.
-ucreate Create unmapped window.
-map Map child window via MapWindow on parent.
-unmap Unmap child window via UnmapWindow on parent.
-destroy Destroy child window via DestroyWindow parent.
-popup Hide/expose window via Map/Unmap popup window.
-move Move window.
-umove Moved unmapped window.
-movetree Move window via MoveWindow on parent.
-resize Resize window.
-uresize Resize unmapped window.
-circulate Circulate lowest window to top.
-ucirculate Circulate unmapped window to top.

X Defaults
This program uses no X defaults.

See Also
X, x11perfcomp, xbench, X utilities

Notes
Copyright 1988, 1989 by Digital Equipment Corporation. For a full statement of rights and permissions, see the
copyright statement in the source code to this program.

x11perf is mostly the responsibility of Joel McCormack. It is based upon the x11perf developed by Phil Karlton,
Susan Angebranndt, and Chris Kent, who wished to assess performance differences between various servers. For a
general release to the world, x11perf was rewritten to ease making comparisons between widely varying machines,
to cover most important (and unimportant) X functionality, and to exercise graphics operations in as many
different orientations and alignments as possible.

x11perfcomp — X Utility
Compare the output of multiple runs of x11perf
x11perfcomp [-r -ro] [-l labelfile] label_file datafile1 ... datafileN

The script x11perfcomp tabulates the output of multiple runs of the command x11perf. This lets you easily
compare the performance of different servers, or of the same server under various operating conditions.

Each datafile holds the output of a run of x11perf. labelfile holds labels that identify the tests that x11perf
executed. This file must precede any datafile which holds the output of an X11perf run. To generate such a file,
use x11perf’s option -label, as described in its Lexicon entry.

x11perfcomp recognizes the following command-line options:

-r Include relative rates in the output.

-ro Report only relative rates.

-l labelfile
Use labelfile as the label file. The default is to use the first file named on the command line.

See Also
X, x11perf, X utilities

LEXICON

x11perfcomp 105

Notes
An 80-column line can hold the data output by up to four runs of x11perf. For information on how to print longer
lines, see the entries in the COHERENT Lexicon for pr and prps.

x11perfcomp was written by Mark Moraes of the University of Toronto (moraes@csri.toronto.edu) and Joel
McCormack of DEC Western Research Laboratory (joel@decwrl.dec.com).

xauth — X Utility
Display/edit authorization information
xauth [-biqv -f authfile] [command [arguments]]

The X utility xauth lets you display and edit the authorization information with which users connect to the X
server. It is used most commonly to extract authorization records from one machine and merge them into the
records on another, such as when using remote logins or granting authorization to other users. Each command
given below can be entered interactively, entered on xauth’s command line, or embedded within a script.

xauth recognizes the following options:

-b Do not break any authority file locks before proceeding. With this option, xauth is used only to clean up
stale locks.

-f authfile
Use the authority file authfile. By default, xauth uses the authority file named by the environmental
variable XAUTHORITY, or the file $HOME/.Xauthority.

-i Ignore all locks on authority files. Normally, xauth refuses to read or edit any authority files that have
been locked by other programs.

-q Quiet: Do not print unsolicited messages about authority status. This is the default if a command is given
on xauth’s command line or if the standard output is not directed to a terminal.

-v Verbose: Print a message to indicate the outcome of each operation. This is the default option if xauth is
reading commands from the standard input and its standard output is directed to a terminal.

Commands
As noted above, xauth does its work by executing one or more commands. If xauth finds no command on its
command line, it reads the standard input and executes all commands it received until it receives the command
exit, receives the command quit, or receives EOF (<ctrl-D> under COHERENT).

xauth recognizes the following commands:

? Print a summary of all commands.

add display protocol hexkey
Add an authorization entry for display. protocol gives the protocol that display uses. The protocol of ‘.’ is
an abbreviation for the protocol MIT-MAGIC-COOKIE-1. hexkey gives the key data, in the form of a string
of pairs of hexadecimal numerals; the first numeral gives the most significant four bits and the second the
least significant four bits.

exit Write out the modified authorization file, and exit from xauth. EOF is equivalent to this command.

extract file display [... display]
Write the authorization entries for each display into file. The file of ‘-’ indicates the standard output. This
command can be used with the xauth’s command merge to copy permissions from one authorization into
another.

help [string]
Print help information about all commands that begin with string. If no string is given, list information
about all commands.

info Print a summary of information about the authorization file itself.

list [display [... display]]
Print onto the standard output the authorization information for each display. If no display is named,
print information about all displays. Key data are printed in the hexadecimal format used by the add
command, described above.

LEXICON

106 xauth

merge [file [... file]]
Merge the authorization information from each file into the authorization file. The file ‘-’ indicates the
standard input.

nextract file display [... display]
Same as extract, described above, except that the authorization information is written in a numeric format
suitable for non-binary transmission (such as secure electronic mail).

nlist [display [... display]]
Like the command list, described above, print output in the numeric form output by the command
nextract, described above.

nmerge [file [... file]]
Same as merge, except that the information in each file is in the numeric form output by the command
nextract (described above).

quit Exit from xauth, and do not modify the authorization file. The interrupt character (<ctrl-C> under
COHERENT) is equivalent to this command.

remove display [... display]
Remove from the authorization file the information for each display.

source file
Read file and execute all of the xauth commands it contains. xauth ignores all lines within file that begin
with a pound sign ‘#’. The file ‘-’ indicates the standard input.

Display Names
Display names used with the xauth commands add, extract, list, merge, nextract, nlist, nmerge, and remove
use the same format as the environmental variable DISPLAY and the common command-line argument -display.
xauth ignores display-specific information (such as the screen number), because it is unnecessary. Same-machine
connections (such as local-host sockets, shared memory, and the Internet Protocol host name localhost) are
referred to as hostname/unix:displaynumber so that local entries for different machines can be stored in one
authority file.

Environment
xauth reads the following environmental variables:

XAUTHORITY
The name of the authority file to use if the option -f is not used. If this variable is not set, xauth reads the
contents of file $HOME/.Xauthority.

HOME The user’s home directory if XAUTHORITY is not defined.

See Also
xdm, X utilities

Notes
xauth does not interact with the X server.

If your network is not secure, be sure to encrypt the authorization information before you pass it to another
machine. Likewise, the protocol MIT-MAGIC-COOKIE-1 is not very useful in insecure environments. Sites that
are interested in additional security should consider using encrypted authorization mechanisms, such as Kerberos.

Each display option in the above commands uses the same format as the environmental variable DISPLAY.

xauth was written by Jim Fulton of the MIT X Consortium.

xbiff — X Client
Notify the user that mail has arrived
xbiff [options]

The X client xbiff automatically notifies you when you have mail. It displays the following picture of an old-
fashioned mailbox:

LEXICON

xbiff 107

When you do not have mail, the mailbox’s ‘‘flag’’ is down; when new mail arrives, the ‘‘flag’’ pops up, the image is
redrawn in reverse video, and the terminal beeps. Clicking on the ‘‘mailbox’’ resets its ‘‘flag’’ to the down position
and redraws the image in normal video.

Options
xbiff recognizes the following command-line options:

-bd color Set the color of the border to color.

-bg color Set the color of the background to color.

-bw pixels Set the width of the border to pixels.

-display host[:server][.screen]
Display the window on screen number screen of server on host system host.

-fg color Set the color of the foreground to color.

-file mailfile
The user’s mailbox file is mailfile. xbiff watches mailfile and pops its ‘‘flag’’ whenever mailfile’s status
changes. By default, xbiff watches /usr/spool/mail/user, where user is the login identifier of the
user who is running xbiff.

-geometry geometry
Set the geometry of the window to geometry. The term ‘‘geometry’’ means the dimensions of the window
and its location on the screen. geometry has the form width×height±xoffset±yoffset.

-help Print a brief message that describes xbiff and its options.

-rv Simulate reverse video by swapping the foreground and background colors.

-shape Shape the mailbox window, should masks for empty or full images be available.

update seconds
Wait seconds before checking the mailbox and, if necessary, updating the display. The default is 60
seconds.

volume percent
Indicate how loudly xbiff should ring the bell when new mail arrived, as a percent of the terminal’s
maximum volume. The default is 33%.

Resources
xbiff has the application class name XBiff. It uses the Mailbox widget in the X Toolkit. It understands all of the
core resource names and classes, plus the following:

checkCommand(class CheckCommand)
Name a shell command to execute in order to check the status of the mailbox, rather than checking the
size of the mail file. The command string is passed as an argument to the function system() (which is
described in the COHERENT Lexicon), and so may contain redirection. xbiff assumes that a return value of
zero indicates that new mail is waiting, one indicates that there is no change in size, and two that mail has
been cleared.

emptyPixmap(class Pixmap)
Name the bit map to display when no new mail is present.

LEXICON

108 xbiff

emptyPixmapMask(classPixmapMask)
Name the mask for the bit map to display when no new mail is present.

file(class File)
Specify the name of the file to monitor. Setting this option is the same as using the -file option described
above.

flip(class Flip)
Invert the image when new mail arrives. The default is true.

foreground(class Foreground)
Give the color of the foreground. The default is white.

fullPixmap(class Pixmap)
Name the bit map to display when mail arrives.

fullPixmapMask(class PixmapMask)
Name the mask for the bit map to display when mail arrives.

height(class Height)
Give the height of the mailbox.

onceOnly(class Boolean)
Ring the bell only once when new mail arrives. Do not ring the bell when new mail arrives thereafter until
at least one interval has passed, the user has clicked on the mailbox, or read his mail.

reverseVideo(class ReverseVideo)
Invert the foreground and background colors to indicate reverse video. The same as the option -rt,
described above.

shapeWindow(class ShapeWindow)
Specify whether to shape the window to the fullPixmapMask and emptyPixmapMask. The default is false.
Same as the option -shape.

update(class Interval)
The interval, in seconds, that xbiff waits until it checks the mailbox. The default is 60 seconds. Same as
the option -update.

volume(class Volume)
Specify how loudly the bell should be rung, as a percent of maximum volume. The default is 33%. This is
the same as the option -volume.

width(class Width)
Specify the width of the mailbox.

Actions
The Mailbox widget provides the following action for use in event translations:

check() Check for new mail and display the flag appropriately.

unset() Display the ‘‘flag’’ to the lowered position until new mail arrives.

set() Display the flag in the raised position until the user clicks on the mailbox.

The default translation is:

<ButtonPress>: unset()

Environment
xbiff reads the following environmental variables:

DISPLAY
The default host and display.

XENVIRONMENT
The name of the resource file that overrides the global resources stored in the property
RESOURCE_MANAGER.

LEXICON

xbiff 109

See Also
X clients, xrdb

Notes
xbiff was written by Jim Fulton of the MIT X Consortium, and Ralph R. Swick of DEC/MIT Project Athena.

xcalc — X Client
Scientific calculator for X
xcalc [-stipple] [-rpn] [-toolkitoption...]

The X client xcalc emulates the Texas Instruments (TI) 30 and Hewlett-Packard (HP) 10C scientific calculators.

xcalc recognizes the following command-line options:

-bd color Set the color of the border to color.

-bg color Set the color of the background to color.

-bw pixels Set the width of the border to pixels.

-display host[:server][.screen]
Display the client’s window on screen number screen of server on host system host.

-fg color Set the color of the foreground to color.

-fn font Use font in the display.

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of
the window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

-rpn Use reverse Polish notation. In this mode, the calculator looks and behaves like an HP-10C. Without
this flag, it emulates a TI-30.

-rv Simulate reverse video by exchanging the foreground and background colors.

-stipple Draw the background of the calculator as a stipple of the foreground and background colors. On
monochrome displays, this improves the appearance.

-xrm resourcestring
Use resourcestring to define a resource.

Key Operations
When you invoke xcalc, it displays a picture of a scientific calculator on your screen — of an HP-10C if you use the
command-line option -rpn, or of a TI-30 if you did not. To operate the virtual calculator, move the mouse cursor to
the key you wish to press, and then punch the left mouse button. Some operations can also be invoked by
pressing appropriate keys on the keyboard. To quit, move the mouse cursor to key (AC)(on the TI calculator) or
the key (ON)(on the TI calculator), and press the right mouse button.

The following shows the TI calculator, which is the default:

LEXICON

110 xcalc

The following two sections describe the two virtual calculators in detail.

Calculator Keys — TI Mode
The number keys and the keys

(+/-)(+) (-) (*) (/) (=)

do exactly what you expect them to do. The operators obey the standard rules of precedence. Thus, pressing the
key sequence

(3) (+) (4) (*) (5) (=)

produces 23, not 35. You can use parentheses to override this.

You can select the entire number in the calculator’s display, to paste the result of a calculation into text.

The following describes what happens when you click the function keys on the virtual calculator. These are useful
if you are interested in defining a customized calculator.

(0)through (9)

Each digit key is linked to function digit(n), where n is the corresponding digit, 0 through 9.

(1/x) Replace the number in the display with its reciprocal. The corresponding procedure is reciprocal().

(x^2) Square the number in the display. The corresponding procedure is square().

(SQRT) Compute the square root of the number in the display. The corresponding procedure is squareRoot().

(CE/C) When pressed once, clear the number in the display without clearing the state of the machine. This lets
you re-enter a number if you make a mistake. Pressing it twice also clears the state. The corresponding
procedure for TI mode is clear().

(AC) Clear the display, the state, and the memory. Pressing it with the right mouse button ‘‘turns off’’ the
calculator, which exits you from the program. The action procedure to clear the state is off(); to quit,
quit().

(INV) Invert function. See the individual function keys for details. The corresponding procedure is inverse().

(sin) Compute the sine of the number in the display, as interpreted by the current DRG mode (see the
description of the key (DRG),below). If inverted, it computes the arcsine. The corresponding procedure is
sine().

(cos) Computes the cosine, or arccosine when inverted. The corresponding procedure is cosine().

(tan) Compute the tangent, or arctangent when inverted. The corresponding procedure is tangent().

(DRG) Change the DRG mode, as indicated by the fields DEG, RAD, or GRAD at the bottom of of the calculator
‘‘liquid crystal’’ display. When in DEG mode, numbers in the display are taken as being degrees. In RAD
mode, numbers are in radians. In GRAD mode, numbers are in grads. When inverted, the DRG key
converts degrees to radians to grads.

LEXICON

xcalc 111

For example, to put the calculator into DEG mode, press the key sequence:

(4) (5) (INV)(DRG)

The display shows .78539816, which is 45˚ converted to radians. The corresponding procedure is
degree().

(e) The constant e. The corresponding procedure is e().

(EE) Enter exponential numbers. For example, to get -2.3E-4, press the key sequence:

(2) (•) (3) (+) (EE) (4) (+)

The corresponding procedure is scientific().

(log) Calculates the logarithm (base 10) of the number in the display. When inverted, it raises 10.0 to the power
of the number in the display. For example, entering the key sequence

(3) (INV)(log)

1000 appears on the display. The corresponding procedure is logarithm().

(ln) Calculate the natural logarithm (base e) of the number in the display. When inverted, it raises e to the
number in the display. For example, pressing the key sequence

(e) (ln)

shows 1 in the display. The corresponding procedure is naturalLog().

(y^x) Raise the number on the left to the power of the number on the right. For example, pressing the key
sequence:

(2) (y^x)(3) (=)

results in 8, which is two raised to the third power. For a further example, the key sequence:

(«) (1) (+) (2) (+) (3) (») (y^x)(«) (1) (+) (2) (») (=)

equals

(6) (y^x)(3)

which equals 216. The corresponding procedure is power().

(PI) The constant π. The corresponding procedure is pi().

(x!) Compute the factorial of the number in the display. The number in the display must be an integer in the
range 0 through 500 — although, depending on whether you have a mathematics coprocessor, xcalc might
overflow long before that. The corresponding procedure is factorial().

(«) Left parenthesis. The corresponding procedure for TI calculators is leftParen().

(») Right parenthesis. The corresponding procedure for TI calculators is rightParen().

(/) Division. The corresponding procedure is divide().

(*) Multiplication. The corresponding procedure is multiply().

(-) Subtraction. The corresponding procedure is subtract().

(+) Addition. The corresponding procedure is add().

(STO) Store: copy the number in the display in system memory. The corresponding procedure is store().

(RCL) Recall: copy the number from memory to the display. The corresponding procedure is recall().

(SUM) Add the number in the display to the number in memory. The corresponding procedure is sum().

(EXC) Swap the number in the display with the number in memory. The corresponding procedure for the TI
calculator is exchange().

(.) Decimal point. The action procedure is decimal().

LEXICON

112 xcalc

(+/-) Negate: change sign. The corresponding procedure is negate().

(=) Perform calculation. The TI-specific action procedure is equal().

Calculator Keys — HP Mode
The number keys and the keys

(CHS)(+) (-) (*) (/) (=) (ENTR)

do exactly what you expect them to do. Many of the remaining keys are the same as in TI mode. The differences
are detailed below.

(ENTR) Enter: execute the key sequence just entered. The corresponding procedure is enter().

(<-) Backspace: erase from the display the last number key pressed. Inverse backspace clear the X register.
The corresponding procedure is back().

(ON) Clear the display, the state, and the memory. Clicking it with the right mouse button turns off the
calculator. To clear the state of the virtual calculator, the procedure is off(); to quit, quit().

(INV) Invert the meaning of the function keys. This would be the (f)key on an HP calculator, but xcalc does
not display multiple legends on each key. See the individual function keys for details.

(10^x) Raise 10.0 to power of the number in the top of the stack. When inverted, it calculates the log (base 10) of
the number in the display. The corresponding procedure is tenpower().

(e^x) Raise e to the number in the top of the stack. When inverted, xcalc calculates the log (base e) of the
number in the display. The action procedure is epower().

(STO) Copy the number in the top of the stack to a memory location. There are ten memory locations. The
desired memory is specified by following this key with a digit key.

(RCL) Push the number from the specified memory location onto the stack.

(SUM) Add the number on top of the stack to the number in the specified memory location.

(x:y) Exchange the numbers in the top two stack positions, the X and Y registers. The corresponding procedure
is XexchangeY().

(Rv) Roll the stack downward. When inverted, it rolls the stack upward. The corresponding procedure is roll().

Blank keys represent programming functions on the HP-10C whose functionality has not been duplicated in xcalc.

Finally, there are two additional action procedures: bell(), which rings the bell; and selection(), which performs a
cut on the entire number in the calculator’s ‘‘liquid crystal’’ display.

Keyboard Accelerators
Accelerators are shortcuts for entering commands. By pressing one key on your keyboard, you can invoke an
xcalc function that might require clicking several keys on the virtual calculator. Even though the word
‘‘calculator’’ is descended from the Greek word for ‘‘pebble,’’ you may prefer not to have to program computations
by shoving a rock around on your desk.

xcalc provides some sample keyboard accelerators; you can also customize accelerators on your own. The numeric
keypad accelerators provided by xcalc should be intuitively correct. The following gives the accelerators that xcalc
defines:

Keyboard
TI Key HP Key Accelerator TI Function HP Function

(SQRT) (SQRT) (r) squareRoot() squareRoot()
(AC) (ON) (space) clear() clear()
(AC) (<-) (Del) clear() back()
(AC) (<-) (Backspace) clear() back()
(AC) (<-) (ctrl-H) clear() back()

LEXICON

xcalc 113

(AC) (Clear) clear()
(AC) (ON) (q) quit() quit()
(AC) (ON) (ctrl-C) quit() quit()
(INV) (i) (i) inverse() inverse()
(sin) (s) (s) sine() sine()

(cos) (c) (c) cosine() cosine()
(tan) (t) (t) tangent() tangent()
(DRG) (DRG) (d) degree() degree()
(e) (e) e()
(ln) (ln) (l) naturalLog() naturalLog()

(y^x) (y^x) (^) power() power()
(PI) (PI) (p) pi() pi()
(x!) (x!) (!) factorial() factorial()
(«) («) leftParen()
(») (») rightParen()

(/) (/) (/) divide() divide()
(*) (*) (*) multiply() multiply()
(-) (-) (-) subtract() subtract()
(+) (+) (+) add() add()
(=) (=) equal()

(0) (0) (0) digit() digit()
(1) (1) (1) digit() digit()
(2) (2) (2) digit() digit()
(3) (3) (3) digit() digit()
(4) (4) (4) digit() digit()

(5) (5) (5) digit() digit()
(6) (6) (6) digit() digit()
(7) (7) (7) digit() digit()
(8) (8) (8) digit() digit()
(9) (9) (9) digit() digit()

(.) (.) (.) decimal() decimal()
(+/-) (CHS) (n) negate() negate()

(x:y) (x) XexchangeY()
(ENTR) (¢) enter()
(ENTR) (ctrl-J) enter()

Customization
The application class name is XCalc.

xcalc has an enormous application defaults file that specifies the position, label, and function of each key on the
calculator, and gives translations to serve as keyboard accelerators. Because these resources are not specified in
the source code, you can create a customized calculator by writing a private application defaults file, using the
Athena Command and Form widget resources to specify the size and position of buttons, the label for each button,
and the function of each button.

You can specify the foreground and background colors of each calculator key. For the TI calculator, a classical
color resource specification resembles:

XCalc.ti.Command.background: gray50
XCalc.ti.Command.foreground: white

For each of buttons 20, 25, 30, 35, and 40, specify:

XCalc.ti.button20.background: black
XCalc.ti.button20.foreground: white

For each of buttons 22, 23, 24, 27, 28, 29, 32, 33, 34, 37, 38, and 39:

LEXICON

114 xcalc

XCalc.ti.button22.background: white
XCalc.ti.button22.foreground: black

Application Resources
The following lists the resources used by xcalc:

rpn (Class Rpn)
Use rpn mode. The default is TI mode. Same as the command-line option -rpn.

stipple (Class Stipple)
Stipple the background. The default is on for monochrome displays, and off for color displays. Same as
the command-line option -stipple.

cursor (Class Cursor)
The name of the symbol used to represent the pointer. The default is hand2.

Colors
If you want xcalc to use its TI color palette, include the following in the #ifdef COLOR section of the file you read
with xrdb:

*customization: -color

This tells xcalc to pick up the colors in the application-defaults color customization file /usr/X11/lib/app-
defaults/XCalc-color.

See Also
X clients

Notes
Copyright 1988, 1989, Massachusetts Institute of Technology.

xcalc was written by John Bradley of the University of Pennsylvania, Mark Rosenstein of MIT Project Athena, and
Donna Converse of the MIT X Consortium.

xclipboard — X Utility
Hold multiple selections for later retrieval
xclipboard [-w -nw -display [host]:server[.screen] -geometry geometry]

By default, the X system lets you cut only one ‘‘hunk’’ of text at a time. The X utility xclipboard lets you store
multiple hunks of text on an internal ‘‘clipboard’’. You can display these hunks one at a time, and select one or
another to copy into another window.

Using xclipboard
When you invoke xclipboard, it draws the following window:

Its buttons do the following:

(Quit) Exit from xclipboard.

(Delete)

Delete the current buffer and display the next.

(New) Create a new text buffer.

(Save) Save the current buffer into a file. When you select this option, xclipboard displays a pop-up window to
prompt you for the name of the file to save the cut text.

(Next) Display the next buffer.

(Prev) Display the previous buffer.

The window also shows a small sub-window, within which text is displayed.

To copy a hunk of text to the clipboard, do the following:

LEXICON

xclipboard 115

• Click the button (New)to open a new entry on the clipboard.

• Move the mouse cursor to the text you wish to copy; then press the left mouse button and drag the mouse
cursor across the text. X redisplays the text in reverse video, to show that it has been cut.

• Move the mouse pointer into the clipboard window’s text sub-window. Press the middle mouse button: this
drops the cut text into the clipboard.

• Finally, move the mouse pointer back into the window from which you cut the text and click the left mouse
button. This un-highlights the cut text, to indicate that it is no longer cut.

To copy text from the clipboard back into an application, do the following:

• Click on the (Next)and (Prev)buttons until xclipboard displays in its text sub-window the hunk of text you
want.

• Press the left mouse button and sweep the mouse cursor across the text you wish to copy. Again, the text is
highlighted.

• Move the mouse cursor into the window into which you wish to copy the text. Click the center mouse button.
This drops the cut text into place.

• Finally, move the mouse cursor into text sub-window of xclipboard’s window, and click the left mouse button
again. This un-highlights the text, to show that it is no longer cut.

Options
xclipboard recognizes the following command-line options:

-bd color Set the color of the border to color.

