
! to ~

— Preprocessing Operator
String-ize operator

The preprocessing operator # can be used within the replacement list of a function-like macro. It and its operand
are replaced by a string literal, which names the sequence of preprocessing tokens that replaces the operand
throughout the macro.

For example, the consider the macro:

#define display(x) show((long)(x), #x)

When the preprocessor reads the following line

display(abs(-5));

it replaces it with the following:

show((long)(abs(-5)), "abs(-5)");

Here, the preprocessor replaced #x with a string literal that gives the sequence of token that replaces x.

The following rules apply to interpreting the # operator:

1. If a sequence of white-space characters occurs within the preprocessing tokens that replace the argument, it
is replaced with one space character.

2. All white-space characters that occur before the first preprocessing token and after the last preprocessing
token are deleted.

3. The original spelling of the preprocessing tokens is preserved. This means that you must take care to preserve
certain characters: a backslash ‘\’ should be inserted before every quotation mark ‘"’ that marks a string
literal, and before every backslash that introduces a character constant.

Example
The following uses the operator # to display the result of several mathematics routines.

#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

void show(value, name)
double value, char *name;
{

if (errno)
perror(name);

else
printf("%10g %s\n", value, name);

errno = 0;
}

#define display(x) show((double)(x), #x)

main()
{

extern char *gets();
double x;
char string[64];

for(;;) {
printf("Enter a number: ");
fflush(stdout);
if(gets(string) == NULL)

break;

LEXICON

303

x = atof(string);
display(x);
display(cos(x));
display(sin(x));
display(tan(x));
display(acos(cos(x)));

}
}

See Also
#define, C preprocessor
ANSI Standard, §6.8.3.2

— Preprocessing Operator
Token-pasting operator

The preprocessing operator ## can be used in both object-like and function-like macros. When used immediately
before or immediately after an element in the macro’s replacement list, ## joins the corresponding preprocessor
token with its neighbor. This is sometimes called ‘‘token pasting’’.

As an example of token pasting, consider the macro:

#define printvar(number) printf("%s\n", variable ## number)

When the preprocessor reads the following line

printvar(5);

it substitutes the following code for it:

printf("%s\n", variable5);

The preprocessor throws away all white space both before and after the ## operator. This gives you an easy way to
print any one of a set of strings.

must not be used as the first or last entry in a replacement list. All instances of the ## operator are resolved
before further macro replacement is performed.

For more information on object-like and function-like macros, see #define.

See Also
#define, C preprocessor
ANSI Standard, §6.8.3.3

Notes
Some C implementations allow token pasting by using an empty comment. For example:

variable/**/number

The COHERENT C compiler does not recognize this ‘‘trick’’ because it is not consistent with the Kernighan & Ritchie
standard for C, which states that a comment is white space and therefore is a token separator. In any event, token
pasting should always be performed with ##.

The ## operator may be used only within the replacement text of a preprocessor macro definition.

The order of evaluation of multiple ## operators is unspecified.

#define — Preprocessing Directive
Define an identifier as a macro

The preprocessing directive #define tells the C preprocessor to regard identifier as a macro.

#define can define two kinds of macros: object-like, and function-like.

An object-like macro has the syntax

#define identifier replacement-list

LEXICON

304 ## — #define

This type of macro is also called a manifest constant. The preprocessor searches for identifier throughout the text of
the translation unit, and replaces it with the elements of replacement-list, which is then rescanned for further
macro substitutions.

For example, consider the directive:

#define BUFFERSIZE 75

When the preprocessor reads the line

malloc(BUFFERSIZE);

it replaces it with:

malloc(75);

A given identifier is replaced only once by a given replacement-list. This is to prevent such code as

#define FOO FOO

or

#define FOO BAR
#define BAR FOO

from generating an infinite loop.

A function-like macro is more complex. It has the syntax:

#define identifier lparen identifier-list
opt

) replacement-list

The preprocessor looks for identifier, which is a macro that resembles a function in that it is followed by a pair of
parentheses that may enclose an identifier-list. It replaces identifier with the contents of replacement-list, up to the
first lparen ‘(’ within replacement-list.

The preprocessor then examines identifier-list for further macros, which it expands. The modified identifier-list is
then replaced with the rest of replacement-list. Pairs of parentheses that are nested between the lparen that begins
replacement-list and the ‘)’ that ends it are copied into identifier-list as literal characters. The identifiers within
identifier-list are preserved after it has been modified by replacement-list. The only exceptions are identifiers that
are prefixed by the preprocessing operators # or ##; these are handled appropriately.