-bg color Set the color of the background to color.

-bw pixels Set the width of the border to pixels.

-display host[:server][.screen]
Display its window on screen number screen of server on host system host.

-fg color Set the color of the foreground to color.

-fn font Use font in the display.

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of
the window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

-nw Do not wrap long lines of text. This is the default.

-rv Simulate reverse video by exchanging the foreground and background colors.

-w Wrap onto the next line each line of text that is too long to fit onto one line.

-xrm resourcestring
Use resourcestring to define a resource.

Selection
xclipboard stores each hunk of text as a string. You can select each hunk separately from other hunks. Text is
copied to the clipboard whenever a client asserts ownership of the CLIPBOARD selection. Text is copied from the
clipboard whenever a client requests the contents of the CLIPBOARD selection. The following gives examples of
event bindings that you may wish to include in the resource file of a client that uses the clipboard: in this file:

*VT100.Translations: #override \
Button1 <Btn3Down>: select-end(CLIPBOARD) \n\

<Btn2Up>: insert-selection(PRIMARY,CLIPBOARD) \n\

Each time an application asserts the clipboard, xclipboard transfers the text that application selected into a new
buffer and displays it in its text window. xclipboard does not automatically delete these buffers: you must use the
delete button on the mouse to drop useless buffers into the bit bucket.

xclipboard also responds to requests for the clipboard selection from other clients by sending the entire contents of
the currently displayed buffer.

LEXICON

116 xclipboard

Resources
xclipboard accepts all of the standard X Toolkit resource names and classes. In addition, it accepts:

wordWrap(class WordWrap)
Specify whether long lines of text should wrap to the following lines. The default is no.

Files
/usr/X11/lib/app-defaults/XClipboard— Resource file

See Also
X utilities

Notes
xclipboard was written by Ralph R. Swick of DEC/MIT Project Athena, and by Chris Peterson and Keith Packard of
the MIT X Consortium.

xclock — X Client
Display a clock
xclock [options]

xclock displays a clock that continually displays the current time. This clock can either be analogue (that is, an
old-fashioned clock with hands) or digital. The latter shows the hour and minute in 12-hour format; the latter
gives hours and minutes in 24-hour (military) format, plus the day, month, and year. The clock is initialized to the
time on your system.

The standard clock is an analogue clock with a white background and black foreground:

The following command-line options let you customize your clock:

-analog Display an analogue clock. This is the default.

-bd color Set the color of the border to color.

-bg color Set the color of the background to color.

-bw pixels Set the width of the border to pixels.

-chime Chime (beep) once on the half hour and twice on the hour.

-digital Display a digital clock that gives the date as well as the time.

-display host[:server][.screen]
Display the clock on screen number screen of server on host system host.

-fg color Set the color of the foreground to color.

-geometry geometry
Set the geometry of the clock to geometry. The term ‘‘geometry’’ means the dimensions of the clock and
its location on the screen. geometry has the form width×height±xoffset±yoffset.

-hd color Set the color of the analogue clock’s hands to color. The default is black.

LEXICON

xclock 117

-help Display a brief summary of xclock’s syntax and options.

-hl color Set the color of the edge of the analogue clock’s hands to color. The default is black.

-padding pixels
Set to pixels the padding between the window border and the edge of the clock. The default is ten
pixels for the digital clock, and eight for the analogue.

-rv Simulate reverse video by exchanging the foreground and background colors.

-update seconds
Wait seconds before updating the time displayed on the clock. The default is 60 seconds. If set to less
than 30 seconds, the analogue clock also displays a second hand. xclock automatically updates the
time whenever the clock is iconified and then re-exposed.

-xrm resourcestring
Use resourcestring to define a resource.

Resources
xclock uses the Athena Clock widget. It understands all of the core resource names as classes. In addition, it
understands the following:

analogue(class Boolean)
Indicate whether to use an analogue clock. The default is true.

background(class Background)
Give the color of the foreground. The default is white.

chime(class Boolean)
Indicate whether to chime on the hour and half-hour. The default is false.

font(class Font)
Give the font to use with the digital clock. Variable-width fonts are not always displayed correctly.

foreground(class Foreground)
Give the color of the foreground. The default is white.

hands(class Foreground)
Give the color of the inside of the analogue clock’s hands. The default is the foreground color.

height(class Height)
Give the height of the mailbox.

highlight(class Foreground)
Give the color used to highlight the analogue clock’s hands. The default is the foreground color.

padding(class Margin)
Give the amount of padding, in pixels, to display between the border of the window and the edge of the
clock. The default is eight.

reverseVideo(class ReverseVideo)
Indicate reverse video by exchanging the foreground and background colors.

update(class Interval)
The interval, in seconds, that xclock waits until it updates the time on the clock. The default is 60
seconds. Same as the option -update.

width(class Width)
Specify the width of the mailbox.

Example
The command

xclock -digital -update 1 -foreground red -chime

displays a digital clock that shows the current date and time in red characters. The clock is updated every second,
and chimes on the hour and half-hour.

LEXICON

118 xclock

Environment
xclock reads the following environmental variables:

DISPLAY
The default host and display.

XENVIRONMENT
The name of the resource file that overrides the global resources stored in the property
RESOURCE_MANAGER.

Files
/usr/X11/lib/app-defaults/XClock— Default resources.

See Also
oclock, X clients

Notes
Copyright 1988, Massachusetts Institute of Technology.

xclock was written by Tony Della Fera and Dave Mankins of MIT Project Athena, and Edward Moy of the University
of California, Berkeley.

There is no way to turn the clock off. You can, however, invoke xkill to kill it.

xcmsdb — X Utility
Manipulate xlib screen-color characterization data
xcmsdb [-color] [-format [32|16|8]] [-query] [-remove] [filename]

xcmsdb can load, query, or remove the Screen Color Characterization Data (SCCD) stored within a property on the
screen’s root window. The SCCD are an integral part of xlib; applications need them to convert properly between
device-independent and device-dependent color specifications.

xlib uses the following properties:

XDCCC_LINEAR_RGB_MATRICES
XDCCC_LINEAR_RGB_CORRECTION

Store color-characterization data for color monitors.

XDCCC_GRAY_SCREENWWHITEPOINT
XDCCC_GRAY_CORRECTION

Store data for gray-scale monitors.

Because xlib allows the addition of Screen Color Characterization Function Sets, an added function sets may place
its SCCD onto other properties. xcmsdb is unaware of these other properties; therefore, you must use a similar
utility provided with the function set, or use the utility xprop.

xcmsdb transforms the contents of filename (or the standard input if the command line has no filename) for
storage within properties, provided its command line does not specify the options -query or -remove.

xcmsdb recognizes the following command-line options:

-color Limit the options -query and -remove (described below) so that they check only for the properties
XDCCC_LINEAR_RGB_MATRICES and XDCCC_LINEAR_RGB_CORRECTION. If you do not set this
option, options -query and -remove check for all properties.

-format [32|16|8]
Specify the format for the property XDCCC_LINEAR_RGB_CORRECTION. Flags 32, 16, and 8 set the
number of bits per entry; the more bits, the greater the precision of encoded floating-point values. The
default is 32 bits per entry.

-query Read the XDCCC properties from the screen’s root window. If successful, xcmsdb transforms the data into
a more readable format, then writes them to the standard-output device.

-remove
Remove the XDCCC properties from the screen’s root window.

LEXICON

xcmsdb 119

Environment
xcmsdb reads the environmental variable DISPLAY to find the display and screen to use.

See Also
xprop, X utilities

Notes
Copyright 1990, Tektronix Inc.

xcmsdb was written by Chuck Adams of Tektronix, Inc.

xcmstest — X Utility
XCMS test program
xcmstest [-echo] [-display displayname]

xcmstest is a simple interface for testing the XCMS API library.

Before Invocation
Ensure that the Screen Color Characterization Data (SCCD) has been placed into the appropriate properties on the
screen’s root window. To load these properties, refer to the entry in this manual for the utility xcmsdb.

xcmstest recognizes the following command-line options:

-echo Echo a command as it is executed. This option usually is used when reading a file of commands via the
standard input.

-display displayname
Read the display displayname.

To convert color names using a client-side color name data base, the data-base file must be specified via the
environment variable XCMSDB. To use the sample database provided with this release, set XCMSDB as follows:

setenv XCMSDB ‘pwd‘/Xcms.txt

Using xcmstest
Upon invocation, you should receive the prompt

XCMS >

At this point you can enter commands. xcmstest recognizes the following commands:

init Initiate contact with displayname.
quit Exit from cmstest.
bye Synonym for quit.
halt Synonym for quit.
q Synonym for quit.
list List available commands
? Synonym for list.
CreateColormap name AllocFlag

AllocFlag must be either AllocNone or AllocAll.
FreeColormap

Free the current color map.
Set_idir dirname
Set_vdir dirname
Set_rdir dirname
Get_idir
Get_vdir
Get_rdir
XSynchronize ON|OFF
AllocColor Format Stim1 Stim2 Stim3 Result_Format [Colormap]
AllocNamedColor color_string result_format [Colormap]
ConvertColor From_Format Stim1 Stim2 Stim3 To_Format
LookupColor color_string result_format [Colormap]

LEXICON

120 xcmstest

QueryColor Pixel result_format [Colormap]
QueryColors result_format [Colormap]
QueryColors result_format [Colormap]
StoreColor <Pixel> <Format> <Stim1> <Stim2> <Stim3> [Colormap]
StoreColors [Colormap]
AddDIColorSpace Format

Format must be one of CIELab, CIELuv, or TekHVC.
FormatOfPrefix prefix
PrefixOfId Format

Format must be one of UNDEFINED, CIEXYZ, CIExyY, CIEuvY, CIELab, CIELuv, TekHVC, RGBi, or RGB.
MaxChroma Hue Value
MaxValue Hue Chroma
MaxValueSamples Hue nSamples
MaxValueChroma Hue
MinValue Hue Chroma
AdjustValue Hue Value Chroma
ReduceChroma Hue Value Chroma
ShortestValueChroma Hue Value Chroma
ShortestValueChroma Hue Value Chroma
XAllocNamedColor color_string [Colormap]
XLookupColor color_string [Colormap]
XParseColor color_string [colormap]
XStoreNamedColor color_string pixel [Colormap]

You can, if you wish, redirect the standard input so that xcmstest can read and execute a file of commands. In
this case, you should use the option -echo, which tells xcmstest to echo the command before executing it. This
creates a more readable output.

See Also
xcmsdb, X utilities

Notes
Color-name strings passed to xcmstest commands cannot contain a space. However, because spaces are ignored
by the XCMS API library, you can pass a color name with the spaces eliminated. For example:

LookupColor cornflowerblue UNDEFINED RGB

Copyright 1991, Massachusetts Institute of Technology.

xcutsel — X Utility
Copy text between the cut buffer and the primary selection
xcutsel [-toolkitoption ...] [-selection selection] [-cutbuffer number]

Prior to release 3 of the X Window System, text that you cut with the mouse was copied into the system’s cut
buffer. Beginning with release 3, X added the primary selection — a special buffer that holds the text highlighted
with the mouse. (X stores the primary selection in the property PRIMARY. You can use the utility xprop to to
examine the contents of this property.) Release 3 added the primary selection because some applications perform
transformations on the text kept in the cut buffer; it set aside the primary selection to keep the ‘‘raw’’ text available
for pasting into other windows.

Thus, when you cut text, X copies the cut text into both the copy buffer and the primary selection. When you
paste text, X copies the primary selection into the current window; if the primary selection is empty for some
reason, it copies the text that is in the cut buffer.

This creates a problem, however, because X applications written prior to release 3 use the cut buffer for cutting
and pasting, and do not understand the primary selection. If you are cutting and pasting between release-2 and
release-3 X applications, the primary selection and the cut buffer can get out of step; and so when you paste, you
may not get the text that you expect. To get around this problem, the COHERENT X release includes the X utility
xcutsel, which copies text between the primary selection and the cut buffer. When you invoke this application, it
displays a window that shows the following buttons:

(quit) Exit from xcutsel. xcutsel automatically releases all selections that it holds.

LEXICON

xcutsel 121

(copy_PRIMARY_to_0)

Copy the primary selection into the cut buffer.

(copy_0_to_PRIMARY)

Copy the cut buffer into the primary selection.

The button labels reflect the selection and cut buffer selected by command line options or through the resource
database. By default, xcutsel uses the selection named PRIMARY and the cut buffer CUT_BUFFER0. You can
override either or both of these by setting command-line arguments or resources.

When you click the button (copy_0_to_PRIMARY),the button remains in reverse video as long as cutsel owns the
selection, as a reminder. The value of the selection remains constant: if the cut buffer is changed, you must again
activate the copy button to retrieve the new value.

Options
xcutsel recognizes the following command-line options:

-bd color Set the color of the border to color.

-bg color Set the color of the background to color.

-bw pixels Set the width of the border to pixels.

-cutbuffer number
Set the cut buffer to use. The default is cut buffer 0.

-display host[:server][.screen]
Display the client’s window on screen number screen of server on host system host.

-fg color Set the color of the foreground to color.

-fn font Use font in the display.

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of
the window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

-rv Simulate reverse video by exchanging the foreground and background colors.

-selection name
Set the name of the selection to use. The default is PRIMARY.

-xrm resourcestring
Use resourcestring to define a resource.

X Defaults
This program accepts all of the standard X Toolkit resource names and classes as well as:

selection (class Selection)
Name the selection to use. The default is PRIMARY.

cutBuffer (class CutBuffer)
Set the number of the cut buffer to use. The default is Zero.

Widget Names
Use the following instance names when you wish to configure their labels:

sel-cut (class Command)
This is the button (copy_SELECTION_to_BUFFER).

cut-sel (class Command)
This is the button (copy_BUFFER_to_SELECTION).

quit (class Command)
This is the button (quit).

See Also
xclipboard, xterm, X utilities

LEXICON

122 xcutsel

Notes
All X applications shipped with the COHERENT release of X conform to X release 3 or later. Therefore, you should
never need to use this utility. You may need it, however, if you import antique X applications.

xcutsel has no way by which you can change the name of the selection or the number of the cut buffer while it is
running.

Copyright 1988, Massachusetts Institute of Technology.

xcutsel was written by Ralph R. Swick of DEC/MIT Project Athena.

xdpyinfo — X Utility
Display information about an X server
xdpyinfo [-display displayname]

xdpyinfo displays information about the X server. You can use it to examine the capabilities of a server, the
predefined values for various parameters used in communicating between clients and the server, and the different
types of screens and visuals that are available.

Environment
xdpyinfo reads the environmental variable DISPLAY to find the default host, display number, and screen.

See Also
xprop, xrdb, X utilities, xwininfo

Notes
Copyright 1988, 1989, Massachusetts Institute of Technology.

xdpyinfo was written by Jim Fulton of the MIT X Consortium.

xedit — X Client
Simple text editor for X
xedit [-toolkitoption ...] [filename]

xedit is a simple text editor that works directly under X. When you invoke xedit, it displays a window that
contains the following four areas:

Commands
A set of buttons that allow you to exit xedit, save the file, or load a new file into the edit window.

Messages Messages from xedit. In addition, you can use this window as a scratch pad.

Filename The name of the file being edited, and whether it is Read-Write or Read Only.

Edit The text of the file that you are editing or creating.

Options
filename names the file to edit. If you do not name a file, xedit lets you load or create file after it has started up.

xedit recognizes the following command-line options:

-bd color Set the color of the border to color.

-bg color Set the color of the background to color.

-bw pixels Set the width of the border to pixels.

-display host[:server][.screen]
Display the client’s window on screen number screen of server on host system host.

-fg color Set the color of the foreground to color.

-fn font Use font in the display.

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of
the window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

LEXICON

xdpyinfo — xedit 123

-rv Simulate reverse video by exchanging the foreground and background colors.

-xrm resourcestring
Use resourcestring to define a resource.

Editing
xedit uses the Athena Text widget for the three sections that allow text input. The characters typed go into the
Text widget that the mouse cursor is over. If the mouse cursor is not over a text widget, then keystrokes do
nothing. This is also true for the special key sequences that pop up dialogue widgets, so typing <ctrl-S> in the file-
name widget enables searching in that widget, not the edit widget.

Both the message window and the edit window create a scrollbar if the mass of text to display is too large to fit
within that window. Horizontal scrolling is not allowed by default, but can be turned on through the Text widget’s
resources.

xedit’s default keystrokes closely resemble those of the MicroEMACS editor. The default keystrokes are as follows:

<ctrl-A> Move the cursor to the beginning of the current line.
<ctrl-B> Move the cursor one character to the left.
<ctrl-D> Delete the next character.
<ctrl-E> Move the cursor to the end of the line.
<ctrl-F> Move the cursor forward by one character.
<ctrl-G> Multiply reset.
<ctrl-H> Delete one character to the left.
<ctrl-J> Newline and indent.
<ctrl-K> Kill text from the cursor to the end of the line.
<ctrl-L> Redraw the display.
<ctrl-M> Newline.
<ctrl-N> Move the cursor to the next line.
<ctrl-O> Newline and backup.
<ctrl-P> Move the cursor to the previous line.
<ctrl-R> Search and replace backwards.
<ctrl-S> Search and replace forward.
<ctrl-T> Transpose two characters.
<ctrl-U> Multiply an argument by four.
<ctrl-V> Display the next pageful of text.
<ctrl-W> Kill selection.
<ctrl-Y> Yank text — copy back text that had been killed.
<ctrl-Z> Scroll one line up.
<esc>B Move the cursor one word to the left.
<esc>F Move the cursor one word to the right.
<esc>I Insert a file.
<esc>K Kill to end of the current paragraph.
<esc>Q Form a paragraph.
<esc>V Display the previous page of text.
<esc>Y Insert the current selection (i.e., text you have cut with the mouse).
<esc>Z Scroll one line down.
<esc>D Delete the next word to the right of the cursor.
<esc>D Kill the next word to the right of the cursor.
<esc>H Delete the word to the left of the cursor.
<esc>H Kill the word to the left of the cursor.
<esc>< Move the cursor to the beginning of the file.
<esc>> Move the cursor to the end of the file.
<esc>] Move the cursor forward by one file.
<esc>[Move the cursor to the beginning of the previous paragraph.
<esc> Delete one word to the left of the cursor.
<esc><shift>

Kill one word to the left of the cursor.
<esc><backspace>

Delete one word to the left of the cursor.
<esc><shift><backspace>

Kill one word to the left.

LEXICON

124 xedit

In addition, you can use the X system’s default cut-and-paste feature, as follows:

Left Button Down Start selection
Left Button Motion Sweep out selection
Left Button Up End selection (i.e., cut)

Middle Button Down Insert current selection (paste)

Right Button Down Extend current selection
Right Button Motion Adjust selection
Right Button Up End selection (cut)

If your mouse has only two buttons, press both buttons to mimic the middle mouse button. Note that this only
works if you have un-commented the line emulate3buttons in the file /usr/X11/lib/Xconfig.

Commands
xedit’s commands window has the following buttons:

(Quit) Quit the current editing session. If you have modified the file since you last saved it, xedit displays a
warning message and gives you a chance to save it.

(Save) If file backups are enabled (see Resources, below), xedit stores a copy of the original, unedited file in
<prefix>file<suffix>, then overwrites the file with the contents of the edit window. The file name is
retrieved from the Text widget directly to the right of the Load button.

(Load) Load the file named in the text widget immediately to the right of the this button and display it in the Edit
window. If the currently displayed file has been modified, a warning message asks you to save the changes
or press Load again.

Resources
xedit uses the following resources:

enableBackups (Class EnableBackups)
Ask xedit to save the original version of a file into <prefix>file<suffix> before it saves changes to the file
being edited. The default value for this resource is off, stating that no backups should be created.

backupNamePrefix (Class BackupNamePrefix)
Name the string that xedit prefixes to the name of the backup file. The default is .BAK.

Environment
xedit reads the following environmental variables:

DISPLAY
The default host and display number.

XENVIRONMENT
The name of a resource file that overrides the global resources stored in the property
RESOURCE_MANAGER.

Files
/usr/X11/lib/app-defaults/Xedit— Required resources

See Also
X clients, xrdb

Notes
Copyright 1988, Digital Equipment Corporation.

Copyright 1989, Massachusetts Institute of Technology.

xedit was written by Chris Peterson of the MIT X Consortium.

LEXICON

xedit 125

xev — X Utility
Print contents of X events
xev [-display displayname] [-geometry geometry] [-bw pixels]

[-bs (NotUseful|WhenMapped|Always)] [-id windowid] [-s] [-name string] [-rv]

xev creates a window and then asks the X server to send it events whenever anything happens to the window
(such as being moved, resized, typed in, clicked in, etc.). You can also attach xev to an existing window. It is
useful for seeing what causes events to occur and to display the information that they contain.

Options
xev recognizes the following command-line options:

-bs (NotUseful|WhenMapped|Always)
Specify the kind of backing storage to give the window. The default is NotUseful.

-bw pixels
Set the width of the border to pixels.

-display host[:server][.screen]
Contact host on server.

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of the
window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

-id windowid
Monitor window windowid, rather than creating a new window.

-name string
Assign name to the newly created window.

-rv Display the window in reverse video.

-s Enable save-unders on the window.

See Also
xwininfo, xdpyinfo, X utilities

Notes
Copyright 1988, Massachusetts Institute of Technology.

xev was written by Jim Fulton of the MIT X Consortium.

xeyes — X Client
Display two roving eyes
xeyes

The X client xeyes displays two oval ‘‘eyes’’ on the screen. The pupil of each ‘‘eye’’ rotates in its ‘‘eyeball’’ to follow
the mouse pointer around the screen. This can help you find the mouse cursor in a crowded screen.

xeyes recognizes the following command-line options:

-bd color Set the color of the border to color.

-bg color Set the color of the background to color.

-bw pixels Set the width of the circle around each eye to pixels.

-display host[:server][.screen]
Display the client’s window on screen number screen of server on host system host.

-fg color Set the color of the foreground to color. xeyes restricts the foreground color to the ‘‘pupil’’ of each
‘‘eye’’. Thus, the command

xeyes -bd red -fg red

LEXICON

126 xev — xeyes

displays a pair of bloodshot eyes.

-fn font Use font in the display.

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of
the window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

-rv Simulate reverse video by exchanging the foreground and background colors.

-xrm resourcestring
Use resourcestring to define a resource.

See Also
X clients

xfd — X Utility
Display all the characters in an X font
xfd [-toolkotoptions ...] -fn fontname

The utility xfd opens a window that displays the name of the font being displayed, a row of command buttons,
several lines of text for displaying character metrics, and a grid that contains one glyph per cell. The characters
are shown in increasing ASCII order from left to right, top to bottom. The first character displayed at the top left is
character zero unless the you have used the command-line option -start (described below), in which case xfd uses
the character with the number given in the option -start.

xfd displays the characters in a grid of boxes, each large enough to hold any character in the font. Each character
glyph is drawn using the PolyText16 request (used by the Xlib routine XDrawString16).

If you use the option -box, xfd draws a rectangle around each character that shows where an ImageText16 request
(used by the Xlib routine XDrawImageString16) would display background color.

The origin of each glyph is normally set so that the character is drawn in the upper left hand corner of the grid cell.
However, if a glyph has a negative left bearing or an unusually large ascender, descender, or right bearing (as is the
case with the cursor font), some characters may not appear in their own cells. Use the command-line option -
center to force xfd to center each glyph within its cell.

xfd displays the following buttons in its window:

(Next_Page)

xfd may not be able to fit all of a font’s characters into the window at once. Press this button to see the
next page of glyphs.

(Prev_Page)

Display the previous page of glyphs.

(Quit) Exit xfd.

To display the metrics (index, width, bearings, ascent, and descent) for a character, click its cell in the display area.

The font name displayed at the top of the window is the full name of the font, as determined by the server. The
command xlsfonts generates lists of fonts, as well as more detailed summaries of their metrics and properties.

Options
xfd recognizes the following command-line options:

-bc color Use color if ImageText boxes are drawn.

-bd color Set the color of the border to color.

-bg color Set the color of the background to color.

-box Draw a box around each character to outline the area that a request to ImageText would fill with
background color.

-bw pixels Set the width of the border to pixels.

LEXICON

xfd 127

-center Center each character within its cell.

-display host[:server][.screen]
Display the client’s window on screen number screen of server on host system host.

-fg color Set the color of the foreground to color.

-fn font Display font.

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of
the window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

-rv Simulate reverse video by exchanging the foreground and background colors.