For example, the consider the macro:

#define display(x) show((long)(x), #x)

When the preprocessor reads the following line

display(abs(-5));

it replaces it with the following:

show((long)(abs(-5)), "abs(-5)");

When an argument to a function-like macro contains no preprocessing tokens, or when an argument to a function-
like macro contains a preprocessing token that is identical to a preprocessing directive, the behavior is undefined.

Example
For an example of using a function-like macro in a program, see #.

See Also
#, ##, #undef, C preprocessor
ANSI Standard, §6.8.3

Notes
A macro expansion always occupies exactly one line, no matter how many lines are spanned by the definition or
the actual parameters. If you have defined macros that span more than one line, you must either redefine them to
occupy one line, or somehow embed the newline character within the macro itself; otherwise, the macro will not
expand correctly.

A macro definition can extend over more than one line, provided that a backslash ‘\’ appears before the newline
character that breaks the lines. The size of a #define directive is therefore limited by the maximum size of a logical

LEXICON

#define 305

source line, which can be up to at least 509 characters long.

Some implementations allowed a user to re-define a macro with a new #define directive. The Standard, however,
allows only a ‘‘benign’’ redefinition; that is, the body of the new definition must exactly match the old definition,
including parameter names and white space.

#elif — Preprocessing Directive
Include code conditionally

The preprocessing directive #elif conditionally includes code within a program. It can be used after any of the
instructions #if, #ifdef, or #ifndef.

If the conditional expression of the preceding #if, #ifdef, or #ifndef directive is false (i.e., evalutates to zero) and if
the current condition is true (i.e., evaluates to a value other than zero), then group is included within the program,
up to the next #elif, #else, or #endif directive. An #if, #ifdef, or #ifndef directive may be followed by any number
of #elif directives.

The constant-expression must be an integral expression, and it cannot include a sizeof operator, a cast, or an
enumeration constant. All macro substitutions are performed upon the constant-expression before it is evaluated.
All integer constants are treated as long objects, and are then evaluated. If constant-expression includes character
constants, all escape sequences are converted into characters before evaluation.

See Also
#else, #endif, #if, #ifdef, #ifndef, C preprocessor, defined
ANSI Standard, §6.8.1

#else — Preprocessing Directive
Include code conditionally

The preprocessing directive #else conditionally includes code within a program. It is preceded by one of the
directives #if, #ifdef, or #ifndef, and may also be preceded by any number of #elif directives. If the conditional
expressions of all preceding directives evaluate to false (i.e., to zero), then the code introduced by #else is included
within the program, up to the #endif directive.

A #if, #ifdef, or #ifndef directive can be followed by only one #else directive.

See Also
#elif, #endif, #if, #ifdef, #ifndef, C preprocessor
ANSI Standard, §6.8.1

#endif — Preprocessing Directive
End conditional inclusion of code

The preprocessing directive #endif must follow any #if, #ifdef, or #ifndef directive. It may also be preceded by any
number of #elif directives and an #else directive. It marks the end of a sequence of source-file statements that are
included conditionally by the preprocessor.

Example
For an example of using this directive in a program, see assert.

See Also
#elif, #else, #if, #ifdef, #ifndef, C preprocessor
ANSI Standard, §6.8.1

#if — Preprocessing Directive
Include code conditionally

The preprocessing directive #if tells the preprocessor that if constant-expression is true (i.e., that it evalutes to a
value other than zero), then include the following lines of code within the program until it reads the next #elif,
#else, or #endif directive.

The constant-expression must be an integral expression, and it cannot include a sizeof operator, a cast, or an
enumeration constant. All macro substitutions are performed upon the constant-expression before it is evaluated.
All integer constants are treated as long objects, and are then evaluated. If constant-expression includes character
constants, all escape sequences are converted into characters before evaluation.

LEXICON

306 #elif — #if

If constant-expression is an undefined symbol, the preprocessor treats it the same as it would a false statement.

See Also
#elif, #else, #endif, #ifdef, #ifndef, C preprocessor, defined
ANSI Standard, §6.8.1

#ifdef — Preprocessing Directive
Include code conditionally

The preprocessing directive #ifdef checks whether identifier has been defined as a macro name. If identifier has
been defined as a macro, then the preprocessor includes group within the program, up to the next #elif, #else, or
#endif directive. If identifier has not been defined, however, then group is skipped.