-start number
Display the font beginning with character number. The default is zero.

-xrm resourcestring
Use resourcestring to define a resource.

Example
To display the cursor font — that is, the font of predefined shapes for the mouse cursor — type the command:

xfd -center -fn cursor

xfd displays the following window on your screen:

Note that a cursor consists of two bit-mapped images: the cursor itself, and a mask that goes around it. The
names of the cursors are defined in file /usr/X11/include/X11/cursorfont.h.

See Also
xfontsel, xlsfonts, xrdb, X utilities

LEXICON

128 xfd

Notes
xfd does not skip pages full of non-existent characters.

Copyright 1989, Massachusetts Institute of Technology.

xfd was written by Jim Fulton of MIT X Consortium, based on a previous program of the same name that was
written by Mark Lillibridge of MIT Project Athena.

xfontsel — X Utility
Interactively select X11 fonts
xfontsel [-toolkitoption ...] [-pattern fontname] [-print] [-sample text] [-sample16 text16] [-noscaled]

xfontsel provides a simple way to display the fonts known to your X server, examine samples of each, and retrieve
the full X Logical Font Description (XLFD) for a font.

Options
xfontsel recognizes the following command-line options:

-bd color Set the color of the border to color.

-bg color Set the color of the background to color.

-bw pixels Set the width of the border to pixels.

-display host[:server][.screen]
Display the client’s window on screen number screen of server on host system host.

-fg color Set the color of the foreground to color.

-fn font Use font in the display.

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of
the window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

-noscaled Disable the ability of xfontsel to select scaled fonts at arbitrary pixel or point sizes. This makes it
clear which bitmap sizes are advertised by the server, and can avoid an accidental and sometimes
prolonged wait for a font to be scaled.

-pattern font
Examine font. If you do not use this option, you can select interactively from among all all fonts with
XLFD 14-part names. To work with only a subset of the fonts, specify -pattern followed by a partially
or fully qualified font name; e.g.,

-pattern *medium*

selects a font only if its name contains the string. Be careful to escape wildcard characters so the
COHERENT shell does not interpret them.

-print Write the selected font specifier to standard output when you click the (quit)button. Regardless of
whether you have specified -print, you can make the font specifier the primary (text) selection by
clicking the (select)button.

-rv Simulate reverse video by exchanging the foreground and background colors.

-sample text
Set the sample text to be used to display the selected font if the font is linearly indexed.

-sample16 text16
Set the sample text to be used to display the selected font if the font is matrix encoded.

-xrm resourcestring
Use resourcestring to define a resource.

Interactions
When you invoke xfontsel, it draws the following window on your screen:

As you can see, the window is divided into four areas:

LEXICON

xfontsel 129

• The top area displays (quit)and (select)buttons, and a message about the number of fonts that match the
description you entered.

• The second area displays 14 buttons, one for each field in a font’s XLFD name. Clicking on one of these
buttons presents the possibile entries for the corresponding XLFD field. When you select an item from a
menu, xfontsel limits the items available in all other menus to those which correlate with what you have
already selected; to make other values selectable, you must first de-select some other field or fields by
choosing the ‘*’ entry in its menu. To omit some values altogether, set the resource ShowUnselectable, as
described below. These buttons are described below.

• The third field displays the XLFD name. Unless you have narrowed the selection of fonts, each of the 14 fields
is represented by an asterisk, separated by an underscore.

• The bottom displays a font, as constructed from the XLFD entered in the above two fields.

The following describes the 14 buttons in the second field of the screen. These buttons define, in order, the 14
fields in a font’s XLFD name, as follows:

(fndry)Foundry: the company that made the fonts, e.g., Bitstream or Adobe.

(fmly) Family: the family of typefaces, e.g., courier or gothic.

(wght) Weight of the typeface, e.g., bold or medium.

(slant)The angularity of the font. nil indicates nothing — that is, no typeface; i, italic; o, slanted Roman; and r,
Roman.

(sWdth)Set width of the face, that is, how closely the characters are set next to each other. normal indicates
normal width; semicondensed sets the text somewhat more tightly.

(adstyl)

The style of text: sans indicates a sans-serif face.

(pxlsz)Pixel size: the size of the face in pixels.

(ptSz) Point size: the size of the font in decipoints — that is, tenths of a printer’s point. There are 720 decipoints
per inch.

(resx) Horizontal (X) resolution, in pixels per inch.

(resy) Vertical (Y) resolution, in pixels per inch.

(spc) Spacing; for example, m indicates monospace.

(avgWdth)

Average width, in tenths of a pixel.

(rgstry)

Registry, that is, the organization that registered the character set embodied in this font.

(encdng)

Encoding: the name of character set embodied in this font. Note that the commonest character set is ISO-
8859-1, also called ISO Latin 1, which describes the ASCII character set normally used in the United
States.

Whenever you change the value of an XLFD field, xfontsel assert ownership of the primary_font property. Other
applications (see, e.g., xterm) can then retrieve the specified font.

Scalable fonts come back from the server with zero for the pixel size, point size, and average width fields. Selecting
a font name with a zero in these positions results in an implementation-dependent size. Any pixel or point size can
be selected to scale the font to a particular size. Any average width can be selected to scale the font
anamorphically (although you may find this challenging given the size of the average width menu).

Clicking the left pointer button in the (select)button causes the currently selected font name to become the
primary text selection, as well as the primary_font selection. This allows you to paste the string into other
applications. The (select)button remains highlighted to remind you of this fact; it de-highlights when some other
application seizes the primary selection. The (select)button is a toggle: pressing it when it is highlighted causes
xfontsel to release ownership of the selection and de-highlight the button. Clicking the (select)widget twice is
the only way to force xfontsel to release the primary_font selection.

LEXICON

130 xfontsel

Resources
The application’s class is XFontSel. Most of its user interface is configured in the configuration file
/usr/X11/lib/app-defaults/XFontSel. If this file is missing, xfontsel prints a warning message to standard
output, and the resulting window will be nearly incomprehensible.

The following gives application-specific resources:

cursor (class Cursor)
Set the cursor for the application window.

pattern (class Pattern)
Set the font-name pattern to select a subset of available fonts. This is equivalent to the command-line
option -pattern. Most useful patterns contain at least one field delimiter; e.g., ‘‘*-m-*’’ for monospaced
fonts.

pixelSizeList (class PixelSizeList)
Give a list of pixel sizes to add to the pixel-size menu, so that scalable fonts can be selected at those pixel
sizes. The default pixelSizeList contains 7, 30, 40, 50, and 60.

pointSizeList (class PointSizeList)
Give a list of point sizes (in units of tenths of points) to add to the point size menu, so that scalable fonts
can be selected at those point sizes. The default pointSizeList contains 250, 300, 350, and 400.

printOnQuit (class PrintOnQuit)
If set to True, the currently selected font name is printed to standard output when you click the (quit)

button. Equivalent to the -print option.

sampleText (class Text)
The sample one-byte text to use for linearly indexed fonts. Each glyph index is a single byte, with a
newline character separating lines.

sampleText16 (class Text16)
The sample two-byte text to use for matrix-encoded fonts. Each glyph index is two bytes, with a newline
character separating lines.

scaledFonts (class ScaledFonts)
If set to True, enable selection of arbitrary pixel and point sizes for scalable fonts.

The following gives the widget resources used by xfontsel:

showUnselectable (class ShowUnselectable)
For each field menu, indicate whether to show values that are not currently selectable, based upon
previous field selections. If shown, the unselectable values are clearly identified as such and do not
highlight when the pointer is moved down the menu. The full name of this resource is

fieldN.menu.options.showUnselectable

of class:

MenuButton.SimpleMenu.Options.ShowUnselectable

where N is replaced with the field number (starting with the left-most field, which is numbered zero). The
default is True for all but field 11 (average width of characters in font) and False for field 11. If you never
want to see unselectable entries,

*menu.options.showUnselectable:False

is a reasonable entry for your personal resource file.

Files
/usr/X11/lib/app-defaults/XFontSel— Resource file

See Also
xfd, xrdb, X utilities

Notes
Sufficiently ambiguous patterns can be misinterpreted and lead to an initial selection string that may not
correspond to what you intended, and that may cause the initial sample text output to fail to match the proffered

LEXICON

xfontsel 131

string. Selecting any new field value corrects the sample output, though possibly resulting in no matching font.

When running on a slow machine, you may request a field menu before the font names have been completely
parsed. xfontsel prints to the standard error an error message that indicates a missing menu, but otherwise
nothing happens.

Copyright 1989, 1991 by the Massachusetts Institute of Technology

xfontsel was written by Ralph R. Swick of Digital Equipment Corporation/MIT Project Athena.

xgas — X Client
Animated simulation of an ideal gas
xgas [-option ...]

xgas models an ideal gas in a heated chamber. The chamber is partially divided into two parts. You can control
the temperature of each part independently by clicking on a scrollbar:

Each dot represents a molecule. The ‘‘molecules’’ move within the box; when they touch a wall, they assume the
temperature to which you have set that part of the chamber. Their velocities depend upon their temperature.

Click the left mouse button to create a molecule at the cursor’s position. Click the right mouse button to create
the maximum number of molecules at the cursor’s position.

The xgas window displays the following four buttons:

(Quit) Exit from xgas.

(Run) Run the game continually.

(Pause)Stop running the game. To resume running, click (Run)again.

(Step) Run the game one step at a time. This lets you examine in detail how the ‘‘molecules’’ move and are
influenced by the temperatures of the chamber.

(Help) This option displays a help message on how to run xgas. If you wish, you can also read a document on the
physics of an ideal gas and how xgas models them.

LEXICON

132 xgas

Options
xgas recognizes the following command-line options:

-bd color Set the color of the border to color.

-bg color Set the color of the background to color.

-bw pixels Set the width of the border to pixels.

-display host[:server][.screen]
Display the client’s window on screen number screen of server on host system host.

-fg color Set the color of the foreground to color.

-fn font Use font in the display.

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of
the window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

-rv Simulate reverse video by exchanging the foreground and background colors.

-xrm resourcestring
Use resourcestring to define a resource.

X Defaults
xgas uses the following X resources:

timeStepSize
Set the simulated time duration, in microseconds, for each cycle of computation.

delay Set the real time interval between timestep computations.

randomBounce
Each time a molecule collides with a wall, it bounces elastically (angle of incidence equals angle of
reflection). This default adds a component of randomness to this angle. RandomBounce varies from 0.0
(no randomness) to 1.0 (completely random angle of incidence).

equilibrium
Each time a molecule collides with a wall, its kinetic energy approaches that of the temperature of the wall.
If equilibrium is 1.0, the molecule reaches the wall temperature immediately. For values between 1.0 and
0.0, the molecule approaches the temperature of the wall more slowly.

maxMolecules
Set the maximum number of molecules.

Files
/usr/X11/lib/app-defaults/XGas— Default resource file

See Also
ico, X clients, xwd

Notes
When the chamber is resized, molecules should be rearranged appropriately. Instead, the molecule arrays are
reinitialized.

Copyright 1991, Massachusetts Institute of Technology.

xgas was written by Larry Medwin.

xgc — X Client
X graphics demonstration
xgc [-toolkitoption ...]

xgc demonstrates features of the X graphics primitives. By manipulating the mouse, clicking buttons, pressing
mouse buttons, and otherwise playing with the window, you can learn how these objects work.

LEXICON

xgc 133

Options
xgc recognizes the following command-line options:

-bd color Set the color of the border to color.

-bg color Set the color of the background to color.

-bw pixels Set the width of the border to pixels.

-display host[:server][.screen]
Display the client’s window on screen number screen of server on host system host.

-fg color Set the color of the foreground to color.

-fn font Use font in the display.

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of
the window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

-rv Simulate reverse video by exchanging the foreground and background colors.

-xrm resourcestring
Use resourcestring to define a resource.

Environment
xgc reads the following environmental variables:

DISPLAY
Find the default host and display number.

XENVIRONMENT
Find the name of a resource file that overrides the global resources stored in the RESOURCE_MANAGER
property.

See Also
X clients

Notes
Copyright 1989, Massachusetts Institute of Technology.

xgc was written by Dan Schmidt of MIT.

xinit — X Utility
Initiate the X Window System
xinit [[client] options] [--[server] [display] options]

xinit launches the X Window System’s server and a first client program. When this first client exits, xinit
terminates the X server and closes the X Windows session.

xinit Scripts
xinit executes the contents of a script, which invokes various X clients. By default, xinit executes the contents of
script $HOME/.xinitrc. If this file doesnot exit, xinit executes the script /usr/X11/lib/xinit/xinitrc. The tutorial
X Windows Clients, at the beginning of this manual, gives examples of how to create your own .xinitrc file and
modify it to suit your tastes.

The programs that are invoked within $HOME/.xinitrc should be run in the background if they do not exit
immediately, so that they do not prevent other programs from starting up. However, the last long-lived program
that $HOME/.xinitrc launches (usually the window manager twm) should be left in the foreground so that the
script will not exit (which tells xinit that the user is done and it should exit). For example, the default file xinitrc
contains the following commands:

xsetroot -bitmap /usr/X11/include/X11/bitmaps/wide_weave
xclock -geometry 135x141+15+26 -fg blue -chime -update 1 &
xterm -ls -geometry 80x24+130+146 -cr red &
twm

LEXICON

134 xinit

The command xsetroot tiles the background of the screen with a bit-mapped image. Commands xclock and
xterm invoke those clients and display them on the screen; note that both are run in the background. Finally, the
command twm invokes the window manager twm in the foreground. When twm exits, xinit shuts down the X
server and returns you to the normal character-based COHERENT interface.

Command-line Options
xinit itself normally is invoked through the script startx. You can modify this script, if you wish, to set xinit’s
options. You can use command-line arguments to have xinit ignore the contents of its xinitrc files.

You can name an alternate client or server on xinit’s command line. Give the desired client and its arguments as
the first command-line arguments to xinit. To specify a command line for a server, append two hyphens ‘--’ to
xinit’s command line (after any client and arguments), followed by the commands you wish to pass to the server.

The name of a client program and the name of a server program must each begin with a slash ‘/’ or a period. If
they do not, xinit treats them as arguments to be appended to their respective startup lines. This lets you add
arguments (for example, foreground and background colors) without having to retype the whole command line.

If xinit’s command line does not name a server, and the first argument following the pair of hyphens ‘--’ is a colon
followed by a digit, xinit uses that number to identify the display. (X Windows for COHERENT at present supports
only the default display, which is display number 0.) xinit appends all remaining arguments onto the server’s
command line. For a list of the options you can pass to the X server, see the Lexicon entry for X.

The following gives examples of xinit’s command-line arguments. The first example

xinit -- /usr/bin/X11/Xqdss :1

launches the X server named Xqdss on display number one.

The next example

xinit -geometry=80x65+10+10 -fn 8x13 -j -fg white -bg navy

launches the server named X, and invokes xterm with arguments to set its geometry, font, foreground and
background colors, and with jump scrolling turned on. It ignores $HOME/.xinitrc.

The command

xinit -e widgets -- ./Xsun -l -c

uses the command ./Xsun -l -c to launch the server. It also launches xterm by default, and passes it the
argument -e widgets.

Finally the command

xinit /bin/rsh fasthost cpupig -display ws:1 -- :1 -a 2 -t 5

launches the server named X on display 1 with the arguments -a 2 -t 5. It then starts a remote shell to run the
command cpupig on the machine fasthost, telling it to display back on the local workstation.

Environment Variables
xinit reads the following environmental variables:

DISPLAY
The name of the display to which clients should connect.

XINITRC
Name the initialization file to execute.

Files
$HOME/.xinitrc — Client script
/usr/X11/lib/xinit/xinitrc — Default client script
xterm — Client to run if no client script exists
$HOME/.xserverrc — Default server script
X — Server to run if .xserverrc does not exist

See Also
startx, X, xterm, X utilities

LEXICON

xinit 135

Notes
Copyright 1988, Massachusetts Institute of Technology.

xinit was written by Bob Scheifler of the MIT Laboratory for Computer Science.

xkill — X Utility
Kill an X client
xkill [options]

xkill commands the X server to close its connection to a client. The severed client dies and its window vanishes
from the screen. The killed client does not clean up after itself, so ‘‘stuff’’ may be left littering memory or the file
system. If used carelessly, this program can damage your system, but it is useful for aborting programs that insist
on displaying undesired windows on your screen.

If you do not indicate the client to kill by using the -id command-line option (described below), xkill displays a
skull-and-crossbones cursor and kills the client whose window you click with it.

xkill recognizes the following command-line options:

-all Kill all clients with top-level windows on the screen. xkill asks you to confirm the killing by pressing one
of the mouse buttons. Do not use this option unless you absolutely must.

-button [number any]
When button is pressed, kill the X client whose window is being clicked. any indicates that any button will
do. By default, the leftmost button does the trick.

-display host[:server][.screen]
Specify a resource on screen of server on host system host.

-frame Ignore the standard conventions for finding top-level client windows (which, typically, are nested inside a
window-manager window), and instead simply believe that you want to kill direct children of the root.

-id resource
Kill the client whose resource has the identifier resource.

Resources
xkill uses the resource Button, which specifies the mouse button to press when selecting a window for death. any
indicates any button.

See Also
X utilities

Notes
xkill was written by Jim Fulton and Dana Chee.

xload — X Client
Display your system’s load average
xload [-toolkitoption ...] [-scale integer] [-update seconds] [-hl color] [-highlight color]

[-jumpscroll pixels] [-label string] [-nolabel] [-lights]

xload opens a window and displays a histogram of your system’s load average. The histogram is a bar graph that
grows from left to right.

xload recognizes the following command-line options:

-bd color Set the color of the border to color. The default is black

-bg color Set the color of the background to color. The default is white.

-bw pixels Set the width of the border to pixels. The default is two.

-display host[:server][.screen]
Display the client’s window on screen number screen of server on host system host.

-fg color Set the color of the foreground to color. The default is black.

LEXICON

136 xkill — xload

-fn font Use font in the display. The default is fixed, a 6×10, fixed-width font.

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of
the window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

-highlight color
Specify the color of the scale lines.

-jumpscroll pixels
Jump the histogram by pixels when it reaches the edge of the window. The default is half the width of
the current window. To obtain smooth scrolling, set pixels to one.

-label string
Display string as a label above the histogram.

-nolabel Display no label above the histogram.

-rv Simulate reverse video by exchanging the foreground and background colors.

-scale ticks Specify the minimum number of tick-marks in the histogram, where one tick-mark represents one
load-average point. If the load goes above this number, xload creates more divisions, but it will never
use fewer than ticks. The default is one.

-update seconds
Update the histogram after an interval of seconds. The default is five. If the histogram is iconified and
then de-iconified, xload updates it immediately.

-xrm resourcestring
Use resourcestring to define a resource.

Resources
xload uses the resource showLabel(class Boolean). If false, xload displays no label.

Environment
xload reads the following environmental variables:

DISPLAY
The default host and display.

XENVIRONMENT
The name of a resource file that overrides the global resources stored in the manager
RESOURCE_MANAGER.

See Also
X clients
COHERENT Lexicon: ls

Notes
Copyright 1988, Massachusetts Institute of Technology.

xload must be able to open and read file /dev/kmem. Sites that do not allow general access to this file should
have xload belong to the same group as /dev/kmem, and turn on the set group id flag. For details on file
permissions, see the entry for the command ls in the COHERENT Lexicon.

xload was written by K. Shane Hartmann and Stuart A. Malone. Jim Gettys, Bob Scheifler, Tony Della Fera, and
Chris Peterson added features.

xlogo — X Client
Display the X Window System logo
xlogo [option ...]

xlogo displays the X Window System logo in its own window. It is simply a wrapper around the Athena Logo
widget. It recognizes the following command-line options:

LEXICON

xlogo 137

-bd color Set the color of the border to color.

-bg color Set the color of the background to color.

-bw pixels Set the width of the border to pixels.

-display host[:server][.screen]
Display the client’s window on screen number screen of server on host system host.

-fg color Set the color of the foreground to color.

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of
the window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

-rv Simulate reverse video by exchanging the foreground and background colors.

-xrm resourcestring
Use resourcestring to define a resource.

Resources
xlogo uses the Logo widget in the Athena widget set. It understands all of the core resource names and classes, as
well as the following:

foreground(class Foreground)
Give the foreground color of the logo. If reverseVideo is specified, the default color is white; otherwise, it
is black.

height(class Height)
Give the height of the logo.

reverseVideo(class ReverseVideo)
Indicate reverse video by exchanging the foreground and background colors.

width(class Width)
Give the width of the logo.

Environment
xlogo reads the following environmental variables:

DISPLAY
The default host and display.

XENVIRONMENT
The name of a resource file that overrides the global resources stored in the property
RESOURCE_MANAGER.

Files
/usr/X11/lib/app-defaults/XLogo— Resource file

See Also
X clients

Notes
The Athena Logo widget is undocumented.

xlogo was written by Ollie Jones and Jim Fulton of the MIT X Consortium, based on a graphic design by Danny
Chong and Ross Chapman of Apollo Computer.

xlsatoms — X Utility
List atoms defined on server
xlsatoms [-display dpy] [-format string] [-range [low] [-high]] [-name string]

xlsatoms lists the atoms being used by the X server. By default, it lists all atoms starting from one (the lowest
atom value defined by the protocol) until it finds an atom that is undefined. If an explicit range is given, xlsatoms
tries all atoms in the range, regardless of whether any are undefined.

LEXICON

138 xlsatoms

Options
xlsatoms recognizes the following command-line options:

-display dpy
Connect to display number dpy.

-format string
Format the output. string is a printf()-style format string that xlsatoms uses to format an atom. An atom
consists of the arguments value and name, in that order; the former is an unsigned long and the latter a
char *. xlsatoms automatically supplies a newline at the end of each line. The default formatting string is
%ld\t%s.

-name string
Name an atom to list. If the atom string does not exist, xlsatoms prints a message on the standard error
device.

-range [low]-[high]
Set the range of atoms to check, by value. If low is not given, xlsatoms assumes a value of one. If high is
not given, xlsatoms stops at the first undefined atom at or above low.

Environment
xlsatoms reads the environmental variable DISPLAY to find the host and display to use.

See Also
xprop, X utilities

Notes
Copyright 1989, Massachusetts Institute of Technology.

xlsatoms was written by Jim Fulton of the MIT X Consortium.

xlsclients — X Utility
List client applications running on a display
xlsclients [-display displayname] [-a] [-l] [-m maxcmdlen]

The X utility xlsclients lists information about the client applications running on a display. You can use it to
generate a script that represents a snapshot of your current session.

xlsclients recognizes the following command-line options:

-a List the clients on all screens. By default, xlsclients lists only the clients on the default screen.

-display displayname
List information about the display displayname.

-l By default, xlsclients prints the machine name and command string. This options tells xlsclients to
output a long listing that also gives the window name, the icon name, and class hints.

-m maxcmdlen
Give the maximum number of characters to print for a given command. The default is 10,000.

Environment
xlsclients reads the environmental variable DISPLAY to get the host, display number, and screen.

See Also
X utilities, xwininfo

Notes
Copyright 1989, Massachusetts Institute of Technology.

xlsclients was written by Jim Fulton of the MIT X Consortium.

LEXICON

xlsclients 139

xlsfonts — X Utility
List fonts being used on a server
xlsfonts [-option ...] [-fn pattern]

xlsfonts lists the fonts that match the given pattern. pattern can contain the wildcard characters ‘*’ and ‘?’, which
match, respectively, any sequence of characters (including none) and any single character. If its command line
gives no pattern, xlsfonts uses ‘*’ by default. Note that you must the ‘*’ and ‘?’ to protect them from being
expanded by the shell.

Options
xlsfonts recognizes the following command-line options:

-1 Listings should use a single column. This is the same as -n 1. (Note that the character displayed here is
the numeral one, not a lower-case el.)

-display host:dpy
Contact display dpy on X server host.

-l[l[l]] Set the length of the listing for each font. The options respectively request medium-long, long, and very
long listings. (Note that the character displayed here is a lower-case el, not the numeral one.)

-m Long listings should also print the minimum and maximum bounds of each font.

-C Listings should use multiple columns. This is the same as -n 0.

-o Tell xlsfonts to perform an OpenFont (and QueryFont, if appropriate) rather than a ListFonts. This is
useful if ListFonts or ListFontsWithInfo fail to list a known font (as is the case with some scaled-font
systems).

-n columns
Use columns columns in the output. By default, xlsfonts fits as many columns of font names as it can
into the number of characters specified by the option -w.

-w width
Give the width of the printout, in characters. xlsfonts uses this value to compute the number of columns
to print. The default is 79.

-u Leave the output unsorted.

Environment
xlsfonts reads the environmental variable DISPLAY to find the host and display to use.

See Also
xfd, xset, X utilities

Notes
The command xlsfonts -lll can tie up your X server for a very long time. Caveat utilitor.

Copyright 1988, Massachusetts Institute of Technology.

xlsfonts was written by Mark Lillibridge of MIT Project Athena, Jim Fulton of the MIT X Consortium, and Phil
Karlton of SGI.

xmag — X Client
Magnify a part of the screen
xmag [-mag factor] [-source geom] [-toolkitoption ...]

The X client xmag magnifies a portion of an X screen. If its command line does not explicitly specify a region of the
screen to magnify, xmag lets you select interactively the portion of the screen to magnify. It displays a square with
the mouse cursor in its upper-left corner; to select a portion of the screen, drag the square to the area that
interests you and click the left mouse button.

When you have selected a region to magnify, xmag pops up a window shows a magnified version of the selected
region. The following example shows the xmag window magnifying part of itself:

LEXICON

140 xlsfonts — xmag

As you can see, the magnification represents each pixel in the source image by a small square; on a color screen,
the square is the same color of the original pixel.

At the top of the window, xmag displays the following six buttons:

(close)Close the xmag window.

(replace)

Again display the selector square, so you can select a different portion of the screen to magnify. The newly
selected portion replaces the portion displayed in the current xmag window. You can select a portion of
the xmag window itself, which in effect lets you ‘‘zoom in’’ on a portion of the screen.

(new) Again display the selector square, so you can select another portion of the screen to magnify. xmag
displays the newly selected portion in another xmag window.

(select)

Cut the magnified image into the primary selection.

(paste)Copy into the primary selection the display area of the current xmag window. Note that you can cut and
paste between xmag and the X client bitmap.

Resizing the xmag window resizes the magnification area. xmag preserves the color map, visual depth, and
window depth of the source image being magnified.

Options
xmag recognizes the following command-line options:

-bd color Set the color of the border to color.

-bg color Set the color of the background to color.

-bw pixels Set the width of the border to pixels.

-display host[:server][.screen]
Display the client’s window on screen number screen of server on host system host.

-fg color Set the color of the foreground to color.

-fn font Use font in the display.

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of
the window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

LEXICON

xmag 141

-mag integer
Use integer as the magnification factor. The default is five.

-rv Simulate reverse video by exchanging the foreground and background colors.

-source geom
Set the size and location of the source region on the screen. By default, xmag provides a 64×64-pixel
square with which you can select an area of the screen.

-xrm resourcestring
Use resourcestring to define a resource.

See Also
bitmap, X clients

Notes
Copyright 1991, Massachusetts Institute of Technology.

xmag was written by Dave Sternlicht and Davor Matic of the MIT X Consortium.

xmkmf — X Utility
Control the building of a Makefile
xmkmf [-a] [topdir [curdir]]

The X utility xmkmf is a script that invokes the utility imake to build a Makefile from an Imakefile.

When invoked with no arguments and in a directory that contains an Imakefile, xmkmf reads the Imakefile and
the configuration files designed for X Windows for COHERENT, and generates a Makefile.

When invoked with the option -a, xmkmf builds the Makefile in the current directory, then automatically executes
the commands

make Makefiles

(in case there are subdirectories),

make includes

and:

make depends

This is the normal way to configure software that is outside the MIT X build tree.

If you are working within the MIT X build tree specify the argument topdir as the relative path name from the
current directory to the top of the build tree. You can also specify curdir as a relative path name from the top of
the build tree to the current directory. You must supply curdir if the current directory has subdirectories, or if the
Makefile cannot build the subdirectories. If you give xmkfm a topdir, it assumes that nothing is installed on your
system, and looks for files in the build tree instead of using the installed versions. Note that it is unlikely that you
will ever need to do this unless you are an X developer, and even then this option is seldom used.

For a complete description of what xmkmf does, read the script /usr/X11/bin/xmkmf.

See Also
imake, X utilities

Notes
Makefiles generated by xmkmf must be processed through gmake, not the default COHERENT implementation of
make. If you attempt to use COHERENT make with such a Makefile, the compilation will fail with a number of
mysterious errors.

xmodmap — X Utility
Modify X keymaps
xmodmap [-option ...] [filename]

xmodmap edits and displays the keyboard’s modifier map and keymap table that client applications use to convert
event keycodes into keysyms. It works by executing one or more expressions that you either pass to it either
through a script or enter from your keyboard. xmodmap usually is invoked from within a user’s startup script, to

LEXICON

142 xmkmf — xmodmap

execute a script that configures the keyboard to his taste.

Options
xmodmap recognizes the following command-line options:

filename Name a file of xmodmap expressions to execute. This file is usually kept in a user’s home directory
and given a name like .xmodmaprc. A filename of - tells xmodmap to read the standard input.

-display display
Run xmodmap on display.

-e expression
Execute expression, as if it were read from a script. The command line can hold an indefinite number
of -e options.

-grammar Print on the standard error a help message that describes the grammar of xmodmap’s expressions.

-help Print on the standard error a brief description of the command-line arguments. xmodmap does this
whenever it encounters an option that it does not recognize on its command line.

-n Print the actions to perform, but do not actually change the mappings. Use this option to help debug
a script.

-pk Print on the standard output the current keymap table.

-pke Print on the standard output the current keymap table in the form of expressions that can be fed back
to xmodmap. Use this to prepare a template script that you can modify to suit your preferences.

-pm Print on the standard output the current modifier map.

-pp Print on the standard output the current mapping of the mouse (pointer) buttons.

-quiet Turn off the verbose logging. This is the default.

-verbose Print logging information as xmodmap parses its input.

Expression Grammar
xmodmap parses all of its expressions before it executes any of them. This lets it refer in a natural way to
keysyms that are being redefined, without having to worry about name conflicts.

The following summarizes the expressions that xmodmap recognizes:

add modifiername = keysymname ...
Add to the indicated modifier map all keys contain that the given keysyms. xmodmap evaluates the
keysym names after it has read all input expressions; this makes it easier for xmodmap to write
expressions to swap keys.

clear modifiername
Remove all entries in the modifier map for modifiername, which must be one of the following strings: Shift,
Lock, Control, Mod1, Mod2, Mod3, Mod4, or Mod5. Case does not matter in modifier names, although it
does matter for all other names. For example, the expression

clear Lock

removes all keys that are bound to the shift-lock modifier.

keycode number = keysymname ...
Assign each keysymname to keycode number, which may be specified in decimal, hexadecimal, or octal. If
you need a table of keycodes, run the program xev.

keysym keysymname = keysymname ...
Link each keysymname to the right of the equal sign to the keycode that is represented by the
keysymname to the left of the equal sign. The list of keysym names are kept in files
/usr/X11/include/X11/keysymdef.h and /usr/X11/lib/XKeysymDB. If a keysym is bound to multiple
keys, the expression is executed for each matching keycode.

pointer = default
Remap the mouse (pointer) buttons to their default settings (i.e., button 1 generates a code of 1, button 2
generates a 2, etc.).

LEXICON

xmodmap 143

pointer = code ...
Map the mouse (pointer) buttons to the the indicated button codes. This expressions maps each code to
the corresponding physical button, counting from left to right.

remove modifiername = keysymname ...
Remove every key that contains the given keysyms from the indicated modifier map. Unlike add,
xmodmap evaluates the keysym names as it reads the line. This lets you remove keys from a modifier
without having to worry about whether they have been reassigned.

xmodmap treats as a comment every line that begins with an exclamation point ‘!’: If you want to change the
binding of a modifier key, you must also remove it from the appropriate modifier map.

Examples
Many mice are designed so that the first button is leftmost, where it can be pressed by the index finger of the right
hand. People who are left-handed frequently find it more comfortable to reverse the button codes, so that the first
button is pressed by the index finger of the left hand. The first example reverses the button mapping on a three-
button mouse:

xmodmap -e "pointer = 3 2 1"

Many editor applications support the notion of Meta keys. These resemble Control keys except that <esc> is held
down instead of <ctrl>. However, some servers do not have a Meta keysym in their default keymap tables, so you
must add one by hand. The following command attach Meta to the Multi-language key (sometimes labeled
Compose Character). It also takes advantage of the fact that applications that need a Meta key simply need to get
the keycode and do not require the keysym to be in the first column of the keymap table. This means that an
application that is looking for a Multi_key (including the default modifier map) will not notice any change:

xmodmap -e "keysym Multi_key = Multi_key Meta_L"

One of the simpler, yet more convenient, uses of xmodmap is to set the keyboard’s rubout key to generate an
alternate keysym. This frequently involves exchanging Backspace with Delete to be more comfortable to the user.
If the resource ttyModes in xterm is set as well, every terminal-emulator window will use the same key for erasing
characters:

xmodmap -e "keysym BackSpace = Delete"
echo "XTerm*ttyModes: erase ^?" | xrdb -merge

Some keyboards do not automatically generate the characters ‘<’ and ‘>’ characters when the (,)and (.)keys are
shifted. The following script remedies this to reset the bindings for the comma and period:

!
! make shift-, be < and shift-. be >
!
keysym comma = comma less
keysym period = period greater

One of the more irritating differences between keyboards is the location of the (ctrl)and (Caps_Lock)keys. The
following script swaps them:

!
! Swap Caps_Lock and Control_L
!
remove Lock = Caps_Lock
remove Control = Control_L
keysym Control_L = Caps_Lock
keysym Caps_Lock = Control_L
add Lock = Caps_Lock
add Control = Control_L

xmodmap’s command keycode is useful for assigning the same keysym to multiple keycodes. Although
unportable, it also permits you to write scripts that can reset the keyboard to a known state. The following script
sets the (Backspace)key to generate Del (as shown above), flushes all existing bindings for the (Caps_Lock)key,
makes the (Caps_Lock)key be a control key, makes (F5)generate Escape, and makes the (Break)key be a shift
lock:

LEXICON

144 xmodmap

!
! On the HP, the following keycodes have key caps as listed:
!
! 101 Backspace
! 55 Caps
! 14 Ctrl
! 15 Break/Reset
! 86 Stop
! 89 F5
!
keycode 101 = Delete
keycode 55 = Control_R
clear Lock
add Control = Control_R
keycode 89 = Escape
keycode 15 = Caps_Lock
add Lock = Caps_Lock

Example
For an example of how to use xmodmap to reconfigure a keyboard, see the file /usr/X11/lib/.Xmodmap.ger. This
reconfigures the keyboard for an xterm or xvt session to follow the German keyboard layout.

Environment
xmodmap reads the environmental variable DISPLAY to find the number of the host and display.

See Also
xev, X utilities
COHERENT Lexicon: keyboard tables, nkb

Notes
Every time xmodmap evaluates a keycode expression, the server generates a MappingNotify event on every client.
This can cause some thrashing. You should batch all changes and do them at once. Clients that receive keyboard
input and ignore MappingNotify events will not notice any changes made to keyboard mappings.

xmodmap should generate add and remove expressions automatically whenever a keycode that is already bound
to a modifier is changed.

Copyright 1988, 1989, 1990 Massachusetts Institute of Technology. Copyright 1987 Sun Microsystems, Inc.

xmodmap was written by Jim Fulton of MIT X Consortium, based on an earlier version by David Rosenthal of Sun
Microsystems.

xpr — X Client
Print a dump of an X window
xpr [-append filename] [-compact] [-cutoff level] [-density dpi]

[-device devtype] [-gamma correction] [-gray] [-header string]
[-height inches] [-landscape] [-left inches] [-noff]
[-noposition] [-output filename] [-plane number] [-portrait]
[-psfig] [-render algorithm] [-rv] [-scale scale]
[-slide] [-split n] [-top inches] [-trailer string] [-width inches] [filename]

The X client xpr formats and prints a dump of a window that had been generated by the client xwd. It can format
files for printing on PostScript printers, the Digital LN03 or LA100, the IBM PP3812 page printer, the Hewlett-
Packard LaserJet (or other PCL printers), or the HP PaintJet.

By default, xpr prints the largest possible representation of the window on the output page. By setting the
appropriate command-line options, you can add headers and trailers, specify margins, adjust the scale and
orientation, and combine multiple window dumps to one output file.

Options
xpr recognizes the following command-line options:

LEXICON

xpr 145

-append filename
Append the output to filename. This option does not apply to PostScript printers.

-compact
Use simple, run-length encoding for compact representation of windows with lots of white pixels. This is
supported only on PostScript printers. Note, too, that this option compresses white space but not black
space, so it is not useful for reverse-video windows.

-cutoff level
Change the level of intensity by which xpr maps colors to black or white for monochrome output on a
LaserJet printer. level gives the percentage of full brightness. Fractions are allowed.

-density dpi
Set to dpi the dot-per-inch density to be used by a Hewlett-Packard printer.

-device devtype
Print the output onto devtype, which must be one of the following:

la100 The Digital LA100.
ljet The Hewlett-Packard LaserJet series and other monochrome PCL devices, such as ThinkJet,

QuietJet, RuggedWriter, and Hewlett-Packard 12560- and and 12930-series printers.
ln03 The Digital LN03.
lw The Apple LaserWriter. This is equivalent to option pp.
pjet The Hewlett-Packard PaintJet (color mode).
pjetxl The Hewlett-Packard PaintJet XL Color Graphics Printer (color mode).
pp The IBM PP3812.
ps Any PostScript printer.

The default is ps.

-gamma correction
Change the intensity of the colors printed by PaintJet XL printer. correction is a floating-point value in the
range 0.00 to 3.00. Consult the operator’s manual to determine the correct value for the specific printer.

-gray 2|3|4
Uses a simple 2×2, 3×3, or 4×4 gray-scale conversion on a color image, rather than mapping to strictly
black and white. This doubles, triples, or quadruples the effective width and height of the image. This is
not supported on IBM printers, or printers that run PCL.

-header string
Set a header string to be printed above the window.

-height inches
Set the maximum height of the page.

-landscape
Print the window in landscape mode. By default, xpr prints a window such that its longest side follows the
long side of the paper.

-left inches
Set the left margin, in inches. Fractions are allowed. By default, the window is centered in the page.

-noff When specified with -append, this window appears on the same page as the previous window. This option
does not apply to PostScript printers.

-noposition
Bypass generation of commands for header, trailer, and image positioning for LaserJet, PaintJet, and
PaintJet XL printers.

-output filename
Write the output into filename. If this option is not specified, xpr writes its output to the standard output.

-plane number
Set the bit plane to use in an image. The default is to use the entire image and map values into black-and-
white, based on color intensities.

LEXICON

146 xpr

-portrait
Print the window in portrait mode. By default, a window is printed such that its longest side follows the
long side of the paper.

-psfig Suppress translation of the PostScript picture to the center of the page.

-render algorithm
Use algorithm to allow the Hewlett-Packard PaintJet XL printer to render the image with the best ratio of
quality versus performance. Consult the operator’s manual to determine which algorithms are available.

-rv Print the window in reverse video.

-scale scale
Change the size of the window on the page. The PostScript, LN03, and Hewlett-Packard printers can
translate each bit in a window pixel map into a grid of a specified size. For example, to translate each bit
into a 3×3 grid, use the option:

-scale 3

By default, xpr prints a window with the largest scale that will fit onto the page for the specified
orientation.

-slide Print overhead transparencies on the PaintJet and PaintJet XL printers. This is not supported on LaserJet
printers.

-split n Split the window output over n pages. This might be necessary for very large windows; otherwise, cause
the printer to overload and print the page in an obscure manner. This is not supported for PCL or
PostScript printers.

-top inches
Set the top margin for the picture, in inches. Fractions are allowed.

-trailer string
Set a trailer string to be printed below the window.

-width inches
Set the maximum width of the page.

DEC Printers
The current version of xpr can print on the LN03 most X Windows that are not larger than two-thirds of the
screen. The LN03 has memory limitations that can cause it to incorrectly print very large or complex windows.
The two most common errors encountered are

band too complex

and:

page memory exceeded

In the case of the first error, a window may have a particular six-pixel row that contains too many changes (from
black to white to black). This causes the printer to drop part of the line and possibly parts of the rest of the page.
The printer will flash the number 1 on its front panel when this problem occurs. A possible solution to this
problem is to increase the scale of the picture, or to split the picture onto two or more pages. The second problem
occurs when the picture contains too much black, or if the picture contains complex half-tones such as the
background color of a display. When this problem occurs, the printer will automatically split the picture into two
or more pages. It may flash the number 5 on its from panel. There is no easy solution to this problem. It will
probably be necessary to either cut and paste, or to rework the application to produce a less complex picture.

There are several limitations on the LA100 support: the picture is always printed in portrait mode, there is no
scaling, and the aspect ratio will be slightly off.

Hewlett-Packard Printers
If the command line does not include the option -density, xpr uses 300 does per inch (dpi) for the LaserJet and 90
dpi for the Pjet. Allowable values for the option -density are 300, 150, 100, and 75 dpi. Consult the operator’s
manual to determine densities supported by other printers.

If the command line does not specify the option -scale, xpr expands the image to fit the printable page area.

The default printable page area is 8×10.5 inches. Other paper sizes can be accommodated by using the command-

LEXICON

xpr 147

line options -height and -width.

Note that a 1024×768 image fits the default printable area when processed at 100 dpi with -scale set to one. You
can print the same image using 300 dpi with -scale set to three, but this requires that considerably more data be
sent to the printer.

You can tailor xpr to drive monochrome PCL printers other than the LaserJet. To print on a ThinkJet 12225A,
invoke xpr with the following command:

xpr -density 96 -width 6.667 filename

Likewise, to print black-and-white output on a PaintJet, use the command:

xpr -density 180 filename

The monochrome intensity of a pixel is computed as 0.30×R + 0.59×G + 0.11×B. If a pixel’s computed intensity is
less than the level set by the option -cutoff, xpr prints it as white. This maps light-on-dark display images to
black-on-white hard copy. The default cutoff intensity is 50% of full brightness. For example, specifying -cutoff
87.5 moves the white/black intensity point to 87.5% of full brightness.

A LaserJet printer must be configured with sufficient memory to handle the image. A full page at 300 dots per
inch requires approximately two megabytes of printer memory.

xpr produces color images on PaintJet at 90 dpi. The PaintJet is limited to 16 colors from its 330-color palette on
each horizontal print line. xpr issues a warning message if it encounters more than 16 colors on a line. xpr
programs the PaintJet for the first 16 colors it encounters on each line, and uses the nearest matching
programmed value for other colors present on the line.

Specifying the reverse-video option -rv for the PaintJet interchanges black and white on the output image. No
other colors are changed.

Multiplane images must have been recorded by xwd in ZPixmap format. Single-plane (monochrome) images may
be in either XYPixmap or ZPixmap formats.

Some PCL printers do not recognize image-positioning commands. Output for these printers will not be centered
on the page and header, and trailer strings may not appear where expected.

Example
Each image in this manual was captured from the screen by the X client xwd, then turned into an encapsulated
PostScript file with the following command:

xpr -portrait -psfig -scale 3 file > file.eps

where file names the file into which xwd had written its output.

The scaling factor was necessary to size the window correctly. Note that a scaling factor of two was used with
images of the root window (such as the one that appears in the Lexicon entry for xsetroot); otherwise, the image
would not have fit into the format of this manual.

The PostScript output of xpr had to be edited slightly, to remove the instruction showpage at the bottom of the file.
Note, too, that the bounding-box comment at the beginning of the file was extremely inaccurate; in some cases, the
bounding box claimed that the image had a negative width or height. The only way to tell for certain is to print the
image and measure it with a pica rule. In this manual, the final images are incorporated into the pages using
custom-written troff macros.

See Also
X clients, xwd, xwud

Notes
Copyright 1988, Massachusetts Institute of Technology. Copyright 1986, Marvin Solomon and the University
of Wisconsin. Copyright 1988, Hewlett-Packard Company.

xpr was written by Michael R. Gretzinger and Jose Capo of MIT Project Athena, Marvin Solomon of the University
of Wisconsin, Bob Scheifler of MIT, Angela Bock and E. Mike Durbin of Rich Inc., and Larry Rupp of Hewlett-
Packard.

LEXICON

148 xpr

xprop — X Utility
Display an application’s properties
xprop [-help] [-grammar] [-id id] [-root] [-name name] [-frame] [-font font] [-display display] [-len n]

[-notype] [-fs file] [-remove property-name] [-spy] [-f atom format [dformat]]

The X utility xprop displays the contents of properties. You can select a window or font by using an command-line
argument or, in the case of a window, by clicking on it. xprop then displays that window’s or font’s properties,
possibly with formatting information.

Options
xprop recognizes the following command-line options:

-display host[:server][.screen]
Display the output window on screen number screen of server on host system host.

-f name format [dformat]
Use format as the format for property name, and use dformat as its dformat. If dformat is missing, xprop
assumes = $0+\n.

-font name
Display the properties of font name.

-frame When the user selects a window interactively (i.e., if command-line options -name, -root, and -id are not
used), look at the window manager’s frame (if any) instead of looking for the client window.

-fs file Read file as a source of formats for properties.

-grammar
Print a detailed grammar of all command-line options.

-help Print a summary of command-line options.

-id id Display the properties of window with X identifier id. This is useful when the target window is not mapped
to the screen or when using the mouse is impossible or would interfere with the application being
examined.

-len n Read or display no more than n bytes of any property. This is useful when displaying the contents of the
cut buffer, which can be several pages long.

-name name
Display the properties of the window named name.

-notype
Do not display a property’s type.

-remove property
Remove property from the indicated window.

-spy Examine a window’s properties forever, looking for changes in properties.

-root Display the properties of the X server’s root window. This is useful in situations where the root window is
completely obscured.

Selecting a Font or Window
To display the properties of a font, you must use the command-line option -font. To display the properties of a
window, you can select the window in any of four ways:

1. If the desired window is the root window, use the command-line argument -root.

2. If the desired window is not the root window, you can selected it by its ID number, by using the command-line
option -id.

2. If the desired window is not the root window, you can selected it by its name, by using the command-line
option -name.

4. If you do not use any of the options -font, -id, -name, or -root, xprop displays a cross-hairs mouse cursor.
To select a window, move the cursor to that window and click any button on the mouse.

LEXICON

xprop 149

By default, xprop prints first the property’s name, then its type (if it has one) in parentheses, then its value. The
command-line argument -notype tells xprop not to display a property’s type. Argument -fs names a file that
contains a list of formats for properties, and the argument -f specifies the format for one property.

Formats
The formatting information for a property consists of two parts: format and dformat. The former specifies the format
of the property itself (i.e., whether it made up of words, bytes, or longs, etc.), whereas the latter specifies how the
property should be displayed. If you do not give xprop a list of properties, it prints information about every
property of the selected window or font. If a window or font does not contain a requested property, xprop prints

not defined

for that property.

The following paragraphs describe how to construct format and dformat strings. However, for the vast majority of
uses, this should not be necessary: the built-in defaults are sufficient to display all standard properties. You
should find it necessary to specify a format and dformat only if you dislike the standard display format. We
encourage new users, in particular, to skip this part.

A format begins with a number that gives the number of bits per field in this property. xprop recognizes the
following numbers:

0 Use the field-size information within the property itself. This is only needed for special cases like type
INTEGER, which is actually three different types, depending upon the size of the fields of the property.

8 The property consists of a sequence of bytes.

16 The property is a sequence of words. The difference between this and a sequence of bytes is the machine
of the opposite byte ordering will swap the bytes of a word, where it will leave a sequence of bytes alone.
(For more information on byte ordering, see the entries for byte ordering and swab() in the COHERENT

Lexicon.)

32 The property consists of a sequence of long words.

Once the size of the fields has been specified, you must specify the type of each field. This is done using one
format character per field. If you supply fewer format characters than the property has fields, xprop repeats the
last format character as many times as necessary for the extra fields. The format characters and their meaning are
as follows:

a The field holds an atom number. A field of this type should be of size 32.

b The field is Boolean. A ‘0’ means ‘‘false,’’ whereas anything else means ‘‘true’’.

c The field is a cardinal value, i.e., an unsigned integer.

i The field is a signed integer.

m The field is a set of bit flags; ‘1’ means ‘‘on’’.

s The field is a string. xprop follows the C standard, in that it assumes that all subsequent bytes are
characters until it reads a NUL (that is, a character with value zero). Use this format character only with a
field size of 8.

x The field is a hexadecimal number. It is the same as the formatting character c, except that the output is
displayed in hexadecimal notation. This is most useful for displaying window identifiers and the like.