An #ifdef directive can be followed by any number of #elif directives, by one #else directive, and must be followed
by an #endif directive.

Example
For an example of using this directive in a program, see assert.

See Also
#elif, #else, #endif, #if, #ifndef, C preprocessor, defined
ANSI Standard, §6.8.1

#ifndef — Preprocessing Directive
Include code conditionally

The preprocessing directive #ifndef checks whether identifier has been defined as a macro name. If identifier has
not been defined as a macro, then the preprocessor includes group within the program, up to the next #elif, #else,
or #endif directive. If identifier has been defined, however, then group is skipped.

An #ifndef directive can be followed by any number of #elif directives, by one #else directive, and by one #elif
directive.

See Also
#elif, #else, #endif, #if, #ifndef, C preprocessor, defined
ANSI Standard, §6.8.1

#include — Preprocessing Directive
Read another file and include it
#include <file>
#include "file"

The preprocessing directive #include tells the preprocessor to replace the directive with the contents of file.

The directive can take one of two forms: either the name of the file is enclosed within angle brackets (<header.h>),
or it is enclosed within quotation marks ("header.h"). Angle brackets tell cpp to look for file.h in the directories
named with the -I options to the cc command line, and then in the standard directory. Quotation marks tell cpp
to look for file.h in the source file’s directory, then in directories named with the -I options, and then in the
standard directory.

Most often, the file being included is a header, which is a file that contains function prototypes, macro definitions,
and other useful material; as its name implies, it most often appears at the head of a program. The header name
must be a string of characters, possibly followed by a period ‘.’ and a single letter, usually (but not always) ‘h’. A
header name may have up to 12 characters to the left of the period, and names may be case sensitive.

#include directives may be nested up to at least eight deep. That is to say, a file included by an #include directive
may use an #include directive to include a third file; that third file may also use a #include directive to include a
fourth file; and so on, up to at least eight files.

Note, too, that a subordinate header file is sought relative to the original source file, rather than relative to the
header that calls it directly. For example, suppose that a file example.c resides in directory /v/fred/src. If
example.c contains the directive #include <header1.h>. The operating system will look for header1.h in the
standard directory, /usr/include. If header1.h includes the directive #include <../header2.h> then COHERENT

looks for header2.h not in directory /usr, but in directory /v/fred.

LEXICON

#ifdef — #include 307

A #include directive may also take the form #include string, where string is a macro that expands into either of the
two forms described above.

See Also
header files, C preprocessor
ANSI Standard §6.8.2

Notes
If the header’s name is enclosed within quotation marks note that the name is not a string literal, although it looks
exactly like one. Thus, a backslash ‘\’ does not introduce an escape character.

Trigraphs that occur within a #include directive are substituted, because they are processed by an earlier phase of
translation than are #include directives.

The mapping provided for included files may map a given name either to an actual file, or to a member in a
partitioned data set.

#line — Preprocessing Directive
Reset line number
#line number newline
#line number filename newline
#line macros newline

#line is a preprocessing directive that resets the line number within a file. The ANSI Standard defines the line
number as being the number of newline characters read, plus one.

#line can take any of three forms. The first, #line number, resets the current line number in the source file to
number. The second, #line number filename, resets the line number to number and changes the name of the file to
filename. The third, #line macros, contains macros that have been defined by earlier preprocessing directives.
When the macros have been expanded by the preprocessor, the #line instruction will then resemble one of the first
two forms and be interpreted appropriately.

See Also
C preprocessor
ANSI Standard, §6.8.4

Notes
Most often, #line is used to ensure that error messages point to the correct line in the program’s source code. A
program generator may use this directive to associate errors in generated C code with the original sources. For
example, the program generator yacc uses #line instructions to link the C code it generates with the yacc code
written by the programmer.

#pragma — Preprocessing Directive
Perform implementation-specific preprocessing

#pragma is the C preprocessing directive that triggers implementation-specific behavior. The ANSI Standard
demands that every conforming implementation of C document what #pragma does.

COHERENT recognizes one use of #pragma:

#pragma align [n]

This directive permits COHERENT to conform to the Intel Binary Compatability Standard (BCS), which specifies
alignment requirements for structs.