For example, consider the format 32ica. This describes a property that consists of three 32-bit fields, the first of
which holds a signed integer, the second an unsigned integer, and the third an atom.

A dformat defines how you want xprop to display information about the property in question. It cannot begin with
a letter or a hyphen, so xprop can distinguish it from a property name or an argument. For example, the dformat

" is ($0, $1 \)\n"

renders POINT 3, -4 (which has a format of 32ii)as:

is (3, -4)\n

xprop prints literally any character other than $, ?, \, or (. To print a literal $, ?, \, or (, precede it by with a \.
xprop also recognizes the following escape sequences:

LEXICON

150 xprop

\n Print a newline character.

\t Print a tab character.

\O Print the number O in octal notation.

The notation \$N tells xprop to display the contents of field number N. How xprop formats the displayed field
depends on the field’s format character in the corresponding format string. For example, if the format string
defines a character s being of type c (that is, a cardinal), xprop prints it in decimal; whereas if the format defines it
as being of type x (that is, a hexadecimal number), xprop displays it in hexadecimal notation.

If the field is not present in the property (which possible with some properties), xprop prints:

<field not available>

The escape sequence $n+ displays every field from n through the end of the property. If field n is not defined,
xprop displays nothing. This is useful for a property that is a list of values.

The formatting sequence ?exp(text) displays text only if expression exp evaluates to non-zero. This is useful for two
reasons. First, it allow you display a field only if a flag is set. Second, it lets you display a value (such as a state
number) as a name rather than as a number.

The syntax of exp is as follows:

exp ::= term | term=exp | !exp
term ::= n | $n | mn

The symbol ! is a logical NOT: it changes zero to one, and any non-zero value to zero. The symbol = is the equality
operator. Note that xprop evalutes all expressions as 32-bit numbers, so -1 does not equal 65,535. = returns one
if its two values are equal, and zero if they are not. n represents the constant value n, whereas $n represents the
value of field n. mn is one if flag n in the first field with format character m in the corresponding format string has
value one; otherwise, it is zero.

For example, the format

?m3(count: $3\n)

displays field 3 with a label of count only if flag 3 is on. (Note that flags are counting beginning with 0.) The format

?$2=0(True)?!$2=0(False)

displays the string True if field 2 equals zero, and displays False if field 2 equals anything other than zero.

To display a property, xprop needs both a format and a dformat. Before xprop uses its default values of a format of
32x and a dformat of

= { $0+ }\n

it searches several places to find more specific formats. First, it searches using the name of the property. If this
fails, it searches using the type of the property. This lets you give properties of type STRING with one format, yet
give property WM_NAME (which is of type STRING) a different format.

The locations searched are in the following order:

• The format, if any is specified with the property name.

• The formats defined by the options -f, in last to first order.

• The contents of the file named by the command-line option -fs.

• The contents of the file specified by the environmental variable XPROPFORMATS, if any.

• Finally, xprop’s built-in formats.

The files referred to by the -fs argument and the variable XPROPFORMATS consist of one or more lines of the
following form:

name format [dformat]

where name names a property or type. If dformat is not present, xprop uses

" = $0+\n"

LEXICON

xprop 151

by default.

Examples
To display the name of the root window, use the command:

xprop -root WM_NAME

To display the window manager’s hints for the clock, use the command:

xprop -name xclock WM_HINTS

To display the first 100 bytes of the cut buffer, use the command:

xprop -root -len 100 CUT_BUFFER0

To display the point size of the fixed font, use the command:

xprop -font fixed POINT_SIZE

Finally, to display all the properties of window 0x200007, use the command:

xprop -id 0x200007

Environment
xprop reads the following environmental variables:

DISPLAY
The default display.

XPROPFORMATS
The name of the file from which additional formats are obtained.

See Also
appres, X utilities, xwininfo

Notes
Copyright 1988, Massachusetts Institute of Technology.

xprop was written by Mark Lillibridge of MIT Project Athena.

xrdb — X Utility
Read/set the X server’s resource data base
xrdb [-option ...] [file]

xrdb manipulates the X server’s resource data base. Clients, whatever their system of origin, read this data base to
set their resources; its contents overrides any resources set in an application’s defaults file. This lets you change
defaults dynamically, without editing defaults files.

The X server stores its resource data base in the property RESOURCE_MANAGER on the root window of screen 0
(the default screen used by the server), or the property SCREEN_RESOURCES on the root window of any or all
screens, or everything combined. Most X clients read the properties RESOURCE_MANAGER and
SCREEN_RESOURCES to get your preferences concerning color, fonts, and other properties.
RESOURCE_MANAGER holds resources that apply to all screens of the display. SCREEN_RESOURCES on each
screen specifies additional (or overriding) resources to be used for that screen. (Because X Windows for COHERENT

presently supports only one screen, so SCREEN_RESOURCES is not used — all resources are placed into
RESOURCE_MANAGER.)

xrdb passes the contents of the file specified by file (or the data read from standard input if the file name ‘-’ is
used), through the C preprocessor with the following symbols defined, based on the capabilities of the server being
used:

BITS_PER_RGB=num
The number of significant bits in an RGB color specification. This is the log base 2 of the number of
distinct shades of each primary that the hardware can generate. Note that it usually is not related to
PLANES.

LEXICON

152 xrdb

CLASS=visualclass
Set the class of display, where visualclass is one of the following: StaticGray, GrayScale, StaticColor,
PseudoColor, TrueColor, or DirectColor. This is the visual class of the root window of the default screen.

COLOR
This is defined only if CLASS is StaticColor, PseudoColor, TrueColor, or DirectColor.

HEIGHT=num
The height of the default screen, in pixels.

SERVERHOST=hostname
The host-name portion of the display to which you are connected.

HOST=hostname
Same as SERVERHOST.

CLIENTHOST=hostname
The name of the host on which xrdb is running.

PLANES=num
The number of bit planes (the depth) of the root window of the default screen.

RELEASE=num
The vendor’s release number for the server. The interpretation of this number will vary depending on
VENDOR.

REVISION=num
The X protocol’s minor version supported by this server.

VERSION=num
The X protocol’s major version supported by this server (should always be 11).

VENDOR=vendor
A string that names the vendor of the server.

WIDTH=num
The width of the default screen, in pixels.

X_RESOLUTION=num
The X resolution of the default screen, in pixels per meter.

Y_RESOLUTION=num
The X resolution of the default screen, in pixels per meter.

xrdb ignores all lines that begin with an exclamation mark ‘!’. You can use them as comments.

Because xrdb can read the standard input, you can use it to redefine a property directly from a terminal or from a
shell script.

Options
xrdb recognizes the following command-line options:

-all Manipulate the screen-independent resource property (RESOURCE_MANAGER) as well as the screen-
specific property (SCREEN_RESOURCES) on every screen of the display. For example, when used with
option -query, xrdb prints the contents of all properties. For the options -load and -merge, xrdb
processes the input file once for each screen. In its output, xrdb gathers all resources that occur in
common, and applies them as the screen-independent resources. It applies the remaining resources for
each per-screen property. This the default mode of operation.

-backup string
Append string to the end of each file name used with option -edit, to generate a backup file.

-cpp name
Name the preprocessor to use. name should be its full path name. Although xrdb was designed to use
cpp, you can use any program that acts as a filter and accepts the options -D, -I, and -U.

-Dsymbol[=value]
Tell cpp to define symbol and give it value.

LEXICON

xrdb 153

-display display
Set the X server to be used. This option also specifies the screen to use for the option -screen, and
specifies the screen from which preprocessor symbols are derived for the option -global.

-edit file
Write the specified properties into file, replacing any values therein. This lets you to fold any changes that
you have made to your defaults into your resource file, while preserving any comments or preprocessor
lines.

-help Print a brief summary of these options.

-global Perform the operation only on the screen-independent property RESOURCE_MANAGER.

-Idirectory
Tell cpp to search directory for header files.

-load Load the input as the new values of the specified properties, replacing its current contents. This is the
default action.

-merge Merge the input into the specified properties, rather than replacing their contents. This option performs
lexicographically sorted merge of the two inputs, which is almost certainly not what you want but remains
for backward compatibility.

-n When used with the options -load or -merge, show on the standard output all changes to the specified
properties, but do not execute them. When used with the option -edit, show but do not execute all
changes to the resource file.

-nocpp Do not filter the input file through a preprocessor before loading it into properties.

-query Print onto the standard output the contents of the specified properties. Because preprocessor commands
in the input resource file are part of the input file, not part of the property, they will appear in the output
that this option triggers. Use the option -edit to merge the contents of properties back into the input-
resource file without damaging preprocessor commands.

-quiet Do not display warning messages about duplicate entries.

-remove
Remove the specified properties from the server.

-retain Tell the server not to reset itself if xrdb is the first client. This is never necessary under normal conditions,
because xinit always acts as the first client.

-screen
Perform the operation only on the property SCREEN_RESOURCES on the default screen of the display.

-screens
Perform the property SCREEN_RESOURCES for each screen of the display. With the options -load and -
merge, xrdb processes the input file for each screen.

-symbols
Print onto the standard output all symbols that are defined for the preprocessor.

-Usymbol
Tell cpp to un-define symbol.

Environment
xrdb reads the environmental variable DISPLAY to find which display to use.

Using xrdb
As noted above, xrdb reads the file named on its command line. The X display manager xdm, which is not
included with X Windows for COHERENT, invokes xrdb automatically to read the file $HOME/.Xdefaults. If you
wish to use xrdb under xinit, which is the standard way of invoking X under X Windows for COHERENT, you must
invoked from within the file $HOME/.xinitrc. For example

xrdb -load < $HOME/.Xdefaults

loads your personal defaults file into the X server.

The tutorial X Windows Clients, which appears earlier in this manual, gives examples of how to write a resource file

LEXICON

154 xrdb

for xrdb.

See Also
appres, editres, X utilities

Notes
Copyright 1991, Digital Equipment Corporation and MIT.

xrdb was written by Bob Scheifler and Phil Karlton, based on the original program written by Jim Gettys.

xrefresh — X Utility
Refresh all or part of an X screen
xrefresh [-option ...]

The X utility xrefresh repaints all or part of your screen. This is useful when the screen has in some way become
confused, e.g., by system messages. It maps a window on top of the desired area of the screen, then immediately
unmaps it, which forces the X server to send refresh events to all applications.

By default, xrefresh uses a window with no background, which causes all applications to repaint ‘‘smoothly.’’
However, you can use various options instead a solid background (of any color) or the root window’s background.

Options
xrefresh recognizes the following command-line options:

-black Use a black background — in effect, turn off all of the electron guns within the tube. This can be
somewhat disorienting as the screen goes black for a moment.

-display host[:server][.screen]
Refresh screen of server on host system host.

-none This is the default. xrefresh repaints all windows.

-root Use the root window’s background.

-solid color
Use a solid background of color. Try green.

-white Use a white background. The screen paints itself in white, then immediately repaints the root window’s
background and all application windows.

X Defaults
xrefresh uses the routine XGetDefault() to read defaults, so the names of all of its resourcs are capitalized:

Black
None
Root
Solid
White Determine what to paint the window, before repainting the background and applications’ windows.

Geometry
Determine the area to refresh. This option is not very useful.

Environment
xrefresh reads the environmental variable DISPLAY to get host and display number.

See Also
X utilities

Notes
Copyright 1988, Massachusetts Institute of Technology.

xrefresh was written by Jim Gettys of Digital Equipment Corporation and MIT Project Athena.

LEXICON

xrefresh 155

xset — X Utility
Set preferences for the display
xset [-b] [-b on/off] [-b [volume [pitch [duration]]] [[-]bc] [-c] [-c on/off] [-c [volume]]

[-display display] [[-+]fp[-+] directory[,directory[, ...]]] [-fp default] [-fp rehash]
[[-]led [integer]] [led on/off] [-mouse [accel_mult[/accel_div] [threshold]]]
[-mouse default] [-P [period]]] [-p pixel color] [-q] [[-]r] [-r on/off] [-s [length]]
[-s blank/noblank] [-s expose/noexpose] [-s on/off] [-s default]

The X utility xset lets you set options for the display. It recognizes the following command-line options:

[-]b [volume [pitch [duration]]]
Set the volume on the bell, both pitch and duration. This option accepts up to three numerical
parameters, a preceding hyphen ‘-’, or an on/off flag. If the command line gives no parameters or the flag
on, xset uses the system defaults. If the command includes a hypen or or the flag off, xset turns the bell
off. volume gives the volume of the bell, as a percent of its maximum volume. pitch gives the bell’s pitch,
in hertz. duration gives the bell’s the duration, in milliseconds. Not all hardware can vary the bell’s
characteristics. The X server sets the characteristics of the bell as closely as it can, but it may not be able
to set them exactly to your specifications.

[-]bc Set the bug-compatibility mode in the server, if possible. A hyphen ‘-’ disables the mode; otherwise, the
mode is enabled. This option explicitly reintroduces certain bugs into the X server, so that X can run
many clients that compensated for bugs in releases that preceded release 4. Use this mode with care: new
applications should be developed with it disabled. For this option to work, the server must support the
protocol extension MIT-SUNDRY-NONSTANDARD.

[-]c [value]
Control key-click. A hyphen or an off flag disables this option, which turns off the key-click. value sets
the volume of the keyclick, from zero to 100; the X server sets the volume to the nearest level that the
hardware can support.

-display server
Set the configuration of display server.

fp=directory[,...]
Set the font path: the X server searches each directory for fonts. The server ignores each directory that
does not contain a data base created by mkfontdir.

fp default
Set the font path to the server’s default.

fp rehash
Re-read the font data bases in the current font path. Use this only after you have added new fonts to a
font directory and have run mkfontdir to add the fonts to that directory’s font data base.

-fp directory[, ...]
fp- directory[, ...]

Remove each directory from the font path.

+fp directory[,directory, ...]]
fp+ directory[,directory, ...]]

Append each directory to, respectively, the beginning or end of the font path.

[-]led [value]
Toggle the keyboard LEDs, that is, the little lights that indicate whether the NumLock, CapsLock, and
ScrollLock keys are set. If no value is set or the flag on is set, turn on all LEDs. If a preceding hyphen or
the flag off is set, turn off all LEDs. Setting value to between one and three turns the corresponding LED
on or off, depending on whether this is preceded by a hyphen. Different values may refer to different LEDs
on different hardware.

m [acceleration [threshold]]
m default

This option sets mouse values. acceleration sets the mouse-acceleration: it can be an integer or a simple
fraction. The mouse goes acceleration times as fast when it travels more than threshold pixels in a short
time. This way, the mouse can be used for precise alignment when it is moved slowly, yet can be set to
travel across the screen in a flick of the wrist when desired. Using the flag default or omitting all

LEXICON

156 xset

arguments sets the mouse parameters to the system’s default.

p [entry [color]]
Set the pixel color values. entry gives color map’s entry number, in decimal; color gives a color
specification. On some servers, you can change the background color on the root window by altering the
entries for resources BlackPixel and WhitePixel. Although these are often zero and one, they need not be.
Also, a server may choose to allocate those colors privately, in which case an error will be generated. The
map entry must not be a read-only color, or an error will result.

[-]r Control the autorepeat. If a hyphen precedes this option, or if it is followed by the flag off, xset turns
autorepeat off. xset enables autorepeat if this option is followed by the flag on, or is followed by no flags at
all.

s [time]fB] [cycle] [blank|noblank] [expose|noexpose] [on|off] [default]
Set screen-saver parameters, as follows:

time Wait time seconds before activating the screen saver.
cycle Modify the screen-saver’s pattern after cycle seconds, to prevent the screen from burning in.

blank If the screen-saver option is set, blank the screen.

noblank
If the screen-saver option is set, display a pattern of some sort.

expose Allow window exposures.

noexpose
Disable the screen saver unless the server can regenerate the screens without causing exposure
events.

on Turn on the screen saver.

off Turn off the screen saver.

default Return parameters to their default values.

q Print information on the current settings.

The X server resets these values to their defaults after you log out.

Example
The following gives example output of the command xset q:

Keyboard Control:
auto repeat: on key click percent: 0 LED mask: 00000000
auto repeating keys: 0000000000000000

0000000000000000
0000000000000000
0000000000000000

bell percent: 50 bell pitch: 400 bell duration: 100
Pointer Control:
acceleration: 2/1 threshold: 4

Screen Saver:
prefer blanking: yes allow exposures: yes
timeout: 600 cycle: 600

Colors:
default colormap: 0x21 BlackPixel: 0 WhitePixel: 1

Font Path:
/usr/X11/lib/fonts/misc/,/usr/X11/lib/fonts/75dpi/

Bug Mode: compatibility mode is disabled

See Also
X, xmodmap, X utilities, xrdb, xsetroot

Notes
Copyright 1988, Massachusetts Institute of Technology.

xset was written by Bob Scheifler of the MIT Laboratory for Computer Science, and David Krikorian of MIT Project
Athena.

LEXICON

xset 157

xsetroot — X Utility
Set preferences for the root window
xsetroot [-bg color] [-bitmap filename] [-cursor cursorfile maskfile] [-cursor_name cursorname]

[-def] [-display display] [-fg color] [-gray] [-grey] [-help] [-mod x y]
[-name string] [-rv] [-solid color]

xsetroot modifies the appearance of the screen’s background — what is usually called the root window. xsetroot
lets you tailor the appearance of the root window to suite your tastes.

Options
If you invoke xsetroot with no command-line options, it resets the root window to its default settings. xsetroot
recognizes the following command-line options:

-bg color
Set the background to color.

-bitmap file
Use the bit map specified in file to tile the background. The entire background is made up of repeated
‘‘tiles’’ of the bit map.

-cursor cursorfile maskfile
Change the mouse cursor that X displays when the cursor is against the root window. cursorfile and
maskfile name bit-mapped images. For example, the command

xsetroot -cursor /usr/X11/include/X11/bitmaps/star \
/usr/X11/include/X11/bitmaps/starMask

changes the mouse cursor to an asterisk when the cursor is against the root window.

-cursor_name cursorname
Change the mouse cursor to one of the standard cursors from the cursor font. File
/usr/X11/include/X11/cursorfont.h names the available cursors (you should ignore the string XC_ that
prefixes each name). The Lexicon article for the X utility xfd displays the cursors in that font.

-def Reset all unspecified attributes to their default values. This restores to the familiar gray mesh and the
cursor to the hollow × shape. If you specify -def with other options, xsetroot sets only the non-specified
characteristics to their default states.

-display server
Connect to server.

-fg color
Set foreground to color. Foreground and background colors are meaningful only in combination with the
options -cursor, -bitmap, and -mod.

-gray
-grey Make the entire background gray.

-help Print a usage message and exit.

-mod x y
Draw a plaid-like grid pattern on the screen. x are integers, ranging from one to 16, that give the number
of pixels that separate, respectively, the vertical and horizontal lines.

-rv Exchange the foreground and background colors, to mimic reverse video. Normally, the foreground color is
black and the background color is white.

-solid color
Set the background of the root window to color. The file /usr/X11/lib/rgb.txt names all of the colors that
X recognizes.

You can use only one of the options that set the background of the root window, i.e., -solid, -gray, -grey, -bitmap,
and -mod.

Example
The following command tiles the background of the root window with a bit map:

LEXICON

158 xsetroot

xsetroot -bitmap /usr/X11/include/X11/bitmaps/escherknot

When you type it, your screen appears something like the following:

See Also
xset, xrdb, X utilities

Notes
Copyright 1988, Massachusetts Institute of Technology.

xsetroot was written by Mark Lillibridge of MIT Project Athena.

xstdcmap — X Utility
X standard color-map utility
xstdcmap [-all] [-best] [-blue] [-default] [-delete map] [-display display] [-gray] [-green] [-help] [-red] [-verbose]

The X utility xstdcmap defines the properties of the standard color map. You should invoke it from within the
script $HOME/.xinitrc, to create the standard color-map definitions, which facilitates sharing of scarce color-map
resources among clients. Where at all possible, the color maps it creates have read-only allocations.

Options
xstdcmap recognizes the following command-line options:

-all Define all six standard color-map properties on each screen of the display. Not every screen supports
visuals under which all six standard color-map properties are meaningful. xstdcmap determines the
best allocations and visuals for the color-map properties of a screen. Any previously existing standard
color-map properties will be replaced.

-best Define RGB_BEST_MAP.

-blue Define RGB_BLUE_MAP.

-default Define RGB_DEFAULT_MAP.

-delete map
Remove a standard color-map property. map can be one of the following: default, best, red, green,
blue, or gray.

-gray Define RGB_GRAY_MAP.

-green Define RGB_GREEN_MAP.

-help Print on the standard error a brief description of these options.

-red Define RGB_RED_MAP.

-verbose Tell xstdcmap to print logging information as it parses its input and defines the standard color-map
properties.

Environment
xstdcmap reads the environmental variable DISPLAY to find the default host and display number.

See Also
X utilities

Notes
Copyright 1989, Massachusetts Institute of Technology.

xstdcmap was written by Donna Converse of the MIT X Consortium.

LEXICON

xstdcmap 159

xterm — X Client
Terminal emulator for X
xterm [-option ...]

xterm is a terminal emulator for the X Window System. It opens a window that mimics either the DEC VT102 or
the Tektronix 4014 terminals. You can type text into this window, just as if you were at a terminal, and so invoke
X clients or utilities, or work with COHERENT commands that do not use the X Window System directly.

When you resize the xterm’s window, it sends the signal SIGWINCH to notify any child COHERENT programs that
the size of the window (in effect, the size of the terminal) has changed. Programs that understand that signal can
then resize themselves to work with the new window dimensions. Note that as of this writing, most COHERENT

applications do not yet understand how to work with SIGWINCH.

The VT102 and Tektronix 4014 terminals each has their own window so that you can edit text in one and look at
graphics in the other at the same time. To maintain the correct aspect ratio (that is, height versus width),
Tektronix graphics will be restricted to the largest box with a 4014’s aspect ratio that will fit into the window. This
box is located in the upper left area of the window.

Although both windows may be displayed at the same time, one of them is considered the ‘‘active’’ window for
receiving keyboard input and terminal output. This is the window that contains the text cursor. The active
window can be chosen through escape sequences, through the menu VT Options in the VT102 window, or through
the menu Tek Options in the 4014 window.

Emulations
xterm’s emulation of the VT102 is fairly complete, but does not support the blinking-character attribute nor the
double-wide and double-size character sets. termcap entries that work with xterm include xterm, vt102, vt100,
and ansipc. xterm automatically searches the file /etc/termcap for these entries, and then sets the
environmental variable TERM. You can modify many of xterm’s special features (like logging) by typing a set of
escape sequences different from the standard VT102 escape sequences.

xterm’s emulation of the Tektronix 4014 is also fairly good. It supports four sizes of font and five types of line.
xterm internally records all Tektronix text and graphics commands; you can tell it write them into a file by sending
it the escape sequence COPY, or through the Tektronix menu described below. The name of the file will be

COPYyy-MM-dd.hh:mm:ss

where yy, MM, dd, hh, mm, and ss give, respectively, the year, month, day, hour, minute, and second when COPY
was executed. xterm the file into the directory from which xterm was launched, or the home directory for a login
xterm.

Other Features
xterm automatically highlights the text cursor when the mouse cursor enters its window, and un-highlights it
when the mouse cursor exits the window. If the xterm window is the screen’s focus window, then the text cursor
is highlighted no matter where the mouse cursor is.

When it is running in VT102 mode, xterm has escape sequences to activate and deactivate an alternate screen
buffer, which is the same size as the display area of the window. When this buffer is activated, xterm saves the
current screen and replaces it with the alternate screen. Saving of lines scrolled off the top of the window is
disabled until the normal screen is restored. The termcap entry for xterm allows the editor vi to switch to the
alternate screen for editing and to restore the screen on exit.

Both VT102 or Tektronix modes support escape sequences to change the name of the windows.

Options
xterm recognizes the following command-line options. Prefixing an option with ‘+’ instead of ‘-’ returns the option
to its default value:

-132 Recognize the VT102 escape sequence DECCOLM, which switches between 80 and 132 columns, and
resize the window appropriately. By default, xterm ignores this escape sequence.

-ah Always highlight the text cursor. By default, xterm displays a hollow text cursor whenever the mouse
cursor is not in the xterm window or its icon.

LEXICON

160 xterm

-aw Allow auto-wraparound. This feature lets the text cursor wrap automatically to the beginning of the next
line when when it is at the end of a line and more text is output.

+aw Do not allow auto-wraparound.

-b pixels
Set the width of the inner border (that is, the distance between the outer edge of the text characters and
the window’s border) to pixels. The default is two.

-bd color
Set the color of the border to color. The default is black.

-bg color
Set the color of the background to color. The default is white.

-bw pixels
Set the width of the border to pixels.

-C This window should receive text directed to /dev/console. This is not supported on all systems. To obtain
console output, you must own the console device and have read and write permissions for it.

-cb Set the vt100 resource cutToBeginningOfLine to FALSE.

+cb Set the vt100 resource cutToBeginningOfLine to TRUE.

-cc characterclassrange:value[,...]
Use the classes indicated by the given ranges when selecting by words. See the section on character
classes, below.

-cn Do not cut newlines in line-mode selections.

+cn Cut newlines in line-mode selections.

-cr color
Set the color of the text cursor to color. The default is to use the same foreground color as that used for
text.

-cu Work around a bug in curses that causes COHERENT application more to drop the leading tab from a line
that begins with a tab and is preceded by a line that is exactly the width of the window.

-cu Do not work around the above-described bug in curses.

-e program [argument [, ...]]
Run program with each argument in an xterm window. If the command line gives neither the option -T
nor the option -n, xterm sets the window title and icon name the base name of program. This must be the
last option on the command line. This option often is used to invoke xterm while running a shell other than
your default shell.

-fb font Display boldfaced text in font, which must the same height and width as the normal font. If the command
line specifies only the normal font or the boldface font, xterm uses that font as the normal font and
produces boldface by overstriking it. The default is to overstrike the normal font.

-fg color
Set the color of the foreground to color. The default is black.

-fn font Use font in the display. The default is fixed.

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of the
window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

-help Print a message that describes these options.

-iconic Begin the window as an icon rather than as a normal window.

-im Turn on the resource useInsertMode.

+im Turn off the resource useInsertMode.

LEXICON

xterm 161

-j Perform jump scrolling. Normally, xterm scrolls text one line at a time; jump scrolling lets xterm scroll
multiple lines at once, so it does not fall behind the program that is writing text to the window. This
option makes xterm much faster when it scrolls through large amounts of text. You can also use the
VT100 escape sequences and the menu VT Options to turn feature on or off.

+j Do not use jump scrolling.

-l Write all terminal output into a log file as well as onto the screen. You can also use the menu VT Options
to enable or disable this option.

+l Do not log what is written to the screen.

-lf file Write text logged by the option -l into file. If file begins with a pipe symbol ‘|’, xterm assumes that the rest
of its command line is a shell command. The default log file is named XtermLog.XXXXX, where XXXXX is
the process id of xterm. By default, the log file is written into the directory from which xterm was
launched; or in the case of a login window, into the user’s home directory.

-ls Let the shell that is started in the xterm window be a login shell (i.e., the first character of argv[0] will be a
hyphen, which tells the shell to execute your .profile).

+ls Do not let the shell that is started in the xterm window be a login shell.

-mb Ring the bell when the user typing nears the right margin of a line, as on an old-fashioned typewriter. You
can also turn this option on or off from the menu VT Options.

+mb Do not ring the bell when the user’s typing nears the margin. This is the default.

-mc milliseconds
Set to milliseconds the maximum time between multi-click selections.

-ms color
Set the mouse cursor to color. The default is to use the foreground color.

-name name
Obtain resources under name rather than the default, which is executable program’s file name. name
should not contain the characters ‘.’ or ‘*’.

-nb number
Ring the bell when the text cursor is number characters from the right margin. The default is ten. This
option is meaningful only if the option -mb is also set.

-rv Simulate reverse video by exchanging the foreground and background colors.

-rw Allow reverse-wraparound. This feature lets the test cursor back up from the leftmost column of one line
to the rightmost column of the previous line. This is very useful for editing long shell command lines, and
its use is encouraged. You can turn this option on or off from the menu VT Options.

+rw Do not allow reverse-wraparound.

-Sccn Set the last two letters of the name of a pseudoterminal to use in slave mode, plus the number of the
inherited file descriptor. The option is parsed %c%c%d. This lets you use xterm as an input and output
channel for an existing program.

-s Let xterm scroll asynchronously. This means that xterm does not have to keep the screen completely up
to date as it scrolls. This lets xterm run faster when network latencies are very high, and typically is used
when running across a very large network or across many gateways.

+s Force xterm to scroll synchronously.

-sb Permit xterm to save in a buffer a number of lines of text that have scrolled off the top of the window, and
display a scrollbar that lets you access those lines of text interactively. The command-line option -sl sets
the number of lines to save. You can turn this option on or off from the menu VT Options.

+sb Display a scrollbar for redisplaying old text.

-sf Generate Sun Function Key escape codes for function keys.

+sf Generate the standard escape codes for function keys.

LEXICON

162 xterm

-si Output to a window does not automatically reposition the screen to the bottom of the scrolling region. You
can turn this option on or off from the menu VT Options.

+si Output to a window repositions the screen to the bottom of the scrolling region.

-sk Pressing a key while using the scrollbar to review old text automatically repositions the screen to the
bottom of the scroll region.

+sk Pressing a key while using the scrollbar to review old text does not reposition the screen to the bottom of
the scroll region.

-sl number
Buffer number lines that have scrolled off the top of the window. The default is 64.

-t Launch xterm in Tektronix mode rather than in VT102 mode. You can use the menu Options to switch
between the modes.

+t Launch xterm in VT102 mode. This is the default.

-title string
Display string in the title area of the window. The default title is the command line specified after the
command-line option -e, if any; otherwise, the application name is used.

-tm command=keystrokes[,...]
Invoke internal terminal command with keystrokes, similar to settings of the COHERENT command stty.
xterm recognizes the following commands:

intr quit erase kill
eof eol swtch start
stop brk susp dsusp
rprnt flush weras lnext

You can specify a control charactger as ^char (e.g., ^c or ^u).

-tn name
Name the terminal type to be set in the environmental variable TERM. This terminal type must exist in the
data bases termcap or terminfo, should include the entries li# and co#.

-ut Tell xterm not to write a record into the system log file /etc/utmp.

+ut Tell xterm to write a record into the system log file /etc/utmp.

-vb Use a visual bell rather than an audible one. When it reads the character <ctrl-G>, xterm briefly redraws
the screen in reverse video instead of ringing the bell. Note that on the typical personal computer, this is
rather slow.

+vb Do not use a visual bell. This is the default.

-wf xterm should wait for its window to be mapped for the first time before it start any subprocess (e.g., a
shell or editor). This helps ensure that that application’s initial settings for environment and terminal size
are correct. It is the application’s responsibility to catch subsequent changes to the terminal’s size.

+wf xterm should not wait for its window to appear before it launches the subprocess.

-xrm resourcestring
Use resourcestring to define a resource.

Resources
In addition to all of the core X Toolkit resource names and classes, xterm also understands the following resource
names and classes:

iconGeometry (class IconGeometry)
Set the preferred size and position of the application when it is iconified. It is not necessarily obeyed by all
window managers.

iconName (class IconName)
Set the name to appear on the icon. The default is xterm.

LEXICON

xterm 163

termName (class TermName)
Set the terminal type to be set into the environment variable TERM.

title (class Title)
Set the string that the window manager can used when it displays this application.

ttyModes (class TtyModes)
Set the string that contains the terminal-setting commands and key sequences to which each is be bound.
Same as the command-line option -tm, described above. This is very useful for overriding the default
terminal settings without having to use the command stty every time you invoke xterm.

useInsertMode (class UseInsertMode)
Force the use of insert mode by adding appropriate entries to the environmental variable TERMCAP. This
is useful if your system’s termcap entry for this type of terminal is broken. The default is false.

utmpInhibit (class UtmpInhibit)
Specify whether xterm should try to record the user’s terminal in /etc/utmp.

sunFunctionKeys (class SunFunctionKeys)
Specify whether to generate Sun Function Key escape codes for function keys, instead of standard escape
sequences.

waitForMap (class WaitForMap)
Specify whether to wait for the initial window map before starting the subprocess. The default is false.

vt100 Resources
The following resources are specified as part of the vt100 widget (class VT100):

allowSendEvents (class AllowSendEvents)
Specify whether to interpret or discard synthetic key and button events (generated using the X protocol
SendEvent request). The default is false, which means they are discarded. Note that allowing such
events creates a very large security hole.

alwaysHighlight (class AlwaysHighlight)
Specify whether xterm should always display a highlighted text cursor. By default, it displays a hollow
text cursor whenever the mouse cursor moves out of the window or the window loses the input focus.

appcursorDefault (class AppcursorDefault)
If true, the mouse buttons are initially in application mode. The default is false.

appkeypadDefault (class AppkeypadDefault)
If true, the keypad keys are initially in application mode. The default is false.

autoWrap (class AutoWrap)
Specify whether to enable auto-wraparound. The default is true.

bellSuppressTime (class BellSuppressTime)
Set the number of milliseconds after the bell command during which xterm suppresses another bell
command. The default is 200. This feature is most useful with the visible bell.

boldFont (class BoldFont)
Name the font to use for boldface, instead of the default overstriking.

c132 (class C132)
Specify whether to honor escape sequence VT102 DECCOLM. The default is false.

cutNewline (class CutNewline)
If false, triple-clicking to select a line does not include the newline character at the end of the line. If true,
xterm also selects the newline. The default is true.

cutToBeginningOfLine (class CutToBeginningOfLine)
If false, triple-clicking to select a line selects only from the current word forward. If true, the entire line is
selected. The default is true.

charClass (class CharClass)
Specify a comma-separated list of character-class bindings of the form [low-]high:value. These determine
which sets of characters should be treated identically when performing cut and paste. For details, see the
section on character classes, below.

LEXICON

164 xterm

curses (class Curses)
Specify whether to work around the last-column bug in curses. The default is false.

background (class Background)
Specify the color to use for the background of the window. The default is white.

foreground (class Foreground)
Specify the color to use for displaying text in the window. Setting the class name instead of the instance
name is an easy way to have everything that would normally appear in the text color change color. The
default is black.

cursorColor (class Foreground)
Specify the color to use for the text cursor. The default is black.

eightBitInput (class EightBitInput)
If true, xterm presents a metacharacter typed on the keyboard as single character with the eighth bit
turned on. If false, it converts metacharacters into a two-character sequence with the character itself
preceded by <esc>. The default is true.

eightBitOutput (class EightBitOutput)
Specify whether eight-bit characters sent from the host should be accepted as is, or stripped when printed.
The default is true.

font (class Font)
Name the normal font. The default font is fixed.

font1 (class Font1)
Name the first alternative font.

font2 (class Font2)
Name the second alternative font.

font3 (class Font3)
Name the third alternative font.

font4 (class Font4)
Name the fourth alternative font.

font5 (class Font5)
Name the fifth alternative font.

font6 (class Font6)
Name the sixth alternative font.

geometry (class Geometry)
Set the preferred size and position of the VT102 window.

internalBorder (class BorderWidth)
Give the number of pixels between the characters and the window’s border. The default is two.

jumpScroll (class JumpScroll)
Specify whether to use jump scrolling. The default is true.

logFile (class Logfile)
Name the file into which a terminal session is logged. The default is XtermLog.XXXXX, where XXXXX is
the process identifier of xterm).

logging (class Logging)
Specify whether to log a terminal session. The default is false.

logInhibit (class LogInhibit)
Specify whether to inhibit the logging of a terminal session. The default is false.

loginShell (class LoginShell)
Specify whether the shell to be run in the window should be started as a login shell. The default is false.

marginBell (class MarginBell)
Specify whether to ring the bell when the user’s typing approaches the right margin. The default is false.

LEXICON

xterm 165

multiClickTime (class MultiClickTime)
Set the maximum time, in milliseconds, between multi-click select events. The default is 250 milliseconds.

multiScroll (class MultiScroll)
Specify whether to scroll asynchronously. The default is false.

nMarginBell (class Column)
If the margin bell is enabled, set the point at which xterm rings it, in number of characters to the left of
the right margin.

pointerColor (class Foreground)
Set the foreground color of the mouse cursor. The default is XtDefaultForeground.

pointerColorBackground (class Background)
Set the background color of the mouse cursor. The default is XtDefaultBackground.

pointerShape (class Cursor)
Name the shape of the mouse cursor. The default is xterm.

resizeGravity (class ResizeGravity)
Dictate the behavior when the user changes the height of the window. NorthWest specifies that the top
line of text on the screen stay fixed. If the window is made shorter, drop lines from the bottom; if the
window is made taller, add blank lines at the bottom. This is compatible with the behavior in R4.
SouthWest (the default) specifies that the bottom line of text on the screen stay fixed. If the window is
made taller, scroll down additional saved lines onto the screen; if the window is made shorter, scroll lines
off the top of the screen and drop the top saved lines.

reverseVideo (class ReverseVideo)
Specify whether to simulate reverse video. The default is false.

reverseWrap (class ReverseWrap)
Specify whether to enable reverse-wraparound. The default is false.

saveLines (class SaveLines)
Set the number of lines to save beyond the top of the screen. The default is 64.

scrollBar (class ScrollBar)
Specify whether to display the scrollbar should be displayed. The default is false.

scrollTtyOutput (class ScrollCond)
Specify whether output to the terminal automatically moves the scrollbar to the bottom of the scrolling
region. The default is true.

scrollKey (class ScrollCond)
Specify whether pressing a key automatically moves the scrollbar to the bottom of the scrolling region. The
default is false.

scrollLines (class ScrollLines)
Set the number of lines that the actions scroll-back and scroll-forward should use as a default. The
default is one.

signalInhibit (class SignalInhibit)
Specify whether to disallow the entries in the menu Main Options that send signals to xterm. The default
is false.

tekGeometry (class Geometry)
Set the preferred size and position of the Tektronix window.

tekInhibit (class TekInhibit)
Specify whether to disallow Tektronix mode. The default is false.

tekSmall (class TekSmall)
Specify whether to start the Tektronix-mode window in its smallest size if no explicit geometry is given.
This is useful when running xterm on displays with small screens. The default is false.

tekStartup (class TekStartup)
Specify whether xterm should begin in Tektronix mode. The default is false.

LEXICON

166 xterm

titeInhibit (class TiteInhibit)
Specify whether xterm should remove the entries ti and te (which switch between alternate screens on
startup of many screen-oriented programs) from the environmental variable TERMCAP. If set, xterm also
ignores the escape sequence to switch to the alternate screen.

translations (class Translations)
Specify the key and button bindings for menus, selections, ‘‘programmed strings,’’ etc. For details, see the
section on actions, below.

visualBell (class VisualBell)
Specify whether to use a visible bell (i.e., flashing) instead of an audible bell when <ctrl-G> is received.
The default is false.

tek4014 Resources
The following resources are specified as part of the tek4014 widget (class Tek4014):

width (class Width)
Set the width of the Tektronix window, in pixels.

height (class Height)
Set the height of the Tektronix window, in pixels.

fontLarge (class Font)
Name the large font to use in the Tektronix window.

font2 (class Font)
Name font number 2 to use in the Tektronix window.

font3 (class Font)
Name font number 3 to use in the Tektronix window.

fontSmall (class Font)
Name the small font to use in the Tektronix window.

initialFont (class InitialFont)
Name which of the four Tektronix fonts to use initially. Values are the same as for the set-tek-text action.
The default is large.

ginTerminator (class GinTerminator)
Specify what character (or characters) should follow a GIN report or status report. The possibilities are as
follows:

none Send no terminating characters
CRonly Send CR
CR&EOT Sends both CR and EOT.

The default is none.

The documentation for the Athena SimpleMenu widget describes the resources that may be specified for the
various menus. The following lists the name and classes of the entries in each menu.

Main Menu
xterm’s main menu is invoked by holding down the <ctrl> key and pressing the left mouse button. It displays the
contents of resource mainMenu, and has the following entries:

Secure Keyboard
Invokes the resource securekbd (class SmeBSB), which triggers the action secure().

Allow SendEvents
Invokes the resource allowsends (class SmeBSB), triggers the action allow-send-events().

Log to File
Invoke the resource logging (class SmeBSB), which triggers the action set-logging(). This turns on logging
for this window.

Redraw Window
Invoke the resource redraw (class SmeBSB), which triggers the action redraw().

LEXICON

xterm 167

Send Stop Signal
Invoke the resource suspend (class SmeBSB), which triggers the action send-signal() to support job
control.

Send Cont Signal
Invoke the resource continue (class SmeBSB), which triggers the action send-signal() on systems that
support job control.

Send INT Signal
Invoke the resource interrupt (class SmeBSB), which triggers the action send-signal(). This sends an
interrupt signal to xterm.

Send HUP Signal
Invoke the resource hangup (class SmeBSB), which triggers the action send-signal(). This sends a HUP
(hang-up) signal to xterm.

Send TERM Signal
Invoke the resource terminate (class SmeBSB), which triggers the action send-signal(). This sends a
TERM (terminate) signal to xterm.

Send KILL Signal
Invoke the resource kill (class SmeBSB), which triggers the action send-signal(). This sends a KILL signal
to xterm.

Quit Invoke the resource quit (class SmeBSB), which triggers the action quit().

Menu VT Options
xterm’s menu VT Options is invoked by holding down the <ctrl> key, and pressing the center mouse button (or, if
you have a two-button mouse, pressing both mouse buttons simultaneously). It displays the contents of resource
vtOptions and has the following entries:

Enable Scrollbar
This invokes resource scrollbar (class SmeBSB), which triggers the action set-scrollbar(). This toggles
displaying the scrollbar.

Enable Jump Scroll
This invokes resource jumpscroll (class SmeBSB), which triggers the action set-jumpscroll(). This toggles
jump-scrolling.

Enable Reverse Video
This invokes resource reversevideo (class SmeBSB), which triggers the action set-reverse-video(). This
toggles putting the screen into reverse video.

Enable Auto Wraparound
This invokes resource autowrap (class SmeBSB), which triggers the action set-autowrap(). This toggles
auto-wraparound.

Enable Reverse Wraparound
This invokes resource reversewrap (class SmeBSB), which triggers the action set-reversewrap(). This
toggles reverse-wraparound.

Enable Auto Linefeed
This invokes resource autolinefeed (class SmeBSB), which triggers the action set-autolinefeed().

Enable Application Cursor Keys
This invokes resource appcursor (class SmeBSB), which triggers the action set-appcursor().

Enable Application Keypad
This invokes resource appkeypad (class SmeBSB), which triggers the action set-appkeypad().

Scroll to Bottom on Keypress
This invokes resource scrollkey (class SmeBSB), which triggers the action set-scroll-on-key().

Scroll to Bottom on Tty Output
This invokes resource scrollttyoutput (class SmeBSB), which triggers the action set-scroll-on-tty-
output().

LEXICON

168 xterm

All 80/132 Column Switching
This invokes resource allow132 (class SmeBSB), which triggers the action set-allow132().

Enable Curses Emulation
This invokes resource cursesemul (class SmeBSB), which triggers the action set-cursesemul().

Enable Visual Bell
This invokes resource visualbell (class SmeBSB), which triggers the action set-visualbell().

Enable Margin Bell
This invokes resource marginbell (class SmeBSB), which triggers the action set-marginbell().

Show Alternate Screen
This invokes resource altscreen (class SmeBSB), which shows the alternate screen. This entry currently
is disabled.

Do Soft Reset
This invokes resource softreset (class SmeBSB), which triggers the action soft-reset().

Do Full Reset
This invokes resource hardreset (class SmeBSB), which triggers the action hard-reset().

Reset and Clear Saved Lines
This invokes resource clearsavedlines (class SmeBSB), which triggers the action clear-saved-lines().

Show Tek Window
This invokes resource tekshow (class SmeBSB), which triggers the action set-visibility().

Switch to Tek Mode
This invokes resource tekmode (class SmeBSB), which triggers the action set-terminal-type(). This
switches the terminal to Tektronix emulation.

Hide VT Window
This invokes vthide (class SmeBSB), which triggers the action set-visibility().

Menu VT Fonts
xterm’s menu VT Fonts is invoked by holding down the <ctrl> key, and pressing the right mouse button. It
displays the contents of resource fontMenu, and has the following entries:

Default
Invoke the resource fontdefault (class SmeBSB), which triggers the action set-vt-font(). This sets the
default font.

Unreadable
Invoke the resource font1 (class SmeBSB), which triggers the action set-vt-font(). This sets alternate font
1, which is an invisible font.

Tiny This invokes resource font2 (class SmeBSB), which triggers the action set-vt-font(). This sets alternate
font 2, which is the tiny font.

Small This invokes resource font3 (class SmeBSB), which triggers the action set-vt-font(). This sets alternate
font 3, which is the small font.

Medium
This invokes resource font4 (class SmeBSB), which triggers the action set-vt-font(). This sets alternate
font 4, which is the medium font.

Large This invokes resource font5 (class SmeBSB), which triggers the action set-vt-font(). This sets alternate
font 5, which is the large font.

Huge This invokes resource font6 (class SmeBSB), which triggers the action set-vt-font(). This alternative font
6, which is the huge font.

Escape Sequence
This invokes resource fontescape (class SmeBSB), which triggers the action set-vt-font(). This sets the
escape sequence for switching fonts. By default, this option is not enabled.

LEXICON

xterm 169

Selection
This invokes resource fontsel (class SmeBSB), which triggers the action set-vt-font(). This sets a new font.

tekMenu Resources
tekMenu has the following entries:

tektextlarge (class SmeBSB)
Invoke the action set-tek-text().

tektext2 (class SmeBSB)
Invoke the action set-tek-text().

tektext3 (class SmeBSB)
Invoke the action set-tek-text().

tektextsmall (class SmeBSB)
Invoke the action set-tek-text().

line1 (class SmeLine)
This is a separator.

tekpage (class SmeBSB)
Invoke the action tek-page().

tekreset (class SmeBSB)
Invoke the action tek-reset().

tekcopy (class SmeBSB)
Invoke the action tek-copy().

line2 (class SmeLine)
This is a separator.

vtshow (class SmeBSB)
Invoke the action set-visibility().

vtmode (class SmeBSB)
Invoke the action set-terminal-type().

tekhide (class SmeBSB)
Invoke the action set-visibility().

Athena Scrollbar Resources
The following resources are useful when specified for the Athena Scrollbar widget:

thickness (class Thickness)
Set the width of the scrollbar, in pixels.

background (class Background)
Set the color of the scrollbar’s background.

foreground (class Foreground)
Set the color of the scrollbar’s foreground. The ‘‘thumb’’ of the scrollbar is a simple checkerboard pattern
alternating pixels for foreground and background color.

Using the Mouse
Once the VT102 window is created, xterm lets you cut text and paste it within the same or other windows.

The selection functions are invoked when the mouse buttons are used with no modifiers, and when they are used
with the <shift> key. (If you wish, you can use the X utility xrdb to change what functions are linked to which
keys and mouse buttons. see the section entitled Actions, below.)

The left mouse button copies text into the X server’s cut buffer. Move the cursor to beginning of the text, and then
drag the mouse to the end of the region and release the button. The selected text is highlighted, and is saved in
the global cut buffer (i.e., the property PRIMARY).

Double-clicking cuts a word of text. Triple-clicking cuts a line of text. Multiple-click is determined by the time
from button-up to button-down, so you can change the unit to be selected while you are selecting. If the
key/button bindings specify that an X selection is to be made, xterm leaves the selected text highlighted for as

LEXICON

170 xterm

long as it owns the selection — that is, until you make another selection, or click the right-mouse button to clear
the selection.

The center-mouse button pastes the text from the primary selection, if any; otherwise, it pastes the contents of the
cut buffer. Text being pasted is processed as though it were typed from the keyboard.

The right-mouse button extends the current selection. By pressing this button and dragging the mouse, you can
‘‘sweep’’ out a mass of text to cut. xterm displays all cut text in reverse video, so you can see exactly what you
have selected. If you press the right mouse button while the mouse cursor is closer to the right edge of the
selection than the left, xterm extends/contracts the right edge of the selection. If you contract the selection past
the left edge of the selection, xterm assumes you really meant the left edge, restores the original selection, then
extends/contracts the left edge of the selection. Extension starts in the selection-unit mode that the last selection
or extension was performed in; you can multiple-click to cycle through them.