The BCS requires that a struct be aligned consistently with the alignment of its most strictly aligned member. For
example, the structure

struct s {
short s_s1;
int s_i;
short s_s2;

};

LEXICON

308 #line — #pragma

must put member s_i at offset 4, not 2 (because int is dword-aligned). If you have an array of struct s objects, the
second will be at offset 12, not 10 (or 8), because struct s itself must also be dword-aligned.

This, unfortunately, creates problems with existing compiled code, and with some standards, e.g., COFF. For
example, a struct filsys (a COHERENT file system, e.g., on a floppy or hard disk) is defined in <sys/filsys.h> as
starting out just like the above:

struct filsys {
unsigned short s_isize;
daddr_t s_fsize;
short s_nfree;
...

};

Because daddr_t is long, COHERENT would compile this and expect to find s_fsize at offset 4 (not 2) and s_nfree at
offset 8 (not 6); but this is not where the bits actually fall on an existing file system. So we circumvent the BCS
with #pragma align. The directive #pragma align n means ‘‘align objects on n-byte boundaries, at most,’’ and
#pragma align means ‘‘restore default alignment.’’ Thus, <sys/filsys.h> is edited to read:

struct filsys {
unsigned short s_isize;

#pragma align 2
daddr_t s_fsize;

#pragma align
short s_nfree;
...

};

and the compiler thinks the struct members fall at offsets 0, 2 and 6, which preserves compatibility with existing
binary objects.

See Also
cpp, C preprocessor
ANSI Standard, §6.8.6

#undef — Preprocessing Directive
Undefine a macro
#undef identifier

The preprocessing directive #undef tells the C preprocessor to disregard identifier as a macro. It undoes the effect
of the #define directive.

See Also
#define, C preprocessor
ANSI Standard, §6.8.3

__DATE__ — Manifest Constant
Date of translation

__DATE__ is a preprocessor constant that is defined by the C preprocessor. It represents the date that the source
file was translated. It is a string literal of the form

"Mmm dd yyyy"

where Mmm is the same three-letter abbreviation for the month as is used by asctime; dd is the day of the month,
with the first d being a space if translation occurs on the first through the ninth day of the month; and yyyy is the
current year.

The value of __DATE__ remains constant throughout the processing of the a module of source code. It may not be
the subject of a #define or #undef preprocessing directive.

Example
The following prints the preprocessor constants set by the ANSI standard.

#include <stddef.h>
#include <stdio.h>

LEXICON

#undef — __DATE__ 309

main(void)
{

printf("Date: %s\n", __DATE__);
printf("Time: %s\n", __TIME__);
printf("File: %s\n", __FILE__);
printf("Line No.: %d\n", __LINE__);

printf("ANSI C? ");
#ifndef __STDC__

printf("no0);
#else

printf("ANSI C? %s(%d)0, __STDC__ ? "Yes" : "No", __STDC__);
#endif /* _defined(__STDC__) */

exit(EXIT_SUCCESS);

}

See Also
__FILE__, __LINE__, __STDC__, __TIME__, manifest constant
ANSI Standard, §6.8.8

__FILE__ — Manifest Constant
Source file name

__FILE__ is a preprocessor constant that is defined by the C preprocessor. It represents, as a string constant, the
name of the current source file being translated.

__FILE__ may not be the subject of a #define or #undef preprocessing directive, but it may be altered with the
#line preprocessing directive.

Example
For an example of how to use __FILE__ in a program, see __DATE__.

See Also
__DATE__, __LINE__, __STDC__, __TIME__, manifest constant
ANSI Standard, §6.8.8

__LINE__ — Manifest Constant
Current line within a source file

__LINE__ is a preprocessor constant that is defined by the C preprocessor. It represents the current line within the
source file. The ANSI standard defines the current line as being the number of newline characters read, plus one.

__LINE__ may not be the subject of a #define or #undef preprocessing directive.

Example
For an example of how to use __LINE__ in a program, see __DATE__.

See Also
__DATE__, __FILE__, __STDC__, __TIME__, manifest constant
ANSI Standard, §6.8.8

__STDC__ — Manifest Constant
Mark a conforming translator

__STDC__ is a preprocessor constant that is defined by the C preprocessor. If it is defined to be equal to one, then
it indicates that the translator conforms to the ANSI standard.

The value of __STDC__ remains constant throughout the entire program, no matter how many source files it
comprises. It may not be the subject of a #define or #undef preprocessing directive.

Example
For an example of using __STDC__ in a program, see __DATE__.