By cutting and pasting ‘‘hunks’’ of text without trailing new lines, you can take text from several places in different
windows and form a command to the shell, for example, or take output from a program and insert it into your
favorite editor. Because the cut buffer is globally shared among different applications, you should regard it as a
‘‘file’’ whose contents you know. The terminal emulator and other text programs should treat it as if it were a text
file, i.e., the text is delimited by new lines.

The scroll region displays the position and amount of text currently showing in the window (highlighted) relative to
the amount of text actually saved. As more text is saved (up to the maximum), the size of the highlighted area
decreases.

If you click the left mouse button when the pointer is in the scroll region, xterm moves the adjacent line to the top
of the display window.

If you click the right mouse button, xterm drops the top line of the display window to the mouse cursor’s position.

If you click the middle mouse button, xterm moves the display to a position in the saved text that corresponds to
the mouse cursor’s position in the scrollbar.

Unlike the VT102 window, the Tektronix window does not allow you to copy text. It does allow Tektronix GIN
mode, and in this mode the mouse cursor changes from an arrow to a cross. Pressing any key sends that key and
the current coordinate of the cross cursor. Pressing the left, center, or right mouse buttons return the letters ‘l’,
‘m’, and ‘r’, respectively. If the <shift> key is pressed when a pointer button is pressed, the corresponding upper-
case letter is sent. To distinguish a mouse button from a key, the high bit of the character is set (but this bit is
normally stripped unless the terminal mode is RAW; for details, see the entry in the COHERENT Lexicon for stty).

Menus
xterm has four menus, named mainMenu, vtMenu, fontMenu, and tekMenu. Each menu pops up under the
correct combinations of keystrokes and mouse-button motions. Most menus are divided into two sections,
separated by a horizontal line. The upper sections contains various modes that can be altered. A check mark
appears next to a mode that is currently active. Clicking one of these modes toggles its state. The lower section of
the menu are command entries; selecting one of these performs the indicated function.

An xterm menu pops up when you press the <ctrl> key and the left mouse button in a window. The MainMenu
contains items that apply to both the VT102 and Tektronix windows. Use the Secure Keyboard mode when typing
in passwords or other sensitive data in an unsecure environment; for details, see the section on security, below.
Notable entries in the command section of the menu are the Continue, Suspend, Interrupt, Hangup, Terminate,
and Kill. These send, respectively, the signals SIGCONT, SIGTSTP, SIGINT, SIGHUP, SIGTERM, and SIGKILL to
the process group of the process running under xterm (usually the shell). The function Continue is especially
useful if the user has accidentally typed <ctrl-Z>, suspending the process.

The vtMenu sets various modes in the VT102 emulation, and is popped up when the <ctrl> key and right mouse
button are pressed in the VT102 window. In the command section of this menu, the soft-reset entry resets the
scroll regions. This can be convenient when some program has left the scroll regions set incorrectly (often a
problem when using VMS or TOPS-20). The full-reset entry clears the screen, resets tabs to every eight columns,
and resets the terminal modes (such as wrap and smooth scroll) to their initial states just after xterm has finished
processing the command-line options.

The fontMenu sets the font used in the VT102 window. In addition to the default font and a number of
alternatives that are set with resources, the menu offers the font last specified by the escape sequence Set Font
and the current selection as a font name (if xterm owns the primary selection).

The tekMenu sets various modes in the Tektronix emulation. It pops up when you press the <ctrl> key and the

LEXICON

xterm 171

middle mouse button in the Tektronix window. The current font size is checked in the modes section of the menu.
The PAGE entry in the command section clears the Tektronix window.

Security
X environments differ in their security consciousness. MIT servers, run under xdm, can use a ‘‘magic cookie’’
authorization scheme that can provide a reasonable level of security for many people. If your server is only using a
host-based mechanism to control access to the server (as described in the Lexicon entry for xhost), then if you
enable access for a host and other users are also permitted to run clients on that same host, there is every
possibility that someone can run an application that will use the basic services of the X protocol to snoop on your
activities, possibly even capturing a transcript of everything you type at the keyboard. This is of particular concern
when you want to type in a password or other sensitive data. The best solution to this problem is to use a better
authorization mechanism than host-based control.

xterm has a a simple mechanism to protect keyboard input. The xterm menu (as described above) contains a
Secure Keyboard entry that, when enabled, uses the GrabKeyboard protocol request to ensures that all keyboard
input is directed only to xterm. When an application prompts you for a password (or other sensitive data), you can
use the menu to enable Secure Keyboard, type in the data, and then use the menu to disable Secure Keyboard.

Only one X client at a time can secure the keyboard, so when you attempt to enable Secure Keyboard, it may fail.
In this case, xterm sounds the bell. If the Secure Keyboard succeeds, the foreground and background colors will
be exchanged (as if you selected the Reverse Video entry in the Modes menu); they will be exchanged again when
you exit secure mode. If the colors do not switch, then you should be very suspicious that you are being ‘‘spoofed.’’
If the application you are running displays a prompt before asking for the password, it is safest to enter secure
mode before the prompt is displayed, and to make sure that the prompt is displayed correctly (in the new colors), to
minimize the probability of spoofing. You can also bring up the menu again and make sure that a check mark
appears next to the entry.

xterm automatically disables Secure Keyboard mode if your xterm window becomes iconified (or otherwise
unmapped), or if you start up a reparenting window manager (that places a title bar or other decoration around the
window) while in Secure Keyboard mode. (This is a feature of the X protocol not easily overcome.) When this
happens, xterm switches back the foreground and background colors and sounds the bell.

Character Classes
Clicking the middle mouse button twice rapidly selects all characters of the same class (e.g., letters, white space,
punctuation) to be selected. Because different people have different preferences for what should be selected (for
example, should file names be selected as a whole or only the separate subnames), you can override the default
mapping through the use of the resource charClass (class CharClass).

This resource consists simply of a list of range:value pairs, where the range is either a single number or low-high in
the range of 0 to 127, corresponding to the ASCII code for the character or characters to be set. value is arbitrary,
although the default table uses the character number of the first character occurring in the set.

The following gives the default table:

static int charClass[128] = {
/* NUL SOH STX ETX EOT ENQ ACK BEL */

32, 1, 1, 1, 1, 1, 1, 1,
/* BS HT NL VT NP CR SO SI */

1, 32, 1, 1, 1, 1, 1, 1,

/* DLE DC1 DC2 DC3 DC4 NAK SYN ETB */
1, 1, 1, 1, 1, 1, 1, 1,

/* CAN EM SUB ESC FS GS RS US */
1, 1, 1, 1, 1, 1, 1, 1,

/* SP ! " # $ % & ’ */
32, 33, 34, 35, 36, 37, 38, 39,

/* () * + , - . / */
40, 41, 42, 43, 44, 45, 46, 47,

/* 0 1 2 3 4 5 6 7 */
48, 48, 48, 48, 48, 48, 48, 48,

/* 8 9 : ; < = > ? */
48, 48, 58, 59, 60, 61, 62, 63,

LEXICON

172 xterm

/* @ A B C D E F G */
64, 48, 48, 48, 48, 48, 48, 48,

/* H I J K L M N O */
48, 48, 48, 48, 48, 48, 48, 48,

/* P Q R S T U V W */
48, 48, 48, 48, 48, 48, 48, 48,

/* X Y Z [\] ^ _ */
48, 48, 48, 91, 92, 93, 94, 48,

/* ‘ a b c d e f g */
96, 48, 48, 48, 48, 48, 48, 48,

/* h i j k l m n o */
48, 48, 48, 48, 48, 48, 48, 48,

/* p q r s t u v w */
48, 48, 48, 48, 48, 48, 48, 48,

/* x y z { | } ~ DEL */
48, 48, 48, 123, 124, 125, 126, 1};

For example, the string

33:48,37:48,45-47:48,64:48

tells xterm to treat the exclamation mark, percent sign, dash, period, slash, and ampersand characters as
characters and numbers. This is very useful for cutting and pasting e-mail addresses and file names.

Actions
You can rebind keys (or sequences of keys) to arbitrary strings for input by changing the translations for the vt100
or tek4014 widgets. Changing the translations for events other than key and button events is not expected, and
can cause unpredictable behavior. The following actions are provided for using within the vt100 or tek4014
translations resources:

bell([percent])
Ring the keyboard bell at the specified percentage above or below the base volume.

ignore()
Ignore the event, but check for special cursor-position escape sequences.

insert() Insert the character or string associated with the key that was pressed.

insert-seven-bit()
A synonym for insert()

insert-eight-bit()
Insert an eight-bit (meta) version of the character or string associated with the key that was pressed. The
exact action depends on the value of the resource eightBitInput.

insert-selection(sourcename [, ...])
Insert the string found in the selection or cut-buffer sourcename xterm checks the sources in the order
given (case is significant) until it finds one. Commonly-used selections include PRIMARY, SECONDARY,
and CLIPBOARD. Cut buffers are typically named CUT_BUFFER0 through CUT_BUFFER7.

keymap(name)
Dynamically define a new translation table whose resource name is name with the suffix Keymap (case is
significant). The name None restores the original translation table.

popup-menu(menuname)
Display the specified pop-up menu. Valid names include mainMenu, vtMenu, fontMenu, and tekMenu
Case is significant.

secure()
Toggle the Secure Keyboard mode described in the section on section, above. It is invoked from the entry
securekbd entry in menu mainMenu.

select-start()
Begins text selection at the current location of the mouse cursor. For details on making selection, see the
section above entitled Using the Mouse.

LEXICON

xterm 173

select-extend()
Track the pointer and extend the selection. It should only be bound to Motion events.

select-end(destname [, ...])
Puts the currently selected text into all of the selections or cut buffers specified by destname.

select-cursor-start()
Like select-start, except that it begins the selection at the current position of the text cursor.

select-cursor-end(destname [, ...])
Like select-end, except that you should use it with select-cursor-start.

set-vt-font(d/1/2/3/4/5/6/e/s [,normalfont [, boldfont]])
Set the font or fonts being used in the VT102 window. The first argument is a character that specifies the
font to be used: d or D indicate the default font (the font initially used when xterm was started); 1 through
6 indicate the fonts specified by the resources font1 through font6; e or E indicate the normal and bold
fonts that have been set through escape codes (or specified as the second and third action arguments,
respectively); and s or S indicate the font selection (as made by programs such as xfontsel) indicated by
the second action argument.

start-extend()
Like select-start, except that the selection is extended to the location of the mouse cursor.

start-cursor-extend()
Like select-extend, except that the selection is extended to the current position of the text cursor.

string(string)
Insert the specified text string as if it had been typed. Quotation is necessary if the string contains white
space or non-alphanumeric characters. If the string argument begins with the characters ‘0x’, xterm
interprets it as a hexadecimal character constant.

scroll-back(count [,units])
Scroll the text window backward, so that text that had previously scrolled off the top of the screen is now
visible. count gives the number of units (which may be page, halfpage, pixel, or line) by which to scroll.

scroll-forw(count [,units])
Like scroll-back, except that it scrolls the other direction.

allow-send-events(on/off/toggle)
Set or toggle the allowSendEvents resource. This feature is also invoked by the entry allowsends in
mainMenu.

set-logging(on/off/toggle)
Set or toggle the logging resource. This, too, is invoked by the logging entry in mainMenu.

redraw()
Redraw the window. It is invoked by the entry redraw in mainMenu.

send-signal(signame)
Send the signal signame to the xterm subprocess (the shell or program specified with the -e command-line
option). It is invoked by the entries suspend, continue, interrupt, hangup, terminate, and kill in
mainMenu. Allowable signal names are tstp (if supported by the operating system), suspend (same as
tstp) cont (if supported by the operating system), int, hup, term, quit, alrm, alarm (same as alrm), and
kill. Case is not significant.

quit() Send the signal SIGHUP to the subprogram, and exit from xterm. It is also invoked by the quit entry in
mainMenu.

set-scrollbar(on/off/toggle)
Toggles the scrollbar resource. It is invoked by the scrollbar entry in vtMenu.

set-jumpscroll(on/off/toggle)
Toggle the resource jumpscroll. It is also invoked by the entry jumpscroll in vtMenu.

set-reverse-video(on/off/toggle)
Toggle the resource reverseVideo. It is also invoked by entry reversevideo entry in vtMenu.

LEXICON

174 xterm

set-autowrap(on/off/toggle)
Toggle automatic wrapping of long lines. It is invoked by entry autowrap in vtMenu.

set-reversewrap(on/off/toggle)
Toggle the resource reverseWrap. It is invoked by by the entry reversewrap in vtMenu.

set-autolinefeed(on/off/toggle)
Toggle automatic insertion of linefeeds. It is invoked by the entry autolinefeed in vtMenu.

set-appcursor(on/off/toggle)
Toggle the handling of Application Cursor Key mode. It is invoked by the entry appcursor in vtMenu.

set-appkeypad(on/off/toggle)
Toggle the handling of Application Keypad mode. It is invoked by the entry appkeypad in vtMenu.

set-scroll-on-key(on/off/toggle)
Toggle the resource scrollKey. It is invoked from the entry scrollkey in vtMenu

set-scroll-on-tty-output(on/off/toggle)
Toggle the resource scrollTtyOutput. It is invoked from the entry scrollttyoutput in vtMenu.

set-allow132(on/off/toggle)
Toggle the resource c132. It is invoked from the entry allow132 in vtMenu.

set-cursesemul(on/off/toggle)
Toggle the resource curses. It is invoked from the entry cursesemul in vtMenu.

set-visual-bell(on/off/toggle)
Toggle the resource visualBell. It is invoked entry visualbell in vtMenu.

set-marginbell(on/off/toggle)
Toggle the resource marginBell. It is invoked from entry marginbell in vtMenu.

set-altscreen(on/off/toggle)
Toggle between alternative and main screens.

soft-reset()
Reset the scrolling region, tabs, window size, and cursor keys.

hard-reset()
Resets the scrolling region, tabs, window size, and cursor keys, and clears the screen. It is invoked from
the entry hardreset in vtMenu.

clear-saved-lines()
Perform hard-reset() and clear the history of lines saved from the top of the screen. It is invoked from the
entry clearsavedlines in vtMenu.

set-terminal-type(type)
Set the terminal type to type, which must be either vt or tek. It is invoked by the entry tekmode in
vtMenu and the entry vtmode in tekMenu.

set-visibility(vt/tek,on/off/toggle)
Controls whether the vt or tek windows are visible. It is invoked from the entries tekshow and vthide in
vtMenu, and the entries vtshow and tekhide in tekMenu.

set-tek-text(large/2/3/small)
Set font used in the Tektronix window to the value of the resources tektextlarge, tektext2, tektext3, and
tektextsmall, according to the argument. It is also by the entries of the same names as the resources in
tekMenu.

tek-page()
Clears the Tektronix window. This is invoked by the entry tekpage in tekMenu.

tek-reset()
Resets the Tektronix window. It is invoked by the entry tekreset in tekMenu.

tek-copy()
Copy the escape codes used to generate the current window’s contents to a file in the current directory
whose name begins with the string COPY. It is invoked from the entry tekcopy in tekMenu.

LEXICON

xterm 175

visual-bell()
Flash the window quickly.

The Tektronix window also has the following action:

gin-press(l/L/m/M/r/R)
Send the indicated graphics-input code.

Resources
The following gives the default settings for the resources used in the VT102 window:

Shift <KeyPress> Prior: scroll-back(1,halfpage) \n\
Shift <KeyPress> Next: scroll-forw(1,halfpage) \n\
Shift <KeyPress> Select: select-cursor-start() \

select-cursor-end(PRIMARY, CUT_BUFFER0) \n\
Shift <KeyPress> Insert: insert-selection(PRIMARY, CUT_BUFFER0) \n\

~Meta<KeyPress>: insert-seven-bit() \n\
Meta<KeyPress>: insert-eight-bit() \n\

!Ctrl <Btn1Down>: popup-menu(mainMenu) \n\
!Lock Ctrl <Btn1Down>: popup-menu(mainMenu) \n\

~Meta <Btn1Down>: select-start() \n\
~Meta <Btn1Motion>: select-extend() \n\
!Ctrl <Btn2Down>: popup-menu(vtMenu) \n\

!Lock Ctrl <Btn2Down>: popup-menu(vtMenu) \n\
~Ctrl ~Meta <Btn2Down>: ignore() \n\

~Ctrl ~Meta <Btn2Up>: insert-selection(PRIMARY, CUT_BUFFER0) \n\
!Ctrl <Btn3Down>: popup-menu(fontMenu) \n\

!Lock Ctrl <Btn3Down>: popup-menu(fontMenu) \n\
~Ctrl ~Meta <Btn3Down>: start-extend() \n\

~Meta <Btn3Motion>: select-extend() \n\
<BtnUp>:select-end(PRIMARY, CUT_BUFFER0) \n\

<BtnDown>: bell(0)

The following gives the default settings for the resources used in the Tektronix window:

~Meta<KeyPress>: insert-seven-bit() \n\
Meta<KeyPress>: insert-eight-bit() \n\

!Ctrl <Btn1Down>: popup-menu(mainMenu) \n\
!Lock Ctrl <Btn1Down>: popup-menu(mainMenu) \n\

!Ctrl <Btn2Down>: popup-menu(tekMenu) \n\
!Lock Ctrl <Btn2Down>: popup-menu(tekMenu) \n\
Shift ~Meta<Btn1Down>: gin-press(L) \n\

~Meta<Btn1Down>: gin-press(l) \n\
Shift ~Meta<Btn2Down>: gin-press(M) \n\

~Meta<Btn2Down>: gin-press(m) \n\
Shift ~Meta<Btn3Down>: gin-press(R) \n\

~Meta<Btn3Down>: gin-press(r)

Below is a sample how of you can use the keymap() action to add special keys for entering commonly-typed works:

*VT100.Translations: #override <Key>F13: keymap(dbx)
*VT100.dbxKeymap.translations: \

<Key>F14: keymap(None) \n\
<Key>F17: string("next") string(0x0d) \n\
<Key>F18: string("step") string(0x0d) \n\
<Key>F19: string("continue") string(0x0d) \n\
<Key>F20: string("print ") insert-selection(PRIMARY, CUT_BUFFER0)

Environment
xterm sets the environment variables TERM. It also uses and sets the environment variable DISPLAY to specify
which bit-mapped display terminal to use. It sets the environment variable WINDOWID to the X-Window
identification number of the xterm window.

See Also
pty, resize X clients, xvt
COHERENT Lexicon: curses, pty, termcap, terminfo, utmp, vi

LEXICON

176 xterm

Notes
The following example, by Ernest Cline (cline@usceast.cs.scarolina.edu), shows how to re-configure xterm to
obtain a character with a value above 127. It displays an accented ‘A’ if you press (F1) and then ‘A’:

*VT100.GraveKeymap.translations: \
Shift <Key>A: string(0xc0) keymap(None) keymap(Latin1)

Large pastes do not work on some systems. This is not a bug in xterm; rather, it is a bug in the pseudo-terminal
driver of those systems. xterm feeds large pastes to the pseudo-terminal only as fast as the driver pty can accept
data, but some pty drivers do not return enough information to know if the write has succeeded.

Copyright 1989, Massachusetts Institute of Technology.

xterm was written by many people, including Loretta Guarino Reid, Joel McCormack, Bob McNamara, and Terry
Weissman of Digital Equipment Corporation; Edward Moy of the University California, Berkeley; Ralph R. Swick,
Mark Vandevoorte, Jim Gettys, Ron Newman, and Jonathan Kamens of MIT Project Athena; Jim Fulton and Bob
Scheifler of the MIT X Consortium; Doug Mink of SAO; Steve Pitschke of Stellar; and Dave Serisky of Hewlett-
Packard.

xtetris — X Client
Wildly amusing implementation of Tetris
xtetris [toolkitoption ...]

xtetris is an X Windows implementation of the popular game Tetris. This game drops a series of blocks from the
top of a column. Each block is randomly selected from the set of six possible shapes. The point of the game is to
maneuver the blocks as they fall, and so build a solid mass at the bottom of the column.

As a block drops, you can move it to the left or to the right by clicking the left or right mouse buttons, respectively.
Pressing the shift key while clicking the left mouse button rotates the falling shape counter-clockwise; pressing the
shift key while clicking the right mouse button rotates it clockwise. Pressing the middle mouse button drops the
shape quickly.

You can also use the keyboard:

h Move the block to the left.

l Move the block to the right.

j Rotate clockwise.

k Rotate counter-clockwise.

<space>
Drop quickly.

You can also use arrow keys, as follows:

(æ) Move left.

(Æ) Move right.

(º) Rotate clockwise.

(ª) Rotate counter-clockwise.

You score points for each block that comes to rest on the gradually accumulating pile of blocks. Different blocks in
different orientations have different point values. If you complete a row of blocks across the column, that row is
removed and the entire pile drops by the width of the row, thus buying you more time to play. The longer you play,
the faster the blocks fall. The game ends when the pile reaches the top of the screen and no more blocks can fall.

xtetris keeps a table of high scores. You can avoid recording your score by using the option -noscore.

xtetris requires the defaults file /usr/X11/lib/app-defaults/Xtetris. You can configure almost everything about
xtetris in its defaults file. xtetris comes with two sample defaults files: Xtetris.c and Xtetris.bw. As their names
imply, the former is for color systems, and the latter is for monochrome. Some objects are unsightly, or disappear
entirely, if you run xtetris with the wrong defaults file; therefore, you should link Xtetris to the appropriate file.

LEXICON

xtetris 177

Options
xtetris recognizes the following command-line options:

-bd color Set the color of the border to color.

-bg color Set the color of the background to color.

-boxsize boxsize
Set the width of the square blocks that comprise the falling objects. The overall size of the game board
adjusts to boxsize.

-bw Use black-and-white defaults file.

-fg color Set the color of the foreground to color.

-fn font Use font in the display.

-geometry geometry
Set the geometry of the program’s window to geometry. The term ‘‘geometry’’ means the dimensions of
the window and its location on the screen. geometry has the form width×height±xoffset±yoffset.

-noscore Do not record your score or show you the score file when you have finished the game.

-rv Simulate reverse video by exchanging the foreground and background colors.

-score Runs xtetris using the scorefile, if it exists.

-speed speed
Sets the game’s speed. By default, speed is ten. A speed of 20 doubles game speed; a speed of five
makes it half as fast. -speed 50 makes for an extremely fast game; however, you will need a fast
processor to support it. Keep in mind that as you knock out rows, the game’s speed increases. If you
set your speed below the standard of ten, your score will not be recorded in the score file.

-xrm resourcestring
Use resourcestring to define a resource.

Files
/usr/lib/X11/app-defaults/Xtetris— Default defaults file
/usr/lib/X11/app-defaults/Xtetris.c— Color defaults file
/usr/lib/X11/app-defaults/Xtetris.bw— Monochrome defaults file
/usr/lib/X11/lib/tetris_scores— Top ten high scores

Environmental Variables
xtetris reads the environmental variable XTETRIS, which gives the name of the scores file.

See Also
puzzle, xgas, X clients

Notes
A bug in X11R5 makes the file /usr/lib/X11/app-defaults/Xtetris necessary: the pop-up score-box and the
information box do not receive a resource in the X server’s resource data base.

Copyright 1991, Daniel R. Greening, Didier Tallot, Phill Everson, and Martyn Shortley. xtetris was written by
Dan Greening, Didier Tallot, Phill Everson, Martyn Shortley, and Adam Marguilies.

xvt — X Client
VT100 emulator
xvt [options]

xvt emulates the DEC VT-100 terminal under X. It is a scaled-down version of the X client xterm: it eschews some
of that client’s more esoteric features to improve speed and reduce size. Specifically, xvt does not implement the
Tektronix 4014 emulation, session logging, and toolkit-style configurability. As a result, xvt uses much less
memory than does xterm — a significant advantage on a machine with limited RAM.

Options
xvt recognizes the following command-line options. With the exception of -msg, these are a subset of those
supported by xterm. Most command-line options have X-resource equivalents; these are listed in the following

LEXICON

178 xvt

table.

-bd color
Set the color of the border to color. For a list of recognized colors, see the file /usr/X11/lib/rgb.txt.

-bg color
Set the background of the xvt window to color.

-bw number
Set the width of the window’s border to number pixels.

-cc characterclassrange:value[,...]
Set or modify the characters that determine what is a word when a double click is used to select a word of
text. This is identical to xterm’s option -cc. For details, see the Lexicon entry for xterm.

-display display
Attempt to open the xvt window on display. In the absence if this option, xvt uses the display specified by
the environmental variable DISPLAY.

-e command [arguments]
Run command with its command-line arguments in the xvt window. If this option is used, it must be the
last on the command line. If there is no -e option then the default is to run the program specified by
environmental variable SHELL or failing that, the Bourne shell sh. This option also causes the window title
and icon name to be set to the name of the program being executed, if the are not overwritten by a more
specific option.

-fb fontname
Set the font used for the VT-100 bold rendition. Unlike xterm, xvt will not try to create bold text by
displacing and OR’ing an ordinary font. Therefore, if you want bold highlighting to work, you must use
this option to specify a suitable bold font.

-fg color
Set the foreground of the xvt window to color.

-font fontname
Set the main text font used by xvt. For a list of recognized font names, see the files
/usr/X11/lib/fonts/misc/fonts.aliasand /usr/X11/lib/fonts/75dpi/fonts.alias.

-geometry geometry
Create the window with the specified X-window geometry.

-iconic Start up with xvt iconized.

-msg Enable messages to the terminal window from programs like write. By default, xvt windows have
messages disabled. Executing an xvt with the -msg option has the same effect as running it normally and
then executing the command mesg y to enable messages.

-n name
Set the name xvt displays in its icon. This also sets the name that xvt shows in its title, unless you use
the option -title, described below.

-name name
Obtain resources under name rather than as xvt. name should not contain the characters ‘.’ or ‘*’.

-rw Enable reverse wrapping of the text cursor. This lets you edit shell commands that are longer than the
screen is wide.

-sb Start up with the scrollbar visible. The scrollbar can be displayed or hidden at any time simply by holding
down the <ctrl> key and clicking any mouse button. Note that xvt saves text regardless of whether the
scrollbar is displayed.

-sl number
Set the number of lines that xterm saves.

-title name
-T name

Set the name that xvt displays in its title bar

LEXICON

xvt 179

Resources
With the exception of the options -e, -display, and -name, every command-line option has an X-resource
counterpart. Like xterm, xvt uses the class name XTerm and so resource options set for XTerm also work for
xvt. The following table lists command-line options and their resource counterparts:

Command-line Option Instance Class
-bd borderColor BorderColor
-bg background Background
-bw borderWidth BorderWidth
-cc charClass CharClass
-display None None
-e None None
-fb boldFont BoldFont
-fg foreground Foreground
-font font Font
-geometry geometry Geometry
-iconic iconic Iconic
-msg messages Messages
-n iconName IconName
-name None None
-rw reverseWrap ReverseWrap
-sb scrollBar ScrollBar
-sl saveLines SaveLines
-title title Title

Names, Titles, and Icon Names
One occasionally confusing aspect of xvt and other X applications is the collection of names that an application
window can have, and the relationship between the names and the command-line options used to set them. This
section attempts to make the situation a bit clearer in the case of xvt.

Each terminal window has three names: its resource name, its title, and its icon name. These three names are
distinct and have different functions, although they usually have the same value. The resource name names the
command used to identify X resource options in the resources data base. The title is the text displayed in the title
bar, if there is one. The icon name is the name that appears in the window’s icon or represents it in the icon
manager’s window.

The options -name and -e set both the title and the icon name in addition to their main function. Option -n sets
the title and the icon name. Conflicts are resolved by giving the options the following priorities: first -e, then -
name, -n, and finally ~.BR -title . Therefore, -e sets the title only if none of the other options is used.

Scroll Bar
xvt saves the lines of text that scroll off the top of its window, up to a preset maximum. You can view these lines
by manipulating the xvt window’s scrollbar. To display or hide the scrollbar, press the <ctrl> key and click any
mouse button.

When the scrollbar is displayed, click the left mouse button to roll up a few lines; click the right mouse button to
click down a few lines. Assuming that xvt has buffered enough lines, the distance scrolled with either button is
equal to the number of lines between the cursor and the top of the window. Hence, pressing the left cursor
opposite a line of text moves that line to be the top of the window; and pressing the right button moves the top line
down so that it is opposite the cursor.

To scroll continually, press move the mouse cursor to the scroll bar, hold down the middle mouse button, and drag
it up or down.

Cutting and Pasting Text
xvt, like xterm, lets you cut and paste text.

To paste text, move the mouse cursor to the spot where you want to ‘‘drop’’ the text, then press the middle mouse
button. (If your mouse has only two buttons, press both buttons simultaneously.) xvt will handle the pasted text
just as if you had typed it from the keyboard. To drop text into a file, you can first invoke an editor, or use a
command like cat.

To cut text, press the left mouse button at the point where you want to begin cutting; drag the mouse to the end of
the block of text you wish to cut; and release the left mouse button. xvt highlights the text you have selected, to

LEXICON

180 xvt

show that it is cut. Cut text is copied into the X server’s cut buffer and its primary selection (that is, the property
PRIMARY).

To select a large block of text, click the left mouse button to begin selection; then use the scrollbar to move lower in
the file; and finally click the right mouse button.

Double-clicking the left mouse button cuts the word that is under the mouse cursor, with a ‘‘word’’ defined as a
collection of ASCII characters delineated by white space or newline characters. Triple-clicking the left mouse
button cuts the whole line. word and a triple click selecting a whole line. For this purpose, a word is a sequence
of characters in the same class. The default character classes are: To change the character classes so that, for
example, you can select a COHERENT path name or a mail address in one double click, use the option -cc or modify
the resource charClass. You can combine multiple clicking and dragging to select a sequence of consecutive words
or lines.

Although xvt mimics the behavior of xterm in its support of text selection and insertion, there are a couple of
minor differences:

• xvt respects <tab> characters in selected text and does not automatically convert them into spaces as
xterm does.

• xvt lets you abort a text insertion if you realize before you have released the middle mouse button that you
have made a mistake.

See Also
X clients, xterm

Notes
In some instances, xvt does not permit you to backspace over a previously typed character and erase. To work
around this problem, you must issue the command

stty erase ^H

If you use ksh, include this command in the file you name in the environmental variable ENV: the Korn shell reads
this file every time it spawns a sub-shell, and so will configure your terminal device correctly. For details on how
to set and use ENV, see the Lexicon entries for ksh and .kshrc.

xvt was written by John Bovey of the University of Kent. It was ported to COHERENT by Harry Pulley.

xwd — X Client
Dump an image of an X window
xwd [-add value] [-debug] [-display display] [-frame] [-help] [-icmap] [-id id] [-name name] [-nobdrs]

[-out file] [-root] [-screen] [-xy]

xwd dumps an X window into a file. The contents can either be printed by the X client xpr, or redisplayed by the
client xwud. (For information on these clients, see their entries in this Lexicon.) You can select the window to
dump either interactively (by moving the mouse cursor into the window and clicking any mouse button), or by
giving on the command line the window’s name or identifier.

xwd recognizes the following command-line options:

-add value
Add value to every pixel, where value is a signed integer.

-display server
Connect to server.

-frame When dumping a window, include its frame.

-help Print a summary of the command-line options.

-icmap Obtain the window’s RGB values by reading the first installed color map. By default, xwd obtains these
values by reading the window’s color map.

-id id Dump the window with the identifier id.

-name name
Dumped the window named name, as specified in the property WM_NAME.

LEXICON

xwd 181

-nobdrs
When dumping the window, do not include pixels that compose the window’s border. This is useful in
situations where you wish to use the window’s contents as an illustration in a document.

-out file
Write the output into file. The default is to write to the standard output.

-root Dump the screen’s root window. Note that this dumps an image of the virtual screen, not the physical
screen; so when you redisplay or print this image, you may get more than you expected.

-screen
Execute the GetImage request used to obtain the image on the root window, rather than directly on the
specified window. This lets you obtain pieces of other windows that overlap the specified window, and
capture menus or other pop-up items that are independent windows but which are superimposed upon
the specified window.

-xy Use XY format dumping instead of the default Z format. This option applies to color displays only.

Environment
xwd reads the environmental variable DISPLAY to get the numbers of the default host and display.

Files
XWDFile.h — Define the format of the X Window dump file

See Also
xpr, X clients, xwud

Notes
Copyright 1988, Massachusetts Institute of Technology.

xwd was written by Tony Della Fera of Digital Equipment Corp. and MIT Project Athena, and William F. Wyatt of
the Smithsonian Astrophysical Observatory.

xwininfo — X Utility
Display information about a window
xwininfo [-all] [-bits] [-children] [-display display] [-english]

[-events] [-frame] [-help] [-id id] [-int] [-metric] [-name name] [-root] [-shape] [-size] [-stats] [-tree] [-wm]

xwininfo displays information about a window. The information displayed depends upon the command-line
options used. If no options are used, it acts as if the -stats were used.

You can select the target window either interactively (by moving the mouse cursor into the desired window and
then clicking any mouse button), or by specifying it on the command line with the options -id or -name. xwininfo
recognizes the following command-line options:

-all Ask for all possible information.

-bits Display the attributes that pertain to the selected window’s raw bits and how the selected window is to
be stored. These include the selected window’s bit gravity, window gravity, backing-store hint,
backing-planes value, backing pixel, and whether it has save-under set.

-children Print the identifiers of the select window’s root, parent, and child windows.

-display server
Connect to server.

-english Display all individual height, width, and X and Y positions in inches (and feet, yards, rods, furlongs,
and miles if necessary), as well as number of pixels, based on what the server believes the resolution to
be. Geometry specifications that are in the form +x+y are not changed. -metric and -english can be
enabled simultaneously.

-events Display the window’s event masks. This displays both the event mask of events wanted by some
client, and the event mask of events not to propagate.

-frame Include the window manager’s frames when selecting a window manually.

LEXICON

182 xwininfo

-help Print a summary of this command.

-id id Print information about the window with the identifier id. This is useful when debugging an X
application whose window is not mapped to the screen, or when using the mouse might be impossible
or interfere with the application.

-int Display all window identifiers as decimal values. The default is to display them as hexadecimal values.

-metric Display all individual height, width, and x and y positions in millimeters, as well as number of pixels,
based on what the server believes the resolution to be. Geometry specifications that are in the form
+x+y are not changed. -metric and -english can be enabled simultaneously.

-name name
Print information about the window with name name.

-root Print information about the X server’s root window. This is useful when the root window is completely
obscured.

-shape Display the window’s window and border shape extents.

-size Display the window’s sizing hints. These include (for both the normal-size hints and the zoom-size
hints) the user-supplied location; the program-supplied location; the user-supplied size; the program-
supplied size; the minimum size; the maximum size; the resize increments; and the minimum and
maximum aspect ratios.

-stats Display the attributes that pertain to the window’s appearance and location. These include the
location of the window, its width and height, its depth, border width, class, color-map identifier (if
any), map state, backing-store hint, and location of the corners.

-tree Like option -children, but displays all children recursively, even unto the last generation.

-wm Display the window manager’s hints. These can include whether the application accepts input; what
number and name of the the window’s icon; where the window’s icon should go; and what the
window’s initial state should be.

Environment
xwininfo reads the environmental variable DISPLAY to get the default host and display number.

See Also
xprop, X utilities

Notes
The -geometry string displayed must make assumptions about the window’s border width and the behavior of the
application and the window manager. As a result, the location given is not always correct.

Copyright 1988, Massachusetts Institute of Technology.

xwininfo was written by Mark Lillibridge of MIT Project Athena.

xwud — X Client
Un-dump a window image
xwud [-bg color] [-display display] [-fg color] [-geometry geometry] [-help] [-in file] [-new]

[-noclick] [-plane number] [-raw] [-rv] [-std maptype] [-vis vis-type-or-id]

The X client xwud un-dumps a window image that had been stored by the X client xwd.

xwud recognizes the following command-line options:

-bg color Specify the color to display for the ‘0’ bits in the image if a bit-mapped image (or a single plane of an
image) is being displayed.

-display display
Display the un-dumped image on display.

-fg color Specify the color to display for the ‘1’ bits in the image if a bit-mapped image (or a single plane of an
image) is being displayed.

LEXICON

xwud 183

-geometry geometry
Specify the size and position of the window. In most instances, you will want to specify only its
position, and let the size default to the actual size of the image.

-help Print a short description of these options.

-in file Read the image from file. If its command line names no file, xwud reads its input from the standard
input.

0w Create a new color map for displaying the image. If its image characteristics match those of the
display, this option can move the image onto the screen more quickly, but at the cost of using a new
color map (which, on most displays, scrambles the colors on the other windows).

-noclick By default, clicking any mouse button while the mouse cursor is within the window terminates the
application, and so erases the un-dumped image from the screen. This option turns off that behavior.
To terminate the program when it is in no-click mode, type q, Q, or <ctrl-C>.

-plane number
Display a single bit plane of the image. Bit planes are numbered, with zero being the least significant
bit; for example, a 256-color image consists of eight bit planes, numbered 0 through 7. You can use
this option to figure out which plane to pass to xpr for printing.

-raw Display the image with whatever color values happen to exist on the screen. This option is useful
when un-dumping an image onto the screen from which it was originally dumped, while the original
windows are still on the screen. This helps move the image onto the screen more quickly.

-rv Invert the meaning of each bit: change every 0 into a 1, and vice versa. This option swaps the
foreground and background when displaying a bit-mapped image or a single plane of an image.

-std maptype
Display the image using maptype as the standard color map. The property name is obtained by
converting the type to upper case, and appending to it the prefix RGB_ and the suffix _MAP. Typical
types are best, default, and gray. See the Lexicon’s entry for xstdcmap for one way of creating a
standard color maps.

-vis vis-type-or-id
Specify visual or visual class. The default is to pick the ‘‘best’’ one. A particular class can be specified,
e.g., StaticGray, GrayScale, StaticColor, PseudoColor, DirectColor, or TrueColor. You can also
specify Match, which tells xwud to use the same class as the source image. Alternatively, an exact
visual identifier (specific to the server) can be specified, either as a hexadecimal number (prefixed by
‘‘0x’’) or as a decimal number. Finally, you can specify default, which tells xwud to use the same class
as the color map of the root window. Case is not significant in any of these strings.

Environment
xwud reads the environmental variable DISPLAY to find the display onto which it is to un-dump the image.

Files
WDFile.h — Define the format of the X Windows dump file

See Also
xpr, xstdcmap, X clients, xwd

Notes
Copyright — 1988, Massachusetts Institute of Technology.

xwud was written by Bob Scheifler of the MIT X Consortium.

LEXICON

184 xwud

The COHERENT System 185

Index

to _

.xmodmaprc . 143

/dev/kmem . 137
/usr/X11/bin . 18
/usr/X11/doc. 18
/usr/X11/include/X11 18
/usr/X11/include/X11/bitmaps. 19
/usr/X11/include/X11/extensions 19
/usr/X11/include/X11/sys 19
/usr/X11/include/X11/Xaw 19
/usr/X11/include/X11/Xmu. 19
/usr/X11/lib . 19
/usr/X11/lib/app-defaults 19
/usr/X11/lib/config 19
/usr/X11/lib/fonts. 19
/usr/X11/lib/nls. 19
/usr/X11/lib/twm 19
/usr/X11/lib/x11perfcomp. 19
/usr/X11/lib/xinit 19
/usr/X11/objs . 19

A

Adams, Chuck. 120
Angebranndt, Susan 98, 105
app-defaults . 21
application . 31
APPLICATIONS . 17
appres . 34, 51
AT&T . 20
Athena widget set 18, 21, 64
atobm. 51
atom . 36, 138
autoraise . 11

B

background . 7
modify . 158

BDF . 33
bdftopcf. 33, 52
bit map . 22, 31
bit-mapped image. 51, 53
bitmap . 31, 51, 53
bitmap distribution format 33
bitmapFilePath . 77
bmtoa. 51, 60
Bock, Angela. 148
BorderColor . 27
BorderWidth . 26
bounding box . 148
Bovey, John . 181
Bradley, John . 115
Brunhoff, Todd . 70
button

screen . 7

C

calculator. 17, 38
Capo, Jose . 148

cat . 16, 180
Chapman, Ross . 138
chase . 15
Chee, Dana . 136
Chong, Danny . 138
clicking . 6
client . 31, 37, 98

definition . 20
Cline, Ernest. 177
clipboard . 115
Color . 27
color. 22, 32

palette . 23
set mode in Xconfig 23

COLUMNS . 74
compiling X applications. 43
composite widgets 21
Converse, Donna 115, 159
cul-de-sac . 40
cursor

image of cursors 128
names . 128

cursorfont.h . 27, 128
Cursors. 26
cut. 36, 121, 125
cut buffer. 121
cutting . 170

D

de-iconify a window. 8
defaults. 21
Della Fera, Tony. 119, 137, 182
DontMoveOff. 25
dpi. 147
dragging . 6
Drewry, Raymond. 98
Durbin, E. Mike . 148

E

edit bit-mapped image 53
editres . 60
emulate3buttons . 125
event . 35, 126
Everson, Phill . 178

F

focus . 11
font . 22, 32

bitmap distribution format 33
choose . 41
cursor . 22
portable compiled format 33
select . 129

font path . 22
FontPath . 33, 97
fonts . 97
fonts.alias . 22
fonts.dir . 22, 33, 71
foreground . 7
Frame. 27
Friedman, Mike . 45
Fulton, Jim51, 70, 92, 95, 107, 110, 123, 126, 129, 136, 138-140, 145, 177

G

INDEX

186 The COHERENT System

games. 37
geometry . 21, 25
Gettys, Jim. 137, 155, 177
Greening, Daniel R.. 178
Gretzinger, Michael R. 148
gridTolerance . 56
GUI . 18, 20

H

Hartmann, K. Shane 137
Hess, Richard . 71
Hewlett-Packard. 17, 38
HP-10C . 110

I

ico . 37, 66
icon . 6

name. 180
iconify window. 8
image, bit-mapped 51

edit. 53
imake . 19, 33, 43, 67
Imakefile . 43
importing X applications. 43
Internet. 14
ISO Latin 1. 130
ISO-8859-1 . 130

J

Jones, Ollie . 138

K

Kamens, Jonathan 177
Karlton, Phil 105, 140, 155
Karlton, Philip . 98
Kent, Chris. 105
keyboard

mapping. 37
kmem . 137
Krikorian, David. 157

L

LaStrange, Tom . 92
Lemke, Dave . 71
Lexicon

introduction . 49
libX11.a . 46
libXbsd.a . 46
Lillibridge, Mark. 129, 140, 152, 159, 183
listres . 34, 70
LN03 . 147
logo . 137

M

mailempty . 40
mailfull . 40
make . 33, 43
makedepend . 34
Makefile . 43
Malone, Stuart A. 137
Mankins, Dave . 119
Marguilies, Adam . 178

INDEX

Matic, Davor 52, 60, 142
maze . 37, 70
McBeath, Jim . 45
McCormack, Joel 105-106, 177
McNamara, Bob . 177
Medwin, Larry . 133
menu . 9

APPLICATIONS. 17, 29
Properties . 11
TWM Operations 13
WINDOW OPS . 11

MenuBackground. 30
MenuForeground . 30
MicroEMACS. 15, 36
Microsoft Windows . 5
Mink, Doug . 177
MIT . 1, 19
MIT-MAGIC-COOKIE-1. 96
mkdirhier. 34, 71
mkfontdir. 22, 33, 71, 97
Monochrome. 30
Moraes, Mark . 106
Motif . 20-21
mouse

click . 6
drag . 6

mouse buttons . 6
mouse cursor

definition . 6
Moy, Edward. 74, 119, 177
MS-DOS . 20

N

name
window . 180

Newman, Ron . 177
Newman, Todd. 98
nm. 46
nohup. 15
NoTitle . 25

O

object-oriented program design. 20
oclock. 38, 72
OOP . 20
OPEN LOOK . 20-21
Open Software Foundation 20
OReilly & Associates 2

P

Packard, Keith. 73, 92, 98, 117
palette . 23
paste . 36, 121, 125
pasting . 170
Payne, Dave . 92
PCF . 33
Peterson, Chris 66, 117, 125, 137
Pitschke, Steve 92, 177
pixel. 6
PixMap . 40
plaid. 24
pointer

definition . 6
portable compiled format 33
PostScript . 148

The COHERENT System 187

PRIMARY 37, 121, 170
primary selection 121, 141
Properties . 11
property

definition . 34
PRIMARY 37, 121, 170

Pulley, Harry. 181
puzzle . 17, 37, 73

R

Reid, Loretta Guarino 177
resize . 36, 74
resource . 21, 34, 39

bitmapFilePath. 77
definition . 39
font. 41
list . 70
print . 51

resource name. 180
RESOURCE_MANAGER 35
rgb.txt. 22, 27, 32
Riddle, Paul . 45
root window 21, 23, 33
root window, modify 158
Rosenstein, Mark . 115
Rosenthal, David . 145
ROWS. 74
Rupp, Larry . 148

S

Scheifler, Bob 98, 136, 148, 155, 157, 177, 184
Scheifler, Jim . 137
Schmidt, Dan . 134
screen

background. 33
screen button . 7
SCREEN_RESOURCES. 35
scrollbar . 180
security. 96, 172
Serisky, Dave . 177
server . 20, 95
sessreg . 36
shell. 14
Shortley, Martyn . 178
showrgb . 32, 74
shutting down X . 18
SIGHUP. 97
SIGTERM. 97
SIGUSR1 . 97
SIGWIN . 74
slider . 9
Solomon, Marvin . 148
spoof . 172
start.twmrc . 77
startx . 23, 36, 74, 135
Sternlicht, Dave 92, 142
Sun Microsystems 20
Swick, Ralph R. 110, 117, 123, 132, 177
system.twmrc . 19, 25

T

Tallot, Didier. 178
Tektronix 4014 . 14
Texas Instruments 17, 38
TI-30 . 110

title . 180
title bar . 7
toolkit. 21
troff . 148
twm . 8, 36, 75, 97
TWM Operations . 13
twmrc . 19, 77

U

unfocus. 12
utility . 20, 31, 98
utmp . 36

V

Vandevoorte, Mark 74, 177
VGA . 20

palette . 23
vi . 15, 36
viewres . 92
VT-100 . 14, 38, 178

W

Weiss, Martin . 71
Weissman, Terry . 177
widget. 39

Athena set . 64
bitmap. 59
composite . 21
editor . 60

widget class . 21, 39
widget set . 21
window

background. 7
de-iconify . 8
foreground . 7
iconify . 8
names . 180
title. 180

window manager
definition . 21

WINDOW OPS . 11
workstation . 20
write. 15, 179
Wyatt, William F. 182

X

X. 95
architecture. 20
history. 19
recompile . 43
releases . 19
revisions. 19
shut down . 18
utilities . 31
window manager. 21

X client
definition . 20

X clients . 98
X Logical Font Description 129
X server. 95, 20
X terminal . 20
X utilities. 98
x11perf . 100
x11perfcomp. 105

INDEX

188 The COHERENT System

xauth . 35, 106
Xaw . 64
xbiff 17, 24, 38, 40, 107
XCalc . 39
xcalc . 17, 21, 38, 110
xclipboard . 36, 115
xclock. 16-17, 24-25, 30, 38, 117
xcmsdb . 32, 119
xcmstest . 120
Xconfig . 22, 33, 97
xcutsel . 37, 121
XDM-AUTHORIZATION-1 96
xdpyinfo . 35, 123
xedit. 38, 123
xev. 35, 126
xeyes . 18, 25, 37, 126

example of window 75
xfd. 22, 27, 33, 127
xfontsel 17, 21-22, 33, 129
xgas . 30, 37, 132
xgc. 38, 133
xgrabsc . 73
xinit . 23, 36, 134
xinitrc. 19, 23, 74, 134
xkill . 37, 136
XLFD . 129
Xlib . 21
xload . 18, 38, 136
xlogo . 18, 38, 137
xlogo32 . 31
xlsatoms . 36, 138
xlsclients . 36, 139
xlsfonts . 33, 140
xmag . 18, 38, 140
xmkmf 19, 34, 43, 142
xmodmap. 37, 142
xpr. 39, 145, 181
xprop . 34, 149
xrdb . 21, 28, 35, 152
xrefresh. 33, 155
xset . 33, 95, 97, 156
xsetroot. 23-24, 32-33, 158
xstdcmap. 32, 159
Xt . 21
xterm . 39, 97, 160
xtetris. 18, 37, 177
xvt . 6, 14, 18, 38, 178
xwd . 39, 148, 181
xwininfo . 36, 182
xwud . 39, 181, 183

INDEX