LEXICON

310 __FILE__ — __STDC__

See Also
__DATE__, __FILE__, __LINE__, __TIME__, manifest constant
ANSI Standard, §6.8.8

Notes
Many users incorrectly attempt to use the construction

#ifdef __STDC__

instead of the correct form:

#if __STDC__

These constructions give different results because __STDC__ is defined, but it is defined to a value of zero, in
keeping with the fact that COHERENT C does not yet conform to the ANSI standard.

To help users avoid this error, COHERENT does not define __STDC__ at all.

__TIME__ — Manifest Constant
Time source file is translated

__TIME__ is a preprocessor constant that is defined by the C preprocessor. It represents the time that a source file
is translated. It is a string literal of the form:

"hh:mm:ss"

This is the same format used by the function asctime.

The value of this preprocessor constant remains constant throughout the processing of the translation unit. It
may not be the subject of a #define or #undef preprocessing directive.

Example
For an example of how to use __TIME__ in a program, see __DATE__.

See Also
__DATE__, __FILE__, __LINE__, __STDC__, manifest constant
ANSI Standard §6.8.8

_exit() — System Call (libc)
Terminate a program
#include <unistd.h>
void _exit(status) int status;

The system call _exit() terminates a program directly. It returns status to the calling program, and exits. Unlike
the library function exit(), _exit() does not perform extra termination cleanup, such as flushing buffered files and
closing open files.

_exit() should be used only in situations where you do not want buffers flushed or files closed. For example, you
may wish to call _exit() if your program detects an irreparable error condition and you want to ‘‘bail out’’ to keep
your data files from being corrupted.

_exit() should also be used with programs that do not use STDIO. Unlike exit(), _exit() does not use STDIO. This
will help you create programs that are extremely small when compiled.

See Also
close(), exit(), EXIT_FAILURE, EXIT_SUCCESS, libc, unistd.h, wait()
POSIX Standard, §3.2.2

Notes
If you do not explicitly set status to a value, the program returns whatever value happens to have been in the
register EAX. You can set status to either EXIT_SUCCESS or EXIT_FAILURE.

LEXICON

__TIME__ — _exit() 311

_getwd() — General Function (libc)
Get current working directory name
char *_getwd(pathname)
char *pathname;

The current working directory is the directory from which file name searches commence when a path name does not
begin with ‘/’. _getwd() returns the name of the current working directory. It is useful for processes like spoolers
and daemons, which must generate full path names for files.

If you do not have permission to search all levels of the directory hierarchy above the current directory, _getwd()
cannot obtain the directory name for you.

See Also
chdir(), getcwd(), libc, pwd

Diagnostics
_getwd() returns NULL and writes an error message into pathname if an error occurs, e.g., if the current directory
cannot be found or if any other error occurs.

Notes
_getwd() is obsolete, and is included for reasons of compatibility. Programmers should use the function getcwd()
instead.

_getwd() fails if the current directory name is longer than MAXPATH characters (128 characters as defined in
header file <path.h>). The chunk of memory pointed to by pathname must be big enough to hold MAXPATHLEN
characters plus a trailing NUL.

If _getwd() fails, the working directory cannot be restored to its initial value.

The name of this function has been change to _getwd() to avoid confusion with the Berkeley UNIX function getwd(),
which has a different calling sequence.

_tolower() — ctype Function (libc)
Convert characters to lower case
#include <ctype.h>
int _tolower(c) int c;

The function _tolower() converts the character c to lower case, and returns the converted character. Unlike the
related function tolower(), _tolower() is not guaranteed to work correctly if handed anything other than an upper-
case character, that is, a character for which isupper() returns true.

See Also
_toupper(), libc, tolower()

Notes
_tolower() is not part of the ANSI standard; COHERENT includes it only to support old code. You should use
tolower() instead.

_toupper() — ctype Function (libc)
Convert characters to upper case
#include <ctype.h>
int _toupper(c) int c;

The function _toupper() converts the character c to upper case and returns the converted character. Unlike the
related function toupper(), _toupper() is not guaranteed to work correctly if it is passed something other than a
lower-case character, that is, any character for which islower() returns true.

See Also
_tolower(), libc, toupper()

Notes
_toupper() is not part of the ANSI standard; COHERENT includes it only to support old code. You should use
toupper() instead.

LEXICON

312 _getwd() — _toupper()

LEXICON

_toupper() 313

